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ABSTRACT

We present a modified Adomian decomposition method for solving nonhomoge-
neous heat equations and nonlinear ordinary differential equations with boundary
conditions and then compare the results with those obtained by using the wavelet-
Galerkin and sinc-Galerkin methods.

KEY WORDS: Adomian and modified Adomian decomposition meth-
ods, Adomian polynomials, sinc-Galerkin method, non-linear boundary-
value problems, non-homogeneous heat equations

1. INTRODUCTION

Many methods are known for solving linear and nonlinear boundary-value
problems involving ordinary and partial differential equations, such as the
finite differences, finite elements, multi-grid, and Galerkin methods just to
mention a few. In the last decade or so, two relatively new techniques,
the wavelet-Galerkin and the Adomian decomposition methods, have gained
considerable attention. In the wavelet-Galerkin method, the approximate
solution is obtained in a multi-resolution analysis setting (see [9, 10]), while
in the Adomian decomposition method, which was introduced in [1], the
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solution is expressed as a series in which each term is determined from the
previous ones using a special algorithm. Numerical implementation of this
method has been extensively studied [2, 3, 13, 14].

In a recent paper [6] a comparison was made between the wavelet-Galerkin
and sinc-Galerkin methods in solving boundary-value problems involving
nonhomogeneous heat equations. It was shown that the sinc-Galerkin method
yields better results especially in the presence of singularities. The sinc-
Galerkin method, which was introduced by F. Stenger more than twenty
years ago [11, 12], is based on the Whittaker-Shannon-Kotel’nikov sampling
theorem.

The aim of this paper is 1) to present the modified Adomian decomposi-
tion method, introduced in [2], for solving nonhomogeneous heat equations
and nonlinear ordinary differential equations with boundary conditions, 2)
to compare the results obtained by the Adomian decomposition methods
to those obtained using the wavelet-Galerkin and sinc-Galerkin methods
for solving boundary-value problems involving nonhomogeneous heat equa-
tions, 3) to compare the modified Adomian method with the sinc-Galerkin
method for solving boundary-value problems involving nonlinear ordinary
differential equations.

The paper is organized as follows. In Sections 2 and 3, we introduce the
modified Adomian decomposition method and the sinc-Galerkin method re-
spectively. In Section 4 we compare the wavelet-Galerkin and sinc-Galerkin
methods with the Adomian decomposition method for solving boundary-
value problems involving nonhomogeneous heat equations, and in Section 5,
we compare the sinc-Galerkin method with the modified Adomian method
for solving boundary-value problems involving nonlinear ordinary differen-
tial equations.

2. THE MODIFIED DECOMPOSITION ALGORITHM

The Adomian decomposition method can be roughly described as obtain-
ing a series solution u0 +u1 + ..., where each ui is determined using a special
algorithm that we describe below for completeness.
Consider the operator equation

Lu+Nu = g, (2.1)

where L is a linear operator, N represents nonlinear operator, and g is the
known source term.
Assuming that L−1 exists and upon applying the inverse operator to both
sides of Eq. (2.1), we obtain

u = L−1(g)− L−1(Nu). (2.2)

The standard Adomian method defines the solution u(x) by the series

u =
∞∑
n=0

un. (2.3)
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Under appropriate conditions (e.g. N analytic), the operator N can be
decomposed as follows:

N(u) =
∞∑
n=0

An(u0, u1, ..., un), (2.4)

where An are the so-called Adomian polynomials.
Substituting this into Eq. (2.2) and for the series to converge, we set

u0 = L−1(g),
uk = −L−1(Ak−1(u0, u1, ..., uk−1)), k ≥ 1. (2.5)

Thus, from Eq. (2.5), we can determine all u’s recursively and this defines
the standard decomposition method.
For example, if N(u) = h(u) and h(u) is a nonlinear scalar function, we first
consider the Taylor expansion of h(u) around u0 and then collect the terms
appropriately to determine An. That is,

h(u) = h(u0) + h′(u0)(u− u0) +
1
2!
h′′(u0)(u− u0)2 + ...... (2.6)

Upon substituting the difference u − u0 by the infinite sum into Eq. (2.6),
we get

h(u) = h(u0) + h′(u0)(u1 + u2 + ...) +
1
2!
h′′(u0)(u1 + ...)2 + ..... (2.7)

Adomian polynomials are obtained by reordering and rearranging of the
terms of Eq. (2.7). Indeed, to determine the Adomian polynomials, one
needs to choose each term in Eq. (2.7) according to the order which actually
depends on both the subscripts and the powers of the un’s.
Therefore, rearranging the terms in the expansion Eq. (2.7) according to the
order and assuming that N(u) is as given in Eq. (2.4), then we can give each
An as

A0(u0) = h(u0),
A1(u0, u1) = u1h

′(u0),

A2(u0, u1, u2) = u2h
′(u0) +

1
2!
u2

1h
′′(u0),

A3(u0, u1, u2, u3) = u3h
′(u0) + u1u2h

′′(u0) +
1
3!
u3

1h
′′′(u0),

..................... (2.8)

It is common to note that the decomposition method suggests that the
zeroth component u0 usually defined by the function L−1(g) described above.
However, it was shown in [13] that if the function g can be divided into two
parts, namely g1 and g2, so that the zeroth component u0 depends upon g1
while the term u1 depends upon g2 and u0, then this modification leads to
a rapid convergence and at times yields an exact solution to the underlying

3
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equation.
The modified algorithm is then represented as:

u0 = L−1(g1),
u1 = L−1(g2)− L−1(A0(u0)),

uk+2 = −L−1(Ak+1(u0, u1, ..., uk+1)), k ≥ 0. (2.9)

As we will see from the examples below, the modified algorithm Eq. (2.9)
will require less computation and accelerates the convergence rate. Further,
this minor variation in the definition of the components u0 and u1 may yield
an exact solution by using two iterations only. An important observation
that can be made here is that the success of this method depends mainly
on the proper choice of the parts g1 and g2. The criterion of splitting the
function g into two practical parts g1 and g2 and using one or the other to
define the zeroth term is almost ”adhoc” and requires formal analysis. This
will be examined in a future study.
In Section 4, we show that the decomposition algorithm is easier to imple-
ment for nonhomogeneous heat equations with boundary conditions than
other methods.
In Section 5, we observe the efficiency of the modified decomposition algo-
rithm for nonlinear differential equations with boundary conditions. Three
nonlinear ordinary differential equations are chosen and the numerical re-
sults obtained by using this algorithm are compared with the exact solu-
tions, as well as, with approximate solutions obtained using the sinc-Galerkin
method.

3. The Sinc-Galerkin Method

In this section we give a summary of the Sinc-Galerkin Method. The sinc
function is defined on the whole real line by

sinc(x) =
sin(πx)
πx

−∞ < x <∞, (3.1)

For h > 0, the translated Sinc functions with evenly spaced nodes are given
as

S(k, h)(x) = sinc
(
x− kh

h

)
, k = 0± 1,±2, ... (3.2)

If f is defined on the real line, then for h > 0 the series

C(f, h) =
∞∑

k=−∞
f(hk) sinc

(
x− hk

h

)
. (3.3)

is called the Whittaker cardinal expansion of f whenever this series converges.
The properties of (3.3) has been extensively studied. A comprehensive sur-
vey of these approximation properties is found in [11].
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To construct approximations on the interval (0, 1) , which are used in this
paper, consider the conformal maps

φ(z) = ln
(

z

1− z

)
. (3.4)

The map φ carries the eye-shaped region

DE =
{
z = x+ iy :

∣∣∣∣ arg(
z

1− z

)∣∣∣∣ < d ≤ π

2

}
, (3.5)

onto the infinite strip

Dd =
{
ζ = ξ + iη : |η| < d ≤ π

2

}
(3.6)

The composition

Sj(x) = S(h, j) ◦ φ(x) = sinc
(
φ(x)− jh

h

)
(3.7)

defines the basis element for equation (3.3) on the interval (0,1). The
”mesh size” h is the mesh sizes in Dd for the uniform girds {kh}, −∞ < k <
∞. The sinc grid points zk ∈ (0, 1) in DE will be denoted by xk because
they are real. The inverse images of the equispaced grids are

xk = φ−1(kh) =
ekh

1 + ekh
, (3.8)

Definition 1. Let DE be a simply connected domain in the complex plane
C, let ∂DE denote the boundary of DE. Let a, b (a 6= b) be points on ∂DE,
and φ be a conformal map DE onto Dd such that φ(a) = −∞ and φ(b) = ∞.
If the inverse map of φ is denoted by ψ, define

Γ = {ψ(u) : −∞ < u <∞}

and zk = ψ(kh), k = 0,±1,±2, . . .

Definition 2. Let B(DE) be the class of functions F that are analytic in
DE and satisfy ∫

ψ(L+u)
|F (z)dz| → 0, as u→ ±∞, (3.9)

where
L =

{
iy : |y| < d ≤ π

2

}
, (3.10)

and on the boundary of DE (denoted ∂DE) satisfy

T (F ) =
∫
∂DE

|F (z)dz| <∞. (3.11)

The importance of the class B(DE) with regard to numerical integration
is summarized in the following theorems [11].

5
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Theorem 3.1. Let Γ be (0, 1), if F ∈ B(DE) then for h > 0 sufficiently
small∫

Γ
F (z)dz − h

∞∑
j=−∞

F (zj)
φ′(zj)

=
i

2

∫
∂D

F (z)k(φ, h)(z)
sin (πφ(z)/h)

dz ≡ IF , (3.12)

where

|k(φ, h)| |z ∈ ∂D =
∣∣∣∣ exp

[
iπφ(z)
h

sgn (Im φ(z))
]∣∣∣∣
z ∈ ∂D

= e−πd/h. (3.13)

For the Sinc-Galerkin method, the infinite quadrature rule must be trun-
cated to a finite sum. The following theorem indicates the conditions under
which exponential convergence results.

Theorem 3.2. If there exist positive constants α, β and C such that∣∣∣∣F (x)
φ′(x)

∣∣∣∣ ≤ C


exp (−α|φ(x)|), x ∈ ψ((−∞, 0)),

exp (−β|φ(x)|), x ∈ ψ((0,∞)).
(3.14)

then the error bound for the quadrature rule (3.12) is∣∣∣∣∣∣
∫

Γ
F (x)dx− h

N∑
j=−M

F (xj)
φ′(xj)

∣∣∣∣∣∣ ≤ C

(
e−αMh

α
+
e−βNh

β

)
+ |IF | . (3.15)

The infinite sum in (3.12) is truncated with the use of (3.14) to arrive at
this inequality (3.15). Making the selections

h =

√
πd

αM
, (3.16)

and

N ≡
[∣∣∣∣αβM + 1

∣∣∣∣] , (3.17)

where [x] is the integer part of x, then∫
Γ
F (x)dx = h

N∑
j=−M

F (xj)
φ′(xj)

+O
(
e−(παdM)1/2

)
. (3.18)

Theorems 3.1 and 3.2 are used to approximate the integrals that arise in
the formulation of the discrete systems corresponding to equations (3.22)-
(3.23) below.

To solve a differential equation of the form Ly = f using the sinc-Galerkin
method, we assume an approximate solution of the form

uQ(x) =
N∑

j=−M
cjSj(x), Q = M +N + 1. (3.19)

6
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where Sj(x) is the function S(j, h) ◦ φ(x) for some fixed step size h. The
unknown coefficients {cj}N−M in (3.19) are determined by orthogonalizing
the residual LuQ − f with respect to the functions{Sk}Nk=−M . This yields
the discrete system

〈LuQ − f, Sk〉 = 0, (3.20)
for k = −M,−M + 1, . . . , N . The weighted inner product 〈 , 〉 is taken to
be

〈g(x), f(x)〉 =
∫ 1

0
g(x)f(x)w(x)dx, (3.21)

Where w(x) plays the role of a weight function which is chosen depending
on the boundary conditions, the domain, and the differential equation.

In this paper we will be dealing with nonlinear differential equations of
order 2m,m=1,2,3 of the form:

Lu = u(2m) + τ(x)uu′ + κ(x)H(u) = f(x), 0 ≤ x ≤ 1, (3.22)

subject to boundary conditions

u(j)(0) = 0, u(j)(1) = 0, 0 ≤ j ≤ m− 1 (3.23)

where H(u) may be a polynomial or a rational function, or exponential.
Due to the large number of different possibilities, our work will be focused
mainly on the following forms H(u):

• H(u) = un, n > 1,
• H(u) = exp(± u).

We may also includeH(u) = 1
(1±u)n ,

1
(1±u2)n ,

1
(u2±1)n , n 6= 0, or cosu, sinu, coshu..,

etc or any analytic function of u which has a power series expansion. For
the case of boundary value problems of order 2m, it is convenient to take

w(x) =
1

(φ′(x))m
. (3.24)

A complete discussion on the choice of the weight function can be found in
[8, 12].

The most direct development of the discrete system for equation (3.19)
is obtained by substituting (3.19) into (3.22). The system can then be
expressed in integral form via (3.21). This approach however, obscures the
analysis which is necessary for applying the Sinc Quadrature Formulas to
(3.20). An alternative approach is to analyze instead〈
u(2m), Sk

〉
+

〈
τuu′, Sk

〉
+〈κun, Sk〉 = 〈f, Sk〉 , k = −M, . . . , N. (3.25)

The method of approximating the integrals in (3.25) begins by integrating
by parts to transfer all derivatives from u to Sk. The approximation of the
inner products on the right-hand side of (3.25) is

〈f, Sk〉 = h
f(xk)w(xk)
φ′(xk)

. (3.26)

7
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Moreover, we have

〈
u(2m), Sk

〉
= h

N∑
j=−M

2m∑
i=0

u(xj)
φ′(xj)hi

δ
(i)
kj g2m,i(xj), (3.27)

and

〈
τ(x)uu′, Sk

〉
= −h

2

N∑
j=−M

u2(xj)
φ′(xj)

[
1
h
δ
(1)
kj (φ′τw)(xj) + δ

(0)
kj (τw)′(xj)

]
,

(3.28)

〈κ(x)un, Sk〉 = h
w(xk)un(xk)κ(xk)

φ′(xk)
. (3.29)

where

δ
(m)
jk = hm

dm

dφm
[S(j, h) ◦ φ(x)]x=xk

,

and g2m,i are functions to be determined; see [7].

4. EXAMPLES: LINEAR NONHOMOGENEOUS HEAT
EQUATIONS

In this section we apply the standard Adomian decomposition method to
a linear nonhomogeneous heat equation with boundary conditions. For the
sake of comparison with other methods, we choose an example from a paper
by El-Gamel and Zayed [6].

Example 1

Consider a nonhomogeneous heat equation with the initial and the boundary
conditions.

ut − uxx = g(x, t), 0 ≤ x ≤ 1, t > 0,
u(0, t) = 0, u(1, t) = 0,
u(x, 0) = 0, 0 ≤ x ≤ 1, (4.1)

where g(x, t) = [(x− x2)(1− t) + 2t]e−t. The exact solution of the equation
is u(x, t) = x(1− x)te−t.
Before we implement the standard decomposition method, we recognize that
Eq. (4.1) is in the equation form of Eq. (2.2) Lu−uxx = g(x, t) with L = ∂

∂t

and L−1(•) =
∫ t
0 •ds. Upon formally integrating Eq. (4.1) with respect to t,

we get

u(x, t) =
∫ t

0

∂2u

∂x2
ds+

∫ t

0
g(x, s)ds. (4.2)

8
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From Eq. (2.5), we have

u0(x, t) =
∫ t

0
g(x, s)ds = xe−tt− x2e−tt− 2e−tt− 2e−t + 2, (4.3)

u1(x, t) =
∫ t

0

∂2u0

∂x2
ds = 2e−tt+ 2e−t − 2,

u2(x, t) =
∫ t

0

∂2u1

∂x2
ds = 0,
...........

