Journal of Computational Analysis and Applications

EUDOXUS PRESS, LLC
SCOPE OF THE JOURNAL

The main purpose of "J.Computational Analysis and Applications" is to publish high quality research articles from all subareas of Computational Mathematical Analysis and its many potential applications and connections to other areas of Mathematical Sciences. Any paper whose approach and proofs are computational, using methods from Mathematical Analysis in the broadest sense is suitable and welcome for consideration in our journal, except from Applied Numerical Analysis articles. Also plain word articles without formulas and proofs are excluded. The list of possibly connected mathematical areas with this publication includes, but is not restricted to: Applied Analysis, Applied Functional Analysis, Approximation Theory, Asymptotic Analysis, Difference Equations, Differential Equations, Partial Differential Equations, Fourier Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities, Integral Equations, Measure Theory, Moment Theory, Neural Networks, Numerical Functional Analysis, Potential Theory, Probability Theory, Real and Complex Analysis, Signal Analysis, Special Functions, Splines, Stochastic Analysis, Stochastic Processes, Summability, Tomography, Wavelets, any combination of the above, e.t.c. "J.Computational Analysis and Applications" is a peer-reviewed Journal. See the instructions for preparation and submission of articles to JoCAAA. Assistant to the Editor: Dr. Razvan Mezei, mezei_razvan@yahoo.com, St. Martin Univ., Olympia, WA, USA.

Journal of Computational Analysis and Applications (JoCAAA) is published by EUDOXUS PRESS, LLC, 1424 Beaver Trail Drive, Cordova, TN 38016, USA, anastassioug@yahoo.com
http://www.eudoxuspress.com. Annual Subscription Prices: For USA and Canada, Institutional: Print $800, Electronic OPEN ACCESS. Individual: Print $400. For any other part of the world add $160 more (handling and postages) to the above prices for Print. No credit card payments. Copyright ©2021 by Eudoxus Press, LLC, all rights reserved. JoCAAA is published in USA. JoCAAA is reviewed and abstracted by AMS Mathematical Reviews, MATHSCl, and Zentralblatt MATH.
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in any form and by any means without the written permission of the publisher. It is only allowed to educators to Xerox articles for educational purposes. The publisher assumes no responsibility for the content of published papers.
Francesco Altomare
Dipartimento di Matematica
Universita' di Bari
Via E.Orabona, 4
70125 Bari, ITALY
Tel+39-080-5442690 office
+39-080-3944046 home
+39-080-5963612 Fax
altomare@dm.uniba.it

Ravi P. Agarwal
Department of Mathematics
Texas A&M University - Kingsville
700 University Blvd.
Kingsville, TX 78363-8202
tel: 361-593-2600
Agarwal@tamuk.edu
Differential Equations, Difference Equations, Inequalities.

George A. Anastassiou
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152, U.S.A
Tel. 901-678-3144
e-mail: ganastss@memphis.edu
Approximation Theory, Real Analysis, Wavelets, Neural Networks, Probability, Inequalities.

J. Marshall Ash
Department of Mathematics
De Paul University
2219 North Kenmore Ave.
Chicago, IL 60614-3504
773-325-4216
e-mail: mash@math.depaul.edu
Real and Harmonic Analysis.

Dumitru Baleanu
Department of Mathematics and Computer Sciences,
Cankaya University, Faculty of Art and Sciences,
06530 Balgat, Ankara, Turkey, dumitru@cankaya.edu.tr
Fractional Differential Equations
Nonlinear Analysis, Fractional Dynamics.

Carlo Bardaro
Dipartimento di Matematica e Informatica
Universita di Perugia
Via Vanvitelli 1
06123 Perugia, ITALY
TEL+390755853822
+390755855034
FAX+390755855024
E-mail carlo.bardaro@unipg.it
Web site: http://www.unipg.it/~bardaro/
Functional Analysis and Approximation Theory, Signal Analysis, Measure Theory, Real Analysis.

Martin Bohner
Department of Mathematics and Statistics, Missouri S&T
Rolla, MO 65409-0020, USA
bohner@mst.edu
web.mst.edu/~bohner
Difference equations, differential equations, dynamic equations on time scale, applications in economics, finance, biology.

Jerry L. Bona
Department of Mathematics
The University of Illinois at Chicago
851 S. Morgan St. CS 249
Chicago, IL 60601
e-mail: bona@math.uic.edu
Partial Differential Equations, Fluid Dynamics.

Luis A. Caffarelli
Department of Mathematics
The University of Texas at Austin
Austin, Texas 78712-1082
512-471-3160
e-mail: caffarel@math.utexas.edu
Partial Differential Equations.
George Cybenko
Thayer School of Engineering
Dartmouth College
8000 Cummings Hall,
Hanover, NH 03755-8000
603-646-3843 (X 3546 Secr.)
e-mail: george.cybenko@dartmouth.edu
Approximation Theory and Neural Networks

Sever S. Dragomir
School of Computer Science and
Mathematics, Victoria University,
PO Box 14428,
Melbourne City,
MC 8001, AUSTRALIA
Tel. +61 3 9688 4437
Fax +61 3 9688 4050
sever.dragomir@vu.edu.au
Inequalities, Functional Analysis,
Numerical Analysis, Approximations,
Information Theory, Stochastics.

Oktay Duman
TOBB University of Economics and
Technology,
Department of Mathematics, TR-06530,
Ankara, Turkey,
oduman@etu.edu.tr
Classical Approximation Theory,
Summability Theory, Statistical
Convergence and its Applications

Saber N. Elaydi
Department Of Mathematics
Trinity University
715 Stadium Dr.
San Antonio, TX 78212-7200
210-736-8246
e-mail: selaydi@trinity.edu
Ordinary Differential Equations,
Difference Equations

J .A. Goldstein
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
901-678-3130
jgoldste@memphis.edu
Partial Differential Equations,
Semigroups of Operators

H. H. Gonska
Department of Mathematics
University of Duisburg
Duisburg, D-47048
Germany
011-49-203-379-3542
e-mail: heiner.gonska@uni-due.de
Approximation Theory, Computer
Aided Geometric Design

John R. Graef
Department of Mathematics
University of Tennessee at
Chattanooga
Chattanooga, TN 37304 USA
John-Graef@utc.edu
Ordinary and functional
differential equations, difference
equations, impulsive systems,
differential inclusions, dynamic
equations on time scales, control
theory and their applications

Weimin Han
Department of Mathematics
University of Iowa
Iowa City, IA 52242-1419
319-335-0770
e-mail: whan@math.uiowa.edu
Numerical analysis, Finite element
method, Numerical PDE, Variational
inequalities, Computational
mechanics

Tian-Xiao He
Department of Mathematics and
Computer Science
P.O. Box 2900, Illinois Wesleyan
University
Bloomington, IL 61702-2900, USA
Tel (309)556-3089
Fax (309)556-3864
the@iwu.edu
Approximations, Wavelet,
Integration Theory, Numerical
Analysis, Analytic Combinatorics

Margareta Heilmann
Faculty of Mathematics and Natural
Sciences, University of Wuppertal
Gaußstraße 20
D-42119 Wuppertal, Germany,
heilmann@math.uni-wuppertal.de
Approximation Theory (Positive
Linear Operators)

Xing-Biao Hu
Institute of Computational
Mathematics
AMSS, Chinese Academy of Sciences
Beijing, 100190, CHINA
hxb@lsec.cc.ac.cn
Computational Mathematics

Jong Kyu Kim
Department of Mathematics
Kyungnam University
Masan Kyungnam,631-701,Korea
Tel 82-(55)-249-2211
Fax 82-(55)-243-8609
jongkyuk@kyungnam.ac.kr
Nonlinear Functional Analysis,
Variational Inequalities, Nonlinear
Ergodic Theory, ODE, PDE,
Functional Equations.

Robert Kozma
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152, USA
rkozma@memphis.edu
Neural Networks, Reproducing Kernel Hilbert Spaces,
Neural Percolation Theory

Mustafa Kulenovic
Department of Mathematics
University of Rhode Island
Kingston, RI 02881,USA
kulenm@math.uri.edu
Differential and Difference Equations

Irena Lasiecka
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152
PDE, Control Theory, Functional Analysis, lasiecka@memphis.edu

Burkhard Lenze
Fachbereich Informatik
Fachhochschule Dortmund
University of Applied Sciences
Postfach 105018
D-44047 Dortmund, Germany
e-mail: lenze@fh-dortmund.de
Real Networks, Fourier Analysis,
Approximation Theory

Hrushikesh N. Mhaskar
Department Of Mathematics
California State University
Los Angeles, CA 90032
626-914-7002
e-mail: hmmhaska@gmail.com
Orthogonal Polynomials,
Approximation Theory, Splines,
Wavelets, Neural Networks

Ram N. Mohapatra
Department of Mathematics
University of Central Florida
Orlando, FL 32816-1364
tel.407-823-5080
ram.mohapatra@ucf.edu
Real and Complex Analysis,
Approximation Th., Fourier Analysis, Fuzzy Sets and Systems

Gaston M. N'Guerekata
Department of Mathematics
Morgan State University
Baltimore, MD 21251, USA
tel: 1-443-885-4373
Fax 1-443-885-8216
Gaston.N'Guerekata@morgan.edu
nguerekata@aol.com
Nonlinear Evolution Equations,
Abstract Harmonic Analysis,
Fractional Differential Equations,
Almost Periodicity & Almost Automorphy

M.Zuhair Nashed
Department Of Mathematics
University of Central Florida
PO Box 161364
Orlando, FL 32816-1364
e-mail: znashed@mail.ucf.edu
Inverse and Ill-Posed problems,
Numerical Functional Analysis,
Integral Equations, Optimization,
Signal Analysis

Mubenga N. Nkashama
Department OF Mathematics
University of Alabama at Birmingham
Birmingham, AL 35294-1170
205-934-2154
e-mail: nkashama@math.uab.edu
Ordinary Differential Equations,
Partial Differential Equations

Vassilis Papanicolaou
Department of Mathematics
National Technical University of Athens
Zografou campus, 157 80
Athens, Greece
tel:: +30(210) 772 1722
Fax +30(210) 772 1775
papanico@math.ntua.gr
Partial Differential Equations,
Probability

Choonkil Park
Department of Mathematics
Hanyang University
Seoul 133-791
S. Korea, baak@hanyang.ac.kr
Functional Equations

Svetlozar (Zari) Rachev,
Professor of Finance, College of Business, and Director of Quantitative Finance Program,
Department of Applied Mathematics & Statistics
Stonybrook University
312 Harriman Hall, Stony Brook, NY 11794-3775
tel: +1-631-632-1998,
svetlozar.rachev@stonybrook.edu

Alexander G. Ramm
Mathematics Department
Kansas State University
Manhattan, KS 66506-2602
e-mail: ramm@math.ksu.edu
Inverse and Ill-posed Problems, Scattering Theory, Operator Theory, Theoretical Numerical Analysis, Wave Propagation, Signal Processing and Tomography

Tomasz Rychlik
Polish Academy of Sciences
Instytut Matematyczny PAN
00-956 Warszawa, skr. poczt. 21 ul. Śniadeckich 8
Poland
trychlik@impan.pl
Mathematical Statistics, Probabilistic Inequalities

Boris Shekhtman
Department of Mathematics
University of South Florida
Tampa, FL 33620, USA
Tel 813-974-9710
shekhtma@usf.edu
Approximation Theory, Banach spaces, Classical Analysis

T. E. Simos
Department of Computer Science and Technology
Faculty of Sciences and Technology
University of Peloponnese
GR-221 00 Tripolis, Greece
Postal Address:
26 Menelaou St.
Anfithea - Paleon Faliron
GR-175 64 Athens, Greece
tsimos@mail.ariadne-t.gr
Numerical Analysis

H. M. Srivastava
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3R4
Canada
harimsri@math.uvic.ca
Real and Complex Analysis, Fractional Calculus and Appl., Integral Equations and Transforms, Higher Transcendental Functions and Appl., q-Series and q-Polynomials, Analytic Number Th.

I. P. Stavroulakis
Department of Mathematics
University of Ioannina
451-10 Ioannina, Greece
ipstav@cc.uoi.gr
Differential Equations
Phone +3-065-109-8283

Manfred Tasche
Department of Mathematics
University of Rostock
D-18051 Rostock, Germany
manfred.tasche@mathematik.uni-rostock.de
Numerical Fourier Analysis, Fourier Analysis, Harmonic Analysis, Signal Analysis, Spectral Methods, Wavelets, Splines, Approximation Theory

Roberto Triggiani
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152
PDE, Control Theory, Functional Analysis, riftgani@memphis.edu

Juan J. Trujillo
University of La Laguna
Departamento de Analisis Matematico
C/Astr.Fco.Sanchez s/n
38271. LaLaguna. Tenerife.
SPAIN
Tel/Fax 34-922-318209
Juan.Trujillo@ull.es
Fractional: Differential Equations-
Operators-Fourier Transforms,
Special functions, Approximations,
and Applications

Ram Verma
International Publications
1200 Dallas Drive #824 Denton,
TX 76205, USA
Verma99@msn.com
Applied Nonlinear Analysis,
Numerical Analysis, Variational
Inequalities, Optimization Theory,
Computational Mathematics, Operator
Theory

Xiang Ming Yu
Department of Mathematical Sciences
Southwest Missouri State University
Springfield, MO 65804-0094
417-836-5931
xmy944f@missouristate.edu
Classical Approximation Theory,
Wavelets

Xiao-Jun Yang
State Key Laboratory for Geomechanics
and Deep Underground Engineering,
China University of Mining and Technology,
Xuzhou 221116, China
Local Fractional Calculus and Applications,
Fractional Calculus and Applications,
General Fractional Calculus and
Applications,
Variable-order Calculus and Applications,
Viscoelasticity and Computational methods
for Mathematical
Physics.dyangxiaojun@163.com

Richard A. Zalik
Department of Mathematics
Auburn University
Auburn University, AL 36849-5310
USA.
Tel 334-844-6557 office
678-642-8703 home
Fax 334-844-6555
zalik@auburn.edu
Approximation Theory, Chebychev
Systems, Wavelet Theory

Ahmed I. Zayed
Department of Mathematical Sciences
DePaul University
2320 N. Kenmore Ave.
Chicago, IL 60614-3250
773-325-7808
e-mail: azayed@condor.depaul.edu
Shannon sampling theory, Harmonic
analysis and wavelets, Special
functions and orthogonal
polynomials, Integral transforms

Ding-Xuan Zhou
Department Of Mathematics
City University of Hong Kong
83 Tat Chee Avenue
Kowloon, Hong Kong
852-2788 9708,Fax:852-2788 8561
e-mail: mazhou@cityu.edu.hk
Approximation Theory, Spline
functions, Wavelets

Xin-long Zhou
Fachbereich Mathematik, Fachgebiet
Informatik
Gerhard-Mercator-Universitat
Duisburg
Lotharstr.65, D-47048 Duisburg,
Germany
e-mail:Xzhou@informatik.uni-
duisburg.de
Fourier Analysis, Computer-Aided
Geometric Design, Computational
Complexity, Multivariate
Approximation Theory, Approximation
and Interpolation Theory

Jessada Tariboon
Department of Mathematics
King Mongut’s University of Technology N.
Bangkok
1518 Pracharat 1 Rd., Wongsawang,
Bangsue, Bangkok, Thailand 10800
jessada.t@sci.kmutnb.ac.th, Time scales
Differential/Difference Equations,
Fractional Differential Equations
1. Manuscripts files in Latex and PDF and in English, should be submitted via email to the Editor-in-Chief:

 Prof. George A. Anastassiou
 Department of Mathematical Sciences
 The University of Memphis
 Memphis, TN 38152, USA.
 Tel. 901.678.3144
 e-mail: ganastss@memphis.edu

 Authors may want to recommend an associate editor the most related to the submission to possibly handle it.

 Also authors may want to submit a list of six possible referees, to be used in case we cannot find related referees by ourselves.

2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX, or AMS-LaTEX and according to EUDOXUS PRESS, LLC. LATEX STYLE FILE. (Click HERE to save a copy of the style file.) They should be carefully prepared in all respects. Submitted articles should be brightly typed (not dot-matrix), double spaced, in ten point type size and in 8(1/2)x11 inch area per page. Manuscripts should have generous margins on all sides and should not exceed 24 pages.

3. Submission is a representation that the manuscript has not been published previously in this or any other similar form and is not currently under consideration for publication elsewhere. A statement transferring from the authors(or their employers, if they hold the copyright) to Eudoxus Press, LLC, will be required before the manuscript can be accepted for publication. The Editor-in-Chief will supply the necessary forms for this transfer. Such a written transfer of copyright, which previously was assumed to be implicit in the act of submitting a manuscript, is necessary under the U.S. Copyright Law in order for the publisher to carry through the dissemination of research results and reviews as widely and effective as possible.
4. The paper starts with the title of the article, author's name(s) (no titles or degrees), author's affiliation(s) and e-mail addresses. The affiliation should comprise the department, institution (usually university or company), city, state (and/or nation) and mail code.

The following items, 5 and 6, should be on page no. 1 of the paper.

5. An abstract is to be provided, preferably no longer than 150 words.

6. A list of 5 key words is to be provided directly below the abstract. Key words should express the precise content of the manuscript, as they are used for indexing purposes.

The main body of the paper should begin on page no. 1, if possible.

7. All sections should be numbered with Arabic numerals (such as: 1. INTRODUCTION)
Subsections should be identified with section and subsection numbers (such as 6.1. Second-Value Subheading).
If applicable, an independent single-number system (one for each category) should be used to label all theorems, lemmas, propositions, corollaries, definitions, remarks, examples, etc. The label (such as Lemma 7) should be typed with paragraph indentation, followed by a period and the lemma itself.

8. Mathematical notation must be typeset. Equations should be numbered consecutively with Arabic numerals in parentheses placed flush right, and should be thusly referred to in the text [such as Eqs.(2) and (5)]. The running title must be placed at the top of even numbered pages and the first author's name, et al., must be placed at the top of the odd numbed pages.

9. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in one consecutive series of Arabic numerals. The captions for illustrations should be typed double space. All illustrations, charts, tables, etc., must be embedded in the body of the manuscript in proper, final, print position. In particular, manuscript, source, and PDF file version must be at camera ready stage for publication or they cannot be considered.

Tables are to be numbered (with Roman numerals) and referred to by number in the text. Center the title above the table, and type explanatory footnotes (indicated by superscript lowercase letters) below the table.

10. List references alphabetically at the end of the paper and number them consecutively. Each must be cited in the text by the appropriate Arabic numeral in square brackets on the baseline.
References should include (in the following order):
- initials of first and middle name, last name of author(s)
- title of article,
name of publication, volume number, inclusive pages, and year of publication.

Authors should follow these examples:

Journal Article

Book

Contribution to a Book

11. All acknowledgements (including those for a grant and financial support) should occur in one paragraph that directly precedes the References section.

12. Footnotes should be avoided. When their use is absolutely necessary, footnotes should be numbered consecutively using Arabic numerals and should be typed at the bottom of the page to which they refer. Place a line above the footnote, so that it is set off from the text. Use the appropriate superscript numeral for citation in the text.

13. After each revision is made please again submit via email Latex and PDF files of the revised manuscript, including the final one.

14. Effective 1 Nov. 2009 for current journal page charges, contact the Editor in Chief. Upon acceptance of the paper an invoice will be sent to the contact author. The fee payment will be due one month from the invoice date. The article will proceed to publication only after the fee is paid. The charges are to be sent, by money order or certified check, in US dollars, payable to Eudoxus Press, LLC, to the address shown on the Eudoxus homepage.

 No galleys will be sent and the contact author will receive one (1) electronic copy of the journal issue in which the article appears.

15. This journal will consider for publication only papers that contain proofs for their listed results.
Daubechies Wavelet Method for Second Kind
Fredholm Integral Equations with Weakly Singular
Kernel

Xin Luo † Jin Huang‡

Abstract

In this paper, the weakly singular Fredholm integral equations of the second kind are solved by the periodized Daubechies wavelets method. In order to obtain a good degree of accuracy of the numerical solutions, the Sidi-Israeli quadrature formulae are used to construct the approximation of the singular kernel functions. By applying the asymptotically compact theory, we prove the convergence of approximate solutions. In addition, the sidi transformation can be used to degrade the singularities when the kernel function is non-periodic. At last, numerical examples show the method is efficient and errors of the numerical solutions possess high accuracy order $O(h^{3+\alpha})$, where h is the mesh size.

Keyword: Daubechies wavelets; weakly singular kernel; Fredholm integral equation of the second; linear and nonlinear integral equations; convergence rate.

1 Introduction

Many problems in science and engineering such as Lapalace’s equation, problems in elasticity, conformal mapping, free surface flows and so on, result in Fredholm integral equations with singular or weakly singular (in general logarithmic) and periodic kernels [11]. Therefore, singular or weakly Singular Fredholm linear equations and its nonlinear counterparts are most frequently studied for decades.

*This work is supported by Project (NO. KYTZ201505) Supported by the Scientific Research Foundation of CUIT
†College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, P.R. China, corresponding author: luoxin9190163.com
‡School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P.R.China
Generally, the weakly singular Fredholm integral equation of the second can be converted into the following form

\[u(x) - \int_0^1 k(x, y) g(u(y)) \, dy = f(x), \quad x \in [0, 1], \]

(1.1)

where

\[k(x, y) = H_1(x, y)|x - y|^\alpha (\ln |x - y|)^\beta + H_2(x, y), \quad \alpha > -1, \beta \geq 0, \]

(1.2)

\(u(x) \) is an unknown function and \(f \in L^2[0, 1] \), and \(H_j(x, y) \) \((j = 1, 2)\) are continuous on \([0, 1]\). The integral equation (1.1) is linear when \(g(u(y)) = u(y) \), and when \(g(u(y)) \neq u(y) \) the equation is nonlinear.

As is known, several different orthonormal basis functions, for example, Chebyshev polynomial [8], Fourier functions [2], and wavelets [3, 4, 5, 6, 7, 9, 10, 13, 14, 16, 17], can be used to approximate the solutions of integral equations. However, for large scale problems, the most attractive one among them may be the wavelet bases, in which the kernel can be transformed to a sparse matrix after discretization. This is mainly due to functions with fast oscillations, or even discontinuities, in localized regions may be approximated well by a linear combination of relatively few wavelets [3].

This paper is organized as follows: in Section 2, the periodized Daubechies wavelets is introduced for solving weakly singular Fredholm integral equations of the second in detail. In Section 3, the convergence and error analysis are investigated. In Section 4, numerical examples are provided to verify the theoretical results. Some useful conclusions are made in Section 5.

2 Periodized Daubechies wavelets method

2.1 Multiresolution analysis and function expansions

Wavelets are attractive for the numerical solution of integrations, because their vanishing moments property leads to operator compression. Especially, Daubechies wavelets [12, 15] have many good properties and can deal with some types of kernels arising from boundary integral formulation of elliptic PDEs, and the coefficient are often numerically sparse. In fact, there are only \(O(n \log n) \) significant elements. Supposed that \(\psi \) and \(\phi \) be the the wavelet of genus \(N \) and Daubechies scaling function respectively. Thus their support are \(\text{supp}(\phi) = \text{supp}(\psi) = [0, N - 1] \). For any \(j, k \in \mathbb{Z} \), we introduce the notations \(\hat{\phi}_{j,k}(x) = 2^{j/2}\phi(2^jx - k) \) and \(\hat{\psi}_{j,k}(x) = 2^{j/2}\psi(2^jx - k) \), then their periodic kin with period-1 can be described by

\[\tilde{\phi}_{j,k}(x) = \sum_{n \in \mathbb{Z}} \phi_{j,k}(x + n), \quad \tilde{\psi}_{j,k}(x) = \sum_{n \in \mathbb{Z}} \psi_{j,k}(x + n), \quad x \in \mathbb{R}, \quad 0 \leq k < 2^j. \]

(2.1)

Here \(\{\tilde{\phi}_{j,k}(x)\}_{k \in \mathbb{Z}} \) and \(\{\tilde{\psi}_{j,k}(x)\}_{k \in \mathbb{Z}} \) are orthogonal [17]. Defining the periodic spaces \(\tilde{V}_j = \text{span}\{\tilde{\phi}_{j,k}\}_{k=0}^{2^j-1} \) and \(\tilde{W}_j = \text{span}\{\tilde{\psi}_{j,k}\}_{k=0}^{2^j-1} \). A chain of spaces \(\tilde{V}_0 \subset \tilde{V}_1 \cdots \subset \)
$L^2[0,1]$ can be constructed, which subject to the following conditions: (a) $\cup_{j \geq 0} \tilde{V}_j = L^2[0,1]$, $\cap_{j \in \mathbb{Z}} V_j = \{0\}$; (b) $h(x) \in V_j \iff h(2x) \in V_{j+1}$; (c) $\tilde{V}_j \oplus W_j = \tilde{V}_{j+1}$, $\tilde{V}_j \perp \tilde{V}_j$. The Daubechies wavelets and scaling functions described above result in the wavelet theory (i.e., multiresolution analysis (MRA)) of $L^2[0,1]$.

Supposed that function $p(x) \in L^2[0,1]$ be approximated by scaling series at resolution J as

$$p(x) = \sum_{k=0}^{2^J-1} c_{J,k} \tilde{\phi}_{J,k}(x) = \Phi(x) c, \quad x \in [0,1], \quad (2.2)$$

where

$$\Phi(x) = [\tilde{\phi}_{J,0}(x), \tilde{\phi}_{J,1}(x), \ldots, \tilde{\phi}_{J,2^J-1}(x)], \quad (2.3)$$

and

$$c = (c_{J,0}, c_{J,1}, \ldots, c_{J,2^J-1})^T, \quad c_{J,k} = \int_{0}^{1} p(x) \tilde{\phi}_{J,k}(x) dx. \quad (2.4)$$

First, we calculate the wavelet coefficient $c_{J,k}$ for nonsingular function $p(x) \in L^2[0,1]$. Let $x_i = i/2^J, i = 0, 1, \ldots, 2^J-1$. Substituting $x = x_i$ into Eq. (2.2), we have

$$p(x) = \sum_{k=0}^{2^J-1} c_{J,k} \tilde{\phi}_{J,k}(i/2^J) = 2^{J/2} \sum_{k=0}^{2^J-1} c_{J,k} \sum_{n \in \mathbb{Z}} \phi_{J,k}(2^J n + i - k). \quad (2.5)$$

By using the relationship between supp(ϕ) and $[0,1]$, we know when $J \geq J_0$ only finite terms of the inner summation in (2.5) contribute the following result

$$n = \begin{cases} 0 \text{ or } 1, & \text{if } 2^J - N + 2 \leq N - 1, \\ 0, & \text{if } 0 \leq k \leq 2^J s - N + 1. \end{cases}$$

Now we write (2.5) as the matrix form

$$p = Tc, \quad (2.6)$$

where $p = [p(0), p(1/2^J), \ldots, p((2^J - 1)/2^J)]^T$, T is the nonsingular matrix which entries are the function values of $\phi(x)$ at integers (i.e., $\phi(0), \phi(1), \ldots, \phi(N-2)$) appear in it, and hence it satisfies

$$\sum_{i=1}^{2^J} T_{ij} = \sum_{j=1}^{2^J} T_{ij} = 2^{J/2}, \quad i,j = 1,2,\ldots,2^J. \quad (2.7)$$

Consequently, the function $k(x,y) \in L^2([0,1] \times [0,1])$ in Eq.(1.1) can be approximated at resolution J as

$$k(x,y) = \Phi^T(x) Q \Phi(y), \quad (2.8)$$

where Q is the $2^J \times 2^J$ coefficient matrix. Eq. (2.8) can be written as the following form

$$Q = T^{-1} K T^{-t}, \quad (2.9)$$

where K is the $2^J \times 2^J$ kernel matrix with $K_{i,j} = k(i/2^J, j/2^J)$.
Secondly, if the function \(p(x) \) is singular on \([0, 1]\), some values of \(p(x) \) at the dyadic points \(x_i = i/2^j, \ i = 0, 1, \cdots, 2^j - 1 \) may be unbounded and then \(c \) cannot be immediately solved from the Eq.(2.6). In order to avoid the Eq.(2.6) being invalid, we can use the method in the literature [17] to compute the values of \(p(x) \). Without loss of generality, we assumed that function \(p(x) = L^2[0, 1] \) has only one singular point \(x_i = i/2^j, \ i = \{0, 1, \cdots, 2^j - 1\} \). Then the function value \(p(x_i) \) in Eq.(2.6) can be computed via on the following (see [17])

\[
p(i/2^j) = 2^j \int_0^1 p(x)dx - \sum_{j=0, j \neq i}^{2^j-1} p(j/2^j), \quad i \in \{0, 1, \cdots, 2^j - 1\}, \tag{2.10}
\]

where integration \(\int_0^1 p(x)dx \) can be calculated by Sidi-Israeli quadrature formulae [11].

2.2 Kernel function approximation and discretization of singular integral equation

Motivated by the Eq.(2.10) and by thinking \(k(x, y) \) as a one-dimensional function of variable \(x \) and \(y \) respectively, we also have

\[
k(x, m/2^j) = 2^j \int_0^1 k(x, y)dy - \sum_{j=0, j \neq m}^{2^j-1} k(x, j/2^j), \quad m \in \{0, 1, \cdots, 2^j - 1\}. \tag{2.11}
\]

The following Theorem 2.1 can be used to construct the kernel approximation of Eq.(1.1).

Theorem 2.1 [11] Assume that the functions \(H_1(x, y) \) and \(H_2(x, y) \) are \(2\ell \) times differentiable on \([a, b]\). Assume also that the functions \(k(x, y) \) are periodic with period \(T = b - a \), and they are \(2\ell \) times differentiable on \(\tilde{R} = (-\infty, \infty) \setminus \{x + jT\}_{j=-\infty}^{\infty} \). If \(k(x, y) = H_1(x, y)|x - y|^\alpha(\ln |x - y|)^\beta + H_2(x, y), \ s > -1, \ \beta = 0, 1 \), then the quadrature rules of the following integral

\[
I[k(x, y)] = \int_a^b k(x, y)dy, \tag{2.12}
\]

are

\[
I_n[k(x, y)] = h \sum_{j=1, y_j \neq x}^n k(x, y_j) + 2[\beta \zeta'(-\alpha) - \zeta(-\alpha)(\ln \ h)^\beta]H_1(x, x)h^{\alpha+1} + H_2(x, x)h, \tag{2.13}
\]

and the quadrature errors are

\[
E_n[k(x, y)] = 2 \sum_{\mu=1}^{\ell-1} [(\beta \zeta'(-\alpha - 2\mu) - \zeta(-\alpha - 2\mu)(\ln \ h)^\beta] \frac{H_1^{(2\mu)}(x, y_j)}{(2\mu)!} h^{2\mu+\alpha+1} + o(h^{2\ell}), \tag{2.14}
\]
where $E_n[k(x,y)] = I[k(x,y)] - I_n[k(x,y)]$, and the mesh size is $h = (b - a)/n$.

Let $n = 2^J$ and by (2.13), we can get the Nyström approximation for the kernel function $k(x,y)$

$$k_D(x_i, y_j) = \begin{cases}
2[\beta \zeta'(-\alpha) - \zeta(-\alpha)(\ln h)^\alpha]H_1(x_i, x_i)h^\alpha + H_2(x_i, x_i), & \text{if } i = j, \\
k(x_i, y_j), & \text{if } i \neq j.
\end{cases}$$

Supposed that the kernel function $k(x,y)$, $u(x)$ and $f(x)$ be approximated at resolution J as

$$k(x,y) = \Phi^t(x)Q\Phi(y), \ f(x) = \Phi^t(x)b \text{ and } u(x) = \Phi^t(x)c,$$

where $c = [c(0), c(1/2^J), \ldots, c((2^J - 1)/2^J)]^t$ is the expansion coefficient vector of $u(x)$. By the orthonormality of periodized wavelets, the integration of the product of the same two scaling function vectors is achieved as

$$\int_0^1 \Phi(x)\Phi^t(x)dx = I,$$

where I is the 2^J by 2^J identity matrix. For the linear integral equation, we have

$$\Phi^t(x)c - \int_0^1 \Phi^t(x)Q\Phi(y)\Phi^t(y)cdy = \Phi^t(x)b.$$

Substituting (2.15), (2.16) and (2.17) into (2.18), and by invoking (2.9), we get a linear system

$$(I - K_D(T^tT)^{-1})u_D = f,$$

where $f = [f(0), f(1/2^J), \ldots, f((2^J - 1)/2^J)]^t$ and $K_D = T^tQT$. Similarly, the nonlinear case for Eq. (1.1) can be transformed into the following by the wavelet method

$$u_D - K_D(TT^t)^{-1}g(u_D) = f,$$

Eq. (2.20) is a system of nonlinear equations about u and can be computed by Newton iteration method.

3 Convergence and error analysis

In this section, we mainly study the convergence and error for the linear case of (1.1) by wavelet method.

We write Eq. (1.1) as the operate form

$$(I - \tilde{K})u = f,$$

where

$$(\tilde{K}u)(x) = \int_0^1 k(x,y)u(y)dy,$$

and
with the kernel
\[k(x, y) = H_1(x, y)|x - y|^\alpha (\ln |x - y|)^\beta + H_2(x, y), \quad \alpha > -1, \ \beta \geq 0, \tag{3.3} \]
and the approximation of \(\tilde{K} \) is defined by
\[(\tilde{K}_n u)(x) = h \sum_{j=1, y_j \neq x}^n k(x, y_j)u(y_j) + \omega_n(x)u(x), \tag{3.4} \]
where the weight function
\[\omega(x) = 2[\beta \zeta'(-\alpha) - \zeta(-\alpha)(\ln h)^\beta]H_1(x, x)h^{\alpha+1} + H_2(x, x)h. \tag{3.5} \]
Supposed that the approximation of (3.1) is
\[(I - \tilde{K}_n)u_n(x) = g. \tag{3.6} \]

Lemma 3.1 Supposed the the operator \(\tilde{K}_n \) is defined by (3.4), then the operator sequence \(\{\tilde{K}_n\} \) is asymptotically compactly convergent to \(\tilde{K} \), i.e.,
\[\tilde{K}_n \xrightarrow{a.c} \tilde{K}, \tag{3.7} \]
where \(a.c \rightarrow \) denotes the asymptotically compact convergence.

Proof. Let the continuous kernel approximation of \(\tilde{K} \) be defined by
\[k^c(x, y) = \begin{cases} k(x, y), & \text{if } |x - y| \geq h, \\ H_1(x, x)h^{\alpha}(\ln h)^\beta + H_2(x, x), & \text{if } |x - y| < h, \end{cases} \tag{3.8} \]
and the corresponding operator approximation be
\[(K^c_n u)(x) = h \sum_{j=1}^n k^c_n(x, y_j)u(y_j). \tag{3.9} \]
For any \(v \in C[0, 1] \), we have
\[\| (\tilde{K} - K^c_n) v \| = \sup_{\|v\|_\infty \leq 1} \int_0^1 |(k(x, y) - k^c_n(x, y))v(y)| \, dy \\
\leq \int_0^1 |k(x, y) - k^c_n(x, y)| \, dy \|v\|_\infty \\
\leq \int_{|x - y| \leq h} |H_1(x, x)||x - y|^\alpha (\ln |x - y|)^\beta - h^\alpha (\ln h)^\beta |dy| \|v\|_\infty \\
\leq \max_{x, y \in C[0, 1]} |H_1(x, y)| \int_{|x - y| \leq h} |x - y|^\alpha (\ln |x - y|)^\beta - h^\alpha (\ln h)^\beta |dy| \|v\|_\infty \\
= O((\ln h)^\beta h^\alpha) \|v\|_\infty, \tag{3.10} \]
hence, we can obtain
\[\| \tilde{K} - K_n^c \| = O((\ln h)^\beta h^\alpha) \rightarrow 0, \quad \text{as } h \rightarrow 0. \]
\((3.11) \)

On the other hand, we know \(\omega(x) \rightarrow 0 \) as \(h \rightarrow 0 \) by (3.5), then
\[\| K_n^c - \tilde{K}_n \| \rightarrow 0, \quad \text{as } h \rightarrow 0. \]
\((3.12) \)

First, there exists a subsequence in \(\{ K_n^c y_n \} \) for any \(y_n \subset C[0,1] \) by (3.11). Without loss of generality, assume that \(K_n^c y_n \rightarrow z \) and by (3.12), then
\[\| \tilde{K}_n y_n - z \| \leq \| \tilde{K}_n y_n - K_n^c y_n \| + \| K_n^c y_n - z \| \leq \| \tilde{K}_n - K_n^c \| \| y_n \| + \| K_n^c y_n - z \| \rightarrow 0, \]
\((3.13) \)

that is to say, the sequence \(\{ \tilde{K}_n \} \) is asymptotically compactly convergent. Secondly, for any \(y \in C[0,1] \), we have
\[\| \tilde{K}_n y - \tilde{K} y \| \leq \| \tilde{K}_n - K_n^c \| \| y \| + \| K_n^c y - \tilde{K} y \| \rightarrow 0. \]
\((3.14) \)

The proof of Lemma 3.1 is completed. \(\square \)

Corollary 3.2 The operator sequence \(\{ \tilde{K}_n(I - o(h) E) \} \) is asymptotically compactly convergent to \(\tilde{K} \), i.e.,
\[\tilde{K}_n(I - o(h) E) \overset{a.c.}{\rightarrow} \tilde{K}. \]
\((3.15) \)

where \(E \) is a matrix and every element in it is one.

Proof. By Lemma 3.1, we know
\[\tilde{K}_n \overset{a.c.}{\rightarrow} \tilde{K}, \]
\((3.16) \)

that is,
\[\| \tilde{K}_n - \tilde{K} \| \rightarrow 0. \]
\((3.17) \)

Hence, we immediately have
\[\| \tilde{K}_n(I - o(h) E) - \tilde{K} \| \leq \| \tilde{K}_n - \tilde{K} \| + \| \tilde{K}_n \| \| o(h) E \| \rightarrow 0. \]
\((3.18) \)

The proof of Corollary 3.2 is completed. \(\square \)

Let \(x = (i - 1)h, \ i = 1, 2, \ldots, 2^J \), where \(h = 1/2^J \). Using the trapezoidal rule to approximate Eq.(2.17), then we have \(hTT^t = I + o(h) E \), where \(E \) is a matrix and every element in it is one. By \((hTT^t)^{-1} = I + o(h) E \), (2.15) and (2.19), we get
\[(I - \tilde{K}_n hT^{ht}T)^{-1} u_D = f, \]
\((3.19) \)

which is equivalent to
\[(I - \tilde{K}_n(I - o(h) E)) u_D = f. \]
\((3.20) \)

Hence, by the Corollary 3.2 we get the following remark.

Remark 1 According to the Corollary 3.2, the solutions \(u_D \) of Eq.(3.20) by
Daubechies wavelet method are convergent to the solutions u_n of Eq.(3.6) when $h\to 0$.

Theorem 3.3 The solutions of Eq.(3.6) have asymptotic expansions hold at nodes

$$u_n(x) = u(x) + \sigma_1(x)h^{\alpha+3} + \sigma_2(x)h^{\alpha+3}\ln h + o(h^{\alpha+5}\ln h),$$

(3.21)

where $\sigma_j(x) \in C[0, 1], \ j = 1, 2$ are independent of h, and $\sigma_2 = 0$ when $\beta = 0$ and $\alpha > -1$, or $\beta = 1$ and $\alpha = 0$.

Proof. We construct the auxiliary equation

$$(I - \tilde{K})\sigma = P(x),$$

(3.22)

where

$$P(x) = [\beta\zeta'(-\alpha - 2) - \zeta(-\alpha - 2)(\ln h)^\beta](H_1u)^{(2)}h^{3+\alpha}.$$

(3.23)

By invoking Eq.(2.14), we have

$$(\tilde{K}_n - \tilde{K})u(x) = -P(x) + o(h^{5+\alpha}\ln h).$$

(3.24)

Using (3.22), we get

$$(I - \tilde{K}_n)(u_n - u - h^{3+\alpha}\sigma) = f - u + \tilde{K}_n u + h^{3+\alpha}(I - \tilde{K}_n)\sigma$$

$$= (\tilde{K}_n - \tilde{K})u + h^{3+\alpha}(I - \tilde{K})\sigma + h^{3+\alpha}(\tilde{K}_n - \tilde{K})\sigma$$

$$= o(h^{\alpha+5}\ln h),$$

(3.25)

that is,

$$u_n - u - h^{3+\alpha}\sigma = o(h^{\alpha+5}\ln h).$$

(3.26)

From (3.22), we obtain

$$\sigma = -\sigma_1 - \sigma_2(\ln h)^\beta,$$

(3.27)

where

$$\sigma_1 = -\beta\zeta'(-\alpha - 2)(I - \tilde{K})^{-1}(H_1u)^{(2)}, \ \text{and} \ \sigma_2 = \zeta(-\alpha - 2)(I - \tilde{K})^{-1}(H_1u)^{(2)}.$$

(3.28)

Substituting (3.28) into (3.26), and by $\zeta(-2) = 0$ (see [1]), we know that (3.21) holds. The proof of Theorem 3.3 is completed. □

Remark 2 According to the Theorem 3.3 and Remark 1, the numerical solutions u_D of Eq.(3.19) possess high accuracy order $O(h^{3+\alpha})$ as $h\to 0$.

4 Numerical experiments

In this section, two numerical examples about the Fredholm equations are computed by Daubechies wavelet method. Let $err_n(x) = |u(x) - u_n(x)|$ be the errors by Daubechies wavelet method using $n = 2^J, J = 3, \cdots, 8$) nodes, and let $EOC = \log(err_n/err_{2n})/\log 2$ be the estimated order of convergence.
If the kernel function $k(x, y)$ of Eq.(1.1) is not periodic, we can apply the Sidi transformation for Eq.(1.1) and make the kernel be periodic. The Sidi transformation is defined by (see [18])

$$
\psi_\gamma(t) = \int_0^t (\sin \pi \tau)^\gamma d\tau \left(\int_0^1 (\sin \pi \tau)^\gamma d\tau \right)^{-1} : [0, 1] \rightarrow [0, 1], \ \gamma \geq 1.
$$

In the following three examples, the errors and error ratio of numerical solutions at the selected points $x_1 = 0, x_2 = 0.25$ and $x_3 = 0.5$ by Daubechies wavelet method using transformation $\psi_6(t)$ are listed in tables.

Example 1. Consider the linear Fredholm equation of the first kind

$$
u(x) + \int_0^1 \ln|x - y|u(y)dy = g(x)
$$

where $g(x) = x^2 \ln x/2 + (1 - x^2) \ln(1 - x)/2 + x/2 - 1/4$ and the exact solution is $u(x) = x$. We use periodic Daubechies wavelet of genus $D = 12$ as basis functions to compute the errors for Example 1 using different resolutions. The plots of computed errors are shown in Figure 1 and the errors and error ratio of numerical solutions are listed in Table 1. From the results in Table 1, we can see $EOC \approx 3$.

<table>
<thead>
<tr>
<th>J</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$err^u_n(x_1)$</td>
<td>2.058-02</td>
<td>2.111-03</td>
<td>3.214-04</td>
<td>3.935-05</td>
<td>4.896-06</td>
<td>6.116-07</td>
</tr>
<tr>
<td>$EOC(x_1)$</td>
<td>–</td>
<td>3.2857</td>
<td>2.715</td>
<td>3.030</td>
<td>3.007</td>
<td>3.001</td>
</tr>
<tr>
<td>$err^u_n(x_2)$</td>
<td>2.328-02</td>
<td>2.485-03</td>
<td>3.607-04</td>
<td>4.401-05</td>
<td>5.481-06</td>
<td>6.847-07</td>
</tr>
<tr>
<td>$EOC(x_2)$</td>
<td>–</td>
<td>3.228</td>
<td>2.784</td>
<td>3.035</td>
<td>3.006</td>
<td>3.001</td>
</tr>
<tr>
<td>$err^u_n(x_3)$</td>
<td>2.278-02</td>
<td>9.764-05</td>
<td>1.752-05</td>
<td>2.222-06</td>
<td>2.778-07</td>
<td>3.474-08</td>
</tr>
<tr>
<td>$EOC(x_3)$</td>
<td>–</td>
<td>7.866</td>
<td>2.478</td>
<td>2.979</td>
<td>3.000</td>
<td>3.000</td>
</tr>
</tbody>
</table>

Figure 1: The error distributions of Example 1 at different resolutions.
Example 2. Solving the following non-periodic second kind Fredholm integral equation with algebraic singular kernel

\[u(x) + \int_0^1 |x - y|^{-1/2} u(y) dy = g(x), \]

where \(g(x) = x + 2(x^2 + x^2/3 + x\sqrt{1-x}) + (1-x)^2/3 \) and the exact solution is \(u(x) = x \). We also use periodic Daubechies wavelet of genus \(D = 12 \) as basis functions to compute the errors using different resolutions. The plots of computed errors are shown in Figure 2 and the errors and error ratio of numerical solutions are listed in Table 2. From the results in Table 2, we can see \(EOC \approx 2.5 \).

