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Abstract. We study the density and approximation properties of weak Markov systems
defined on a closed interval [a, b].
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1. INTRODUCTION

In [10], based on earlier work of Borwein, Bojanov, et al. [1, 2, 3], we studied the density
and approximation properties of Markov systems of continuous functions defined on a
closed interval [a,b]. Here we will extend some of the results of [10] to the weak Markov
system setting.

This article is organized as follows: in this section we introduce some of the basic
definitions and results from the theory of weak Markov systems. For definitions and results
not mentioned here, or for clarification of details, the reader is referred to [10], the books
[4, 7, 13, 14, 19], and the survey papers [5, 17]. We also present a new representability
theorem for weak Markov systems. In Section 2 we generalize to weak Markov systems
the differentiation operator introduced in Section 2 of [10]. This generalization is very
straightforward, except for the proof of Proposition 3 (a). The results of Section 3 of
[10] are extended in Sections 3 and 4: In Section 3 we develop a theory of Chebychev
polynomials for weak Markov systems. Although now these polynomials are not necessarily
unique, they still have useful and interesting properties. In particular we remark on
Theorem 4(d), which shows the existence of disjoint intervals of equioscillation. The
density results of [10, Section 4], which are given in terms of the distribution of zeros
of the Chebychev polynomials, have their counterpart in Section 4 of the present paper.
Although the proofs were motivated by arguments used in [10], the task was complicated
by the lack of uniqueness of the Chebychev polynomials and by the possibility that the
functions in the system may be linearly dependent on a subset of the interval of definition.
Finally, in Section 5 we obtain Jackson type theorems. Here the essential idea is to convolve
with the Gauss kernel, apply the results of [10] to the Markov systems thus obtained, and
then pass to the limit to recover the original system.

Let A be a set of real numbers, let F(A) denote the set of all real-valued functions
defined on A, let G,, := {go,...,gn} be a sequence of functions, or system, and let S(G,,)
denote the linear span of {go,...,gn}. A system of functions G,, C F(A) is called a
Chebychev system or T —system if A contains at least n+ 1 points, and all the determinants
of the square collocation matrices

U( 9o, s Gn ) = det(gj(tz)’ 0 S%] Sn)
th"' atn

with tg < ... <, in A, are positive. If all these determinants are merely nonnegative, and,
in addition, the functions in G,, are linearly independent on A, then G, is called a weak
Chebychev system or WT —system. A system G,, is called a Markov system (weak Markov
system ) if G, = {go,-.., gk} is a Chebychev system (weak Chebychev system) for each
k=0,1,...,n. If go = 1, we say that G,, is normalized. If G := {g0,91,92,...} C F(A)
and G, is a (normalized) Markov system (weak Markov system) for all n > 0, we say that
G is a (normalized) infinite Markov system (infinite weak Markov system).
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Let f(t) be a real valued function defined on a set A of n > 2 elements. A sequence
To < -+ < xp—1 of elements of A is called a strong alternation of f of length n, if either
(=1)"f(x;) is positive for all i, or (—1)f(x;) is negative for all 4. It is well known that if
G, is a weak Chebychev system on A, then no function in S(G,,) has a strong alternation
of length n 4+ 2 on A [14, 18, 19]. This property will be used in the proof of Theorem 5
below.

Let I(A) denote the convex hull of A. We call G,, C F(A) representable if for all
¢ € A there is a basis U,, of S(G,), obtained from G,, by a triangular transformation
(i. e., up(x) = go(x) and u; — g; € S(gi—1),1 < i < n); a strictly increasing function h
(an “embedding function”) defined on A, with h(c) = ¢; and a set P, := {p1,...,Pn}
of continuous, increasing functions defined on I(h(A)), such that for every ¢ € A and
1<k<n,

(1) wun(z) = o) /ch(gﬂ) /ctl -~-/Ctk_1dpk(tk)~-~dp1(t1).

In this case we say that (h,c, P,,U,) is a representation of G,,. An n—dimensional linear
space Sy, is called representable, if it has a representable basis, and (h, ¢, P,, U,) will be
called a representation for S,, if it is a representation for some basis of 5,.

The main result of [20] implies that a Markov system on an open interval is repre-
sentable. However not every Markov system on a closed interval is representable. The
representability of weak Markov systems can be characterized in terms of the so—called
Condition E and property (M):

Let S(G,,) denote the linear span of G,,. We say that G,, satisfies condition E if for all
¢ € I(A) the following two requirements are satisfied:

(a) If Gy, is linearly independent on [c, 00) N A then there exists a basis {uo, . .., u, } for
S(G), obtained by a triangular linear transformation, such that for any sequence
of integers 0 < k(0) < --- < k(m) < n, {upey}il, is a weak Markov system on
ANe,00).

(b) If Gy, is linearly independent on (—oo, ¢]NA then there exists a basis {vo, . .., v, } for
G(Z,), obtained by a triangular linear transformation, such that for any sequence
of integers 0 < k(0) < -+ < k(m) < n,{(—l)’“‘k(r)vk(r)}f"'zo is a weak Markov
system on (—oo, ] N A.

Let P, := {p1,...,pn} C F(I), where I is an interval, let h be a real-valued function
defined on A such that h(A) C I, and let 9 < --- < x, be points of h(A). We say
that P, satisfies property (M) with respect to h at g < --+ < z,, if there is a sequence
{tij:i=0,...,n;7=0,...,n—1i} in h(A) such that

(a) xj:to,j(j:O,...,n);
(b) tiJ‘ < ti+1,j < ti’jJ’»l(i =0,n—-1;7=0,...,n— i);
(¢) Fori=1,...,n,and j =0,...,n — i the function p;(x) is not constant at ¢, ;.

We say that a function f is not constant at a point ¢ € (a,b) if for every € > 0 there are
points x1, 2 € (a,b) with ¢ — € < 21 < ¢ < 3 < ¢ + ¢, such that f(z1) # f(z2).
Theorem A. [16] Let G,, C F(A). Then the following statements are equivalent:

(a) Gy is a normalized weak Markov system that satisfies Condition (E).

(b) G, is representable, and there is a representation (h,c, P,,U,) of G, such that P,
satisfies property (M) with respect to h at some sequence g < --- < x, in h(A).

(¢) G, is representable, and for every representation (h,c, P,,U,) of Z,, P, satisfies
Property (M) with respect to h at some sequence xg < -+ < &, in h(A).
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The original statement of Theorem A contained two typographical errors, which we
have corrected above.

Since Condition E is usually difficult to verify, we give another condition for repre-
sentability which is general enough for our purposes. It will shed some light on an addi-
tional assumption we will make in Section 4.

Theorem 1. Let A be a set of real numbers such that a :=inf A€ A andb:=supA € A,
and let G, be a normalized weak Markov system on A. Then G, is representable if and only
if there are numbers o < a and 8 > b, and a weak Markov system F,, on [o,a] U AU b, []
such that for each 0 < k < n, gi is the restriction to A of fi, and the functions in F,, are
linearly independent on each of the intervals (o, a] and [b, 3].

Proof. If there are numbers a < @ and 8 > b and a weak Markov system F,, on [o, a] UAU
[b, 8] such that, for each 0 < k < n, g is the restriction to A of fi, and the functions in
F,, are linearly independent on each of the intervals [o, a] and [b, 8], the assertion follows
directly from [6, Proposition 5.1 and Theorem 5.8]. To prove the converse, let ¢ € A,
and let (h, ¢, P,,U,) be a representation for G,,. It suffices to prove the assertion for the
system U,. Let r be a strictly increasing function on [o,a] U A U [b, 5] that coincides
with h on A, and for 1 < k <n let ¢; be a continuous increasing function on [r(«), r(5)],
strictly increasing on each of the intervals [, a] and [b, 3], that coincides with py on
[r(a),r(b)] = [h(a), h(D)]. Let vy =1,

r(x)
o (2) = / da (1),

and

r(w) t1 te—1
vk<x>=/ // dan(ty) -~ daa(ts) dgr (1), 2<k<n.

It is clear that vy = uy, for each 0 < k < n, and from Theorem A or the Lemma of [15] we
readily conclude that V,, is a normalized weak Markov system. Since the functions gj are
strictly increasing on each of the intervals [a, a] and [b, 3], a simple inductive argument
involving the number of integrations readily shows that the functions in V;, are linearly
independent on each of the intervals [a, a] and [b, 3]. O

An infinite weak Markov system G will be called finitely representable if G,, is repre-
sentable for each n > 0. At present, it is not known under what conditions an infinite
(weak) Markov system defined on a set A is representable. In other words, the problem
of finding conditions under which for every ¢ € A there is a strictly increasing function h
defined on A with h(c) = ¢, an infinite sequence P := {p1, pa, ...} of continuous, increasing
functions defined on I(h(A)), and an infinite sequence of functions U := {uo, u1, ...}, such
that (h,c, P,,U,) is a representation of G,, for each n > 0, is still open.

2. RELATIVE DERIVATIVES FOR WEAK MARKOV SYSTEMS

The following are generalizations of [10, Proposition 1 and Proposition 2] and have
exactly the same proof.

Proposition 1. Let G, be a representable normalized weak Markov system on a set A,
n >0, and let (h,c, P,,U,,) be a representation for G,. Then uy depends only on g1 and
c. If, moreover, p1(c) = 0, then also p1 o h depends only on g1 and c.

Proposition 2. Let G,, be a representable normalized weak Markov system of continuous
functions on a closed interval [a,b] with n > 1, and let (h,c, P,,Uy,) be a representation
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for the restriction to (a,b) of the functions in G,,. Then, for x € [a,b],

@) = [ "o (1)

and, if n > 2,

x h(tl) te—1
uk(m:// / dpe(te) -~ dpa(ta) don (), 2 <k <n.
C C C

Let G,, be a representable normalized weak Markov system of continuous functions on
a closed interval [a,b]. A representation (h,c, P,,U,) of Gy, such that h is continuous at
a, left—continuous on (a, b], and p1(c) = 0, will be called standard. Repeating verbatim the
discussion in the second paragraph that follows the proof of [10, Proposition 2], we see
that every representable weak Markov system of continuous functions on a closed interval
[a, ] has a standard representation for every ¢ € [a, ).

Let I denote an interval and g a continuous real-valued strictly increasing function on
I. If f is a real-valued function on I and x € I then, provided the limit exists, we define:

h) —
D) iy L) = @)
h—0 g(x + h) — g(x)

The operator D is called the relative derivative with respect to g.

Given a representation (h,c, P,,U,) of a weak Markov system G,, on [a,b] with n >
1, we define the operator H, on S(Gy) (the weak relative derivative with respect to
(h,c, Pp,Uy)), exactly as in [10]:

Hyug :=0, Huup:=1.

Ifn > 2,

h(x)
Hnug(x) = / dpg(tg).
If n >3,

h(’I‘) to te—1
Hyup(x) ::/ / / dpi(ty) - - - dpa2(t2), 3 <k <mn.
c c c

And for every f € S(G,,) by linearity.
We then have:

Proposition 3. Let G := {1,91,92,...} be a finitely representable normalized infinite
weak Markov system on a closed interval [a,b], let Gy :== {go,...,9n} C G withn > 1,
let ¢ € [a,b], and let H,, be the weak relative derivative with respect to some standard
representation (h,c, Py, Uy) of Gy. Then
(a) {Hpu1, Hyug, -} is a finitely representable normalized infinite weak Markov sys-
tem on [a,b].
(b) If the functions gy are all continuous on [a,b], then

i () = o (2) /I Han(t)dgi(t), w€lab), 1<k<n,

(¢) If, moreover, gy is strictly increasing, then the operator H, depends neither on n
nor on ¢, nor on the representation, but only on g;.

Proof. Let (h,c, P,,U,) be a representation of G,,. From Theorem A we know that P,
satisfies property (M) with respect to h at some sequence xg < --- < z, in hla,b]. Let
Po1:={pa,...,on} and U,_1 := {Hyuy, ..., Hunp}; then (hye, Pr—1,Up,—1) is a repre-
sentation of {Hyg1, ..., Hugn}, and we readily see that P,,_; satisfies property (M) with
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respect to h at some sequence sg < --- < S, in hla,b]. Applying again Theorem A, (a)
follows.

Part (b) follows directly from Proposition 2. The proof of part (c) is almost identical
to that of the corresponding portion of [10, Proposition 3], and will be omitted. O

Just as in [10], applying [10, Lemma 1], Proposition 3 (instead of [10, Proposition 3]),
and bearing in mind the argument used to prove the latter part of Proposition 3, we obtain
the following generalizations of [10, Theorem 1 and Theorem 2]:

Theorem 2. Let G := {1,g1,92...} C C([a,b]) be a finitely representable normalized
infinite weak Markov system on [a,b], let Gy, := {go,...,9n} C G with n > 1, and assume
that g1 is strictly increasing. Then there is a unique linear operator D defined on S(QG)
and depending only on g1, such that if (h,c, P,,U,) is a standard representation of G
with associated operator H,,, then D= H, on S(G,).

As in [10], D will be called the generalized derivative associated with the system G.

Theorem 3. Let G := {1,91,92,...} C C([a,b]) be a finitely representable normalized
infinite weak Markov system on [a,b] , let G, = {go,...,9n} C G with n > 1, assume
that g1 is strictly increasing, and let (h,c, P,,U,) be any standard representation of G,,.
Then the generalized derivative D associated with G has the following properties:

(a) The functions 5gk are continuous at a, left—continuous on (a,b], and if D denotes
the relative derivative with respect to g1, and f € S(G), then Df(x) = Df(z) a.
e. in [a,b].

(b)

ug () = uo(x) /w Duy(t)dgi(t), = €[a,b], k> 1.

(¢) {Dg1,Dgs,Dgs---} is an normalized infinite weak Markov system on [a,b].
(d) For any n > 1, if (h,c, P,,U,) is any standard representation of G,, then

EUO = 0, ﬁul =1.

Ifn>2,

_ h(z)
Dus(z) = / dps (t2).

Ifn > 3,

~ h(w) to te—1
Duk(x)z/ / / dpi(tx) - - - dpa(ta), 3 <k <n.

We end this section with the following generalization of [10, Proposition 4]. It has the
same proof, except that we need to use Theorem 3(b) instead of [10, Theorem 2(b)].

Proposition 4. Let G, be a a representable normalized weak Markov system of continuous
functions on [a,b] such that g1 is strictly increasing, and let f € S(G,). Then, for every
xo, 1 € [a,],

o) = Sao) + | " DF) dga (1),
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3. GENERALIZED CHEBYCHEV POLYNOMIALS

For the case of a compact interval, Haar’s famous unicity theorem says that an n—
dimensional subspace S of C[a, b] has a unique element of best approximation in the norm
of the supremum for each f € C([a,b]), if and only if S has a basis that is a Chebychev
system on [a,b] [7, 8] (such a space is called a Chebychev space). Moreover, if S is a
Chebychev space, f ¢ S and g is the best approximation to f in S, then the function
e := f—g has an equioscillation of length n+1, i. e., there are pointsa < zog < -+ <z, < b
such that

e(ri) =e(~=1)"|lel|, i=0,...,n; e=1 o e=-—1.

Jones and Karlovitz [11] characterized those finite-dimensional subspaces S of Cfa, b]
having the property that every function f € C|a,b] has at least one element of best
approximation ¢ in S such that the error function f — g has an equioscillation of length
n + 1. This result was generalized to functions defined in more general sets by Deutsch,
Niiremberg and Singer [9], and was further extended by Kamal. His result, which we will
use in the sequel, is the following:
Theorem B. [12, Theorem 2.9] Let Q be a locally compact totally ordered space that
contains at least (n + 1) points, and let N be an n-dimensional subspace of Co(Q). Then
N is a weak Chebychev subspace if and only if for each f € Co(Q) there is g € N such
that || f — g|| = d(f,N) and f — g equioscillates at (n+1) points of Q.