Hence un(x, t) = 0 for ∀n ≥ 2. Therefore, u(x, t) = u0(x, t) + u1(x, t) and
this is the exact solution. The numerical results in Table 1 for the decom-
position method were obtained using Maple.

5. EXAMPLES: NONLINEAR BOUNDARY VALUE PROBLEMS

In this section we apply the standard or modified decomposition meth-
ods to boundary-value problems involving nonlinear differential equations.
Again for the sake of comparison with the sinc-Galerkin method, we use
examples already discussed in [7].

Example 2
Consider a nonlinear ordinary differential equation with the boundary con-
ditions.

u(4) − 6e−4u = g(x), 0 < x < 1,

and

u(0) = 0, u(1) = ln 2, u′(0) = 1, u′(1) = 0.5

where g(x) = −12(1 + x)−4.
The exact solution of the equation is u(x) = ln(1 + x).

If we integrate the differential equation four-fold with respect to x, we get

u(x) = −x+ (1 +
α

2
)x2 +

(β2 − 2)x3

3
+ 2 ln(1 + x)

+ 6
∫ x

0

∫ m

0

∫ l

0

∫ k

0
e−4u(s)dsdkdldm, (5.1)

9
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which is g the form in Eq.( 2.2).
Using Eq. (2.5), we have

u0(x) = −x+ 2 ln(1 + x)

u1(x) = (1 +
α

2
)x2 +

(β2 − 2)x3

3

+ 6
∫ x

0

∫ m

0

∫ l

0

∫ k

0
(1− 4u0(s))dsdkdldm.

u2(x) = 6
∫ x

0

∫ m

0

∫ l

0

∫ k

0
(−4u1(s) +

32
2!
u0(s)u1(s))dsdkdldm (5.2)

It suffices to compute the first four iterates to get a reasonable error. So,
u(x) = u0(x) + u1(x) + u2(x) + u3(x). We use the boundary conditions to
obtain α and β. In particular, α = −1.091225 and β = 2.467275.
The numerical results in Table 2 for the decomposition method were ob-
tained using Maple. Note that by only computing the first four iterates, we
get comparable results to those of Sinc-Galerkin method discussed in [7] for
this example with an error less than 0.01 %.

Example 3

Consider a nonlinear ordinary differential equation with the boundary con-
ditions.

u(6) + e−xu2 = g(x), 0 ≤ x ≤ 1,
u(0) = 1, u′(0) = −1, u′′(0) = 1

u(1) = 1/e, u′(1) = −1/e, u′′(1) = 1/e (5.3)

where g(x) = e−x + e−3x.
The exact solution of the equation is u(x) = e−x.
Let us consider the numerical solution using the standard decomposition
method.
Write Eq. (5.3) in the form of Eq. (2.2). Upon six-fold integration, we get

u(x) =
αx5

120
+ (

β

24
− 1

36
)x4 + (

µ

6
− 5

27
)x3

− 1
54
x2 +

1
81
x+ e−x +

1
243

e−3x − 1
243

−
∫ x

0

∫ p

0

∫ p

0

∫ m

0

∫ l

0

∫ k

0
e−su(s)2dsdkdldmdndp. (5.4)

10
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Using Eq. (2.5), we have

u0(x) =
αx5

120
+ (

β

24
− 1

36
)x4 + (

µ

6
− 5

27
)x3

− 1
54
x2 +

1
81
x+ e−x +

1
243

e−3x − 1
243

u1(x) = −
∫ x

0

∫ p

0

∫ p

0

∫ m

0

∫ l

0

∫ k

0
e−su0(s)2dsdkdldmdndp

u2(x) = −
∫ x

0

∫ p

0

∫ p

0

∫ m

0

∫ l

0

∫ k

0
e−s2u0(s)u1(s)dsdkdldmdndp

It suffices to compute the first two iterates to get a reasonable error. So,
u(x) = u0(x) + u1(x). We use the boundary conditions to obtain α, β and
µ. In particular, α = .5494856025, β = .3862454825, µ = −1.001973513.
The numerical results in Table 3 for the decomposition method were ob-
tained using Maple. Note that by only computing the first two iterates, we
get comparable results to those of Sinc-Galerkin method discussed in [7] for
this example with an error less than 0.01 %.

Example 4

Consider a nonlinear ordinary differential equation with the boundary con-
ditions.

u′′ + uu′ + u3 = g(x), 0 ≤ x ≤ 1,
u(0) = 0, u(1) = 0 (5.5)

where g(x) =
1
x

+ x lnx(1 + lnx) + (x lnx)3.

The exact solution of the equation is u(x) = x lnx.
Let us consider the numerical solution using the modified decomposition
method.
Write Eq. (5.5) in the form of Eq. (2.2). Upon two-fold integration, we get

u(x) = αx+ x lnx− x+
1
6
x3 ln(x)2 − 1

9
x3 lnx

+
1
27
x3 +

1
20
x5 ln(x)3 − 27

400
x5 ln(x)2

+
183
4000

x5 lnx− 1107
80000

x5

− 1
2

∫ x

0
u(s)2ds−

∫ x

0

∫ l

0
(u(s))3dsdl (5.6)

11
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Using Eq. (2.5), we have

u0(x) = (α− 1)x+ x lnx

u1(x) =
1
6
x3 ln(x)2 − 1

9
x3 lnx+

1
27
x3 +

1
20
x5 ln(x)3 − 27

400
x5 ln(x)2

+
183
4000

x5 lnx− 1107
80000

x5 − 1
2

∫ x

0
u0(s)2ds−

∫ x

0

∫ l

0
(u0(s))3dsdl

u2(x) = −1
2

∫ x

0
2u0(s)u1(s)ds−

∫ x

0

∫ l

0
3u0(s)2u1(s)dsdl (5.7)

It suffices to compute the first three iterates to get a reasonable error. So,
u(x) = u0(x) + u1(x) + u2(x). We use the boundary conditions to obtain α.
In particular, α = 0.999999.
The numerical results in Table 4 for the decomposition method were ob-
tained using Maple. Note that by only computing the first two iterates, we
get comparable results to those of Sinc-Galerkin method discussed in [7] for
this example with an error less than 0.01 %.

6. CONCLUSION

In this note, we exhibited the Adomian decomposition algorithm Eq. (2.5)
and its modified version Eq. (2.9) and showed that, for the examples dis-
cussed, these algorithms yield better numerical results and outperform the
wavelet-Galerkin method. Although the decomposition algorithms give com-
parable results to the sinc-Galerkin method, they are easier to implement
than the sinc-Galerkin method. Indeed, in the examples discussed, we were
able to get the exact solution. For future work, we wish to give the mathe-
matical reasoning behind this algorithm.
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x Exact Sinc-Galerkin Wavelet-Galerkin A Modified Decomposition
0.0 0.0 0.0 0.0 0.0
1/24 0.00058 0.00058 0.00051 0.5801073244e-3
2/24 0.00108 0.00108 0.00096 0.1082867006e-2
3/24 0.00150 0.00151 0.00133 0.1508279044e-2
4/24 0.00185 0.00186 0.00166 0.1856343438e-2
5/24 0.00212 0.00213 0.00190 0.2127060190e-2
6/24 0.00232 0.00232 0.00208 0.2320429298e-2
7/24 0.00243 0.00244 0.00218 0.2436450763e-2
8/24 0.00247 0.00248 0.00222 0.2475124584e-2
9/24 0.00243 0.00244 0.00218 0.2436450763e-2
10/24 0.00232 0.00232 0.00208 0.2320429298e-2
11/24 0.00212 0.00213 0.00190 0.2127060190e-2
12/24 0.00185 0.00186 0.00166 0.1856343438e-2
13/24 0.00150 0.00151 0.00136 0.1508279044e-2
14/24 0.00108 0.00108 0.00099 0.1082867006e-2
15/24 0.00058 0.00058 0.00052 0.5801073244e-3
1.0 0.0 0.0 0.0 0.0

Table 1. Comparison between the Sinc-Galerkin, Wavelet-
Galerkin and the Decomposition Methods at t = 0.01 (Ex-
ample 1).

x Exact Sinc-Galerkin A Modified Decomposition
0.0 0.0 0.0 0.0

0.08065 0.077568262040 0.077568262046 .07730684924
0.16488 0.152623517296 0.152623517297 .151725071
0.22851 0.205803507218 0.205803507212 .2043359933
0.39997 0.336452906454 0.336452906455 .333826796

0.5 0.405465108108 0.405465108103 .4027616079
0.69235 0.526121481267 0.526121481263 .524494048
0.77148 0.571819991855 0.571819991858 .57083465
0.88369 0.633234913798 0.633234913793 .63297496
0.94474 0.665133248137 0.665133248135 .665073889

1.0 0.693147180559 0.693147180559 .6931471612
Table 2. Comparison between the Sinc-Galerkin and the
Modified Decomposition Methods when α = −1.091225, β =
2.467275 (Example 2).
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x Exact Sinc-Galerkin A Modified Decomposition
0.0 1.0 1.0

0.0089 0.99113 0.99113 0.9913058120
0.0414 0.95942 0.95942 0.9596798857
0.1721 0.84189 0.84189 0.8420768446
0.3131 0.73113 0.73114 0.7312326771

0.5 0.60653 0.60655 0.6066408944
0.6868 0.50316 0.50320 0.5032981209
0.8278 0.43696 0.43701 0.4372112283
0.9134 0.40114 0.40118 0.4013630017
0.9585 0.38343 0.38347 0.3835873395

1.0 0.36787 0.36787 0.3680302464
Table 3. Comparison between the Sinc-Galerkin and the
Modified Decomposition Methods when α = .5494856025,
β = .3862454825, µ = −1.001973513; (Example 3).

x Exact Sinc-Galerkin A Modified Decomposition
0.0 0.0 0.0 0.0

0.07701 -.19744378 -.19744377 -.1974397778
0.12058 -.25508370 -.25508365 -.2550799778
0.27022 -.35359087 -.35359081 -.3535879602
0.37830 -.36773296 -.36773296 -.3677332289

0.5 -.34657359 -.34657353 -.3465735904
0.62169 -.29549755 -.29549756 -.2954977760
0.72977 -.2298964240 -.22989600 -.2298964241
0.87941 -.11300194 -.11300192 -.1130077475
0.97002 -.02951702 -.02951703 -.02952604034

1.0 0.0 0.0 0.0
Table 4. Comparison between the Sinc-Galerkin and the
Modified Decomposition Methods when α = 0.999999 (Ex-
ample 4).
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ON THE HYERS-ULAM STABILITY OF AN EULER-LAGRANGE
TYPE CUBIC FUNCTIONAL EQUATION ∗

KIL-WOUNG JUN, HARK-MAHN KIM † AND ICK-SOON CHANG

Abstract. In this paper, we obtain the general solution and the generalized Hyers-
Ulam stability for an Euler-Lagrange type cubic functional equation

f(ax + by) + f(ax− by) = ab2f(x + y) + ab2f(x− y) + 2a(a2 − b2)f(x)

for any fixed integers a, b with a 6= −1, 0, 1, b 6= 0 and a± b 6= 0.

1. Introduction

In 1940, S. M. Ulam [20] gave the following question concerning the stability of homo-

morphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0,

does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality

d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2

with d(h(x), H(x)) < ε for all x ∈ G1?

In other words, we are looking for situations when the homomorphisms are stable, i.e.,

if a mapping is almost a homomorphism, then there exists a true homomorphism near

it. If we turn our attention to the case of functional equations, we can ask the question:

Under what conditions does there exist a true solution near an approximate function

differing slightly from a functional equation? If the answer is affirmative, we say that the

functional equation is Hyers-Ulam stable.

During the last decades, the Hyers-Ulam stability problems of several functional equa-

tions have been extensively investigated by a number of authors [5, 6, 9, 11, 12, 16, 17].

The terminology generalized Hyers-Ulam stability originates from these historical back-

grounds. For more detailed definitions of such terminologies, we can refer to [8, 10, 19].

A quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y) (1.1)

was used to characterize inner product spaces and several other functional equations were

also used to characterize inner product spaces ([1], [18]). It is well known that a mapping

1991 Mathematics Subject Classification. 39B22, 39B52, 39B72.
Key words and phrases. Hyers-Ulam stability; cubic mapping; quadratic mapping.
∗ This work was supported by grant No. R01-2000-000-00005-0(2004) from the KOSEF.
† Corresponding author:hmkim@math.cnu.ac.kr.
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2 K. JUN, H. KIM AND I. CHANG

f is a solution of (1.1) if and only if there exists a unique symmetric biadditive mapping

B such that f(x) = B(x, x) for all x, where the mapping B is given by

B(x, y) =
1

4
(f(x + y)− f(x− y)). (1.2)

Now, we are concerned with the following functional equations, which are related with

each other to prove our main subject;

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x), (1.3)

f(x + 2y) + f(x− 2y) + 6f(x) = 4f(x + y) + 4f(x− y), (1.4)

f(2x + y) + f(2x− y) + 4f(x) + f(y) + f(−y) (1.5)

= 2f(x + y) + 2f(x− y) + 2f(2x),

f(ax + y) + f(ax− y) (1.6)

= af(x + y) + af(x− y) + 2a(a2 − 1)f(x)

for any fixed integer a with a 6= −1, 0, 1, and

f(ax + by) + f(ax− by) (1.7)

= ab2f(x + y) + ab2f(x− y) + 2a(a2 − b2)f(x)

for any fixed integers a, b with a 6= −1, 0, 1, b 6= 0 and a ± b 6= 0. Let both E1 and E2

be real vector spaces. The authors [13] proved that a mapping f : E1 → E2 satisfies the

functional equation (1.3) if and only if there exists a mapping B : E1×E1×E1 → E2 such

that f(x) = B(x, x, x) for all x ∈ E1, where B is symmetric for each fixed one variable

and additive for each fixed two variables. They have also investigated the generalized

Hyers-Ulam stability problem for the equation (1.3). However it should be noted that

(1.3) is a special case of the functional equation (1.7). In [14], the authors showed that

a mapping f : E1 → E2 satisfies the functional equation (1.4) if and only if there exist

mappings B : E1 × E1 × E1 → E2, Q : E1 × E1 → E2 and A : E1 → E2 such that

f(x) = B(x, x, x) + Q(x, x) + A(x) + f(0) for all x ∈ E1, where B is symmetric for each

fixed one variable and additive for each fixed two variables, Q is symmetric biadditive

and A is additive.

In this paper, we will establish the general solutions of (1.5) and (1.6) which are related

with (1.3) and (1.4). Also we are going to solve the generalized Hyers-Ulam stability

problem for the equation (1.7) and to extend the results of the generalized Hyers-Ulam

stability problem for the equation (1.3).
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2. Solutions of (1.5) and (1.6)

Let both E1 and E2 be real vector spaces throughout this section. We here present the

general solutions of (1.5) and (1.6).

Theorem 2.1. A mapping f : E1 → E2 satisfies the functional equation (1.5) if and only

if there exist mappings B : E1 × E1 × E1 → E2, Q : E1 × E1 → E2, A : E1 → E2 such

that f(x) = B(x, x, x) + Q(x, x) + A(x) for all x ∈ E1, where B is symmetric for each

fixed one variable and is additive for each fixed two variables, Q is symmetric biadditive

and A is additive.

Proof. Let f : E1 → E2 satisfy the functional equation (1.5). Putting y = x = 0 in

(1.5), we get f(0) = 0. Let fe(x) = f(x)+f(−x)
2

, fo(x) = f(x)−f(−x)
2

for all x ∈ E1. Then

fe(0) = 0 = fo(0), fe is even and fo is odd. Since f is a solution of (1.5), fe and fo also

satisfy the equation (1.5).