<table>
<thead>
<tr>
<th>(J)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(erru_n(x_1))</td>
<td>1.713-03</td>
<td>3.964-05</td>
<td>1.638-05</td>
<td>2.627-06</td>
<td>4.505-07</td>
<td>7.898-08</td>
</tr>
<tr>
<td>(EOC(x_1))</td>
<td>–</td>
<td>5.433</td>
<td>1.275</td>
<td>2.640</td>
<td>2.544</td>
<td>2.512</td>
</tr>
<tr>
<td>(erru_n(x_2))</td>
<td>8.526-03</td>
<td>3.899-04</td>
<td>3.847-05</td>
<td>4.843-06</td>
<td>8.529-07</td>
<td>1.508-07</td>
</tr>
<tr>
<td>(EOC(x_2))</td>
<td>–</td>
<td>4.451</td>
<td>3.341</td>
<td>2.990</td>
<td>2.505</td>
<td>2.500</td>
</tr>
<tr>
<td>(erru_n(x_3))</td>
<td>4.698-03</td>
<td>2.975-04</td>
<td>6.878-05</td>
<td>1.216-05</td>
<td>2.150-06</td>
<td>3.800-07</td>
</tr>
<tr>
<td>(EOC(x_3))</td>
<td>–</td>
<td>3.981</td>
<td>2.113</td>
<td>2.499</td>
<td>2.500</td>
<td>2.500</td>
</tr>
</tbody>
</table>

Figure 2: The error distributions of Example 2 at different resolutions.

Example 3. Solving the following nonlinear second kind Fredholm integral equation with weakly singular kernel

\[u(x) + \int_0^1 \ln|x - y| g(u(y)) dy = f(x), \]
where
\[f(x) = (x - 0.5)^{2/3} + \frac{1}{3}(x^2 - x + 1/3) - x(x^2/3 - x/2 + 0.25) \ln\left(\frac{x}{1-x}\right) - \frac{1}{12} \ln(1-x). \]

The exact solution is \(u(x) = (x - 0.5)^{2/3} \). The periodic Daubechies wavelets of genus \(D = 12 \) as basis functions are used to compute the errors. The Newton iteration method is used for solve Example 3 and the initial vector of \(u_0 \) is given by \(u_0 = (1, 1, \cdots, 1)_{2^J \times 1} \). After 4 iterations the errors are shown in Fig.3. The errors and error ratio of numerical solutions are listed in Table 3. From Table 3, we can see \(EOC \approx 3 \).

Table 3: The Errors of \(u \).

<table>
<thead>
<tr>
<th>(J)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{err}_n^u(x_1))</td>
<td>4.900-04</td>
<td>4.755-05</td>
<td>4.371-06</td>
<td>5.481-07</td>
<td>6.865-08</td>
<td>8.582-09</td>
</tr>
<tr>
<td>(EOC(x_1))</td>
<td>-</td>
<td>3.365</td>
<td>3.443</td>
<td>2.996</td>
<td>2.997</td>
<td>3.000</td>
</tr>
<tr>
<td>(\text{err}_n^u(x_2))</td>
<td>1.659-03</td>
<td>1.565-04</td>
<td>1.714-05</td>
<td>2.141-06</td>
<td>2.673-07</td>
<td>3.340-08</td>
</tr>
<tr>
<td>(EOC(x_2))</td>
<td>-</td>
<td>3.407</td>
<td>3.190</td>
<td>3.001</td>
<td>3.002</td>
<td>3.001</td>
</tr>
<tr>
<td>(\text{err}_n^u(x_3))</td>
<td>6.442-04</td>
<td>2.102-04</td>
<td>6.570-05</td>
<td>8.145-06</td>
<td>1.004-06</td>
<td>1.252-07</td>
</tr>
<tr>
<td>(EOC(x_3))</td>
<td>-</td>
<td>1.616</td>
<td>1.678</td>
<td>3.012</td>
<td>3.019</td>
<td>3.003</td>
</tr>
</tbody>
</table>

Figure 3: The error distributions of Example 3 at different resolutions.

5 Conclusions

In this paper, the Sidi-Israeli quadrature formula is used to construct the approximation of kernel functions and then the Daubechies wavelet method is used to solve Eq. (1.1). when the kernel functions are not periodic, we can apply the Sidi transformation for Eq.(1.1) and make the kernels be periodic. Because the wavelet integrations are completely avoided and the expansion coefficients obtained here are exact, which
makes the wavelets method has a good degree of accuracy. In addition, the Daubechies wavelets method is used for linear Fredholm integration equation, the discrete matrix of the associated linear system can be transformed into a very sparse and symmetrical one. Accordingly, many preconditioners can be used to reduce the computational cost.

References

Some fixed point results in ordered complete dislocated quasi G_d metric space
Abdullah Shoaib1, Muhammad Arshad2, Tahair Rasham3

Abstract: In this paper, we discuss the fixed points of mappings satisfying contractive type condition on a closed ball in an ordered complete dislocated quasi G metric space. The notion of dominated mappings is applied to approximate the unique solution of non linear functional equations. An example is given to show the validity of our work. Our results improve/generalize several well known recent and classical results.

2010 Mathematics Subjects Classification: 46S70; 47H10; 54H25.

Keywords and phrases: fixed point; contractive dominated mappings; closed ball; ordered complete dislocated quasi metric spaces.

1 Introduction and Preliminaries

Let $T : X \to X$ be a mapping. A point $x \in X$ is called a fixed point of T if $x = Tx$. Let x_0 be an arbitrary chosen point in X. Define a sequence $\{x_n\}$ in X by a simple iterative method given by $x_{n+1} = Tx_n$, where $n \in \{0, 1, 2, 3, \ldots\}$. Such a sequence is called a picard iterative sequence and its convergence plays a very important role in proving existence of fixed point of a mapping T. A self mapping T on a metric space X is said to be a Banach contraction mapping if,

$$d(Tx, Ty) \leq kd(x, y)$$

holds for all $x, y \in X$ where $0 \leq k < 1$. Recently, many results appeared in literature related to fixed point results in complete metric spaces endowed with a partial ordering. Ran and Reurings [17] proved an analogue of Banach's fixed point theorem in metric space endowed with partial order and gave applications to matrix equations. Subsequently, Nieto et. al. [12] extended the results of [17] for non decreasing mappings and applied this results obtain a unique solution for a 1st order ordinary differential equation with periodic boundary conditions. On the other hand in 2005, Mustafa and Sims in [14] introduce the notion of a generalized metric space as generalization the usual metric space. Mustafa and others studied fixed point theorems for mappings satisfying different contractive conditions for further useful results can be seen in [3, 8, 9, 10, 15, 16, 21]. Recently, Arshad et. al. [4] proved a result concerning the existence of fixed points of a mapping satisfying a contractive condition on closed ball in a complete dislocated metric space. For further results on closed ball we refer the reader to [5, 6, 7, 13, 20] and references their in. The dominated mapping [2] which satisfies the condition $fx \leq x$ occurs very naturally in several practical problems. For example x denotes the total quantity of food produced over a certain period of time and $f(x)$ gives the quantity of food consumed over the same period in a certain town, then we must have $fx \leq x$.

In this paper we have obtained fixed point results for dominated self- mappings in an ordered complete dislocated quasi G_d metric space on a closed ball
under contractive condition to generalize, extend and improve some classical fixed point results. We have used weaker contractive condition and weaker restrictions to obtain unique fixed point. Our results do not exists even yet in metric spaces. An example shows how this result can be used when the corresponding results cannot.

Definition 1 Let \(X \) be a nonempty set and let \(G_d : X \times X \times X \to \mathbb{R}^+ \) be a function satisfying the following axioms:

(i) If \(G_d(x, y, z) = G_d(y, z, x) = G_d(z, x, y) = 0 \), then \(x = y = z \).

(ii) \(G_d(x, y, z) \leq G_d(x, a, a) + G_d(a, y, z) \) for all \(x, y, z, a \in X \) (rectangle inequality).

Then the pair \((X, G_d) \) is called the dislocated quasi \(G_d \)-metric space. It is clear that if \(G_d(x, y, z) = G_d(y, z, x) = G_d(z, x, y) = 0 \) then from (i) \(x = y = z \). But if \(x = y = z \) then \(G_d(x, y, z) \) may not be 0. It is observed that if \(G_d(x, y, z) = G_d(y, z, x) = G_d(z, x, y) \) for all \(x, y, z \in X \), then \((X, G_d) \) becomes a dislocated \(G_d \)-metric space.

Example 2 If \(X = \mathbb{R}^+ \cup \{0\} \) then \(G_d(x, y, z) = x + \max\{x, y, z\} \) defines a dislocated quasi metric \(G \) on \(X \).

Definition 3 Let \((X, G_d) \) be a \(G_d \)-metric space, and let \(\{x_n\} \) be a sequence of points in \(X \), a point \(x \) in \(X \) is said to be the limit of the sequence \(\{x_n\} \) if \(\lim_{m, n \to \infty} G_d(x, x_n, x_m) = 0 \), and one says that sequence \(\{x_n\} \) is \(G_d \)-convergent to \(x \). Thus, if \(x_n \to x \) in a \(G_d \)-metric space \((X, G_d) \), then for any \(\epsilon > 0 \), there exists \(n, m \in \mathbb{N} \) such that \(G_d(x, x_n, x_m) < \epsilon \), for all \(n, m \geq N \).

Definition 4 Let \((X, G_d) \) be a \(G_d \)-metric space. A sequence \(\{x_n\} \) is called \(G_d \)-Cauchy sequence if, for each \(\epsilon > 0 \) there exists a positive integer \(n^* \in \mathbb{N} \) such that \(G_d(x_n, x_m, x_l) < \epsilon \) for all \(n, l, m \geq n^* \); i.e. if \(G_d(x_n, x_m, x_l) \to 0 \) as \(n, m, l \to \infty \).

Definition 5 \(G_d \)-metric space \((X, G_d) \) is said to be \(G_d \)-complete if every \(G_d \)-Cauchy sequence in \((X, G_d) \) is \(G_d \)-convergent in \(X \).

Proposition 6 Let \((X, G_d) \) be a \(G_d \)-metric space, then the following are equivalent:

1. \(\{x_n\} \) is \(G_d \) convergent to \(x \).
2. \(G_d(x_n, x_n, x) \to 0 \) as \(n \to \infty \).
3. \(G_d(x_n, x, x) \to 0 \) as \(n \to \infty \).
4. \(G_d(x_n, x_m, x) \to 0 \) as \(m, n \to \infty \).

Definition 7 Let \((X, G_d) \) be a \(G_d \)-metric space then for \(x_0 \in X, r > 0 \), the closed ball with centre \(x_0 \) and radius \(r \) is,

\[
\overline{B(x_0, r)} = \{y \in X : G_d(x_0, y, y) \leq r\}.
\]
Definition 8 [2] Let \((X, \preceq)\) be a partially ordered set. Then \(x, y \in X\) are called comparable if \(x \preceq y\) or \(y \preceq x\) holds.

Definition 9 [2] Let \((X, \preceq)\) be a partially ordered set. A self mapping \(f\) on \(X\) is called dominated if \(fx \preceq x\) for each \(x\) in \(X\).

Example 10 [2] Let \(X = [0, 1]\) be endowed with usual ordering and \(f : X \to X\) be defined by \(fx = x^n\) for some \(n \in \mathbb{N}\). Since \(fx = x^n \preceq x\) for all \(x \in X\), therefore \(f\) is a dominated map.

2 Fixed Points of Contractive Mapping

Theorem 11 Let \((X, \preceq, G_d)\) be an ordered complete dislocated quasi \(G_d\) metric space, and \(T : X \to X\) be a dominated mapping. Suppose there exists \(a, b\) such that \(a + 3b < 1\) and for all comparable elements \(x, y\) and \(z\) in \(\overline{B(x_0, r)}\), with \(x_0 \in \overline{B(x_0, r)}\), \(r > 0\).

\[
G_d(Tx, Ty, Tz) \leq a G_d(x, y, z) + b [G_d(x, Tx, Tx) + G_d(y, Ty, Ty) + G_d(z, Tz, Tz)]
\]

(2.1)

where \(\lambda = \frac{a + b}{1 - 2b}\)

and \(G_d(x_0, Tx_0, Tx_0) \leq (1 - \lambda)r\). (2.2)

If for a nonincreasing sequence \(\{x_n\} \subseteq \overline{B(x_0, r)}\), \(\{x_n\} \to u\) implies that \(u \preceq x_n\) and

\[
G(x_0, Tx_0, Tx_0) + G(v, Tv, Tv) + G(v, Tv, Tv) \\
\leq G(x_0, v, v) + G(Tx_0, Tv, Tv) + G(Tx_0, Tv, Tv)
\]

(2.3)

then there exists a point \(x^*\) in \(\overline{B(x_0, r)}\) such that \(G_d(x^*, x^*, x^*) = 0\) and \(x^* = Tx^*\).

Proof. Consider a Picard sequence \(x_{n+1} = Tx_n\) with initial guess \(x_0\). As \(x_{n+1} = Tx_n \preceq x_n\) for all \(n \in \{0\} \cup \mathbb{N}\). By inequality (2.2), \(G_d(x_0, x_1, x_1) \leq r\). It implies that \(x_1 \in \overline{B(x_0, r)}\). Similarly \(x_2, \ldots, x_j \in \overline{B(x_0, r)}\) for some \(j \in \mathbb{N}\).

\[
G_d(x_j, x_{j+1}, x_{j+1}) = G_d(Tx_{j-1}, Tx_{j-1}, Tx_j) \leq a G_d(x_{j-1}, x_{j-1}, x_j) + b[G_d(x_{j-1}, Tx_{j-1}, Tx_{j-1}) + G_d(x_{j-1}, x_{j+1}, x_{j+1})]
\]

\[
(1 - 2b)G_d(x_j, x_{j+1}, x_{j+1}) \leq (a + b)G_d(x_{j-1}, x_{j}, x_j)
\]

\[
G_d(x_j, x_{j+1}, x_{j+1}) \leq \frac{(a + b)}{(1 - 2b)}G_d(x_{j-1}, x_{j}, x_j)
\]

\[
G_d(x_j, x_{j+1}, x_{j+1}) \leq \lambda^j G_d(x_0, x_1, x_1).
\]

(2.4)
Now by using the inequality (2.2) and (2.4) we have

\[
G_d(x_j, x_{j+1}, x_{j+1}) \leq G_d(x_0, x_1, x_1) + G_d(x_1, x_2, x_2) + \cdots + G_d(x_{j+1}, x_{j+1})
\]

\[
G_d(x_j, x_{j+1}, x_{j+1}) \leq (1 - \lambda)r + \lambda(1 - \lambda)r + \cdots + \lambda^j(1 - \lambda)r
\]

\[
G_d(x_j, x_{j+1}, x_{j+1}) \leq r(1 - \lambda)[1 + \lambda + \lambda^2 + \cdots + \lambda^j]
\]

\[
G_d(x_j, x_{j+1}, x_{j+1}) \leq r(1 - \lambda)\frac{(1 - \lambda^j+1)}{(1 - \lambda)} \leq r
\]

\[
\Rightarrow G_d(x_j, x_{j+1}, x_{j+1}) \leq r.
\]

Thus \(x_{j+1} \in \overline{B}(x_0, r) \). Hence \(x_n \in \overline{B}(x_0, r) \) for all \(n \in \mathbb{N} \). Now inequality (2.4) can be written as in the form of

\[
G_d(x_n, x_{n+1}, x_{n+1}) \leq \lambda^n G_d(x_0, x_1, x_1) \text{ for all } n \in \mathbb{N}.
\] (2.5)

By using inequality (2.5) we get

\[
G_d(x_n, x_{n+i}, x_{n+i}) \leq G_d(x_n, x_{n+1}, x_{n+1}) + \cdots + G_d(x_{n+i-1}, x_{n+i}, x_{n+i})
\]

\[
G_d(x_n, x_{n+i}, x_{n+i}) \leq \frac{\lambda^n(1 - \lambda^i)}{(1 - \lambda)} G_d(x_0, x_1, x_1) \rightarrow 0 \text{ as } n \rightarrow \infty
\] (2.6)

Notice that the sequence \(\{x_n\} \) is Cauchy sequence in \(\overline{B}(x_0, r), G_d \). Therefore there exist a point \(x^* \in \overline{B}(x_0, r) \).

\[
\lim_{n \to \infty} G_d(x_n, x^*, x^*) = \lim_{n \to \infty} G_d(x^*, x^*, x_n) = 0
\]

\[
G_d(x^*, Tx^*, Tx^*) \leq G_d(x^*, x_n, x_n) + G_d(x_n, Tx^*, Tx^*)
\]

By assumption \(x^* \preceq x_n \preceq x_{n-1} \), therefore,

\[
G_d(x^*, Tx^*, Tx^*) \leq G_d(x^*, x_n, x_n) + G_d(Tx_{n-1}, Tx^*, Tx^*)
\]

\[
G_d(x^*, Tx^*, Tx^*) \leq G_d(x^*, x_n, x_n) + a G_d(x_{n-1}, x^*, x^*)
\]

\[
+ b[G_d(x_{n-1}, Tx_{n-1}, Tx_{n-1}) + G_d(x^*, Tx^*, Tx^*)]
\]

\[
G_d(x^*, Tx^*, Tx^*) \leq G_d(x^*, x_n, x_n) + a G_d(x_{n-1}, x^*, x^*)
\]

\[
+ b[G_d(x_{n-1}, Tx_{n-1}, Tx_{n-1}) + 2G_d(x^*, Tx^*, Tx^*)]
\]

\[
(1 - 2b)G_d(x^*, Tx^*, Tx^*) \leq G_d(x^*, x_n, x_n) + a G_d(x_{n-1}, x^*, x^*)
\]

\[
+ b G_d(x_{n-1}, x_n, x_n)
\]

Taking \(\lim_{n \to \infty} \) both sides and using (2.6) we have

\[
(1 - 2b)G_d(x^*, Tx^*, Tx^*) \leq 0 + a(0) + b(0)
\]

\[
\Rightarrow G_d(x^*, Tx^*, Tx^*) \leq 0
\]

\[
\Rightarrow x^* = Tx^*.
\] (2.7)
Similarly \(G_d(Tx^*, Tx^*, x^*) = 0 \) and \(G_d(Tx^*, x^*, Tx^*) = 0 \) and hence \(x^* = Tx^* \).

Now

\[
G_d(x^*, x^*, x^*) = G_d(Tx^*, Tx^*, Tx^*) = a G_d(x^*, x^*, x^*) + 3b G_d(x^*, Tx^*, Tx^*)
\]

\[
(1 - a - 3b) G_d(x^*, x^*, x^*) \leq 0 \implies G_d(x^*, x^*, x^*) \leq 0.
\]

This implies that \(G_d(x^*, x^*, x^*) = 0 \).

Uniqueness:

Let \(y^* \) be another point in \(B(x_0, r) \) such that

\[
y^* = Ty^*.
\]

\[
G_d(y^*, y^*, y^*) = G_d(Ty^*, Ty^*, Ty^*) \leq a G_d(y^*, y^*, y^*) + 3b [G_d(y^*, Ty^*, Ty^*)]
\]

\[
(1 - a - 3b) G_d(y^*, y^*, y^*) \leq 0 \implies G_d(y^*, y^*, y^*) \leq 0.
\]

\[
G_d(y^*, y^*, y^*) = 0.
\]

If \(x^* \) and \(y^* \) are comparable then

\[
G_d(x^*, y^*, y^*) = G_d(Tx^*, Ty^*, Ty^*) \leq a G_d(x^*, y^*, y^*) + b [G_d(x^*, Tx^*, Tx^*) + 2G_d(y^*, Ty^*, Ty^*)]
\]

\[
(1 - a) G_d(x^*, y^*, y^*) \leq 0 \implies G_d(x^*, y^*, y^*) = 0.
\]

Similarly, \(G_d(y^*, y^*, x^*) = 0 \). This shows that \(x^* = y^* \).

If \(x^* \) and \(y^* \) are not comparable then there exist a point \(v \in B(x_0, r) \) which is a lower bound of both \(x^* \) and \(y^* \). Now we will to prove that \(T^n v \in B(x_0, r) \).

Moreover by assumptions \(v \leq x_n \leq \cdots \leq x_0 \).

By using (2.1), we have,

\[
G_d(Tx_0, Tv, Tv) \leq a G_d(x_0, v, v) + b [G_d(x_0, x_1, x_1) + 2G_d(v, Tv, Tv)].
\]

By using (2.3), we have

\[
G_d(Tx_0, Tv, Tv) \leq a G_d(x_0, v, v) + b [G_d(x_0, v, v) + 2G_d(v, Tv, Tv)]
\]

\[
(1 - 2b) G_d(Tx_0, Tv, Tv) \leq (a + b) G_d(x_0, v, v)
\]

\[
G_d(Tx_0, Tv, Tv) \leq (1 - 2b) G_d(x_0, v, v)
\]

Now,

\[
G_d(x_0, Tv, Tv) \leq G_d(x_0, x_1, x_1) + G_d(x_1, Tv, Tv)
\]

\[
G_d(x_0, Tv, Tv) \leq G_d(x_0, x_1, x_1) + \lambda G_d(x_0, v, v) \text{ by (2.9)}
\]

\[
G_d(x_0, Tv, Tv) \leq (1 - \lambda)r + \lambda r
\]

\[
G_d(x_0, Tv, Tv) \leq r.
\]
It follows that \(Tv \in B(x_0, r)\). Now we will prove that \(T^n v \in B(x_0, r)\). By using mathematical induction to apply inequality (2.1). Let \(T^2 v, T^3 v, \ldots, T^j v \in B(x_0, r)\) for some \(j \in N\). As
\[
T^j v \leq T^{j-1} v \leq \ldots \leq v \leq x^* \leq x_n \leq \ldots \leq x_0.
\]
Then,
\[
G_d(T^j v, T^{j+1} v, T^{j+1} v) = G_d(T(T^j v), T(T^j v), T(T^j v))
\]
\[
G_d(T^j v, T^{j+1} v, T^{j+1} v) \leq a G_d(T^{j-1} v, T^j v, T^j v) + b [G_d(T^{j-1} v, T^j v, T^j v) + 2G_d(T^j v, T^{j+1} v, T^{j+1} v)]
\]
\[
(1 - 2b)G_d(T^j v, T^{j+1} v, T^{j+1} v) \leq (a + b)G_d(T^{j-1} v, T^j v, T^j v)
\]
\[
G_d(T^j v, T^{j+1} v, T^{j+1} v) \leq \lambda G_d(T^{j-1} v, T^j v, T^j v)
\]
\[
G_d(T^j v, T^{j+1} v, T^{j+1} v) \leq \lambda^2 G_d(T^{j-2} v, T^{j-1} v, T^{j-1} v)
\]
\[
G_d(T^j v, T^{j+1} v, T^{j+1} v) \leq \lambda^3 G_d(T^{j-3} v, T^{j-2} v, T^{j-2} v)
\]
\[
\vdots
\]
\[
G_d(T^j v, T^{j+1} v, T^{j+1} v) \leq \lambda^j G_d(T^{j-j} v, T^{j-(j-1)} v, T^{j-(j-1)} v)
\]
\[
G_d(T^j v, T^{j+1} v, T^{j+1} v) \leq \lambda^j G_d(v, T^j v, T^j v)
\]
(2.10)

Now,
\[
G_d(x_{j+1}, T^{j+1} v, T^{j+1} v) \leq G_d(T x_j, T(T^j v), T(T^j v))
\]
\[
G_d(x_{j+1}, T^{j+1} v, T^{j+1} v) \leq a G_d(x_j, T^j v, T^j v) + b [G_d(x_j, T x_j, T x_j) + 2G_d(T^j v, T^{j+1} v, T^{j+1} v)].
\]
By using (2.4) and (2.10)
\[
G_d(x_{j+1}, T^{j+1} v, T^{j+1} v) \leq a \lambda^j G_d(x_0, v, v)
\]
\[
+ b [\lambda^j G_d(x_0, x_1, x_1) + 2 \lambda^j G_d(v, T^j v, T^j v)]
\]
\[
G_d(x_{j+1}, T^{j+1} v, T^{j+1} v) \leq a \lambda^j G_d(x_0, v, v)
\]
\[
+ b \lambda^j [G_d(x_0, x_1, x_1) + 2 G_d(v, T^j v, T^j v)]
\]
By using the condition (2.3)
\[
G_d(x_{j+1}, T^{j+1} v, T^{j+1} v) \leq a \lambda^j G_d(x_0, v, v)
\]
\[
+ b \lambda^j [G_d(x_0, v, v) + 2 \lambda G_d(x_0, v, v)]
\]
\[
G_d(x_{j+1}, T^{j+1} v, T^{j+1} v) \leq \lambda^j (a + b + 2b \lambda) G_d(x_0, v, v)
\]
\[
G_d(x_{j+1}, T^{j+1} v, T^{j+1} v) \leq \lambda^{j+1} G_d(x_0, v, v)
\]
(2.11)
Now,
\[G_d(x_0, T^{j+1}v, T^{j+1}v) \leq G_d(x_0, x_{j+1}, x_{j+1}) + G_d(x_{j+1}, T^{j+1}v, T^{j+1}v) \]
\[G_d(x_0, T^{j+1}v, T^{j+1}v) \leq G_d(x_0, x_1, x_1) + \cdots + G_d(x_j, x_{j+1}, x_{j+1}) + G_d(x_{j+1}, T^{j+1}v, T^{j+1}v) \]
\[G_d(x_0, T^{j+1}v, T^{j+1}v) \leq G_d(x_0, x_1, x_1) + \lambda G_d(x_0, x_1, x_1) + \cdots + \lambda^{j+1} G_d(x_0, v, v) \text{ by (2.5) and (2.11)} \]
\[G_d(x_0, T^{j+1}v, T^{j+1}v) \leq G_d(x_0, x_1, x_1)[1 + \lambda + \lambda^2 + \cdots + \lambda^j] + \lambda^{j+1} r \text{ as } v \in \overline{B(x_0, r)} \]
\[G_d(x_0, T^{j+1}v, T^{j+1}v) \leq (1 - \lambda) r \left(\frac{1 - \lambda^{j+1}}{1 - \lambda} \right) + \lambda^{j+1} r = r \]

It follows that \(T^{j+1}v \in \overline{B(x_0, r)} \) and hence \(T^j v \in \overline{B(x_0, r)} \). Now the inequality (2.10) can be written as
\[G_d(T^nv, T^{n+1}v, T^{n+1}v) \leq \lambda^n G_d(v, T^v, T^v) \to 0 \text{ as } n \to \infty \] (2.12)

Now,
\[G_d(x^*, y^*, y^*) = G_d(Tx^*, Ty^*, Ty^*) \]
\[G_d(x^*, y^*, y^*) \leq G_d(Tx^*, T^{n+1}v, T^{n+1}v) + G_d(T^{n+1}v, Ty^*, Ty^*) \]
\[G_d(x^*, y^*, y^*) \leq a G_d(x^*, T^n v, T^n v) + b G_d(x^*, T^n v, T^n v) + 2 G_d(T^n v, T^{n+1}v, T^{n+1}v) + a G_d(T^n v, Ty^*, Ty^*) \]
\[+ b G_d(T^n v, T^{n+1}v, T^{n+1}v) + 2 G_d(y^*, Ty^*, Ty^*) \]

By using (2.7), (2.8) and (2.12) we have
\[G_d(x^*, y^*, y^*) \leq a G_d(x^*, T^n v, T^n v) + a G_d(T^n v, y^*, y^*) \]
\[G_d(x^*, y^*, y^*) \leq a \left[G_d(Tx^*, T^n v, T^n v) + G_d(T^n v, Ty^*, Ty^*) \right] \]
\[G_d(x^*, y^*, y^*) \leq a \left[a G_d(x^*, T^{n-1}v, T^{n-1}v) + b G_d(x^*, T x^*, T x^*) \right. \]
\[+ 2 b G_d(T^{n-1}v, T^n v, T^n v) + a G_d(T^{n-1}v, y^*, y^*) \]
\[+ b G_d(T^{n-1}v, T^n v, T^n v) + 2 b G_d(y^*, Ty^*, Ty^*) \].

By using (2.7), (2.8) and (2.12) we have
\[G_d(x^*, y^*, y^*) \leq a^2 \left[G_d(x^*, T^{n-1}v, T^{n-1}v) + G_d(T^{n-1}v, y^*, y^*) \right] \]
\[G_d(x^*, y^*, y^*) \leq a^3 \left[G_d(x^*, T^{n-2}v, T^{n-2}v) + G_d(T^{n-2}v, y^*, y^*) \right] \]
\[\vdots \]
\[G_d(x^*, y^*, y^*) \leq a^n \left[G_d(x^*, T v, T v) + G_d(T v, y^*, y^*) \right] \]
\[G_d(x^*, y^*, y^*) \rightarrow 0 \text{ as } n \to \infty \]
\[G_d(x^*, y^*, y^*) = 0 \]
\[x^* = y^*. \]
This proves the uniqueness of the fixed point. ■

Now we give an example of an ordered complete dislocated quasi G_d-metric space in which the contraction does not hold on the whole space rather it holds on a closed ball only.

Example 12 Let $X = \mathbb{R}^+ \cup \{0\}$ be endowed with usual order and $G_d : X \times X \times X \rightarrow X$ be a complete dislocated quasi G_d metric space defined by,

$$G_d(x, y, z) = \begin{cases} 0 & \text{if } x = y = z \\ \max \{2x, y, z\} & \text{otherwise.} \end{cases}$$

Then (X, G_d) is a G_d complete G dislocated quasi metric space.

Let $T : X \rightarrow X$ be defined by,

$$Tx = \begin{cases} \frac{x}{5} & \text{if } x \in [0, \frac{3}{2}] \\ x - \frac{1}{3} & \text{if } x \in [\frac{3}{2}, \infty) \end{cases}. $$

Clearly, T is a dominated mappings. Take $x_0 = \frac{1}{2}, r = \frac{3}{2}, B(x_0, \lambda) = [0, \frac{3}{2}]$ and $\lambda = \frac{1}{4}, a + 3b < 1$, where $a = \frac{1}{10}$, and $b = \frac{1}{10}$.

$$G_d(x_0, Tx_0, Tx_0) \leq (1 - \lambda)r$$

$$G_d\left(\frac{1}{3}, T\frac{1}{3}, T\frac{1}{3}\right) = \max\left\{\frac{2}{3} - \frac{1}{5}, \frac{1}{5}\right\} = \frac{2}{3}$$

Since $(1 - \lambda)r = (1 - \frac{1}{4})\frac{3}{2} = \frac{9}{8}$

$$\Rightarrow \frac{2}{3} \leq \frac{9}{8}$$

$$\Rightarrow 16 \leq 27$$

Also if x, y and $z \in [\frac{3}{2}, \infty)$. We assume that $x > y$, and $y > z$, then

$$\max\{2x - \frac{2}{3}y - \frac{1}{3}, z - \frac{1}{3}\} \geq \frac{1}{10}\max\{2x, y, z\}$$

$$\geq \frac{1}{10}\left\{\max\{2x, x - \frac{1}{3}, x - \frac{1}{3}\} + \max\{2y, y - \frac{1}{2}, y - \frac{1}{2}\} + \max\{2z, z - \frac{1}{2}, z - \frac{1}{2}\}\right\}$$

$$G_d(Tx, Ty, Tz) \geq a G_d(x, y, z) + b [G_d(x, Tx, Tx) + G_d(y, Ty, Ty) + G_d(z, Tz, Tz)]$$

So the contractive conditions does not holds in X. Now if x, y and $z \in \overline{B(x_0, \lambda)}$
then,
\[
G_d(T x, T y, T z) = \max \{ \frac{2x}{5}, \frac{y}{5}, \frac{z}{5} \} \leq \frac{1}{10} \{ 2x, y, z \}
\]
\[
+ \frac{1}{10} [\max \{ 2x, \frac{x}{5}, \frac{y}{5} \} + \max \{ 2y, \frac{y}{5}, \frac{z}{5} \} + \max \{ z, \frac{z}{5}, \frac{z}{5} \}]
\]
\[
\Rightarrow G_d(T x, T y, T z) \leq a G_d(x, y, z) + b [G_d(x, T x, T x) + G_d(y, T y, T y) + G_d(z, T z, T z)].
\]

Hence it satisfies all the requirements of Theorem 11. If we take \(b = 0 \) in inequality (2.1) then we obtain the following corollary.

Corollary 13 Let \((X, \preceq, G)\) be an ordered complete dislocated quasi \(G\)-metric space, \(T : X \to X\) be a dominated mapping and \(x_0\) be any arbitrary point in \(X\). Suppose there exists \(a \in (0, 1)\) with,
\[
G(T x, T y, T z) \leq a G(x, y, z), \text{ for all } x, y \text{ and } z \in Y = \overline{B(x_0, r)},
\]
and
\[
G(x_0, T x_0, T x_0) \leq (1 - a) r.
\]

If for a nonincreasing sequence \(\{x_n\} \to u\) implies that \(u \preceq x_n\). Then there exists a point \(x^* \) in \(\overline{B(x_0, r)}\) such that \(x^* = Sx^* \) and \(G(x^*, x^*, x^*) = 0\). Moreover if for any three points \(x, y\) and \(z\) in \(\overline{B(x_0, r)}\) such that there exists a point \(v \in \overline{B(x_0, r)}\) such that \(v \preceq x, v \preceq y\) and \(v \preceq z\), that is, every three of elements in \(\overline{B(x_0, r)}\) has a lower bound, then the point \(x^*\) is unique.

Similarly if we take \(a = 0\) in inequality (2.1) then we obtain the following corollary.

Corollary 14 Let \((X, \preceq, G)\) be an ordered complete dislocated quasi \(G\)-metric space \(T : X \to R\) be a mapping and \(x_0\) be an arbitrary point in \(X\). Suppose there exists \(b \in \left[0, \frac{1}{3} \right]\) with,
\[
G(T x, T y, T z) \leq b (G(x, T x, T x) + G(y, T y, T y) + G(z, T z, T z))
\]
for all comparable elements \(x, y, z \in \overline{B(x_0, r)}\) and
\[
G(x_0, T x_0, T x_0) \leq (1 - \lambda) r,
\]
where \(\lambda = \frac{b}{1 - 2b}\). If for non increasing sequence \(\{x_n\} \to u\) implies that \(u \preceq x_n\). Then there exists a point \(x^* \) in \(\overline{B(x_0, r)}\) such that \(x^* = Sx^* \) and \(G(x^*, x^*, x^*) = 0\). Moreover, if for any three points \(x, y, z \in \overline{B(x_0, r)}\), there exists a point \(v \) in \(\overline{B(x_0, r)}\) such that \(v \preceq x\) and \(v \preceq y, v \preceq z\).
References

1Department of mathematics, Riphah International University, Islamabad-44000, Pakistan. E-mail: abdullahshoaib15@yahoo.com.

2,3Department of mathematics, International Islamic University, H-10, Islamabad-44000, Pakistan. E-mails: marshad_zia@yahoo.com, tahir_resham@yahoo.com.
MIZOGUCHI-TAKAHASHI'S FIXED POINT THEOREM IN ν-GENERALIZED METRIC SPACES

SALHA ALSHAIKEY*, SAUD M. ALSULAMI AND MONAIRAH ALANSARI

ABSTRACT. Our main work is to prove Mizoguchi-Takahashi theorem in ν-generalized metric space in the sense of Brancari. In the same setting we prove two more theorems which are generalizations of the main one.

1. Introduction

A metric is defined as a mapping $d : X \times X \rightarrow [0, \infty)$, for any non-empty set X which satisfying the following axioms, for any $x, y, z \in X$

(i) $d(x, y) = 0$ iff $x = y$
(ii) $d(x, y) = d(y, x)$
(iii) $d(x, y) \leq d(x, z) + d(z, y)$.

We said that the pair (X, d) is a metric space. The theory of metric spaces form a basic environment for a lot of concepts in mathematics such as the fixed point theorems which have an important roles in various branches of mathematical analysis. One of the famous result of fixed point theorems is Banach Contraction Principle which state that,

Theorem 1.1. [11](Banach Contraction Principle)

Let (X, d) be a complete metric space. Let $T : X \rightarrow X$ be a self map on X such that

$$d(Tx, Ty) \leq rd(x, y),$$

hold for any $x, y \in X$, where $r \in [0, 1)$. Then T has a unique fixed point.

Many authors explored the importance of this theorem and extended it in different directions. For examples, we refer the reader to the following papers [2, 9, 8, 6], and the references therein. In (1969) Nadler extended theorem 1.1 for multi-valued mapping. Recall that the set of all non-empty, closed and bounded subsets of X is denoted by $CB(X)$ and let A, B be any sets in $CB(X)$. A Hausdorff metric is defined as

$$\mathcal{H}(A, B) = \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\}$$

Theorem 1.2. [12](Nadler’s theorem) Let (X, d) be a complete metric space. Let $T : X \rightarrow CB(X)$ be a multi-valued map. Assume that

$$\mathcal{H}(Tx, Ty) \leq rd(x, y),$$

holds for each $x, y \in X$ and $r \in [0, 1)$. Then T has a fixed point.

Key words and phrases. Mizoguchi-Takahashi’s theorem, ν-generalized metric space, Generalized of MT-theorem, Fixed point theory.
Many attempts have been done to generalize Nadler’s theorem. One of these generalizations is Mizoguchi- Takahashi’s theorem which states that:

Theorem 1.3. [10] Let (X, d) be a complete metric space. Let $T : X \to CB(X)$ be a multi-valued mapping. Assume that

$$\mathcal{H}(Tx, Ty) \leq \beta(d(x, y))d(x, y),$$

hold for each $x, y \in X$, where $\beta : [0, \infty) \to [0, 1)$ is a function such that $\limsup_{s \to t^+} \beta(s) < 1$. Then T has a fixed point.

Remark 1.4. The function β in theorem 1.3, which satisfies $\limsup_{s \to t^+} \beta(s) < 1$ is called Mizoguchi- Takahashi function (MT- function for short).

Starting with Mizoguchi and Takahashi’s paper, many generalizations of their theorem have been established see [3, 13]. Recently, Eldred et al [4], claimed that Nadler’s and Mizoguchi- Takahashi’s theorems are equivalent. However, in [14], Suzuki proved that their claim is not true and he shown that Mizoguchi- Takahashi’s theorem (1.3) is a real extension of Nadler’s theorem. This is why we are interesting in such theorem.

In another direction, in (2000) Branciari created a new concept of generalized metric spaces by modifying the triangle inequality to involve more points.

Definition 1.5. [1] Let X be a non-empty set and $d : X \times X \to [0, \infty)$. For $\nu \in \mathbb{N}$, a pair (X, d) is called a ν- generalized metric space if the following hold:

1. $(M1)$ $d(x, y) = 0 \iff x = y$
2. $(M2)$ $d(x, y) = d(y, x)$
3. $(M3)$ $d(x, y) \leq d(x, u_1) + d(u_1, u_2) + \ldots + d(u_{\nu}, y)$, for any $x, u_1, u_2, \ldots, u_{\nu}, y \in X$, such that $x, u_1, u_2, \ldots, u_{\nu}, y$ are all different.

It is not difficult to show that the new space is not the same as the original one. Moreover, the new space is hard to deal with because it does not satisfy all topological properties that metric space has, see [15] for more details. Recently, in [16], Suzuki proved Nadler’s theorem in ν- generalized metric spaces. The main work of this paper is to prove Mizoguchi -Takahashi’s theorem in ν- generalized metric spaces. Firstly, we will list all the necessary definitions and some results that we will need. Then, we will be able to prove our main results.

2. Preliminary

Definition 2.1. A point $x \in X$ is said to be a fixed point of multi-valued map T if $x \in Tx$.

Definition 2.2. [1] Let (X, d) be a ν- generalized metric space. A sequence $\{x_n\}_{n \in \mathbb{N}} \in X$ is said to be Cauchy sequence if

$$\limsup_{n \to \infty, m \to \infty} d(x_n, x_m) = 0$$

Definition 2.3. [16] A sequence $\{x_n\}_{n \in \mathbb{N}}$ is said to be (\sum, \neq)- Cauchy sequence if all x_n’s are different and

$$\sum_{j=1}^{\infty} d(x_j, x_{j+1}) < \infty$$

Definition 2.4. [16] Let (X, d) be a ν- generalized metric space. We said that, X is a (\sum, \neq)- complete if every (\sum, \neq)- Cauchy sequence converges.
Lemma 2.5. [16, 5] Let \((X, d)\) be a \(\nu\)-generalized metric space.

- Every converge \((\sum, \neq)\)- Cauchy sequence is Cauchy.
- Let \(\{x_n\}_{n \in \mathbb{N}}\) be a Cauchy sequence converges to some \(y \in X\) and \(\{y_n\} \subseteq X\) be a sequence such that \(\lim_{n \to \infty} d(x_n, y_n) = 0\). Then, \(\{y_n\}\) also converges to \(y\).

Lemma 2.6. [14] Let \(\beta : [0, \infty) \to [0, 1)\) is a MT-function. Then, for all \(s \in [0, \infty)\), there exist \(r_s \in [0, 1)\) and \(\varepsilon_s > 0\) such that \(\beta(t) \leq r_s + \varepsilon_s\) \(\forall t \in [s, s + \varepsilon_s]\).

Lemma 2.7. [12] Let \((X, d)\) be a metric space. For any \(A, B \in CB(X)\) and \(\varepsilon > 0\), there exist \(a \in A\) and \(b \in B\) such that \(d(a, b) \leq \mathcal{H}(A, B) + \varepsilon\).

3. Main Result

In this section we prove Mizoguchi-Takahashi’s theorem in \(\nu\)-generalized metric spaces and some of its generalizations in the space.

Theorem 3.1. Let \((X, d)\) be a \((\sum, \neq)\) complete, \(\nu\)-generalized metric space, and let \(T\) be a multi-valued map defined from \(X\) into \(CB(X)\) satisfies the following:

1. If \(\{y_n\} \subseteq Tx\) and \(\{y_n\}\) converges to \(y\) then \(y \in Tx\).
2. For any \(x, y \in X\), \(\mathcal{H}(Tx, Ty) \leq \alpha(d(x, y))d(x, y)\), where \(\alpha\) is MT-function. Then \(T\) has a fixed point.