We can now prove

Proposition 5. Let G,, be a normalized representable weak Markov system in Cla,b].
Then there is a function T, € Cla,b] such that

(a) T,, € S(G,).
(b) Ty, has an equioscillation of length n + 1.
(¢) |ITn]| =1 and T,,(b) > 0.

Proof. Let Ty = 1. If n > 0, then by Theorem B there is an element of best approximation
Gn t0 gy, from S(G,,—1), such that the error function g,, — g, has an equioscillation of length
n+ 1. Setting T}, := o (gn — tn), where ay, is chosen so that || Ty, || = 1 and T, (b) > 0, the
assertion follows. O

A function that satisfies the conclusions of Proposition 5 will be called a generalized
Chebychev polynomial associated with G,, and denoted by T,. Note that if G,, is not a
Chebychev system the functions 7;, may not be unique. If G is an normalized infinite
weak Markov system, we may generate a sequence {7y, T, 75, ...} by selecting one such
T, for each integer n. Such a sequence will be called a family of generalized Chebychev
polynomials associated with G.

The following theorem should be compared with [10, Corollary 1], which is the corre-
sponding statement for Markov systems.

Theorem 4. Let G be a normalized infinite weak Markov system in Cla,b], and let
{To,T1, Tz, ...} be a family of generalized Chebychev polynomials associated with G. Then,
for each n > 0 we have:
(a) S{To,-..,Tn}) = S(G,)
(b) Ifyo < ... < yn is an equioscillation for T, then T, is monotonic in each interval
[yj—layj]; .7 = 17 -,
(¢c) Ty, is constant on [a,yo] and on [y, b].
(d) There are points do,dg ..., dn,d} such thata =do < df < ...<d, <d} =band
20 < ... < 2, is an equioscillation for Ty, if and only if z; € [d;,d]; i =0,...,n.
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There are points cl,cf,...,cn,ch such that d1 1< ¢ < c <d; for1 <i<mn,

and .
{0} U G5, C _]

If, moreover, G is finitely representable, then DTn has weakly constant sign in each
interval [y;—1,y;]; 5 =1,...,n

Trivial: The functions Ty, ..., T, are linearly independent.
Let us assume for example that T),(y;—1) = —1 = —T,(y,;) and that T, is not
increasing Then there are points &, n, with y;_1 < & < n < y;, such that T,,(§) >
Tn(n). Setting § := (T (n)+T5(£))/2 we see that yo, ..., yj—1,§,1,Yj, - - -, Yyn would
be a strong alternation of length n 4 3 for T3, — d, which is a contradiction.
If d < yo and T),(d) = —T,(yo0), then d,yo, ..y, is a strong alternation of length
n+ 2 for T,,. Otherwise, if |T,,(d)| < 1, setting § = (T5,(d) + T (yo))/2, we see that
T, — 6 would have a strong alternatlon of length n + 2. Thus T, (d) = T (o). In
similar fashion we see that T),(x) = T, (yn) in [yn, b].
Let yo < ... < yn be an equioscillation for T,, in [a,b]. For each j = 0,...,n let
I == {z € (yj—1,Yj+1) : Tn(z) = Ty(y;)}, where y_1 := a and y,41 = b. Let
d; = infI;, and d;‘ := supl;; in view of (b) and the continuity of T,, we see
that I; = [dj,dj ], whereas (c) implies that dy = a and d}f = b; it is also clear
that d;j_1 < df | < d; < df by construction. Moreover, if z € [a,0] is such that
|T,(x)] = 1, bearlng in mlnd that € [y;j_1,y;] for some j, 0 < j < n+1, we
conclude that either T}, (z) = Ty (y;j—1) or T (x) = T, (y;), whence either x € I;_;
or x € I;. Therefore

n

U =T, ({-1,1}).

Thus, if zog < --- < 2z, is an equloscﬂlatlon we deduce that {zg,...,2,} C U;L:O I;

Let us assume that for some j, 0 < j < n, z; € I;, and let jo the first index for which
zjo & Ljo; then {zj,, ..., 2, } CUJs;, I;; this implies that at least two consecutive
z;’s must belong to the same interval I;; but this contradicts the assumption that
zo < --- < z, is an equioscillation.

Since Tn(d;r_l)Tn(d ) < 0 for each 1 < j < n, there is a point x € (d] 1,d;) such
that T5,(z) = 0. Thus K, := {x € (dT _1,dj ) : Th(x) = 0} # 0. Let ¢; := inf K
and cj = sup K;. By Contlnulty Tn(c) =0 = Tn(c;r)7 and (b) implies that

K; = [cjmj]. Moreover, since (d) implies that 7T, is constant and nonzero on

[dydj ], it is clear that if T),(x) = 0 for some z € [a,b], then = ¢ J]_[d;,d; *;
therefore z € (d _1,d;) for some j, i. e. v € Kj.

Let us assume, for instance, that T, (yj—1) = —1 = =T, (y;); therefore (b) implies
that 7), is increasing on [y;_1,y,]. If ﬁTn is negative in (y;j—1,y;) there must be
a point z1 € (y;—1,y,) such that DT, (z1) < 0. Since DT, is left—continuous,
there must be a point g € (yj—1,1) such that DT, < 0 in [0, 21]. Applying

Proposition 4 we thus have
To(w1) — Ta(x0) = / DT (s)ds < 0.

Since T, is increasing on [y;_1,y;], we have obtained a contradiction.

11
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The intervals [d;, dj] will be called equioscillation intervals of T, the intervals [c;, cj]
will be called zero intervals of T),, and the left endpoints c; of the zero intervals will be

called ¢—zeros of T,.

4. DENSITY OF INFINITE WEAK MARKOV SYSTEMS AND ZEROS OF CHEBYCHEV
POLYNOMIALS

In this section we will assume that G is a finitely representable normalized infinite
weak Markov system defined on an interval [a,b]. Clearly g; is increasing on [a,b]. If
(h,c, P,,Uy,) is a representation of G,,, then dp; = dg; this implies that all the functions
in S(G,) must be constant on the same subintervals of [a,b] where g1 is constant. To
obtain density theorems for C[a, b] we will therefore assume that g; is strictly increasing
on [a,b]. Once such a density theorem is obtained, it is easy to obtain a corresponding
density theorem valid in the case where g; is not strictly increasing. That theorem would
obtain for the subset of functions in Cfa, b] that are constant on those subintervals of [a, b]
where g; is constant.

Let {T},}n>1 be a sequence of generalized Chebychev polynomials associated with G.
We define

M, :=max{|c; — ci—1]: 1 <i<n+1},
where ¢y, ..., ¢, are the f—zeros of T},, co = a, and ¢, +1 = b.

We will also assume that G has the following property: There are points a1, by, a <
a1 < by < b such that for every n > 1, G, is linearly independent in [a,a1] U [by,b].
Although Theorem 1 implies that such points exist for each n, they depend on n, and they
may coalesce with the endpoints; for example, we could have lim,_ ., a; = a. With this
additional hypothesis, the restriction of the functions in G to [a, a1]U[b1, b] is a normalized
infinite weak Markov system, and we obtain the following generalization of [10, Lemma 2]:

Lemma 1. Let G satisfy the hypotheses of the previous paragraphs, let a < a1 < by < b,
let f be the function defined in A := [a,a1] U [b1,b] by

_J 0 ifzea,a]
J@) '—{ 1 ifac b,

and let S, € S(G,) denote a function whose restriction to A is an element of best approz-
imation to f in A such that f — S, has an equioscillation of length n+2 (such a S,, exists
by Theorem B). Then

(a) S, is increasing on [a1,b1].

(b) Assume that lim,, ., M, = 0. Then there is a constant K such that

If = Snlla < KM,/ (b1 — a1),
where || - ||a denotes the norm of the supremum in A.

Proof. The proof of (a) is identical to that of [10, Lemma 2], using Theorem B instead of
the alternation theorem for Chebychev systems, Proposition 4 instead of [10, Proposition
4], and Theorem 3(c) instead of [10, Theorem 2(c)] to show that {Dgi, ..., Dgy} is a weak
Markov system.

To establish (b) we repeat the steps used in the proof of [10, Lemma 2(b)]. The only
difference is that in step (iii) we use f—zeros instead of zeros, and Theorem 4 instead of
[10, Corollary 1]. O

Theorem 5. Let G C Cla,b] be a finitely representable normalized infinite weak Markov
system such that gy is strictly increasing on [a,b]. Assume there are points a1, by, a <
ay < by < b, such that for everyn > 1, G, is linearly independent in [a,a1]U[b1,b]. Then
the following propositions are equivalent:
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(a) S(G) is dense in C[a,b], in the norm of the supremum.
(b) limy_.eo My = 0.

Proof. If M,, does not converge to zero as n — oo, then there is a number r > 0 such
that for each & > 0 we may choose an integer ny > 0 such that M,, > r. For each
k, let cj,,cj,+1 be two consecutive ¢~zeros of T}, such that cj, 1 —c¢;, = My, > 7,
where 1 < j, < ny depends of n;. The sequence {c;, : k > 0} will have a subsequence
{ag : k > 1} that converges to a point «ayp.

In summation: If M,, does not converge to zero as n — oo, then there is a number r > 0
and sequences {r(k) : k > 1} and {c; ,, : k > 1}, such that ¢; , 11— ¢j, ) = Myx) > 1,
and lim Cly = Q0-

Let

. 2r . 8r
a=oao+ 15, ﬁ~_a0+Ev
and let ko be such that if & > ko, then [c;, , — aol < {5. Assume k > ko; then ¢; , €
[ag — /10,0 + 7/10]. Thus g — 7/10 < ¢;,,, < g +7/10 < a < 3, and therefore
0 < B —c¢ju < 9r/10. Since ¢j, . +1 — ¢,y = 7, we conclude that 3 < ¢j, , +1; thus
[, B] € (¢, +15Ciry)- Since ¢j,, and ¢; ., are consecutive ¢—zeros of T).(x), this
implies that [a, 3] cannot contain an ¢-zero of Ty (). From Theorem 3(e) we therefore
conclude that either [a, 3] contains one left endpoint of an equioscillation interval of 7).z,
or [a, ] contains no left endpoint of an equioscillation interval of T’.). We will consider
the first alternative: the proof of the second alternative is similar and will be omitted.

Assume that dff(bk) € [a, f], and let D denote the set of the remaining left endpoints
of equioscillation intervals of T (x). Thus D C [a,a] U [3,b] and D has 7(k) elements.
Choosing now a < 21 < 22 < x3 < 24 < 3, let f(z) € C([a,b]) be defined by

0 z€la,alU[B,b
flx) = 2 x=x1,r=13 ,
—2 T =29, x =114

and by linear interpolation elsewhere in [a, b].

Assume that for some n there is a function ¢ € S(G,,) such that ||f —q|| < 1/2. Let
k > ko, r(k) > n, and let g be an element of best approximation from S(G, ) to f. Since
S(Gn) C S(Gry), we see that || f — g|| < ||f — q|| < 1/2. The definition of f implies that

lg(d)| < 1/2, de D.
We therefore conclude that
sign[T,.x) — g](d) = signTy,(d), de& D.

Moreover, {z1, 72, 23,74} is a strong alternation for T,y — g in (, 3). Selecting three of
these four points appropriately and joining them to the set D, we see that T'.(;) — g has a
strong alternation of length r(k) 4+ 3. Since T}.(x) — g € Gy (1), and G,y is a weak Markov
system, and therefore cannot have a strong alternation of length larger than r(k) + 1, we
have obtained a contradiction. This shows that (a) = (b).

To prove the converse let us assume, as in [10, Theorem 3], that S(G) is not dense.
Then there is a nonzero Borel measure p such that for every function g € S(G)

b
[ ottdute) =0,

Let € > 0, ba, be such that a; < by < by and ag such that a1 < az < be and u([az, bs]) <
u([a,b])/6. The proof now is the same as in [10, Theorem 3, (b) = (a)], with aso,bo
instead of aq, b1, and Lemma 1 replacing [10, Lemma 2] because, since [a,a1] U [b1,b] C
[a, az]) U [ba, b], Lemma 1 is applicable. O

13
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Corollary 1. If lim,_,.c M, = 0 for one associated family of Tchebychev polynomials,
then lim, ..o M,, = 0 for every associated family of Tchebychev polynomials.

5. JACKSON TYPE THEOREMS FOR FINITE SYSTEMS

In this section we will assume that G,, C C[a,b] is a normalized weak Markov system
in [a,b]. Let E,(f) denote the distance from f to S(G,) in the norm of the supremum,
andlet a:=a—1and b:=b+ 1.

For each g € G, let us define g on [a, b] as follows:

gla) if a<z<a
glz)=4q g(x) if a<z<b
gb) if b<ax<b
It is clear that G, :== {go,...,gn} is a normalized weak Markov system on [a, b].

Let L(s) := \/%76_82/2 and Ly(s) := kL(ks); k > 1. For every f € Cla,b] we set

f5) = fx Ly, i e.

b o
0 (z) = / £(5) L — s)ds = / £(5) Lz — 5)ds,

where in the second integral we understand f to equal 0 outside the interval [a, b].

Under these conditions, limy_. f*) = f, uniformly on every closed subinterval of
(a,b), and, if d = a, or d = b, then f*)(d) converges to 2 f(d). Moreover, @;k) =
{7o™, ..., 3.} is an ECT system on [a,b] [13, pag. 15]. In particular, the functions in

@;k) are an ECT system on [a,b], and g*) converges uniformly to g on [a,b], for every

g € S(Gy).
Let g*) denote the restriction to the interval [a,b] of g*) € S(G,, ), and let G =

{g(()k), e ,gék)}. Each g € S(G,,) is in one-to—one correspondence with g € S(G,,), which

(for each k) is in one-to-one correspondence with g*) € § (G_n(k)

one—to—one correspondence with its restrictions g(’“):

(k))

), which in turn are in

ge—Ge— g — gk,

However, it is clear that ¢(¥) # g % L.
We now need a slight generalization of the main result of [11]. The proof is similar.

Lemma 2. Let f € Cla,b], and let { fr.} C C|a,b] be a sequence that converges uniformly to
f in[a,b]. For each k > 1 let my, be the element of best approzimation to fi from S(G;k)).
Then there is a subsequence {k;} such that {my,} converges uniformly in [a,b] to an
element of best approximation m to f from S(G,,). Moreover, f—m has an equioscillation.

Proof. Since || fr — mi|| < ||fx — 0]|, and therefore ||mg| < 2| fkll, we see that {my} is
uniformly bounded. Since my = Y"1, ozfgl(k), there is a subsequence {k1 ;} and numbers
Q0, - - -, iy, such that af — a;,i=0,...,n, iftk=~Fk ; — oo

Let m = > aigi, and g € S(G,,). Since m € S(G,,), we see that fi, —g*) — f—g
and fi, —my — f —m uniformly in [a,b]. Since || fx —mk|| < || fx — 9*|| we conclude that

If =mll <|f -4l

i. e., m is an element of best approximation to f.