Thus we first assume that f is a solution of the functional equation (1.5) and f is even,

f(0) = 0. Then the equation (1.5) is written by

f(2x + y) + f(2x− y) + 4f(x) + 2f(y) = 2f(x + y) + 2f(x− y) + 2f(2x) (2.1)

for all x, y ∈ E1. Putting y = x, y = 2x in (2.1), separately, we come to

f(3x) = 4f(2x)− 7f(x), f(4x) = 8f(2x)− 16f(x). (2.2)

Setting y by x + y in (2.1), one obtains that

f(3x + y) + f(x− y) + 4f(x) + 2f(x + y) (2.3)

= 2f(2x + y) + 2f(y) + 2f(2x)

for all x, y ∈ E1. Replacing y by −y in (2.3) and adding the resulting relation to (2.3)

with use of (2.1), we obtain that

f(3x + y) + f(3x− y) + 16f(x) = f(x + y) + f(x− y) + 8f(2x). (2.4)

Putting y = 3x in (2.4), we get f(6x) = 17f(2x)− 32f(x).

On the other hand, it follows by (2.2) that

f(6x) = 4f(4x)− 7f(2x) = 4[8f(2x)− 16f(x)]− 7f(2x),

which yields f(2x) = 4f(x). Therefore the equation (2.4) is now written by

f(3x + y) + f(3x− y) = f(x + y) + f(x− y) + 16f(x). (2.5)

Replacing x and y by u+v
2

and u−v
2

in (2.5), respectively, we obtain that

f(2u + v) + f(u + 2v) = 4f(u + v) + f(u) + f(v), (2.6)
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4 K. JUN, H. KIM AND I. CHANG

which implies that f(x) = Q(x, x) for some symmetric biadditive mapping Q : E1×E1 →
E2 (see [3]).

Next, we may assume that f is a solution of the functional equation (1.5) and f is odd,

f(0) = 0. Thus the equation (1.5) can be written by

f(2x + y) + f(2x− y) + 4f(x) = 2f(x + y) + 2f(x− y) + 2f(2x) (2.7)

for all x, y ∈ E1. Setting x and y by x + y and x− y in (2.7) respectively, we have

f(3x + y) + f(x + 3y) + 4f(x + y) = 2f(2x) + 2f(2y) + 2f(2x + 2y). (2.8)

Substituting x + y for y in (2.7), we obtain that

f(3x + y) + f(x− y) + 4f(x) = 2f(2x + y)− 2f(y) + 2f(2x). (2.9)

Switch x with y in (2.9) to get the relation

f(x + 3y)− f(x− y) + 4f(y) = 2f(x + 2y)− 2f(x) + 2f(2y). (2.10)

Combining (2.9) with (2.10) and using (2.8), one obtains

f(2x + 2y) + 3f(x) + 3f(y) = f(2x + y) + f(x + 2y) + 2f(x + y). (2.11)

Setting y by −y in (2.11) and then adding it to (2.11), we arrive at

f(2x + 2y) + f(2x− 2y) + 10f(x) (2.12)

= 4f(x + y) + 4f(x− y) + 2f(2x) + f(x + 2y) + f(x− 2y).

In turn, substituting 2y for y in (2.7), we obtain

f(2x + 2y) + f(2x− 2y) + 4f(x) = 2f(x + 2y) + 2f(x− 2y) + 2f(2x). (2.13)

Combining (2.12) with (2.13), one obtains that

f(x + 2y) + f(x− 2y) + 6f(x) = 4f(x + y) + 4f(x− y), (2.14)

which yields that f(x) = B(x, x, x) + A(x) for all x ∈ E1 since f is odd and f(0) = 0,

where B is symmetric for each fixed one variable and additive for each fixed two variables,

and A is additive (see [14]).

As a result, we have

f(x) = fe(x) + fo(x) = B(x, x, x) + Q(x, x) + A(x)

for all x ∈ E1.

Conversely, suppose that there exist mappings B : E1×E1×E1 → E2, Q : E1×E1 → E2,

A : E1 → E2 such that f(x) = B(x, x, x) + Q(x, x) + A(x) for all x ∈ E1, where A is

additive, Q is symmetric biadditive, and B is symmetric for each fixed one variable and

additive for each fixed two variables. Then it is obvious that f satisfies the equation

(1.5). �
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By virtue of Theorem 2.1 we present the general solution of the functional equation

(1.6).

Theorem 2.2. (i) A mapping f : E1 → E2 satisfies the functional equation (1.3) if and

only if (ii) f : E1 → E2 satisfies the functional equation (1.6). Therefore, every solution

of functional equations (1.3) and (1.6) is a cubic mapping.

Proof. Let f : E1 → E2 satisfy the functional equation (1.3). Putting x = 0 = y in (1.3),

we get f(0) = 0. Set y = 0 in (1.3) to get f(2x) = 8f(x). Letting y = x and x = 0 in

(1.3) separately, we obtain that f(3x) = 9f(x) and f(x) = −f(−x) for all x ∈ E1.

To use an induction argument we assume that for a positive integer N > 2, (1.6) is

true for any positive integer a with 1 < a ≤ N. Putting y by x+ y and y by x− y in (1.6)

equipped with a = N , separately, we obtain

f((N + 1)x + y) + f((N − 1)x− y) (2.15)

= Nf(2x + y) + Nf(−y) + 2N(N2 − 1)f(x),

f((N + 1)x− y) + f((N − 1)x + y) (2.16)

= Nf(2x− y) + Nf(y) + 2N(N2 − 1)f(x).

Adding (2.15) to (2.16) and using an inductive assumption for N − 1, we figure out

f((N + 1)x + y) + f((N + 1)x− y) (2.17)

= (N + 1)f(x + y) + (N + 1)f(x− y) + 2(N + 1)[(N + 1)2 − 1]f(x),

which proves the validity of (1.6) for N + 1. Thus the equation (1.6) holds for all positive

integer a > 1.

For a negative integer n < −1, replacing n by −n > 1 and using the oddness of f one

can easily prove the validity of (1.6).

Therefore the equation (1.3) implies (1.6) for any integer a with a 6= −1, 0, 1.

Conversely, let f : E1 → E2 satisfy the functional equation (1.6). Putting x = 0 = y

and x = 0 in (1.6) separately, we get f(0) = 0 and f(y) + f(−y) = 0. Letting y = 0 in

(1.6), we obtain f(ax) = a3f(x) for all x ∈ E1. Replacing x and y by 2x and ay in (1.6)

respectively, we have

a3f(2x + y) + a3f(2x− y) = af(2x + ay) + af(2x− ay) + 2a(a2 − 1)f(2x) (2.18)

for all x, y ∈ E1. Putting y by x + ay in (1.6), we obtain

f(a(x + y) + x) + f(a(x− y)− x) = af(2x + ay) + af(−ay) + 2a(a2 − 1)f(x). (2.19)

Interchange y and −y in (2.19) to get the relation

f(a(x− y) + x) + f(a(x + y)− x) = af(2x− ay) + af(ay) + 2a(a2 − 1)f(x). (2.20)
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Observe that we get by (1.6)

f(a(x + y) + x) + f(a(x + y)− x) = af(2x + y) + af(y) + 2a(a2 − 1)f(x + y).

Adding (2.19) to (2.20), by use of (1.6) we lead to

af(2x + y) + 2a(a2 − 1)f(x + y) + af(2x− y) + 2a(a2 − 1)f(x− y) (2.21)

= af(2x + ay) + af(2x− ay) + 4a(a2 − 1)f(x)

for all x, y ∈ E1. Subtracting (2.21) from (2.18) side by side and dividing by a3 − a, we

obtain

f(2x + y) + f(2x− y) + 4f(x) (2.22)

= 2f(x + y) + 2f(x− y) + 2f(2x),

which yields by virtue of (2.7) in the proof of Theorem 2.1 that f is cubic since f is odd

and f(ax) = a3f(x) for all x ∈ E1. That is, f satisfies the equation (1.3). The proof is

complete. �

We note that (1.6) implies (1.7). In fact, if b = ±1 in (1.7), the equation (1.7) reduces

(1.6) of itself. Let b 6= ±1 in (1.7). Then (1.6) implies by the first part of Theorem 2.2

f(bx + y) + f(bx− y) = bf(x + y) + bf(x− y) + +2b(b2 − 1)f(x). (2.23)

Setting y = 0 in (2.23), one gets f(bx) = b3f(x), and thus f(x
b
) = 1

b3
f(x). Replacing y by

by in (2.23) and dividing it by b, we obtain

f(x + by) + f(x− by) + 2(b2 − 1)f(x) = b2f(x + y) + b2f(x− y). (2.24)

Thus we figure out by (2.24)

f(ax + by) + f(ax− by)

= b3
[
f(a · x

b
+ y) + f(a · x

b
− y)

]
= ab3

[
f(

x

b
+ y) + f(

x

b
− y) + 2(a2 − 1)f(

x

b
)
]

= a[f(x + by) + f(x− by) + 2(a2 − 1)f(x)]

= a[b2f(x + y) + b2f(x− y)− 2(b2 − 1)f(x) + 2(a2 − 1)f(x)]

= ab2[f(x + y) + f(x− y)] + 2a(a2 − b2)f(x).

Therefore (1.6) implies (1.7) as desired.

3. Stability of (1.7)

From now on, let X be a topological vector space and let Y be a Banach space unless we

give any specific reference. We will investigate the Hyers-Ulam-Rassias stability problem

for the functional equation (1.7). Thus we find the condition that there exists a true cubic
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mapping near an approximately cubic mapping. For convenience, we use the following

abbreviation: for any fixed integers a, b with a 6= −1, 0, 1, b 6= 0 and a± b 6= 0

Da,bf(x, y) := f(ax + by) + f(ax− by)

−ab2f(x + y)− ab2f(x− y)− 2a(a2 − b2)f(x)

for all x, y ∈ X.

Theorem 3.1. Let φ : X2 → R+ be a mapping such that

∞∑
i=0

φ(aix, 0)

|a|3i

( ∞∑
i=1

|a|3iφ(
x

ai
, 0), respectively

)
(3.1)

converges and

lim
n→∞

φ(anx, any)

|a|3n
= 0

(
lim

n→∞
|a|3nφ(

x

an
,

y

an
) = 0

)
(3.2)

for all x, y ∈ X. Suppose that a mapping f : X → Y satisfies

‖Da,bf(x, y)‖ ≤ φ(x, y) (3.3)

for all x, y ∈ X. Then there exists a unique cubic mapping T : X → Y which satisfies the

equation (1.7) and the inequality

‖f(x)− T (x)‖ ≤ 1

2|a|3
∞∑
i=0

φ(aix, 0)

|a|3i
(3.4)

(
‖f(x)− T (x)‖ ≤ 1

2|a|3
∞∑
i=1

|a|3iφ(
x

ai
, 0)

)
for all x ∈ X. The mapping T is given by

T (x) = lim
n→∞

f(anx)

a3n

(
T (x) = lim

n→∞
a3nf(

x

an
)
)

(3.5)

for all x ∈ X.

Further, if either f is measurable or for each fixed x ∈ X the mapping t 7→ f(tx) from

R to Y is continuous, then T (rx) = r3T (x) for all r ∈ R.

Proof. Putting y = 0 in (3.3) and dividing by 2|a|3, we have∥∥∥∥f(ax)

a3
− f(x)

∥∥∥∥ ≤ 1

2|a|3
φ(x, 0) (3.6)

for all x ∈ X. Replacing x by ax in (3.6) and dividing by |a|3 and summing the resulting

inequality with (3.6), we get∥∥∥∥f(a2x)

a6
− f(x)

∥∥∥∥ ≤ 1

2|a|3
[
φ(x, 0) +

φ(ax, 0)

|a|3
]

(3.7)
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8 K. JUN, H. KIM AND I. CHANG

for all x ∈ X. Using the induction on a positive integer n, we figure out∥∥∥∥f(anx)

a3n
− f(x)

∥∥∥∥ ≤ 1

2|a|3
n−1∑
i=0

φ(aix, 0)

|a|3i
(3.8)

≤ 1

2|a|3
∞∑
i=0

φ(aix, 0)

|a|3i

for all x ∈ X.

In order to prove the convergence of the sequence {f(anx)
a3n }, we divide inequality (3.8)

by |a|3m and also replace x by amx to find that for n, m > 0,∥∥∥∥f(an+mx)

a3n+3m
− f(amx)

a3m

∥∥∥∥ =
1

|a|3m

∥∥∥∥f(an+mx)

a3n
− f(amx)

∥∥∥∥ (3.9)

≤ 1

2|a|3
∞∑
i=0

φ(aiamx, 0)

|a|3m+3i
.

Since the right hand side of the inequality tends to 0 as m tends to infinity, the sequence

{f(anx)
a3n } is a Cauchy sequence in Y . Therefore, we may define a mapping T : X → Y by

T (x) = lim
n→∞

f(anx)

a3n

for all x ∈ X. By letting n →∞ in (3.8), we arrive at the formula (3.4).

To show that T satisfies the equation (1.7), replace x and y by anx and any in (3.3)

respectively, and then divide by |a|3n. Then it follows that

|a|−3n‖f(an(ax + by)) + f(an(ax− by))− ab2f(an(x + y))

− ab2f(an(x− y))− 2a(a2 − b2)f(anx))‖ ≤ |a|−3nφ(anx, any).

Taking the limit as n →∞, we find that T satisfies (1.7) for all x, y ∈ X.

To prove the uniqueness of the cubic mapping T subject to (3.4), let us assume that

there exists a cubic mapping S : X → Y which satisfies (1.7) and the inequality (3.4).

Obviously, we have S(anx) = a3nS(x) and T (anx) = a3nT (x) for all x ∈ X and n ∈ N.

Hence it follows from (3.4) that

‖S(x)− T (x)‖ = |a|−3n‖S(anx)− T (anx)‖

≤ |a|−3n(‖S(anx)− f(anx)‖+ ‖f(anx)− T (anx)‖)

≤ 1

|a|3
∞∑
i=0

φ(aianx, 0)

|a|3n+3i

for all x ∈ X. By letting n → ∞ in the preceding inequality, we immediately find the

uniqueness of T.

The proof of assertion indicated by parentheses in the theorem is similarly proved by

the following inequality originated from (3.6),∥∥∥∥f(x)− a3nf(
x

an
)
∥∥∥∥ ≤ 1

2|a|3
n∑

i=1

|a|3iφ(
x

ai
, 0).

28



HYERS-ULAM STABILITY 9

In this case, f(0) = 0 since
∑∞

i=1 |a|3iφ(0, 0) < ∞ and so φ(0, 0) = 0 by assumption.

The proof of the last assertion in the theorem follows by the same reasoning as the

proof of [4]. This completes the proof of the theorem. �

From the main Theorem 3.1, we obtain the following corollary concerning the Hyers-

Ulam-Rassias stability of the equation (1.7). We note that p need not be equal to q.

Corollary 3.2. Let X and Y be a normed space and a Banach space, respectively, and

let ε, p, q be real numbers such that ε ≥ 0, q > 0 and either p, q < 3 or p, q > 3. Suppose

that a mapping f : X → Y satisfies

‖Da,bf(x, y)‖ ≤ ε(‖x‖p + ‖y‖q) (3.10)

for all x, y ∈ X. Then there exists a unique cubic mapping T : X → Y which satisfies the

equation (1.7) and the inequality

‖f(x)− T (x)‖ ≤ ε‖x‖p

2||a|3 − |a|p|

for all x ∈ X and for all x ∈ X \ {0} if p < 0. The mapping T is given by

T (x) = lim
n→∞

f(anx)

a3n
if p, q < 3

(
T (x) = lim

n→∞
a3nf(

x

an
) if p, q > 3

)
for all x ∈ X. If moreover either f is measurable or for each fixed x ∈ X the mapping

t 7→ f(tx) from R to Y is continuous, then T (rx) = r3T (x) for all r ∈ R.

It is significant for us to decrease the possible estimator of the stability problem for

the functional equations. This work is possible if we consider the stability problem in

the sense of Hyers and Ulam for the functional equation (1.7) with an appropriate large

integer a.