Proof. Let define a function \(\gamma : [0, \infty) \to [0, 1)\) as \(\gamma(t) = \frac{1 + \alpha(t)}{2}\). It is not difficult to show that \(\alpha(t) < \gamma(t)\), for any \(t \in [0, \infty)\) and \(\lim_{t \to +\infty} \sup \gamma(s) < 1\). Moreover, for each \(x, y \in X\) and \(v \in Tx\), there exist \(u \in Ty\) such that

\[d(v, u) \leq \gamma(d(x, y))d(x, y)\]

Putting \(v = y\), we will get that

\[d(y, u) \leq \gamma(d(x, y))d(x, y)\]

Define \(f(x) = \inf \{d(x, b) : b \in Tx\}\) and suppose that \(T\) does not have a fixed point (i.e., for all \(x \in X, f(x) > 0\)). Let \(x_1 \in X\) be arbitrary and choose \(x_2 \in Tx_1\) satisfying

\[(1) \quad d(x_1, x_2) < \frac{1}{\gamma(d(x_1, x_2))}f(x_1)\]

Since \(Tx_2 \neq \emptyset\), we can choose an arbitrary element \(x_3 \in Tx_2\) such that

\[(2) \quad f(x_2) \leq d(x_2, x_3) \leq \gamma(d(x_1, x_2))d(x_1, x_2)\]

Also, as in equation (1), we have

\[(3) \quad d(x_2, x_3) < \frac{1}{\gamma(d(x_2, x_3))}f(x_2)\]

From (2) and (3), we have

\[d(x_2, x_3) \leq \min\{\gamma(d(x_1, x_2))d(x_1, x_2), \frac{1}{\gamma(d(x_2, x_3))}f(x_2)\}\]

Thus

\[\gamma(d(x_2, x_3))d(x_2, x_3) < f(x_2) \leq \gamma(d(x_1, x_2))d(x_1, x_2) < f(x_1)\]

1049 ALSHAKEY 1047-1054
Continuously, \(\{x_n\}_{n \in \mathbb{N}} \in X \) is a sequence constructed such that \(x_{n+1} \in Tx_n \) and satisfying
\[
\gamma(d(x_{n+1}, x_{n+2}))d(x_{n+1}, x_{n+2}) < f(x_{n+1}) \leq \gamma(d(x_n, x_{n+1}))d(x_n, x_{n+1}) < f(x_n),
\]
and
\[
d(x_{n+1}, x_{n+2}) \leq \gamma(d(x_{n+1}, x_n))d(x_{n+1}, x_n).
\]
Since \(\gamma(t) < 1 \), we have \(d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1}) \). Hence, from (4) and (5), the sequences \(\{f(x_n)\} \) and \(\{d(x_n, x_{n+1})\} \) are strictly decreasing. Next, we show that \(\{x_n\}_{n \in \mathbb{N}} \) is a \((\sum, \neq)\)-Cauchy sequence in two steps:

Step 1 we show that all terms different. Suppose not; i.e., suppose \(x_n = x_m \) for some \(n > m \), where \(m, n \in \mathbb{N} \). Hence
\[
f(x_m) = \inf\{d(x_m, b) : b \in Tx_m\}
\]
which contradicts \(\{f(x_n)\} \) being strictly decreasing.

Step 2 We show that \(\sum d(x_n, x_{n+1}) < \infty \). Since \(\{d(x_n, x_{n+1})\} \) is an decreasing sequence in \(\mathbb{R} \) and bounded below, it converges to some positive real number (say \(\delta \)). Also, we have \(\lim_{s \to +} \sup \gamma(s) < 1 \), thus, there exist \(r \in [0, 1] \) and \(\varepsilon > 0 \) such that \(\gamma(s) \leq r \) for all \(s \in [\delta, \delta + \varepsilon] \). For any \(n \in \mathbb{N} \), we can choose \(\mu \in \mathbb{N} \) satisfying \(\delta \leq d(x_n, x_{n+1}) \leq \delta + \varepsilon \) with \(n \geq \mu \). So,
\[
\sum_{n=1}^{\infty} d(x_n, x_{n+1}) \leq \sum_{n=1}^{\mu} d(x_n, x_{n+1}) + \sum_{n=\mu+1}^{\infty} d(x_n, x_{n+1})
\]
\[
\leq \sum_{n=1}^{\mu} d(x_n, x_{n+1}) + \sum_{n=1}^{\infty} r^n d(x_{\mu}, x_{\mu+1})
\]
\[
< \infty.
\]
Thus \(\{x_n\} \) is a \((\sum, \neq)\)-Cauchy sequence in \((\sum, \neq)\) complete \(\nu \)-generalized metric space. Then, it is converge to some \(z \in X \) and by lemma (2.5), \(\{x_n\} \) is a Cauchy sequence. From our assumption we choose \(\{u_n\} \in Txz \) satisfy
\[
d(x_{n+1}, u_n) \leq \mathcal{H}(Tx_n, Tz) \leq \gamma(d(x_n, z))d(x_n, z),
\]
for any \(n \in \mathbb{N} \). But \(\{x_n\} \) converges to \(z \), so \(d(x_{n+1}, u_n) \to 0 \) as \(n \to \infty \). Thus we have \(x_{n+1} \to z \) and \(x_n \to u_n \). Therefore, by lemma (2.5) \(d(u_n, z) = 0 \) as \(n \to \infty \). So \(d(Tz, z) = 0 \) implies \(f(z) = 0 \) which is a contradiction. Therefore, there exist \(z \in X \) such that \(f(z) = 0 \) and hence \(z \in Tz \) is a fixed point.

Definition 3.2. [7] A multi-valued map \(T \) from \(X \) into \(CB(X) \) is called \(\alpha \)-admissible if for any \(x \in X \) and \(y \in Tx \), \(\alpha(x, y) \geq 1 \) implies \(\alpha(y, z) \geq 1 \) for any \(z \in Ty \), where \(\alpha : X \times X \to [0, \infty) \).

The up coming lemma proved in [18], for single-valued map here, we prove it for multi-valued map.
Lemma 3.3. Let (X,d) be a ν-generalized metric space. Let T be a multi-valued mapping from X into 2^X and $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in X defined by $x_{n+1} \in Tx_n$ such that $x_n \neq x_{n+1}$. Assume that

\begin{equation}
 d(x_n, x_{n+1}) \leq \delta d(x_{n-1}, x_n)
\end{equation}

hold for any $\delta \in [0,1)$. Then $x_n \neq x_m \forall n \neq m \in \mathbb{N}$.

Proof. We prove that $x_{n+\ell} \neq x_n$ for all $n \in \mathbb{N}$ and $\ell \geq 1$. Suppose the contrary that is $x_{n+\ell} = x_n$ for some $n \in \mathbb{N}$ and $\ell \geq 1$. By assumption, we have that $x_{n+\ell+1} = x_{n+1}$. Then from (6) we get

\begin{equation}
 d(x_n, x_{n+1}) = d(x_{n+\ell}, x_{n+\ell+1}) \leq \delta d(x_{n+\ell-1}, x_{n+\ell}) \leq \ldots \leq \delta^\ell d(x_n, x_{n+1}) < d(x_n, x_{n+1})
\end{equation}

which is contradiction. Thus, we get $x_m \neq x_n$ for all $m \neq n \in \mathbb{N}$. \hfill \Box

Let Φ be the family of all functions $\varphi : [0, \infty) \to [0, \infty)$ which satisfying the following conditions:

(a) $\varphi(s) = 0$ iff $s = 0$.
(b) φ is non-decreasing and lower semi-continuous.
(c) $\lim_{s \to 0^+} \sup_{s} \frac{s}{\varphi(s)} < \infty$.

Theorem 3.4. Let (X,d) be a Σ, \neq complete ν-generalized metric space. Let $T : X \to CB(X)$ be an α-admissible multi-valued mapping satisfying:

(i) There exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \geq 1$
(ii) If $(y_n) \in Tx$ and (y_n) converge to y then $y \in Tx$
(iii) $\alpha(x, y) \mathcal{H}(Tx, Ty) \leq \varphi(d(x, y))d(x, y)$ for any $x, y \in X$, and ϕ is MT-function.

Then T has a fixed point.

Proof. Let $\beta : [0, \infty) \to [0, 1)$ as $\beta(t) = \frac{1 + \phi(t)}{2}$ such that $\lim_{s \to t^+} \sup \beta(s) < 1$. Clearly $\phi(t) < \beta(t)$ for each $t \in [0, \infty)$. Let $x_0 \in X$ and choose $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \geq 1$. Assume $x_0 \neq x_1$ so, $1 - \frac{\phi(d(x_0, x_1))}{2}d(x_0, x_1) > 0$. Since $Tx_1 \neq \emptyset$, choose $x_2 \in Tx_1$ such that

\begin{align*}
 d(x_1, x_2) &\leq \mathcal{H}(Tx_0, Tx_1) + \frac{1 - \phi(d(x_0, x_1))}{2}d(x_0, x_1) \\
 &\leq \alpha(x_0, x_1)\mathcal{H}(Tx_0, Tx_1) + \frac{1 - \phi(d(x_0, x_1))}{2}d(x_0, x_1) \\
 &\leq \phi(d(x_0, x_1))d(x_0, x_1) + \frac{1 - \phi(d(x_0, x_1))}{2}d(x_0, x_1) \\
 &\leq \beta(d(x_0, x_1))d(x_0, x_1).
\end{align*}

Since T is α-admissible, $x_1 \in Tx_0$ and $\alpha(x_0, x_1) \geq 1$ then, $\alpha(Tx_0, Tx_1) \geq 1$ which implies $\alpha(x_1, x_2) \geq 1$. Similarly assume $x_1 \neq x_2$ we have $\frac{1 - \phi(d(x_1, x_2))}{2}d(x_1, x_2) >...
0 and choose \(x_3 \in Tx_2 \) such that
\[
\begin{align*}
d(x_2, x_3) & \leq H(Tx_1, Tx_2) + \frac{1 - \phi(d(x_1, x_2))}{2} d(x_1, x_2) \\
& \leq \alpha(x_1, x_2)H(Tx_1, Tx_2) + \frac{1 - \phi(d(x_1, x_2))}{2} d(x_1, x_2) \\
& \leq \phi(d(x_1, x_2))d(x_1, x_2) + \frac{1 - \phi(d(x_1, x_2))}{2} d(x_1, x_2) \\
& \leq \beta(d(x_1, x_2))d(x_1, x_2).
\end{align*}
\]

Similarly, using the same method of proving theorem (3.1), we have our result.

\(\square\)

Theorem 3.5. Let \((X, d)\) be a \((\sum, \neq)\) complete \(\nu\)-generalized metric space. Let \(T : X \to CB(X)\) be a multi-valued map satisfying:
\[
\varphi(H(Tx, Ty)) \leq \alpha(\varphi(d(x, y)))\varphi(d(x, y)),
\]
for each \(x, y \in X\), where \(\alpha\) is a MT-function and \(\varphi \in \Phi\). Then \(T\) has a fixed point.

Proof. Let \(\gamma : [0, \infty) \to [0, 1)\) defined by \(\gamma(t) = \frac{1 + \alpha(t)}{2}\). Since \(\varphi\) is non-decreasing function, then
\[
\begin{align*}
\max \left\{ \sup_{v \in Tx} \varphi(d(v, Ty)), \sup_{u \in Ty} \varphi(d(u, Tx)) \right\} \\
= \max \left\{ \varphi\left(\sup_{v \in Tx} d(v, Ty) \right), \varphi\left(\sup_{u \in Ty} d(u, Tx) \right) \right\} \\
= \varphi\left(H(Tx, Ty) \right) \leq \gamma(\varphi(d(x, y)))\varphi(d(x, y)).
\end{align*}
\]

There exist an element \(z \in Ty\) such that
\[
\varphi(d(y, z)) \leq \gamma(\varphi(d(x, y)))\varphi(d(x, y)),
\]
for each \(x \in X\) and \(y \in Tx\). Thus, in the same way a sequence \(\{x_n\}_{n \in \mathbb{N}} \in X\) defined as \(x_{n+1} \in Tx_n\) is constructed such that
\[
\varphi(d(x_n, x_{n+1}) \leq \gamma(\varphi(d(x_{n-1}, x_n)))\varphi(d(x_{n-1}, x_n))
\]
for all \(n \in \mathbb{N}\). Since \(\gamma(t) < 1\) for any \(t \in [0, \infty)\), hence from (9) we get
\[
\varphi(d(x_n, x_{n+1}) < \varphi(d(x_{n-1}, x_n)).
\]

Clearly \(\{\varphi(d(x_{n-1}, x_n))\}\) is decreasing sequence of positive real numbers. Hence it is converge to some non-negative real number, say \(\epsilon\). By contradiction, it is easy to show that \(\epsilon = 0\). Note that, \(\varphi\) is a non-decreasing function which implies to \(d(x_n, x_{n+1}) < d(x_{n-1}, x_n)\). Thus the sequence \(\{d(x_n, x_{n+1})\}\) is also decreasing. Hence by lemma (3.3), the terms of the sequence all are different. Now, show that \(\sum_{n=0}^{\infty} d(x_n, x_{n+1}) < \infty\). Note that the sequence \(\{d(x_n, x_{n+1})\}\) is decreasing and bounded. Thus, it is converges to a positive real number (say \(\delta\)) which implies that \(\varphi(\delta) \leq \varphi(d(x_n, x_{n+1}))\). Thus,
\[
\varphi(\delta) \leq \lim_{n \to \infty} \varphi(d(x_n, x_{n+1})) = \epsilon = 0.
\]
Since \(\varphi(s) = 0 \) if and only if \(s = 0 \) then, \(\delta = 0 \). By lemma (2.6), there exist \(r \in [0, 1) \) such that, \(\varphi(d(x_n, x_{n+1})) \leq r\varphi(d(x_{n-1}, x_n)) \). Therefore,
\[
\sum_{n=1}^{\infty} \varphi(d(x_n, x_{n+1})) \leq \sum_{n=1}^{\mu} \varphi(d(x_n, x_{n+1})) + \sum_{n=\mu+1}^{\infty} \varphi(d(x_n, x_{n+1})) \\
\leq \sum_{n=1}^{\mu} \varphi(d(x_n, x_{n+1})) + \sum_{n=1}^{\infty} r^n \varphi(d(x_\mu, x_{\mu+1})) < \infty.
\]

By definition of \(\varphi \), we have
\[
\lim_{n \to \infty} \sup_{x} \frac{d(x_n, x_{n+1})}{\varphi(d(x_n, x_{n+1}))} \leq \lim_{s \to 0^+} \frac{s}{\varphi(s)} < \infty.
\]

Thus, the sequence \(\{x_n\} \) is a \((\sum, \neq) - \) Cauchy sequence. Since \(X \) is a \((\sum, \neq) \) complete \(\nu \) generalized metric space and by lemma (2.5), it is Cauchy and then it is converge to some \(z \in X \). From the definition of \(\varphi \) and its increasing we conclude that,
\[
\varphi(d(z, Tz)) \leq \lim_{n \to \infty} \inf \varphi(d(x_{n+1}, Tz)) \leq \lim_{n \to \infty} \inf \varphi(H(Tx_n, Tz)) \\
\leq \lim_{n \to \infty} \inf \gamma(\varphi(d(x_n, z))) \varphi(d(x_n, z)) \leq \lim_{n \to \infty} \varphi(d(x_n, z)) \\
= \lim_{s \to 0^+} \varphi(s) = \lim_{n \to \infty} \varphi(d(x_n, x_{n+1})) = 0.
\]

Therefore, \(\varphi(d(z, Tz)) = 0 \). Thus by the definition of \(\varphi \) and since \(Tz \) closed we have \(z \in Tz \) is a fixed point.

REFERENCES

Department of Mathematics, King Abdulaziz University, P.O. Box: 138381, Jeddah 21323, Saudi Arabia

E-mail address: sshaikey@stu.kau.edu.sa. (*Corresponding author*)
E-mail address: alsulami@kau.edu.sa
E-mail address: malansari@kau.edu.sa
On Multiresolution Analyses Of Multiplicity n

Richard A. Zalik *

Abstract

This paper studies multiresolution analyses in $L^2(\mathbb{R}^d)$ that have more than one scaling function and are generated by an arbitrary dilation matrix. It provides a further analysis of a representation theorem obtained by the author for such MRA's.

1 Introduction

The concept of multiresolution analysis of multiplicity n is due to Alpert [1, 2, 3] who introduced his now well known dyadic multiresolution analysis with an arbitrary number of filters in $L^2(\mathbb{R})$. Alpert’s results motivated a number of papers, focused on the univariate case, such as Hervé [12, 13], Donovan, Geronimo and Hardin [6, 7], Geronimo and Marcellán [10], Goodman, Lee and Tang [9], Goodman and Lee [8], and Hardin, Kessler and Massopust [11]. Multiresolution analyses of multiplicity 1 (i.e., with a single scaling function) with arbitrary expansive matrices in $L^2(\mathbb{R})$ were studied by Lemarié [15, 16] and Madych [17], among others, and we should also mention Wojtaszczyk’s excellent textbook [25]. Properties of low pass filters and scaling functions in this context were studied by San Antolín [19, 20, 21, 22] and Cifuentes, Kazarian and San Antolín [5]. Saliani [18] extended these results to multiresolution analyses of multiplicity n generated by an expansive matrix. These results were further extended by Soto–Bajo [24] to multiresolution analyses having an arbitrary (not necessarily finite) set of generator functions. In [4], Behera studied multiwavelet packets and frame packets of $L^2(\mathbb{R}^d)$ associated with multiresolution analyses of multiplicity n generated by an expansive matrix. In [26] the author presented a representation theorem for such multiresolution analyses, in [27] he gave some simple examples for the case $n = 1$, and in [23] San Antolín and the author obtained representation theorems for vector valued wavelets. Some of the authors cited above have showed that by using more than one scaling function it is possible to

*Department of Mathematics and Statistics, Auburn University, AL 36849-5310, zalik@auburn.edu
construct wavelets that have a set of properties not available for wavelets associated with a multiresolution analysis having a single scaling function; for instance in [6] they constructed wavelets associated with more than two scaling functions having compact support, arbitrary regularity, orthogonality, and symmetry. These results would indicate that the further study of multiresolution analyses of multiplicity n may lead to other interesting results.

In what follows, \mathbb{Z} will denote the set of integers, \mathbb{Z}_+ the set of strictly positive integers and \mathbb{R} the set of real numbers; \mathbb{C} will denote the set of complex numbers, and \mathbf{I} will stand for the identity matrix. Boldface lowcase letters will denote elements of \mathbb{R}^d; $\mathbf{x} \cdot \mathbf{y}$ will stand for the standard dot product of the vectors \mathbf{x} and \mathbf{y}; the vector norm $|| \cdot ||$ is defined by $||\mathbf{x}||^2 := \mathbf{x} \cdot \mathbf{x}$. If \mathbf{A} is a matrix $||\mathbf{A}||$ will denote the matrix norm induced by the vector norm $|| \cdot ||$. The inner product of two functions $f, g \in L^2(\mathbb{R}^d)$ will be denoted by $\langle f, g \rangle$, their bracket product by $[f, g]$, and the norm of f by $||f||$; thus,

$$\langle f, g \rangle := \int_{\mathbb{R}^d} f(t)g(t) \, dt,$$

$$[f, g](t) := \sum_{k \in \mathbb{Z}^d} f(t + k)g(t + k),$$

and

$$||f|| := \sqrt{\langle f, f \rangle}.$$

The Fourier transform of a function f will be denoted by \hat{f}. If $f \in L(\mathbb{R}^d)$,

$$\hat{f}(\mathbf{x}) := \int_{\mathbb{R}^d} e^{-i2\pi \mathbf{x} \cdot \mathbf{t}} f(\mathbf{t}) \, d\mathbf{t}.$$

Let $\mathbf{A} \in \mathbb{C}^{d \times d}$ and $|a| := \text{det}(\mathbf{A})$. For every $j \in \mathbb{Z}$ and $k \in \mathbb{Z}^d$ the dilation operator D^A_j and the translation operator T_k are defined on $L^2(\mathbb{R}^d)$ by

$$D^A_j f(t) := |a|^{j/2} f(A^j t)$$

and

$$T_k f(t) := f(t + k)$$

respectively. Let $\mathbb{T} := [0, 1]$, and let \mathbb{T}^d denote the d–fold cartesian product of \mathbb{T}. A function f will be called \mathbb{Z}^d–periodic if it is defined on \mathbb{R}^d and $T_k f = f$ for every $k \in \mathbb{Z}^d$.

Let $\mathbf{u} = \{u_1, \cdots, u_m\} \subset L^2(\mathbb{R}^d)$; then

$$T(\mathbf{u}) = T(u_1, \cdots, u_m) := \{T_k u; u \in \mathbf{u}, k \in \mathbb{Z}^d\}$$

and

$$S(\mathbf{u}) = S(u_1, \cdots, u_m) := \text{span} T(\mathbf{u}),$$

where the closure is in $L^2(\mathbb{R}^d)$. $S(\mathbf{u})$ is called a finitely generated shift–invariant space or FSI and the functions u_ℓ are called the generators of $S(\mathbf{u})$. In this case we will also use the symbols $T(u_1, \cdots, u_n)$ and $S(u_1, \cdots, u_n)$ to denote $S(\mathbf{u})$ and $T(\mathbf{u})$ respectively.
We also define
\[T(A^j; u) = T(A^j; u_1, \ldots, u_m) := \{ D_j^k u_\ell; \ell = 1, \ldots, m, k \in \mathbb{Z}^d \}, \]
and
\[S(A^j; u) = S_j(A^j; u_1, \ldots, u_m) := \text{span} T(A^j; u). \]
Given a sequence of functions \(u := \{ u_1, \ldots, u_m \} \) in \(L^2(\mathbb{R}^d) \), by \(G[u_1, \ldots, u_m](x), G_u(x) \) or \(G(x) \) we will denote its Gramian matrix, viz.
\[G(x) := \left(\left[\hat{u}_\ell, \hat{u}_j \right](x) \right)_{\ell,j=1}^{m}. \]

Let \(\Lambda \subset \mathbb{Z} \) and \(u = \{ u_k; k \in \Lambda \} \subset S \subset L^2(\mathbb{R}^d) \). If \(S \) is a shift–invariant space then \(u \) is called a basis generator of \(S \), if for every \(f \in S \) there are \(\mathbb{Z}^d \)–periodic functions \(p_k \), uniquely determined by \(f \) (up to a set of measure 0), such that
\[\hat{f} = \sum_{k \in \Lambda} p_k \hat{u}_k. \]

In what follows we will assume that \(A \) is a fixed matrix preserving the lattice \(\mathbb{Z}^d \), i.e. \(A\mathbb{Z}^d \subset \mathbb{Z}^d \). We will also assume that \(A \) is expansive, that is, there exist constants \(C > 0 \) and \(\delta > 1 \) such that for every \(j \in \mathbb{Z}_+ \) and \(x \in \mathbb{R}^d \)
\[||A^j x|| \geq C\delta^j ||x||. \]

Lemma 1. \(A \) is expansive if and only if all its eigenvalues have modulus larger that 1.

Proof. Suppose first that all the eigenvalues of \(A \) have modulus larger that 1. If \(A \) is a Jordan block, then \(A = \lambda I + N \), where \(N \) has 1’s on the superdiagonal and 0’s elsewhere, and from e.g. [14, Lemma 3.1.4] we deduce that
\[A^j x = \sum_{k=0}^{d} \binom{j}{k} \lambda^k N^{j-k} x \]
whence the assertion readily follows, and therefore it also follows when \(A \) is in Jordan canonical form. In general, if \(Q \) is the Jordan form of \(A \), then \(Q = B^{-1} A B \) and we have
\[C\delta^j ||y|| \leq ||Q^j y|| = ||B^{-1} A^j B y|| \leq ||B^{-1}|| \cdot ||A^j B y||. \]
Setting \(x = B y \) the assertion readily follows.

Conversely, if \(A \) has an eigenvalue \(\lambda \) with modulus less or equal to 1 and \(v \) is an eigenvector for \(\lambda \) with \(||v|| = 1 \), then \(Av = \lambda v \); hence \(||A^j v|| = |\lambda|^j \leq |\lambda| \), and \(||A^j v|| \) remains bounded. So \(A \) is not expansive. \(\square \)

The previous proof was suggested by Wayne Lawton. An elementary proof may be found in San Antolín’s thesis [19, Lema A.12].
A multiresolution analysis (MRA) of multiplicity \(n \) in \(L^2(\mathbb{R}^d) \) (generated by \(\mathbf{A} \)) is a sequence \(\{V_j; j \in \mathbb{Z}\} \) of closed linear subspaces of \(L^2(\mathbb{R}^d) \) such that:

(i) \(V_j \subset V_{j+1} \) for every \(j \in \mathbb{Z} \).

(ii) For every \(j \in \mathbb{Z} \), \(f(t) \in V_j \) if and only if \(f(\mathbf{A}t) \in V_{j+1} \).

(iii) \(\bigcup_{j \in \mathbb{Z}} V_j \) is dense in \(L^2(\mathbb{R}^d) \).

(iv) There are functions \(\mathbf{u} := \{u_1, \cdots, u_n\} \) such that \(T(\mathbf{u}) \) is an orthonormal basis of \(V_0 \).

From [18, Lemma 17] we know that if \(\{V_j; j \in \mathbb{Z}\} \) is a multiresolution analysis, then

\[
\bigcap_{j \in \mathbb{Z}} V_j = \{0\}.
\] (1)

This generalizes a result of Cifuentes, Kazarian and San Antolín, which was established for multiresolution analyses of multiplicity 1 (cf. [5, Lemma 4]).

It follows from the definition of multiresolution analysis that there are \(\mathbb{Z}^d \)-periodic functions \(p_{\ell,j} \in L^2(\mathbb{T}^d) \) such that the functions \(u_\ell \) satisfy the scaling identity

\[
\tilde{u}_\ell(\mathbf{A}^*x) = \sum_{j=1}^{n} p_{\ell,j}(x)\tilde{u}_j(x), \quad j, \ell = 1, \cdots, n \quad \text{a.e.,}
\]

where \(\mathbf{A}^* \) is the transpose of \(\mathbf{A} \). The functions \(u_\ell \) are called scaling functions for the multiresolution analysis, and the functions \(p_{\ell,j} \) are called the low pass filters associated with \(\mathbf{u} \).

A finite set of functions \(\psi = \{\psi_1, \cdots, \psi_m\} \in L^2(\mathbb{R}^d) \) will be called an orthonormal wavelet system if the affine sequence

\[
\{D_j^\mathbf{A}T_k\psi_\ell; j \in \mathbb{Z}, k \in \mathbb{Z}^d, \ell = 1, \cdots, m\}
\]

is an orthonormal basis of \(L^2(\mathbb{R}^d) \).

Let \(\psi := \{\psi_1, \cdots, \psi_m\} \) be an orthogonal wavelet system in \(L^2(\mathbb{R}^d) \) generated by a matrix \(\mathbf{A} \), let \(M := \{V_j; j \in \mathbb{Z}\} \) be a multiresolution analysis and let \(W_j \) denote the orthogonal complement of \(V_j \) in \(V_{j+1} \). We say that \(\psi \) is associated with an MRA, if \(T(\psi) \) is an orthonormal basis of \(W_0 \).

2 Representation of orthonormal wavelets.

For \(k > 1 \) let \(\text{diag}\{-e^{i\omega}, 1, \cdots, 1\}_k \) denote the \(k \times k \) diagonal matrix with \(-e^{i\omega}, 1, \cdots, 1\) as its diagonal entries. With the convention that \(\text{Arg } 0 = 0 \) we have

Theorem 1. Let \(M := \{V_j; j \in \mathbb{Z}\} \) be a multiresolution analysis of multiplicity \(n \) with scaling functions \(\mathbf{u} := \{u_1, \cdots, u_n\} \), generated by a matrix \(\mathbf{A} \) that preserves the lattice
For $1 \leq \ell \leq n$, let $\{v_{\ell,1}, \ldots, v_{\ell,|a|}\}$ be an orthonormal basis generator of $S(\mathbf{A}, u_{\ell})$, let $\mathbf{e} := (1, 0, \cdots, 0) \in \mathbb{R}^k$, and

$$
\mathbf{u}_{\ell}(x) = \sum_{j=1}^{|a|} b_{\ell,j}(x) \mathbf{v}_{\ell,j}(x),
$$

(2)

$$
\mathbf{b}_{\ell}(x) := (b_{\ell,1}(x), \ldots, b_{\ell,|a|}(x))^T,
\delta_{\ell}(x) := e^{i \operatorname{Arg} b_{\ell,1}(x)},
\mathbf{q}_{\ell}(x) := \mathbf{b}_{\ell}(x) + \delta_{\ell}(x)\mathbf{e},
\mathbf{\nu}(x) := (\mathbf{v}_{1,1}(x), \ldots, \mathbf{v}_{1,|a|}(x), \ldots, \mathbf{v}_{n,1}(x), \ldots, \mathbf{v}_{n,|a|}(x))^T,
$$

and

$$
\mathbf{Q}_{\ell}(x) := \operatorname{diag}\{-\delta_{\ell}(x), 1, \ldots, 1\}_{|a|} \left[1 - 2 \mathbf{q}_{\ell}(x)\mathbf{q}_{\ell}(x)^*/\mathbf{q}_{\ell}(x)^*\mathbf{q}_{\ell}(x) \right].
$$

Let $a := \det \mathbf{A}$, $m := |a|n$, and let

$$
\mathbf{Q}(x) = \left(q_{\ell,k}(x) \right)_{\ell,k=1}^m
$$

be the $m \times m$ block diagonal matrix

$$
\mathbf{Q}_1(x) \oplus \mathbf{Q}_2(x) \oplus \cdots \oplus \mathbf{Q}_n(x) = \begin{pmatrix}
\mathbf{Q}_1(x) & \mathbf{0} \\
\mathbf{0} & \mathbf{Q}_n(x)
\end{pmatrix}.
$$

If

$$
(\mathbf{\nu}_1(x), \ldots, \mathbf{\nu}_m(x))^T := \mathbf{Q}(x)\mathbf{\nu}(x),
$$

then

$$
y(\ell-1)|a|+1 = u_{\ell}; \quad 1 \leq \ell \leq n,
$$

(3)

and

$$\{y(\ell-1)|a|+k; 1 \leq \ell \leq n, 2 \leq k \leq |a|\}
$$

is an orthonormal wavelet system associated with M.

The preceding theorem was proved in [26, Theorem 9] but there was arguably a gap in the proof, which is bridged by the following

Lemma 2. Let $m = n(|a|−1)$, let $\{V_j; j \in \mathbb{Z}\}$ be a multiresolution analysis and assume that $\{u_{\ell}; \ell = 1, \ldots, n\}$ is an orthonormal basis generator of V_0. Then

$$
V_1 = S(\mathbf{A}, u_1) \oplus S(\mathbf{A}, u_2) \oplus \cdots \oplus S(\mathbf{A}, u_n).
$$

Proof. From [26, Theorem 3] we know that there exist functions $v_{\ell,k}, \ell = 1, \cdots n$, such that $\{v_{\ell,1}, \cdots, v_{\ell,|a|}\}$ is an orthonormal basis generator of $S(\mathbf{A}, u_{\ell})$. Therefore $\{v_{\ell,k}; 1 \leq \ell \leq n, 1 \leq k \leq |a|\}$ is an orthogonal basis generator of $S(\mathbf{A}, u_1) \oplus S(\mathbf{A}, u_2) \oplus \cdots \oplus S(\mathbf{A}, u_n)$, which is a subspace of V_1. But [26, Theorem 3] also tells us that every Riesz generator of V_1 has $|a|n$ functions, and the assertion readily follows from [26, Theorem 1].\[\square\]
Theorem 2. Let \(\{V_j; j \in \mathbb{Z}\} \) be a multiresolution analysis and assume that \(\{u_\ell; \ell = 1, \cdots, n\} \) is an orthonormal basis generator of \(V_0 \). Then

(a) If \(j > 0 \),
\[
V_j = S(A^j, u_1) \oplus S(A^j, u_2) \oplus \cdots \oplus S(A^j, u_n).
\]

(b) \(L^2(\mathbb{R}^d) = \bigcup_{j=0}^{\infty} S(A^j; u_1) + \bigcup_{j=0}^{\infty} S(A^j; u_2) + \cdots + \bigcup_{j=0}^{\infty} S(A^j; u_n) \)

Proof. From [26, Theorem 4] we know that every orthonormal basis generator of \(V_j, j > 0 \), must have \(n|a|^j \) functions, and an argument similar to the one employed in the proof of Lemma 2 yields (a).

To prove (b), let \(f \in L^2(\mathbb{R}^d) \) and let \(\varepsilon > 0 \) be given; then there is a \(j \in \mathbb{Z}_+ \) and a \(g \in V_j \) such that \(||f - g|| < \varepsilon \). Since \textit{a fortiori} \(g \) belongs to the closed set
\[
\bigcup_{j=0}^{\infty} S(A^j; u_1) + \bigcup_{j=0}^{\infty} S(A^j; u_2) + \cdots + \bigcup_{j=0}^{\infty} S(A^j; u_n)
\]
and \(\varepsilon \) is arbitrary, the assertion follows.

Theorem 3. Let \(m = n(|a| - 1) \), let the functions \(y_k, k = 1, \cdots, |a|n \) be constructed as in Theorem 1, and let \(q_j = y_{j+\ell} \) for \(\ell = 1, \cdots, n, j = \ell |a|, \cdots, (\ell + 1)(|a| - 1) \). Then \(\{w_1, \cdots, w_r\} \) is an orthonormal wavelet system if and only if \(r = m \) and there exists an orthogonal matrix \(Q(x) \) such that
\[
(w_1, \cdots, w_m)^T = Q(x)(q_1, \cdots, q_m)^T.
\]

Proof. From Theorem 1 we know that \(\{q_1, \cdots, q_m\} \) is an orthonormal basis system or, equivalently, that it is an orthonormal basis generator of \(S(u) \). The assertion now readily follows from [26, Corollary 3 and Theorem 5].

References

Generalized g–Fractional vector Representation

Formula and integral Inequalities for Banach space valued functions

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we give a very general fractional Bochner integral representation formula for Banach space valued functions. We derive generalized left and right fractional Opial type inequalities, fractional Ostrowski type inequalities and fractional Grüss type inequalities. All these inequalities are very general having in their background Bochner type integrals.

2010 AMS Mathematics Subject Classification : 26A33, 26B40, 26D10, 26D15, 46B25, 46E40.

Keywords and Phrases: Banach space valued functions, vector generalized fractional derivative, Caputo fractional derivative, generalized vector fractional integral inequalities, Bochner integral, fractional vector representation formula.

1 Background

We need

Definition 1 ([2]) Let $[a, b] \subset \mathbb{R}$, $(X, \|\cdot\|)$ a Banach space, $g \in C^1([a, b])$ and increasing, $f \in C([a, b], X)$, $\nu > 0$.

We define the left Riemann-Liouville generalized fractional Bochner integral operator

$$\left(I_{a+}^{\nu} g f \right) (x) := \frac{1}{\Gamma(\nu)} \int_{a}^{x} (g(x) - g(z))^{\nu-1} g'(z) f(z) \, dz, \quad (1)$$

$\forall \ x \in [a, b]$, where Γ is the gamma function.

The last integral is of Bochner type. Since $f \in C([a, b], X)$, then $f \in L_\infty([a, b], X)$. By [2] we get that $I_{a+}^{\nu} g f \in C([a, b], X)$. Above we set $I_{a+}^{0} f := f$ and see that $\left(I_{a+}^{\nu} g f \right) (a) = 0$.

1
When g is the identity function id, we get that $I^\nu_{a+;\text{id}} = I^\nu_{a+}$, the ordinary left Riemann-Liouville fractional integral

$$
(I^\nu_{a+} f)(x) = \frac{1}{\Gamma(\nu)} \int_a^x (x-t)^{\nu-1} f(t) \, dt,
$$

(2)

$\forall x \in [a, b]$, $(I^\nu_{a+} f)(a) = 0$.

We need

Theorem 2 ([2]) Let $\mu, \nu > 0$ and $f \in C([a, b], X)$. Then

$$
I^\mu_{a+;g} I^\nu_{a+;g} f = I^{\mu+\nu}_{a+;g} f = I^\nu_{a+;g} I^\mu_{a+;g} f.
$$

(3)

We need

Definition 3 ([2]) Let $[a, b] \subset \mathbb{R}$, $(X, \|\cdot\|)$ a Banach space, $g \in C^1([a, b])$ and increasing, $f \in C([a, b], X)$, $\nu > 0$.

We define the right Riemann-Liouville generalized fractional Bochner integral operator

$$
(I^\nu_{b-;g} f)(x) := \frac{1}{\Gamma(\nu)} \int_x^b (g(z) - g(x))^{\nu-1} g'(z) f(z) \, dz,
$$

(4)

$\forall x \in [a, b]$, where Γ is the gamma function.

The last integral is of Bochner type. Since $f \in C([a, b], X)$, then $f \in L_\infty([a, b], X)$. By [2] we get that $I^\nu_{b-;g} f \in C([a, b], X)$. Above we set $I^\mu_{b-;g} f := f$ and see that $(I^\nu_{b-;g} f)(b) = 0$.

When g is the identity function id, we get that $I^\nu_{b-;\text{id}} = I^\nu_{b-}$, the ordinary right Riemann-Liouville fractional integral

$$
(I^\nu_{b-} f)(x) = \frac{1}{\Gamma(\nu)} \int_x^b (t-x)^{\nu-1} f(t) \, dt,
$$

(5)

$\forall x \in [a, b]$, with $(I^\nu_{b-} f)(b) = 0$.

We need

Theorem 4 ([2]) Let $\mu, \nu > 0$ and $f \in C([a, b], X)$. Then

$$
I^\mu_{b-;g} I^\nu_{b-;g} f = I^{\mu+\nu}_{b-;g} f = I^\nu_{b-;g} I^\mu_{b-;g} f.
$$

(6)

We will use

Definition 5 ([2]) Let $\alpha > 0$, $[\alpha] = n$, $[\cdot]$ the ceiling of the number. Let $f \in C^n([a, b], X)$, where $[a, b] \subset \mathbb{R}$, and $(X, \|\cdot\|)$ is a Banach space. Let $g \in C^1([a, b])$, strictly increasing, such that $g^{-1} \in C^n([g(a), g(b)])$.

We define the left generalized g-fractional derivative X-valued of f of order α as follows:

$$(D_{a+g}^{\alpha}f)(x) := \frac{1}{\Gamma(n - \alpha)} \int_{a}^{x} (g(x) - g(t))^{n-\alpha - 1} g'(t) (f \circ g^{-1})^{(n)}(g(t)) \, dt,$$

(7)

$\forall x \in [a, b]$. The last integral is of Bochner type.

If $\alpha \notin \mathbb{N}$, by [2], we have that $(D_{a+g}^{\alpha}f) \in C([a, b], X)$.

We see that

$$(I_{a+g}^{n-\alpha} \left((f \circ g^{-1})^{(n)} \circ g \right))(x) = (D_{a+g}^{\alpha}f)(x), \quad \forall x \in [a, b].$$

(8)

We set

$$D_{a+g}^{n}f(x) := \left((f \circ g^{-1})^{(n)} \circ g \right)(x) \in C([a, b], X), \quad n \in \mathbb{N},$$

(9)

$$D_{a+g}^{0}f(x) = f(x), \quad \forall x \in [a, b].$$

When $g = id$, then

$$D_{a+g}^{\alpha}f = D_{a+id}^{\alpha}f = D_{a}^{\alpha}f,$$

(10)

the usual left X-valued Caputo fractional derivative, see [3].

We will use

Definition 6 ([2]) Let $\alpha > 0$, $\lceil \alpha \rceil = n$, $\lceil \cdot \rceil$ the ceiling of the number. Let $f \in C^n([a, b], X)$, where $[a, b] \subset \mathbb{R}$, and $(X, \| \cdot \|)$ is a Banach space. Let $g \in C^1([a, b])$, strictly increasing, such that $g^{-1} \in C^n ([g(a), g(b)])$.

We define the right generalized g-fractional derivative X-valued of f of order α as follows:

$$(D_{b-g}^{\alpha}f)(x) := \frac{(-1)^n}{\Gamma(n - \alpha)} \int_{x}^{b} (g(t) - g(x))^{n-\alpha - 1} g'(t) (f \circ g^{-1})^{(n)}(g(t)) \, dt,$$

(11)

$\forall x \in [a, b]$. The last integral is of Bochner type.

If $\alpha \notin \mathbb{N}$, by [2], we have that $(D_{b-g}^{\alpha}f) \in C([a, b], X)$.

We see that

$$I_{b-g}^{n-\alpha} \left((-1)^n (f \circ g^{-1})^{(n)} \circ g \right)(x) = (D_{b-g}^{\alpha}f)(x), \quad a \leq x \leq b.$$

(12)

We set

$$D_{b-g}^{n}f(x) := (-1)^n \left((f \circ g^{-1})^{(n)} \circ g \right)(x) \in C([a, b], X), \quad n \in \mathbb{N},$$

(13)

$$D_{b-g}^{0}f(x) := f(x), \quad \forall x \in [a, b].$$

When $g = id$, then

$$D_{b-g}^{\alpha}f(x) = D_{b-id}^{\alpha}f(x) = D_{b}^{\alpha}f,$$

(14)

the usual right X-valued Caputo fractional derivative, see [3].
We make

Remark 7 All as in Definition 5. We have (by Theorem 2.5, p. 7, [5])

\[
\| (D_{a+g}^\alpha f) (x) \| \leq \frac{1}{\Gamma(n-\alpha)} \int_a^x (g(x) - g(t))^{n-\alpha-1} g'(t) \left\| (f \circ g^{-1})^{(n)} (g(t)) \right\| dt
\]

\[
\leq \frac{\left\| (f \circ g^{-1})^{(n)} \circ g \right\|_{\infty,[a,b]} \int_{g(a)}^{g(x)} (g(x) - g(t))^{n-\alpha-1} dg(t) =
\]

\[
\frac{\left\| (f \circ g^{-1})^{(n)} \circ g \right\|_{\infty,[a,b]} (g(x) - g(a))^{n-\alpha}}{\Gamma(n-\alpha + 1)}.
\]

(15)

That is

\[
\| (D_{a+g}^\alpha f) (x) \| \leq \frac{\left\| (f \circ g^{-1})^{(n)} \circ g \right\|_{\infty,[a,b]} (g(x) - g(a))^{n-\alpha}}{\Gamma(n-\alpha + 1)},
\]

(16)

\(\forall \ x \in [a,b] \).

If \(\alpha \notin \mathbb{N} \), then \((D_{a+g}^\alpha f) (a) = 0 \).

Similarly, by Definition 6 we derive

\[
\| (D_{b-\gamma}^\alpha f) (x) \| \leq \frac{1}{\Gamma(n-\alpha)} \int_a^b (g(t) - g(x))^{n-\alpha-1} g'(t) \left\| (f \circ g^{-1})^{(n)} (g(t)) \right\| dt
\]

\[
\leq \frac{\left\| (f \circ g^{-1})^{(n)} \circ g \right\|_{\infty,[a,b]} \int_{g(a)}^{g(b)} (g(t) - g(x))^{n-\alpha-1} dg(t) =
\]

\[
\frac{\left\| (f \circ g^{-1})^{(n)} \circ g \right\|_{\infty,[a,b]} (g(b) - g(x))^{n-\alpha}}{\Gamma(n-\alpha + 1)}.
\]

(17)

That is

\[
\| (D_{b-\gamma}^\alpha f) (x) \| \leq \frac{\left\| (f \circ g^{-1})^{(n)} \circ g \right\|_{\infty,[a,b]} (g(b) - g(x))^{n-\alpha}}{\Gamma(n-\alpha + 1)},
\]

(18)

\(\forall \ x \in [a,b] \).

If \(\alpha \notin \mathbb{N} \), then \((D_{b-\gamma}^\alpha f) (b) = 0 \).

Notation 8 We denote by

\[
D_{a+g}^\alpha := D_{a+g}^\alpha D_{a+g}^\alpha \ldots D_{a+g}^\alpha \quad (n \text{ times}), \ n \in \mathbb{N},
\]

(19)

\[
I_{a+g}^\alpha := I_{a+g}^\alpha I_{a+g}^\alpha \ldots I_{a+g}^\alpha,
\]

(20)

\[
D_{b-\gamma}^\alpha := D_{b-\gamma}^\alpha D_{b-\gamma}^\alpha \ldots D_{b-\gamma}^\alpha,
\]

(21)

and

\[
I_{b-\gamma}^\alpha := I_{b-\gamma}^\alpha I_{b-\gamma}^\alpha \ldots I_{b-\gamma}^\alpha,
\]

(22)

\((n \text{ times}), \ n \in \mathbb{N} \).
Let C^k be a Banach space. Let $x_0 \in [a, b]$ be fixed. Assume that $F_{k}^{x_{0}} := D_{x_{0}+g}^{\alpha} f$, for $k = 1, ..., n$, fulfill $F_{k}^{x_{0}} \in C^k ([a, x_{0}], X)$ and $(D_{x_{0}+g}^{\alpha} f)(x_0) = 0$, $i = 2, ..., n$.

Similarly, we assume that $G_{k}^{x_{0}} := D_{x_{0}+g}^{\alpha} f$, for $k = 1, ..., n$, fulfill $G_{k}^{x_{0}} \in C^k ([x_{0}, b], X)$ and $(D_{x_{0}+g}^{\alpha} f)(x_0) = 0$, $i = 2, ..., n$.