Moreover, if a < z§ < ... < xflﬂ < b is an equioscillation for fr — my, then there is a
subsequence {ks ;} of {k1,} , a constant ¢ = £1, and points a < xg,...,ZTp+1 < b, such
that if & = ko ;, then

. A
[fr = mi] (i) = e(=1)"||fr — m;
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and lim;_ xf —x;, 0<i<n-+1. Thus

[ = ml(@:) = e(~1F|f —ml, e=Tore=—1.
This implies that [f — m](x;) = —[f — m|(zi+1) # 0, 0 < i < n, and therefore that the
points x; are all different. O

Foreachk>1landa<zg<...<xpq1 < b, let
D = (g (@;41) — g () 11 <i <m0 < j <},
let D(k) be obtained from D by deleting the j** column, and dg»k) = det D;k), for0 <j <n.
In [10 Lemma 5] we showed that d(k) >0and > 7, dgk) > 0. Setting
d(k)
i ST dgk)

and

59 .= sup 3 a9 g 00) - o) b

alzp<...<Tp4+1<b =0
then, if w(f) denotes the modulus of continuity of f, we have:

Theorem 6. Let f € Cla,b] and § := limy_o6"). Then § < oo and
3 -1
E.(f) < Ew(f°g1 ;0).

Proof. Since |a( )| < 3 and ||g1 )|| < |lg1|| for every k, we see that the sequence {6} is

bounded; thus § = limj_.c0) < co. Let my be the element of best approximation to
f from S(Gglk)). Since {f*)} converges to f, uniformly in [a,b], applying Lemma 2 we
obtain a subsequence {k;} and an element of best approximation m, to f from S(G,),
such that {my,} converges uniformly to m in [a,b]. Now, let us choose a subsequence
{ky ;} of {k;} such that §*1.5) — § when j — oco. For convenience, let us denote it again

by {k}.

Let f1 := fogy', e >0, and let rp > 0 be such that if r < 7o, then w(f1;7) < /2.
Choosing ko so that if k > ko then [0 — §| < ry/2, we have:

w(f1;6W) < w(f130) + w(fr;r0/2) <w(f1;0) +¢/2
and
w(f138) S w(f136W) +w(fisro/2) < w(fr;6W)) +e/2.

Thus w(fog ' 6®™) = w(fog';6) as k — oo.

Applying [10, Theorem 6] to GF we have:

3 _
EP () = |f —mal| < Sw(fogr’6™).
Making £ — oo, the assertion follows. 0

For each t € [a,b] and k > 1, let o4+ be the function defined in [a, b] as follows:

" 0 for a <s<t
S =
Ot ¢ (s) = g™ (t) for t<s<b



16

Gonzalez,Zalik

If t is arbitrary but fixed, it is clear that as k — oo the function o ; converges uniformly
on [a,b] to
0 for a<s<t
oufs) = { g1(s) —g1(t) for t<s<b

Let 0+ the element of best approximation to o+ from S(Gglk)), and let Er(Lk) (Ogt) ==
okt — Ok,ell-

Lemma 3. Let n > 0 be arbitrary but fized. The sequence {Efq,k)(am) k> 1}, of
functions of t, is uniformly bounded and uniformly continuous.

Proof. The uniform boundednes follows from

1B (k)] = o,

O <2010
If ¢y, t3 € [a,b], then
Hakﬂh - gk,tl ” < ”0—167751 - gk,tz ” < ”0—167751 — Ok,to ” + ||Jk,t2 - akﬂsz .

Therefore

Er(zk) (Jk,tl) - Er(zk) (Jk,tz) < ||Jk,t1 — Ok,tz ” .
A similar argument yields

EM (0k1,) = B (0k,) < llowts — Okt ||
Thus

|EP (0k,1,) = EX (0k,0)| < Nlokts — ok, |-
But [0k 1, — ok, || < 917 (t2) — 91" (t2)] (cf. [10, Lemma 6]). However,

oo

1987 (t2) — gtF ()] < / |91(t2 — 5) — g1(t1 — )| Ly.(s) ds

— 0o

which implies that the sequence {ggk) : k > 1} is uniformly continuous, which in turn
implies that {Ey(,,k)(am) : k > 1} is uniformly continuous. O

Theorem 7. Let G,, C Cla,b] be a normalized weak Markov system in [a,b]. Then
(a) En(o) is a continuous function of t.

(b) If
A, := max E, (o),

a<t<b

then

§ < V/91(b) = g1(a)] Ay

Proof. Applying Lemma 3 and Arzeld’s theorem we see that there is a sequence {k1 ;}

such that E,(Lkl"")(akl‘ ;,.) converges uniformly on [a, b] to a continuous function E.
For each fixed ¢ € [a,b], Lemma 2. implies that there is a subsequence {kz ;} of {ki ;}

such that Er(Lb"’A)(szyj,t) converges to E,(o¢). This shows that E(t) = E,(0¢), and (a)
follows.

Setting k = ko ; and Ag,,k) = MaXg<t<p Ey(,k) (0k,t), we see that A;’“) —k—oo Ap. Apply-
ing [10, Theorem 7] to G, we have:

<\/ ) () — g8 (a)] A

Finally, if k = k3 ; is a subsequence of ng such that limy_,. 6%) = §, we have:

5= Jim 5% < lim /[ () — 8 (@)A% = Vi ®) — gr(@]
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Abstract

This paper is concerned with the construction of smooth dual functions for
a given family of interpolating scaling functions. The construction is based on
a combination of the results in [2] and [11]. Several examples of dual functions
are presented, including a continuously differentiable dual basis for the quincunx
matrix.

Key Words: Interpolating scaling functions, Strang—Fix—conditions, biorthogonal
wavelet bases, expanding scaling matrices, dual functions, Holder
regularity.

AMS Subject classification: 41A05, 42C40, 41A30, 41A63

1 Introduction

The construction of multivariate wavelets and scaling functions has been a field of in-
creasing importance over the last years. A large variety of different construction prin-
ciples has been published for orthogonal wavelets, biorthogonal wavelets, wavelets on
spheres, scaling functions on general bounded and unbounded manifolds, scaling func-
tions for specific operators (Radon transform, pseudo-differential operators, vaguelette
bases) and many more.
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Wavelets are usually constructed by means of a so-called scaling function. In general,
a function ¢ € Ly(RY) is called a scaling function or a refinable function if it satisfies a
two—scale—relation

P(z) = Y arp(Az — k), a = {ag}reza € l2(ZY), (1.1)

kezd

where A is an expanding integer scaling matrix, i.e., all its eigenvalues have modulus
larger than one.

Current interest centers around the construction of multivariate interpolating scaling
functions ¢, see e.g. [2, 3, 5, 6, 7, 8, 14], i.e. in addition to (1.1) one requires that ¢ is
at least continuous and satisfies

o(k) = o, ke Z° (1.2)

Interpolating scaling functions are needed for various applications e.g. CAGD or col-
location methods for operator equations. These applications also require some smooth-
ness of the scaling function. This problem has been solved satisfactory for ¢ itself, even
for the notorious quincunx matrix.

The next step of the construction process asks to find a dual scaling function ¢ which
satisfies

(0(),6(- = k)) = o, keZ (1.3)
However the best result so far for the quincunx matrix yields a dual scaling function
¢ € C* with a = 0.3132, see [11]. The aim of this paper is to construct duals for
interpolating scaling functions which are continuously differentiable. In Section 5 a dual
function ¢ € C* for the quincunx matrix with o = 1.9528 is constructed.
This result is based on a combination of three different techniques:

e construction of smooth interpolating multivariate scaling functions [2],
e construction of duals for interpolating scaling functions [11],
e estimating the regularity of scaling functions using the techniques of [15].

The construction of smooth dual functions is the cornerstone for further develop-
ments. Given such a dual function, there exist several ways to construct a biorthogonal
wavelet basis, i.e., two sets {1;}icr and {¥y }ier of functions satisfying

(| det AP/ (A7 - —k), [ det APy (AT - —K')) = 808500110, (1.4)

see, e.g., [11] and [12] for details. Moreover, the existence of dual wavelets is essential
for establishing characterizations of smoothness spaces such as Sobolev or Besov spaces.
In fact, under certain regularity and approximation assumptions the existence of dual
wavelets imply the equivalence of the Sobolev and Besov norms of a function to weighted
sequence norms of its wavelet coefficients, see, e.g., [13] and [4] for details.

The construction of dual functions for interpolating scaling functions is a fairly recent
research topic. First examples were obtained in [11]. This paper mainly deals with dual
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scaling functions for the classical box splines associated with the usual dyadic dilation

: . . . 1 -1
matrix. Furthermore, some results concerning the quincunx matrix A = (1 | ) are

included.

The results in [11] are derived by convolving a given interpolating scaling function
with a suitable distribution. This distribution does not have any smoothness, i.e. this
operation clearly diminishes the regularity of the resulting dual function gz~5

Therefore the whole construction only works satisfactory when the primal function
¢ is sufficiently smooth. Such a family of smooth interpolating scaling functions was
constructed in [2].

Hence we apply the construction principle of [11] to the scaling functions constructed
in [2], this leads to a new family of biorthogonal scaling functions for the quincunx matrix

1
compared to the results in [11].

This paper is organized as follows. In Section 2, we briefly recall the basic setting
of interpolating scaling functions. In Section 3, we explain the construction of [2] as far
as it is needed for our purposes. Then, in Section 4, we recall the approach derived in
[11]. Finally, in Section 5, we combine both approaches and present a detailed regularity
analysis using the smoothness estimates of [15].

For later use, let us fix some notation. Let ¢ = |det A|. Furthermore, let R =
{po,---spg1}t, RT = {po,...,pq-1} denote complete sets of representatives of Z¢/AZ?
and Z¢/BZ¢, B = AT respectively. Without loss of generality, we shall always assume
that Lo = ,50 =0.

A= ( ! _11 > which has the advantage that the dual functions are much smoother when

2 The Setting

In the sequel, we shall only consider compactly supported scaling functions, furthermore
we shall always assume that supp a := {k € Z? | a; # 0} is finite. Computing the
Fourier transform of both sides of (1.1) yields

“ (B w). (2.1)

o) = [T ale="7%), (2.2)

j=1
where the symbol a(z) is defined by
1
a(z) ==Y azt (2.3)
1 peza

Here we use the notation z = z(w) = e ) and z* is the short hand notation for
e~"*k@) We will mainly use the z-notation in this paper, i.e. a(1) refers to the value of

21
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the symbol at w; = ...wgs = 0. It will be stated explicitly, whenever we go back to the
w-notation.

All known procedures for constructing multivariate scaling functions start with a
symbol a(z), which by Equation (2.2) determines ¢. Then the question arises which
conditions on a(z) guarantee that ¢ according to (2.2) is well-defined in Lo(R?) and
has some additional desirable properties such as sufficient smoothness. Moreover, for
our purposes, we have to clarify how the interpolating property (1.2) can be guaranteed.
The following two conditions are necessary:

(1) a(1) =1,
(C2) ¥ a((e ') =1, where (= e 287,
pERT

The following condition is not necessary, but it can be easily established in many cases
and it is required for the construction of [11] as well as for the regularity estimates in
Section 5. Moreover this condition already implies that the resulting scaling function is
at least continuous:

(C3) a(z) >0 .

Usually, conditions (C1)—(C3) are the starting point for the construction of a suitable
symbol and the related interpolatory scaling function. Nevertheless, we want to point
out that they are not sufficient in general.

Several procedures are known for constructing interpolating scaling functions, how-
ever the true challenge asks for constructing smooth scaling functions. To this end, one
often requires that the Strang—Fiz—conditions of order N are satisfied, i.e.,

I
(C4) (;) a(2rB™'p) =0  forall |I|< N andall je R"\{0}.
w

This paper is concerned with the construction of pairs of biorthogonal functions (¢, qg)
where ¢ is an interpolating scaling function and the dual scaling function o satisfies
(1.3). A necessary condition for the symbol @ of the dual scaling function ¢ in order to
satisfy (1.3) is given by

1= %" a(G2)a((p?). (2.4)

pERT

Therefore the usual way to find a dual function for a given scaling function is to construct
a symbol a(z) satisfying (2.4) and to check that the corresponding refinable function
exists in Lo and is sufficiently regular. Indeed, we measure the success of a construction
method for the dual function by the achievable Holder regularity of ¢.

3 Smooth Interpolating Scaling Functions

As outlined in the introduction our search for smooth dual functions gE requires a smooth
interpolating scaling function ¢. The details on how to construct a suitable ¢, resp. a,
for a given ¢, resp. a are outlined in Section 4.
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First of all we briefly recall the construction of interpolating scaling functions devel-
oped in [2]. Tt is based on Lagrange interpolation and can be interpreted as a general-
ization of the univariate approach derived in [10] to the multivariate situation.

We say that a symbol a(z) satisfies the Strang—Fix conditions with respect to a set

0

of polynomials II, if (D = 3-)

(p(D)a)(2rB~'p) =0 forall pell, e R"\{0}. (3.1)

For any subset 7 C Z?, Il will always denote a finite-dimensional subspace of poly-
nomials such that the Lagrange interpolation problem with respect to 7 is uniquely
solvable. Under this hypothesis the following theorem holds.

Theorem 3.1 Let P be a subspace of Il satisfying
(1) If p € P, then p(c(Ax +p)) € llx forc e C, p € R;
(2) p(0) =0 for allp € P.
Then the symbol a(w) defined by
a(w) = ! + ! SN pr(—ATp)e AR (3.2)
9 9 keT per\{0}
satisfies (C1), (C2), and the Strang—Fix conditions (3.1) with respect to P.

Since Lagrange interpolation on general sets of nodes in R? is far from understood, we
restrict ourselves to very simple sets with additional symmetry. Let 7 consist of all
lattice points in a cube in R?, i.e., for N € N and 3 € Z? we set

T=Ts:={kecZ": B;<ki<N+p, i=1,...,d=(@B+[0,N)YnZ’ (3.3)

The Lagrange interpolation problem is always unisolvable on 7" by the polynomial sub-
space

M7 = span{z®, k€ Z¢ ||k||oo < N, k; >0,i=1,...,d}. (3.4)
The fundamental Lagrange interpolants are simply tensor products of the univariate

Lagrange polynomials and can be written explicitly as

L+a;

Ty —n
pk(z) = gkfl (xl)gkz (1’2) e gkd (xd)v gk’z (xl) = H L : (35)
n=a;,n#*k; i N

This leads to the following corollary.

Corollary 3.1 Let T and Il be defined by (3.3) and (3.4), respectively. Then a(w)
defined by (3.2) satisfies the Strang—Fix conditions with respect to Ilr. In particular, the
usual Strang—Fiz conditions of order N are satisfied.
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It has been shown in [2] that under certain symmetry assumptions on the mask
the resulting symbol is in fact real which is clearly necessary to ensure condition (C3).

1 -1
Moreover, in [2], this setting has been applied to the quincunx matrix A = ( )

1 1
Then ¢ = 2 and a set of representatives is given by py = 0,p; = ((1)) Moreover,
—A_l(é> = (_11/22> and 7 needs to be symmetric about (—1/2,1/2). This is the case

for T =[-L,L—1] x [-L+1,L]NZ? Let £, denote the basic Lagrange interpolation
polynomial for n € {—L,—L+1,..,L —1}. With

w@) = 3 Lo(=1/2)e ™ (3.6)

n=—L
we obtain for a(w) corresponding to (3.2)

1 1 _ :
a(w) = 5 + §€—z(w1+w2)/2qL(w1 + wz)e—%(wz—w1)/2qL<w2 B Wl)- (37)
By construction, this symbol satisfies (C1) and (C2). Moreover, it has been shown
that for any L condition (C3) is also satisfied and that the symbol indeed gives rise to
an interpolating scaling function.
As an example, for L = 2 the nonvanishing coefficients can be computed as follows.