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.3. Let X and Y be a normed space and a Banach space, respectively, and

let ε ≥ 0 be a real number. Suppose that a mapping f : X → Y satisfies

‖Da,bf(x, y)‖ ≤ ε (3.11)

for all x, y ∈ X. Then there exists a unique cubic mapping T : X → Y defined by

T (x) = limn→∞
f(anx)

a3n which satisfies the equation (1.7) and the inequality

‖f(x)− T (x)‖ ≤ ε

2(|a|3 − 1)
(3.12)

for all x ∈ X. Furthermore, if either f is measurable or for each fixed x ∈ X the mapping

t 7→ f(tx) from R to Y is continuous, then T (rx) = r3T (x) for all r ∈ R.
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In the last part of this section, let B be a unital Banach algebra with norm | · |, and let

BB1 and BB2 be left Banach B-modules with norms || · || and ‖ · ‖, respectively. A cubic

mapping Q : BB1 → BB2 is called B- cubic if

Q(ax) = a3Q(x), ∀a ∈ B, ∀x ∈ BB1.

For a given mapping f : BB1 → BB2 and a given u ∈ B, we set

Da,b,uf(x, y) := f(uax + uby) + f(uax− uby)

−u3ab2f(x + y)− u3ab2f(x− y)− 2u3a(a2 − b2)f(x)

for all x, y ∈ BB1. We are going to prove the generalized Hyers-Ulam stability problem

of the functional equation (1.7) in Banach modules over a unital Banach algebra. As an

application of the above Theorem 3.1, we have the following.

Theorem 3.4. Suppose that a mapping f : BB1 → BB2 satisfies

‖Da,b,uf(x, y)‖ ≤ φ(x, y) (3.13)

for all u ∈ B (|u| = 1) and for all x, y ∈ BB1 and the mapping φ : BB1 × BB1 → R+

satisfies the assumptions of Theorem 3.1.

If either f is measurable or f(tx) is continuous in t ∈ R for each fixed x ∈ BB1, then

there exists a unique B-cubic mapping Q : BB1 → BB2, defined by

Q(x) = lim
i→∞

f(aix)

a3i

(
Q(x) = lim

i→∞
a3if(

x

ai
)
)
, (3.14)

which satisfies the equation (1.7) and the inequality

‖f(x)−Q(x)‖ ≤ 1

2|a|3
∞∑
i=0

φ(aix, 0)

|a|3i
(3.15)

(
‖f(x)−Q(x)‖ ≤ 1

2|a|3
∞∑
i=1

|a|3iφ(
x

ai
, 0)

)
for all x ∈ BB1.

Proof. By Theorem 3.1, it follows from the inequality of the statement for u = 1 that

there exists a unique cubic mapping Q : BB1 → BB2 defined by (3.14) which satisfies the

equation (1.7) and inequality (3.15).

Under the assumption that either f is measurable or f(tx) is continuous in t ∈ R for

each fixed x ∈ BB1, the cubic mapping Q : BB1 → BB2 satisfies

Q(tx) = t3Q(x), ∀x ∈ BB1,∀t ∈ R.

That is, Q is R-cubic.

Replacing x, y by ai−1x, 0 in (3.13) respectively, we obtain that for each u ∈ B (|u| = 1)

2‖f(uaix)− u3a3f(ai−1x)‖ ≤ φ(ai−1x, 0) (3.16)
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for all x ∈ BB1. Using the fact that there exists a positive constant K such that ‖uz‖ ≤
K|u|‖z‖ for all u ∈ B and each z ∈ BB2 [2], one can show from (3.16) that

‖u3f(aix)− u3a3f(ai−1x)‖ ≤ K|u|3‖f(aix)− a3f(ai−1x)‖

≤ K
φ(ai−1x, 0)

2

for all u ∈ B(|u| = 1) and all x ∈ BB1. Thus we get

‖f(uaix)− u3f(aix)‖

≤
∥∥∥∥f(uaix)− u3a3f(ai−1x)

∥∥∥∥ +
∥∥∥∥u3a3f(ai−1x)− u3f(aix)

∥∥∥∥
≤ φ(ai−1x, 0)

2
+ K

φ(ai−1x, 0)

2

for all u ∈ B(|u| = 1) and all x ∈ BB1. Dividing the above by |a|3i and then taking the

limit, we have

‖Q(ux)− u3Q(x)‖ = lim
i→∞

∥∥∥∥f(uaix)− u3f(aix)

a3i

∥∥∥∥
≤ lim

i→∞

φ(ai−1x, 0) + Kφ(ai−1x, 0)

2|a|3i

= 0.

Hence Q satisfies the equation Q(ux) = u3Q(x) for all u ∈ B(|u| = 1) and all x ∈ BB1.

The last equality is also true for u = 0. Since Q is R-cubic and Q(ux) = u3Q(x) for each

element u ∈ B(|u| = 1), we figure out

Q(ax) = Q(|a| · a

|a|
x) = |a|3 ·Q(

a

|a|
x) = |a|3 · a3

|a|3
·Q(x)

= a3Q(x)

for all a ∈ B(a 6= 0) and all x ∈ BB1. So the unique R-cubic mapping Q : BB1 → BB2 is

also B-cubic, as desired.

The proof of assertion indicated by parentheses in the theorem is similarly proved. This

completes the proof of the theorem. �

Corollary 3.5. Let E1 and E2 be Banach spaces over the complex field C, and let ε ≥ 0 be

a real number. Suppose that a mapping f : E1 → E2 satisfies (3.13) for all u ∈ C (|u| = 1)

and for all x, y ∈ E1. If either f is measurable or f(tx) is continuous in t ∈ R for each

fixed x ∈ E1, then there exists a unique C-cubic mapping Q : E1 → E2 which satisfies the

equation (1.7) and the inequality (3.15).

Proof. Since C is a Banach algebra, the Banach spaces E1 and E2 are considered as Banach

modules over C. By Theorem 3.4, there exists a unique C-cubic mapping Q : E1 → E2

satisfying the inequality (3.15). This completes the proof. �
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Remark. We ask about the solution and the stability of the following Euler-Lagrange

type cubic functional equation

f(ax + by) + f(bx + ay)

= (a + b)(a− b)2[f(x) + f(y)] + ab(a + b)f(x + y)

for suitable integers a, b with a 6= 0, b 6= 0, a± b 6= 0.
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Abstract

We define a q-analog of Cesàro summability and we then construct
a class of q-Hausdorff matrices. We define a type of q-difference for se-
quences and a q-analog of Bernstein polynomials. Using these concepts
we define a q-moment problem and relate this moment problem to q-
Hausdorff summability.

Keywords: matrix summability, Cesàro summability, Hausdorff matri-
ces, Hausdorff moment problem, Bernstein polynomials, q- binomial the-
orem.
Math Subject Classification: 40G05,40C05,33D99,33D05.

1 Introduction

If (zn) is a sequence of complex numbers then the Cesàro mean (σn) is defined
by

σn =
z0 + z1 + ... + zn

n + 1
, n = 0, 1, 2, ... (1)

If limn→∞ σn = σ then the sequence (zn) is said to be Cesàro summable to the
limit σ. It is also said that (zn) is summable by the Cesàro means of first order,
or is summable (C, 1). This is because the Cesàro mean as defined in (1) belongs
to a family of summability methods (C,α) where α > 0. We will speak of these
more general Cesàro means subsequently. The first order means (1) have played
an important role in analysis. Arguably the most famous application of (C, 1)
summability is the classic result of L. Fejér in which he proved that the Cesàro
means of the Fourier series of a continuous function converge uniformly. This
beautiful theorem may be found in most books on Fourier series. The subject of
summability methods was a major research topic in the first half of the twentieth
century, an excellent reference to this work is provided by G.H. Hardy’s classic
book Divergent Series [6].

The last thirty years has seen a remarkable production of research involving
q-series and q-differences (cf. [5]). This q-analysis has deep roots going back
to Euler. The development of the theory of Askey-Wilson polynomials was a
primary catalyst in the current interest in the subject. One of the thrusts in
this research has been aimed at finding suitable q -analogs of functions and
processes belonging to classical function theory. For example in [1] and [3]
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first steps were taken in the development of a Fourier theory involving certain
q-analogs of trigonometric functions. A complete development of a q-Fourier
theory must include a suitable summability theory. In this paper we will take a
preliminary step by introducing a q-analog of Cesàro summability and linking
it to a q-version of Hausdorff summability.

For the sake of completeness we will make some definitions and fix some
notation used in the q-calculus. The standard reference on such things is the
book by G. Gasper and M. Rahman [5]. We will always assume that 0 < q < 1.
First, we define the q-coefficient (a; q)n = (1 − a)(1 − aq) . . . (1 − aqn−1). The
infinite version of this product is defined by (a; q)∞ = limn→∞(a; q)n . The
q-binomial coefficient is defined by

[
p
s

]
= (q;q)p

(q;q)s(q;q)p−s
. We will use the notation

[x− a]nq = (x− a)(x− aq)...(x− aqn−1) and throughout the paper we will make
frequent use of the finite q-binomial theorem (cf.[5]) which states that

[x− a]nq =
n∑

j=0

(−1)jq
j(j−1)

2

[
n

j

]
ajxn−j . (2)

Lastly, we record the definition of the Jackson q-integral which plays an impor-
tant role in the q-calculus. If f is a suitably defined function then∫ a

0

f(t)dqt = (1− q)a
∞∑

k=0

f(aqk)qk. (3)

We note that the q-integral (3) is a Riemann-Stieltjes integral with respect to
a step function having infinitely many points of increase at the points aqk,
k = 0, 1, . . .. The jump at aqk is a(1− q)qk.

2 q-Cesàro Summability

Let A = (ank), n, k = 0, 1, 2, . . . be an infinite matrix of real numbers. We will
define the A-transform of a given sequence z = (zn) to be the sequence t = (tn)
defined by

tn =
∞∑

k=0

ankzk, n = 0, 1, . . . (4)

Naturally we presume that the infinite series in (4) converge. The relation
(4) can be written in matrix form as t = Az. The matrix A is said to be a
regular summability method if the convergence of the sequence (zn) implies the
convergence of the transform sequence (tn) to the same limit. That is, zn → a
implies that tn → a. The matrix corresponding to the first order Cesàro means
(1) is

ank =
{

1
n+1 if k ≤ n

0 if k > n
(5)

The Silverman-Toeplitz theorem ([6],[8],[9]) provides necessary and sufficient
conditions that the matrix A in (4) be regular.

Theorem 1 (Silverman-Toeplitz): The matrix A is a regular summability method
if and only if

(1) limn→∞ank = 0, k = 0, 1, . . . ,
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(2) limn→∞
∑∞

k=0 ank = 1,
(3)

∑∞
k=0 |ank| < M, n = 0, 1, . . ..

It is obvious that the Cesàro matrix in (5) satisfies the three conditions of
Theorem 1. There are many ways to define a q-analog of (C, 1) summability.
We will give our suggested analog and then explain why it seems suitable. Define
C1(q) = (ank(q)) where

ank(q) =
{ 1−q

1−qn+1 qn−k if k ≤ n

0 if k > n
(6)

We will then say that (zn) is q-Cesàro summable to the limit a if

lim
n→∞

n∑
k=0

ank(q)zk = a. (7)

The first reason that this definition is appropriate is that limq→1 ank(q) =
1

n+1 . Thus the q-Cesàro matrix C1(q) converges to the Cesàro matrix for (C,1)
summability as q → 1. Another reason the definition seems appropriate involves
the relation between the binomial theorem and the q-binomial theorem. We will
explain this now. The Cesàro means of order α satisfy a power series identity
that may be taken as their defining relation. Given an infinite series

∑∞
k=0 uk,

we define the (C,α) mean of the series to be the sequence (U (α)
n ) in the power

series identity

(1− z)−α−1
∞∑

n=0

unzn =
∞∑

n=0

b(α+1)
n U (α)

n zn, (8)

where the numbers b
(α+1)
n are the binomial power series coefficients:

(1− z)−α−1 =
∞∑

n=0

b(α+1)
n zn. (9)

If we denote the partial sums of
∑∞

k=0 uk by sn then the identity (8) is equivalent
to

(1− z)−α
∞∑

n=0

snzn =
∞∑

n=0

b(α+1)
n U (α)

n zn. (10)

If we set α = 1 in (10) we obtain the (C, 1) mean defined in (1). It seems
reasonable to write a q-analog of (9) by using the q-binomial series (cf.[5]).

(qα+1z; q)∞
(z; q)∞

=
∞∑

n=0

(qα+1; q)n

(q; q)n
zn. (11)

If q → 1 in (11) then (9) is obtained. We would then define the q-Cesàro mean
of order α of a sequence (un) to be the sequence (U (α)

n (q)) given by

(qα+1z; q)∞
(z; q)∞

∞∑
n=0

unzn =
∞∑

n=0

(qα+1; q)n

(q; q)n
U (α)

n (q)zn. (12)

When α = 1 in (12) we get the first order q-Cesàro mean as defined in (1) and
as defined by the matrix C1(q). We will denote the summability matrix that
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corresponds to α > 0 in (12) by Cα(q). Simple calculations establish that the
q−Cesàro matrix Cα(q) of order α satisfies the conditions of Theorem 1. We
thus have

Theorem 2 The q-Cesàro matrix Cα(q) is a regular summability method if
α > 0.

If A and B are summability matrices we say that A is stronger than B if every
sequence that is summed by B is also summed by A (to the same limit). If
conversely every A summable sequence is also B summable then we say that A
and B are equivalent. It is natural to ask how the strength of the first order
q-Cesàro means varies with q. The answer is provided in the next theorem.

Theorem 3 C1(q1) and C1(q2) are equivalent for 0 < q1, q2 < 1

Proof. Set α = 1 in equation (12) to get

1
(1− z)(1− qz)

∞∑
n=0

unzn =
∞∑

n=0

1− qn+1

1− q
U (1)

n (q)zn. (13)

If we set q = q1 and q = q2 in (13) we easily find that

1− q2z

1− q1z

∞∑
n=0

1− qn+1
2

1− q2
U (1)

n (q2)zn =
∞∑

n=0

1− qn+1
1

1− q1
U (1)

n (q1)zn. (14)

Expanding 1−q2z
1−q1z in a power series, multiplying the series on the left of (14),

and equating power series coefficients yields

U (1)
n (q1) =

n∑
j=0

anjU
(1)
j (q2), (15)

where the terms anj have the form

anj =

 (q1 − q2)
1−qj+1

2

1−qn+1
1

1−q1
1−q2

qn−j−1
1 if j = 0, 1, ..., n− 1

1−qn+1
2

1−qn+1
1

1−q1
1−q2

if j = n
(16)

Equation (16) expresses the sequence (U (1)
n (q1)) as a matrix transform of the

sequence (U (1)
n (q2)). A routine calculation shows that the matrix (ank) satisfies

the conditions of Theorem 2. Thus every sequence summable C1(q2) is also
summable C1(q1). To complete the proof, we only need to switch q1 and q2 in
the calculations above.
This theorem does not address the comparison of C1(q) with the usual Cesàro
mean (C, 1). The next theorem deals with this.

Theorem 4 Any sequence that is summable C1(q) is also summable (C, 1). The
converse statement does not hold.

Proof. The proof follows the same lines as the proof of Theorem 3. Let (σn)
denote the (C, 1) mean of a given sequence and let (Un(q)) denote the C1(q)
mean of the same sequence. Then we have σn =

∑n
j=0 αnjUj(q) , where

αnj =

{
1−qj+1

n+1 if j = 0, 1, ..., n− 1
1−qn+1

(n+1)(1−q) if j = n
(17)
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The matrix (αnj) satisfies the conditions of Theorem 1, hence if (Un(q)) con-
verges then so does (σn). To prove the second part of the theorem we write
Un(q) =

∑n
j=0 βnjσj , where

βnj =

{
1−q

1−qn+1 (j + 1)(1− q−1)qn if j = 0, 1, ..., n− 1
1−q

1−qn+1 (n + 1) if j = n
. (18)

A calculation shows that limn→∞
∑n

j=0 βnj 6= 0.
Consider, for example, the sequence (un) defined by un = 1

2 +cos(x)+cos(2x)+
... + cos(nx). It is well known that (un) is (C, 1) summable to 0 provided
x 6= 2kπ. However, it is not C1(q) summable.
Remark: The q-Cesàro matrix C1(q) appears in the Pólya-Szegő problem book [7],
and in [4]. However neither of these references have placed C1(q) in the context
of Hausdorff summability as will be done here.