Then
\[
\left\| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f(x_0) \right\| \leq \frac{1}{(b-a) \Gamma ((n+1) \alpha + 1)}.
\]

\[
\left\{ (g(b) - g(x_0))^{(n+1)\alpha} (b - x_0) \left\| D_{x_{0}+g}^{(n+1)\alpha} f \right\|_{\infty, [x_0, b]} +
\right.
\]

\[
(g(x_0) - g(a))^{(n+1)\alpha} (x_0 - a) \left\| D_{x_{0}+g}^{(n+1)\alpha} f \right\|_{\infty, [a, x_0]} \right\}. \tag{23}
\]

In this work we will present several generalized fractional Bochner integral inequalities.

We mention the following g-left generalized X-valued Taylor’s formula:

Theorem 10 ([2]) Let $\alpha > 0$, $n = [\alpha]$, and $f \in C^n ([a, b], X)$, where $[a, b] \subset \mathbb{R}$ and $(X, \| \cdot \|)$ is a Banach space. Let $g \in C^1 ([a, b])$, strictly increasing, such that $g^{-1} \in C^n ([g(a), g(b)])$. Then

\[
f(x) = f(a) + \sum_{i=1}^{n-1} \frac{(g(x) - g(a))^i}{i!} (f \circ g^{-1})^{(i)} (g(a)) + \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (g(x) - g(t))^{\alpha-1} g'(t) (D_{t+g}^{\alpha} f)(t) \, dt =
\]

\[
f(a) + \sum_{i=1}^{n-1} \frac{(g(x) - g(a))^i}{i!} (f \circ g^{-1})^{(i)} (g(a)) + \frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x)} (g(x) - z)^{\alpha-1} ((D_{z+g}^{\alpha} f) \circ g^{-1})(z) \, dz, \quad \forall x \in [a, b]. \tag{24}
\]

We mention the following g-right generalized X-valued Taylor’s formula:

Theorem 11 ([2]) Let $\alpha > 0$, $n = [\alpha]$, and $f \in C^n ([a, b], X)$, where $[a, b] \subset \mathbb{R}$ and $(X, \| \cdot \|)$ is a Banach space. Let $g \in C^1 ([a, b])$, strictly increasing, such that $g^{-1} \in C^n ([g(a), g(b)])$. Then

\[
f(x) = f(b) + \sum_{i=1}^{n-1} \frac{(g(x) - g(b))^i}{i!} (f \circ g^{-1})^{(i)} (g(b)) + \frac{1}{\Gamma(\alpha)} \int_{g(b)}^{g(x)} (g(x) - z)^{\alpha-1} ((D_{z+g}^{\alpha} f) \circ g^{-1})(z) \, dz, \quad \forall x \in [a, b].
\]
\[
\frac{1}{\Gamma(\alpha)} \int_x^b (g(t) - g(x))^{\alpha-1} g'(t) \left(D_{b-g}^\alpha f \right) (t) \, dt = \\
f(b) + \sum_{i=1}^{n-1} \left(\frac{g(x) - g(b)}{i!} \right)^{(i)} (f \circ g^{-1})^{(i)} (g(b)) + \\
\frac{1}{\Gamma(\alpha)} \int_{g(x)}^{g(b)} (z - g(x))^{\alpha-1} \left((D_{b-g}^\alpha f) \circ g^{-1} \right) (z) \, dz, \quad \forall \, x \in [a, b].
\]

For the Bochner integral excellent resources are [4], [6], [7] and [1], pp. 422-428.

2 Main Results

We give the following representation formula:

Theorem 12 All as in Theorem 10. Then

\[
f(y) = \frac{1}{b-a} \int_a^b f(x) \, dx - \sum_{k=1}^{n-1} \frac{(f \circ g^{-1})^{(k)}}{k!(b-a)} \int_a^b (g(x) - g(y))^k \, dx + R_1(y),
\]

for any \(y \in [a, b] \), where

\[
R_1(y) = -\frac{1}{\Gamma(\alpha)(b-a)} \left[\int_a^b \chi_{(a,y)}(x) \left(\int_x^y |g(x) - g(t)|^{\alpha-1} g'(t) \left(D_{y-g}^\alpha f \right) (t) \, dt \right) \, dx \\
- \int_a^b \chi_{[y,b)}(x) \left(\int_y^x |g(x) - g(t)|^{\alpha-1} g'(t) \left(D_{y-g}^\alpha f \right) (t) \, dt \right) \, dx \right].
\]

Here \(\chi_A \) stands for the characteristic function set \(A \), where \(A \) is an arbitrary set.

One may write also that

\[
R_1(y) = -\frac{1}{\Gamma(\alpha)(b-a)} \left[\int_a^y \left(\int_x^y (g(t) - g(x))^{\alpha-1} g'(t) \left(D_{y-g}^\alpha f \right) (t) \, dt \right) \, dx \\
+ \int_y^b \left(\int_y^x (g(x) - g(t))^{\alpha-1} g'(t) \left(D_{y-g}^\alpha f \right) (t) \, dt \right) \, dx \right],
\]

for any \(y \in [a, b] \).

Putting things together, one has

\[
f(y) = \frac{1}{b-a} \int_a^b f(x) \, dx - \sum_{k=1}^{n-1} \frac{(f \circ g^{-1})^{(k)}(g(y))}{k!(b-a)} \int_a^b (g(x) - g(y))^k \, dx
\]
By (31), (32) we notice that

\[\int_t^b \chi_{[a,y)}(x) \left(\int_x^y |g(x) - g(t)|^{\alpha-1} g'(t) \left(\int_{y+g}^{a+g} f(t) \, dt \right) \, dx \right) \, dx \]

for any \(y \in [a, b] \).

In particular, one has

\[f(y) - \frac{1}{b-a} \int_a^b f(x) \, dx + \sum_{k=1}^{n-1} \frac{(f \circ g^{-1})(g(y))}{k! (b-a)} \int_a^b (g(x) - g(y))^k \, dx \]

for any \(y \in [a, b] \).

Proof. Here \(x, y \in [a, b] \). We keep \(y \) as fixed.

By Theorem 10 we get:

\[f(x) = f(y) + \sum_{k=1}^{n-1} \frac{(f \circ g^{-1})(g(y))}{k! (b-a)} (g(x) - g(y))^k + \]

By Theorem 11 we get:

\[f(x) = f(y) + \sum_{k=1}^{n-1} \frac{(f \circ g^{-1})(g(y))}{k! (b-a)} (g(x) - g(y))^k + \]

By (31), (32) we notice that

\[\int_a^b f(x) \, dx = \int_a^y f(x) \, dx + \int_y^b f(x) \, dx = \]

\[\int_a^y f(y) \, dx + \sum_{k=1}^{n-1} \frac{(f \circ g^{-1})(g(y))}{k! (b-a)} \int_y^b (g(x) - g(y))^k \, dx + \]

\[\int_y^b f(y) \, dx + \sum_{k=1}^{n-1} \frac{(f \circ g^{-1})(g(y))}{k! (b-a)} \int_y^b (g(x) - g(y))^k \, dx + \]

\[\frac{1}{\Gamma(\alpha)} \int_y^b \left(\int_y^x (g(t) - g(x))^{\alpha-1} g'(t) \left(\int_{x+g}^{y+g} f(t) \, dt \right) \, dx \right) \, dx. \]
Theorem 13 All as in Theorem 10. Additionally assume that $\alpha \geq 1$, $g \in C^1([a, b])$, and $(f \circ g^{-1})^{(k)}(g(a)) = 0$, for $k = 0, 1, \ldots, n - 1$. Let $p, q > 1$:

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Then

$$\int_a^b \|f(w)\| \left\| (D_{a+g}^\alpha f)(w) \right\| g'(w) \, dw \leq \frac{1}{\Gamma(\alpha) 2^\frac{n}{2}}.$$

$$\left(\int_a^b \left(\int_a^w (g(w) - g(t))^{p(\alpha-1)} \, dt \right) dw \right) \frac{1}{p} \left(\int_a^b (g'(w))^q \left\| (D_{a+g}^\alpha f)(w) \right\|^q \, dw \right)^{\frac{1}{q}}, \quad \forall x \in [a, b].$$
Proof. By Theorem 10, we have that
\[f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (g(x) - g(t))^{\alpha-1} g'(t) \left(D_{a+g}^\alpha f\right)(t) \, dt, \quad \forall \, x \in [a, b]. \tag{38} \]

Then, by Hölder’s inequality we obtain,
\[
\|f(x)\| \leq \frac{1}{\Gamma(\alpha)} \left(\int_a^x (g(x) - g(t))^{p(\alpha-1)} \, dt \right)^{\frac{1}{p}} \left(\int_a^x (g'(t))^q \|\left(D_{a+g}^\alpha f\right)(t)\|^q \, dt \right)^{\frac{1}{q}}. \tag{39}
\]

Call
\[z(x) := \int_a^x (g'(t))^q \|\left(D_{a+g}^\alpha f\right)(t)\|^q \, dt, \tag{40} \]
\[z(a) = 0. \]

Thus
\[z'(x) = (g'(x))^q \|\left(D_{a+g}^\alpha f\right)(x)\|^q \geq 0, \tag{41} \]
and
\[
(z'(x))^{\frac{1}{q}} = g'(x) \|\left(D_{a+g}^\alpha f\right)(x)\| \geq 0, \quad \forall \, x \in [a, b]. \tag{42}
\]

Consequently, we get
\[
\|f(w)\| \|g'(w)\| \|\left(D_{a+g}^\alpha f\right)(w)\| \leq \tag{43}
\]
\[
\frac{1}{\Gamma(\alpha)} \left(\int_a^w (g(w) - g(t))^{p(\alpha-1)} \, dt \right)^{\frac{1}{p}} (z(w) z'(w))^{\frac{1}{q}}, \quad \forall \, w \in [a, b]. \tag{44}
\]

Then
\[
\int_a^x \|f(w)\| \|\left(D_{a+g}^\alpha f\right)(w)\| g'(w) \, dw \leq
\]
\[
\frac{1}{\Gamma(\alpha)} \int_a^x \left(\int_a^w (g(w) - g(t))^{p(\alpha-1)} \, dt \right)^{\frac{1}{p}} (z(w) z'(w))^{\frac{1}{q}} \, dw \leq
\]
\[
\frac{1}{\Gamma(\alpha)} \left(\int_a^x \left(\int_a^w (g(w) - g(t))^{p(\alpha-1)} \, dt \right) \, dw \right)^{\frac{1}{p}} (z^2(w))^{\frac{1}{q}} =
\]
\[
\frac{1}{\Gamma(\alpha)} \left(\int_a^x \left(\int_a^w (g(w) - g(t))^{p(\alpha-1)} \, dt \right) \, dw \right)^{\frac{1}{p}} \left(\frac{z^2(x)}{2} \right)^{\frac{1}{q}} =
\]
\[
\left(\int_a^x (g'(t))^q \|\left(D_{a+g}^\alpha f\right)(t)\|^q \, dt \right)^{\frac{2}{q}} \cdot 2^{-\frac{1}{q}}. \tag{45}
\]

The theorem is proved. \(\blacksquare \)

We also give a right fractional Opial type inequality:
Theorem 14 All as in Theorem 11. Additionally assume that $\alpha \geq 1$, $g \in C^1([a, b])$, and $(f \circ g^{-1})^{(k)}(g(b)) = 0$, $k = 0, 1, ..., n - 1$. Let $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$. Then

$$
\int_a^b \| f(w) \| \| (D_{b-a}^\alpha f)(w) \| g'(w) \, dw \leq \frac{1}{2 \pi \Gamma (\alpha) .}
$$

(47)

$$
\left(\int_a^b \left(\int_a^b (g(t) - g(w))^{p(\alpha - 1)} \, dt \right) \right)^{\frac{1}{p}} \left(\int_a^b (g'(w))^q \| (D_{b-a}^\alpha f)(w) \| q \, dw \right)^{\frac{1}{q}},
$$

all $a \leq x \leq b$.

Proof. By Theorem 11, we have that

$$
f(x) = \frac{1}{\Gamma (\alpha)} \int_a^b (g(t) - g(x))^{\alpha - 1} g'(t) \left(D_{b-a}^\alpha f \right)(t) \, dt, \quad \text{all } a \leq x \leq b. \quad (48)
$$

Then, by Hölder’s inequality we obtain,

$$
\| f(x) \| \leq \frac{1}{\Gamma (\alpha)} \left(\int_a^b (g(t) - g(x))^{p(\alpha - 1)} \, dt \right)^{\frac{1}{p}} \left(\int_a^b (g'(t))^q \| (D_{b-a}^\alpha f) \| q \, dt \right)^{\frac{1}{q}}.
$$

(49)

Call

$$
z(x) := \int_a^b (g'(t))^q \| (D_{b-a}^\alpha f) \| q \, dt,
$$

(50)

$z(b) = 0$.

Hence

$$
z'(x) = - (g'(x))^q \| (D_{b-a}^\alpha f) \| q \leq 0,
$$

(51)

and

$$
-z'(x) = (g'(x))^q \| (D_{b-a}^\alpha f) \| q \geq 0,
$$

(52)

and

$$
(-z'(x))^{\frac{1}{q}} = g'(x) \| (D_{b-a}^\alpha f) \| q \geq 0, \quad \forall \ x \in [a, b].
$$

(53)

Consequently, we get

$$
\| f(w) \| g'(w) \| (D_{b-a}^\alpha f)(w) \| \leq
$$

$$
\frac{1}{\Gamma(\alpha)} \left(\int_a^b (g(t) - g(w))^{p(\alpha - 1)} \, dt \right)^{\frac{1}{p}} \left(z(w) (-z'(w)) \right)^{\frac{1}{q}}, \quad \forall \ w \in [a, b].
$$

(54)

Then

$$
\int_a^b \| f(w) \| \| (D_{b-a}^\alpha f)(w) \| g'(w) \, dw \leq
$$

$$
\frac{1}{\Gamma(\alpha)} \int_a^b \left(\int_a^b (g(t) - g(w))^{p(\alpha - 1)} \, dt \right)^{\frac{1}{p}} \left(-z(w) z'(w) \right)^{\frac{1}{q}} \, dw \leq
$$
\[
\frac{1}{\Gamma(\alpha)} \left(\int_x^b \left(\int_x^b (g(t) - g(w))^{p(\alpha-1)} \, dt \right) \, dw \right)^{\frac{1}{p}} \left(- \int_x^b z(w) z'(w) \, dw \right)^{\frac{1}{q}} = \]

\[
\frac{1}{\Gamma(\alpha)} \left(\int_x^b \left(\int_x^b (g(t) - g(w))^{p(\alpha-1)} \, dt \right) \, dw \right)^{\frac{1}{p}} \left(\frac{z^2(x)}{2} \right)^{\frac{1}{q}} = \]

\[
\frac{1}{2^{\frac{1}{p}} \Gamma(\alpha)} \left(\int_x^b \left(\int_x^b (g(t) - g(w))^{p(\alpha-1)} \, dt \right) \, dw \right)^{\frac{1}{p}} \cdot \left(\int_x^b (g'(t))^q \| D_{a^+}^\alpha f(t) \|^q \, dt \right)^{\frac{1}{q}}. \quad (57)
\]

The theorem is proved. \(\blacksquare\)

Two extreme fractional Opial type inequalities follow (case \(p = 1, q = \infty\)).

Theorem 15 All as in Theorem 10. Assume that \((f \circ g^{-1})^{(k)}(g(a)) = 0, k = 0, 1, ..., n - 1\). Then

\[
\int_a^x \| f(w) \| \| D_{a;g}^\alpha f(w) \| \, dw \leq \frac{\| D_{a+;g}^\alpha f \|_\infty^2}{\Gamma(\alpha + 1)} \left(\int_a^x (g(w) - g(a))^{\alpha} \, dw \right), \quad (58)
\]

all \(a \leq x \leq b\).

Proof. For any \(w \in [a, b]\), we have that

\[
f(x) = \frac{1}{\Gamma(\alpha)} \int_a^w (g(w) - g(t))^{\alpha-1} g'(t) \left(D_{a^+;g}^\alpha f(t) \right) \, dt, \quad (59)
\]

and

\[
\| f(x) \| \leq \frac{1}{\Gamma(\alpha)} \left(\int_a^w (g(w) - g(t))^{\alpha-1} g'(t) \, dt \right) \| D_{a^+;g}^\alpha f \|_\infty = \frac{\| D_{a^+;g}^\alpha f \|_\infty}{\Gamma(\alpha + 1)} (g(w) - g(a))^{\alpha}. \quad (60)
\]

Hence we obtain

\[
\| f(w) \| \| D_{a^+;g}^\alpha f(w) \| \leq \frac{\| D_{a^+;g}^\alpha f \|_\infty^2}{\Gamma(\alpha + 1)} (g(w) - g(a))^{\alpha}. \quad (61)
\]

Integrating (61) over \([a, x]\) we derive (58). \(\blacksquare\)

Theorem 16 All as in Theorem 11. Assume that \((f \circ g^{-1})^{(k)}(g(b)) = 0, k = 0, 1, ..., n - 1\). Then

\[
\int_x^b \| f(w) \| \| D_{b^-;g}^\alpha f(w) \| \, dw \leq \frac{\| D_{b^-;g}^\alpha f \|_\infty^2}{\Gamma(\alpha + 1)} \left(\int_x^b (g(b) - g(w))^{\alpha} \, dw \right), \quad (62)
\]

all \(a \leq x \leq b\).
Proof. For any \(w \in [a, b] \), we have
\[
f(x) = \frac{1}{\Gamma(\alpha)} \int_{w}^{b} (g(t) - g(w))^{\alpha-1} g'(t) \left(D_{b-\alpha}^\alpha f(t) \right) dt,
\]
and
\[
\|f(x)\| \leq \frac{1}{\Gamma(\alpha)} \left(\int_{w}^{b} (g(t) - g(w))^{\alpha-1} g'(t) dt \right) \left\| D_{b-\alpha}^\alpha f \right\|_{\infty} = \left\| D_{b-\alpha}^\alpha f \right\|_{\infty} (g(b) - g(w))^{\alpha}.
\]
Hence we obtain
\[
\|f(w)\| \left\| D_{b-\alpha}^\alpha f(w) \right\| \leq \frac{1}{\Gamma(\alpha + 1)} (g(b) - g(w))^{\alpha}.
\]
Integrating (65) over \([x, b]\) we derive (62).

Next we present three fractional Ostrowski type inequalities:

Theorem 17 All as in Theorem 10. Then
\[
\left\| f(y) - \frac{1}{b-a} \int_{a}^{b} f(x) dx + \sum_{k=1}^{n-1} \frac{(f \circ g^{-1})^{(k)}(g(y))}{k!(b-a)} \int_{a}^{b} (g(x) - g(y))^{k} dx \right\| \leq \frac{1}{\Gamma(\alpha + 1)(b-a)} \left[(g(y) - g(a))^{\alpha} (y-a) \left\| D_{y-\alpha}^\alpha f \right\|_{\infty} + (g(b) - g(y))^{\alpha} (b-y) \left\| D_{y+\alpha}^\alpha f \right\|_{\infty} \right],
\]
\[\forall y \in [a, b].\n\]

Proof. Define
\[
(D_{y+\alpha}^\alpha f)(t) = 0, \text{ for } t < y, \]
and
\[
(D_{y-\alpha}^\alpha f)(t) = 0, \text{ for } t > y.
\]
Notice for \(0 < \alpha \notin \mathbb{N} \) by Remark 7 we have
\[
(D_{a+\alpha}^\alpha f)(a) = 0.
\]
Similarly it holds \(0 < \alpha \notin \mathbb{N} \) by Remark 7 that
\[
(D_{b-\alpha}^\alpha f)(b) = 0.
\]
Thus
\[
(D_{y+\alpha}^\alpha f)(y) = 0, \quad (D_{y-\alpha}^\alpha f)(y) = 0,
\]
\[0 < \alpha \notin \mathbb{N}, \text{ any } y \in [a, b].\n\]
We observe that
\[
\left\| R_1 (y) \right\| \leq \frac{1}{\Gamma (\alpha) (b-a)} \left[\left(\int_a^y \left(\int_x^y (g(t) - g(x))^{\alpha-1} g'(t) \, dt \right) \, dx \right) \left\| D_y^{\alpha-1} f \right\|_{\infty} \\
+ \left(\int_y^b \left(\int_y^x (g(x) - g(t))^{\alpha-1} g'(t) \, dt \right) \, dx \right) \left\| D_y^\alpha f \right\|_{\infty} \right] = \frac{1}{\Gamma (\alpha) (b-a)} \left[\left(\int_a^y \frac{(g(y) - g(x))^{\alpha}}{\alpha} \, dx \right) \left\| D_y^{\alpha-1} f \right\|_{\infty} \\
+ \left(\int_y^b \frac{(g(x) - g(y))^{\alpha}}{\alpha} \, dx \right) \left\| D_y^\alpha f \right\|_{\infty} \right] \leq \frac{1}{\Gamma (\alpha+1) (b-a)} \left[(g(y) - g(a))^\alpha (y-a) \left\| D_y^{\alpha-1} f \right\|_{\infty} \\
+ (g(b) - g(y))^\alpha (b-y) \left\| D_y^\alpha f \right\|_{\infty} \right],
\]
any \(y \in [a,b] \).

We have proved that
\[
\left\| R_1 (y) \right\| \leq \frac{1}{\Gamma (\alpha+1) (b-a)} \left[(g(y) - g(a))^\alpha (y-a) \left\| D_y^{\alpha-1} f \right\|_{\infty} \\
+ (g(b) - g(y))^\alpha (b-y) \left\| D_y^\alpha f \right\|_{\infty} \right],
\]

We have established the theorem. \(\blacksquare \)

Theorem 18 All as in Theorem 10. Here we take \(\alpha \geq 1 \). Then
\[
\left\| f(y) - \frac{1}{b-a} \int_a^b f(x) \, dx + \sum_{k=1}^{n-1} \frac{(f \circ g^{-1})^{(k)} (g(y))}{k! (b-a)} \int_a^b (g(x) - g(y))^k \, dx \right\| \leq \frac{1}{\Gamma (\alpha) (b-a)} \left[\left\| (D_y^{\alpha-1} f) \circ g^{-1} \right\|_{1,[g(a),g(y)]} (y-a) (g(y) - g(a))^{\alpha-1} \\
+ \left\| (D_y^\alpha f) \circ g^{-1} \right\|_{1,[g(y),g(b)]} (b-y) (g(b) - g(y))^{\alpha-1} \right],
\]
\(\forall \ y \in [a,b] \).

Proof. We can rewrite
\[
R_1 (y) = -\frac{1}{\Gamma (\alpha) (b-a)} \left[\int_a^y \left(\int_{g(x)}^{g(y)} (z - g(x))^{\alpha-1} ((D_y^{\alpha-1} f) \circ g^{-1}) (z) \, dz \right) \, dx \\
+ \int_y^b \left(\int_{g(y)}^{g(x)} (g(x) - z)^{\alpha-1} ((D_y^\alpha f) \circ g^{-1}) (z) \, dz \right) \, dx \right].
\]
The proof of the theorem now is complete.

Clearly here

All as in Theorem 10. Let

Theorem 19

We assumed $\alpha \geq 1$, then

\[
\| R_1 (y) \| \leq \frac{1}{\Gamma (\alpha) (b - a)} \left[\int_a^y \left(\int_{g(x)}^{g(y)} (z - g(x))^{\alpha - 1} \left\| (D_{y-g}^\alpha f) \circ g^{-1} \right\| (z) \, dz \right) \, dx \right] + \int_y^b \left(\int_{g(y)}^{g(x)} (g(x) - z)^{\alpha - 1} \left\| (D_{y-g}^\alpha f) \circ g^{-1} \right\| (z) \, dz \right) \, dx \leq \frac{1}{\Gamma (\alpha) (b - a)} \left(\left(\int_{g(y)}^{g(x)} (y - a) (g(y) - g(a))^{\alpha - 1} \, dx \right) (g(b) - g(y))^{\alpha - 1} \right) + \left(\int_{g(y)}^{g(x)} (b - y) (g(b) - g(y))^{\alpha - 1} \, dx \right) \right] \]

(76)

(77)

(78)

Clearly here g^{-1} is continuous, thus $(D_{y-g}^\alpha f) \circ g^{-1} \in C \left([g(a) , g(y)] , X \right)$, and $(D_{g(y)}^\alpha f) \circ g^{-1} \in C \left([g(y) , g(b)] , X \right)$. Therefore

\[
\| (D_{y-g}^\alpha f) \circ g^{-1} \|_{1, [g(a) , g(y)]} , \quad \| (D_{g(y)}^\alpha f) \circ g^{-1} \|_{1, [g(y) , g(b)]} < \infty. \]

(79)

The proof of the theorem now is complete. \n
Theorem 19 All as in Theorem 10. Let $p,q > 1 : \frac{1}{p} + \frac{1}{q} = 1$, $\alpha > \frac{1}{q}$. Then

\[
\left\| f(y) - \frac{1}{b-a} \int_a^b f(x) \, dx + \sum_{k=1}^{\alpha-1} \frac{f \circ g^{-1}(k)(y)}{k! (b-a)} \int_a^b (g(x) - g(y))^k \, dx \right\| \leq \frac{1}{\Gamma (\alpha) (b - a) \left(p (\alpha - 1) + 1 \right)^{\frac{1}{p}}} \left[(g(y) - g(a))^{\alpha-1+\frac{1}{p}} (y-a) \| (D_{y-g}^\alpha f) \circ g^{-1} \|_{q, [g(a) , g(y)]} \right] + \left((g(b) - g(y))^{\alpha-1+\frac{1}{p}} (b-y) \| (D_{g(y)}^\alpha f) \circ g^{-1} \|_{q, [g(y) , g(b)]} \right],
\]

\forall y \in [a, b].
Proof. Here we use (75).

We get that

\[\| R_1 (y) \| \leq \frac{1}{\Gamma(\alpha)(b - a)} \left[\int_y^a \left(\int_{g(x)}^{g(y)} (z - g(x))^p(a-1) \, dz \right)^{\frac{1}{p}} \, dx + \int_{g(x)}^{g(y)} \left(\frac{\left(D_{y-g}^\alpha f \circ g^{-1} \right) (z)^q}{p(a-1) + 1} \right)^{\frac{1}{q}} \, dz \right] \]

(\text{here it is } \alpha - 1 + \frac{1}{p} > 0)

Hence it holds

\[\| R_1 (y) \| \leq \frac{1}{\Gamma(\alpha)(b - a) (p(a-1) + 1)^{\frac{1}{p}}} \]

\[\left[(g(y) - g(a))^{\alpha-1+\frac{1}{p}} (a - y) \left\| (D_{y-g}^\alpha f) \circ g^{-1} \right\|_{q, [g(a), g(y)]} + (g(b) - g(y))^{\alpha-1+\frac{1}{p}} (y - b) \right\| (D_{y-g}^\alpha f) \circ g^{-1} \left\|_{q, [g(y), g(b)]} \right\] \]

Clearly here

\[\left\| (D_{y-g}^\alpha f) \circ g^{-1} \right\|_{q, [g(a), g(y)]} , \quad \left\| (D_{y-g}^\alpha f) \circ g^{-1} \right\|_{q, [g(y), g(b)]} < \infty \]

We have proved the theorem. \(\blacksquare \)

Next we give some fractional Grüss type inequalities:

Theorem 20 Let \(f, h \) as in Theorem 10. Here \(R_1 (y) \) will be renamed as \(R_1 (f, y) \), so we can consider \(R_1 (h, y) \). Then

\[\Delta_n (f, h) := \frac{1}{b-a} \int_a^b f(x) h(x) \, dx - \left(\frac{\int_a^b f(x) \, dx}{(b-a)^2} \right) \left(\frac{\int_a^b h(x) \, dx}{(b-a)^2} \right) + \]

\[\frac{1}{2(b-a)^2} \sum_{k=1}^{n-1} \frac{1}{k!} \left[\int_a^b \left(\int_a^b (f \circ g^{-1})^{(k)} (y) \right) \, dx \right] \]
Proof. By Theorem 10 we have
\[
\frac{1}{2(b-a)} \left[\int_a^b (h \circ g) (f \circ g) \right] (g(x) - g(y))^k \, dx \, dy = 2 (b-a) [f(y) + f(y + h)] = \sum_{k=1}^{n-1} \frac{h(y)(f \circ g)^{(k)} (g(y))}{k!(b-a)} \int_a^b (g(x) - g(y))^k \, dx + h(y) R_1(f,y),
\]

2) it holds
\[
\|\Delta_n (f,h)\| \leq \frac{(g(b) - g(a))^{\alpha}}{2 \Gamma (\alpha)} \left| \sup_{y \in [a,b]} (\|D_{y-\theta}^\alpha f\|_{\infty} + \|D_{y+\theta}^\alpha f\|_{\infty}) \right|
\]
\[
+ \|f\|_{\infty} \left(\sup_{y \in [a,b]} (\|D_{y-\theta}^\alpha h\|_{\infty} + \|D_{y+\theta}^\alpha h\|_{\infty}) \right),
\]

3) if \(\alpha \geq 1 \), we get:
\[
\|\Delta_n (f,h)\| \leq \frac{1}{2 \Gamma (\alpha) (b-a)} (g(b) - g(a))^{\alpha - 1}.
\]

4) if \(p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1 \), \(\alpha > \frac{1}{q} \), we get:
\[
\|\Delta_n (f,h)\| \leq \frac{(g(b) - g(a))^{\alpha - 1 + \frac{1}{p}}}{2 \Gamma (\alpha) (p(\alpha - 1) + 1)^{\frac{1}{p}}},
\]

All right hand sides of (84)-(86) are finite.

Proof. By Theorem 10 we have
\[
h(y) f(y) = \frac{h(y)}{b-a} \int_a^b f(x) \, dx = \sum_{k=1}^{n-1} \frac{h(y)(f \circ g)^{(k)} (g(y))}{k!(b-a)} \int_a^b (g(x) - g(y))^k \, dx + h(y) R_1(f,y),
\]
and

\[f(y)h(y) = \frac{f(y)}{b-a} \int_a^b h(x) \, dx - \sum_{k=1}^{n-1} \frac{f(y)}{k!(b-a)} \int_a^b (g(x) - g(y))^k \, dx + f(y) R_1(h, y), \quad (88) \]

\[\forall \ y \in [a, b]. \]

Then integrating (87) we find

\[\int_a^b h(y) f(y) \, dy = \frac{\int_a^b h(y) \, dy}{b-a} \left(\int_a^b f(x) \, dx \right) - \]

\[\sum_{k=1}^{n-1} \frac{1}{k!(b-a)} \int_a^b \int_a^b h(y) \left(f \circ g^{-1} \right)^k (g(y)) (g(x) - g(y))^k \, dx \, dy \]

\[+ \int_a^b h(y) R_1(f, y) \, dy, \quad (89) \]

and integrating (88) we obtain

\[\int_a^b f(y)h(y) \, dy = \frac{\left(\int_a^b f(x) \, dx \right) \left(\int_a^b h(x) \, dx \right)}{b-a} - \]

\[\sum_{k=1}^{n-1} \frac{1}{k!(b-a)} \left(\int_a^b \int_a^b f(y) \left(f \circ g^{-1} \right)^k (g(y)) (g(x) - g(y))^k \, dx \, dy \right) \]

\[+ \int_a^b f(y) R_1(h, y) \, dy. \quad (90) \]

Adding the last two equalities (89) and (90), we get:

\[2 \int_a^b f(x)h(x) \, dx = \frac{2 \left(\int_a^b f(x) \, dx \right) \left(\int_a^b h(x) \, dx \right)}{b-a} - \]

\[\sum_{k=1}^{n-1} \frac{1}{k!(b-a)} \left(\int_a^b \int_a^b h(y) \left(f \circ g^{-1} \right)^k (g(y)) + f(y) \left(f \circ g^{-1} \right)^k (g(y)) \right) \]

\[(g(x) - g(y))^k \, dx \, dy \right) + \int_a^b (h(y) R_1(f, y) + f(y) R_1(h, y)) \, dy. \quad (91) \]

Divide the last (91) by 2(b – a) to obtain (83).

Then, we upper bound \(K_n(f, h) \) using Theorems 17, 18, 19, to obtain (84)-(86), respectively.

We use also that a norm is a continuous function. The theorem is proved.
Remark 21 (in support of the proof of Theorem 20) Let $\alpha > 0$, $\alpha \notin \mathbb{N}$, $[\alpha] = n$. We have

$$
(D_{y+g}^\alpha f) (x) = \frac{1}{\Gamma(n - \alpha)} \int_y^x (g(x) - g(t))^{n-\alpha-1} g\,'(t) (f \circ g^{-1})^{(n)} (g(t)) \, dt,
$$

(92)

$\forall x \in [y, b]$, and

$$
(D_{y-g}^\alpha f) (x) = \frac{(-1)^n}{\Gamma(n - \alpha)} \int_x^y (g(t) - g(x))^{n-\alpha-1} g\,'(t) (f \circ g^{-1})^{(n)} (g(t)) \, dt,
$$

(93)

$\forall x \in [a, y]$, both are Bochner type integrals.

By change of variables for Bochner integrals, see [6], Lemma B. 4.10 and [7], p. 158, we get:

$$
(D_{y+g}^\alpha f) (x) = \frac{1}{\Gamma(n - \alpha)} \int_{g(y)}^{g(x)} (g(x) - z)^{n-\alpha-1} (f \circ g^{-1})^{(n)} (z) \, dz =
$$

$$
\left(D_{g(y)}^\alpha \left(f \circ g^{-1} \right) \right) (g(x)), \quad \forall x \in [y, b],
$$

(94)

and

$$
(D_{y-g}^\alpha f) (x) = \frac{(-1)^n}{\Gamma(n - \alpha)} \int_{g(x)}^{g(y)} (z - g(x))^{n-\alpha-1} (f \circ g^{-1})^{(n)} (z) \, dz =
$$

$$
\left(D_{g(x)}^\alpha \left(f \circ g^{-1} \right) \right) (g(x)), \quad \forall x \in [a, y].
$$

(95)

Here $D_{g(y)}^\alpha +, D_{g(y)}^\alpha -$ are the left and right X-valued Caputo fractional differentiation operators.

Fix $w : w \geq x_0 \geq y_0; w, x_0, y_0 \in [a, b]$, then $g(w) \geq g(x_0) \geq g(y_0)$. Hence

$$
\| (D_{y_0+g}^\alpha f) (w) - (D_{x_0+g}^\alpha f) (w) \|
$$

$$
\| (D_{g(y_0)+}^{\alpha} (f \circ g^{-1})(g(w)) - (D_{g(x_0)+}^{\alpha} (f \circ g^{-1})(g(w)) \|
$$

$$
\frac{1}{\Gamma(n - \alpha)} \left\| \int_{g(y_0)}^{g(x_0)} (g(w) - z)^{n-\alpha-1} (f \circ g^{-1})^{(n)} (z) \, dz \right\| \leq
$$

(96)

$$
\frac{1}{\Gamma(n - \alpha)} \left\| \int_{g(y_0)}^{g(x_0)} (g(w) - z)^{n-\alpha-1} (f \circ g^{-1})^{(n)} (z) \, dz \right\| \leq
$$

$$
\| (f \circ g^{-1})^{(n)} \|_{\infty, [g(a), g(b)]} \int_{g(y_0)}^{g(x_0)} (g(w) - z)^{n-\alpha-1} \, dz
$$

$$
\frac{1}{\Gamma(n - \alpha + 1)} \left((g(y_0) - z)^{n-\alpha} - (g(x_0) - z)^{n-\alpha} \right) \to 0,
$$

18
as \(y_0 \to x_0 \), then \(g(y_0) \to g(x_0) \), proving continuity of \(\left(D^\alpha_{g(y)+} (f \circ g^{-1}) \right)(g(x)) \) with respect to \(g(y) \), and of course continuity of \((D^\alpha_{y+1;g} f)(x) \) in \(y \in [a,b] \).

Similarly, it is proved that \((D^\alpha_{y-1;g} f)(x) \) is continuous in \(y \in [a,b] \), the proof is omitted.

Remark 22 Some examples for \(g \) follow:

\[
\begin{align*}
g(x) &= e^x, \quad x \in [a,b] \subset \mathbb{R}, \\
g(x) &= \sin x, \\
g(x) &= \tan x,
\end{align*}
\]

where \(x \in \left[-\frac{\pi}{2} + \varepsilon, \frac{\pi}{2} - \varepsilon \right] \), where \(\varepsilon > 0 \) small.

Indeed, the above examples of \(g \) are strictly increasing and continuous functions.

One can apply all of our results here for the above specific choices of \(g \). We choose to omit this job.

References

On solutions of semilinear second-order impulsive functional differential equations

Ah-ran Park\(^1\) and Jin-Mun Jeong\(^2,\ast\)

\(^{1,2}\)Department of Applied Mathematics, Pukyong National University
Busan 48513, Republic of Korea

Abstract

This paper deals with the regularity for solutions of second-order semilinear impulsive differential equations contained the nonlinear convolution with cosine families, and obtain a variation of constant formula for solutions of the given equations.

Keywords: semilinear second-order equations, regularity for solutions, cosine family, sine family

AMS Classification Primary 35F25; Secondary 35K55

1 Introduction

In this paper we are concerned with the regularity of the following second-order semilinear impulsive differential system

\[
\begin{cases}
 w''(t) = Aw(t) + \int_0^t k(t-s)g(s, w(s))ds + f(t), & 0 < t \leq T, \\
 w(0) = x_0, & w'(0) = y_0, \\
 \Delta w(t_k) = I_1^k(w(t_k)), & \Delta w'(t_k) = I_2^k(w'(t_k^+)), & k = 1, 2, \ldots, m
\end{cases}
\] (1.1)

in a Banach space \(X\). Here \(k\) belongs to \(L^2(0, T)\) and \(g: [0, T] \times D(A) \rightarrow X\) is a nonlinear mapping such that \(w \mapsto g(t, w)\) satisfies Lipschitz continuous. In (1.1),

Email: \(^1\)alanida@naver.com, \(^2\ast\)jmjeong@pknu.ac.kr (Corresponding author)

This work was supported by a Research Grant of Pukyong National University(2021Year).
the principal operator A is the infinitesimal generator of a strongly continuous cosine family $C(t)$, $t \in \mathbb{R}$. The impulsive condition

$$
\Delta w(t_k) = I_k^1(w(t_k)), \quad \Delta w'(t_k) = I_k^2(w'(t_k^+)), \quad k = 1, 2, ..., m
$$

is combination of traditional evolution systems whose duration is negligible in comparison with duration of the process, such as biology, medicine, bioengineering etc.

In recent years the theory of impulsive differential systems has been emerging as an important area of investigation in applied sciences. The reason is that it is richer than the corresponding theory of classical differential equations and it is more adequate to represent some processes arising in various disciplines. The theory of impulsive systems provides a general framework for mathematical modeling of many real world phenomena (see [1, 2] and references therein). The theory of impulsive differential equations has seen considerable development. Impulsive differential systems have been studied in [3, 4, 5, 6], second-order impulsive integrodifferential systems in [7, 8], and Stochastic differential systems with impulsive conditions in [9, 10, 11].

In this paper, we allow implicit arguments about L^2-regularity results for semilinear hyperbolic equations with impulsive condition. These consequences are obtained by showing that results of the linear cases [12, 13] and semilinear case [14] on the L^2-regularity remain valid under the above formulation of (1.1). Earlier works prove existence of solution by using Azera Ascoli theorem. But we propose a different approach from that of earlier works to study mild, strong and classical solutions of Cauchy problems by using the properties of the linear equation in the hereditary part.

This paper is organized as follows. In Section 2, we give some definition, notation and the regularity for the corresponding linear equations. In Section 3, by using properties of the strict solutions of linear equations in dealt in Section 2, we will obtain the L^2-regularity of solutions of (1.1), and a variation of constant formula of solutions of (1.1). Finally, we also give an example to illustrate the applications of the abstract results.

Preliminaries

In this section, we give some definitions, notations, hypotheses and Lemmas. Let X be a Banach space with norm denoted by $|| \cdot ||$.

Definition 2.1. [15] A one parameter family $C(t)$, $t \in \mathbb{R}$, of bounded linear operators in X is called a strongly continuous cosine family if
\(c(1) \quad C(s + t) + C(s - t) = 2C(s)C(t), \text{ for all } s, t \in \mathbb{R}, \)

\(c(2) \quad C(0) = I, \)

\(c(3) \quad C(t)x \text{ is continuous in } t \text{ on } \mathbb{R} \text{ for each fixed } x \in X. \)

If \(C(t), \, t \in \mathbb{R} \) is a strongly continuous cosine family in \(X \), then \(S(t), \, t \in \mathbb{R} \) is the one parameter family of operators in \(X \) defined by

\[
S(t)x = \int_0^t C(s)xds, \quad x \in X, \quad t \in \mathbb{R}. \tag{2.1}
\]

The infinitesimal generator of a strongly continuous cosine family \(C(t), \, t \in \mathbb{R} \) is the operator \(A : X \to X \) defined by

\[Ax = \frac{d^2}{dt^2}C(0)x. \]

We endow with the domain \(D(A) = \{ x \in X : C(t)x \text{ is a twice continuously differentiable function of } t \} \) with norm

\[
||x||_{D(A)} = ||x|| + \sup\{||\frac{d}{dt}C(t)x|| : t \in \mathbb{R} \} + ||Ax||.
\]

We shall also make use of the set

\[
E = \{ x \in X : C(t)x \text{ is a once continuously differentiable function of } t \}
\]

with norm

\[
||x||_E = ||x|| + \sup\{||\frac{d}{dt}C(t)x|| : t \in \mathbb{R} \}.
\]

It is not difficult to show that \(D(A) \) and \(E \) with given norms are Banach spaces.

The following Lemma is from Proposition 2.1 and Proposition 2.2 of [1].

Lemma 2.1. Let \(C(t)(t \in \mathbb{R}) \) be a strongly continuous cosine family in \(X \). The following are true :

\(c(4) \quad C(t) = C(-t) \text{ for all } t \in \mathbb{R}, \)

\(c(5) \quad C(s), S(s), C(t) \text{ and } S(t) \text{ commute for all } s, t \in \mathbb{R}, \)

\(c(6) \quad S(t)x \text{ is continuous in } t \text{ on } \mathbb{R} \text{ for each fixed } x \in X, \)
4

c(7) there exist constants $K \geq 1$ and $\omega \geq 0$ such that
\[
||C(t)|| \leq Ke^{\omega|t|} \text{ for all } t \in \mathbb{R},
\]
\[
||S(t_1) - S(t_2)|| \leq K \left| \int_{t_2}^{t_1} e^{\omega|s|} ds \right| \text{ for all } t_1, t_2 \in \mathbb{R},
\]

c(8) if $x \in E$, then $S(t)x \in D(A)$ and
\[
\frac{d}{dt}C(t)x = AS(t)x = S(t)Ax = \frac{d^2}{dt^2}S(t)x,
\]

c(9) if $x \in D(A)$, then $C(t)x \in D(A)$ and
\[
\frac{d^2}{dt^2}C(t)x = AC(t)x = C(t)Ax,
\]

c(10) if $x \in X$ and $r, s \in \mathbb{R}$, then
\[
\int_r^s S(\tau)x d\tau \in D(A) \quad \text{and} \quad A\int_r^s S(\tau)x d\tau = C(s)x - C(r)x,
\]

c(11) $C(s + t) + C(s - t) = 2C(s)C(t)$ for all $s, t \in \mathbb{R},$

c(12) $S(s + t) = S(s)C(t) + S(t)C(s)$ for all $s, t \in \mathbb{R},$

c(13) $C(s + t) = C(t)C(s) - S(t)S(s)$ for all $s, t \in \mathbb{R},$

c(14) $C(s + t) - C(t - s) = 2AS(t)S(s)$ for all $s, t \in \mathbb{R}.$

The following Lemma is from Proposition 2.4 of [15].