1
400 = 5 (35)
81
o) = 4E1) = 4-10) = A0,-1) = g5
1
AE0) = 03) = U=30) T A0-3) T g5
9
A1) = 002 = 0-12) = A=21) = 0(-2-1) = A(-1,-2) = A0,-2) = A2-1) = T oo

4 Construction of Dual Functions

In this section, we briefly recall the algorithm for constructing a dual basis for a given
interpolating scaling function as developed in [11]. The main result in [11] is a lifting
scheme, which allows to construct a second smoother interpolating function from a given
one.
Defining
bﬁ(z) = a(gﬁz>a pE RT: (41)

condition (C2) may equivalently be written as

1= Y bs(2). (4.2)

pERT
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Hence, for any integer K,

(Z b,;(z)) = > (C’;K 11 bgﬁ(z)) =1. (4.3)

pERT Ivl=¢K PERT

Here v denotes a vector of dimension ¢, the coefficients of v are indexed be p € RT =
{ﬁ()a s 7/~)q—1}-
By using (4.3), the following theorem was established in [11].

Theorem 4.1 Let a(z) be a symbol satisfying (4.2) for a dilation matriz A with q =
| det A|. Define

Go = {yeN{: |y =qK, 0> K andyo >;, p € RM\{0}}

G, = {7 EN{: |y =qK, v > K and v > y;, p € R"\{0}, with exactly j equalities},
jzlv"'aq_27

and define

q—2 1 N
Hy = (Zc;Kawol 11 bZ”<Z>)+Cé§ """ )

i—0J 1\, peRT\{0}

where CJy are the multinomial coefficients. Then the symbol a(z)H(z) also satisfies
(4.2).

It can be checked that the symbol Hx can be factored as
Hp(2) = a(2)5Tx(2) (4.4)

for some suitable symbol Tk (z). Consequently, the refinable function associated with
a(z)Hk(z) is obtained by convolving the original function K —1-times with itself followed
by a convolution with some distribution. Since a(z)H(z) satisfies (4.2), it is a candidate
for a symbol corresponding to an interpolating scaling function. Indeed, the following
corollary was established in [11].

Corollary 4.1 Let a(z) be the symbol of a continuous compactly supported interpolating
refinable function and assume that a(z) satisfies (C3). If the refinable function corre-
sponding to a(z)Hg(z) is continuous, then it is interpolating.

This approach can now be used to construct dual functions for the given interpolating
scaling function ¢. Indeed, by recalling the necessary condition (2.4), we see that by
Theorem 4.1

a(z) == Hik(2) = a(2)5Tk(2) (4.5)

is a natural candidate for a symbol associated with a dual function. The following
corollary is again taken from [11].

Corollary 4.2 If the refinable function corresponding to the mask Hy is in Ly(RY),
then it is stable and dual to ¢.
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5 Smooth Dual Pairs on the Quincunx Grid

In this section, we want to employ the algorithm described in Section 4 to construct

bl ) Corollary 4.2 tells us how

smooth dual pairs for the quincunx matrix A = (1 1

to proceed:
e Find a continuous interpolating refinable function ¢;
e Compute Hg according to Theorem 4.1;
e Check that the corresponding refinable function is contained in Lo(RY).

Clearly the last part is the most nontrivial step. Moreover, it is desirable to find dual
functions which are as smooth as possible. We are therefore faced with the problem of
estimating the regularity of a refinable function by only using the refinement mask. This
problem has attracted several people in the last few years, see, e.g., [1, 9, 14, 15]. Let
us briefly recall the basic ideas. We want to find

o :=sup{a: ¢ € C}.

It is well-known that a* > kg, Where kg, is defined by

Ksup = Sup{k : /Rd(l + |w])*|d(w)|dw < o0} (5.1)

Our aim is to estimate kg, from below. One typical result in this direction reads as
follows.

Theorem 5.1 For an integer N, let

Vv i={veb(Z% : > plk)o,=0, forallpéelly},

kezd

where Iy denotes the polynomials of total degree N. Assume that A is a dilation matriz
with a complete set of orthonormal eigenvectors, let |Amqz| denote the eigenvalue of A
with the largest modulus. Let €0 denote a subset of Z% s.t. supp a C Q and Vy is
mvariant under the matriz

H:= [quk‘—l]k,leQ :

Assume that the symbol a(z) according to (2.3) is non—negative and satisfies Strang—
Fixz conditions of order N. Let o be the spectral radius of H|v,. Then the exponent Kgyp
satisfies

log(e)

Keup > —————————. 5.2
» Z “Tog (] (5:2)

As already stressed in Section 4, the approach in [11] actually consists of a convolution
of the starting interpolating function ¢ with itself followed by a convolution with a
distribution. This distribution may be ugly so that it may diminish the regularity of



Interpolating Scaling Functions...

the resulting function significantly. Therefore the method in [11] will only perform
satisfactory for a sufficienly smooth starting mask.

Hence we combine this construction procedure with the approach in [2], which pro-
duces interpolating functions with a small mask but with a high order of Strang—Fix
conditions. Since the Strang—Fix conditions serve as indicators for some smoothness,
there is good reason to expect that the resulting refinable functions are quite regular.
Indeed, by using Theorem 5.1 we obtained for L = 2 and L = 3, respectively

po € C% forall a < 15156  and ¢35 € C* for all o < 2.3035. (5.3)

Therefore we decided to use these functions as starting points. The next step is to
compute the symbols Hy. For the quincunx matrix, we clearly have ¢ = 2 and the first
four symbols can be computed explicitly, for the definition of by and b; see (4.1):
Hy = bo(1+2by), (5.4)
Hy = bj(by+ 4by + 6b2),
Hs = b3(by + 6boby + 1507 + 2003),
H, by (by + 8b5by + 28bbT + 56bybT + T0bybY).
For details, we refer again to [11]. Given a(z), the corresponding symbols Hi, ..., Hy

can be computed by symbolic software such as MAPLE.
As an example, for L = 2 and K = 1 we obtain a mask with 65 non-zero coefficients:

Hi( 60 = —1/65536; Hi( 51y =9/32768; Hi( 51 =9/32768;
Hy( 4 9 =—63/65536; Hy( 49 = —81/16384; Hy( 49 = —63/65536;
Hy 5 3 =—41/16384;  Hy( s 1) = 567/32768; Hy( 50 =1/256;

H17(_3 1) = 567/32768, H17(_373) = —41/16384 Hl’(_2_4) = —63/65536,
Hi( o 9 =369/8192; Hi( o 1y =—9/256; Hi( a0 = —3969/65536;
Hy( oy =—9/256; Hi( 99 =369/8192; Hi( o4 = —63/65536;

Hi( 1 5 =9/32768; Hy (1 3 =567/32768; Hy( 1, 9 =—9/256;

Hyg 1) =—2583/16384;  Hy (10 = 81/256; Hy( 1) = —2583/16384;

H17(_1 2) — —9/256, H17(_173) = 567/32768, H17(_15) = 9/32768,

Hl,(O —-6) — —1/655367 H17(0,_4) = —81/16384, H17(07_3) = 1/256,

Hy 9 =—3969/65536;  Hy_ 1) = 81/256; Hy 0 = 6511/4096;

Hyy = 81/256; Hy g = —3969/65536;  Hiys =1/256;
Hiu = —81/16384; Hi g =—1/65536; Hi s =9/32768;

Hy, s =567/32768; Hyg 2 =—9/256; Hyg_1 = —2583/16384;

H17(1 0 = 81/256, H17(171) = —2583/16384, H17(172) = —9/2567
Hiz = 567/32768; Hins =9/32768; Hi(o s = —63/65536;
Hio 9 =369/8192; Hio 1 = —9/256; H 00 = —3969/65536;
Hyo1y) = —9/256; Hy o9 = 369/8192; Hy o4 =—63/65536;

Hys 5 =—41/16384; Hy 1) = 567/32768; Hy 0 =1/256;

H17(3 1) = 567/32768, H17(373) = —41/16384, H17(47_2) = —63/65536,
Hy 10y = —81/16384; Hi 12 = —63/65536; Hy -1y = 9/32768,;
Hi1y = 9/32768; Hio =—1/65536.

(5.5)
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5 g

Figure 1: Visualization of the dual function for L = 3, K = 2, this function satisfies
¢ € C*(R?) for a = 1.9528.

We used Theorem 5.1 to estimate the regularity of the resulting refinable functions. The
results are displayed in the following table.

LK Ksup
2 | 1 | —0.497
21 2] 0.729
21 3| 1.803
311 | 0.204
3| 2 1.952

We see, that the regularity of the dual functions grows rapidly as K increases. For
L =2, K =1 we do not get an Lo—function, but already the function with respect
to L = 2, K = 2 is smoother than the smoothest one constructed in [11] which was
contained in C9-313226,

For L =2, K = 3 the dual function is continuously differentiable. To our knowledge,
examples for the quincunx matrix with these properties have not been constructed before.
For L = 3, K = 2 the dual function is almost contained in C?. It seems very likely that
enlarging the values of N and K will produce even higher orders of regularity. However
the computations become too time consuming, already the presented examples lead to
eigenvalue problems for matrices with dimension > 4 * 103, This could only be handled
with reasonable computer time by employing sparse matrix techniques.
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Abstract

In this work the estimation of the maximum norm of orthogonal
polynomials over the region with respect to the weight is analized.It
is observed that the norm of polynomials does not change for the
conditions of weight and boundary curve.
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formal mapping, Quasiconformal mapping.

Subject Classes: 30A10, 30C10 41A17.

1 Introduction.

Let G be a finite region,with 0 € GG , bounded by a Jordan curve L := 9G
and h (z) is a weight function in G . The polynomials {K,, (2)}, deg K,, = n,
n=20,1,2,... , satisfying the condition

[ 16 K B G = b, 1)

are called orthonormal polynomials for the pair (G, h). They are determined
uniquely if the coefficient of the term of the highest degree is positive.

These polynomials were first analized by Carleman [6]. He resarched the
Faber problem relating to generalization to simple connected region of Taylor
series. Apart from these approximation problems, these polynomials were the
subjects of many investigatiors who mvestigated asymptotical behaviors of
the polynomials inside and closure of region G.
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In the present study we have investigated the estimation problem of the
maximum norm || K, || o) = max{[K,(z)[, z € G} of orthogonal polynomi-
als over the region with respect to the weight. The polynomials are defined
by the pair (G, h). Therefore, variation of norm of these polynomials depends
on the properties of the region G and weight h(z). This dependency has been
investigated for orthogonality along a curve at [7],[10],[11] and over the region
at [1]-[3],[12].

2 Main definition and results.

Throughout this paper c,cq,co,... are positive, and ¢, &1, 9, ... sufficiently
small positive constants (in general, different in different relations),which
depend on G in general.“a < b“ and “a =< b“ are equivalent to a < band cja <
b < cpa for some constants ¢, 1, ¢ respectively. Let w = p(z) (w = ®(z) be
the conformal mapping of G' (2 := C'G) onto the unit disc B := {w : |w| < 1}
normalized by ¢(0) = 0, (0) > 0 (®(c0) = 00, ®'(c0) > 0) and let 1) := ¢!
(U :=d1).

Definition 1 A bounded Jordan region G is called a k -quasidisk, 0 < k < 1,
if any conformal mapping ¢ can be extended to a K -quasiconformal, K =

%, homeomorphizm of the plane C on the C. In that case the curve L :=

0G 1is called a K -quasicircle. The region G (curve L ) is called a quasidisk
(quasicircle),if it is k -quasidick ( k -quasicircle) with some 0 < k < 1.

Theorem 2 Let G is a k -quasidisk for some 0 < k < 1, and the weight
function h (z) uniformly bounded away from zero, i.e.

hiz)>c>0 (2)
Then, for everyn =1,2, ...
1Kl < en™*. (3)
Definition 3 We say that G € Q,, 0 < a <1, if

a) L is a quasicircle,

b) ® € Lipa, z € Q.
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Theorem 4 Let G € Q,, for some 0 < a < 1 and h(z) satisfying the
condition(2), Then, for everyn = 1,2, ...

n, a<

— <
Ko <a{ 1 3

Y

(4)

NN |—=

where § = 6(G), 1 <6 <2, is a certain number.

Now, we assume that the function h (z) doesn’t supply the condition (2).
We define the functim h (2) as the following:

h<z>=ho<z>H|z—zz- (5)

where {z;}, ¢ = 1,m is the fixed system of the points on L ; 7; > —2 and
ho (2) is satisfying the condition hg (2) > ¢ > 0.

Definition 5 We say that Q € Q (v),0 <v < 1, if
i) L:=0Q = 0G is quasicircle,

ii) For Yz € L, there exists a v > 0 and 0 < v < 1 such that a closed
circular sector S(z;r,v) == {(:(=2+7re?,0<0, <0 <by+v} of
radius v and opening v lies in G with vetrex at z.

It is well known that each quasicircle satisfies the condition ii). Never-
theless, this condition imposed on L gives a new geometric characterization
of the curve or region. For example, if the region G* defined by

G*::{z:z:rew,0<r<l,g<9<27T},

then the coefficient of quasiconformality k of the G* does not obtain so easily,
whereas Q* := CG* C Q(3).

Definition 6 We say that Q € Qq (v1,...,Vm),0 < 11, .. 1y < a < 1, if

there exist a system of points {z;},i=1,m on L , such that Q2 € Q (v;) for
any points z; € L and ® € Lipa, z € Q\{z}.

Assume that the system of points {z;}, ¢ = 1, m mentioned in (5) and
Definition 6 is identically ordered on L.
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Theorem 7 Let Q2 € Q4 (Y1, ..., Vi), for some 0 < v; < 1 and (2 — v;) >
h(z) defined by (5) and, in addition

Vs 1
1+57—(2_Vi) (6>

is satisfied for any points z; € L, 1 = 1, m Then, for everyn =1,2, ...
| Knlloa < esn'® (7)

Comparing Theorem7 with Theorem4 we see that when equality (6) was
satisfied, then the maximum norm of polynomials K, (2) in G acts itself iden-
tically, neither weight h(z) and boundary curve L have not got singularity nur
they have got singularity. The equality given by (6) shows the interference
condition of weight and boundary contour.

Corollary 8 In the Definition6, if the boundary arcs of the region €2 joining
the points {z;} € L are arcs of the class C(1,a) then we can find the region
with piecewise smooth boundary and having got in the joining points interior
angles v;m, 0 < v; < 1. In this case the relation (6) and (7) will be given as

follows:
Vi 1 L —
—_— = — 1

[Knllo@ < can. (9)

1+

This result extends the theorem of Suetin [12, Th.4.6] in case of 0 < v; <
1.

Let Ay(h,G),p > 0 denotes the class of function f which analytic in G
and satisfying the condition

1/p
e = 1o (// Ipdaz) ‘o

Since the polynomials K, (z) have a minimal ||F,[, ;g -norm in the
class of all polynomials P,(z), deg P, < n,n = 1,2, ..., the Theorems 2-7
can be generalized for this class. In this case we have relation of the norms
||Pn||c(é) and ||Pn||A,,(h,G) :

Theorem 9 Let P,(z), deg P, < n,n = 1,2, ..., is arbitrary polynomial and
1 <p<oo.Then
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a) under the conditions of Theorem 2

1Pall 4, »

2(1+k)
IPalle) < can” 7

b) under the conditions of Theorem’s 2 and 7

2
1Palle@ < esnve [ Balla, »

This estimations are sharp as exponent in the class of all polynomials of
degree at most n.