3 Hausdorff Summability

The Cesàro means (C,α) belong to an important class of summability methods
called Hausdorff Methods. We will give a very brief outline of the subject here.
We will follow the development in [8], other presentations may be found in [6]
and [9]. Let C denote the matrix that corresponds to (C, 1) summability. We
seek a matrix H with the property that HC = DH where D is diagonal. Solving
the matrix equation we find that H = (hpq) with

hpq = (−1)p−q

(
p

q

)
hpp. (19)

The numbers hpp are arbitrary as long as they are non-zero. We choose hpp =
(−1)p and then the matrix H has elements given by

hpq = (−1)q

(
p

q

)
. (20)

The matrix H is self-inverse, that is, H−1 = H. The diagonal matrix D has
diagonal elements dp = 1

p+1 . With these matrices we have C = H−1DH. Now
we define a Hausdorff matrix to be of the form A = H−1DH where H is the
matrix with elements as in (20) and D is any diagonal matrix. Thus Hausdorff
matrices can be viewed as generalizations of (C, 1) summability. We need three
fundamental theorems pertaining to Hausdorff matrices.

Theorem 5 A triangular matrix A commutes with C (the (C, 1) matrix) if and
only if A is a Hausdorff matrix.

Theorem 6 A Hausdorff matrix H−1DH is regular if and only if D = (dpδpq)
with

dp =
∫ 1

0

tpdφ(t), p = 0, 1, . . . (21)

where the function φ(t) is of bounded variation on [0, 1], φ(1) − φ(0) = 1, and
φ(0+) = φ(0).
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A sequence that has the integral form above is called a Hausdorff moment
sequence. It is important to record a formula for the elements of a Hausdorff
matrix. Given a sequence (dp) we define the kth forward difference by

∆kdn =
k∑

m=0

(−1)m

(
k

m

)
dn+m. (22)

We define the kth backward difference by

∇kdn =
k∑

m=0

(−1)m

(
k

m

)
dn+k−m. (23)

The backward and forward differences clearly satisfy the identity ∆kdn = (−1)k∇kdn.
Now if Λ = (λkm) is a Hausdorff matrix Λ = H−1DH with D = (dpδpq) then

λkm =
(

k

m

)
∆k−mdm. (24)

Theorem 7 The sequence (dp) has the form

dp =
∫ 1

0

tpdφ(t), p = 0, 1, . . . (25)

if and only if
(−1)k∆kdn ≥ 0, n, k = 0, 1, . . . (26)

4 q-Hausdorff Summability

In this section we will parallel the connections between (C, 1) and Hausdorff
means for the case of q-Cesàro and a q-analog of Hausdorff matrices. We begin
by finding a matrix Hq that plays the role of the self-inverse matrix H given by
(19).

Theorem 8 If D is a diagonal matrix then the matrix equation HqC1(q) = DHq

has solution Hq = (hps) with

hps = (−1)p−s

[
p

s

]
hppq

(s2−s−p2+p)/2, s = 0, 1, . . . p (27)

The diagonal matrix D is given by D = (dpδps) with

dp =
1− q

1− qp+1
. (28)

Proof. The proof is a standard matrix calculation.
The terms hpp in (27) are arbitrary as long as they are non-zero. Accordingly,
taking hpp = (−1)p , the matrix Hq is found to be given by

hps = (−1)s

[
p

s

]
q(s2−s−p2+p)/2, s = 0, 1, . . . , p. (29)
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The matrix Hq is not self-inverse as is the case with the matrix H that was
defined in (20). It is easy however to compute the inverse and we find H−1

q =
(h∗ps) where

h∗ps = hpsq
(p−s)(p−s−1)/2. (30)

It should be noted that the sequence defined in (28) is a Hausdorff moment
sequence and hence the q-Cesàro matrix is a Hausdorff matrix. This is seen by
writing

dp = (1− q)
∞∑

k=0

qkpqk =
∫ 1

0

tpdqt, (31)

and recalling that the q-integral is a Riemann-Stieltjes integral. The more gen-
eral q-Cesàro matrix of order α defined by (2.8) also involves a moment se-
quence. To see this we denote the matrix by Cα(q) = (an,k) and note that
an,n = (q;q)n

(qα+1;q)n
. Now we appeal to Lemma 2.1 in [3] which states:

Lemma 1 If 0<b<a<1 then

(a; q)k

(b; q)k
=

∫ 1

0

tkdΨ(t) (32)

where Ψ(t) is a monotone increasing step function.

We can thus conclude that if α > 0 then the general q-Cesàro matrix is a
Hausdorff matrix. We now define a q-Hausdorff matrix to be a lower triangular
matrix of the form H−1

q DHq where D is a diagonal matrix. Thus as q → 1 a
q-Hausdorff matrix H−1

q DHq approaches a Hausdorff matrix HDH.
Next, the form of the matrix elements in a q-Hausdorff matrix will be deter-
mined.

Definition 1 For a given sequence (dp) we define the kth forward q-difference
of (dp) by

∆(k)
q dp =

k∑
j=0

(−1)j

[
k

j

]
q

(k−j)(k−j−1)
2 dj+p, k = 0, 1, . . . (33)

We define the kth backward q-difference by

∇(k)
q dp =

k∑
j=0

(−1)j

[
k

j

]
q

j(j−1)
2 dk+p−j . (34)

Note that as q → 1 the forward q-difference approaches the standard forward dif-
ference defined in (22) and the backward q-difference approaches the backward
difference in (23). Also, we have the identity ∆(k)

q ds = (−1)k∇(k)
q ds. A matrix

calculation shows that we have:

H−1
q DHq = (λps), λps = (−1)shps∆

(p−s)
q dp = (−1)phps∇(p−s)

q dp,
s = 0, 1, ..., p; p = 0, 1, . . .

(35)

The forward difference defined by (22) satisfies the identity

∆ndp = ∆n−1dp −∆n−1dp+1 (36)

The forward q-difference defined by (33) satisfies a similar identity as we prove
next.
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Theorem 9 The forward q-difference defined in (33) satisfies the identity

∆(n)
q ds = qn−1∆(n−1)

q ds −∆(n−1)
q ds+1. (37)

Proof. Use the identity
[
n
j

]
=

[
n−1
j−1

]
+ qj

[
n−1

j

]
to write

∆(n)
q ds =

n−1∑
j=0

(−1)jqj

[
n− 1

j

]
q

(n−j)(n−j−1)
2 dj+s −

−
n−1∑
j=0

(−1)j

[
n− 1

j

]
q

(n−j−1)(n−j−2)
2 dj+s+1.

A simple rearrangement of the sums gives (37).
The identity (37) written in terms of the backward difference becomes

∇(n)
q dp = ∇(n−1)

q dp − qn−1∇(n−1)
q dp+1. (38)

5 A Class of q-Hausdorff Matrices

The q-Cesàro matrix C1(q) = H−1
q DHq is generated by the moment sequence

dp =
∫ 1

0
tpdqt. In this section, a class of q-Hausdorff matrices that generalize

C1(q) will be introduced. Given a sequence of positive numbers ak with a0 = 1,
ak+1 < ak, k = 0, 1, . . . , and ak → 0. Define a function Ψq(t) by Ψq(t) =
ak − ak+1, q

k ≤ t < qk−1, k = 1, 2, . . . ,Ψq(0) = 0,Ψq(t) = 1, t ≥ 1. For
each such sequence and each such resulting weight function Ψ(t) we have a
q-Hausdorff matrix where the diagonal matrix D has entries given by

dp =
∫ 1

0

tpdΨq(t). (39)

In particular when ak = qk then dΨq(t) = dqt and the q-Hausdorff matrix is
C1(q).

Theorem 10 The matrices H−1
q DHq where the elements of D are given by (39)

are regular.

Proof. We must show that if dp is given by (39) then the matrix elements λps

given by (34) satisfy the three conditions of Theorem 2. We will consider the
three conditions in order.

(i) To prove that λps → 0 as p → ∞ for each s = 0, 1, . . . we must first
compute the difference ∇(p−s)

q ds. We have

∇(p−s)
q ds =

∑p−s
j=0(−1)j

[
p−s

j

]
q j(j−1)

2 dp−j

=
∫ 1

0

∑p−s
j=0(−1)j

[
p−s

j

]
q j(j−1)

2 tp−jdΨq(t) =
∫ 1

0
ts[t− 1]p−s

q dΨq(t).
(40)

Note that [t − 1]p−s
q = (t − 1)(t − q) . . . (t − qp−s−1) = 0 when t = qm,

m = 0, 1, . . . p− s− 1. Thus

∇(p−s)
q ds =

∫ qp−s

0

ts[t− 1]p−s
q dΨq(t). (41)
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After some calculations, it is found that∣∣∣∇(p−s)
q ds

∣∣∣ ≤ q
(p−s)(p−s−1)

2 (q; q)p−sq
(p−s)sqp−s

[
Ψq(qp−s)−Ψq(0)

]
. (42)

Thus we have |λps| ≤ (q;q)p

(q;q)s
qp−s. This proves that λps → 0 as p → ∞ for fixed

s.
(ii) Here, it will be proven that limp→∞

∑p
s=0 λps = 1. From (34) and from

(39) we get

p∑
s=0

λps = (−1)pq−
p(p−1)

2

∫ 1

0

p∑
s=0

(−1)s

[
p

s

]
q

s(s−1)
2 ts[t− 1]p−s

q dΨq(t). (43)

In the right side of (43) use the expansion
[t − 1]p−s

q =
∑p−s

j=0(−1)j
[
p−s

j

]
q

j(j−1)
2 tp−s−j , and use the identity

[
p
s

][
p−s

j

]
=[

p−j
s

][
p
j

]
, and interchange the sums to get∫ 1

0

∑p
s=0(−1)s

[
p
s

]
q

s(s−1)
2 ts[t− 1]p−s

q dΨq(t) =∫ 1

0

∑p
j=0

[
p
j

]
(−1)jq

j(j−1)
2

∑p−j
s=0(−1)s

[
p−j

s

]
q

s(s−1)
2 tp−jdΨq(t).

(44)

Note that
∑p−j

s=0(−1)s
[
p−j

s

]
q

s(s−1)
2 tp−j = δpj , and thus the right side of (44)

reduces to (−1)pq
p(p−1)

2
∫ 1

0
dΨq(t). Thus we have

p∑
s=0

λps =
∫ 1

0

dΨq(t) = 1. (45)

(iii) Here we must prove that
∑p

s=0 |λps| is uniformly bounded. But it is
easy to use an argument like that in (i) to see that λps ≥ 0, the bound then
follows from (ii).
As a further example of such a q-Hausdorff matrix we discuss a q-analog of Euler
summability (cf.[6]). Here we will take the q-Hausdorff matrix to have elements

λps =

[
p
s

]
q(p−s)(p−s−1)/2ap−sxs

[x + a]pq
, 0 < a < x. (46)

A calculation shows that the associated diagonal matrix has elements given by

dp =
1

(−a
x ; q)p

. (47)

Write α = a
x , we have 0 < α < 1. We can then write

dp =
(−αqp; q)∞
(−α; q)∞

=
1

(−α; q)∞

∞∑
n=0

q(
n
2)αnqnp

(q; q)n
. (48)

The right side of (48) is a Riemann-Stieltjes integral of the form (39) in which
the weight function Ψ(t) has jumps at the points qn and the jump j(qn) at qn

has value

j(qn) =
q(

n
2)αn

(q; q)n(−α; q)∞
. (49)
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We note that when q → 1 the matrix elements in (46) approach the matrix
elements for Euler summability.

The examples of q-Hausdorff summability shown here all have weight func-
tions that are purely discrete and have jumps at the points qj , the resulting
Riemann-Stieltjes integrals thus are all very similar to the Jackson q-integral.
In the next section it will be shown that this is not accidental.

6 Relation to the Hausdorff Moment Problem

It is known that a Hausdorff matrix HDH is regular if and only if the sequence
that forms the main diagonal in D is a Hausdorff moment sequence ([6], [8],
[9]). We will now form a similar connection for a q-Hausdorff matrix. We will
say that a sequence (dp) is totally q-monotone if ∆(n)

q dp ≥ 0, n, p = 0, 1, . . .. We
define a class of weight functions z as follows.

Definition 2 α(t) belongs to the class z if α(t) is bounded and monotone in-
creasing with jumps at the points qj, j = 0, 1, . . ., α(0) = 0, and if α(t) has no
other point of increase.

Theorem 11 (dp) is totally q-monotone if and only if dp =
∫ 1

0
tpdΨ(t), where

Ψ(t) ∈ z.

Proof. First, suppose that dp is of the form stated with Ψ(t) ∈ z. We compute
the q-difference and find that if aj > 0 is the jump at qj then

∆(k)
q ds =

∫ 1

0

(1− t)(q − t)(q2 − t) . . . (qk−1 − t)tsdΨ(t)

=
∞∑

j=k

(1− qj)(q − qj) . . . (qk−1 − qj)ajq
js > 0

In the other direction the proof follows the lines of the presentation given by
Wall [8], the original idea of the proof is due to Schoenberg . We begin with the
observation that if ∆(n)

q ds ≥ 0, n, s = 0, 1, . . . then for any integer p we have

dn ≥ 0, n = 0, 1, ..., p

∆(1)
q dn ≥ 0, n = 0, 1, ..., p− 1
· · ·

∆(p−1)
q dn ≥ 0, n = 0, 1
∆(p)

q dn ≥ 0, n = 0

(50)

From (37) it follows that the above equations are equivalent to the inequalities

∆(p)
q d0 ≥ 0

∆(p−1)
q d1 ≥ 0

· · ·
∆(1)

q dp−1 ≥ 0
∆(0)

q dn ≥ 0

(51)
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If we define rp,n = ∆(p−n)
q dn the system (51) can be written using (33) as

rp,n =
p∑

m=0

(−1)m−n

[
p− n

m− n

]
dmq

(p−m)(p−m−1)
2 , n = 0, 1, . . . , p. (52)

Note that the terms in the sum in (52) vanish if m ≤ n − 1. The system of
equations (52) can be solved for dm, the result is

dm =
p∑

k=0

[
p−m

p− k

]
qm(p−k)rp,kq

k(k−1)−p(p−1)
2 . (53)

Again, the terms in the above sum vanish if k ≤ m−1. Define Lp,k =
[
p
k

]
rp,kq

k(k−1)−p(p−1)
2 ,

and use this definition in (53) to get

dm =
p∑

k=0

[
p−m
p−k

][
p
k

] qm(p−k)Lp,k. (54)

Note that [
p−m
p−k

][
p
k

] =
(qk−m+1; q)m

(qp−m+1; q)m
(55)

which yields
dm =

∑p
k=0

(qk−m+1;q)m

(qp−m+1;q)m
qm(p−k)Lp,k

=
∑p

k=0

[qp−k−qp−m+1]m
q

(qp−m+1;q)m
Lp,k

(56)

Now make a change of index j = p − k in (56) and write Bp,j = Lp,p−j to
finally obtain

dm =
1

(qp−m+1; q)m

p∑
j=0

[
qj − qp−m+1

]m

q
Bp,j . (57)

The sum on the right side of (57) represents the evaluation of a Riemann-Stieltjes
integral with jumps at the points qj , j = 0, 1, . . . , p, the jump at each such point
is Bp,j . If we define the step function Λp(t) by

Λp(t) =


0, t < qp

Bp,p, qp ≤ t < qp−1

Bp,p + Bp,p−1, qp−1 ≤ t < qp−2

· · ·
Bp,0 + Bp,1 + . . . + Bp,p−1 + Bp,p, 1 ≤ t

(58)

then we may write equation (57) in the form

dm =
1

(qp−m+1; q)m

∫ 1

0

[t− qp−m+1]mq dΛp(t). (59)

Note that the function Λp(t) is bounded because it is monotone increasing and
Λp(1) = d0 from (53). Now observe that

1
(qp−m+1; q)m

= 1 + qpO(1) as p →∞. (60)
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Also,

[t− qp−m+1]mq =
m∑

j=0

[
p

j

]
(−1)jq

j(j−1)
2 q(p−m+1)jtm−j = tm + qpO(1), as p →∞.