Lemma 2.2. Let $C(t)(t \in \mathbb{R})$ be a strongly continuous cosine family in X with infinitesimal generator A. If $f : \mathbb{R} \to X$ is continuously differentiable, $x_0 \in D(A)$, $y_0 \in E$, and
\[
w(t) = C(t)x_0 + S(t)y_0 + \int_0^t S(t-s)f(s)ds, \quad t \in \mathbb{R},
\]
then $w(t) \in D(A)$ for $t \in \mathbb{R}$, w is twice continuously differentiable, and w satisfies
\[
w''(t) = Aw(t) + f(t), \quad t \in R, \quad w(0) = x_0, \quad w'(0) = y_0. \tag{2.2}
\]
Conversely, if $f : \mathbb{R} \to X$ is continuous, $w(t) : \mathbb{R} \to X$ is twice continuously differentiable, $w(t) \in D(A)$ for $t \in \mathbb{R}$, and w satisfies (2.2), then
\[
w(t) = C(t)x_0 + S(t)y_0 + \int_0^t S(t-s)f(s)ds, \quad t \in \mathbb{R}.
\]
Proposition 2.1. Let $f : \mathbb{R} \to X$ be continuously differentiable, $x_0 \in D(A)$, $y_0 \in E$. Then
\[
w(t) = C(t)x_0 + S(t)y_0 + \int_0^t S(t-s)f(s)ds, \quad t \in \mathbb{R}
\]
is a solution of (2.2) belonging to $L^2(0,T;D(A)) \cap W^{1,2}(0,T;E)$. Moreover, we have that there exists a positive constant C_1 such that for any $T > 0$,
\[
||w||_{L^2(0,T;D(A))} \leq C_1(1 + ||x_0||_{D(A)} + ||y_0||_E + ||f||_{W^{1,2}(0,T;X)}).
\]

3 Nonlinear equations

This section is to investigate the regularity of solutions of a second-order nonlinear impulsive differential system
\[
\begin{aligned}
& w''(t) = Aw(t) + \int_0^t k(t-s)g(s,w(s))ds + f(t), \quad 0 < t \leq T, \\
& w(0) = x_0, \quad w'(0) = y_0, \\
& \Delta w(t_k) = I_k^1(w(t_k)), \quad \Delta w'(t_k) = I_k^2(w'(t_k^+)), \quad k = 1,2,...,m
\end{aligned}
\]
in a Banach space X.

Assumption (G) Let $g : [0,T] \times D(A) \to X$ be a nonlinear mapping such that $t \mapsto g(t,w)$ is measurable and
\[(g1) \quad ||g(t,w_1) - g(t,w_2)||_{D(A)} \leq L||w_1 - w_2||, \]
for a positive constant L.

Assumption (I) Let $I_k^1 : D(A) \to X$, $I_k^2 : E \to X$ be continuous and there exist positive constants $L(I_k^1)$, $L(I_k^2)$ such that
\[(i1) \quad ||I_k^1(w_1) - I_k^1(w_2)|| \leq L(I_k^1)||w_1 - w_2||_{D(A)}, \quad \text{for each } w_1, w_2 \in D(A) \\
||I_k^2(w)|| \leq L(I_k^2), \quad \text{for } w \in D(A)
\]
\[(i2) \quad ||I_k^2(w'_1) - I_k^2(w'_2)|| \leq L(I_k^2)||w'_1 - w'_2||_E, \quad \text{for each } w'_1, w'_2 \in E \\
||I_k^2(w')|| \leq L(I_k^2)||, \quad \text{for } w' \in E.
\]

For $w \in L^2(0,T ; D(A))$, we set
\[
F(t,w) = \int_0^t k(t-s)g(s,w(s))ds
\]
where \(k \) belongs to \(L^2(0, T) \). Then we will seek a mild solution of (3.1), that is, a solution of the integral equation

\[
\begin{align*}
 w(t) &= C(t)x_0 + S(t)y_0 + \int_0^t S(t-s)\{F(s, w) + f(s)\}ds \\
 &\quad + \sum_{0<t_k<t} C(t-t_k)I_k(w(t_k)) + \sum_{0<t_k<t} S(t-t_k)I_k^2(w'(t_k)), \quad t \in \mathbb{R}.
\end{align*}
\]

Remark 3.1. If \(g : [0, T] \times X \to X \) is a nonlinear mapping satisfying

\[
 ||g(t, w_1) - g(t, w_2)|| \leq L||w_1 - w_2||
\]

for a positive constant \(L \), then our results can be obtained immediately.

Lemma 3.1. Let \(w \in L^2(0, T; D(A)) \), \(T > 0 \). Then \(F(\cdot, w) \in L^2(0, T; X) \) and

\[
 ||F(\cdot, w)||_{L^2(0, T; X)} \leq L||k||_{L^2(0, T)} \sqrt{T}||w||_{L^2(0, T; D(A))}.
\]

Moreover if \(w_1, w_2 \in L^2(0, T; D(A)) \), then

\[
 ||F(\cdot, w_1) - F(\cdot, w_2)||_{L^2(0, T; X)} \leq L||k||_{L^2(0, T)} \sqrt{T}||w_1 - w_2||_{L^2(0, T; D(A))}.
\]

Lemma 3.2. If \(k \in W^{1,2}(0, T) \), \(T > 0 \), then

\[
 A \int_0^t S(t-s)F(s, w)ds = -F(t, w) \\
 + \int_0^t (C(t-s) - I) \int_0^s \frac{d}{d\tau} k(s-\tau)g(\tau, w(\tau))d\tau \ ds \\
 + \int_0^t (C(t-s) - I)k(0)g(s, w(s))ds.
\]

Theorem 3.1. Suppose that the Assumptions (G) and Assumption (I) are satisfied. If \(f : \mathbb{R} \to X \) is continuously differentiable, \(x_0 \in D(A) \), \(y_0 \in E \), and \(k \in W^{1,2}(0, T) \), \(T > 0 \), then there exists a time \(T \geq T_0 > 0 \) such that the functional differential equation (3.1) admits a unique solution \(w \) in \(L^2(0, T_0; D(A)) \cap W^{1,2}(0, T_0; E) \).
Proof. Let us fix $T_0 > 0$ so that

$$C_2 \equiv \omega^{-1} KLT_0^{3/2} (e^{\omega T_0} - 1) ||k||_{L^2(0,T_0)}$$

\[+ \{ \omega^{-1} K(e^{\omega T_0} - 1) + 1 \} T_0^{3/2}/\sqrt{3L} \||Ke^{\omega T_0} + 1||_{W^{1,2}(0,T_0)} \]

\[+ \{ w^{-1} K(e^{w T_0} - 1) + 1 \} T_0/\sqrt{2L} \||Ke^{w T_0} + 1||_{W^{1,2}(0,T_0)} \]

\[+ \{ 2w^{-1} K(e^{w T_0} - 1) + 1 \} \sum_{0 < t_k < t} L(I_k^1) K e^{w T_0} \]

\[+ \{ 2w^{-1} K(e^{w T_0} - 1) + 1 \} \sum_{0 < t_k < t} L(I_k^2) < 1 \]

where K, L, $L(I_k^1)$ and $L(I_k^2)$ are constants in $c(7)$, (g1) and Assumption (I) respectively. Invoking Proposition 2.1, for any $v \in L^2(0,T_0; D(A))$ we obtain the equation

$$w''(t) = Aw(t) + F(t,v) + f(t), \quad 0 < t \leq T_0,$$

$$w(0) = x_0, \quad w'(0) = y_0$$

\[\Delta w(t_k) = I_k^1(v(t_k)), \quad \Delta w'(t_k) = I_k^2(v'(t_k^+)), \quad k = 1, 2, ..., m \]

has a unique solution $w \in L^2(0,T_0; D(A)) \cap W^{1,2}(0,T_0; E)$. Let w_1, w_2 be the solutions of (3.5) with v replaced by v_1, $v_2 \in L^2(0,T_0; D(A))$, respectively. Put

$$J(w)(t) = C(t)x_0 + S(t)y_0 + \int_0^t S(t-s)\{ F(s,v) + f(s) \} ds$$

\[+ \sum_{0 < t_k < t} C(t-t_k)I_k^1(v(t_k)) + \sum_{0 < t_k < t} S(t-t_k)I_k^2(v'(t_k^+)). \]

Then

$$J(w_1)(t) - J(w_2)(t) = \int_0^t S(t-s)\{ F(s,v_1) - F(s,v_2) \} ds$$

\[+ \sum_{0 < t_k < t} C(t-t_k)\{ I_k^1(v_1(t_k)) - I_k^1(v_2(t_k)) \} \]

\[+ \sum_{0 < t_k < t} S(t-t_k)\{ I_k^2(v_1'(t_k^+)) - I_k^2(v_2'(t_k^+)) \}, \]

\[= I_1 + I_2 + I_3. \]

So, from Lemmas 3.1, 3.2, it follows that for $0 \leq t \leq T_0$,

$$|| \int_0^t S(t-s)\{ F(s,v_1) - F(s,v_2) \} ds ||$$

\[\leq \omega^{-1} KLT_0^{3/2}(e^{\omega T_0} - 1) ||k||_{L^2(0,T_0)} ||v_1 - v_2||_{L^2(0,T_0; D(A))}. \]
By Assumption (i1), we obtain
\[
\left\| \frac{d}{dt} C(t) \int_0^t S(t-s)\{F(s, v_1) - F(s, v_2)\} ds \right\|
\]
\[
\leq \left\| AS(t) \int_0^t S(t-s)\{F(s, v_1) - F(s, v_2)\} ds \right\|
\]
\[
= \left\| S(t)A \int_0^t S(t-s)\{F(s, v_1) - F(s, v_2)\} ds \right\|,
\]
and
\[
\left\| A \int_0^t S(t-s)\{F(s, v_1) - F(s, v_2)\} ds \right\|
\]
\[
\leq \left\| \int_0^t (C(t-s) - I) \int_0^s \frac{d}{ds} k(s-\tau) (g(\tau, v_1(\tau)) - g(\tau, v_2(\tau))) d\tau ds \right\|
\]
\[
+ \left\| \int_0^t (C(t-s) - I) k(0) (g(0, v_1(s)) - g(0, v_2(s))) ds \right\|
\]
\[
\leq tL \| K e^{\omega t} + 1 \| \| k \| W^{1,2}(0,T_0) \| v_1 - v_2 \| L^2(0,T_0; D(A))
\]
\[
+ \sqrt{t} L \| K e^{\omega t} + 1 \| \| k(0) \| \| v_1 - v_2 \| L^2(0,T_0; D(A)).
\]

Therefore, we have
\[
\| I_1 \| L^2(0,T_0; D(A)) \leq \omega^{-1} KLT_0^{3/2}(e^{\omega T_0} - 1) \| k \| L^2(0,T_0) \| v_1 - v_2 \| L^2(0,T_0; D(A))
\]
\[+ \{ \omega^{-1} K(e^{\omega T_0} - 1) + 1 \} T_0^{3/2} \sqrt{3} L \| K e^{\omega T_0} + 1 \| \| k \| W^{1,2}(0,T_0) \| v_1 - v_2 \| L^2(0,T_0; D(A))
\]
\[+ \{ \omega^{-1} K(e^{\omega T_0} - 1) + 1 \} T_0/\sqrt{2} L \| K e^{\omega T_0} + 1 \| \| k(0) \| \| v_1 - v_2 \| L^2(0,T_0; D(A)).
\]

By Assumption (i1), we obtain
\[
\left\| \sum_{0 < t_k < t} C(t - t_k)\{I_k^1(v_1(t_k^{-})) - I_k^1(v_2(t_k^-))\} \right\| \leq \sum_{0 < t_k < T_0} K e^{\omega T_0} L(I_k^1) \| v_1 - v_2 \| D(A),
\]
\[
\left\| \frac{d}{dt} C(t) \sum_{0 < t_k < t} C(t - t_k)\{I_k^1(v_1) - I_k^1(v_2)\} \right\|
\]
\[
\leq \left\| AS(t) \sum_{0 < t_k < t} C(t - t_k)\{I_k^1(v_1) - I_k^1(v_2)\} \right\|
\]
\[
= \left\| S(t)A \sum_{0 < t_k < t} C(t - t_k)\{I_k^1(v_1) - I_k^1(v_2)\} \right\|,
\]
and

\[\|A \sum_{0 < t_k < t} C(t - t_k) \{ I_k^1(v_1(t_k^-)) - I_k^1(v_2(t_k^-)) \} \| = \| \sum_{0 < t_k < t} C(t - t_k) A \{ I_k^1(v_1) - I_k^1(v_2) \} \| \]
\[\leq \sum_{0 < t_k < t} K e^{\|t\|} \|I_k^1(v_1) - I_k^1(v_2)\|_{D(A)} \]
\[\leq \sum_{0 < t_k < t} K e^{\|t\|} L(I_k^1) \|v_1 - v_2\|_{D(A)}. \]

Therefore, we have

\[\|I_2\|_{L^2(0,T_0;D(A))} \leq \{ w^{-1} K (e^{wT_0} - 1) + 2 \} \sum_{0 < t_k < t} L(I_k^1) K e^{wT_0} \|v_1 - v_2\|_{L^2(0,T_0;D(A))}, \]

(3.7)

We also obtain from Assumption (i2),

\[\| \sum_{0 < t_k < t} S(t - t_k) \{ I_k^2(v_1'(t_k^+)) - I_k^2(v_2'(t_k^+)) \} \| \leq \sum_{0 < t_k < t} K w^{-1}(e^{wT_0} - 1) L(I_k^2) \|v_1 - v_2\|_{D(A)}, \]

\[\| \frac{d}{dt} C(t) \sum_{0 < t_k < t} S(t - t_k) \{ I_k^2(v_1') - I_k^2(v_2') \} \| \]
\[\leq \| A S(t) \sum_{0 < t_k < t} S(t - t_k) \{ I_k^2(v_1') - I_k^2(v_2') \} \| \]
\[= \| S(t) A \sum_{0 < t_k < t} S(t - t_k) \{ I_k^2(v_1') - I_k^2(v_2') \} \|, \]

and

\[\|A \sum_{0 < t_k < t} S(t - t_k) \{ I_k^2(v_1(t_k^+)) - I_k^2(v_2(t_k^+)) \} \| = \| \sum_{0 < t_k < t} \frac{d}{dt} C(t) \{ I_k^2(v_1) - I_k^2(v_2) \} \| \]
\[\leq \sum_{0 < t_k < t} \| I_k^2(v_1) - I_k^2(v_2) \|_E \]
\[\leq \sum_{0 < t_k < t} L(I_k^2) \|v_1 - v_2\|_E. \]
Therefore, we have

$$||I_3||_{L^2(0,T_0;D(A))} \leq \{ w^{-1}K(e^{wT_0} - 1) + 2 \} \sum_{0<t_k<t} L(I_k^1)Ke^{wT_0}||v_1 - v_2||_{L^2(0,T_0;D(A))}.$$ (3.8)

Thus, from (3.6), (3.7), and (3.8), we conclude that

$$||J(w_1) - J(w_2)||_{L^2(0,T_0;D(A))} \leq \omega^{-1}KLT_0^{3/2}(e^{\omega T_0} - 1)||k||_{L^2(0,T_0)}||v_1 - v_2||_{L^2(0,T_0;D(A))}$$

$$+ \{ w^{-1}K(e^{wT_0} - 1) + 1 \} L||k||_{L^2(0,T_0)} \sqrt{T_0}||v_1 - v_2||_{L^2(0,T_0;D(A))}$$

$$+ \{ w^{-1}K(e^{wT_0} - 1) + 1 \} T_0^{3/2}/\sqrt{3}L||Ke^{wT_0} + 1|| ||k||_{W^{1,2}(0,T_0)}||v_1 - v_2||_{L^2(0,T_0;D(A))}$$

$$+ \{ w^{-1}K(e^{wT_0} - 1) + 1 \} T_0/\sqrt{2}L||Ke^{wT_0} + 1|| ||k(0)|| \||v_1 - v_2||_{L^2(0,T_0;D(A))}$$

$$+ \{ w^{-1}K(e^{wT_0} - 1) + 2 \} \sum_{0<t_k<t} L(I_k^1)Ke^{wT_0}||v_1 - v_2||_{L^2(0,T_0;D(A))}$$

$$+ \{ 2w^{-1}K(e^{wT_0} - 1) + 1 \} \sum_{0<t_k<t} L(I_k^2)||v_1 - v_2||_{W^{1,2}(0,T_0;D(A))}.$$ (3.9)

Moreover, it is easily seen that

$$||J(w_1) - J(w_2)||_{L^2(0,T_0;D(A)) \cap W^{1,2}(0,T_0;E)} \leq C_2||v_1 - v_2||_{L^2(0,T_0;D(A)) \cap W^{1,2}(0,T_0;E)}.$$

So by virtue of the condition (3.4) the contraction mapping principle gives that the solution of (3.1) exists uniquely in $[0, T_0]$. □

Theorem 3.2. Suppose that the Assumptions (G) and (I) are satisfied. If $f : \mathbb{R} \to X$ is continuously differentiable, $x_0 \in D(A), y_0 \in E,$ and $k \in W^{1,2}(0,T), T > 0,$ then the solution w of (3.1) exists and is unique in $L^2(0,T;D(A)) \cap W^{1,2}(0,T;E)$, and there exists a constant C_3 depending on T such that

$$||w||_{L^2(0,T_0;D(A)) \cap W^{1,2}(0,T_0;E)} \leq C_3(1 + ||x_0||_{D(A)} + ||y_0||_E + ||f||_{W^{1,2}(0,T;X)}).$$ (3.10)

Proof. Let $w(\cdot)$ be the solution of (3.1) in the interval $[0, T_0]$ where T_0 is a constant in (3.4) and $v(\cdot)$ be the solution of the following equation

$$v''(t) = Av(t) + f(t), \quad 0 < t,$$

$$v(0) = x_0, \quad v'(0) = y_0.$$
Then
\[
(w-v)(t) = \int_0^t S(t-s)F(s,w)ds + \sum_{0 < t_k < t} C(t-t_k)I_k^1(w(t_k)) + \sum_{0 < t_k < t} S(t-t_k)I_k^2(w'(t_k^+)),
\]
and in view of (3.9)
\[
\|w - v\|_{L^2(0,T_0;D(A)) \cap H^{1,2}(0,T_0;E)} \leq C_2 \|w\|_{L^2(0,T_0;D(A)) \cap H^{1,2}(0,T_0;E)},
\]
that is, combining (3.11) with Proposition 2.1 we have
\[
\|w\|_{L^2(0,T_0;D(A)) \cap H^{1,2}(0,T_0;E)} \leq \frac{1}{1 - C_2} \|v\|_{L^2(0,T_0;D(A)) \cap H^{1,2}(0,T_0;E)} \leq \frac{C_1}{1 - C_2} (1 + ||x_0||_{D(A)} + ||y_0||_E + ||f||_{H^{1,2}(0,T_0;X)}).
\]
Now from
\[
A \int_0^{T_0} S(T_0 - s) \{F(s,w) + f(s)\}ds = C(T_0)f(0) - f(T_0) + \int_0^{T_0} (C(T_0 - s) - I) f'(s)ds
\]
\[
- F(T_0, w) + \int_0^{T_0} (C(T_0 - s) - I) \int_0^s \frac{d}{ds} k(s - \tau) g(\tau, w(\tau)) d\tau ds
\]
\[
+ \int_0^{T_0} (C(T_0 - s) - I) k(0) g(s, w(s)) ds,
\]
\[
\|A \sum_{0 < t_k < t} C(t-t_k)I_k^1(w_k)\| \leq K w^{-1} (e^{wT_0-1}) Ke^{wT_0} \sum_{0 < t_k < t} L(I_k^1) ||w(t_k)||_{D(A)},
\]
\[
\| \sum_{0 < t_k < t} S(t-t_k)I_k^2(v_k')\| \leq \sum_{0 < t_k < t} L(I_k^2) ||w'(t_k^+)||_E,
\]
and since
\[
\frac{d}{dt} C(t) \int_0^t S(t-s)\{F(s,w) + f(s)\}ds = S(t)A \int_0^t S(t-s)\{F(s,w) + f(s)\}ds,
\]
\[
\frac{d}{dt} C(t) \sum_{0 < t_k < t} C(t-t_k)I_k^1(w) \leq S(t)A \sum_{0 < t_k < t} C(t-t_k)I_k^1(w).
\]
\[
\frac{d}{dt} C(t) \sum_{0 < t_k < t} S(t - t_k) P_k^2(w') \leq S(t) A \sum_{0 < t_k < t} S(t - t_k) P_k^2(w').
\]

We have

\[
\|w(T_0)\|_{D(A)} = \|C(T_0)x_0 + S(T_0)y_0 + \int_0^{T_0} S(T_0 - s) \{F(s, w) + f(s)\} ds + \sum_{0 < t_k < t} C(t - t_k) P_k^1(w) + \sum_{0 < t_k < t} S(t - t_k) P_k^2(w')\|_{D(A)}
\]

\[
\leq (e^{-1} K(e^{\omega T_0} - 1) + 1) \{K e^{\omega T_0} \|x_0\|_{D(A)} + \|y_0\| E + \omega T_0 \|k\|_{L^2(0, T_0)} \|w\|_{L^2(0, T_0; D(A))} + \|K e^{\omega T_0} f(0)\| + \|f(0)\| + \|K (e^{\omega T_0} + 1) \sqrt{T_0} \|f\|_{W^{1,2}(0, T; X)} + t L \|K e^{\omega t} + 1\| k \|L^2(0, T_0; D(A)) \|W^1 2(0, T; X)} + \|K e^{\omega T_0} f(0)\|^2 + \|f(0)\|^2 + \|K (e^{\omega T_0} + 1) \sqrt{T_0} \|f\|^2_{W^{1,2}(0, T; X)} \}
\]

\[
\leq \{2 + K w^{-1} (e^{\omega T_0} - 1)\} \sum_{0 < t_k < t} K e^{\omega T_0} L(I_k^1) + \{1 + 2 K w^{-1} (e^{\omega T_0} - 1)\} \sum_{0 < t_k < t} L(I_k^2).
\]

Hence, from (3.12), there exists a positive constant \(C > 0\) such that

\[
\|w(T_0)\|_{D(A)} \leq C(1 + \|x_0\|_{D(A)} + \|y_0\| E + \|f\|_{W^{1,2}(0, T_0; X)}).
\]

Since the condition (3.4) is independent of initial values, the solution of (3.1) can be extended to the interval \([0, nT_0]\) for every natural number \(n\). An analogous estimate to (3.12) holds for the solution in \([0, nT_0]\), and hence for the initial value \((w(nT_0), w'(nT_0)) \in D(A) \times E\) in the interval \([nT_0, (n + 1)T_0]\). \(\square\)

Example. We consider the following partial differential equation

\[
\begin{align*}
&w''(t, x) = Aw(t, x) + F(t, w) + f(t), \quad 0 < t, \quad 0 < x < \pi, \\
&w(t, 0) = w(t, \pi) = 0, \quad t \in \mathbb{R}, \\
&w(0, x) = x_0(x), \quad w'(0, x) = y_0(x), \quad 0 < x < \pi, \\
&\Delta w(t_k, x) = I_k^1(w(t_k)) = (\gamma_k\|w''(t_k, x)\| + t_k), \quad 1 \leq k \leq m, \\
&\Delta w'(t_k, x) = I_k^2(w'(t_k)) = (\delta_k\|w'(t_k, x)\|),
\end{align*}
\]

where constants \(\gamma_k\) and \(\delta_k(k = 1, \ldots, m)\) are small.
Let $X = L^2([0, \pi]; \mathbb{R})$, and let $e_n(x) = \sqrt{\frac{2}{\pi}} \sin nx$. Then $\{e_n : n = 1, \ldots\}$ is an orthonormal base for X. Let $A : X \to X$ be defined by

$$Aw(x) = w''(x),$$

where $D(A) = \{w \in X : w, w' \text{ are absolutely continuous, } w'' \in X, w(0) = w(\pi) = 0\}$. Then

$$Aw = \sum_{n=1}^{\infty} -n^2(w, e_n)e_n, \quad w \in D(A),$$

and A is the infinitesimal generator of a strongly continuous cosine family $C(t)$, $t \in \mathbb{R}$, in X given by

$$C(t)w = \sum_{n=1}^{\infty} \cos nt(w, e_n)e_n, \quad w \in X.$$

The associated sine family is given by

$$S(t)w = \sum_{n=1}^{\infty} \frac{\sin nt}{n}(w, e_n)e_n, \quad w \in X.$$

Let $g_1(t, x, w, p)$, $p \in \mathbb{R}^m$, be assumed that there is a continuous $\rho(t, \delta) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ and a real constant $1 \leq \delta$ such that

(f1) $g_1(t, x, 0, 0) = 0$,

(f2) $|g_1(t, x, w, p) - g_1(t, x, w, q)| \leq \rho(t, |w|)|p - q|$,\n
(f3) $|g_1(t, x, w_1, p) - g_1(t, x, w_2, p)| \leq \rho(t, |w_1| + |w_2|)|w_1 - w_2|$.

Let

$$g(t, w)x = g_1(t, x, w, Dw, D^2w).$$

Then noting that

$$\|g(t, w_1) - g(t, w_2)\|_{0, 2}^2 \leq 2 \int_{\Omega} (g_1(t, x, w_1, p) - g_1(t, x, w_2, q))^2 dx$$

$$+ 2 \int_{\Omega} (g_1(t, x, w_1, q) - g_1(t, x, w_2, q))^2 dx$$

where $p = (Dw_1, D^2w_1)$ and $q = (Dw_2, D^2w_2)$, it follows from (f1), (f2) and (f3) that

$$\|g(t, w_1) - g(t, w_2)\|_{0, 2}^2 \leq L(\|w_1\|_{D(A)}, \|w_2\|_{D(A)})\|w_1 - w_2\|_{D(A)}$$
where $L(||w_1||_{D(A)}, ||w_2||_{D(A)})$ is a constant depending on $||w_1||_{D(A)}$ and $||w_2||_{D(A)}$. We set

$$F(t, w) = \int_0^t k(t - s)g(s, w(s))ds$$

where k belongs to $L^2(0, T)$. Then, from the results in section 3, the solution w of (E) exists and is unique in $L^2(0, T; D(A)) \cap W^{1,2}(0, T; E)$, and there exists a constant C_3 depending on T such that

$$||w||_{L^2(0,T;D(A))} \leq C_3(1 + ||x_0||_{D(A)} + ||y_0||_E + ||f||_{W^{1,2}(0,T;X)}).$$

References

Caputo ψ-fractional Ostrowski and Grüss inequalities for several functions

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Very general univariate mixed Caputo ψ-fractional Ostrowski and Grüss type inequalities for several functions are presented. Estimates are with respect to $\|\cdot\|_p$, $1 \leq p \leq \infty$. We give also applications.

2010 AMS Mathematics Subject Classification : 26A33, 26D10, 26D15.
Keywords and Phrases: Ostrowski and Grüss inequalities, right and left Caputo ψ-fractional derivatives.

1 Introduction

In 1938, A. Ostrowski [5] proved the following important inequality.

Theorem 1 Let $f : [a, b] \to \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) whose derivative $f' : (a, b) \to \mathbb{R}$ is bounded on (a, b), i.e., $\|f'\|_{\infty} := \sup_{t \in (a, b)} |f'(t)| < +\infty$. Then

$$\left| \frac{1}{b-a} \int_a^b f(t) \, dt - f(x) \right| \leq \frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^2 \cdot (b - a) \|f'\|_{\infty}, \quad (1)$$

for any $x \in [a, b]$. The constant $\frac{1}{4}$ is the best possible.

Since then there has been a lot of activity around these inequalities with important applications to numerical analysis and probability.

In this article we are greatly motived and inspired by Theorem 1, see also [2]. Here we present various ψ-fractional Ostrowski and Grüss type inequalities for several functions and we give interesting applications.
2 Background

Here we follow [1].

Let \(\alpha > 0, [a, b] \subset \mathbb{R} \), \(f : [a, b] \to \mathbb{R} \) which is integrable and \(\psi \in C^1 ([a, b]) \) an increasing function such that \(\psi' (x) \neq 0 \), for all \(x \in [a, b] \). Consider \(n = \lceil \alpha \rceil \), the ceiling of \(\alpha \). The left and right fractional integrals are defined, respectively, as follows:

\[
I_{a+}^{\alpha, \psi} f (x) := \frac{1}{\Gamma (\alpha)} \int_a^x \psi' (t) (\psi (x) - \psi (t))^{\alpha-1} f (t) \, dt,
\]

and

\[
I_{b-}^{\alpha, \psi} f (x) := \frac{1}{\Gamma (\alpha)} \int_x^b \psi' (t) (\psi (t) - \psi (x))^{\alpha-1} f (t) \, dt,
\]

for any \(x \in [a, b] \), where \(\Gamma \) is the gamma function.

The following semigroup property is valid for fractional integrals: if \(\alpha, \beta > 0 \), then

\[
I_{a+}^{\alpha, \psi} I_{a+}^{\beta, \psi} f (x) = I_{a+}^{\alpha+\beta, \psi} f (x), \quad \text{and} \quad I_{b-}^{\alpha, \psi} I_{b-}^{\beta, \psi} f (x) = I_{b-}^{\alpha+\beta, \psi} f (x).
\]

We mention

Definition 2 ([1]) Let \(\alpha > 0, n \in \mathbb{N} \) such that \(n = \lceil \alpha \rceil \), \([a, b] \subset \mathbb{R} \) and \(f, \psi \in C^n ([a, b]) \) with \(\psi \) being increasing and \(\psi' (x) \neq 0 \), for all \(x \in [a, b] \). The left \(\psi \)-Caputo fractional derivative of \(f \) of order \(\alpha \) is given by

\[
C D_{a+}^{\alpha, \psi} f (x) := I_{a+}^{n-\alpha, \psi} \left(\frac{1}{\psi' (x)} \frac{d}{dx} \right)^n f (x),
\]

and the right \(\psi \)-Caputo fractional derivative of \(f \) is given by

\[
C D_{b-}^{\alpha, \psi} f (x) := I_{b-}^{n-\alpha, \psi} \left(-\frac{1}{\psi' (x)} \frac{d}{dx} \right)^n f (x).
\]

To simplify notation, we will use the symbol

\[
f^{[n]}_\psi (x) := \left(\frac{1}{\psi' (x)} \frac{d}{dx} \right)^n f (x),
\]

with \(f^{[0]}_\psi (x) = f (x) \).

By the definition, whrn \(\alpha = m \in \mathbb{N} \), we have

\[
C D_{a+}^{\alpha, \psi} f (x) = f^{[m]}_\psi (x)
\]

and

\[
C D_{b-}^{\alpha, \psi} f (x) = (-1)^m f^{[m]}_\psi (x).
\]

If \(\alpha \notin \mathbb{N} \), we have

\[
C D_{a+}^{\alpha, \psi} f (x) = \frac{1}{\Gamma (n-\alpha)} \int_a^x \psi' (t) (\psi (x) - \psi (t))^{n-\alpha-1} f^{[n]}_\psi (t) \, dt,
\]
and
\[C_D^\alpha \psi f (x) = \frac{(-1)^n}{\Gamma (n - \alpha)} \int_x^b \psi' (t) (\psi (t) - \psi (x))^{n-\alpha-1} f^{[n]} (t) \, dt, \tag{9} \]
\[\forall x \in [a, b]. \]

In particular, when \(\alpha \in (0, 1) \), we have
\[C_D^\alpha \psi f (x) = \frac{1}{\Gamma (1 - \alpha)} \int_a^x (\psi (x) - \psi (t))^-\alpha f' (t) \, dt, \]
\[C_D^\alpha \psi f (x) = \frac{-1}{\Gamma (1 - \alpha)} \int_x^b (\psi (t) - \psi (x))^-\alpha f' (t) \, dt \tag{10} \]
\[\forall x \in [a, b]. \]

Clearly the above is a generalization of left and right Caputo fractional derivatives.

For more see [1].

Still we need from [1] the following left and right fractional Taylor’s formulae:

Theorem 3 ([1]) Let \(\alpha > 0 \), \(n \in \mathbb{N} \) such that \(n = \lfloor \alpha \rfloor \), \([a, b] \subset \mathbb{R} \) and \(f, \psi \in C^n ([a, b]) \) with \(\psi \) being increasing and \(\psi' (x) \neq 0 \), for all \(x \in [a, b] \). Then, the left fractional Taylor formula follows,
\[f (x) = \sum_{k=0}^{n-1} \frac{f^{[k]} (a)}{k!} (\psi (x) - \psi (a))^k + I_a^\alpha \psi C_D^\alpha \psi f (x), \tag{11} \]
and the right fractional Taylor formula follows,
\[f (x) = \sum_{k=0}^{n-1} (-1)^k \frac{f^{[k]} (b)}{k!} (\psi (b) - \psi (x))^k + I_b^\alpha \psi C_D^\alpha \psi f (x), \tag{12} \]
\[\forall x \in [a, b]. \]

In particular, given \(\alpha \in (0, 1) \), we have
\[f (x) = f (a) + I_a^\alpha \psi C D^\alpha \psi f (x), \]
\[f (x) = f (b) + I_b^\alpha \psi C D^\alpha \psi f (x), \tag{13} \]
\[\forall x \in [a, b]. \]

Remark 4 For convenience we can rewrite (11)-(13) as follows:
\[f (x) = \sum_{k=0}^{n-1} \frac{f^{[k]} (a)}{k!} (\psi (x) - \psi (a))^k + \]
\[\frac{1}{\Gamma (\alpha)} \int_a^x \psi' (t) (\psi (x) - \psi (t))^{\alpha-1} C D^\alpha \psi f (t) \, dt, \tag{14} \]

3

1099

Anastassiou 1097-1114
and
\[f(x) = \sum_{k=0}^{n-1} \frac{(-1)^k f^{[k]}(b)}{k!} (\psi(b) - \psi(x))^k + \]
\[\frac{1}{\Gamma(\alpha)} \int_x^b \psi'(t) (\psi(t) - \psi(x))^{\alpha-1} C D_{b-}^{\alpha,\psi} f(t) \, dt, \]
\[\forall \, x \in [a, b]. \]

When \(\alpha \in (0, 1) \), we get:
\[f(x) = f(a) + \frac{1}{\Gamma(\alpha)} \int_a^x \psi'(t) (\psi(t) - \psi(x))^{\alpha-1} C D_{a+}^{\alpha,\psi} f(t) \, dt, \]
\[f(x) = f(b) + \frac{1}{\Gamma(\alpha)} \int_x^b \psi'(t) (\psi(t) - \psi(x))^{\alpha-1} C D_{b-}^{\alpha,\psi} f(t) \, dt, \]
\[\forall \, x \in [a, b]. \]

Again from [1] we have the following:
Consider the norms \(\|\cdot\|_{C^n} : C^n([a,b]) \rightarrow \mathbb{R} \) and \(\|\cdot\|_{C^n(\psi)} : C^n([a,b]) \rightarrow \mathbb{R} \), where
\[\|f\|_{C^n(\psi)} := \sum_{k=0}^{n} \|f^{[k]}\|_{\infty}. \]
We have

Theorem 5 ([1]) \(\psi \)-Caputo fractional derivatives are bounded operators. For all \(\alpha > 0 \) (\(n = \lfloor \alpha \rfloor \))
\[\left\| C D_{a+}^{\alpha,\psi} \right\|_{\infty} \leq K \|f\|_{C^n(\psi)}, \] \[\left\| C D_{b-}^{\alpha,\psi} \right\|_{\infty} \leq K \|f\|_{C^n(\psi)}, \]
where
\[K = \frac{(\psi(b) - \psi(a))^{n-\alpha}}{\Gamma(n+1-\alpha)} > 0. \]

3 Main Results

At first we present the following \(\psi \)-fractional Ostrowski type inequalities for several functions:

Theorem 6 Let \(\alpha > 0 \), \(n \in \mathbb{N} : n = \lfloor \alpha \rfloor \), \([a, b] \subset \mathbb{R} \) and \(f_i, \psi \in C^n([a,b]), \)
\(i = 1, ..., r; \) with \(\psi \) being increasing and \(\psi'(x) \neq 0 \), for all \(x \in [a,b] \). Let
\(x_0 \in [a, b] \) and assume that \(f^{[k]}_i(x_0) = 0 \), for \(k = 1, ..., n-1; \) \(i = 1, ..., r \). Set
\[\Phi(f_1, ..., f_r)(x_0) := r \int_a^b \left(\prod_{k=1}^r f_k(x) \right) d\psi(x) - \]
\[\sum_{i=1}^{r} \left[f_i(x_0) \int_{a}^{b} \left(\prod_{j \neq i} f_j(x) \right) d\psi(x) \right]. \]

Then

\[|\Phi(f_1, \ldots, f_r)(x_0)| \leq \sum_{i=1}^{r} \left[\left\| C^{D_0^\alpha,\psi} f_i \right\|_{\infty,[a,x_0]} I_{a+}^{\alpha+1,\psi} \left(\prod_{j=1}^{r} |f_j(x_0)| \right) \right] \] \hspace{1cm} (21)

\[+ \left[\left\| C^{D_0^\alpha,\psi} f_i \right\|_{\infty,[x_0,b]} I_{b-}^{\alpha+1,\psi} \left(\prod_{j=1}^{r} |f_j(x_0)| \right) \right]. \]

If \(0 < \alpha \leq 1 \), then (21) is valid without any initial conditions.

Proof. By Theorem 3 we have that

\[f_i(x) - f_i(x_0) = \frac{1}{\Gamma(\alpha)} \int_{x_0}^{x} \psi'(t) (\psi(x) - \psi(t))^{\alpha-1} C^{D_{x_0^+}} f_i(t) dt, \] \hspace{1cm} (22)

\(\forall \ x \in [x_0, b] \),

and

\[f_i(x) - f_i(x_0) = \frac{1}{\Gamma(\alpha)} \int_{x}^{x_0} \psi'(t) (\psi(t) - \psi(x))^{\alpha-1} C^{D_{x_0^-}} f_i(t) dt, \] \hspace{1cm} (23)

\(\forall \ x \in [a, x_0] \);

for all \(i = 1, \ldots, r \).

Multiplying (22) and (23) by \(\left(\prod_{j=1}^{r} f_j(x) \right) \) we obtain, respectively,

\[\prod_{k=1}^{r} f_k(x) - \left(\prod_{j=1}^{r} f_j(x) \right) f_i(x_0) = \]

\[\left(\prod_{j=1}^{r} f_j(x) \right) \frac{1}{\Gamma(\alpha)} \int_{x_0}^{x} \psi'(t) (\psi(x) - \psi(t))^{\alpha-1} C^{D_{x_0^+}} f_i(t) dt, \] \hspace{1cm} (24)

\(\forall \ x \in [x_0, b] \),

\[\prod_{k=1}^{r} f_k(x) - \left(\prod_{j=1}^{r} f_j(x) \right) f_i(x_0) = \]
\[
\frac{\left(\prod_{j=1, j\neq i}^{r} f_{j} (x) \right)}{\Gamma (\alpha)} \int_{x_{0}}^{x} \psi' (t) (\psi (t) - \psi (x))^{\alpha-1} \ C D_{x_{0}, \psi}^{\alpha, \psi} f_{i} (t) \ dt, \quad (25)
\]

\forall \ x \in [a, x_{0}];

for all \ i = 1, \ldots, r.

Adding (24) and (25), separately, we obtain

\[
r \left(\prod_{k=1}^{r} f_{k} (x) \right) - \sum_{i=1}^{r} \left(\prod_{j=1, j\neq i}^{r} f_{j} (x) \right) f_{i} (x_{0}) =
\]

\[
\frac{1}{\Gamma (\alpha)} \sum_{i=1}^{r} \left[\left(\prod_{j=1, j\neq i}^{r} f_{j} (x) \right) \int_{x_{0}}^{x} \psi' (t) (\psi (t) - \psi (x))^{\alpha-1} \ C D_{x_{0}, \psi}^{\alpha, \psi} f_{i} (t) \ dt \right], \quad (26)
\]

\forall \ x \in [x_{0}, b],

and

\[
r \left(\prod_{k=1}^{r} f_{k} (x) \right) - \sum_{i=1}^{r} \left(\prod_{j=1, j\neq i}^{r} f_{j} (x) \right) f_{i} (x_{0}) =
\]

\[
\frac{1}{\Gamma (\alpha)} \sum_{i=1}^{r} \left[\left(\prod_{j=1, j\neq i}^{r} f_{j} (x) \right) \int_{x_{0}}^{x} \psi' (t) (\psi (t) - \psi (x))^{\alpha-1} \ C D_{x_{0}, \psi}^{\alpha, \psi} f_{i} (t) \ dt \right], \quad (27)
\]

\forall \ x \in [a, x_{0}].

Next we integrate (26) and (27) with respect to \(\psi (x) \), \(x \in [a, b] \). We have

\[
r \int_{x_{0}}^{b} \left(\prod_{k=1}^{r} f_{k} (x) \right) \ d\psi (x) - \sum_{i=1}^{r} \left[f_{i} (x_{0}) \int_{x_{0}}^{b} \left(\prod_{j=1, j\neq i}^{r} f_{j} (x) \right) \ d\psi (x) \right] =
\]

\[
\frac{1}{\Gamma (\alpha)} \sum_{i=1}^{r} \left[\int_{x_{0}}^{b} \left(\prod_{j=1, j\neq i}^{r} f_{j} (x) \right) \left[\int_{x_{0}}^{b} \psi' (t) (\psi (t) - \psi (x))^{\alpha-1} \ C D_{x_{0}, \psi}^{\alpha, \psi} f_{i} (t) \ dt \right] d\psi (x) \right], \quad (28)
\]

and

\[
r \int_{a}^{x_{0}} \left(\prod_{k=1}^{r} f_{k} (x) \right) \ d\psi (x) - \sum_{i=1}^{r} \left[f_{i} (x_{0}) \int_{a}^{x_{0}} \left(\prod_{j=1, j\neq i}^{r} f_{j} (x) \right) \ d\psi (x) \right] =
\]
Adding (28) and (29) we derive the identity:

\[
\Phi (f_1, \ldots, f_r) (x_0) := r \int_a^b \left(\prod_{k=1}^r f_k (x) \right) d\psi (x) - \\
\sum_{i=1}^r \left[f_i (x_0) \int_a^b \left(\prod_{j=1 \atop j \neq i}^r f_j (x) \right) d\psi (x) \right]
\]

(29)

\[
\frac{1}{\Gamma (\alpha)} \sum_{i=1}^r \left[\int_a^{x_0} \left(\prod_{j=1 \atop j \neq i}^r f_j (x) \right) \left(\int_x^{x_0} \psi' (t) (\psi (t) - \psi (x))^\alpha \ D_{x_0}^{\alpha \psi} f_i (t) \ dt \right) d\psi (x) \right]
\]

\[
+ \left[\int_{x_0}^b \left(\prod_{j=1 \atop j \neq i}^r f_j (x) \right) \left(\int_{x_0}^x \psi' (t) (\psi (x) - \psi (t))^\alpha \ C_{x_0}^{\alpha \psi} f_i (t) \ dt \right) d\psi (x) \right]
\]

(30)

Hence it holds

\[
|\Phi (f_1, \ldots, f_r) (x_0)| \leq \\
\frac{1}{\Gamma (\alpha)} \sum_{i=1}^r \left[\int_a^{x_0} \left(\prod_{j=1 \atop j \neq i}^r f_j (x) \right) \left(\int_x^{x_0} \psi' (t) (\psi (t) - \psi (x))^\alpha \ C_{x_0}^{\alpha \psi} f_i (t) \ dt \right) d\psi (x) \right]
\]

\[
+ \left[\int_{x_0}^b \left(\prod_{j=1 \atop j \neq i}^r f_j (x) \right) \left(\int_{x_0}^x \psi' (t) (\psi (x) - \psi (t))^\alpha \ C_{x_0}^{\alpha \psi} f_i (t) \ dt \right) d\psi (x) \right]
\]

(31)

We observe that

\[
(*) \leq \frac{1}{\Gamma (\alpha + 1)} \sum_{i=1}^r \left[\left\| C_{x_0}^{\alpha \psi} f_i \right\|_{\infty, [a, x_0]} \int_a^{x_0} \left(\prod_{j=1 \atop j \neq i}^r f_j (x) \right) (\psi (x_0) - \psi (x))^\alpha d\psi (x) \right]
\]

\[
+ \left[\left\| C_{x_0}^{\alpha \psi} f_i \right\|_{\infty, [x_0, b]} \int_{x_0}^b \left(\prod_{j=1 \atop j \neq i}^r f_j (x) \right) (\psi (x) - \psi (x))^\alpha d\psi (x) \right] = (32)
\]
\[
\sum_{i=1}^{r} \left[\left\| C D_{x_0}^{\alpha} f_i \right\|_{\infty, [a,x_0]} I_{a+}^{\alpha+1} \left(\prod_{j=1, j \neq i}^{r} |f_j(x_0)| \right) \right] + \\
\left[\left| C D_{x_0}^{\alpha} f_i \right|_{\infty, [x_0,b]} I_{b-}^{\alpha+1} \left(\prod_{j=1, j \neq i}^{r} |f_j(x_0)| \right) \right].
\]

By Theorem 4.10, p. 98 of [3], we get that \(I_{a+}^{\alpha+1} \left(\prod_{j=1, j \neq i}^{r} |f_j| \right) \in C ([a,b]) \) and so at any \(x_0 \in [a,b] \) is finite, \(i = 1, ..., r \). Similarly, by Theorem 4.11, p. 101 of [3], we get that \(I_{b-}^{\alpha+1} \left(\prod_{j=1, j \neq i}^{r} |f_j| \right) \in C ([a,b]) \) and so at any \(x_0 \in [a,b] \) is finite, \(i = 1, ..., r \). Arguing similarly, we get that \(C D_{a+}^{\alpha} f_i, C D_{b-}^{\alpha} f_i \in C ([a,b]) \), for all \(i = 1, ..., r \).