3 Some auxiliary results

Let G is a quasidisk.Then there exists a quasiconformal reflection y(.) across
L such that y(G) = Q,y(Q2) = G and y(.) fixes the points of L. The quasi-
conformal reflection y(.) is such that it satisfied the following condition [5,
p.26]

1
(O =2l =< (=2, €L e<|(<- (10)
1
‘?/E‘ = |3/<|X1,6<|§|<g
2 -2 1
el = WP, I¢l<e Juel <167 1< > -

For t > 0, let Ly := {z:|p(2)| =tif t <1,|P(2)| =t,if t >1},G; =
ntLy, Q= extly.

Lemma 10 /3] Let G be a quasidisk, zy € L, z0,23 € QN {z : |z — 2| <
d(z1, Lyy)}; wj = ©(25), 7 =1,2,3. Then

a) The statements |z1 — 22| < |z1 — 23| and |wy —ws| < |wy; — ws| are
equivalent. So are |z1 — zo| X |21 — 23] and |wy — wo| < |wy — w3 .

b) If |21 — 22| < |z1 — 23|, then

3 C

21 — %3

'wl—wg

’wl—wg

w; — W 21 — 22 w1 — W2

where 0 < rg < 1 a constant, depending on G and k.
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Lemma 11 Let G be a k -quasidisk for some 0 < k < 1. Then

W (wi) — U (ws)| = |wi —wa|F,

for all wy,wy € o8

This fact it follows from of an appropriate result for the mapping f €
ST(K)[9, p.287] and estimation for the W'[5, Th.2.8]

Lemma 12 Let G be a quasidisk and P,(z), deg P, < n,n =1,2,..., is ar-
bitrary polynomial and weight function h(z) satisfied the condition(5). Then
forany R>1,p>0andn=1,2,..

nt2
||Pn||Ap( y S al i ||Pn||Ap(h,G) (11)

h,G1ye(r-1)

where ¢, cy are independent of n and G.

This lemma in case of p = 2 mentioned in [1]. In particular, in h(z) = 1
we get

nt2
[Pl 4 (Crienry) SR i [Pl 4 (@) (12)
PAMI4c( ) P

This result is the integral analog of the familiar lemma of Bernstein-
Walsh[13, p.101] for the case A,(G) -norm and, shows that the order A,(G)
-norm of arbitrary polynomials is taken from the region G' and G141/, which
both have the identical order. For the case of L,(0G) -norm the appropriate
result has been proven in[8].

4 The Proof of Theorems.

Let P,(z) is arbitrary polynomials of degree at most n; My, = [[Pall 4, ) -
For the sake of simplicity , we assume that the m = 1,9, = v, v, = 1.
For each R > 1 let L* := y(Lg), G* := intL*,Q* := extL*.
According to[4], for all z € L* and t € L such that |z — t| = d(z, Lg) we
have
d(z,L) < d(t, Lg) < d(z, Lg) (13)

Since L is a qusicircle, then any level curve Ly, R = 1+ cn™ ! also is

quasicircle. Therefore, there exist a K;-quasiconformal reflection yg((), yr(0)
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= o0 across Lp such that it satisfies the condition(10) described by yz(¢). For
yr(C), we can write for P,(z) the followmg mtegral representation[5, p.105]

// yRC d C,ZEGR. (14)
ar (YR(C

For € > 0 by setting U.(z) := {¢ : |¢ — z] < 8} and without loss of generalite
we may take U, := U.(0) C G*.

For 2 € L we have

<[] ) B

To estimate the integral J;, we multiply the numerator and denominatorof
integrant to h'/?(¢), and applying the Holder inequality we get

s momoracd ] b 3

The first multiplier smaller than 7~ M,, ,. According to (10) |yRZ| = |lyr(Q) ]2 ,
for all ¢ € U., besause of | — z1| > €, |yr(¢) — 2| < |yr(¢)| for z € L and
¢ € U., then we can find

Ji < Mn,p (16)
For the estimation of J, , first of all we note that the Jacobian £,, :=
]deQ — !sz|2 of the reflection yg(¢) satisfied the following inequality

£ Ik £ ’
|yR,Z} - [| yz;’_vaC’2] B 2 n 2 (17)
?JR,<| }?JR,{‘ <|?/R,C| /‘yR,ﬂ ) -

1
2 2
X 1 1
(1_X2) "’gyR’z <“’{:Z/bzlza
Ki—

where x = 2 +1 Next, analogously to the estimate for .J;, after the carrying
out that the change of variable we obtained

1
do, !
Jo =< M, // R (18)
: { ar\U: [¢ = 21"V [yr(¢) — 2™
dO’C
< M,, { / / 7(g—1) 2q}
vr(Gr\U:) |YR(C) — 21 [

Q=
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from (10),(17) and Lemmal2.
Let v = 0, i.e the boundary L and weight function h(z) do not possess
singularity. In this case in (18) we get

_2
Jo < Mn,pd ? (Z, LR) (19)
¢From (15),(16) and (19) we obtained
—2
|P,(2)| < My ,d? (z,Lg) (20)

Since M,,» = 1 for the K,(z), then using Lemmall we get the prove of
Theorem2, Theorem4 and the first part of Theorem9.
Let now v # 0. First of all we shall establish that

I — 21| < [yr(C) — 21 (21)

for all ¢ € Gr\U: and z; € L.
In fact, let |2y — t| = d(z1, Lgr), t € Lg. According by (10)

a ¢ =2 < yr(¢) — 2] < e2f¢ — 2|, (22)
for all ( € Gg\U: and z € Lg, then

[ ¢ =t + [yr(¢) =t + |yr(C) — 2
(i +1) lyr(CQ) =t + [yr(C) — =]
lyr(¢) — 21 -

If v < 0, according to (21), after the carrying out that the change of variable
¢ = yr(¢), and using (17) and (10), from (18) we have

dUC a
Jo < M”’p // ~(g—1) 2q
Gr\Ue [yr(Q) — | lyr(¢) — 2|

1
dO’g 1
< M // v(g—1) 2 [
yr(GRr\Ue) |C - Zl| |C - Z|

If v > 0, by changing the variable { = yr(({) and applying (21), (17) and
(10) we obtained

1
dO’C !

Jy < M, // - (23)
p{ un(Ga\U) 1€ — 21"V ¢ - Z!Qq}

A AN
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We denote with :]; which the integral in braces and we estimate (72 in different
situations of the points z and z; on L . For this we set

Ey = Fy U Ey;

E; = {yR(GR\Ug) N U(;(Zl)}, Ey = {yR(GR\UE)\U(;(zl)}, 0<d< (50(G),

En ={C€E:|(—an|=|C—2[}, BEn:={C€ E:|(— x| <|(—z[}
1=0,1,2;

E = ®(E), w= ®(2), w; = ®(21),7 = (C).

Let |z — 21| < 6. In integral J5, we change the variable 7 = ®(¢), and
according to 10 we have

~ ‘ '(T){dJT
Jy =
//(yR Gm\a) [¥(7) = 20"V W (7) — 2
// P(V(r), L)do, o
wun@n\v0) |U(7) = 21"V [W(r) — 27 (|7| - 1)2

- </[E //E) U (T )Pf qp(w)( L>)d0\£<w)|2q (I7] = 1)2

= : J21 +J22

)

from [5, Th.2.8]
We estimate the last integrals separately:

_ () = V(w) do,
Jou = 2q+7(q—1)
By, [W(T )—\Il(w)| (| - 1)?
// ]\If (w1)| do,
Ey |\I} )|2q+’yq Y (|T| - 1)
Ny ——
(2 )(q 1) 2q
Bl e —wl| R e | — e (7] — 1)
// do,
+ (2+7)(q 1) 2q
By |7 — wy| ap |T—w1|aP(|T|—1)

According by (6) we get

—~ do, do, 2q
& <// —z++// T oam e (2
By (7| — 1) e By (7] = 1) er
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For estimation of Jo, we note that | — 21| > § and therefore, according
LemmalOwe have

- \Ij d d 2(qg—1
R ——
e, 100 — ) (f7 = 12~ g (o= 1P

(26)

Let |z — z1| > 0. In this case we see that

¢ — 2]
¢ — 2]

§/2 for ¢ € Ey;|C — 21| > §/2 for ( € Eoy,

>
> /2 and [ — z| > § for ( € Eon

then for :fQ we obtained

//E Ié“—zllw [¢— @D //E yc—z|2q (27)

v(q 1) 2 2(g— 1) 2(q 1)
n [e%

Substituting (27), (26) and (25), in (?7?), and after the obtained estimation
for Jo writing into (23) we get

Jo < My, nos. (28)

According (28) and (16) in (15), we complete the proof of Theorem9 and,consequently,

the proof of Theorem?.
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Abstract

In this work the order of the height of orthogonal polynomials over
the region with respect to the weight is analized, when the boundary
contour and the weight functions have some singularities.

Keywords: Orthogonal polynomials, Weight function, Quasicircle, Con-
formal mapping, Quasiconformal mapping.

Subject Classes: 30A10, 30C10 41A17.

1 Introduction and Definitions.

Let G be a finite region,with 0 € G , bounded by a Jordan curve L := 0G
and h (z) is a weight function in G . The polynomials {K,, (z)}, deg K,, = n,
n=20,1,2,..., satisfying the condition

[ 1) K (Y . = 6

are called orthonormal polynomials for the pair (G, h) . They are determined
uniquely if the coefficient of the term of the highest degree is positive.

Let {2}, 4 = 1,m is the fixed system of the points on L and the weight
function h (z) defined as the following:

m

h(z)=ho() ][Iz ==l (1)

=1

where ~; > —2 and hy (z) is satisfying the condition hg (z) > ¢ > 0.
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In this work we study the order of the height of polynomials K, (z) on
boundary points of the region, where the boundary contour L and the weight
function h(z) has some singularities. The similiar problems have been studied
in [10],[12],[13] in case of orthogonality along a curve and in [1]-[5],[14] in case
of orthogonality over the region.

Let’s give some definitions.

Throughout this paper ¢, ¢q, co, ... are positive, and ¢, €1, €, ... sufficiently
small positive constants (in general, different in different relations),which
depend on G in general.

Ford > 0and z € C'let usset : B(z,0) :={C:|( — 2| <}, B:= B(0,1),
A(z,0) :=ext B(z,0) ={C:|¢ —z| >}, A :=extB, Q= extG, Qz,0) :=
QN B(z,0); w = ¢(2) (w = ®(z)) be the conformal mapping of G (£2) onto
the B(A) normalized by ¢(0) = 0,4 (0) > 0 (®(cc) = 00,® () > 0) ,
= (V=071

Definition 1 A bounded Jordan region G is called a k -quasidisk, 0 < k < 1,
if any conformal mapping ¥ can be extended to a K -quasiconformal, K =

%, homeomorphizm of the plane C on the C. In that case the curve L :=

O0G s called a K -quasicircle. The region G (curve L ) is called a quasidisk
(quasicircle), if it is k -quasidick ( k -quasicircle) with some 0 < k < 1.

Definition 2 We say that G € Q,, 0 < a <1, if
a) L is a quasicircle,
b) ® € Lipa, z € Q.

Definition 3 We say that Q € Q (v),0 <v < 1, if
i) L := 00 = 0G is quasicircle,

ii) For Yz € L, there exists a v > 0 and 0 < v < 1 such that a closed
circular sector S(z;r,v) == {(:(=2+7re?,0<0, <0 <by+v} of
radius v and opening v lies in G with vetrex at z.

Definition 4 We say that Q € Qu (Y1, .oy Vi), 0 < Vi,V < a < 1, if

there exist a system of points {2}, i =1,m on L , such that Q € Q (v;) for
any points z; € L and ® € Lipa, z € Q\ {z} .
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Assume that the system of points {z;}, i = 1,m mentioned in (1) and
Definition 4 is identically ordered on L. In [2] we showed, that if interference
conditions

Vi 1
bt 2 a(2—1y) @)
is satisfied for any singular points {z;}, i = 1, m of the weight functions and
boundary contour, then the order of the height of polynomials K,(z) in G
acts itself identically neither weight h(z) and boundary contour L have not
got singularity nor they have got singularity.
In the present paper we investigate the case when (2) 1s not satisfied.

2 Main results.

Theorem 5 Let Q € Q, (1), for some 0 < vy <1 and «(2 —vy) > 1;h(2)
defined by (1). If

N 1
1+ =< —, 3
3 a2 —1) 3)
then for every z € G and eachn = 1,2, ...
1K, (2)] < en® + ¢y |2 — 21| /e, (4)
where 0 @ ) . )
+7)(2—1 +mn
°1 2 T2 ) 2 (5)

Since a(2—wvy) > 1, (3) will be satisfied when —2 < ; < 0. Here and from
(4) we see that the order of the height of K, in point 2z; and points z € L,
z # z; where h(z) — oo and curve L doesn’t have singularity, acts itself
identically. Thus, the conditions (3) we will call alcebraic pole conditions of
the order Ay =1 —a(2 —v)(1 +3).

This theorem can be extended to case when L and h(z) have a lot of

singular points. For example, in case of two singular points we can write
K, (2)] < ez — 21|17 n® + o |z — 29| 0™
tegl|z — 21| |z — 20| 0% 2 € G, (6)

where s;,0;, 1 = 1,2, defined as it is in (5) respectively.

Theorem 5 also is correct if the curve L has at point z; alcebraic pole
and at points {2z}, k > 2, singularities, which in satisfying the interference
conditions (2).
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Theorem 6 Let Q2 € Qq (Y1, ..., V), for some 0 < v; < 1 and a(2 — v;) >
1, h(z) defined by (1).1f
i 1
1+ 0> -
* 2" al2—) 0

15 satisfied for any points z; € L, 1 = 1,m Then, for everyn = 1,2, ...

max (H |2 — z|M Kn(z)\> < eqn'/®, (8)

2€G \ 37
| Kn(2)] < esn™, (9)
where N .
ﬁizzl—kj—m (10)
5 = (1+%) 2—v), i=T,m. (11)

The conditions (7) will be satisfied sometimes when v; > 0, i = 1,
Thus, (7) we will call alcebraic zero conditions of the order u; = a(2 —

3 Some auxiliary results

In the following we shall use the notations “a < b“ and “a =< b* are equivalent
to a < b and cia < b < cya for some constants ¢, ¢, ¢ respectively.

Let G is a quasidisk.Then there exists a quasiconformal reflection y(.)
across L such that y(G) = Q,y(Q) = G and y(.) fixes the points of L. The
quasiconformal reflection y(.) is such that it satisfied the following condition
7, p.26]

1
ly(¢) — =z = |C—Z|,,ZEL,€<|C\<g (12)
1
el = lwel <1, e <I¢) < -
_ 1
el = QP I¢l <& Juel =167 161> -

For t > 0, let Ly := {z:|p(2)| =tif t <1,|®(2)| =t,if t >1},G; =
intLy, Qy = extly and for ¢t > 1 let L* := y(L;), G* := intl*,Q* =



The Properties of the Orthogonal...

extL*;w = ®g(2) be the conformal mapping of 2* onto the A normalized by
Pp(00) = 00, Dp(00) > 0; Vg = bRt ; Li = {z: |Pr(2)| = t}, Gf := intL},
QF :=extLy; d(z,L) := dist(z, L).

According to [6], for all z € L* and ¢t € L such that |z — t| = d(z, Lg) we
have

d(z,L) = d(t, Ly) = d(z, L) (13)

Lemma 7 [5] Let G be a quasidisk, zy € L, z9,23 € QN {z : |z — 2| <
d(z1, Lyy)}; wj = ©(25), 7 = 1,2,3. Then

a) The statements |z1 — z2| < |z1 — 23| and |wy —ws| < |wy — ws| are
equivalent. So are |z — zo| X |21 — 23] and |wy — wo| < |wy — w3l .

b) If |z1 — 22| < |21 — 23|, then

21 — 23

21 — 22

g
w1 — W3
Wi — W2

c
‘wl—U)g

w1 — Wa
where 0 < rg < 1 a constant, depending on G and k.