(61)
Equation (59) can thus be written as

dm =
∫ 1

0

tmdΛp(t) + qpO(1). (62)

We can now apply the Helly-Bray Selection Theorem (cf.[9]) to (62) and allowing
p →∞, the existence of a bounded and non-decreasing function Λ(t) such that

dm =
∫ 1

0

tmdΛ(t) (63)

is established. Further, since each function Λp(t) has jumps at 1, q, q2, . . . qp, and
Λp(0) = 0 it follows that the limit function Λ(t) has jumps at qj , j = 0, 1, 2, . . . ,
and that Λ(0) = 0. Thus Λ(t) ∈ z. This proves the theorem.
We now need some lemmas. The proofs are direct and we only outline one proof.

Lemma 2 xn =
∑n

k=0

[
n
k

]
[x− 1]kq , n = 0, 1, . . .

Definition 3 Let Λps[x] be the polynomial of degree p defined by

Λps[x] = (−1)phpsx
s[x− 1]p−s

q . (64)

Also, for a given sequence (dn) define a linear functional M acting on polyno-
mials by M(xn) = dn.

A calculation shows that M [Λps[x]] = λps. We will make use of the following
identity that has a straightforward induction proof, which is omited.

Lemma 3 If 0 ≤ n ≤ p then

xn =
p∑

s=n

[
s
n

][
p
n

]qn(p−s)Λps[x]. (65)

Next, for a function f defined on the points qk define the q-Bernstein polynomial
associated with f to be

Bp[f [x]] =
p∑

s=0

f(qp−s)Λps[x]. (66)

Lemma 4 If 0 ≤ n ≤ s ≤ p , then
{

[s
n]
[p
n]
− 1

}
qp−s = qpO(1) as p →∞.

Proof. The integer n is considered to be fixed. We have[
s
n

][
p
n

] =
(qs−n+1; q)n

(qp−n+1; q)n
. (67)
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Also, (qs−n+1; q)n =
∑n

j=0(−1)j
[
n
j

]
qj(j−1)/2q(s−n+1)j = 1 + qsO(1) as s → ∞.

Using the q-binomial theorem we have

1
(qp−n+1; q)n

=
(qp+1; q)∞

(qp−n+1; q)∞
=

∞∑
j=0

(qn; q)j

(q; q)j
q(p−n+1)j = 1 + qpO(1). (68)

Using these expressions we get the result.

Lemma 5 If
∑p

s=0 |λps| < K for p = 0, 1, . . . then limp→∞M [Bp[xn]] = dn.

Proof. We have Bp[xn] =
∑p

s=0 qn(p−s)Λps[x] and consequently M [Bp[xn]] =∑p
s=0 qn(p−s)λps. From Lemma 4 recalling that M [xn] = dn and applying M on

both sides of (65) we get

dn =
p∑

s=n

[
s
n

][
p
n

]qn(p−s)λps, (69)

thus we may write

dn −M [Bp[xn]] =
p∑

s=n

{[
s
n

][
p
n

] − 1

}
qn(p−s)λps −

n∑
s=0

qn(p−s)λps. (70)

Note that the right side of the above expression vanishes when n = 0 and the
lemma then holds trivially. We may then suppose that n ≥ 1 for the remain-
der of the proof. The second sum on he right of (70) is of the form qpO(1) as
p →∞.The first sum also has that form by Lemma (4). This proves the result.

Definition 4 α(t) ∈ F ∗ if α(t) has points of increase at qk, k = 0, 1, . . . and
nowhere else, α(0) = 0, and if α(t) is of bounded variation on [0, 1].

Theorem 12 A q-Hausdorff matrix is regular if and only if dm is given by (63)
with Λ(t) ∈ F ∗.

Proof. If dm is given by (63) with Λ(t) ∈ z∗ then a very slight modification
of the proof of Theorem 10 gives the necessary conclusion. So we must prove
that dm is a q-moment sequence with weight function in the class F ∗ if the
q-Hausdorff matrix is regular. Suppose first that

p∑
s=0

|λps| < K, p = 0, 1, . . . (71)

We rewrite (69) in the form

dn =
1

(qp−n+1; q)n

p−n∑
k=0

[qk − qp−n+1]nq λp,p−k (72)

We may write the right side of (72) as a Riemann-Stieltjes integral in the form

dn =
1

(qp−n+1; q)n

∫ 1

0

[t− qp−n+1]nq dΨp(t) (73)

q-Hausdorff Summability... 47



The weight function Ψp(t) is defined by

Ψp(t) =


0 if t < qp

λp0 + λp1 if qp−1 ≤ t < qp−2

· · ·
λp0 + . . . + λp,p−1 if q ≤ t < 1

λp0 + . . . λpp if 1 ≤ t

(74)

The function Ψp(t) thus defined is of uniformly bounded variation because∑p
s=0 |λps| < K, p = 0, 1, . . . We may apply the reasoning that led to equa-

tion (62) and then appeal to the Helly-Bray Theorem [9] to conclude that

dn =
∫ 1

0

tndΨ(t) (75)

where Ψ(t) ∈ F ∗. Now suppose that limp→∞
∑p

s=0 λps = 1. Using (43) we have
that

p∑
s=0

λps =
∫ 1

0

dΛ(t). (76)

We thus have that Λ(1) − Λ(0+) = 1. Lastly suppose that limp→∞ λps = 0.
Then

lim
p→∞

(−1)s

[
p

s

]
q(s2−s−p2+p)/2

∫ qp−s

0

ts[t− 1]p−s
q dΨ(t) = 0. (77)

The above implies that limp→∞
∫ qp−s

0
ts[t− 1]p−s

q dΨ(t) = 0. It is not difficult to
show that this implies Ψ(0+) = Ψ(0) = 0.
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Iterative Algorithms for Multi-Valued Variational In-

clusions in Banach Spaces

K. R. Kazmi 1

In this paper, using fixed point and implicit resolvent equation tech-
niques, we develop some iterative algorithms for a class of variational in-
clusions involving multi-valued mappings in real Banach space. Further
we prove existence of solutions for this class of variational inclusions.
Moreover, we discuss convergence criteria for the iterative sequences
generated by the iterative algorithms. The theorems presented in this
paper, improve, unify and generalize the results of Noor [14-20, and the
references therein].

KEY WORDS: Multi-valued variational inclusion, iterative algorithm,

implicit resolvent equation, strongly η-accretive mapping, m-accretive

mapping, proximal point mapping.

1. INTRODUCTION

Variational inequality theory has emerged as a powerful tool for

a wide class of unrelated problems arising in various branches of

physical, engineering, pure and applied sciences in a unified and

general framework. Variational inequalities have been extended

and generalized in different directions by using novel and innov-

ative techniques and ideas; both for their own sake and for their

applications. An important and useful generalization of various

classes of variational (-like) and quasi-variational (-like) inequali-

1Department of Mathematics, Aligarh Muslim University, Aligarh, 202 002, India.
e-mails:kr Kazmi@sify.com(K.R.Kazmi); iqbal92@postmark.net(M.I.Bhat)andM.I.Bhat1
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ties is variational (-like) and quasi-variational (-like) inclusions.

In recent years, much attention has been given to develop effi-

cient and implementable numerical methods including projection

method and its variant forms, linear approximation, auxiliary prin-

ciple method, descent and Newton’s methods. In 1994, Hassouni

and Moudafi [7] introduced and studied a class of variational inclu-

sions and developed a perturbed iterative algorithm for the varia-

tional inclusions. Since then Adly [1], Haung [8], Kazmi [10], Ding

[2] and Noor [19] obtained some important extensions of the result

[7].

Note that most of results established in this direction by a num-

ber of authors, see for example, Noor [14-20, and the references

therein] are obtained in Hilbert spaces.

Very recently, He [21] has shown that if a multi-valued self mapping

defined on a Banach space is lower semicontinuous and φ-strongly

accretive then the value of this mapping at any point of its domain

is a singleton set.

In view of above result of He [21], the conditions on multivalued

mappings used in establishing the results for the existence of so-

lution and the convergence criteria of the iterative algorithms for

multi-valued variational inclusions, see for example Noor [14-20,

and relevent references cited therein], made them, in reality, for

2

Kazmi50



single-valued variational inclusions inspite of involving multi-valued

mappings. Therefore, methods used previously by many authors,

see for example [19], to study the existence of solution and the

convergence criteria of the iterative algorithms for multi-valued

monotone variational inclusions (inequalities) need improvement.

In this paper, we consider a class of multi-valued variational inclu-

sions in real Banach spaces and show its equivalence with a class of

implicit resolvent equations. Using these equivalences, we propose

and analyze some iterative algorithms for this class of inclusions.

Further we prove the existence of solution and discuss the con-

vergence criteria of the iterative algorithms for the class of multi-

valued variational inclusions. The theorems presented in this paper

generalize, improve and unify the results given in [19]. The meth-

ods developed in this paper can be used to improve and unify the

results in [14-19, and the relevent references cited therein].

2. PRELIMINARIES

Throughout this paper, we assume that E is a real Banach space

equipped with norm ‖ · ‖; E∗ is the topological dual space of E

equipped with norm |‖ · ‖|; CB(E) is the family of all nonempty

closed and bounded subsets of E; 2E is a power set of E; H(·, ·) is

the Hausdorff metric on CB(E) defined by

H(A, B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}, A,B ∈ CB(E),

〈·, ·〉 is the dual pair between E and E∗, J : E −→ 2E∗
is the normalized

3
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duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2, ‖x‖ = |‖f‖|}, x ∈ E,

and j is the selection of normalized duality mapping J.

We observe immediately that if E ≡ H, a Hilbert space, then J is

the identity map on H.

First, we recall and introduce the following definitions.

Definition 2.1. A single-valued mapping G : E → E is said to

be γ-strongly accretive if, ∀u, v ∈ E, ∃ j(u− v) ∈ J(u− v) and γ > 0 such

that

〈Gu−Gv, j(u− v)〉 ≥ γ‖u− v‖2.

Definition 2.2. A multi-valued mapping A : E → 2E is said to

be

(i) accretive if, ∀u, v ∈ E, ∃ j(u− v) ∈ J(u− v) such that

〈x− y, j(u− v)〉 ≥ 0, ∀x ∈ Au, y ∈ Av;

(ii) m-accretive if A is accretive and (I + ρA)(E) = E for any ρ > 0,

where I stands for identity mapping;

(iii) δ-H-Lipschitz continuous if ∃δ > 0 such that

H(Au, Av) ≤ δ‖u− v‖, ∀u, v ∈ E.

Definition 2.3. Let η : E × E → E and A : E → 2E. A mapping

N : E × E → E is said to be

4
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(i) α-strongly η-accretive with respect to A in the first argument if,

∀u, v ∈ E, ∃ jη(u, v) ∈ Jη(u, v) and α > 0 such that

〈N(x, ·)−N(y, ·), jη(u, v)〉 ≥ α‖u− v‖2, ∀x ∈ Au, y ∈ Av;

(ii) β-Lipschitz continuous in the first argument if ∃β > 0 such that

‖N(u, ·)−N(v, ·)‖ ≤ β‖u− v‖, ∀u, v ∈ E.

Remark 2.1. In Definition 2.3, if η(u, v) = u − v, ∀u, v ∈ E, we

recover the usual definitions of accretiveness.

We need the following lemmas in the sequel.

Lemma 2.1 [13]. Let E be a real Banach space and J : E → 2E∗

be the normalized duality mapping. Then for any x, y ∈ E,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y).

Lemma 2.2 [21]. Let E be a real Banach space and S : E → 2E \∅

be a lower semicontinuous and φ-strongly accretive mapping, then

for any u ∈ E, Su is a single point.

Lemma 2.3 [9]. Let E be a real Banach space and A : D(A) ⊆

E → 2E be an m-accretive mapping. Then the mapping JA
ρ : E →

D(A) associated with A defined by JA
ρ (u) = (I + ρA)−1(u), u ∈ E, for

any ρ > 0, is single valued and nonexpansive.

Note that JA
ρ (u) is so called resolvent (or proximal) mapping.

5
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Let N : E × E → E and G : E → E be two single-valued map-

pings; let S, T, A : E → CB(E) be three multi-valued mappings and

M : E × E → 2E be a multi-valued mapping such that for each

u ∈ E, M(·, u) is m-accretive. We consider the following multi-

valued variational inclusion problem (in short, MVIP):

Find u ∈ E, x ∈ Su, y ∈ Tu and z ∈ Au such that Gu ∈ E and

0 ∈ N(x, y) + M(Gu, z). (2.1)

Special Cases of MVIP (2.1)

I. If E ≡ H, a real Hilbert space, and if A is identity mapping

then MVIP (2.1) reduces to the problem studied by Noor [19].

II. If E ≡ H, a real Hilbert space, A is identity mapping, M(·, u) =

∂φ(·, u), where φ : H × H → IR
⋃{+∞} is such that φ(·, u) is a

proper and lower semi-continuous functional for all u ∈ H, and

∂φ(·, u) denotes the subdifferential of φ(·, u), then MVIP (2.1)

reduces to variational inequality problem of finding u ∈ H, x ∈

Su and y ∈ Tu, such that

〈N(x, y), v −Gu〉 ≥ φ(Gu, u)− φ(v, u), ∀v ∈ H,

which is similar to the problem considered by Ding [3].

We remark that for suitable choices of N, M, S, T and G, MVIP(2.1)

reduces to various classes of variational inclusions and variational

inequalities, see for example [1-3,7-10,14-20], studied by many au-

thors in the setting of Hilbert spaces. Our problem MVIP(2.1) is

6
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also set in more general real Banach space.

Let RM(·,z)
ρ = I − JM(·,z)

ρ , where I is the identity mapping on E

and JM(·,z)
ρ = (I + ρM(·, z))−1 is a resolvent mapping for all z ∈ E and

ρ > 0, a constant.

Let N : E×E → E and G : E → E be two single-valued mappings;

S, T, A : E → CB(E) be three multi-valued mappings and M : E×E →

2E be a multi-valued mapping such that for each u ∈ E, M(·, u) is

m-accretive. We consider the following problem of finding w, u ∈

E, x ∈ Su, y ∈ Tu and z ∈ Au such that Gu ∈ E and

N(x, y) + ρ−1RM(·,z)
ρ w = 0. (2.2)

Equation (2.2) is called the implicit resolvent equation, which

includes as special cases, many known resolvent equations and

Wiener-Hopf equations, see for example [14,15,17,19,23] and the

references therein.

3. ITERATIVE ALGORITHMS

The following lemma which will be used in the sequel, is an

immediate consequence of the definition of JM(·,z)
ρ .

Lemma 3.1. (u, x, y, z), where u ∈ E, x ∈ Su, y ∈ Tu and z ∈ Au,

is a solution of MVIP (2.1) if and only if it satisfies the relation

Gu = JM(·,z)
ρ (Gu− ρN(x, y)), (3.1)

7
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where JM(·,z)
ρ = (I + ρM(·, z))−1 and ρ > 0 is a constant.

Using Lemma 3.1 and Nadler’s technique [12], we develop an

iterative algorithm for finding the approximate solution of MVIP

(2.1) as follows.