The theorem is proved. \(\blacksquare \)

We continue with

Theorem 7 All as in Theorem 6 with \(\alpha \geq 1 \). Then

\[
|\Phi (f_1, ..., f_r)(x_0)| \leq \sum_{i=1}^{r} \left[\left\| C D_{x_0}^{\alpha} f_i \right\|_{L_1([a,x_0], \psi)} I_{a+}^{\alpha+1} \left(\prod_{j=1, j \neq i}^{r} |f_j(x_0)| \right) \right] + \\
\left[\left\| C D_{x_0}^{\alpha} f_i \right\|_{L_1([x_0,b], \psi)} I_{b-}^{\alpha+1} \left(\prod_{j=1, j \neq i}^{r} |f_j(x_0)| \right) \right]. \tag{33}
\]

Proof. From (31) we get

\[
(*) \leq \frac{1}{\Gamma(\alpha)} \sum_{i=1}^{r} \left[\left\| C D_{x_0}^{\alpha} f_i \right\|_{L_1([a,x_0], \psi)} \right] \\
\left(\int_{x_0}^{x} \left(\prod_{j=1, j \neq i}^{r} |f_j(x)| \right) (\psi(x_0) - \psi(x))^{\alpha-1} d\psi (x) \right) + \\
\left[\left\| C D_{x_0}^{\alpha} f_i \right\|_{L_1([x_0,b], \psi)} \left(\int_{x_0}^{b} \left(\prod_{j=1, j \neq i}^{r} |f_j(x)| \right) (\psi(x) - \psi(x_0))^{\alpha-1} d\psi (x) \right) \right]. \tag{34}
\]

8
\[
= \sum_{i=1}^{r} \left\| \mathcal{D}_{x_0}^{\alpha, \psi} f_i \right\|_{L_1([a,x_0],[\psi])} \mathcal{I}_{a^+}^\alpha \left(\prod_{j=1 \atop j \neq i}^{r} |f_j(x_0)| \right) + \\
\left\| \mathcal{D}_{x_0}^{\alpha, \psi} f_i \right\|_{L_1([x_0,b],[\psi])} \mathcal{I}_{b^-}^{\alpha, \psi} \left(\prod_{j=1 \atop j \neq i}^{r} |f_j(x_0)| \right) \right) \right],
\]
proving the theorem. \[\blacksquare\]

We continue with

Theorem 8 All as in Theorem 6 with \(p, q > 1 \) : \(\frac{1}{p} + \frac{1}{q} = 1 \), \(\alpha \geq 1 \). Then

\[
|\Phi(f_1, \ldots, f_r)(x_0)| \leq \frac{\Gamma \left(\alpha + \frac{1}{p} \right)}{\Gamma(\alpha) (p(\alpha - 1) + 1)^{\frac{1}{q}}} \\
\sum_{i=1}^{r} \left[\left\| \mathcal{D}_{x_0}^{\alpha, \psi} f_i \right\|_{L_q([a,x_0],[\psi])} \mathcal{I}_{a^+}^{\alpha + \frac{1}{p} \psi} \left(\prod_{j=1 \atop j \neq i}^{r} |f_j(x_0)| \right) \right] \right) + \\
\left. \left[\left\| \mathcal{D}_{x_0}^{\alpha, \psi} f_i \right\|_{L_q([x_0,b],[\psi])} \mathcal{I}_{b^-}^{\alpha + \frac{1}{p} \psi} \left(\prod_{j=1 \atop j \neq i}^{r} |f_j(x_0)| \right) \right] \right].
\]

Proof. From (31) we obtain

\[
(\ast) \leq \frac{1}{\Gamma(\alpha)} \sum_{i=1}^{r} \left[\int_{x_0}^{x_0} \left(\prod_{j=1 \atop j \neq i}^{r} |f_j(x)| \right) \right] \\
\left(\int_{x}^{x_0} (\psi(t) - \psi(x))^{p(\alpha - 1)} d\psi(t) \right)^{\frac{1}{p}} \left(\int_{x_0}^{x_0} \left| \mathcal{D}_{x_0}^{\alpha, \psi} f_i(t) \right|^{q} d\psi(t) \right)^{\frac{1}{q}} d\psi(x) + \\
\left[\int_{x_0}^{b} \left(\prod_{j=1 \atop j \neq i}^{r} |f_j(x)| \right) \right] \left(\int_{x_0}^{x_0} (\psi(x) - \psi(t))^{p(\alpha - 1)} d\psi(t) \right)^{\frac{1}{p}} \\
\left(\int_{x_0}^{x_0} \left| \mathcal{D}_{x_0}^{\alpha, \psi} f_i(t) \right|^{q} d\psi(t) \right)^{\frac{1}{q}} d\psi(x) \right] \leq \frac{1}{(p(\alpha - 1) + 1)^{\frac{1}{p}} \Gamma(\alpha)}
\]
\[
\sum_{i=1}^{r} \left[\left\| CD_{x_0}^\alpha f_i \right\|_{L_2([a,x_0],\psi)} \int_{x_0}^{x_0} \left(\prod_{j=1}^{r} |f_j(x)| \right) (\psi(x_0) - \psi(x))^{\alpha-1+\frac{1}{\beta}} \, d\psi(x) \right] \\
+ \left[\left\| CD_{x_0+}^\alpha f_i \right\|_{L_2([x_0,b],\psi)} \int_{x_0}^{b} \left(\prod_{j=1}^{r} |f_j(x)| \right) (\psi(x) - \psi(x_0))^{\alpha-1+\frac{1}{\beta}} \, d\psi(x) \right] = \\
\frac{\Gamma \left(\alpha + \frac{1}{\beta} \right)}{\Gamma(\alpha)(p(\alpha - 1) + 1)^{\frac{1}{\beta}}} \sum_{i=1}^{r} \left[\left\| CD_{x_0}^\alpha f_i \right\|_{L_2([a,x_0],\psi)} I_{a+}^{\alpha+\frac{1}{\beta} \psi} \left(\prod_{j=1}^{r} |f_j(x_0)| \right) \right] \\
+ \left[\left\| CD_{x_0+}^\alpha f_i \right\|_{L_2([x_0,b],\psi)} I_{b-}^{\alpha+\frac{1}{\beta} \psi} \left(\prod_{j=1}^{r} |f_j(x_0)| \right) \right], \\
\text{(38)}
\]

proving the theorem. \(\blacksquare\)

We mention as motivation for Grüss type inequalities the following:

Theorem 9 (1882, Čebyšev [4]) Let \(f, g : [a,b] \to \mathbb{R} \) be absolutely continuous functions with \(f', g' \in L_\infty ([a,b]) \). Then

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x) g(x) \, dx - \left(\frac{1}{b-a} \int_{a}^{b} f(x) \, dx \right) \left(\frac{1}{b-a} \int_{a}^{b} g(x) \, dx \right) \right| \leq \frac{1}{12} (b-a)^2 \| f' \|_\infty \| g' \|_\infty. \\
\text{(40)}
\]

The above integrals are assumed to exist.

Next follow \(\psi \)-Caputo fractional Grüss type inequalities for several functions.

Theorem 10 Let \(0 < \alpha \leq 1 \), \([a,b] \subset \mathbb{R} \) and \(f_i, \psi \in C^1([a,b]) \), \(i = 1, \ldots, r \in \mathbb{N} - \{1\} \); with \(f_i \) being increasing and \(\psi'(x) \neq 0 \), for all \(x \in [a,b] \). Assume that

\[
\sup_{x_0 \in [a,b]} \left\| CD_{x_0}^\alpha f_i \right\|_{L_\infty([a,x_0])} < \infty, \text{ and } \sup_{x_0 \in [a,b]} \left\| CD_{x_0+}^\alpha f_i \right\|_{L_\infty([x_0,b])} < \infty, \quad i = 1, \ldots, r.
\]

Set

\[
\Delta^\psi(f_1, ..., f_r) := r (\psi(b) - \psi(a)) \left(\int_{a}^{b} \left(\prod_{k=1}^{r} f_k(x) \right) d\psi(x) \right) - \\
\sum_{i=1}^{r} \left[\left(\int_{a}^{b} f_i(x) d\psi(x) \right) \left(\int_{a}^{b} \left(\prod_{j=1}^{r} f_j(x) \right) d\psi(x) \right) \right]. \\
\text{(41)}
\]
Then

$$|\Delta^\psi (f_1, \ldots, f_r)| \leq (\psi (b) - \psi (a))$$

$$\left\{ \sum_{i=1}^{r} \left[\left(\sup_{x_0 \in [a,b]} \left\| C D^{\alpha;\psi}_x f_i \right\| \right) \sup_{x_0 \in [a,b]} \left(\prod_{j=1}^{r} |f_j (x_0)| \right) \right] + \left[\sup_{x_0 \in [a,b]} \left\| C D^{\alpha;\psi}_x f_i \right\| \sup_{x_0 \in [a,b]} \left(\prod_{j=1}^{r} |f_j (x_0)| \right) \right] \right\}. \quad (42)$$

Proof. Here \(0 < \alpha \leq 1\), i.e. \(n = 1\). Then (30) is valid without any initial conditions. Clearly \(\Phi (f_1, \ldots, f_r) \in C ([a, b]). \) Thus, by integrating (30) against \(\psi \) we obtain

$$\Delta^\psi (f_1, \ldots, f_r) = \int_a^b \Phi (f_1, \ldots, f_r) (x_0) \, d\psi (x_0) =$$

$$= r (\psi (b) - \psi (a)) \left(\int_a^b \left(\prod_{k=1}^{r} f_k (x) \right) \, d\psi (x) \right) -$$

$$\sum_{i=1}^{r} \left[\left(\int_a^b f_i (x) \, d\psi (x) \right) \left(\int_a^b \left(\prod_{j=1}^{r} f_j (x) \right) \, d\psi (x) \right) \right] =$$

$$= \frac{1}{\Gamma (\alpha)} \int_a^b \left\{ \sum_{i=1}^{r} \left[\left(\int_a^{x_0} \left(\prod_{j=1}^{r} f_j (x) \right) \, d\psi (x) \right) \left(\int_{x_0}^b \psi' (t) (\psi (t) - \psi (x))^{\alpha-1} C D^{\alpha;\psi}_{x_0} f_i (t) \, dt \right) \, d\psi (x) \right] \right. + \quad (43)$$

$$\left. \left[\int_{x_0}^b \left(\prod_{j=1}^{r} f_j (x) \right) \left(\int_{x_0}^b \psi' (t) (\psi (x) - \psi (t))^{\alpha-1} C D^{\alpha;\psi}_{x_0} f_i (t) \, dt \right) \, d\psi (x) \right] \right\} \, d\psi (x_0).$$

Hence it holds

$$|\Delta^\psi (f_1, \ldots, f_r)| \leq \frac{1}{\Gamma (\alpha)} \int_a^b \left\{ \sum_{i=1}^{r} \left[\left(\int_a^{x_0} \left(\prod_{j=1}^{r} |f_j (x)| \right) \right) \right]$$

1107
Anastassiou 1097-1114
\[
\left(\int_{x_0}^{x} \psi' (t) (\psi (t) - \psi (x))^{\alpha - 1} \left| C D_{x_0}^{\alpha, \psi} f_i (t) \right| dt \right) d\psi (x) + \left[\int_{x_0}^{b} \left(\prod_{j=1}^{r} |f_j (x)| \right) \right]
\]
\[
\left(\int_{x_0}^{x} \psi' (t) (\psi (x) - \psi (t))^{\alpha - 1} \left| C D_{x_0}^{\alpha, \psi} f_i (t) \right| dt \right) d\psi (x) \right] \right) d\psi (x_0) =: (**) .
\]

Using (21) we derive
\[
(\ast\ast) \leq (\psi (b) - \psi (a))
\]
\[
\left\{ \sum_{i=1}^{r} \left[\sup_{x_0 \in [a,b]} \left\| C D_{x_0}^{\alpha, \psi} f_i \right\|_{\infty, [a,x_0]} \sup_{x_0 \in [a,b]} I_{a+}^{\alpha+1, \psi} \left(\prod_{j=1}^{r} |f_j (x_0)| \right) \right] \right\} + \left[\sup_{x_0 \in [a,b]} \left\| C D_{x_0}^{\alpha, \psi} f_i \right\|_{\infty, [a,x_0]} \sup_{x_0 \in [a,b]} I_{b-}^{\alpha+1, \psi} \left(\prod_{j=1}^{r} |f_j (x_0)| \right) \right].
\]
proving the theorem. \(\blacksquare\)

Remark 11 Let \(\alpha > 0\), \([a,b] \subset \mathbb{R}\), \(f \in C ([a,b])\) and \(\psi \in C^1 ([a,b])\) an increasing function such that \(\psi' (x) \neq 0\), for all \(x \in [a,b]\). Let \(x_0 \in [a,b]\). We observe the following
\[
\left| I_{a+}^{\alpha, \psi} f (x_0) \right| \leq \frac{1}{\Gamma (\alpha)} \int_{a}^{x_0} \psi' (t) (\psi (x_0) - \psi (t))^{\alpha - 1} |f (t)| dt \leq \frac{\|f\|_{\infty, [a,x_0]}}{\Gamma (\alpha + 1)} (\psi (x_0) - \psi (a))^{\alpha}.
\]
That is
\[
\left| I_{a+}^{\alpha, \psi} f (x_0) \right| \leq \frac{\|f\|_{\infty, [a,x_0]}}{\Gamma (\alpha + 1)} (\psi (x_0) - \psi (a))^{\alpha}.
\]
(46)

Similarly, we obtain
\[
\left| I_{b-}^{\alpha, \psi} f (x_0) \right| \leq \frac{1}{\Gamma (\alpha)} \int_{x_0}^{b} \psi' (t) (\psi (t) - \psi (x_0))^{\alpha - 1} |f (t)| dt \leq \frac{\|f\|_{\infty, [x_0,b]}}{\Gamma (\alpha + 1)} (\psi (b) - \psi (x_0))^{\alpha}.
\]
That is
\[
\left| I_{b-}^{\alpha, \psi} f (x_0) \right| \leq \frac{\|f\|_{\infty, [x_0,b]}}{\Gamma (\alpha + 1)} (\psi (b) - \psi (x_0))^{\alpha}.
\]
(49)
Remark 12. Let $\alpha \geq 1$, the rest as in Remark 11. We observe that

$$
\left| I_{a}^{\alpha, \psi} f (x_0) \right| \leq \frac{1}{\Gamma (\alpha)} \int_{a}^{x_0} \psi' (t) (\psi (x_0) - \psi (t))^{\alpha - 1} |f (t)| \, dt \leq \frac{(\psi (x_0) - \psi (a))^{\alpha - 1}}{\Gamma (\alpha)} \left\| f \right\|_{L_1 ([a, x_0], \psi)} .
$$

That is

$$
\left| I_{a}^{\alpha, \psi} f (x_0) \right| \leq \frac{(\psi (x_0) - \psi (a))^{\alpha - 1}}{\Gamma (\alpha)} \left\| f \right\|_{L_1 ([a, x_0], \psi)} .
$$

Similarly, we get

$$
\left| I_{b}^{\alpha, \psi} f (x_0) \right| \leq \frac{(\psi (b) - \psi (x_0))^{\alpha - 1}}{\Gamma (\alpha)} \left\| f \right\|_{L_1 ([x_0, b], \psi)} .
$$

That is

$$
\left| I_{b}^{\alpha, \psi} f (x_0) \right| \leq \frac{(\psi (b) - \psi (x_0))^{\alpha - 1}}{\Gamma (\alpha)} \left\| f \right\|_{L_1 ([x_0, b], \psi)} .
$$

Next, we simplify our main theorems:

Proposition 13. All as in Theorem 6. Then

$$
\left| \Phi (f_1, \ldots, f_r) (x_0) \right| \leq \frac{1}{\Gamma (\alpha + 2)}
$$

$$
\sum_{i=1}^{r} \left[\left\| D_{x_0}^{\alpha, \psi} f_i \right\|_{L_1 ([a, x_0], \psi)} \prod_{j=1}^{r} \left\| f_j \right\|_{L_1 ([a, x_0], \psi)} (\psi (x_0) - \psi (a))^{\alpha + 1} \right] + \left[\left\| D_{x_0}^{\alpha, \psi} f_i \right\|_{L_1 ([x_0, b], \psi)} \prod_{j=1}^{r} \left\| f_j \right\|_{L_1 ([x_0, b], \psi)} (\psi (b) - \psi (x_0))^{\alpha + 1} \right] .
$$

If $0 < \alpha \leq 1$, then (54) is valid without any initial conditions.

Proof. By (21), (47) and (49). □

Next comes
Proposition 14 All as in Theorem 6 with \(\alpha \geq 1 \). Then
\[
|\Phi(f_1, \ldots, f_r)(x_0)| \leq \frac{1}{\Gamma(\alpha)}
\]
\[
\sum_{i=1}^{r} \left[\left\| D_{x_0}^\alpha f_i \right\|_{L_1([a,x_0],\psi)} \left\| \prod_{j=1}^{r} f_j \right\|_{L_1([a,x_0],\psi)} (\psi(x_0) - \psi(a))^{\alpha-1} \right] + \left[\left\| D_{x_0}^\alpha f_i \right\|_{L_1([x_0,b],\psi)} \left\| \prod_{j=1}^{r} f_j \right\|_{L_1([x_0,b],\psi)} (\psi(b) - \psi(x_0))^{\alpha-1} \right].
\]

Proof. By (33), (51) and (53). ■

Next follows

Proposition 15 All as in Theorem 6 with \(p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1, \alpha \geq 1 \). Then
\[
|\Phi(f_1, \ldots, f_r)(x_0)| \leq \frac{1}{\Gamma(\alpha) \left(\alpha + \frac{1}{p} \right) (p(\alpha - 1) + 1)^{\frac{1}{q}}}
\]
\[
\sum_{i=1}^{r} \left[\left\| D_{x_0}^\alpha f_i \right\|_{L_q([a,x_0],\psi)} \left\| \prod_{j=1}^{r} f_j \right\|_{\infty,[a,x_0]} (\psi(x_0) - \psi(a))^{\alpha+\frac{1}{p}} \right] + \left[\left\| D_{x_0}^\alpha f_i \right\|_{L_q([x_0,b],\psi)} \left\| \prod_{j=1}^{r} f_j \right\|_{\infty,[x_0,b]} (\psi(b) - \psi(x_0))^{\alpha+\frac{1}{p}} \right].
\]

Proof. By (36), (47) and (49). ■

We continue with

Proposition 16 All as in Theorem 10. Then
\[
|\Delta^\psi(f_1, \ldots, f_r)| \leq \frac{(\psi(b) - \psi(a))^{\alpha+2}}{\Gamma(\alpha + 2)}
\]
\[
\left\{ \sum_{i=1}^{r} \left[\sup_{x_0 \in [a,b]} \left\| D_{x_0}^\alpha f_i \right\|_{\infty,[a,x_0]} + \sup_{x_0 \in [a,b]} \left\| D_{x_0}^\alpha f_i \right\|_{\infty,[x_0,b]} \right] \left\| \prod_{j=1}^{r} f_j \right\|_{\infty,[a,b]} \right\}.
\]
Proof. By (42), (47) and (49).

Next we make some applications of our main results.
We need

Remark 17 We have that \((r = 2)\)

\[
\Phi(f_1, f_2)(x_0) = 2 \int_a^b f_1(x) f_2(x) \, d\psi(x) - f_1(x_0) \int_a^b f_2(x) \, d\psi(x) - f_2(x_0) \int_a^b f_1(x) \, d\psi(x),
\]

(58)

and \((r = 3)\)

\[
\Phi(f_1, f_2, f_3)(x_0) = 3 \int_a^b f_1(x) f_2(x) f_3(x) \, d\psi(x) - f_1(x_0) \int_a^b f_2(x) f_3(x) \, d\psi(x) - f_2(x_0) \int_a^b f_1(x) f_3(x) \, d\psi(x) - f_3(x_0) \int_a^b f_1(x) f_2(x) \, d\psi(x),
\]

(59)

etc.

Furthermore we derive \((r = 2)\)

\[
\Delta^\psi(f_1, f_2) = 2 \left[(\psi(b) - \psi(a)) \left(\int_a^b f_1(x) f_2(x) \, d\psi(x) \right) - \left(\int_a^b f_1(x) \, d\psi(x) \right) \left(\int_a^b f_2(x) \, d\psi(x) \right) \right],
\]

(60)

and \((r = 3)\)

\[
\Delta^\psi(f_1, f_2, f_3) = 3 (\psi(b) - \psi(a)) \left(\int_a^b f_1(x) f_2(x) f_3(x) \, d\psi(x) \right) - \left(\int_a^b f_1(x) \, d\psi(x) \right) \left(\int_a^b f_2(x) f_3(x) \, d\psi(x) \right) - \left(\int_a^b f_2(x) \, d\psi(x) \right) \left(\int_a^b f_1(x) f_3(x) \, d\psi(x) \right) - \left(\int_a^b f_3(x) \, d\psi(x) \right) \left(\int_a^b f_1(x) f_2(x) \, d\psi(x) \right),
\]

(61)

etc.

We give the special cases of fractional Ostrowski type inequalities.
Proposition 18 Let $\alpha > 0$, $n \in \mathbb{N}$: $n = \lfloor \alpha \rfloor$, $[a, b] \subset \mathbb{R}$ and $f_1, f_2 \in C^n([a, b])$. Let $x_0 \in [a, b]$ and assume that $f_1^{(k)}(x_0) = f_2^{(k)}(x_0) = 0$, for $k = 1, \ldots, n - 1$. Then
\[
\left| 2 \int_a^b f_1(x) f_2(x) e^x dx - f_1(x_0) \int_a^b f_2(x) e^x dx - f_2(x_0) \int_a^b f_1(x) e^x dx \right| \leq \frac{1}{\Gamma(\alpha + 2)} \sum_{i=1}^{\lfloor \alpha \rfloor} \left[|| C D_{x_0}^{\alpha} f_i ||_{\infty, [a, x_0]} \prod_{j=1 \atop j \neq i}^{\lfloor \alpha \rfloor} f_j \left((e^{x_0} - e^a)^{\alpha + 1} \right) \right] + \left[|| C D_{x_0}^{\alpha} f_i ||_{\infty, [x_0, b]} \prod_{j=1 \atop j \neq i}^{\lfloor \alpha \rfloor} f_j \left((e^b - e^{x_0})^{\alpha + 1} \right) \right]. \tag{62}
\]
If $0 < \alpha \leq 1$, then (62) is valid without any initial conditions.

Proof. Case of $\psi(x) = e^x$, apply Proposition 13 for $r = 2$. ■

We continue with

Proposition 19 Let $\alpha > 0$, $n \in \mathbb{N}$: $n = \lfloor \alpha \rfloor$, $[a, b] \subset (0, +\infty)$ and $f_1, f_2, f_3 \in C^n([a, b])$. Let $x_0 \in [a, b]$ and assume that $f_i^{(k)}(x_0) = 0$, for $k = 1, \ldots, n - 1$; $i = 1, 2, 3$. Then
\[
\left| 3 \int_a^b \frac{f_1(x) f_2(x) f_3(x)}{x} dx - f_1(x_0) \int_a^b \frac{f_2(x) f_3(x)}{x} dx - f_2(x_0) \int_a^b \frac{f_1(x) f_3(x)}{x} dx \right| \leq \frac{1}{\Gamma(\alpha + 2)} \sum_{i=1}^{\lfloor \alpha \rfloor} \left[|| C D_{x_0}^{\alpha} f_i ||_{\infty, [a, x_0]} \prod_{j=1 \atop j \neq i}^{\lfloor \alpha \rfloor} f_j \left(\left(\ln \left(\frac{x_0}{a} \right) \right)^{\alpha + 1} \right) \right] + \left[|| C D_{x_0}^{\alpha} f_i ||_{\infty, [x_0, b]} \prod_{j=1 \atop j \neq i}^{\lfloor \alpha \rfloor} f_j \left(\left(\ln \left(\frac{b}{x_0} \right) \right)^{\alpha + 1} \right) \right]. \tag{63}
\]
If $0 < \alpha \leq 1$, then (63) is valid without any initial conditions.

Proof. Case of $\psi(x) = \ln x$, apply Proposition 13 for $r = 3$. ■

Next we present the special cases of fractional Grüss type inequality:
Proposition 20 Let $0 < \alpha \leq 1$, $[a, b] \subset \mathbb{R}$ and $f_1, f_2 \in C^1 ([a, b])$. Assume that
\[
\sup_{x_0 \in [a, b]} \left\| C D_{x_0}^{- \alpha} f_i \right\|_{\infty, [a, x_0]} < \infty, \quad \text{and} \quad \sup_{x_0 \in [a, b]} \left\| C D_{x_0}^{\alpha} f_i \right\|_{\infty, [x_0, b]} < \infty, \quad i = 1, 2.
\]
Then
\[
2 \left(e^b - e^a \right) \left(\int_a^b f_1 (x) f_2 (x) e^x \, dx \right) - \left(\int_a^b f_1 (x) e^x \, dx \right) \left(\int_a^b f_2 (x) e^x \, dx \right) \leq \frac{(e^b - e^a)^{\alpha + 2}}{\Gamma (\alpha + 2)}
\]
\[
\left\{ \sum_{i=1}^2 \sup_{x_0 \in [a, b]} \left\| C D_{x_0}^{- \alpha} f_i \right\|_{\infty, [a, x_0]} + \sup_{x_0 \in [a, b]} \left\| C D_{x_0}^{\alpha} f_i \right\|_{\infty, [x_0, b]} \right\} \left\| \prod_{j \neq i} f_j \right\|_{\infty, [a, b]}
\]
(64)

Proof. Apply Proposition 16, for $\psi (x) = e^x$, $r = 2$. ■

We finish with another ψ-fractional Grüss type inequality:

Proposition 21 Let $0 < \alpha \leq 1$, $[a, b] \subset (0, \infty)$ and $f_i \in C^1 ([a, b])$, $i = 1, 2, 3$. Assume that
\[
\sup_{x_0 \in [a, b]} \left\| C D_{x_0}^{\alpha \ln x} f_i \right\|_{\infty, [a, x_0]} < \infty, \quad \text{and} \quad \sup_{x_0 \in [a, b]} \left\| C D_{x_0}^{\alpha \ln x} f_i \right\|_{\infty, [x_0, b]} < \infty,
\]
i = 1, 2, 3. Then
\[
\left| \ln \left(\frac{b}{a} \right) \left(\int_a^b \frac{f_1 (x) f_2 (x) f_3 (x)}{x} \, dx \right) - \left(\int_a^b \frac{f_1 (x)}{x} \, dx \right) \left(\int_a^b \frac{f_2 (x) f_3 (x)}{x} \, dx \right) \right|
\]
\[
\left| \int_a^b \frac{f_2 (x)}{x} \, dx \right| \left(\int_a^b \frac{f_1 (x)}{x} \, dx \right) \left(\int_a^b \frac{f_3 (x)}{x} \, dx \right) \left(\int_a^b \frac{f_1 (x) f_2 (x)}{x} \, dx \right) \right|
\]
\[
\leq \frac{(\ln \left(\frac{b}{a} \right))^{\alpha + 2}}{\Gamma (\alpha + 2)} \left\{ \sum_{i=1}^3 \sup_{x_0 \in [a, b]} \left\| C D_{x_0}^{\alpha \ln x} f_i \right\|_{\infty, [a, x_0]} + \sup_{x_0 \in [a, b]} \left\| C D_{x_0}^{\alpha \ln x} f_i \right\|_{\infty, [x_0, b]} \right\} \left\| \prod_{j \neq i} f_j \right\|_{\infty, [a, b]}
\]
(65)

Proof. By Proposition 16, for $\psi (x) = \ln x$, $r = 3$. ■

References

Results On Sequential Conformable Fractional Derivatives With Applications

Mona Khandaqji1 & Aliaa Burqan2

1Department of Mathematics, Applied Science Private University, 166 Amman, Jordan.
2Department of Mathematics, Zarqa University, Zarqa, Jordan.

Abstract

This paper investigates and states some properties of sequential conformable fractional derivative introduced by R. Khalil et. al. in [1]. Further some theorems of the classical power series are generalized for the fractional power series(CFPS), where the CFPS technique is used to find the solutions of conformable fractional deferential equation with variable coefficients.

1 Introduction

The correspondence between L’Hôpital and Leibniz, in 1695, about what might be a derivative of order 1/2, led to the introduction of a generalization of integral and derivative operators, known as Fractional Calculus. Since then, related to the definition of fractional derivatives have been many definitions. The most popular ones of these definitions are Riemann-Liouville and Caputo definitions see [6],[7].

Recently, R. Khalil et al. [1] give a new definition of fractional derivative and fractional integral. In their work they proved the product rule, the fractional Rolle’s theorem and Mean Value Theorem utilizing the conformable fractional derivative definition. New construction of the generalized Taylor’s power series is obtained by Abdeljawad in[2]. In recent years, many researchers have focused on the approximate analytical solutions of the system of fractional differential equations and some methods have been developed such as fractional power series method(FPS) in [5]. FPS method is a simple technique to find out the recurrence relation that determines the coefficients.

02000 Mathematics Subject Classification. 26A33, 41A58.

Key words and phrases. Conformable fractional derivatives ; Fractional power series.
of the fractional power series, where this method is one of the most useful
techniques to solve linear system and non-linear system of fractional differ-
etial equations with a fast convergence rate and small calculation error.

In this work, we state some properties of sequential conformable frac-
tional derivative, then use the FPS technique to solve conformable fractional
differential equation of order two.

2 Conformable fractional derivative

In this section, we present some definitions and some important properties
of the conformable fractional derivative. The definition of the conformable
fractional derivative is defined as follows;

Definition 1 [1] Given a function \(f : [0, \infty) \rightarrow \mathbb{R} \). For \(\alpha \in (0,1) \), the
conformable fractional derivative (CFD) of \(f \) of order \(\alpha \) is defined by

\[
T_{\alpha}(f)(t) = \lim_{\varepsilon \to 0} \frac{f(t + \varepsilon t^{1-\alpha}) - f(t)}{\varepsilon}, \tag{1}
\]

for all \(t > 0 \). If \(f \) is \(\alpha \)-differentiable in some \((0, a)\), \(a > 0 \), and \(\lim_{t \to 0^+} f^{(\alpha)}(t) \)
eexists, then define

\[
f^{(\alpha)}(0) = \lim_{t \to 0^+} f^{(\alpha)}(t).
\]

A function \(f \) is called \(\alpha \)-differentiable at \(t \geq 0 \) if the above limits exists.
For simplicity we sometimes use the notation \(f^{(\alpha)}(t) \) instead of \(T_{\alpha}(f)(t) \).

Consider the limit \(\alpha \to 1^- \). In this case, for \(t > 0 \), we obtain the classical
definition for the first derivative of a function \(f^{(\alpha)}(t) = f'(t) \).

Theorem 2 [1] Let \(f : [0, \infty) \rightarrow \mathbb{R} \) be a differentiable function in the classical sense. Then \(f \) is \(\alpha \)-differentiable at \(t \), \(\alpha \in (0,1) \) and

\[
f^{(\alpha)}(t) = t^{1-\alpha} f'(t), \quad t > 0.
\]

Also, if \(f \) is continuously differentiable at 0, then \(f^{(\alpha)}(0) = 0 \).

Note that the function could be \(\alpha \)-differentiable at a point \(t_0 \) but not
differentiable at that point, as in the following example.

Example 3 For some fixed \(\alpha \), with \(\alpha \in (0,1) \), let \(f(t) = \frac{t^\alpha}{\alpha} \), \(t > 0 \). Note
that \(f'(0) \) does not exists but \(T_{\alpha}(f)(t) = \frac{t^\alpha}{\alpha} \) for \(t > 0 \), therefore \(f^{(\alpha)}(0) = \lim_{t \to 0^+} T_{\alpha}(f)(t) = 1 \).
Theorem 4 [1] If a function \(f : [0, \infty) \rightarrow \mathbb{R} \) is \(\alpha \)-differentiable at \(a > 0, \alpha \in (0, 1] \), then \(f \) is continuous at \(a \).

We list some Important properties of the operator \(T_\alpha \) as follows.

Theorem 5 [1] Let \(\alpha \in (0, 1] \) and \(f, g \) be \(\alpha \)-differentiable at a point \(t > 0 \). Then

1. \(T_\alpha (\lambda f + g) = \lambda T_\alpha (f) + T_\alpha (g) \), for all \(\lambda \in \mathbb{R} \).
2. \(T_\alpha (fg) = fT_\alpha (g) + gT_\alpha (f) \).
3. \(T_\alpha \left(\frac{f'}{g} \right) = \frac{gT_\alpha (f) - fT_\alpha (g)}{g^2} \).

Important examples of CFD are listed as follows:

Example 6 [1]

1. \(T_\alpha (tp) = pt^{p-\alpha} \)
2. \(T_\alpha (e^{at}) = at^{1-\alpha}e^{at}, \ a \in \mathbb{R} \).
3. \(T_\alpha (\sin(at)) = at^{1-\alpha} \cos(at), \ a \in \mathbb{R} \).
4. \(T_\alpha (\cos(at)) = -at^{1-\alpha} \sin(at), \ a \in \mathbb{R} \).
5. \(T_\alpha (e^{(1/\alpha)(t^\alpha)}) = e^{t^\alpha} \).
6. \(T_\alpha (\sin(1/\alpha \ t^\alpha)) = \cos(\frac{1}{\alpha} t^\alpha) \).
7. \(T_\alpha (\cos(1/\alpha \ t^\alpha)) = -\sin(\frac{1}{\alpha} t^\alpha) \).
8. \(T_\alpha (\frac{1}{\alpha} t^\alpha) = 1 \).

There are some properties that are not satisfied by operator \(T_\alpha \) as follows:

Theorem 7 [2] For \(\alpha, \beta \in (0, 1] \) and \(\alpha + \beta \in (1, 2] \), and the function \(f : (0, \infty) \rightarrow \mathbb{R} \) is twice differentiable on \((0, \infty)\). \(T_\alpha \) does not satisfy the Index Law; \(T_\alpha T_\beta = T_\beta T_\alpha \), where

\[
T_\alpha T_\beta (f) (t) = t^{1-(\alpha+\beta)} \left((1 - \beta) f' (t) + t f'' (t) \right),
\]

1. while,
\[
T_\beta T_\alpha (f) (t) = t^{1-(\alpha+\beta)} \left((1 - \alpha) f' (t) + t f'' (t) \right).
\]

Proof. Calculating \(T_\alpha T_\beta, T_\beta T_\alpha \) gives that

\[
T_\alpha T_\beta (f) (t) \neq T_\beta T_\alpha (f) (t),
\]

for \(\alpha \neq \beta \).
3 Sequential conformable fractional α-derivatives

In this section the higher order of conformable fractional derivative will be defined and the relation between CFD and polynomials will be given.

Definition 8 The second order CFD operator \(T_\alpha \), will be denoted by

\[
T^2_\alpha = T_\alpha (T_\alpha).
\]

In general the \(n^{th} \) order CFD operator \(T_\alpha \) is defined as

\[
T^n_\alpha = T_\alpha (T^{n-1}_\alpha).
\]

Note that the operators commute for each positive integers \(n, m \),

\[
T^n_\alpha T^m_\alpha = T^m_\alpha T^n_\alpha.
\]

The calculation of the second and the third sequential orders of CFD operator \(T_\alpha \) can be found in [2].

Theorem 9 Given a function \(f : (0, \infty) \rightarrow \mathbb{R} \). Then

\[
T^2_\alpha (f) (t) = T_\alpha T_\alpha (f) (t) = t^{1-2\alpha} \left((1 - \alpha) f' (t) + t f'' (t) \right),
\]

where \(f \) is twice differentiable, and twice \(\alpha \)-differentiable at \(t \). Also

\[
T^3_\alpha (f) (t) = t^{1-3\alpha} \left((1 - \alpha) (1 - 2\alpha) f' (t) + (3 - 3\alpha) t f'' (t) + t^2 f''' (t) \right),
\]

where \(f \) is three times differentiable at \(t \) and three times \(\alpha \)-differentiable at \(t \).

Lemma 10 If \(m \) and \(n \) are any positive integers and \(p \) a real number, then

\[
T^m_\alpha (t^p) = \prod_{i=0}^{m-1} (p - i \alpha) t^{p-m\alpha}.
\]

Proof.

\[
T^2_\alpha (t^p) = T_\alpha (T_\alpha t^p)
= T_\alpha (pt^{p-\alpha})
= p (p - \alpha) t^{p-2\alpha}.
\]
Also,

\[T_\alpha^3 (t^p) = T_\alpha \left(p (p - \alpha) t^{p-2\alpha} \right) = p (p - \alpha) (p - 2\alpha) t^{p-3\alpha}. \]

Then

\[T_\alpha^m (t^p) = p (p - \alpha) (p - 2\alpha) \ldots (p - (m - 1) \alpha) t^{p-m\alpha} = \prod_{i=0}^{m-1} (p - i \alpha) t^{p-m\alpha}. \]

\begin{corollary}
If \(n \) is a positive integer, then
\[T_\alpha^n (t^p) = \prod_{i=0}^{n-1} (n - i \alpha) t^{n(1-\alpha)}. \]
\end{corollary}

\begin{corollary}
If \(m \) and \(n \) are any positive integers and \(0 < \alpha < 1 \), then
\[T_\alpha^m (t^{n\alpha}) = \prod_{i=0}^{m-1} \alpha^m (n - i \alpha) t^{(n-m)\alpha}. \]
\end{corollary}

Applying Lemma 10 and using the linearity property of Theorem 5, we get

\begin{lemma}
If \(P_\alpha (t) = a_0 t^n + a_1 t^{n-1} + a_2 t^{n-2} + \cdots + a_n \) is a polynomial in \(t \) of degree \(n \), then
\[T_\alpha^m P_\alpha (t) = \sum_{j=0}^{n} a_j \prod_{i=0}^{m-1} (n - j - i \alpha) t^{(n-j-m)\alpha}. \]
\end{lemma}

Changing variable from \(t \to t^n \), we get the following result.

\begin{corollary}
If \(f(t) = a_0 t^{\alpha n} + a_1 t^{\alpha(n-1)} + a_2 t^{\alpha(n-2)} + \cdots + a_n \), then
\[T_\alpha^m f(t) = \sum_{j=0}^{n} a_j \prod_{i=0}^{m-1} (\alpha (n - i) - j) t^{(n-m)-j}. \]
\end{corollary}

The following theorem presents the \(n \)th sequential CF \(\alpha \)-derivative utilizing the limit definition as follows:

\begin{theorem}
Given a function \(f : [0, \infty) \to \mathbb{R} \). Then for \(0 < \alpha < 1 \) and \(n \) a positive integer, the \(n \)th order of the \(\alpha \)-conformable fractional derivative of \(f \) of is as follows
\[T_\alpha^n f(t) = \lim_{\varepsilon \to 0} \sum_{j=0}^{n} \frac{\binom{n}{j} (-1)^{n-j} f((1 + \varepsilon^{-\alpha})^j t)}{\varepsilon^n}, \]
where \(t > 0 \).
\end{theorem}
Proof. Since
\[T_\alpha f (t) = \lim_{\varepsilon \to 0} \frac{f(t + \varepsilon t^{1-\alpha}) - f(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{f(t (1 + \varepsilon^{-\alpha})) - f(t)}{\varepsilon}. \]

Let \(\delta = 1 + \varepsilon t^{-\alpha} \), we get
\[T_\alpha f (t) = \lim_{\delta \to 1} \frac{f(\delta t) - f(t)}{(\delta - 1) t^\alpha}. \]

Thus
\[T_\alpha^2 f (t) = \lim_{\delta \to 1} \frac{T_\alpha f(\delta t) - T_\alpha f(t)}{(\delta - 1) t^\alpha} = \lim_{\delta \to 1} \frac{f(\delta^2 t) - 2f(\delta t) + f(t)}{(\delta - 1)^2 t^{2\alpha}}. \]

Again calculating the 3rd order of the \(\alpha \)--conformable fractional derivative, we get
\[T_\alpha^3 f (t) = T_\alpha T_\alpha^2 f (t) = \lim_{\delta \to 1} \frac{T_\alpha f(\delta^2 t) - 2T_\alpha f(\delta t) + T_\alpha f(t)}{(\delta - 1)^2 t^{2\alpha}} \]
\[= \lim_{\delta \to 1} \frac{f(\delta^3 t) - 3f(\delta^2 t) + 3f(\delta t) + f(t)}{(\delta - 1)^3 t^{3\alpha}} = \lim_{\delta \to 1} \frac{\sum_{j=0}^{3} \binom{3}{j} (-1)^{3-j} f(\delta^j t)}{(\delta - 1)^3 t^{3\alpha}}. \]

Repeating this process \(n \) times, we get
\[T_\alpha^n f (t) = \lim_{\delta \to 1} \frac{\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} f(\delta^j t)}{(\delta - 1)^n t^{n\alpha}}. \]

Substituting \(\varepsilon = (\delta - 1) t^\alpha \), then
\[T_\alpha^n f (t) = \lim_{\varepsilon \to 0} \frac{\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} f ((1 + \varepsilon^{-\alpha})^j t)}{\varepsilon^n}. \]
4 Conformable Fractional Power Series Representation

Power series is an important tool in the study of elementary functions. Using this power expansion gives us the ability to make an approximate study of many differential equations. In this section, we will recall some important definitions and theorems of fractional power series theory.

Definition 16 For $\alpha \in (0, 1)$ a conformable fractional power series of the form

$$\sum_{n=0}^{\infty} c_n (t-t_0)^{n\alpha} = c_0 + c_1 (t-t_0)^{\alpha} + c_2 (t-t_0)^{2\alpha} + \ldots \ldots,$$

where $t > t_0 \geq 0$ is called the conformable fractional power series (CFPS) about t_0, where c_n denote the coefficients of the series, where $n \in \mathbb{N}$.

Note that for CFPS, we have the value c_0 for $n = 0$ at $t = t_0$, while $c_n = 0$ for $n \geq 1$ at $t = t_0$. Also note that for $t_0 = 0$, then the CFPS becomes

$$\sum_{n=0}^{\infty} c_n t^{n\alpha} = c_0 + c_1 t^{\alpha} + c_2 t^{2\alpha} + \ldots \ldots$$

Proposition 17 [4] If $\sum_{n=0}^{\infty} c_n t^{n\alpha}$ converges absolutely for $t = t_0 > 0$, then it converges absolutely for $t \in (0, t_0)$.

Theorem 18 The series $\sum_{n=0}^{\infty} c_n t^{n\alpha}$ converges, $-\infty < t < \infty$ has radius of convergence R, if and only if the series $\sum_{n=0}^{\infty} c_n t^{n\alpha}, t \geq 0$ has radius of convergence $R^{1/\alpha}, R > 0$.