Let Ay(h,G),p > 0 denotes the class of function f which analytic in G
and satisfying the condition

1/p
1Ly =W = ([ [ m 1P ) < o

Lemma 8 Letp > 0 ; f be an analytic function in |z| > 1 and has at z = o0
pole of degree at most n , n > 1. Then for all Ry, Ry, 1 < Ry < Rs

RQ—Rl 1/p n+2
I aprictstcny < (25 —7 ) B " Iflla,a<ei<ry
Ri—1

Proof. According to Riesz theorem [9, p.443], for any p , Ry < p < Ry and
s, 1 < s < R; we can write

f2) " F2) [P
T |dz] < = |d 14
/Iz:p 2" Tp dz] /|Z|:R1 Sty |dz| (14)
f(z) |f Fl2) [P
d d
/|Z:R1 Zn+% | Z| S \/|;:s ZnJr% ’ Z| (15)
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respectively. Integrate (14) over the p from R; to Rs, and (15) over the s
from 1 to Ry, we get

np+2 np+2
/ / F()P do. < 2 np+2R / / DFdo.  (16)
Ri<|2|<Ra Ry <\z|<R1

Let np =: m € N U{0}. Then, setting R3 := Ro/R; we obtain

RyPT? — RyPH? < g2 (B = DRy 4+ .. +1) _R-R

np+2 —= M m-+1 — . Rm+1
RPT? 1 (Ri— )R .. +1)~ Ri—1

S =

(17)
Let m ¢ N. Then according the trivial equality k := [m]| < m < [m] +1 in
case of m > 1 we have

Rk+3 (R’?erS — 1) < Rk+3 (R3 - 1)(R§+2 + ...+ 1)

S — 18
- (Rk+2 1)~ " (R —1)(RMY L +1) (18)
< 27 H <92 pm
- R -1 PR R1—1R2 ’

and in case of m < 1 we get
(R3—1), ., R3—13R3 . Ry — Ry 5

< < <2— 1
S—(R%—1)R1—Rl—1 y 0 R1—1R2 (19)

According (17)-(19) in (16) we complete the proof.

Lemma 9 Let G be a quasidisk and P,(z), deg P, < n,n = 1,2, ..., is ar-
bitrary polynomial and weight function h(z) satisfied the condition(1). Then
forany R>1,p>0andn=1,2,..

1Pl 4 < R" z [Pl 4 »(h,G) (20)

p(hG1ie(r-1)) —

where ¢, ¢y are independent of n and R.

Proof. We present the proof of (20) under several headings. First of all, it
is easy to convince ourselves that for the proof of (20) sufficiently show the
fulfilment of the following estimations

a2
1Bl 4, hcmve < [1+c(R—1)] i 1Bl 4, h.cvc) (21)
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for some ¢ > 0.
Now, we consider the two numbers pq, p2, p1 < p2 such that

G CG (22)

Gr C G* (23)

P2’
and show that we can choose the numbers py, po that they satisfy the folowing
conditions

pp—1=<R-—1; (24)
pr—1=R—1. (25)

In fact, let us py, po are arbitrary numbers satisfying (22) and (23), z € L*,
Z = y(z). The points z; € L}, 2» € L and 23 € L7, we define as d(z, L} ) =
|z — 21|; d(2, L) = |2 — 2| and d(z, L},) = |z — 23| respectively.According to
(13), there exist c3, ¢4 that are independing from z and R such that

c3d(ze, Lg) < d(z,L) < c4d(29, Lg) (26)
Since L* is a quasicircle, applying Lemma 7 to functions &z we obtain

Pr(2) — Pr(z) | [PR(2) — Pr(22)]\™
Pp(2) — Pr(21) = < p1—1 ) ’

and , from this we get

-1 €1
— ] <t P — 2. 2
emal<a (|<1>R<z>—<1>3<22>|> [z ==l 27)

Using the D-property of the mapping yg(z) [8, p.18] we have

Z — Z9

= Cs

Z— 2

|z — 2] > ¢c3d(29, Lg) > ¢7 |2 — 23] .
and, according Lemma 7 we get
[Pr(2) — Pr(z2)| = cs|Pr(Z) — Pr(z2)| = es(R—1)

Then, from (27) we obtain

_ p1—1 o
|2 =z < ¢t (m) |2 — 2.

49



50

Abdullayev

So, we can take
p1=1+co(R—1) (28)

with ¢g = 1cs - ¢g°', which also leads to (22) and (24).

We now define ps. For this applying Lemma 7 to ®r we get

Pr(z) — Pr(2)
CI)R(Z) — CI)R(Zg)

~ c
zZ—Z

< ¢io

Z — Z3

and from this we obtain

- Z & P21 Cz—%
==l o (g Sy 1o 7 2

Since |Pr(z) — Pr(22)| < 12 |Pr(Z) — Pr(22)], then

[®r(2) — Pr(2)| [®r(2) — Pr(2)| + |Pr(Z) — Pr(2)|

<
< (ci2+ 1) |Pr(2) — Pr(22)| < c13(R — 1),

and from (29) we have

p2—1 \° .
— > - — .
|z — 23] > 11 <013(R—1)) |z — 2|

P2 = 1 + C14(R - 1) (30)

with ¢14 = ¢cg - g™ + €13 - cﬂl, we see that the (23) and (25) are satisfied.
Now, let’s make a proof of (21). Let’s include the functions Blashke with
respect to the singular points of the weight functions h(z)

Choosing

Bu(z) = HB;‘%(Z) - 11 ff(;i(;;)bng) e (31)

It is easy that the Bg(z;) =0 and |Bgr(z)| =1 at z € L*.
For the p > 0 and R > 1 let us set

fatu) = ho(atu)) [T |22 2 2] " Puwata) [Vt = o)

=1
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The function fg is analytic in A and have pole of degree at most n on z = cc.
Then, according to Lemma 8 we have

1/p 2
P2 — P nty
1l ity <turom) < (2 o ) P " Il s <taiepn

or
m Yi
J[ w1l R do
Gr\G =1 (I)R
m Yi
< |Pa(2)|" do,
//G \Ga, E Pp(z )
Yi
— Pl pn+2 Z—Z P
< o [] A |p()P do
pl -1 . \G* P (I)R(z)BR(Z)
m Vi
— Pl pn+2 Z— 7 p
<2 s // - |P.(2)|" do,
P1 —1 G\G* g Dp(2)Bjy()

i From (28) and (30) we get
I wenpierds. 32)
Gr\G

m max, gz \G\CDR(Z)B%(Z” b pnt-2 o
=< H [mlnzeG\G* Op(z)BL(z) | //G\G* h(z) | Bn(2)[" do
Since
B ). Dp(2) — Pr(z) ) 1
‘(I)R Bi(z )| = |Pg(2) (I)Rl(Zl) —®p(2) Dp(z)
- |@e)| |enta—ote)) _ | out
Dp(z)| |Pr(z:) — Pr(2)|  |Dp(z)|

from (32) we obtain

/ /GR\G h(z) |Pu(2)|” o

<11 e e I
min__zg Or(2)] G+ ?

< b 2 / / 2)|P do.
aG\G*
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Since p, and R is symmetric, the proof is completed.

4 Case of Arbitrary Polynomials.

Let F,(2) be arbitrary polynomial of degree at most n; My, := [Pl 4 1) -

Theorem 10 Letp > 1;Q € Q, (1), for some0 < vy < 1 and a(2—1y) > 1;

h(z) defined by (1). If
g
1+?< a2 =)’

then for every z € G and eachn = 1,2, ...

|P.(2)] < (clnsl +eol|z— zl\gl np%> M, ,, (33)
where 5 5 5 5
31:( +71)( —Vl),a1: 2t (34)
D pa(2 — 1) P
Proof. Since L is a quasicircle, then any Lz, n = 1 + cn™!, also is a

quasicircle. Therefore, we can construct reflection yg, yr(0) = oo, across Lg
such that it satisfied the conditions (12) described for yz(¢). For this yz((),
we can write for P,(z) the following integral representation [7, p.105]

L) PQune©)
w// (Ua(Q) — 22767 € Cr (35)

For € > 0 by setting U.(z) := {( : | — z| < €} and without loss of generality
we may take U, := U.(0) C G*. For z; € L we have

‘ Zl‘<—{// // } HyRC ‘dg J1+J2 (36)
UL anv-)  lyr(Q) — 21l

To estimate the integral J;, we multiply the numerator and denominator of
integrant to h'/?(¢ ), and applying the Holder inequality we get

!ngC|q 1 1
p a4
J1<{//Eh(§)| \da} {//th O T (g =
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The first multiplier smaller than 7~ M,, ,. According to (12) |yRZ| = |lyr(O)]?,
for all ¢ € U, besause of |( — z1| > ¢, |yr(¢) — 2| < |yr(¢)| for z € L and
¢ € U,, then we can find

If £, := |yR,C|2 — ‘%«2,?‘2 Jacobian of the reflection yr((), we can obtain
2
| £ynl = |urze| (38)
as it is in [2]. Then for the Jy we get
1
do !
Jy < M, / / R (39)
’ { an\v ¢ = 21"V [yr(C) — =1

Q=

dO’C
_< Mn7p {// ’Y(q—l) 2(]} bl
yr(Gr\U:) [YR(C) — 21 ¢ — 2]

from (12),(38) and Lemma 9.
First of all we shall establish that
¢ — 21| < [yr(C) — 21 (40)
for all ¢ € Gr\U: and z; € L.
In fact, let |21 — t| = d(z1, Lg), t € Lg. According by (12)
c ¢ =z <|yr(¢) — 2| < 2| — 2, (41)
for all ¢ € Gr\U. and z € Lg, then
=2z < [C—=1t]+|yr({) —t| + |lyr(C) — 21
< (et +1) lyr(Q) =t + lyr(¢) — =
< |yr(¢) — 2]

If v, <0, according to (40), after the carrying out that the change of variable
¢ = yr((), and using (38) and (12), from (39) we have

1
do ¢
Jy < M, / / S (42)
{ Cr\Ue [YR(Q) — 2|7 ¥2

1

2 M / / do¢ q
n7p — N
YR(GR\U:) |C — 2z |7H@ D F2

247

=< anpdi P (Zl,LR)
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If 44 > 0, by changing the variable {( = yr(¢) and applying (40), (38) and
(12) we obtain

[

v (z1,Lg) (43)

Jy < M dog M- BB
2 = Mpp G\ 21|71(q—1)+2q = Mpyp

¢ From (37), (39), (42) and (43) we obtain

24
|Pn(211)| =< Mn,pd P (Zl,LR).

Since € Qq (v1), then ¥ € Lip [11] and so

2 V1

(2+71)(2—17)

|P(21)] < M, pn P (44)

Now, using the integral representation (35) we have
1—o?!
z—z
// ||yR( )H 1 —do (45)
ar  |yr(¢) = 2[lyr(C) — =

z—z
// ‘yRC ‘ | 1’ do‘c =: A(z; 21) + B(2; 21).
Gr |yR _Zl| |yR( ) _Z|

;From definitions of the integrals A(z; z1) and B(z; z;) we see that they are
symmetric respect to the points z and z;. Thus, we will estimate integrals

A(z;z1) and B(z;z) parallel. To estimate the integral A(z;z1) (B(z;21))
1/p
Z1|’Y

Pn(z)

(z—zl

we multiply the numerator and denominator of integrant to |( — , and

applying the Holder inequality from Lemma 9 we get

s ([ [ ey
121 n,p : Gr\Ue |C _ Zl|71(q—1) |yR(C) N Zlq |yR(<) - Z1|2q

1 1
—: My, {A1(2; 21) + Ag(z; 1)}, > + .= 1; (46)

ez < ([ [ ) sl Al ds, }w
) n,p : Gr\U. ’C o 21‘71(‘1—1) ‘yR(C) _ z|2q ‘yR(C> . Zl‘q

< My, {Bi(z; 21) + Ba(z; zl)}l/q
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According to (12) \sz(g)\ = |yr(Q)?, for all ¢ € U., because of |¢ — 2| =

L [yr(O] = lyr(¢) — 2| =< |yr(C) — 21| for 2,21 € L and ¢ € U, then we can
find

Ai(z;2) <1 (Bi(z21) < 1) (47)

For the estimations of the As(z;21) (Ba(z;21)) we consider the different
situations of the points z and z; on L. Let us set

F1 = yR<GR\U5) = EO = E1 U E2

Fh={CeFR:|(—a|<ilz—a|};Fg={CeF:|(—zn|>1lz—xul};

Fiq = {CEFl : ’C—Z‘ S%‘Z—Zl‘},Fﬁ = {CEFl : ’<—Z| >%’Z—21’}

Ey = {yr(Gp\U:)NUs(z1)}, Eo :={yr(Gr\U:)\Us(z1)}, 0 < 6 < 6(G);

Eop:={C € Ey:|C— 2|2 |C—z[}, Eop:={C€ Ey: | —a]<|C—z[}

a) Let [z — 2| >0 > 0.
Taking into account (12) (for the yr ) and (40) we have

) /waz —zwwlwc 2A'1¢ — =
(//F //F // //>|yR z1|71<qcll;7|§g—z|Q|g—zl|2q

According to [( —z| > |[z—z|—[C—a|] > 3|z — 2], for ( € Fi; and
I — 21| = 1|z — 2], for ( € Fi2, we obtain

dO'C
- 7 (g—1) q 2q
Fi1 Fio |yR _21’ |C_Z| ’C_Zl|
<] e e
F1 ‘C_Z |'71 L Fig |<_Z|q

< -1 4, :

/<], <1
o lyr(Q) — 21V = 2 [ — T

q—2

Aoz 21) < pn 2R 022 (48)

and

Analogously,

dUg
By(z;21) < / —
A lyr(Q) — 2™ V| = 2] — 2



56 Abdullayev

/R [ R P

Since
dO’C
+ 71(g—1) 2q q
Fiy F12 lyr(C) — 21| |C Z| |< - Zl|
//Fll |<_Z|’hq D+ //Flz ’C_Z|2q
~ n'ﬂ 4—1)+q—2)(2— V1)+n2(q 1)
and
[[+]] o <1
r o el [ e T L
then
Ba(z; 21) < ntmla-Dra=2)@-m) 4 200 (49)
¢From (46), (47), (48) and (49) we get
A(z;21) < Mmpnalp, B(z;z1) < Mn,pnalﬁ. (50)

b) Let 6 > |z — 21| > d(z1, Lg).
Taking into account that |z — 21|* < ¢(e) (|¢ — 2|° + |¢ — 21|°) satisfies for
all e > 0, we have

dUC
A2(Z,Zl) =< //F1 |C - 21|V1(q71)+2q |<, — Z|q01
dUC
i P |< - 21‘71([1_1)4—2‘1_(1_”1)‘1 |< - Z’q
= e 1= |’71((1*1)+2q+l101 + o € |71(q71)+2q7(1701)q+q
dO'C
Egyo |C -2 |'71 q— 1 +2q+‘Io'1 Fos ’C — |'y1(q 1)+2¢—(1—01)g+q

<n ((v1+2)(g—1)+qot)(2—11) (51)
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Entirely analogously we see that
By(z;21) < (1 +2) =Dt (2-w) (52)

Therefore, in this case, according (51) and (52) in (46) from (47) and (34)
we get

A(z21) < My n0 2@ LA s (53)
and, respectively
B(z;21) = M, pntzre)@E-m) M,, np% 54)

c) Let |z — z1| < d(z1, Lg).
i From (46) we have

Ul
(2;21) // 177 (21, Li)doy ~ p(O142)(@=1)+go")(2-11) (55)
Gr\U. drn(a=1) +3q(21 Lg) ’

and, respectively
Bs(z; 1) < nlO1+D(a=D+aoh)2—m), (56)
According (55) and (56) in (46) from 47) and (34) we obtain
A(z;21) < My, e, B(z;21) = My, nia (57)
So, from (57), (44) and (45) we obtain the proof of (33).