Iterative Algorithm 3.1. Let N : E × E → E, G : E → E and

S, T, A : E → CB(E) be such that for each u ∈ E, Q(u) ⊆ G(E), where

Q : E → 2E is a multi-valued mapping defined by

Q(u) =
⋃

x∈Su

⋃
y∈Tu

⋃
z∈Au

(
JM(.,z)

ρ (Gu− ρN(x, y))
)
, (3.2)

where M : E×E → 2E is a multi-valued mapping such that for each

u ∈ E, M(·, u) is m-accretive.

For given u0 ∈ E, x0 ∈ Su0, y0 ∈ Tu0, and z0 ∈ Au0, and let

w0 = (1− λ)Gu0 + λJM(.,z0)
ρ (Gu0 − ρN(x0, y0)) ∈ Q(u0) ⊆ G(E).

Hence, there exists u1 ∈ E such that w0 = Gu1. Since x0 ∈ Su0 ∈

CB(E), y0 ∈ Tu0 ∈ CB(E) and z0 ∈ Au0 ∈ CB(E) then by Nadler’s

theorem [12], there exist x1 ∈ Su1, y1 ∈ Tu1 and z1 ∈ Au1 such that

‖x1 − x0‖ ≤ (1 + (1 + 0)−1)H(Su1, Su0),

‖y1 − y0‖ ≤ (1 + (1 + 0)−1)H(Tu1, Tu0),

‖z1 − z0‖ ≤ (1 + (1 + 0)−1)H(Au1, Au0).

Let

w1 = (1− λ)Gu1 + λJM(.,z1)
ρ (Gu1 − ρN(x1, y1)) ∈ Q(u1) ⊆ G(E).

8
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Hence, there exists u2 ∈ E such that w1 = Gu2. By induction,

we can define iterative sequences {un}, {Gun}, {xn}, {yn} and {zn}

as follows:

Gun+1 = (1− λ)Gun + λJM(.,zn)
ρ (Gun − ρN(xn, yn)), (3.3)

xn ∈ Sun : ‖xn+1 − xn‖ ≤ (1 + (1 + n)−1)H(Sun+1, Sun), (3.4)

yn ∈ Tun : ‖yn+1 − yn‖ ≤ (1 + (1 + n)−1)H(Tun+1, Tun), (3.5)

zn ∈ Aun : ‖zn+1 − zn‖ ≤ (1 + (1 + n)−1)H(Aun+1, Aun), (3.4)

where n = 0, 1, 2, 3, .... and ρ > 0 is a constant and 0 < λ ≤ 1 is a

relaxation parameter.

Next lemma shows the equivalence between MVIP (2.1) and

implicit resolvent equation(2.2).

Lemma 3.2. (u, x, y, z), where u ∈ E, x ∈ Su, y ∈ Tu and z ∈ Au,

is a solution of MVIP (2.1) if and only if (w, u, x, y, z), w ∈ E, is a

solution of implicit resolvent equation(2.3), where

Gu = JM(·,z)
ρ w, (3.7)

w = Gu− ρN(x, y), (3.8)

and ρ > 0 is a constant.

The proof follows the same lines of proof of Theorem 4.1 [19]

and hence is omitted.

9
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Now, the implicit resolvent equation (2.2) can be written as

RM(·,z)
ρ w = −ρN(x, y)

which implies

w = JM(·,z)
ρ w − ρN(x, y)

= Gu− ρN(x, y).

This fixed point formulation and Nadler’s technique [12] allows

us to suggest the following iterative algorithm.

Iterative Algorithm 3.2. For given w0, u0 ∈ E, x0 ∈ Su0, y0 ∈ Tu0

and z0 ∈ Au0, define iterative sequences {wn}, {un}, {xn}, {yn} and

{zn} as follows:

Gun = JM(.,zn)
ρ wn, (3.9)

xn ∈ Sun : ‖xn+1 − xn‖ ≤ (1 + (1 + n)−1)H(Sun+1, Sun),

yn ∈ Tun : ‖yn+1 − yn‖ ≤ (1 + (1 + n)−1)H(Tun+1, Tun),

zn ∈ Aun : ‖zn+1 − zn‖ ≤ (1 + (1 + n)−1)H(Aun+1, Aun),

wn+1 = (1− λ)wn + λ[Gun − ρN(xn, yn)], (3.10)

where n = 0, 1, 2, 3, ....; ρ > 0 is a constant and 0 < λ < 1 is a relax-

ation parameter.

We remark that Iterative Algorithms 3.1 and 3.2 include as

special cases many known iterative algorithms in Hilbert spaces,

see [19] and the references therein. Moreover, one can also develop

the iterative algorithms similar to Algorithms 4.2 and 4.3 of Noor

10
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[19] for MVIP (2.1) in Banach space.

In the next section, we prove the existence of solution of MVIP

(2.1) and discuss the convergence criteria for the iterative sequences

generated by Iterative Algorithms 3.1 and 3.2.

4. EXISTENCE OF SOLUTION AND CONVERGENCE CRITE-

RIA

Theorem 4.1. Let E be a real Banach space and η : E×E → E be

τ-Lipschitz continuous. Let S, T, A : E → CB(E) and G : E → E be

σ-H-Lipschitz continuous, δ-H-Lipschitz continuous, ξ-H-Lipschitz

continuous and ε-Lipschitz continuous mappings, respectively, and

(G − I) : E → E be ν-strongly accretive mapping, where I is the

identity mapping on E. Let N : E × E → E be β-Lipschitz contin-

uous and γ-Lipschitz continuous with first and second arguments,

respectively, and be α-strongly η-accretive with respect to S in the

first argument. Let M : E×E → 2E be such that for each fixed z ∈ E,

M(., z) is m-accretive mapping and let for each u ∈ E, Q(u) ⊆ G(E),

where Q is defined by (3.2). Suppose that there exist ρ > 0 and

l > 0 such that for each z1, z2, v ∈ E,

‖JM(.,z1)
ρ (v)− JM(.,z2)

ρ (v)‖ ≤ l‖z1 − z2‖, (4.1)

and∣∣∣∣∣ρλ− λ(α− σβk2)− γδk3

2σ2β2 − γ2δ2

∣∣∣∣∣
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<

√
[λ(α− σβk2)− γδk3]2 + (2σ2β2 − γ2δ2)(k2

3 − λ2ε2)

2σ2β2 − γ2δ2
(4.2)

[λ(α− βσk2)− γδk3]
2 + (2σ2β2 − γ2δ2)(k2

3 − λ2ε2) > 0;
√

2βσ > γδ

where k1 =
√

2ν + 1; k2 = ε + τ and k3 = k1 − (1− λ)ε− λlξ.

Then the iterative sequences {un}, {xn}, {yn} and {zn} generated by

Iterative Algorithm 3.1 converge strongly to u∗, x∗, y∗ and z∗, re-

spectively, and (u∗, x∗, y∗, z∗) is a solution of MVIP (2.1).

Proof. Using Lemma 2.1 and ν-strongly accretiveness of G− I,

we have

‖un+2−un+1‖2

= ‖Gun+2 −Gun+1 + un+2 − un+1 − (Gun+2 −Gun+1)‖2

≤ ‖Gun+2 −Gun+1‖2 − 2〈(G− I)un+2 − (G− I)un+1, j(un+2 − un+1)〉

≤ ‖Gun+2 −Gun+1‖2 − 2ν‖un+2 − un+1‖2,

which implies

‖un+2 − un+1‖ ≤
1√

2ν + 1
‖Gun+2 −Gun+1‖. (4.3)

Next, from Lemma 2.3, (3.3) and (4.1), we have

||Gun+2−Gun+1||

12
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= (1− λ)||Gun+1 −Gun||

+λ||JM(.,zn+1)
ρ

(
Gun+1 − ρN(xn+1, yn+1)

)
− JM(.,un)

ρ

(
Gun − ρN(xn, yn)

)
||

≤ (1− λ)||Gun+1 −Gun||

+λ||JM(.,zn+1)
ρ

(
Gun − ρN(xn, yn)

)
− JM(.,zn)

ρ

(
Gun − ρN(xn, yn

)
||

+λ||JM(.,zn+1)
ρ

(
Gun+1 − ρN(xn+1, yn+1)

)
− JM(.,zn+1)

ρ

(
Gun − ρN(xn, yn)

)
||

≤ (1− λ)||Gun+1 −Gun||+ λl||zn+1 − zn||

+λ||Gun+1 −Gun − ρ
[
N(xn+1, yn+1)−N(xn, yn+1)

]
||

+λρ||N(xn, yn+1)−N(xn, yn)||.
(4.4)

Since G is ε-Lipschitz continuous mapping, we have

||Gun+1 −Gun|| ≤ ε||un+1 − un||. (4.5)

Since A and T are ξ-H-Lipschitz continuous and δ-H-Lipschitz

continuous, respectively, and N is γ-Lipschitz continuous, in the

second argument, we have

‖zn+1 − zn‖ ≤ (1 + (1 + n)−1)H(Aun+1, Aun) ≤ ξ(1 + (1 + n)−1)‖un+1 − un‖

(4.6)

and

||N(xn, yn+1)−N(xn, yn)|| ≤ γ||yn+1 − yn||

≤ γ(1 + (1 + n)−1)H(Tun+1, Tun),

≤ γδ(1 + (1 + n)−1)‖un+1 − un‖. (4.7)

Furthermore, since N is α-H-strongly η-accretive with respect
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to S and β-Lipschitz continuous in the first argument and S is σ-

H-Lipschitz continuous, by using Lemma 2.1, we obtain that

||Gun+1−Gun−ρ[N(xn+1, yn+1)−N(xn, yn+1)]||2

≤ ||Gun+1 −Gun||2 − 2ρ〈N(xn+1, yn+1)−N(xn, yn+1), j(Gun+1 −Gun

−ρ[N(xn+1, yn+1)−N(xn, yn+1)])〉

≤ ε2||un+1 − un||2 − 2ρ〈N(xn+1, yn+1)−N(xn, yn+1), j(η(un+1, un))〉

−2ρ〈N(xn+1, yn+1)−N(xn, yn+1), j(Gun+1 −Gun − ρ[N(xn+1, yn+1)

−N(xn, yn+1)])− j(η(un+1, un))〉

≤ ε2||un+1 − un||2 − 2ρα||un+1 − un||2 + 2ρ||N(xn+1, yn+1)−N(xn, yn+1)||

×
[
||Gun+1 −Gun||+ ρ||N(xn+1, yn+1)−N(xn, yn+1)||+ ||η(un+1, un)||

]
≤ (ε2 − 2ρα)||un+1 − un||2 + 2ρβ||xn+1 − xn||

[
(ε + τ)||un+1 − un||

+ρβ||xn+1 − xn||
]

=
[
ε2 − 2ρα + 2ρβσ(ε + τ)(1 + (1 + n)−1) + 2ρ2β2σ2(1 + (1 + n)−1)2

]
×||un+1 − un||2. (4.8)

Combining (4.3)-(4.8), we have

||un+2 − un+1|| ≤ θn||un+1 − un||, (4.9)

where

θn :=
1√

2ν + 1

[
(1−λ)ε+λlξ(1+(1+n)−1)+λργδ(1+(1+n)−1)

14
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+λ
√

ε2 − 2ρα + 2ρβσ(ε + τ)(1 + (1 + n)−1) + 2ρ2β2σ2(1 + (1 + n)−1)2
]
.

(4.10)

Letting n →∞, we obtain that θn → θ, where

θ :=
1√

2ν + 1

[
(1−λ)ε+λlξ+λργδ+λ

√
ε2 − 2ρα + 2ρβσ(ε + τ) + 2ρ2β2σ2

]
.

(4.11)

Since 0 < θ < 1 by condition (4.2). Hence θn < 1 for n sufficiently

large. Therefore (4.9) implies that {un} is a Cauchy sequence in E,

and hence there exists u∗ ∈ E such that un → u∗ as n →∞. By the

H-Lipschitz continuity of S and (3.4), we have

||xn+1−xn|| ≤ (1+ (1+n)−1)H(Sun+1, Sun) ≤ σ(1+ (1+n)−1)||un+1−un||.

It follows that {xn} is also a Cauchy sequence. Similarly, we

can show that {yn}, {zn} and {Gun} are also Cauchy sequences in

E. Hence there exist x∗, y∗, z∗ ∈ E such that Gun → Gu∗, xn → x∗,

yn → y∗ and zn → z∗ as n → ∞. Furthermore, since xn ∈ Sun, we

have
d(x∗, Su∗) ≤ ||x∗ − xn||+ d(xn, Su∗)

≤ ||x∗ − xn||+ H(Sun, Su∗)

≤ ||x∗ − xn||+ σ||un − u∗|| → 0,

and hence x∗ ∈ Su∗. Similarly, y∗ ∈ Tu∗, z∗ ∈ Au∗.

From Iterative Algorithm 3.1 and continuity of mappings G, N, S, T, A

and JM(·,z∗)
ρ and condition (4.1), it follows that

Gu∗ = JM(·,z∗)
ρ (Gu∗ − ρN(x∗, y∗)) .

Thus, by Lemma 3.1, it follow that (u∗, x∗, y∗, z∗) is a solution of

MVIP (2.1) and this completes the proof.
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Remark 4.1. It is clear that ν ≤ ε; α ≤ βστ . Further con-

dition (4.2) is true for suitable values of constants, for example,

α = β = σ = γ = τ = ξ = δ = 1; ν = ε = 0.5; l = 0.1; ρ ∈ (0, 0.3) and

λ ∈ (0, 1].

Theorem 4.2. Let E be a real Banach space and the mappings

η, S, T, A, G, N, G−I and M be the same as in Theorem 4.1. Assume

that conditions (4.1) and (4.2) with λ = 1 of Theorem 4.1 hold.

Then the iterative sequences {wn}, {un}, {xn}, {yn} and {zn} gener-

ated by Iterative Algorithm 3.2 converge strongly to w∗, u∗, x∗, y∗

and z∗, respectively, and (w∗, u∗, x∗, y∗, z∗) is a solution of implicit

resolvent equation (2.2).

Proof. From Iterative Algorithm 3.2 and using (4.7) and (4.8),

we have

‖wn+2−wn+1‖ ≤ (1−λ)‖wn+1−wn‖+λ||Gun+1−Gun−ρ[N(xn+1, yn+1)−N(xn, yn+1)]||

+ λρ‖N(xn, yn+1) + N(xn, yn)‖

≤ (1− λ)‖wn+1 − wn‖+ λθ′n‖un+1 − un‖, (4.12)

where

θ′n := ργδ(1 + (1 + n)−1)

+
√

ε2 − 2ρα + 2ρβσ(ε + τ)(1 + (1 + n)−1) + 2ρ2β2σ2(1 + (1 + n)−1)2.

From (3.9), (4.1), (4.3), and (4.6), we have

‖un+2 − un+1‖ ≤
1√

2ν + 1
‖Gun+2 −Gun+1‖
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≤ 1√
2ν + 1

[
lξ(1 + (1 + n)−1)‖un+1 − un‖+ ‖wn+1 − wn‖

]
‖un+2 − un+1‖ ≤

1√
2ν + 1− lξ(1 + (1 + n)−1)

‖wn+1 − wn‖. (4.13)

Combining (4.12)and (4.13), we have

‖wn+2 − wn+1‖ ≤ [1− λ(1− θn)]‖wn+1 − wn‖, (4.14)

where

θn = θ′n

[
1√

2ν + 1− lξ(1 + (1 + n)−1)

]
.

Letting n →∞, θn → θ, where

θ =
ργδ +

√
ε2 − 2ρα + 2ρβσ(ε + τ) + 2ρ2β2σ2

√
2ν + 1− lξ

.