Theorem 19 [2] Assume f is an infinitely α-differentiable function, for some $\alpha \in (0, 1]$ at a neighborhood of a point t_0. Then f has the Taylor CFPS series expansion as follows

$$f(t) = \sum_{k=0}^{\infty} \frac{T_k f(t_0)(t-t_0)^{k\alpha}}{\alpha^k k!}, \quad t \in \left(t_0, t_0 + R^{1/\alpha}\right), \quad R > 0.$$

The next following examples doesn’t have the Taylor PS expansion about $t_0 \geq 0$ since there are not differentiable there. But they have Taylor CFPS expansion at t_0.

7
Example 20 [2]

1. $e^{rac{1}{\alpha}((t-t_0)\alpha)} = \sum_{k=0}^{\infty} \frac{((t-t_0)\alpha)^k}{\alpha^k k!}, \text{ for } t \in [t_0, \infty).$

2. $\sin\left(\frac{1}{\alpha} (t-t_0)^\alpha\right) = \sum_{k=0}^{\infty} (-1)^k \frac{((t-t_0)^{2k+1}\alpha)}{\alpha^{2k+1} (2k+1)!}, \text{ for } t \in [t_0, \infty).$

3. $\cos\left(\frac{1}{\alpha} (t-t_0)^\alpha\right) = \sum_{k=0}^{\infty} (-1)^k \frac{((t-t_0)^{2k}\alpha)}{\alpha^{2k} 2k!}, \text{ for } t \in [t_0, \infty).$

4. $\frac{1}{\alpha} \frac{1}{1-(t-t_0)^\alpha} = \sum_{k=0}^{\infty} (t-t_0)^k, \text{ for } t \in [t_0, t_0 + 1).$

5 Solving CFD equation’s using CFPS

Example 21 Consider the following conformable fractional differential equation

$$T_\alpha^2 y(t) - t^\alpha y(t) = 0, \quad (2)$$

with initial conditions,

$$y(0) = 0, \quad T_\alpha y(0) = y_0; \quad (3)$$

where y_0 is a real constant.

Now using CFPS technique, let

$$y(t) = \sum_{n=0}^{\infty} c_n t^{n \alpha}.$$

Then

$$T_\alpha^2 y(t) = \sum_{n=2}^{\infty} \alpha^2 (n-1) c_n t^{(n-2) \alpha} = \sum_{n=0}^{\infty} \alpha^2 (n+1) (n+2) c_{n+2} t^{n \alpha}$$

and

$$t^\alpha y(t) = \sum_{n=0}^{\infty} c_n t^{(n+1) \alpha} = \sum_{n=1}^{\infty} c_{n-1} t^{n \alpha}. \quad (4)$$
Substituting $T_2^2y(t)$ and $t^n y(t)$ in CFDE, we get

$$\sum_{n=0}^{\infty} \alpha^n (n+1)(n+2)c_{n+2}t^{n+2} + \sum_{n=1}^{\infty} c_{n-1} t^{n+1} = 0.$$

Then from Formula (5), one can obtain

$$2\alpha^2 c_2 + \sum_{n=1}^{\infty} [\alpha^n (n+1)(n+2)c_{n+2} - c_{n-1}] t^{n+1} = 0.$$

Equating the coefficients of t^{n+1} to zero in both sides gives the following:

$$c_2 = 0, \text{ and } c_{n+2} = \frac{c_{n-1}}{\alpha^n (n+1)(n+2)}, \quad n = 1, 2, 3, \ldots \quad (5)$$

Considering the initial conditions of the CFDE,

$$c_0 = 0, \text{ and } c_1 = \frac{1}{\alpha} y_0.$$

Based on Equation 5, the coefficients of t^{n+1} can be divided into two categories: zero terms

$$c_2 = c_3 = c_5 = c_6 = c_8 = c_9 = c_{11} = c_{14} = \cdots = 0,$$

in general

$$c_{3n+2} = c_{3n+3}, \quad \text{for } n = 0, 1, 2, 3, \ldots$$

and non zero terms

$$c_{3n+1} \neq 0, \quad \text{for } n = 0, 1, 2, 3, \ldots,$$

that is $c_1, c_4, c_7, c_{10}, c_{13}, c_{16}, \ldots$, where

$$c_4 = \frac{c_4}{\alpha^2 (3.4)} = \frac{y_0}{\alpha^3 (3.4)},$$

$$c_7 = \frac{c_7}{\alpha^2 (6.7)} = \frac{y_0}{\alpha^5 (3.4.6.7)},$$

$$c_{10} = \frac{c_{10}}{\alpha^2 (9.10)} = \frac{y_0}{\alpha^7 (3.4.6.7.9.10)},$$

$$c_{10} = \frac{c_{10}}{\alpha^2 (9.10)} = \frac{y_0}{\alpha^9 (3.4.6.7.9.10)}.$$

\ldots \ldots \ldots
Then, one can obtain the following CFPS as follows

\[y(t) = c_1 t^{\alpha_1} + c_4 t^{4\alpha_1} + c_7 t^{7\alpha_1} + c_{10} t^{10\alpha_1} + \cdots \]

\[= \frac{1}{\alpha} y_0 t^{\alpha_0} + \frac{y_0}{\alpha^3 (3.4)} t^{4\alpha_1} + \frac{y_0}{\alpha^5 (3.4.6.7)} t^{7\alpha_1} + \frac{y_0}{\alpha^9 (3.4.6.7.9.10)} t^{10\alpha_1} + \cdots \]

\[= \frac{1}{\alpha} y_0 \left(1 + \sum_{k=1}^{\infty} \frac{1}{\alpha^{2k} \prod_{i=0}^{k} (3i)(3i+1)} t^{(3k+1)\alpha} \right) . \]

Conclusion 22 The main aim of this work is to provide a reliable algorithm for the solutions to the systems of fractional differential equations by using the CFPS.

Acknowledgement 23 The authors acknowledges Applied Science Private University, Amman, Jordan for the fully financial support granted of this research article.

References

Multivariate Ostrowski-Sugeno Fuzzy inequalities

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract
Here we present multivariate Ostrowski-Sugeno Fuzzy type inequalities. These are multivariate Ostrowski-like inequalities in the context of Sugeno fuzzy integral and its special properties. They give tight upper bounds to the deviation of a multivariate function from its Sugeno-fuzzy multivariate averages.

2010 Mathematics Subject Classification: Primary: 26D07, 26D10, 26D15, 41A44, Secondary: 26A24, 26D20, 28A25.

Keywords and phrases: Sugeno fuzzy integral, multivariate function fuzzy average, deviation from fuzzy multivariate mean, Fuzzy multivariate Ostrowski inequality.

1 Introduction
The famous Ostrowski ([4]) inequality motivates this work and has as follows:

\[\left| \frac{1}{b-a} \int_a^b f(y) dy - f(x) \right| \leq \left(\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{(b-a)^2} \right)^2 \right) (b-a) \| f' \|_\infty, \]

where \(f \in C^1 ([a,b]), x \in [a,b], \) and it is a sharp inequality.

Another motivation comes from author’s [2], pp. 507-508, see also [1]:

Let \(f \in C^1 \left(\prod_{i=1}^k [a_i, b_i] \right), \) where \(a_i < b_i; a_i, b_i \in \mathbb{R}, i = 1, \ldots, k, \) and let
\[x_0 := (x_{01}, \ldots, x_{0k}) \in \prod_{i=1}^k [a_i, b_i] \] be fixed. Then

\[\left| \frac{1}{\prod_{i=1}^k (b_i - a_i)} \int_{a_1}^{b_1} \ldots \int_{a_i}^{b_i} \ldots \int_{a_k}^{b_k} f(z_1, \ldots, z_k) dz_1 \ldots dz_k - f(x_0) \right| \leq \left(\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{(b-a)^2} \right)^2 \right) (b-a) \| f' \|_\infty, \]
\[\sum_{i=1}^{k} \left(\frac{(x_{0i} - a_i)^2 + (b_i - x_{0i})^2}{2(b_i - a_i)} \right) \left\| \frac{\partial f}{\partial z_i} \right\|_\infty. \]

The last inequality is sharp, the optimal function is
\[f^* (z_1, ..., z_k) := \sum_{i=1}^{k} |z_i - x_{0i}|^{\alpha_i}, \quad \alpha_i > 1. \]

Here, first we give a survey about Sugeno fuzzy integral and its basic special properties. Then, we derive a set of multivariate Ostrowski-like inequalities to all directions in the context of Sugeno integral within its basic important properties. We finish with an application to a special multivariate case.

2 Background

In this section, some definitions and basic important properties of the Sugeno integral which will be used in the next section are presented. Also, a preparation for the main results in Section 3 is given.

Definition 1 (Fuzzy measure [6, 8]) Let \(\Sigma \) be a \(\sigma \)-algebra of subsets of \(X \), and let \(\mu : \Sigma \to [0, +\infty] \) be a non-negative extended real-valued set function. We say that \(\mu \) is a fuzzy measure iff:

1. \(\mu (\emptyset) = 0 \),
2. \(E, F \in \Sigma : E \subseteq F \) imply \(\mu (E) \leq \mu (F) \) (monotonicity),
3. \(E_n \in \Sigma \) (\(n \in \mathbb{N} \)), \(E_1 \subset E_2 \subset ... \), imply \(\lim_{n \to \infty} \mu (E_n) = \mu (\bigcup_{n=1}^{\infty} E_n) \) (continuity from below);
4. \(E_n \in \Sigma \) (\(n \in \mathbb{N} \)), \(E_1 \supset E_2 \supset ... \), \(\mu (E_1) < \infty \), imply \(\lim_{n \to \infty} \mu (E_n) = \mu (\bigcap_{n=1}^{\infty} E_n) \) (continuity from above).

Let \((X, \Sigma, \mu) \) be a fuzzy measure space and \(f \) be a non-negative real-valued function on \(X \). We denote by \(\mathcal{F}_+ \) the set of all non-negative real valued measurable functions, and by \(L_\alpha f \) the set: \(L_\alpha f := \{ x \in X : f (x) \geq \alpha \} \), the \(\alpha \)-level of \(f \) for \(\alpha \geq 0 \).

Definition 2 Let \((X, \Sigma, \mu) \) be a fuzzy measure space. If \(f \in \mathcal{F}_+ \) and \(A \in \Sigma \), then the Sugeno integral (fuzzy integral) \([7]\) of \(f \) on \(A \) with respect to the fuzzy measure \(\mu \) is defined by

\[(S) \int_A f d\mu := \vee_{\alpha \geq 0} (\alpha \wedge \mu (A \cap L_\alpha f)), \quad (1) \]

where \(\vee \) and \(\wedge \) denote the sup and inf on \([0, \infty]\), respectively.

The basic properties of Sugeno integral follow:
Theorem 3 ([5, 8]) Let \((X, \Sigma, \mu)\) be a fuzzy measure space with \(A, B \in \Sigma\) and \(f, g \in \mathcal{F}_+\). Then

1) \(\int_A f \, d\mu \leq \mu (A)\);
2) \(\int_A kg = k \wedge \mu (A)\) for a non-negative constant \(k\);
3) if \(f \leq g\) on \(A\), then \(\int_A f \, d\mu \leq \int_A g \, d\mu\);
4) if \(A \subseteq B\), then \(\int_A f \, d\mu \leq \int_B f \, d\mu\);
5) \(\mu (A \cap L_\alpha f) \leq \alpha \Rightarrow \int_A f \, d\mu \leq \alpha\);
6) if \(\mu (A) < \infty\), then \(\mu (A \cap L_\alpha f) \geq \alpha \Leftrightarrow \int_A f \, d\mu \geq \alpha\);
7) when \(A = X\), then \(\int_A f \, d\mu = \vee_{\alpha \geq 0} (\alpha \wedge \mu (L_\alpha f))\);
8) if \(\alpha \leq \beta\), then \(L_\beta f \subseteq L_\alpha f\);
9) \(\int_A f \, d\mu \geq 0\).

Theorem 4 ([8], p. 135) Here \(f \in \mathcal{F}_+\), the class of all finite nonnegative measurable functions on \((X, \Sigma, \mu)\). Then

1) if \(\mu (A) = 0\), then \(\int_A f \, d\mu = 0\), for any \(f \in \mathcal{F}_+\);
2) if \(\int_A f \, d\mu = 0\), then \(\mu (A \cap \{x | f (x) > 0\}) = 0\);
3) \(\int_A f \, d\mu = \int_X f \cdot \chi_A d\mu\), where \(\chi_A\) is the characteristic function of \(A\);
4) \(\int_A (f + a) \, d\mu \leq \int_A f \, d\mu + \int_A a d\mu\), for any constant \(a \in [0, \infty)\).

Corollary 5 ([8], p. 136) Here \(f_1, f_2 \in \mathcal{F}_+\). Then

1) \(\int_A (f_1 \lor f_2) \, d\mu \geq \int_A f_1 \, d\mu \lor \int_A f_2 \, d\mu\);
2) \(\int_A (f_1 \land f_2) \, d\mu \leq \int_A f_1 \, d\mu \land \int_A f_2 \, d\mu\);
3) \(\int_{A \cup B} f \, d\mu \geq \int_A f \, d\mu \lor \int_B f \, d\mu\);
4) \(\int_{A \cap B} f \, d\mu \leq \int_A f \, d\mu \land \int_B f \, d\mu\).

In general we have

\[(S) \int_A (f_1 + f_2) \, d\mu \neq (S) \int_A f_1 \, d\mu + (S) \int_A f_2 \, d\mu, \]

and

\[(S) \int_A af \, d\mu \neq a (S) \int_A f \, d\mu, \text{ where } a \in \mathbb{R}, \]

see [8], p. 137.

Lemma 6 ([8], p. 138) \(\int_A f \, d\mu = \infty\) iff \(\mu (A \cap L_\alpha f) = \infty\) for any \(\alpha \in [0, \infty)\).

We need

Definition 7 ([3]) A fuzzy measure \(\mu\) is subadditive iff \(\mu (A \cup B) \leq \mu (A) + \mu (B)\), for all \(A, B \in \Sigma\).

We mention
Theorem 8 ([9]) If μ is subadditive, then
\[
(S) \int_X (f + g) \, d\mu \leq (S) \int_X f \, d\mu + (S) \int_X g \, d\mu,
\]
for all measurable functions $f, g : X \to [0, \infty)$.

Moreover, if (2) holds for all measurable functions $f, g : X \to [0, \infty)$ and $\mu(X) < \infty$, then μ is subadditive.

Notice here in (1) we have that $\alpha \in [0, \infty)$.

We have

Corollary 9 If μ is subadditive, $n \in \mathbb{N}$, and $f : X \to [0, \infty)$ is a measurable function, then
\[
(S) \int_X n f \, d\mu \leq n (S) \int_X f \, d\mu,
\]
in particular it holds
\[
(S) \int_A n f \, d\mu \leq n (S) \int_A f \, d\mu,
\]
for any $A \in \Sigma$.

Proof. By (2).

A very important property of Sugeno integral follows.

Theorem 10 If μ is subadditive measure, and $f : X \to [0, \infty)$ is a measurable function, and $c > 0$, then
\[
(S) \int_A c f \, d\mu \leq (c + 1) (S) \int_A f \, d\mu,
\]
for any $A \in \Sigma$.

Proof. Let the ceiling $[c] = m \in \mathbb{N}$, then by Theorem 3 (3) and (4) we get
\[
(S) \int_A c f \, d\mu \leq (S) \int_A m f \, d\mu \leq m (S) \int_A f \, d\mu \leq (c + 1) (S) \int_A f \, d\mu,
\]
proving (5).

From now on in this article we work on the fuzzy measure space (Q, \mathcal{B}, μ), where $Q \subset \mathbb{R}^k$, $k \geq 1$ is a convex compact subset, \mathcal{B} is the Borel σ-algebra on Q, and μ is a finite fuzzy measure on \mathcal{B}. Typically we take it to be subadditive.

The functions f we deal with here are continuous from Q into \mathbb{R}_+.

We make

Remark 11 Let $f \in C(Q, \mathbb{R}_+)$, and μ is a subadditive fuzzy measure such that $\mu(Q) > 0$, $\forall x \in Q$. We will estimate
\[
E(x) := \left| (S) \int_Q f(t) \, d\mu(t) - \mu(Q) \wedge f(x) \right|,
\]
for $\forall x \in Q$.
We notice that
\[f(t) = f(t) - f(x) + f(x) \leq |f(t) - f(x)| + f(x), \]
then (by Theorem 3 (3) and Theorem 4 (4))
\[(S) \int_Q f(t) \, d\mu(t) \leq (S) \int_Q |f(t) - f(x)| \, d\mu(t) + (S) \int_Q f(x) \, d\mu(t), \tag{7} \]
that is
\[(S) \int_Q f(t) \, d\mu(t) - (S) \int_Q f(x) \, d\mu(t) \leq (S) \int_Q |f(t) - f(x)| \, d\mu(t). \tag{8} \]
Similarly, we have
\[f(x) = f(x) - f(t) + f(t) \leq |f(t) - f(x)| + f(t), \]
then (by Theorem 3 (3) and Theorem 8)
\[(S) \int_Q f(x) \, d\mu(t) \leq (S) \int_Q |f(t) - f(x)| \, d\mu(t) + (S) \int_Q f(t) \, d\mu(t), \]
that is
\[(S) \int_Q f(x) \, d\mu(t) - (S) \int_Q f(t) \, d\mu(t) \leq (S) \int_Q |f(t) - f(x)| \, d\mu(t). \tag{9} \]
By (8) and (9) we derive that
\[\left| (S) \int_Q f(t) \, d\mu(t) - (S) \int_Q f(x) \, d\mu(t) \right| \leq (S) \int_Q |f(t) - f(x)| \, d\mu(t). \tag{10} \]
Consequently it holds
\[E(x) \overset{(by \,(6),\,(10))}{\leq} (S) \int_Q |f(t) - f(x)| \, d\mu(t), \tag{11} \]
where \(t = (t_1,...,t_k), \ x = (x_1,...,x_k). \)

We will use (11).
3 Main Results

We make

Remark 12 Here $Q := \prod_{i=1}^{k} [a_i, b_i]$, where $a_i < b_i$; $a_i, b_i \in \mathbb{R}$, $i = 1, ..., k$; $x = (x_1, ..., x_k) \in \prod_{i=1}^{k} [a_i, b_i]$ is fixed, and $f \in C^1\left(\prod_{i=1}^{k} [a_i, b_i], \mathbb{R}_+\right)$. Consider $g_t (r) := f(x + r(t - x))$, $r \geq 0$. Note that $g_t (0) = f(x)$, $g_t (1) = f(t)$. Thus

$$f(t) - f(x) = g_t (1) - g_t (0) = g_t' (\xi) (1 - 0) = g_t' (\xi),$$

where $\xi \in (0, 1)$. I.e.

$$f(t) - f(x) = \sum_{i=1}^{k} (t_i - x_i) \frac{\partial f}{\partial t_i}(x + \xi (t - x)).$$

Hence

$$|f(t) - f(x)| \leq \sum_{i=1}^{k} |t_i - x_i| \left| \frac{\partial f}{\partial t_i}(x + \xi (t - x)) \right|$$

$$\leq \sum_{i=1}^{k} |t_i - x_i| \left\| \frac{\partial f}{\partial t_i} \right\|_{\infty}.$$

By (11) we get

$$\left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} f(t) d\mu(t) - \mu\left(\prod_{i=1}^{k} [a_i, b_i] \right) \wedge f(x) \leq$$

$$\left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} |f(t) - f(x)| d\mu(t) \overset{(14)}{\leq}$$

$$\left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} \left(\sum_{i=1}^{k} |t_i - x_i| \left\| \frac{\partial f}{\partial t_i} \right\|_{\infty} \right) d\mu(t) \overset{(2)}{\leq}$$

$$\sum_{i=1}^{k} \left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} |t_i - x_i| \left\| \frac{\partial f}{\partial t_i} \right\|_{\infty} d\mu(t) \overset{(5)}{\leq}$$

$$\sum_{i=1}^{k} \left(\left\| \frac{\partial f}{\partial t_i} \right\|_{\infty} + 1 \right) \left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} |t_i - x_i| d\mu(t).$$

(15)

Here μ is a fuzzy subadditive measure with $\mu\left(\prod_{i=1}^{k} [a_i, b_i] \right) > 0.$
Therefore we get

\[
\left| \frac{1}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} (S) \int_{\prod_{i=1}^{k} [a_i, b_i]} f(t) \, d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \right) \right| \leq 1
\]

\[
\sum_{i=1}^{k} \left(\frac{\|f\|_{Lip}}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} + 1 \right) \left((S) \int_{\prod_{i=1}^{k} [a_i, b_i]} |t_i - x_i| \, d\mu(t) \right).
\]

Notice here

\[
\left(1 \wedge \frac{f(x)}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \right) \leq 1, \text{ and}
\]

\[
\frac{1}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} (S) \int_{\prod_{i=1}^{k} [a_i, b_i]} f(t) \, d\mu(t) \leq 1,
\]

where \((S) \int_{\prod_{i=1}^{k} [a_i, b_i]} f(t) \, d\mu(t) \geq 0\).

If \(f : \prod_{i=1}^{k} [a_i, b_i] \to \mathbb{R}_+\) is a Lipschitz function of order \(0 < \alpha \leq 1\), i.e.

\[
|f(x) - f(y)| \leq K \|x - y\|_i^\alpha, \forall x, y \in \prod_{i=1}^{k} [a_i, b_i], K > 0, \text{ where } \|x - y\|_i := \sum_{i=1}^{k} |x_i - y_i|, \text{ denoted by } f \in Lip_{\alpha, K} \left(\prod_{i=1}^{k} [a_i, b_i], \mathbb{R}_+ \right), \text{ then by (11) we get}
\]

\[
\left| (S) \int_{\prod_{i=1}^{k} [a_i, b_i]} f(t) \, d\mu(t) - \mu \left(\prod_{i=1}^{k} [a_i, b_i] \right) \wedge f(x) \right| \leq 1
\]

\[
(S) \int_{\prod_{i=1}^{k} [a_i, b_i]} |f(t) - f(x)| \, d\mu(t) \leq
\]

\[
(S) \int_{\prod_{i=1}^{k} [a_i, b_i]} K \|t - x\|_i^\alpha \, d\mu(t) \leq 1
\]

\[
(K + 1) (S) \int_{\prod_{i=1}^{k} [a_i, b_i]} \|t - x\|_i^\alpha \, d\mu(t).
\]

We have proved

\[
\left| \frac{1}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} (S) \int_{\prod_{i=1}^{k} [a_i, b_i]} f(t) \, d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \right) \right| \leq 1
\]
\[
\frac{(K+1)}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} \|t - x\|_t^\alpha d\mu(t).
\]

We have established the following multivariate Ostrowski-Sugeno inequalities.

Theorem 13 Here \(\mu \) is a fuzzy subadditive measure with \(\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right) > 0 \), \(x \in \prod_{i=1}^{k} [a_i, b_i] \).

1) Let \(f \in C^1 \left(\prod_{i=1}^{k} [a_i, b_i], \mathbb{R}_+ \right) \), then

\[
\frac{1}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} f(t) d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \right) \leq\tag{19}
\]

\[
\sum_{i=1}^{k} \left(\frac{\left\| \frac{\partial f}{\partial t_i} \right\|_\infty + 1}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \right) \left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} |t_i - x_i| d\mu(t).
\]

2) Let \(f \in \text{Lip}_{\alpha,K} \left(\prod_{i=1}^{k} [a_i, b_i], \mathbb{R}_+ \right) \), \(0 < \alpha \leq 1 \), then

\[
\frac{1}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} f(t) d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \right) \leq\tag{20}
\]

\[
\frac{(K+1)}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \left(S \right) \int_{\prod_{i=1}^{k} [a_i, b_i]} \|t - x\|_t^\alpha d\mu(t).
\]

We make

Remark 14 Let \(Q \) be a compact and convex subset of \(\mathbb{R}^k \), \(k \geq 1 \). Let \(f \in (C(Q, \mathbb{R}_+) \cap C^{n+1}(Q)) \), \(n \in \mathbb{N} \) and \(x \in Q \) is fixed such that all partial derivatives \(f_\alpha := \frac{\partial^\alpha f}{\partial t^\alpha} \), where \(\alpha = (\alpha_1, \ldots, \alpha_k) \), \(\alpha_i \in \mathbb{Z}^+ \), \(i = 1, \ldots, k \), \(|\alpha| = \sum_{i=1}^{k} \alpha_i = j \), \(j = 1, \ldots, n \) fulfill \(f_\alpha(x) = 0 \).

By [2], p. 513, we get that

\[
|f(t) - f(x)| \leq \frac{\left(\sum_{i=1}^{k} |t_i - x_i| \left\| \frac{\partial f}{\partial t_i} \right\|_\infty \right)^{n+1}}{(n+1)!}, \quad \forall t \in Q.\tag{21}
\]
Call
\[D_{n+1}(f) := \max_{\alpha:|\alpha|=n+1} \| f_\alpha \|_\infty. \] (22)

For example, when \(k = 2 \) and \(n = 1 \), we get that
\[(t_1 - x_1)^2 \left\| \frac{\partial^2 f}{\partial t_1^2} \right\|_\infty + 2|t_1 - x_1||t_2 - x_2| \left\| \frac{\partial^2 f}{\partial t_1 \partial t_2} \right\|_\infty + (t_2 - x_2)^2 \left\| \frac{\partial^2 f}{\partial t_2^2} \right\|_\infty, \] (23)
and
\[D_2(f) = \max_{\alpha:|\alpha|=2} \| f_\alpha \|_\infty. \] (24)

Clearly, it holds
\[\left(\sum_{i=1}^k |t_i - x_i| \left\| \frac{\partial}{\partial t_i} \right\|_\infty \right)^{n+1} f \leq D_{n+1}(f) \| t - x \|_{l_1}^{n+1}, \quad \forall t \in Q. \] (25)

Consequently, we derive that
\[\left(\sum_{i=1}^k |t_i - x_i| \left\| \frac{\partial}{\partial t_i} \right\|_\infty \right)^{n+1} f \leq D_{n+1}(f) \| t - x \|_{l_1}^{n+1}, \quad \forall t \in Q. \] (26)

By (11) we get
\[\left(\int_Q f(t) \, d\mu(t) - \mu(Q) \wedge f(x) \right) \leq \int_Q |f(t) - f(x)| \, d\mu(t) \] (27)
\[\left(\int_Q \left(\sum_{i=1}^k |t_i - x_i| \left\| \frac{\partial}{\partial t_i} \right\|_\infty \right)^{n+1} f \right) \frac{d\mu(t)}{(n+1)!} \leq D_{n+1}(f) \| t - x \|_{l_1}^{n+1} \] (28)
\[\left(\int_Q \frac{D_{n+1}(f)}{(n+1)!} \| t - x \|_{l_1}^{n+1} \right) d\mu(t). \]

Here \(\mu \) is a fuzzy subadditive measure with \(\mu(Q) > 0 \).

By (27) and (28) we obtain
\[\left| \frac{1}{\mu(Q)} \int_Q f(t) \, d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu(Q)}\right) \right| \leq \]
\[
\frac{\left(\frac{D_{n+1}(f)}{(n+1)!} + 1 \right)}{\mu(Q)} (S) \int_Q \|t - x\|_{l_1}^{n+1} d\mu(t).
\]

(29)

We have established the following multivariate Ostrowski-Sugeno general inequality:

Theorem 15 Let \(Q \) be a compact and convex subset of \(\mathbb{R}^k \), \(k \geq 1 \). Let \(f \in (C(Q, \mathbb{R}_+) \cap C^{n+1}(Q)), n \in \mathbb{N}, x \in Q \) be fixed: \(f_\alpha(x) = 0 \), all \(\alpha : |\alpha| = j, j = 1, \ldots, n \). Here \(\mu \) is a fuzzy subadditive measure with \(\mu(Q) > 0 \). Then

\[
\frac{1}{\mu(Q)} (S) \int_Q f(t) d\mu(t) - \left(1 \land \frac{f(x)}{\mu(Q)} \right) \leq \frac{\left(\frac{D_{n+1}(f)}{(n+1)!} + 1 \right)}{\mu(Q)} (S) \int_Q \|t - x\|_{l_1}^{n+1} d\mu(t).
\]

(30)

Corollary 16 All as in Theorem 15. Then

\[
\frac{1}{\mu(Q)} (S) \int_Q f(t) d\mu(t) - \left(1 \land \frac{f(x)}{\mu(Q)} \right) \leq \frac{\left(1 + \frac{1}{(n+1)!} \right)}{\mu(Q)} (S) \int_Q \left[\left(\sum_{i=1}^{k} |t_i - x_i| \left\| \frac{\partial}{\partial x_i} \right\|_{\infty} \right)^{n+1} f \right] d\mu(t).
\]

(31)

Next we take again \(Q := \prod_{i=1}^{k} [a_i, b_i] \), we set \(a := (a_1, \ldots, a_k), b := (b_1, \ldots, b_k) \), and \(\frac{a+b}{2} = (\frac{a_1+b_1}{2}, \ldots, \frac{a_k+b_k}{2}) \in \prod_{i=1}^{k} [a_i, b_i] \).

Corollary 17 Let \(f \in \left(C \left(\prod_{i=1}^{k} [a_i, b_i], \mathbb{R}_+ \right) \cap C^{n+1} \left(\prod_{i=1}^{k} [a_i, b_i] \right) \right), n \in \mathbb{N}, \) such that \(f_\alpha \left(\frac{a+b}{2} \right) = 0 \), all \(\alpha : |\alpha| = j, j = 1, \ldots, n \). Here \(\mu \) is a fuzzy subadditive measure with \(\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right) > 0 \). Then

\[
\frac{1}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} (S) \int_{\prod_{i=1}^{k} [a_i, b_i]} f(t) d\mu(t) - \left(1 \land \frac{f \left(\frac{a+b}{2} \right)}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} \right) \leq \frac{\left(\frac{D_{n+1}(f)}{(n+1)!} + 1 \right)}{\mu \left(\prod_{i=1}^{k} [a_i, b_i] \right)} (S) \int_{\prod_{i=1}^{k} [a_i, b_i]} \|t - \frac{a+b}{2}\|_{l_1}^{n+1} d\mu(t).
\]

(32)
Proof. By Theorem 15. ■

We make

Remark 18 By multinomial theorem we have that

$$\|t - x\|_{i_1}^{n+1} = \left(\sum_{i=1}^{k} |t_i - x_i| \right)^{n+1} = \sum_{r_1 + r_2 + \ldots + r_k = n+1} \binom{n+1}{r_1, r_2, \ldots, r_k} |t_1 - x_1|^{r_1} |t_2 - x_2|^{r_2} \ldots |t_k - x_k|^{r_k},$$

where

$$\binom{n+1}{r_1, r_2, \ldots, r_k} = \frac{(n+1)!}{r_1!r_2!\ldots r_k!}.$$ (33)

By (27), (28) we get

$$\left(\int_Q f(t) \, d\mu(t) - \mu(Q) \wedge f(x) \right) \leq \int_Q \left[\frac{D_{n+1}(f)}{n+1!} \right] \|t - x\|_{i_1}^{n+1} \, d\mu(t) \quad \text{(by (33), (34))}$$

$$\int_Q \left[\sum_{r_1 + r_2 + \ldots + r_k = n+1} \left(\frac{D_{n+1}(f)}{r_1!r_2!\ldots r_k!} \right) \left(\prod_{i=1}^{k} |t_i - x_i|^{r_i} \right) \right] \, d\mu(t) \leq \sum_{r_1 + r_2 + \ldots + r_k = n+1} \left(\frac{D_{n+1}(f)}{r_1!r_2!\ldots r_k!} + 1 \right) \int_Q \left(\prod_{i=1}^{k} |t_i - x_i|^{r_i} \right) \, d\mu(t).$$

We have proved the following multivariate Ostrowski-Sugeno general inequality:

Theorem 19 Here all as in Theorem 15. Then

$$\left| \int_Q f(t) \, d\mu(t) - \mu(Q) \wedge \frac{f(x)}{\mu(Q)} \right| \leq \sum_{r_1 + r_2 + \ldots + r_k = n+1} \left(\frac{D_{n+1}(f)}{r_1!r_2!\ldots r_k!} + 1 \right) \int_Q \left(\prod_{i=1}^{k} |t_i - x_i|^{r_i} \right) \, d\mu(t).$$

We make
Remark 20 In case $k = 2, n = 1$, by (27), (28) we get

\[
\left| (S) \int_Q f(t) \, d\mu(t) - \mu(Q) \wedge f(x) \right| \leq \\
(S) \int_Q \frac{D_2(f)}{2} \|t - x\|_{l_1}^2 \, d\mu(t) = \\
(S) \int_Q \frac{D_2(f)}{2} \left[(t_1 - x_1)^2 + 2|t_1 - x_1| |t_2 - x_2| + (t_2 - x_2)^2 \right] \, d\mu(t) \leq
\]

(37)

\[
(S) \int_Q \frac{D_2(f)}{2} (t_1 - x_1)^2 \, d\mu(t) + (S) \int_Q D_2(f) |t_1 - x_1| |t_2 - x_2| \, d\mu(t) \\
+ (S) \int_Q \frac{D_2(f)}{2} (t_2 - x_2)^2 \, d\mu(t) \\
\left(1 + \frac{D_2(f)}{2} \right) (S) \int_Q (t_1 - x_1)^2 \, d\mu(t) + (1 + D_2(f)) (S) \int_Q |t_1 - x_1| |t_2 - x_2| \, d\mu(t) \\
+ \left(1 + \frac{D_2(f)}{2} \right) (S) \int_Q (t_2 - x_2)^2 \, d\mu(t) .
\]

(38)

We have proved

Corollary 21 Let Q be a compact and convex subset of \mathbb{R}^2. Let $f \in (C(Q, \mathbb{R}^+) \cap C^2(Q))$, $x = (x_1, x_2) \in Q$ be fixed: $\frac{\partial f}{\partial t_1}(x_1, x_2) = \frac{\partial f}{\partial t_2}(x_1, x_2) = 0$. Here μ is a fuzzy subadditive measure with $\mu(Q) > 0$. Then

\[
\frac{1}{\mu(Q)} (S) \int_Q f(t) \, d\mu(t) - \left(1 \wedge \frac{f(x)}{\mu(Q)} \right) \leq \\
\left(1 + \frac{D_2(f)}{2} \right) \frac{\mu(Q)}{\mu(Q)} (S) \int_Q (t_1 - x_1)^2 \, d\mu(t) + \frac{1 + D_2(f)}{\mu(Q)} (S) \int_Q |t_1 - x_1| |t_2 - x_2| \, d\mu(t) \\
+ \left(1 + \frac{D_2(f)}{2} \right) \frac{\mu(Q)}{\mu(Q)} (S) \int_Q (t_2 - x_2)^2 \, d\mu(t) .
\]

References

SOME APPLICATIONS OF INTERVAL-VALUED SUBSETHOOD MEASURES WHICH ARE DEFINED BY INTERVAL-VALUED CHOQUET INTEGRALS IN TRADE EXPORTS BETWEEN KOREA AND ITS TRADING PARTNERS

JACOB WOOD, LEE-CHAE JANG*, HYUN-MEE KIM

Department of Business
James Cook University Singapore, 149 Sims Road, Singapore 387380
E-mail : jacob.wood@jcu.edu.au

*Correspondence Author, Graduate School of Education,
Konkuk University, Seoul 143-701, Republic of Korea
E-mail : lcjang@konkuk.ac.kr

Graduate School of Education,
Kookmin University, Seoul 02707, Republic of Korea
E-mail : kagness@kookmin.ac.kr

Abstract. In this paper, we consider subsethood measures introduced by Fan et al. [3] and the interval-valued Choquet integral with respect to a fuzzy measure of interval-valued fuzzy sets. Based on such a focus, we define three types of interval-valued subsethood measures and provide four interval-valued fuzzy sets to animal product exports between Korea and four selected trading partners.

In particular, we investigate a strong interval-valued subsethood measure defined by the interval-valued Choquet integral which represents the degree of trade surplus between Korea and three trading partners in terms of the model of trade transactions with the United States and Korea.

1. Introduction

Zadeh[18] first developed fuzzy sets and Murofushi-Sugeno [11] have studied fuzzy measures and Choquet integrals. Subsequently, using set-valued analysis theory developed by Aumann[1], we studied interval-valued Choquet integrals and their related applications(see[5, 6, 7, 8, 9]). In particular, through the restudy of the interval-valued Choquet integral in 2004 by Zhang-Guo-Liu[21], this research has been developed in a much more systematical...
manner. Xuechang [16], Zeng-Li [19] have examined fuzzy entropy, distance and similarity measures, the likes of which form three key concepts of fuzzy set theory. Ruan-Kerre [12] also introduced various fuzzy implication operators and the Choquet integral were suggested for the first time by Choquet [2]. Further studied by Murofushi-Sugeno [9], Jang-Kwon [10], and Jang [12] provide some interesting interpretations of fuzzy measures and the Choquet integral. Subjective probability and Choquet expected utility were studied as an application of Choquet integral and form another pivotal component of fuzzy sets and information theories (see [13, 14, 15, 20]).

A subsethood measure refers to the degree to which a fuzzy set is a subset of another fuzzy set. Many researchers have contributed to the area of a fuzzy subsethood measure that is closely related to the various tools introduced above (see [6, 7, 8, 11]). Their efforts have considered axiomatizing the properties of a subsethoods measure.

In this paper, we consider subsethood measures introduced by Fan et al. [3] and the interval-valued Choquet integral with respect to a fuzzy measure of interval-valued fuzzy sets. Based on such a focus, we define three types of interval-valued subsethood measures and provide four interval-valued fuzzy sets to animal product exports between Korea and four selected trading partners. In configuring the four interval-valued fuzzy sets, the original data (see [4]) used had to be slightly modified to produce Table A4. In order to calculate the interval-valued Choquet integral, the rules (46) and (48) were introduced.

Furthermore, we also investigate a strong interval-valued subsethood measure defined by an interval-valued Choquet integral which represents the degree of trade surplus between Korea and 3 trading partners in terms of the model of trade transactions with the United States and Korea. The information for the above degree of surplus is of great significance in providing accurate comparative figures on the size of trade that exists between the four countries that trade with Korea.

2. Preliminaries and definitions

Throughout this paper, we write X to denote a set,

$$F(X) = \{ A | A = \{(x, m_A(x)) | x \in X\}, m_A : X \rightarrow [0, 1] \text{ is a function} \} \tag{1}$$

stands for the set of fuzzy sets in X (see [18]). We note that m_A expresses the membership of a fuzzy set A, A^c is the complement of A, that is,

$$A^c = \{(x, m_{A^c}(x)) | m_{A^c}(x) = 1 - m_A(x), x \in X\}. \tag{2}$$

Recall that for $A, B \in F(X)$, $A \subset B$ if and only if $m_A(x) \leq m_B(x)$, for all $x \in X$, and for $A \in F(X)$, $|A| = \{ x \in X | m_A(x) > 0 \}$, $n(A)$ is the cardinal number of crisp set $|A|$, and $M(A)$ is the fuzzy cardinal of A, that is, $M(A) = \sum_{x \in X} m_A(x)$. Now, we introduce three types of subsethood measure in Fan et al. [3].

Definition 2.1. ([3]) Let $c : F(X) \times F(X) \rightarrow [0, 1]$ be a function.

(1) c is called a strong subsethood measure if c has the following properties;

(S1) if $A \subset B$, then $c(A, B) = 1$;
(S2) if $A \neq \emptyset$ then $c(A, B)$

1140 WOOD 1139-1152
(S₃) If \(A \subset B \subset C \), then \(c(C, A) \leq c(B, A) \) and \(c(C, A) \leq c(C, B) \). (3)

(2) \(c \) is called a subsethood measure if \(c \) has the following properties:

(C₁) If \(A \subset B \), then \(c(A, B) = 1 \);
(C₂) \(c(X, \emptyset) = 0 \)
(C₃) If \(A \subset B \subset C \), then \(c(C, A) \leq c(B, A) \) and \(c(C, A) \leq c(C, B) \). (4)

(3) \(c \) is called a weak subsethood measure if \(c \) has the following properties:

(W₁) \(c(\emptyset, \emptyset) = 1 \), \(c(\emptyset, \emptyset) = 1 \), \(c(A, B) = 1 \) and \(c(X, X) = 1 \)
(W₂) If \(A \neq \emptyset \) and \(A \cap B = \emptyset \), then \(c(A, B) = 0 \);
(W₃) If \(A \subset B \subset C \), then \(c(C, A) \leq c(B, A) \) and \(c(C, A) \leq c(C, B) \). (5)

We also list the set-theoretical arithmetic operators for the set of subintervals of an unit interval \([0, 1]\) in \(\mathbb{R} \). We denote

\[I([0, 1]) = \{ \bar{a} = [a^-, a^+] \mid a^-, a^+ \in [0, 1] \text{ and } a^- \leq a^+ \}. \] (6)

For any \(a \in [0, 1] \), we define \(a = [a, a] \).

Definition 2.2. ([5, 6, 7, 8, 9]) If \(\bar{a} = [a^-, a^+] \), \(\bar{b} = [b^-, b^+] \in I([0, 1]) \), and \(k \in [0, 1] \), then the addition, scalar multiplication, minimum, maximum, inequality, subset, multiplication, and division as follows;

(1) \(\bar{a} + \bar{b} = [a^- + b^-, a^+ + b^+] \),
(2) \(k\bar{a} = [ka^-, ka^+] \),
(3) \(\bar{a} \wedge \bar{b} = [a^- \wedge b^-, a^+ \wedge b^+] \),
(4) \(\bar{a} \vee \bar{b} = [a^- \vee b^-, a^+ \vee b^+] \),
(5) \(\bar{a} \leq \bar{b} \) if and only if \(a^- \leq b^- \) and \(a^+ \leq b^+ \),
(6) \(\bar{a} < \bar{b} \) if and only if \(\bar{a} \leq \bar{b} \) and \(\bar{a} \neq \bar{b} \),
(7) \(\bar{a} \subset \bar{b} \) if and only if \(b^- \leq a^- \) and \(a^+ \leq b^+ \),
(8) \(\bar{a} \otimes \bar{b} = [a^-b^-, a^+b^+] \), and
(9) \(\bar{a} \odot \bar{b} = [a^-/b^-, a^+/b^+, a^-b^- \vee a^+/b^+] \).

From Definition 2.1 (9), the following theorem can be easily obtained.

Theorem 2.1. (1) If \(\bar{a} = [a^-, a^+] \in I([0, 1]) \), then \(\bar{a} \otimes \bar{a} = 1 \).
(2) If \(\bar{b} = [b^-, b^+] \in I([0, 1]) \) and \(b^- > 0 \), then \(1 \otimes \bar{b} = [1/b^+, 1/b^-] \).

Definition 2.3. ([5, 6, 8, 9, 21]) Let \((X, \Omega)\) be a measurable space. (1) A fuzzy measure on \(X\) is a real-valued function \(\mu : \Omega \rightarrow [0, 1] \) satisfies

(i) \(\mu(\emptyset) = 0 \)
(ii) \(\mu(E_1) \leq \mu(E_2) \) whenever \(E_1, E_2 \in \Omega \) and \(E_1 \subset E_2 \). (7)
A fuzzy measure μ is said to be continuous from below if for any sequence $\{E_n\} \subset \Omega$ and $E \in \Omega$, such that

$$\text{if } E_n \uparrow E, \text{ then } \lim_{n \to \infty} \mu(E_n) = \mu(E).$$

(8)

A fuzzy measure μ is said to be continuous from above if for any sequence $\{E_n\} \subset \Omega$ and $E \in \Omega$ such that

$$\text{if } E_n \downarrow E, \text{ then } \lim_{n \to \infty} \mu(E_n) = \mu(E).$$

(9)

A fuzzy measure μ is said to be continuous if it is continuous from below and continuous from above.

Definition 2.4. ([5, 6, 8, 9, 21])

(1) Let $A \in F(X)$. The Choquet integrals with respect to a fuzzy measure μ of a fuzzy set A on a set $E \in \Omega$ is defined by

$$C_{\mu,E}(A) = (C) \int_E m_A d\mu = \int_0^1 \mu_{E,m_A}(r) dr,$$

(10)

where $\mu_{E,m_A}(r) = \mu(\{x \in X \mid m_A(x) > r\} \cap E)$ and the integral on the right-hand side is an ordinary one.