Theorem 11 Let p > 1; Q € Qn (V1,-.es Vi), for some 0 < v; < 1 and
a(2 —v;) > 1,h(2) defined by (1).1f

%

18 satisfied for any points z; € L, i = 1,m Then, for everyn = 1,2, ...

m
max H 2 — z
zeG ;

=1

’Pn(zz)‘ S C5ngiMn,p7

I+

Hi

Pn(z)|> < eyt M, p,

where
X 2+ 2 . (2+7%)(2—w)

fli 2= - ) 8= , i=1,m.
P pa(2 — ;) P
The proof of this theorem follows from one of the general theorem of the
work [4].
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Proof of Theorem’s 5, 6.

Since M,» = 1 for the K,(z), then we get the proof of Theorem 5 and
Theorem 6 from Theorem 10 and Theorem 11 respectively.

References

1]

2]

8]

[9]

F.G. Abdullayev, On the orthogonal polynomials with shocks weight.
Izv. Akad. Nauk Azerb. SSR., Ser. FTM, 2, 3-7(1985) [in Russian]

F.G.Abdullayev, On the interference of the weight and boundary contour
for orthogonal polynomials over the region. Jo CAAA (to appear)

F.G.Abdullayev, On the some properties of the orthogonal polynomials
over the region of the complex plane (Part I). Ukr.Math.J., Vol.52, No:12
, pp-1807-1817, (2000).

F.G.Abdullayev, On the some properties of the orthogonal polynomials
over the region of the complex plane (Part II). Ukr.Math.J., Vol.53,
No:1, pp.1-14, (2001).

F.G.Abdullayev & V.V.Andrievskii, On the orthogonal polynomials in
the domains with K -quasiconformal boundary. Izv. Akad. Nauk Azerb.
SSR., Ser. FTM, 1, 3-7(1983) [in Russian]

V.V.Andrievskii, Constructive characterization of the harmonic func-
tions in domains with quasiconformal boundary. In: Quasiconformal
continuation and Approrimation by function in the set of the complex
plane. Kiev (1985) [in Russian]

V.V.Andrievskii,V.I.Belyi & V.K.Dzyadyk, Conformal invariants in
constructive theory of functions of complex plane. Atlanta:World Fed-
eration Publ.Com. (1995)

P.P.Belinskii, General properties of the wuasiconformal mappings.
Nauka, Novosibirsk. (1968) [in Russian].

G.M.Goluzin, Func. of comp. var. Geom. Theory, M.-L., Gostekhizdat,
(1952) [in Russian]



The Properties of the Orthogonal... 59

[10] A.L.Kuzmina, Asymptotic representation of the orthogonal polynomi-
als along a piecewise analytic curve. In: Func. Anal. and Theory of
Function. Kazan (1963) [in Russian]

[11] F.D.Lesley, Conformal mapping of domains satisfying wedge conditions,
Proc. Amer. Math. Soc., 93, 483-488 (1985).

[12] P.K.Suetin, Main properties of the orthogonal polynomials along a circle.
Uspekhi Mat. Nauk, vol. 21,n02(128), 41-88(1966) [in Russian]

[13] P.K.Suetin, Some estimationfor orthogonal polynomials along a circle
under the singularity of the weight and circle. Siberian Mat. J., vol.
8,105, 1070-1078(1967) [in Russian]

[14] P.K.Suetin, Polynomials orthogonal over a region and Bieberbach
polynomials. Proc.Steklov Inst.Math.,vol.100. Providence.RI: American
Math.Society. (1971)






Journal of Computational Analysis and Applications,Vol.6,No.1,61-75,2004,Copyright 2004 Eudoxus Press,LLC

Dual Riesz Bases and the Canonical Operator

H. A. De Pasquale, Departmento de Matematica, Universidad Nacional de Mar
del Plata, Funes 3350, 7600 Mar del Plata, Argentina; depasha@sinectis.com.ar

Abstract. Let g;(x) := 2"7/2g(27x — k). A set Gy :={g*,£ =1,...,m} of func-
tions in L2(R") is called an R-family if G := {gje’k;ﬁ =1,....,m,j € Z, ke Z"}
is a Riesz basis of L2(R™). If both G and its dual are generated by R-families,
then Gy is called a W—family. In this article we present conditions under which
a Riesz basis is generated by a W—family. The main result is a method to obtain
W—families generated by multiresolution analyses by perturbations of semiorthog-
onal W—families generated by multiresolution analyses. As an application we give

examples of affine Riesz bases that are not semiorthogonal, but are generated by
W —families.

Keywords: Riesz bases, dual Riesz bases, wavelets, R—families, W—families, mul-
tiresolution analysis, semiorthogonal wavelets.

1. INTRODUCTION

In the sequel Z will denote the integers, Z* the strictly positive integers, Zg
the nonnegative integers, R the real numbers, and C the complex numbers. Unless
otherwise indicated, ¢, x, and w will denote real variables, x will denote an element
of R™, and z will denote a complex variable. I will stand for the identity operator.
Given a bounded linear operator A, its (Hilbert space) adjoint will be denoted by
A*.

Unless otherwise indicated, the following definitions and basic properties may be
found in, e. g., [17].

Let H be a (separable) Hilbert space with inner product (-,-) and norm || - || :=
(-, )12, A sequence F := {f,,n € Zt} C ‘H is called a frame if there are constants
A and B such that for every f € H

AFIP < D2 W F01P < BIFIP
nezt
The constants A and B are called bounds of the frame.

If only the right-hand inequality is satisfied for all f € H, then F is called a
Bessel sequence with bound B.

A frame is called exact, or a Riesz basis, if upon the removal of any single element
of the sequence, it ceases to be a frame. A sequence F C H is a Riesz basis if and
only if it is complete, and its moment space is £2, i. e., if for any sequence {ay,} € £2
there is an element f € H such that (f, fr) = au.

It is also known that F is a Riesz basis if and only if it is complete, and there
exist strictly positive constants A and B such that for any n € Z* and arbitrary
scalars c1,...,Cp,

(1.1) AY el <Y enful® < BY el
k=1 k=1 k=1

The constants A and B are called Riesz bounds. For a Riesz basis, frame bounds
and Riesz bounds coincide. If we say that F is a Riesz basis with bounds A and B,
we mean that A and B are its frame (or Riesz) bounds.
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Another characterization is the following: a sequence F C H is a Riesz basis if
and only if it is the image of an orthonormal basis under a bounded invertible linear
operator.

A sequence G C 'H is biorthogonal to I if

(fey gn) = Okn, k,neZ™,
The operator U : H — H defined by

Uf=> (ffa)fn
n=1
is self-adjoint, positive-definite and invertible (cf. [8]). If frn = U"1f,, the se-
quence F := {fn,n € Z*} is a frame with bounds B~! and A1, called the dual
frame. Moreover, if F is a Riesz basis, then also F is a Riesz basis. JFrom e. g. [1,
Theorem 3.5(e)] we deduce that if F is a Riesz basis, then F is the only sequence
in H that is biorthogonal to F.
If F is a Riesz basis, then any f € H has the following representations:

F=Y f Fa) b =D _{Fs ) Fu-
n=1 n=1

In the sequel n € Z* will be arbitrary but fixed, and x € R”. Given a function f
with domain R™ we define f; k( ) := 2M/2f(29x — k). We will use the following
notation: ¥ := {t/JJk,é =1,....m,j € Z,k € Z"}, G := {gj‘f’k;ﬁ =1,...,m,j €
Z,k € Z"}, H := {hjk,é =1,....m,5 € Z,k € Z"}, and V := {v(-,£,5,k); £ =
1,...,m,j € Z,k € Z"}.

Following [3], a family g := {g*,¢ =1,...,m} of m functions in L2(R") will be
called an R—family if G is a Riesz basis of L2(R™). V will be said to be generated by
vi={l=1,....m}ifo(, 0k = vjk() L=1,...,m,j € Z,k € Z™. Clearly
v is an R—family. Although V may be generated by an R family, its dual basis may
not be generated by an R—family (cf., eg. [2, 4, 15]). If V is generated by v and also
its dual is generated by an R—family, then v will be called a W—family.

The main objective of this paper is to find conditions under which a Riesz basis V
is generated by a W—family. We find these conditions by choosing an arbitrary Riesz
basis G of L?(R") generated by a W—family g and studying the properties of the
canonical operator from G to V| i. e., the bou_nded invertible linear operator from
L?(R™) onto L?(R™), that maps the functlonb g & onto the functions v(-,, j, k).
Chui and Shi have shown that semiorthogonal wavelets in R are generated by W-
families ([3]). In this paper we develop a method to obtain W—families generated by
multiresolution analyses by perturbations of semiorthogonal W—families generated
by multiresolution analyses. As an application we give examples of affine Riesz
bases that are not semiorthogonal, but are generated by W—families.

2. CANONICAL OPERATORS AND RIESZ BASES

Lemma 2.1. Let E := {e;,j € Z"} be a Riesz basis with bounds Ay and By for
a Hilbert space (Hi,<,>1) and let F := {f;,j € Z*} be a Bessel sequence with
bound B for a Hilbert space (Ha,<,>2). Then there exists a unique bounded linear
operator S from Hy into Ha, such that Se; = f;,j € Z. Moreover, ||S|| < \/B/A;.
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Proof. Let h: Hy x Ha — C be defined by
h(x7y) = Z <Z‘, gj>1<fjvy>2'
JEZT
Then, applying the Cauchy—Schwarz inequality, we have:
Byl = 1D (@ e (fal <O K gl (Y [, f)2)'?
JELT JEZT jEZF

V1/AL |2l VB [yl

Hence h is a bounded sesquilinear form, and from the Riesz representation theorem
([13]) there exists a bounded linear operator S : H; — Hz such that h(uy,uz) =
(Suz,uz)2 and ||S|| = [|A[].

Note that

h(ej uz) = > (ej, )1 {frto)a = Y 0ja(f,ua)e = (fi, uz).

kezZ+ kez+

IN

Hence (Sej,u2)a = (fj,u2)2 for every us € Ha, and we deduce that Se; = f;,
JETLT.
Since |h(x,y)| < v/ B/A1||x||#, |¥|l#,, We see that

[h]] = sup{|h(z,y)|,z € Hi,y € Ha, ||lz|| = 1, ||yl = 1} < v/ B/A:.
Since {e;,j € Z*} is a basis, the uniqueness of S follows. O

The operator S will be called the canonical operator from E onto F. As a
consequence of Lemma 2.1 we obtain:

Lemma 2.2. Let E := {e;,j € Z"} be a Riesz basis with bounds Ay and By for a
Hilbert space (H1,<,>1) and let F:={f;,j € Z*} be a Riesz basis with bounds A
and B for a Hilbert space (Ha, <,>2). If S denotes the canonical operator from E

onto F, then ||S|| < \/B/A;1 and ||S7Y| < \/B1/A.
Proof. The bound for ||S]| follows from Lemma 2.1.
Let f € Hy. Since F is a Riesz basis,

f= Z ijj, {Cj} e’

jEZT
Thus
Silf = Z CjSilfj = Z Cj€j.
JELT JELT

This implies that

ISTHIP =11 )2 ciedll® < Bu Y lesl™

JELT JEZT

A el <Y il =112

JEZT JEZT

Thus } cz+ lej|? < (1/A)||f]|?, and the assertion follows. O

But



64

De Pasquale

In the sequel D : L?(R") — L2(R") will denote the dilation operator:
Df(x) :=2"2f(2x).
Clearly
Dif(x) =2"/2f(2x), jeZxeR"
Let k = (k1,...,ky) € Z", x = (21,...,2,) € R", f € L*(R"), and
Tajlf(x) = f(il'l, ey Lj—1,T5 — 17xi+1, e ,{En).
Then
Tfi’"f(x) = f(x1,.. ., Tim1, @ — kiy Tig1, ..., Tn).
Setting

T =Tk ...Th = HTk

we have T% : L?(R™) — L?(R"™) and
T*f(x) = f(x — k), f € L*(R"), k€ Z" ,x € R™.
The following two propositions were inspired by the discussion in [6, p. 70]:

Lemma 2.3. Let W be a Riesz basis for L?>(R™) generated by a W —family, let G
be a Bessel sequence for L*(R™), and let S bg the canonical operator from ¥ onto
G. Then, for any j € Z, S commutes with D7 .

Proof Let f € Lz(R”) Since W is generated by a W—family there are functions
k such that, if ¢( ¢, 7,k) denotes the adjoint of wﬁ,k’ then
(-0, 5,k) = fk (=1,---m,j € Z,keZ"
Thus
(2.1) F=223 2 (i
(=1 jEZ keZn

But Swj k= gJ « = DIT¥gt. Therefore

(22)  Sf= ZZ DG =D D (DT

(=1 jEZ kEZ" (=1 jEZ kEZ"

Since D is unitary, we have:

SDf = ZZZ (DF, ¥ DJT“—ZZZ (f, D71t ) DIT*g".

(=1 jET KEZn t=1 jEZ keZn
But
D—l%g’k — D—leTkw(’ Di— 1Tkw1) J Lk
and therefore

SDf =" > {fi 1) D",

(=1 jEZKEL"
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This implies that

D™'SDf =
DD D LA dDTIDITRG =Y N N ) DT T
=1 jEZ keZ™ {=1 jEZ ke
= S = D3 S (Pt = ST
=1 jEZ keZ" 0=1 jEZ keZ"

Therefore D~'SDf = Sf, whence SD = DS, and therefore SD~! = D71S. An
obvious inductive argument shows that SDJ = DJS for every j € Z, and the
conclusion follows. O

Note that S is given explicitly in (2.2).

Lemma 2.4. Let E :={e;,j € Z*} and F := {f;,j € Z"} be Riesz bases and let
S be the canonical operator from E onto F. IfINE :={€j,j € Z*} is the dual Riesz
basis of E and F := {fj,j € Z*} is the dual Riesz basis of F, then (S™1)* is the
canonical operator from E onto F.

Proof. Let U be the canonical operator from E onto F. Then
8ij = {fis ;) = (U&, Sej) = (€,U*Se;), 1,5 € L+,
Thus
U*Se; =e;, jEZ .
Since E is a basis, this implies that U*S = I, and therefore that U = (S~1)*. [

We now obtain a sufficient condition for an affine Riesz basis to be generated by
a W—family.

Theorem 2.5. Let W be a Riesz basis for L?(R"™) generated by a W —family,
let G be a Riesz basis for L?>(R™), and let S be the canonical operator from ¥
onto G. Assume that the operators T, ,..., T, commute with S. Then, for
b=1,....m,j€Z, andk € Z",

(a) gf,k = (Swe)j,k'

()5 6.5%) = ((57)9°) -
Proof. (a) From Lemma 2.3 we know that the operators D and S commute. Ap-
plying the hypothesis we have, for £ =1,...,m,j € Z, k € Z™:

Gk = S¥ja = SD'TY" = DITRSY" = (S¢°) .

(b) From Lemma 2.4 we know that g(-,¢,j,k) = (S‘l)*{ﬁf,k for £ = 1,...,m,
j€Z, ke Ifiis an integer, 1 < i < n, then T,,S = ST, implies that
(T, S)~' = (STy,) i, ST =TS~ whence (ST, 1) = (T, 0S71)*.
However T, is unitary; thus

(ST = (T, ) (S~ = (T) (8™ = To,(S71)*
and

(TS~ = (S (T, = (S ) (Ty)" = (ST,

Zq
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This implies that T%,(S™')* = (S71)*T},. Since also D is unitary, we similarly
conclude that D(S™1)* = (S71)*D. Thus, applying Lemma 2.4 we see that

G, 0,5,K) = (ST = (S7) DTG = DITH(S T = ((57)dF)
3,

U

3. INTRODUCING A MULTIRESOLUTION ANALYSIS

A multiresolution analysis (MRA) is an ordered pair ({Vj;j € Z},¢) where
{Vj;j € Z} is a sequence of closed linear subspaces of L?(R™) and ¢ € L*(R"),
such that:

(3.1) Vj C Vi for every j € Z
(3.2) |J V; is dense in L*(R™)

JEZ
(33) (Vi=1{0}

JEZ

(3.4) For every k € Z", f(t) € Vy if and only if f(t — k) € V}
(3.5) For every j € Z, f(t) € V; if and only if f(2t) € Vi1
(3.6) {p(x — k); k € Z"} is an orthogonal basis of V;

When we say that a system W is generated by a multiresolution analysis we
mean that there exists a multiresolution analysis ({Vj;j € Z}, ) and a sequence
{ct;0=1,...,m,k € Z"} € (2, such that

(3.7) Pi(x) = Z chp(2x—Xk), £=1,....m
keZm
in L2(R").

Not every orthonormal or Riesz basis is generated by a multiresolution analy-
sis: Necessary and sufficient conditions for this to occur in the univariate case are
discussed in, e. g., [11, Chapter 7] and [18].

If ¥ is an orthonormal basis of L?(R™) then m = 2" — 1 for some n € Z* (cf.
[16, Corollary 1]).

Given a function f € L(R™), we define its Fourier transform by

ﬂmw:Ym:/fww@#

We will also write {b\ﬁ,k instead of F[¢f ], g} instead of Flgf ], etc.
Equations (3.5) and (3.6) imply that there is a function mg € L?(—m,m)", 27—
periodic, such that

(3.8) P(x) = mo(x/2)p(x/2) a. e.
In the frequency domain, (3.7) can be written in the form
(3.9) Ph(x) = me(x/2)3(x/2) a.e, 1<0<m,

where the functions my are in L?(—n, 7)™ and are 2r—periodic.
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The function ¢ is called the scaling function. The functions 1 are called mother
wavelets.

Given a multiresolution analysis ({V};j € Z}, ¢), W; will denote the orthogonal
complement of V; in Vj4q; thus V41 =V; @ W;.

A basis W is called semiorthogonal if j1 # jo implies that <1/]§11,k17w§§,k2> =0.

Lemma 3.1. Let G be a Riesz basis for L>(R™), let ¥ be a semiorthogonal Riesz
basis generated by a multiresolution analysis ({V;;j € Z}, @), and let S be the canon-
ical operator from W onto G. Then the operators Ty, , ..., Ty, commute with S on
Vit.

Proof. Let 6; := (6;,1,...,0in), where §; ; is Kronecker’s delta, and let k(¢, j) =
276; + k. If j € Zy, then k(i, j) € Z", and we have:

‘ ¥ _ ¥ _ L ¥
STe Wik = SVix(ig) = 9ix(ig) = L9k = TaiSVj -

Since {wf}k,é =1,...,m,j € Zo,k € Z"} is a Riesz basis for V", the assertion
follows. O

Theorem 3.2. Let ¥ be a semiorthogonal Riesz basis of L?(R™) generated by an
MRA ({Vj;j € Z}, ), let G be a Riesz basis of L*(R™), let K be the canonical
operator from ¥ onto G, n:= Ky, U := K(V),

1/2
r(x) = (Z Iﬁ(X+2ﬂk)I2> ;

keZn

and (Z(X) = N(x)/r(x). Assume that K commutes with Ty,,i = 1,...,n. Then
({U;;5 € Z}, ¢) is an MRA, and G is generated by this MRA.
Proof. (a) The continuity of K implies that K (V}) is a closed subspace of L2(R™).
Moreover, (3.1) trivially implies that

K(V;) C K(Vj) for every j € Z.
(b) Since by hypothesis | ;.7 V; is dense in L?(R™) and K is continuous and its
range is L?(R"), we readily deduce that also Ujez K(V)) is dense in L2(R™).
(c)

N EWV) =K | (V| = K{0}) = {0}

JEL JEL
(d) Let f € K(Vp). Then f = Kg for some g € V. Assume that k € Z™. Since the
hypotheses imply that K and T% commute, we have:

fx —k) = (T¥f)(x) = (T¥Kg)(x) = (KT g)(x) € K(Vp).
(e) Let f € K(V;). Then f = Kg for some g € V;. Applying Lemma 2.3 we have:
f(2x) =27"2(Df)(x) = 27"*(DKg)(x) = 27"/*(K Dg)(x) € K(Vj11).

A similar argument shows that f(x/2) € K(V;_1).
(f) Let T denote the restriction of K to Vy. Then T is a continuous invertible
operator from V; to K(Vp). Since {p(x — k);k € Z™} is an orthogonal basis of
Vo by hypothesis, and Theorem 2.5 implies that nox = (T'¢)o,k, we deduce that

{n(x —k);k € Z"} is a Riesz basis of K(Vp), and from, e. g., [15, p. 26, Theorem
1], we conclude that {¢(x — k); k € Z™} is an orthonormal basis of K (V}).
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We have therefore established that ({Uj;j € Z}, ¢) is an MRA.
(g) We now show that G is generated by this MRA. The hypotheses imply that
(2.1) is satisfied. This can be written in the form

W'=Y @ DT, 1<t<m.
keZn
From Lemma 2.3 we know that D and K commute, and from the hypotheses we
also know that K and the T,, commute; thus, applying K to both sides of (3.7) we
have:

9" =Ky'= Y G KDT*p= Y o DI*(K¢),= > ¢DT*y, (=1,...,m,
kezZn kezZn kezn
i. e.,
g'(z) = Z 42" (2 —k), £=1,...,m.
keZn
Taking the Fourier transform we see that there are functions m®(x) € L?(—x, 7)™
and 2m—periodic, such that

G°(x) = me(x/2)7(x/2) = qe(x/2)q§(x/2) a.e, £=1,...,m.
where ¢°(x) := my(x)r(x). Since r(x) is 2r—periodic, also the functions ¢*(x) are
2m—periodic. Moreover, from [15, p. 26, Theorem 1] or [5, Lemma 4.1] we know that
r(x) is bounded. Thus ¢* € L?(—n,7)", 1 < £ < n, and the assertion follows. [

We will need the following multivariate version of a Littlewood—Paley identity
of Chui and Shi:

Proposition 3.3. Let ¥ be a frame in L?(R™) with bounds A and B. Then

A< zm,:z 1W'27x))2 < B a.e.

=1 jEZ

Since the proof is similar to that of [4, Theorem 1] or [5, Theorem 2.1], it will
be omitted.

We will call a function essentially constant if it equals a constant almost every-
where in its domain. A function u(x) defined in R™ and satisfying u(2x) = u(x)
a. e. will be called a 2-dilation periodic function. In a one—variable setting such
functions have been used by Papadakis Stavroupoulos and Kalouptsidis to study
equivalence relations between multiresolution analyses ([14]), and by Dai and Lar-
son in their investigation of the topological and structural properties of the set of
all complete wandering vectors for the system (D, T) acting on L%(R) ([7]).

Proposition 3.4. Let ¥ be a Riesz basis of L?(R™) with bounds A and B, gen-
erated by a multiresolution analysis ({Vj;j € Z},¢) such that p(x) # 0 a. e.; let
n€ L2 R"); let 0 < C < oo and |ay|*> > X > 0, where ay € C for 1 < £ < my Then
the following propositions are equivalent:
(i) There is a measurable function u defined on R™, such that

(a) (%) = u(x)F(x) a. e.

(b) u(x) is a 2-dilation periodic function.

(c) lu(x)| < +/C/(AB) a. e.

(d) u(x) is not essentially constant.
(i) The following conditions are satisfied:
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(1) 7(2x) = mo(x)N(x) a. e.

(2) n ¢ Vo.

(3) If h(x) := ayme(x/2)7(x/2), £ = 1,...,m, then H is a Bessel sequence in
L2(R™), with bound C.

Proof. Assume first that (ii) is satisfied.
(a) Let

 ®)/Ex), P
u(x) = { 0, (x)

(b) If §(2x) # 0 then, from (1) and (3.8),

%) moitx)
u(2x) o5 (x).

CP(2x)  mo(x)B(x)
Since p(x) # 0 a. e., the assertion follows.
(c) Tt is clear from (b) that u(27x) = u(x) a. e. for every j € Z. Since h’(2x) =
aymy(x)7(x), we deduce from (1) that, for £ =1,...,m,

Tze(Z_jx) = apm (277 X)) u (2777 %) p(27 x) = agu(x)l/p\e@_jx) a. e.
Thus, (3) implies that

0= 3 Y ek R = uR Y. Y a2 0 >

(=1 jez. (=1 jez

) PAY ST e ae.

(=1 j€Z
But from Proposition 3.3 we know that
m R
S WEIXP=A ace,
(=1 j€EZ

and the assertion follows.
(d) If u(x) were constant a. e. then 7(x)/@(x) = k a. e., and therefore 7j(x) = kp(x)
a. . Thus 7(x) = kp(x) a. e. This implies that n € V4, which is a contradiction.
Assume now that (ii) is satisfied.
(1) Clearly n(2x) = u(2x)p(2x) = u(x)mo(x)p(x) = mo(x)7(x) a. e.
(2) If n € Vj then, from [5, Proposition 3.1] or [10, Theorem 2.1], 7 = a ¢ for some
a € C, so that 7j(x) = ap(x). Hence u(x)p(x) = a P(x), and therefore u(x) = «
a.e. on R™ which contradicts (d).
(3) hi(x) = arm(x/2)7(x/2) = arme(x/2)u(x/2)P(x/2) = apu(x)(x) a. e., for
£=1,2,...,m.
If f € L?(R"), a straightforward computation shows that

Fi(x) = 277/ 2671200k f(9=ix)

(remember that f;k stands for F[f;x]), and we readily conclude that ﬁﬁ’k(x) =
apu(x) ik(x) a.e,j€Z keZ", L=1,...,m. Let f € L>(R") and g(x) :=
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Fx)u(x). Since [§(x)]2 = | f(x)[2|u(x)[2 < B|f(x)[?, it is clear that §(x) € L2(R™).
Applying Plancherel’s theorem we have:

S S s =03 S S (R

:

(=1 jEZ ke (=1 jE€Z kL™
= @023 S JadP|(Fudl] = @n I Y el [ 00)]
(=1 jEZ ke (=1 jEZ keTn
< BA||g|I*.
But
D
2 o 2 o 2
A7 < llgl™ < 55 1115,
whence the assertion follows. O

Conditions (d) and (2) in the preceding proposition are equivalent and they have
been introduced to avoid the trivial case: if n € V|, then n = ay; hence K¢ = ayp,
and we readily conclude that K = af, and therefore that S =1+ K = (1 + «a)I.

It is easy to find functions that satisfy the conditions (b) (c¢) and (d) of Proposi-
tion 3.4. This follows from part (a) of the following proposition, which is essentially
a multivariate version of [14, Proposition 2.5] or the algorithm in [7, Remark 3.6],
modulo a small improvement.

Proposition 3.5. Let || - || be any norm in R™, let [ :={x € R":x=0, orl<
Ix|| < 2}, and let u(x) be a function defined on R™. Then
(a) u(x) is a 2-dilation periodic function if and only if there is a function v(x),
defined on I, such that, if

[ v(0), x=0
(310) U}(X) = { v(2fjx)’ 27 < ||X|| < 2j+1’ je Z,
then u(x) = w(x) a. e.
(b) If u(2x) = u(x) for x € R™ and u(x) is 2w—periodic, then u(x) is constant if
and only if it is continuous at x = (7/2)1.

Proof. (a) Assume first that there is a measurable function v(x), defined on I, such

that if w(x) is defined by (3.10), then u(x) = w(x) a. e. If x # 0 then there is a
j € Z such that 27 < ||x|| < 2/F1. Thus 27+! < ||2x|| < 27%2, and we have:

w(2x) = v(270TY2x) = v(277x) = w(x) a. e.,

and therefore u(2x) = u(x) a. e.

The converse follows by setting v(x) to be the restriction of u(x) to I: Let x # 0;
then 27 < ||x|| < 29*! for some j € Z, and therefore u(x) = u(279x) = v(277x) a.
e.

(b) If u(x) is a constant, it is clearly continuous at x = (w/2)1. To prove the
converse note that

u(x) = u(2772x) = u(29 x4+ (27)1) = u(2x + (7/2)1),
and pass to the limit as j — —oo. O

Note that (7/2)1 € I.
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Proposition 3.6. Let ¥ be a semiorthogonal Riesz basis of L?(R™) generated by
a multiresolution analysis ({V;;j € Z},¢), let G be a Riesz basis of L*(R"), let
n € L2(R™) be such that N(x) = u(x)p(x) a. e., where u(x) is a 2-dilation periodic
function, and assume that g*(x) = me(x/2)7(x/2), £ =1,...,m a. e. Let K be a
linear operator with domain and range in L*(R™), and such that

Kpox :=m0x kezm, Koy =gly, JEZT, kez", (=1,..,m.

Then K is the canonical operator from W to G, and K commutes with T,,, i =
1,...,n, on L*(R").

Proof. (a) Since L%(R") = V, @ Vg', the sequence {pox;k € Z"} U {1&571{;6 =
1,...,m,j € Zo,k € Z"} is a basis for L?(R"). Thus, the domain of K is L?(R")
and K is unique.

(b) We claim that K¢_; o = n_,, for every j € Z¢. This assertion is established by
an inductive argument. For j = 0 it is true by hypothesis. To prove the inductive
step we proceed as follows: The hypotheses imply that

Pjk = E Br ©j+1,2k+r
rezm
and

ik = g Br Mj+1,2k+r>
rezm

where {By;r € Z"} € (2. Thus

Kop_jo1x =K (Z Br Sﬁj,2k+r> = Z Br N—j2k+r = N—j—1k-

rezn reZmn

(¢c) We now show that K is the canonical operator. In view of the hypotheses, it
suffices to show that K(/)f}k = gf’k for{=1,...,mkeZ" and j <0.
The hypotheses imply that for any j € Z and any ¢, 1 < ¢ < m,

¢ _ ¢
.k — E Cr Pj+1,2k+r;
rezn

where {ct;r € Z" £ =1,...m} € (2. If j <0, then from (b) we have:

L £ L L
K=K (Z Cy <pj+1,2k+r> = Z Cy Mj+1,2k+r = Jj k-

rezn kezn
(d) From the hypotheses we see that
T, Koox = Te;nox = Mok,
and
KTo00x = K@ox; = 10k, -

Since {@ok;k € Z"} is a basis for V|, we conclude that K and the T,, commute
on Vj. Since K is the canonical operator from W to G, and G is a Riesz basis, the
assertion 