(2) A measurable function is said to be integrable if $C_{\mu}(A) = C_{\mu,X}(A)$ exists.

It is well known that if X is a finite set, that is, $X = \{x_1, x_2, \cdots, x_n\}$, and $A \in F(X)$, then we have

$$C_{\mu}(A) = \sum_{i=1}^{n} m_A(x_{(i)}) \left(\mu(E_{(i)}) - \mu(E_{(i+1)}) \right),$$

(11)

where (\cdot) indicate a permutation on $\{1, 2, \cdots, n\}$ such that $m_A(x_{(1)}) \leq m_A(x_{(2)}) \leq \cdots \leq m_A(x_{(n)})$ and also $E_{(i)} = \{(i), (i+1), \cdots, (n)\}$ and $E_{(n+1)} = \emptyset$.

Theorem 2.2. Let $A, B \in F(X)$. (1) If $A \leq B$, then $C_{\mu}(A) \leq C_{\mu}(B)$.

(2) If we define $(m_A \lor m_B)(x) = m_A(x) \lor m_B(x)$ for all $x \in X$, then $C_{\mu}(A \lor B) \geq C_{\mu}(A) \lor C_{\mu}(B)$.

(3) If we define $(m_A \land m_B)(x) = m_A(x) \land m_B(x)$ for all $x \in X$, then $C_{\mu}(A \land B) \geq C_{\mu}(A) \land C_{\mu}(B)$.

3. Three types of interval-valued subsethood measures defined by interval-valued Choquet integral

In this section, we consider the interval-valued Choquet integral and list some properties of them.
Definition 3.1. ([5, 6, 8, 9, 21]) (1) The interval-valued Choquet integral of an interval-valued measurable function \(\mathcal{F} = [f^-, f^+] \) on \(E \in \Omega \) is defined by
\[
\mathcal{C}_{\mu,E}(\mathcal{F}) = (C) \int_{E} \mathcal{F} \, d\mu = \{ C_{\mu,E}(f) \mid f \in S(\mathcal{F}) \},
\]
where \(S(\mathcal{F}) \) is the family of measurable selection of \(\mathcal{F} \).
(2) \(\mathcal{F} \) is said to be integrable if \(\mathcal{C}_{\mu,E}(\mathcal{F}) = \mathcal{C}_{\mu,X}(\mathcal{F}) \neq \emptyset \).
(3) \(\mathcal{F} \) is said to be Choquet integrably bounded if there is an integrable function \(g \) such that
\[
||\mathcal{F}(x)|| = \sup_{r \in S(\mathcal{F})} |r| \leq g(x), \quad \text{for all } x \in X.
\]

Theorem 3.1. ([5, 6, 21]) (1) If a closed set-valued measurable function \(\mathcal{F} \) is integrable and if \(E_1 \subset E_2 \) and \(E_1, E_2 \in \Omega \), then \(\mathcal{C}_{\mu,E_1}(\mathcal{F}) \leq \mathcal{C}_{\mu,E_2}(\mathcal{F}) \).
(2) If a fuzzy measure \(\mu \) is continuous, and a closed set-valued measurable function \(\mathcal{F} \) is Choquet integrably bounded, then \(\mathcal{C}_{\mu}(\mathcal{F}) \) is a closed set.
(3) If the fuzzy measure \(\mu \) is continuous, and an interval-valued measurable function \(\mathcal{F} = [f^-, f^+] \) is Choquet integrably bounded, then we have
\[
\mathcal{C}_{\mu}(\mathcal{F}) = \{ C_{\mu}(f^-), C_{\mu}(f^+) \}.
\]

Let \(\text{IF}(X) \) be the set of all interval-valued fuzzy sets which are defined by
\[
\mathcal{A} = \{(x, m_{\mathcal{A}}) \mid m_{\mathcal{A}} : X \rightarrow [0, 1]\}.
\]
By using Theorem 2.2 and Theorem 3.1(3), we easily obtain the following theorem.

Theorem 3.2. Let \(\mathcal{A}, \mathcal{B} \in \text{IF}(X) \). (1) If \(\mathcal{A} \leq \mathcal{B} \), then \(\mathcal{C}_{\mu}(\mathcal{A}) \leq \mathcal{C}_{\mu}(\mathcal{B}) \).
(2) If we define \((m_{\mathcal{A}} \vee m_{\mathcal{B}})(x) = m_{\mathcal{A}}(x) \vee m_{\mathcal{B}}(x) \) for all \(x \in X \), then \(\mathcal{C}_{\mu}(\mathcal{A} \vee \mathcal{B}) \geq \mathcal{C}_{\mu}(\mathcal{A}) \vee \mathcal{C}_{\mu}(\mathcal{B}) \).
(3) If we define \((m_{\mathcal{A}} \wedge m_{\mathcal{B}})(x) = m_{\mathcal{A}}(x) \wedge m_{\mathcal{B}}(x) \) for all \(x \in X \), then \(\mathcal{C}_{\mu}(\mathcal{A} \wedge \mathcal{B}) \geq \mathcal{C}_{\mu}(\mathcal{A}) \wedge \mathcal{C}_{\mu}(\mathcal{B}) \).

We denote \(m_{\mathcal{A}} = [m_{\mathcal{A}}^-, m_{\mathcal{A}}^+] \) and define three types of interval-valued subsethood measures on \(\text{IF}(X) \times \text{IF}(X) \) as follows:

Definition 3.2. Let \(\tau : \text{IF}(X) \times \text{IF}(X) \rightarrow \{0, 1\} \) be a function.
(1) \(\tau \) is called a strong interval-valued subsethood measure if \(\tau \) has the following properties:
(I\(\text{S}_1\)) if \(\mathcal{A} \subset \mathcal{B} \), then \(\tau(\mathcal{A}, \mathcal{B}) = 1 \);
(I\(\text{S}_2\)) if \(\mathcal{A} \neq \emptyset \) then \(\tau(\mathcal{A}, \emptyset) = 0 \);
(I\(\text{S}_3\)) if \(\mathcal{A} \subset \mathcal{B} \subset \mathcal{C} \), then \(\tau(\mathcal{C}, \mathcal{A}) \leq \tau(\mathcal{B}, \mathcal{A}) \) and \(\tau(\mathcal{C}, \mathcal{A}) \leq \tau(\mathcal{B}, \mathcal{A}) \).

\[
\text{(16)}
\]
(2) c is called an interval-valued subsethood measure if c has the following properties;

((IC)_1) if $\mathcal{A} \subset \mathcal{B}$, then $\tau(\mathcal{A}, \mathcal{B}) = 1$;

((IC)_2) $\tau(\mathcal{X}, \emptyset) = 0$.

((IC)_3) if $\mathcal{A} \subset \mathcal{B} \subset \mathcal{C}$, then $\tau(\mathcal{C}, \mathcal{A}) \leq \tau(\mathcal{B}, \mathcal{A})$ and $\tau(\mathcal{C}, \mathcal{A}) \leq \tau(\mathcal{C}, \mathcal{B})$. \hfill (17)

(3) c is called a weak interval-valued subsethood measure if c has the following properties;

((IW)_1) $c(\emptyset, \emptyset) = 1$, $c(\emptyset, \emptyset) = 1$, $c(\mathcal{A}, \mathcal{B}) = 1$; and $c(\mathcal{X}, \mathcal{X}) = 1$

((IW)_2) if $\mathcal{A} \neq \emptyset$ and $\mathcal{A} \cap \mathcal{B} = \emptyset$, then $c(\mathcal{A}, \mathcal{B}) = 0$;

((IW)_3) if $\mathcal{A} \subset \mathcal{B} \subset \mathcal{C}$, then $c(\mathcal{C}, \mathcal{A}) \leq c(\mathcal{B}, \mathcal{A})$ and $c(\mathcal{C}, \mathcal{A}) \leq c(\mathcal{C}, \mathcal{B})$. \hfill (18)

Let $IF^*(X) = \{ \mathcal{A} \in IF(X) | \mathcal{A} \text{ has the integrably bounded function } m_{\mathcal{A}} \}$. Note that if X is a finite set, then $IF(X) = IF^*(X)$. Finally, we give three types of interval-valued subsethood measures defined by the Choquet integral with respect to a fuzzy measure on $IF^*(X)$. By Theorem 3.1 (3), we note that for $\mathcal{A} = [A^-, A^+], \mathcal{B} = [B^-, B^+] \in IF^*(X)$,

$C_{\mu}(\mathcal{A}) = [C_{\mu}(A^-), C_{\mu}(A^+)], \ C_{\mu}(\mathcal{B}) = [C_{\mu}(B^-), C_{\mu}(B^+)],$ and $C_{\mu}(\mathcal{A} \cap \mathcal{B}) = [C_{\mu}(A^- \cap B^-), C_{\mu}(A^+ \cap B^+)]$.

Theorem 3.3. Let X be a set. If we define an interval-valued function $\tau_1 : IF^*(X) \times IF^*(X) \rightarrow I([0, 1]),$

$$\tau_1(\mathcal{A}, \mathcal{B}) = \begin{cases} 1, & \text{if } \mathcal{A} = \mathcal{B} = \emptyset, \\ \frac{C_{\mu}(\mathcal{X} \cap \mathcal{B})}{C_{\mu}(\mathcal{X})}, & \text{if not,} \end{cases} \quad (19)$$

then τ_1 is a strong interval-valued subsethood measure on $IF^*(X)$.

Proof. (IS_1) If $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} = \emptyset$, that is, $\mathcal{A} = \mathcal{B} = \emptyset$, then by the definition of τ_1, we have $\tau_1(\mathcal{A}, \mathcal{B}) = 1$. If $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} \neq \emptyset$, then $m_{\mathcal{A}} \leq m_{\mathcal{B}}$. Thus, we have $m_{A^-} \leq m_{B^-}$ and $m_{A^+} \leq m_{B^+}$. Hence, we get

$$\tau_1(\mathcal{A}, \mathcal{B}) = \frac{C_{\mu}(\mathcal{A} \cap \mathcal{B})}{C_{\mu}(\mathcal{A})} = \frac{[C_{\mu}(A^- \cap B^-), C_{\mu}(A^+ \cap B^+)]}{[C_{\mu}(A^-), C_{\mu}(A^+)]} = 1. \quad (20)$$

(IS_2) If $\mathcal{A} \neq \emptyset$ and $\mathcal{A} \cap \mathcal{B} = \emptyset$, then we get $0 = m_{\mathcal{B}} = m_{\mathcal{A} \cap \mathcal{B}}$ and hence $\tau_1(\mathcal{A}, \mathcal{B}) = \frac{C_{\mu}(\mathcal{X} \cap \mathcal{B})}{C_{\mu}(\mathcal{X})} = 0$.

(IS_3) If $\mathcal{A} \leq \mathcal{B} \leq \mathcal{X}$, then we have

$$m_\mathcal{A} \leq m_\mathcal{B} \leq m_\mathcal{X} \quad (21)$$

and hence, by (21), we have

$$m_\mathcal{A} \cap m_\mathcal{X} \leq m_\mathcal{B} \cap m_\mathcal{X}. \quad (22)$$

Thus, by (21) and (22), we get

$$C_{\mu}(\mathcal{B}) \leq C_{\mu}(\mathcal{X}), \text{ and } C_{\mu}(\mathcal{X} \cap \mathcal{A}) \leq C_{\mu}(\mathcal{B} \cap \mathcal{A}). \quad (23)$$
Note that if $C = \emptyset$, then $B = \emptyset$. By using (23), we have
\begin{align*}
t_1(C, A) &= \begin{cases} 1, & \text{if } C = \emptyset, \\ \frac{C \mu (C \land A)}{C \mu (C)}, & \text{if } C \neq \emptyset \end{cases} \\
&= \begin{cases} 1, & \text{if } B = \emptyset, \\ \frac{C \mu (C \land A)}{C \mu (C)}, & \text{if } B \neq \emptyset \end{cases} \\
&= t_1(B, A).
\end{align*}

(24)

From (21), we also get
$$C \mu (C \land A) \leq C \mu (B \land B).$$

(25)

By using (25), we also have
\begin{align*}
t_1(C, A) &= \begin{cases} 1, & \text{if } C = \emptyset, \\ \frac{C \mu (C \land A)}{C \mu (C)}, & \text{if } C \neq \emptyset \end{cases} \\
&= \begin{cases} 1, & \text{if } B = \emptyset, \\ \frac{C \mu (C \land A)}{C \mu (C)}, & \text{if } B \neq \emptyset \end{cases} \\
&= t_1(C, B).
\end{align*}

(26)

Therefore, t_1 is a strong interval-valued subsethood measure.

Theorem 3.4. Let X be a set. If we define an interval-valued function $t_2 : IF^*(X) \times IF^*(X) \rightarrow I([0, 1])$,
\begin{align*}
t_2(A, B) &= \begin{cases} 1, & \text{if } A = B = \emptyset, \\ \frac{C \mu (C \land A)}{C \mu (A \lor B)}, & \text{if not}, \end{cases}
\end{align*}

(27)

then t_2 is an interval-valued subsethood measure on $IF^*(X)$.

Proof. (IC$_1$) If $A = B = \emptyset$, then $t_2(A, B) = 1$. Since $A \leq B$, we have $m_A \leq m_B$. Thus, we get
$$t_2(A, B) = \frac{C \mu (B)}{C \mu (A \lor B)} = 1.$$

(28)

(IC$_2$) By the definition of t_2, we have
$$t_2(A, \emptyset) = \frac{C \mu (A \land \emptyset)}{C \mu (A \lor \emptyset)} = 0.$$

(29)

(IC$_3$) If $A \leq B \leq C$, then we have
$$m_A \leq m_B \leq m_C$$

and hence, by (30), we have
$$C \mu (C) \geq C \mu (B), \quad C \mu (C \lor A) = C \mu (C), \quad \text{and } C \mu (B \lor A) = C \mu (B).$$

(31)

Therefore by using (31), we have
$$t_2(C, A) = \frac{C \mu (A)}{C \mu (C \lor A)}$$
\[C_\mu(A) \leq C_\mu(B) \]

\[C_\mu(A) \leq C_\mu(B) \leq C_\mu(C) \leq C_\mu(B \lor A) = c_2(B, A). \]

(32)

Therefore, \(c_2 \) is an interval-valued subsethood measure.

The following definition \(c_3 \) has some problem because of the definition of a complement of interval-valued fuzzy set. So, we note that for interval-valued fuzzy sets \(\overline{A} = [A^-, A^+] \), the modified complement \(\overline{A}^{mc} \) of \(\overline{A} \) is defined by

\[m_{\overline{A}^{mc}}(x) = [m_{A^+}(x), 1]. \]

(34)

Through this definition \(\overline{A}^{mc} \), we can take note of the followings:

(i) \(m_{\overline{A}^{mc}} = [m_{A^+}, 1] \)

(ii) \(m_{\overline{A}^{mc} \lor \overline{A}^{mc}} = [m_{A^-}, 1] \)

(iii) if \(\overline{A} \leq \overline{B} \), then \(\overline{B}^{mc} \leq \overline{A}^{mc} \).

(35)

Theorem 3.5. Let \(X \) be a set. If we define an interval-valued function \(\overline{c}_3 : IF^*(X) \times IF^*(X) \rightarrow I([0, 1]) \),

\[\overline{c}_3(\overline{A}, \overline{B}) = \frac{C_\mu(\overline{A}^{mc}) \lor C_\mu(\overline{B})}{C_\mu(\overline{A} \lor \overline{A}^{mc} \lor \overline{B} \lor \overline{B}^{mc})} \]

(36)

then \(\overline{c}_3 \) is an interval-valued subsethood measure on \(IF^*(X) \).

Proof. (IW1) By the definition of \(\overline{c}_3 \), we get

\[\overline{c}_3(\emptyset, \emptyset) = \frac{C_\mu(\emptyset) \lor C_\mu(\emptyset)}{C_\mu(\emptyset^{mc} \lor \emptyset \lor \emptyset^{mc})} = \frac{C_\mu(\emptyset) \lor C_\mu(\emptyset)}{C_\mu(\emptyset \lor \emptyset \lor \emptyset)} = 1. \]

(37)

Similarly, we have \(\overline{c}_3(\emptyset, X) = 1 \) and \(\overline{c}_3(X, \emptyset) = 1 \).
(IW$_2$) By the definition of r_3, we have
\[
 r_3(X, \emptyset) = \frac{\mathcal{C}_\mu(X^\text{mc}) \lor \mathcal{C}_\mu(\emptyset)}{\mathcal{C}_\mu(X^\text{mc}) \lor \mathcal{C}_\mu(X^\text{mc})} = \frac{\mathcal{C}_\mu(\emptyset)}{\mathcal{C}_\mu(X)} = \frac{0}{1} = 0. \tag{38}
\]

(IW$_3$) If $\mathcal{A} \leq \mathcal{B} \leq \mathcal{C}$, then we have
\[
 m_{\mathcal{A}} \leq m_{\mathcal{B}} \leq m_{\mathcal{C}}. \tag{39}
\]
Thus, by (35)(i) and (39), we have
\[
 m_{\mathcal{B}^\text{mc}} \leq m_{\mathcal{B}^\text{mc}} \leq m_{\mathcal{A}^\text{mc}}. \tag{40}
\]
From (40), we get
\[
 \mathcal{C}_\mu(\mathcal{C} \lor \mathcal{A}^\text{mc} \lor \mathcal{A}^\text{mc}) = \mathcal{C}_\mu(\mathcal{C} \lor \mathcal{A}^\text{mc}) \geq \mathcal{C}_\mu(\mathcal{B} \lor \mathcal{A}^\text{mc}) = \mathcal{C}_\mu(\mathcal{B} \lor \mathcal{A}^\text{mc}) \lor \mathcal{A}^\text{mc} \lor \mathcal{A}^\text{mc}) \tag{41}
\]
Therefore by using (41), we have
\[
 r_3(\mathcal{C}, \mathcal{A}) = \frac{\mathcal{C}_\mu(\mathcal{C}^\text{mc}) \lor \mathcal{C}_\mu(\mathcal{A})}{\mathcal{C}_\mu(\mathcal{C} \lor \mathcal{A}^\text{mc} \lor \mathcal{A}^\text{mc})} \leq \frac{\mathcal{C}_\mu(\mathcal{B}^\text{mc}) \lor \mathcal{C}_\mu(\mathcal{A})}{\mathcal{C}_\mu(\mathcal{B}^\text{mc} \lor \mathcal{A}^\text{mc} \lor \mathcal{A}^\text{mc})} = r_3(\mathcal{B}, \mathcal{A}). \tag{42}
\]
Similarly, we have
\[
 r_3(\mathcal{C}, \mathcal{A}) \leq r_3(\mathcal{C}, \mathcal{B}). \tag{43}
\]
Therefore, r_3 is a weak interval-valued subsethood measure.

4. Applications

In this section, by using the Harmonized system (HS) product code data for product categories (s_1, \ldots, s_5) between Korea and its trading partners (that is, Korea-United States, Korea-New Zealand, Korea-Turkey, and Korea-Indea) over the 2010-2013 period, we construct four interval-valued fuzzy sets related with four countries and calculate a strong interval-valued subsethood measure r_1.

Note that the product code definitions have been provided by the UN Comtrade’s online data base(see[22]) and the relevant categories are defined as follows:

s_1. Live animals: animal products.
s_2. Meat and edible meat offal.
s_3. Fish and crustaceans, mollusks and other aquatic invertebrates.
s_4. Dairy produce: bird’s eggs; natural honey; edible products of animal origin, not elsewhere specified or included.
s_5. Products of animal origin; not elsewhere specified or included.
Firstly, we denote that s is year, $a(s)$ is trade value, and $u(a(s))$ is the utility of $a(s)$. By using the $\overline{\pi}(\pi(s))$ for the trade values of animal product exports between Korea and selected trading partners for HS Product Codes $i = 1, 2, 3, 4, 5$ in Table A1 in [4], we can calculate the Choquet integral of an utility on the set of trade values (in USD) that represent Korea’s trading relationship with a particular country for years 2010, 2012, 2012, 2013. Let $S = \{s_1, s_2, s_3, s_4, s_5\}$ and $\overline{\pi}(s)$ be the interval-valued trade value of s during four years and

$$\overline{\pi}(\pi(s)) = \left[\sqrt{\frac{a^-(s)}{100141401}}, \sqrt{\frac{a^+(s)}{100141401}} \right]$$

be an interval-valued utility of $\overline{\pi}(s)$. The following table A1 is used to create four interval-valued fuzzy sets required to draw a strong subsethood measure τ_1 defined by the interval-valued Choquet integral.

Table A1: The $\overline{\pi}(\pi(s))$ for the trade value of animal product exports between Korea and selected trading partners for HS Product Codes s_i for $i = 1, 2, 3, 4, 5$.

<table>
<thead>
<tr>
<th>TP</th>
<th>s</th>
<th>$\overline{a}(s)$(USD)</th>
<th>$\overline{a}(\overline{a}(s))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>s_1</td>
<td>$[144949, 364918] = \overline{a}(s^{(1)})$</td>
<td>$0.03542, 0.06037$</td>
</tr>
<tr>
<td></td>
<td>s_2</td>
<td>$[144949, 997539] = \overline{a}(s^{(2)})$</td>
<td>$0.03542, 0.09981$</td>
</tr>
<tr>
<td></td>
<td>s_3</td>
<td>$[74866073, 100141401] = \overline{a}(s^{(3)})$</td>
<td>$0.86464, 1.00000$</td>
</tr>
<tr>
<td></td>
<td>s_4</td>
<td>$[3722326, 5016383] = \overline{a}(s^{(4)})$</td>
<td>$0.19280, 0.22382$</td>
</tr>
<tr>
<td></td>
<td>s_5</td>
<td>$[1017895, 863858] = \overline{a}(s^{(5)})$</td>
<td>$0.09288, 0.10082$</td>
</tr>
<tr>
<td>NZ</td>
<td>s_1</td>
<td>$[1589, 6650] = \overline{a}(s^{(2)})$</td>
<td>$0.00398, 0.00815$</td>
</tr>
<tr>
<td></td>
<td>s_2</td>
<td>$[0, 0] = \overline{a}(s^{(1)})$</td>
<td>$0.00000, 0.00000$</td>
</tr>
<tr>
<td></td>
<td>s_3</td>
<td>$[46632301, 91265306] = \overline{a}(s^{(3)})$</td>
<td>$0.68240, 0.95464$</td>
</tr>
<tr>
<td></td>
<td>s_4</td>
<td>$[113751, 277350] = \overline{a}(s^{(4)})$</td>
<td>$0.03370, 0.05263$</td>
</tr>
<tr>
<td></td>
<td>s_5</td>
<td>$[218022, 393025] = \overline{a}(s^{(5)})$</td>
<td>$0.04666, 0.06265$</td>
</tr>
<tr>
<td>TR</td>
<td>s_1</td>
<td>$[150, 6900] = \overline{a}(s^{(2)})$</td>
<td>$0.00122, 0.00830$</td>
</tr>
<tr>
<td></td>
<td>s_2</td>
<td>$[0, 0] = \overline{a}(s^{(1)})$</td>
<td>$0.00000, 0.00000$</td>
</tr>
<tr>
<td></td>
<td>s_3</td>
<td>$[199874, 2532837] = \overline{a}(s^{(3)})$</td>
<td>$0.04468, 0.15904$</td>
</tr>
<tr>
<td></td>
<td>s_4</td>
<td>$[0, 0] = \overline{a}(s^{(2)})$</td>
<td>$0.00000, 0.00000$</td>
</tr>
<tr>
<td></td>
<td>s_5</td>
<td>$[0, 0] = \overline{a}(s^{(3)})$</td>
<td>$0.00000, 0.00000$</td>
</tr>
<tr>
<td>IND</td>
<td>s_1</td>
<td>$[450, 1300] = \overline{a}(s^{(2)})$</td>
<td>$0.00212, 0.00360$</td>
</tr>
<tr>
<td></td>
<td>s_2</td>
<td>$[12135, 50630] = \overline{a}(s^{(3)})$</td>
<td>$0.00992, 0.05551$</td>
</tr>
<tr>
<td></td>
<td>s_3</td>
<td>$[1865, 8695] = \overline{a}(s^{(3)})$</td>
<td>$0.00432, 0.00932$</td>
</tr>
<tr>
<td></td>
<td>s_4</td>
<td>$[12135, 30938] = \overline{a}(s^{(4)})$</td>
<td>$0.00992, 0.02249$</td>
</tr>
<tr>
<td></td>
<td>s_5</td>
<td>$[0, 0] = \overline{a}(s^{(3)})$</td>
<td>$0.00000, 0.00000$</td>
</tr>
</tbody>
</table>

We remark that in order to calculate the interval-valued Choquet integrals for four interval-valued fuzzy sets, we modified four interval-valued trading values for the United States and the India (see Table 5 in [4]) as follows;

$$[286892, 364918] = \pi(s_1) \text{ and } [30005, 997539] = \pi(s_2)$$

are changed by

$$\left[\frac{286892 + 3005}{2}, 364918 \right] = \pi(s_2) \text{ and } \left[\frac{286892 + 3005}{2}, 997539 \right] = \pi(s_2),$$

and

$$[2656, 50630] = \pi(s_2) \text{ and } [21614, 30938] = \pi(s_4)$$

(45)
and sets (49), (50), (51), (52) were made to be increasing interval-valued fuzzy sets as follows:

$$\bar{\mu}(s_2) = \frac{2656 + 21614}{2}, \bar{\mu}(s_4) = \frac{2656 + 21614}{2}, \tau(s_4) = 30938$$

From Table A1, we construct four interval-valued fuzzy sets from S to $I([0, 1]), \mathcal{U} = \mathcal{U}(USA), \mathcal{N} = \mathcal{N}(NZ), \mathcal{T} = \mathcal{T}(TR), \text{and } \bar{T} = \bar{T}(ID)$ as follows;

$$\mathcal{U} = \{(s_1, [0.03542, 0.06037]), (s_2, [0.03542, 0.09981]), (s_3, [0.86464, 1.00000]), (s_4, [0, 0.19280, 0.22382]), (s_5, [0.09288, 0.10082])\},$$

$$\mathcal{N} = \{(s_1, [0.00398, 0.00815]), (s_2, [0.00000, 0.00000]), (s_3, [0.68240, 0.95464]), (s_4, [0.03370, 0.05263]), (s_5, [0.04666, 0.06265])\},$$

$$\mathcal{T} = \{(s_1, [0.00122, 0.00830]), (s_2, [0.00000, 0.00000]), (s_3, [0.04468, 0.15904]), (s_4, [0.00000, 0.00000]), (s_5, [0.00000, 0.00000])\},$$

In order to calculate the interval-valued Choquet integral, the four interval-valued fuzzy sets ((49), (50), (51), (52)) were made to be increasing interval-valued fuzzy sets as follows:

$$\mathcal{U} = \{(s_1, [0.03542, 0.06037]), (s_2, [0.03542, 0.09981]), (s_3, [0.09288, 0.10082]), (s_4, [0, 0.19280, 0.22382]), (s_5, [0.86464, 1.00000])\},$$

$$\mathcal{N} = \{(s_1, [0.00398, 0.00815]), (s_2, [0.00000, 0.00000]), (s_3, [0.03370, 0.05263]), (s_4, [0.04666, 0.06265]), (s_5, [0.68240, 0.95464])\},$$

$$\mathcal{T} = \{(s_1, [0.00000, 0.00000]), (s_2, [0.00000, 0.00000]), (s_3, [0.04468, 0.15904]), (s_4, [0.00122, 0.00830]), (s_5, [0.00000, 0.00000])\},$$

Now, the more diversified export items, the higher fuzzy measure are defined as follows (see [4]):

$$\mu(E_{(3)}) = \mu(\emptyset) = 0, \mu(E_{(5)}) = \mu_1(\{s_5\}) = 0.1, \mu(E_{(4)}) = \mu_1(\{s_4, s_5\}) = 0.2, \mu(E_{(3)}) = \mu_1(\{s_3, s_4, s_5\}) = 0.4, \mu(E_{(2)}) = \mu_1(\{s_2, s_3, s_4, s_5\}) = 0.7, \mu(E_{(1)}) = \mu_1(\{s_1, s_2, s_3, s_4, s_5\}) = 1.$$
Thus, by using (58) and (59), we get the following table A2 for the strong interval-valued subinterval measurement between United States and New Zealand.

<table>
<thead>
<tr>
<th>(C_{\mu}(U^+))</th>
<th>(C_{\mu}(U^+ \land N^-))</th>
<th>(C_{\mu}(U^+ \land N^+))</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.14557, 0.19060]</td>
<td>[0.08084, 0.11470]</td>
<td>[0.55534, 0.60178]</td>
</tr>
</tbody>
</table>

Given that \(\tau_1(U, V) \) represents the degree of trade surplus for the trading relationship for Korea and USA, and Korea and New Zealand.

Finally, we can calculate \(\tau_1(U, T) \) and \(\tau_1(U, T) \) in Table A1.
Table A3: The $\tau_1(U, T)$ between United States and Turkey.

<table>
<thead>
<tr>
<th>$C_\mu(U)$</th>
<th>$C_\mu(U, T)$</th>
<th>$\tau_1(U, T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.14557, 0.19060]</td>
<td>[0.00459, 0.01673]</td>
<td>[0.03153, 0.08778]</td>
</tr>
</tbody>
</table>

Table A4: The $\tau_1(U, T)$ between United States and India.

<table>
<thead>
<tr>
<th>$C_\mu(U)$</th>
<th>$C_\mu(U, I)$</th>
<th>$\tau_1(U, I)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.14557, 0.19060]</td>
<td>[0.00348, 0.01074]</td>
<td>[0.02393, 0.05635]</td>
</tr>
</tbody>
</table>

Tables A2, A3, and A4, demonstrate the results $\tau_1(U, N), \tau_1(U, T), \tau_1(U, I)$. They highlight the degree of trade surplus that exists with the three trading partners in terms of the model of trade transactions with United States and Korea.

5. Conclusions

Using the concept of intervals, we defined three types of interval-valued subsethood measures in Definitions 3.2, 3.3 and 3.4. From these definitions, we proposed three types of interval-valued subsethood measures defined by the interval-valued Choquet integrals with respect to a continuous fuzzy measure in Theorems 3.2, 3.3, and 3.4. The fuzzy measure μ in (57) means that if set E includes more categories between Korea and its trading partner, then $\mu(E)$ receives a higher score. Moreover, intervals are also a very useful tool to express the degree of trade surplus between Korea and its four trading partners analyzed over the 2010-2013 period.

In order to illustrate some applications of a strong interval-valued subsethood measure, we provided the four interval-valued fuzzy sets which were aggregated in (49), (50), (51), and (52) to animal product exports between Korea and four selected trading partners from 2010 to 2013. By using these interval-valued fuzzy sets, we obtained the strong interval-valued subethood measure $\tau_1(U, N), \tau_1(U, T), \tau_1(U, I)$ which represent the degree of trade surplus between Korea and 3 trading partners in terms of the model of trade transactions with the United States and South Korea in Tables 2, 3, and 4. It was found that New Zealand was at least 0.55534 to 0.60178 times smaller than the United States, while Turkey and India were also smaller, with Turkey at least 0.03153 to 0.08778 times smaller and India being at least 0.2393 to 0.05635 times smaller than the United States between 2010 and 2013, in terms of the trade values of animal product exports that exists between Korea and selected trading partners.

Data Availability: All the authors solemnly declare that there is no data used to support the findings of this study.
Competing interests: The authors declare that they have no competing interests.

Funding: This research received no external funding.

References

M-fractional integral inequalities

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we present M-fractional integral inequalities of Ostrowski and Polya types.

2010 AMS Mathematics Subject Classification : 26A33, 26D10, 26D15.
Keywords and phrases: M-fractional derivative, Ostrowski inequality, Polya inequality.

1 Introduction

We are inspired by the following results:

Theorem 1 ([2], p. 498, [1], [5]) (Ostrowski inequality)

Let \(f \in C^1 ([a, b]) \), \(x \in [a, b] \). Then

\[
\left| \frac{1}{b-a} \int_a^b f(z) \, dz - f(x) \right| \leq \left(\frac{(x-a)^2 + (b-x)^2}{2(b-a)} \right) \| f' \|_{\infty}. \tag{1}
\]

Inequality (1) is sharp. In particular the optimal function is

\(f^* (z) := |z - x|^\alpha (b - a), \quad \alpha > 1 \). \tag{2}

Theorem 2 ([6], [7, p. 62], [8], [9, p. 83]) (Polya integral inequality)

Let \(f(x) \) be differentiable and not identically a constant on \([a, b]\) with \(f(a) = f(b) = 0 \). Then there exists at least one point \(\xi \in [a, b] \) such that

\[
|f' (\xi)| > \frac{4}{(b-a)^2} \int_a^b f(x) \, dx. \tag{3}
\]

In this short work we present inequalities of types (1) and (3) involving the left and right fractional local general M-derivatives, see [3], [4].
2 Background

We need

Definition 3 ([4]) Let \(f : [a, \infty) \rightarrow \mathbb{R} \) and \(t > a, a \in \mathbb{R} \). For \(0 < \alpha \leq 1 \) we define the left local general \(M \)-derivative of order \(\alpha \) of function \(f \), denoted by \(D^{\alpha}_{M,a}f(t) \), by

\[
D^{\alpha}_{M,a}f(t) := \lim_{\varepsilon \to 0} \frac{f \left(t\mathbb{E}_\beta \left(\varepsilon (t-a)^{-\alpha} \right) \right) - f(t)}{\varepsilon},
\]

\(\forall \ t > a \), where \(\mathbb{E}_\beta(t) = \sum_{k=0}^{\infty} \frac{t^k}{\Gamma(\beta k + 1)}, \beta > 0 \), is the Mittag-Leffler function with one parameter.

If \(D^{\alpha}_{M,a}f(t) \) exists over \((a, \gamma) \), \(\gamma \in \mathbb{R} \) and \(\lim_{t \to a^+} D^{\alpha}_{M,a}f(t) \) exists, then

\[
D^{\alpha}_{M,a}f(a) = \lim_{t \to a^+} D^{\alpha}_{M,a}f(t).
\]

Theorem 4 ([4]) If a function \(f : [a, \infty) \rightarrow \mathbb{R} \) has the left local general \(M \)-derivative of order \(\alpha \in (0, 1], \beta > 0 \), at \(t_0 > a \), then \(f \) is continuous at \(t_0 \).

We need

Theorem 5 ([4]) (Mean value theorem) Let \(f : [\gamma, \delta] \rightarrow \mathbb{R} \) with \(\gamma > a, 0 \notin [\gamma, \delta] \), such that

1. \(f \) is continuous on \([\gamma, \delta] \),
2. there exists \(D^{\alpha}_{M,a}f \) on \((\gamma, \delta) \) for some \(\alpha \in (0, 1] \).

Then, there exists \(c \in (\gamma, \delta) \) such that

\[
f(\delta) - f(\gamma) = \left(D^{\alpha}_{M,a}f(c) \right) \frac{\Gamma(\beta + 1)(c-a)^{\alpha}}{\varepsilon} (c - \gamma) .
\]

We need

Definition 6 ([3]) Let \(f : (\infty, b] \rightarrow \mathbb{R} \) and \(t < b, b \in \mathbb{R} \). For \(0 < \alpha \leq 1 \) we define the right local general \(M \)-derivative of order \(\alpha \) of function \(f \), denoted as \(D^{\alpha}_{M,b}f(t) \), by

\[
D^{\alpha}_{M,b}f(t) := -\lim_{\varepsilon \to 0} \frac{f \left(t\mathbb{E}_\beta \left(\varepsilon (b-t)^{-\alpha} \right) \right) - f(t)}{\varepsilon},
\]

\(\forall \ t < b \).

If \(D^{\alpha}_{M,b}f(t) \) exists over \((\gamma, b) \), \(\gamma \in \mathbb{R} \) and \(\lim_{t \to b-} D^{\alpha}_{M,b}f(t) \) exists, then

\[
D^{\alpha}_{M,b}f(b) = \lim_{t \to b-} D^{\alpha}_{M,b}f(t).
\]
Theorem 7 ([3]) If a function \(f : (-\infty, b] \rightarrow \mathbb{R} \) has the right local general \(M \)-derivative of order \(\alpha \in (0, 1] \), \(\beta > 0 \), at \(t_0 < b \), then \(f \) is continuous at \(t_0 \).

We also need

Theorem 8 ([3]) (Mean value theorem) Let \(f : [\gamma, \delta] \rightarrow \mathbb{R} \) with \(\delta < b \), \(0 \notin [\gamma, \delta] \), such that

1. \(f \) is continuous on \([\gamma, \delta]\),
2. there exists \(\alpha \beta Df \) on \((\gamma, \delta)\) for some \(\alpha \in (0, 1) \).

Then, there exists \(c \in (\gamma, \delta) \) such that

\[
f(\delta) - f(\gamma) = \left(-\frac{\alpha \beta Df(c)}{M,b}\right) \left(\frac{\Gamma(\beta + 1)(b - c)^\alpha}{c}\right)(\delta - \gamma). \tag{9}\]

Fractional derivatives \(D_{M,a}^\alpha \) and \(\frac{\alpha \beta}{M,b}D \) possess all basic properties of the ordinary derivatives and beyond, see [3], [4].

3 Main Results

We present the following \(M \)-fractional Ostrowski type inequality:

Theorem 9 Let \(a < \gamma < \delta < b \), \(0 \notin [\gamma, \delta] \), \(f : [a, b] \rightarrow \mathbb{R} \), which is continuous over \([\gamma, \delta]\). We assume that \(D_{M,a}^\alpha \alpha \beta D \) exist and are continuous over \([\gamma, x_0]\) and \([x_0, \delta]\), respectively, where \(x_0 \in [\gamma, \delta] \), for some \(\alpha \in (0, 1) \). Then

\[
\left| \frac{1}{\delta - \gamma} \int_\gamma^{\delta} f(x) \, dx - f(x_0) \right| \leq \frac{\Gamma(\beta + 1)}{2(\delta - \gamma)} \left[\left\| \frac{D_{M,a}^\alpha f(x)}{x} \right\|_{\infty, [\gamma, x_0]} (x_0 - a)^\alpha (x_0 - \gamma)^2 + \left\| \frac{\alpha \beta Df(x)}{x} \right\|_{\infty, [x_0, \delta]} (b - x_0)^\alpha (\delta - x_0)^2 \right]. \tag{10}\]

Proof. Let \(x \in [\gamma, x_0] \), the by Theorem 5, there exists \(c_1 \in (x, x_0) \), such that

\[
f(x_0) - f(x) = \left(\frac{D_{M,a}^\alpha f(c_1)}{c_1}\right) \Gamma(\beta + 1)(c_1 - a)^\alpha (x_0 - x). \tag{11}\]

Thus

\[
|f(x) - f(x_0)| = \left| \frac{D_{M,a}^\alpha f(c_1)}{c_1}\right| \Gamma(\beta + 1)(c_1 - a)^\alpha |x - x_0| \leq \left\| \frac{D_{M,a}^\alpha f(x)}{x} \right\|_{\infty, [\gamma, x_0]} \Gamma(\beta + 1)(x_0 - a)^\alpha |x - x_0|, \tag{12}\]

\[\quad 3 \]
\(\forall x \in [\gamma, x_0] \).

Let now \(x \in [x_0, \delta] \), then by Theorem 8, there exists \(c_2 \in (x_0, x) \), such that

\[
f(x) - f(x_0) = -\left(\frac{\alpha \beta D^\alpha_{M,b} f(c_2)}{c_2} \right) \Gamma (\beta + 1) (b - c_2)^\alpha (x - x_0).
\]

(13)

Thus

\[
|f(x) - f(x_0)| = \left| \frac{\alpha \beta D^\alpha_{M,b} f(c_2)}{c_2} \right| \Gamma (\beta + 1) (b - x_0)^\alpha |x - x_0| \leq \Gamma (\beta + 1) (b - x_0)^\alpha |x - x_0|.
\]

(14)

Thus

\[
\forall x \in [x_0, \delta].
\]

We have that

\[
\frac{1}{\delta - \gamma} \int_\gamma^\delta |f(x) - f(x_0)| \, dx = \frac{1}{\delta - \gamma} \left| \int_\gamma^\delta (f(x) - f(x_0)) \, dx \right| \leq \frac{1}{\delta - \gamma} \int_\gamma^\delta |f(x) - f(x_0)| \, dx = \Gamma (\beta + 1) (x_0 - a)^\alpha \int_\gamma^{x_0} (x_0 - x) \, dx
\]

(15)

\[
\frac{1}{\delta - \gamma} \left[\int_\gamma^{x_0} |f(x) - f(x_0)| \, dx + \int_{x_0}^\delta |f(x) - f(x_0)| \, dx \right] \leq \Gamma (\beta + 1) (x_0 - a)^\alpha \int_\gamma^{x_0} (x_0 - x) \, dx
\]

(12), (14)

\[
\frac{1}{\delta - \gamma} \left[\int_\gamma^{x_0} |D^\alpha_{M,a} f(x)| \, dx + \int_{x_0}^\delta |D^\alpha_{M,a} f(x)| \, dx \right] \leq \Gamma (\beta + 1) (b - x_0)^\alpha \int_{x_0}^\delta (x - x_0) \, dx
\]

(16)

The theorem is proved. ■

Next we give two \(M \)-fractional Polya type inequalities:
Theorem 10 All as in Theorem 9 and \(f(x_0) = 0 \). Then

\[
\left| \int_\gamma^\delta f(x) \, dx \right| \leq \int_\gamma^\delta |f(x)| \, dx \leq \frac{\Gamma(\beta + 1)}{2} \left((x_0 - a)^\alpha (x_0 - \gamma)^2 + \left\| \frac{D^\alpha M_a f(x)}{x} \right\|_{\infty,[\gamma,x_0]} (b - x_0)^\alpha (\delta - x_0)^2 \right).
\]

(17)

Proof. Same as in the proof of Theorem 9, by setting \(f(x_0) = 0 \). □

Corollary 11 (to Theorem 10, case of \(x_0 = \gamma + \frac{\delta}{2} \)) All as in Theorem 9 and \(f \left(\gamma + \frac{\delta}{2} \right) = 0 \). Then

\[
\int_\gamma^\delta |f(x)| \, dx \leq \frac{\Gamma(\beta + 1)(\delta - \gamma)^2}{8} \left(\left(\frac{\gamma + \delta}{2} \right) - a \right)^\alpha + \left\| \frac{D^\alpha M_b f(x)}{x} \right\|_{\infty,\left[\gamma,\frac{\gamma + \delta}{2}\right]} \left(b - \left(\frac{\gamma + \delta}{2} \right) \right)^\alpha.
\]

(18)

Proof. Apply (17) for \(x_0 = \gamma + \frac{\delta}{2} \). □

References

Daubechies Wavelet Method for Second Kind Fredholm Integral Equations with Weakly Singular Kernel, Xin Luo and Jin Huang, ... 1023

Some Fixed Point Results in Ordered Complete Dislocated Quasi G_d Metric Space, Abdullah Shoaib, Muhammad Arshad, and Tahair Rasham, ... 1036

Mizoguchi- Takahashi's Fixed Point Theorem in ν-Generalized Metric Spaces, Salha Alshaiekey, Saud M. Alsulami, and Monairah Alansari, ... 1047

On Multiresolution Analyses of Multiplicity n, Richard A. Zalik, ... 1055

Generalized g-Fractional Vector Representation Formula and Integral Inequalities for Banach Space Valued Functions, George A. Anastassiou, ... 1063

On Solutions of Semilinear Second-Order Impulsive Functional Differential Equations, Ah-ran Park and Jin-Mun Jeong, ... 1082

Caputo ψ-Fractional Ostrowski and Grüss Inequalities for Several Functions, George A. Anastassiou, ... 1097

Results on Sequential Conformable Fractional Derivatives with Applications, Mona Khandaqji and Aliaa Burqan, ... 1115

Multivariate Ostrowski-Sugeno Fuzzy Inequalities, George A. Anastassiou, 1126

Some Applications of Interval-Valued Subsethood Measures which Are Defined by Interval-Valued Choquet Integrals in Trade Exports Between Korea and its Trading Partners, Jacob Wood, Lee-Chae Jang, and Hyun-Mee Kim, ... 1139

M-Fractional Integral Inequalities, George A. Anastassiou, ... 1153