Since 0 < θ < 1 by condition (4.2) with λ = 1. Hence θn < 1 for

n sufficiently large. Therefore, (4.14) implies that {wn} is a Cauchy

sequence in E, and hence there exists w∗ ∈ E such that wn → w∗ as

n →∞. From (4.13) and from Theorem 4.1, we see that sequences

{un}, {xn}, {yn} and {zn} are Cauchy sequences in E. Hence there

exist u∗, x∗, y∗ and z∗ in E such that un → u∗, xn → x∗, yn → y∗ and

zn → z∗ as n →∞. Using the technique of Theorem 4.1, we see that

x∗ ∈ Su∗, y∗ ∈ Tu∗, z∗ ∈ Au∗ and thus, the continuity of mappings

S, T, A, M, G and JM(·,z)
ρ and Iterative Algorithm 3.2 give that

w∗ = Gu∗ − ρN(x∗, y∗) = JM(·,z∗)
ρ w∗ − ρN(x∗, y∗) ∈ E.

Hence, by Lemma 3.2, it follows that w∗, u∗ ∈ E, x∗ ∈ Su∗, y∗ ∈

Tu∗, z∗ ∈ Au∗ is a solution of the implicit resolvent equation (2.2).

This completes the proof.
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Remark 4.2. If we take η(u, v) = u − v, ∀u, v ∈ E in Theo-

rems 4.1 and 4.2, then by Lemma 2.2, the multi-valued mapping

C : E → 2E \ ∅ defined by Cu = N(Su, y), for fixed y ∈ E and for all

u ∈ E, is a single-valued mapping.

In this case, using the technique of He [21], we estimate ‖N(xn+1, yn+1)−

N(xn, yn+1)‖ as follows:

For any xn+1, x
′
n+1 ∈ Sun+1, N(xn+1, yn+1) = N(x′n+1, yn+1). On the

other hand, for xn ∈ Sun ∈ CB(E), there exists a x′n+1 ∈ Sun+1 such

that

‖x′n+1 − xn‖ ≤ (1 + (1 + n)−1)H(Sun+1, Sun).

Hence we have

‖N(xn+1, yn+1)−N(xn, yn+1)‖ = ‖N(x′n+1, yn+1)−N(xn, yn+1)‖

≤ β‖x′n+1 − xn‖

≤ β(1 + (1 + n)−1)H(Sun+1, Sun)

≤ βσ(1 + (1 + n)−1)‖un+1 − un‖.
(4.15)

Also (4.7) holds if and only if N(S(·), T (·)) is single-valued. In-

deed, if N(S(·), T (·)) is single-valued, then (4.7) can be proved as

(4.15). Conversely, from (4.7) and (4.15), we have

‖N(xn+1, yn+1)−N(xn, yn)‖ = ‖N(xn+1, yn+1)−N(xn, yn+1)‖

+ ‖N(xn, yn+1)−N(xn, yn)‖

≤ (βσ + γ + δ)(1 + (1 + n)−1)‖un+1 − un‖.
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For any u ∈ E, let un+1 = un = u in preceding inequality, then

for any (xn+1, yn+1), (xn, yn) ∈ Su× Tu, it follow that

‖N(xn+1, yn+1)−N(xn, yn)‖ = 0.

Thus N(xn+1, yn+1) = N(xn, yn), which implies that N(S(·), T (·)) is

single-valued. Since inequality (4.7) has been used in the proof of

Theorems, it should be regarded as an additional condition.

Further, in view of the single-valuedness of operator N(S(·), T (·)),

we can release xn, yn from the restrictions that

xn ∈ Sun : ‖xn+1 − xn‖ ≤ (1 + (1 + n)−1)H(Sun+1, Sun),

yn ∈ Tun : ‖yn+1 − yn‖ ≤ (1 + (1 + n)−1)H(Tun+1, Tun).

Consequently the limits of {xn} and {yn} need not be consid-

ered. When limn→∞ un = u∗, limn→∞ wn = w∗ and limn→∞ zn = z∗

are obtained then for each x ∈ Su∗ and each y ∈ Tu∗, (u∗, x, y, z∗)

and (u∗, w∗, x, y, z∗) are solutions of MVIP(2.1) and implicit resol-

vent equation (2.2) respectively.

Remark 4.3. In view of Remark 4.2, Theorems 4.1 and 4.2 for

variational inclusion (2.1) considered by Noor [19] in reality, are

for single- valued variational inclusion inspite of involving multi-

valued mappings.

Remark 4.4. Our Theorems 4.1 and 4.2 generalize, improve

and unify the results given in Noor [19] and the references therein.
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Abstract. Recently some classical operator quasi-interploants were introduced to obtain

much faster convergence. Müller [8] gave Gamma left quasi-interpolants and obtained ap-

proximation equivalence theorem with ω2r
ϕ (f, t)p. In this paper we extend above result from

two side in L∞: one is we study weight approximation, the other we use modulus ω2r
ϕλ(f, t)∞

which unified classical modulus and Ditzian-Totik modulus.

Key words and phrases: Gamma operator, quasi-interpolants, weight approximation,

equivalent theorem, modulus of smoothness.
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1 Introduction

Gamma operator is given by

Gn(f, x) =
∫ ∞

0

gn(x, t)f
(n

t

)
dt, x ∈ [0,∞),

gn(x, t) =
xn+1

n!
e−xttn.

(1.1)

The other representation of this operator is

Gn(f, x) =
1
n!

∫ ∞

0

e−ttnf
(nx

t

)
dt. (1.2)

These operators have been introduced in [6], and investigated in subsequent papers (e.g. [2], [5], [7],

[10]).

Ditzian [1] introduced ω2
ϕλ(f, t) and gave a direct result for Bernstein operators. He extended the

approximation results on ω2
ϕ(f, t) and ω2(f, t). In [3] and [4] we discussed Szasz and Gamma operators

by ω2r
ϕλ(f, t) and obtained same interesting results.

∗Supported by NSF of Hebei Province(101090) and NSF of Hebei Normal University.
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In [9] so-called left Bernstein quasi-interpolants were introduced. In this way Müller [8] obtained

left Gamma quasi-interpolants

G(k)
n (f, x) =

k∑

j=0

αn
j (x)DjGn(f, x), 0 ≤ k ≤ n. (1.3)

and gave a approximation equivalent theorem: for f ∈ Lp[0,∞), 1 ≤ p ≤ ∞, ϕ(x) = x, n ≥ 4r, r ∈ N ,

and 0 < α < r the following statements are equivalent, that is

‖G(2r−1)
n f − f‖p = O(n−α) ⇐⇒ ω2r

ϕ (f, t)p = O(t2α). (1.4)

In this paper we will consider weight approximation for G
(2r−1)
n (f, x) in L∞-spaces with the unified

modulus ω2r
ϕλ(f, t)w, where w(x) = xa(1 + x)b (a ≥ 0, b is arbitrary). Our main result is that for

f ∈ L∞[0,∞), 0 ≤ λ ≤ 1, ϕ(x) = x, w(x) = xa(1 + x)b, n ≥ 4r, and 0 < α < 2r, then

|w(x)
(
G(2r−1)

n (f, x)− f(x)
)| = O

((ϕ1−λ(x)√
n

)α
)
⇐⇒ ω2r

ϕλ(f, t)w = O
(
tα

)
. (1.5)

In L∞-spaces, (1.5) extends (1.4), when λ = 1, a = b = 0 then (1.5) is (1.4).

Throughout this paper ‖ · ‖ denotes ‖ · ‖∞, C denotes a positive constant not necessarily the same

at each occurrence.

2 Preliminaries and Lemmas

Suppose G
(k)
n (f, x) =

k∑
j=0

αn
j (x)DjGn(f, x). At first we list some related properties of G

(k)
n (f, x), which

can be found in [8].

(1) For j ∈ N0, n ≥ j, we have αn
j (x) ∈ Πj (space of algebraic polynomials of degree at most j)

and

αn
j (x) =

(x

n

)j
L

(n−j)
j (n), αn

0 (x) = 1, αn
1 (x) = 0, (2.1)

where for α ∈ R

L
(α)
j (x) =

j∑
r=0

(−1)r

(
j + α

j − r

)
xr

r!
(2.2)

is the Laguerre polynomial of degree j.

(2) For j ∈ N0 and n ≥ j ∣∣∣ 1
nj

L
(n−j)
j (n)

∣∣∣ ≤ Cn−
j
2 . (2.3)

(3) If p ∈ Πk, then

G(k)
n (p, x) = p(x). (2.4)

(4)
∂m

∂xm
gn(x, t) =

m!
xm

gn(x, t)L(n+1−m)
m (xt). (2.5)

2
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(5)

(
Gnf)(2r)(x) =

n2r

n!

∫ ∞

0

e−ttn−2rf (2r)
(nx

t

)
dt

=
n2r(n− 2r)!

n!

∫ ∞

0

gn−2r(x, u)f (2r)
(n

u

)
du.

(2.6)

(6) ∫ ∞

0

e−ttα
∣∣L(α)

j (t)
∣∣2dt =

Γ(j + α + 1)
j!

for α > −1. (2.7)

(7) For m,n, l ∈ N0,

1
(n + l)!

∫ ∞

0

e−ttn+l
(nx

t
− x

)m
dt ≤ C

xm

n[(m+1)/2]
. (2.8)

Next we give two lemmas.

Lemma 2.1. (1) Let w(x) = xa(1 + x)b, a ≥ 0, b ∈ R, x, u ∈ (0,∞) then

w(x)
w(u)

≤ 2|b|
((x

u

)a +
(x

u

)a+b
)
. (2.9)

(2) For ∀ β ∈ R we have
1
n!

∫ ∞

0

e−ttn
(n

t

)β
dt ≤ C(β). (2.10)

Proof. (1) For b ≥ 0,
w(x)
w(u)

≤ (x

u

)a(
1 +

x

u

)b ≤ 2b
((x

u

)a +
(x

u

)a+b
)
.

For b < 0,
w(x)
w(u)

≤ (x

u

)a(1 + u

1 + x

)−b ≤ (x

u

)a(
1 +

u

x

)−b ≤ 2|b|
((x

u

)a +
(x

u

)a+b
)
.

(2) By direct computation or [2, p165] we have (2.10)

Lemma 2.2. ( The boundedness of G
(k)
n in weighted norm)

For n ≥ k, we have

‖wG(k)
n (f)‖ ≤ C‖wf‖. (2.11)

Proof.

|w(x)G(k)
n (f, x)| ≤ |w(x)Gn(f, x)|+ |w(x)

k∑

j=2

αn
j (x)DjGn(f, x)|. (2.12)

From [2, p165] we have

|w(x)Gn(f, x)| ≤ C‖wf‖. (2.13)
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By (1.1), (2.5), (2.7), (2.8) and (2.10) we get

|w(x)DjGn(f, x)|

=
∣∣w(x)

∫ ∞

0

∂j

∂xj
gn(x, t)f

(n

t

)
dt

∣∣

≤∣∣w(x)
∫ ∞

0

j!
xj

gn(x, t)L(n+1−j)
j (xt)w−1

(n

t

)
dt

∣∣ ‖wf‖

=
∣∣w(x)

j!
n!

∫ ∞

0

xn+1−je−txtnL
(n+1−j)
j (xt)w−1

(n

t

)
dt

∣∣ ‖wf‖

≤C
x−j

n!

∫ ∞

0

e−uun
∣∣L(n+1−j)

j (u)
∣∣ wx

w
(

nx
u

)du ‖wf‖

≤Cx−j
( 1

n!

∫ ∞

0

e−uun+1−j
∣∣L(n+1−j)

j (u)
∣∣2du

) 1
2
( 1

n!

∫ ∞

0

e−uun−1+j
((u

n

)a +
(u

n

)a+b
)2

du
) 1

2 ‖wf‖

≤Cx−j
( 1

n!
(n + 1)!

j!

) 1
2
( (n + j − 1)!

n!

) 1
2 ‖wf‖

≤Cx−jn
1
2 n

j−1
2 ||wf‖.

(2.14)

Notice that

|αn
j (x)| ≤ Cn−

j
2 xj (2.15)

and [2, p161]

‖w(x)Gn(f, x)‖ ≤ C‖w(x)f(x)‖. (2.16)

From (2.12)–(2.16) we know (2.11) is valid.

Now we give some definitions of modulus of smoothness and K- functional (cf. [2]).

ωr
ϕλ(f, t)w =





sup
0<h≤t

‖w∆r
hϕλf‖, a = 0,

sup
0<h≤t

‖w∆r
ϕλf‖[t∗,∞) + sup

0<h≤t∗
‖w−→∆r

hf‖(0,12t∗], a > 0,

where

t∗ =





(rt)
1

1−λ , 0 < t < 1
8r , 0 ≤ λ < 1,

0, λ = 1,

ϕ(x) = x, w(x) = xa(1 + x)b, (a ≥ 0, b ∈ R).

Ωr
ϕλ(f, t)w = sup

o<h≤t
‖w∆r

hϕλf‖[t∗ ,∞) 0 ≤ λ < 1.

Kr
ϕλ(f, tr)w = inf

g

{‖w(f − g)‖+ tr‖wϕrλg(r)‖, g(r−1) ∈ A.C.loc

}
.

It is know that (cf. [2])

ωr
ϕλ(f, t)w ∼ Kr

ϕλ(f, tr)w, (2.17)

C−1Ωr
ϕλ(f, t)w ≤ ωr

ϕλ(f, t)w ≤ C

∫ t

0

Ωr
ϕλ(f, τ)w

τ
dτ. (2.18)
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3 The Direct Theorem

In this section we will show the approximation direct theorem for G
(2r−1)
n f with 2rth Ditzian-Totik

weighted modulus of smoothness.

Theorem 3.1. Let n ≥ 4r. Then for wf ∈ L∞[0,∞) we have

∣∣w(x)
(
G(2r−1)

n (f, x)− f(x)
)∣∣ ≤ Cω2r

ϕλ

(
f,

ϕ1−λ(x)√
n

)
w
. (3.1)

Proof. For any g ∈ w2r
∞ =:

{
g : g(2r−1) ∈ A.C.loc, wϕ2rλg(2r) ∈ L∞

}
, by Taylor’s formula

g(t) =
2r−1∑

j=0

1
j!

(t− x)jg(j)(x) + R2r(g, t, x) (3.2)

with the integral remainder

R2r(g, t, x) =
1

(2r − 1)!

∫ t

x

(t− u)2r−1g(2r)(u)du. (3.3)

As G
(2r−1)
n (f, x) is exact on Π2r−1 and αn

0 = 1, αn
1 = 0 and (2.3) we have

∣∣w(x)
(
G(2r−1)

n (g, x)− g(x)
)∣∣

≤∣∣wGn

(
R2r(g, ·, x), x

)∣∣ + C

2r−1∑

j=2

n−
j
2 ϕj(x)w(x)

∣∣DjGn

(
R2r(g, ·, x), x

)∣∣

=:I1 + I2.

(3.4)

For u between x and t, ϕ(x) = x we have (cf. [2, Lemma 9.6.1])

|u− x|
ϕλ(u)

≤ |x− t|
ϕλ(x)

,
1

ϕλ(u)
≤ 1

ϕλ(x)
+

1
ϕλ(t)

.

Therefore

|R2r(g, t, x)| ≤ C
|t− x|2r−1

ϕ(2r−1)λ(x)

( 1
xλ

+
1
tλ

)
‖wϕ2rλg(2r)‖

∣∣
∫ t

x

w−1(u)du
∣∣. (3.5)

By (1.1), (2.5) and (3.5), one has

∣∣w(x)DjGn(R2r(g, ·, x), x)
∣∣

=
∣∣w(x)

∫ ∞

0

∂j

∂xj
gn(x, t)R2r

(
g,

n

t
, x

)
dt

∣∣

=
∣∣w(x)

j!
xj

∫ ∞

0

xn+1

n!
e−xttnL

(n+1−j)
j (xt)R2r

(
g,

n

t
, x

)
dt

∣∣

=
∣∣w(x)

j!
xj

∫ ∞

0

1
n!

e−uunL
(n+1−j)
j (u)R2r

(
g,

nx

u
, x

)
du

∣∣

≤C
∥∥wϕ2rλg(2r)

∥∥ 1
xj

∫ ∞

0

1
n!

e−uun
∣∣∣L(n+1−j)

j (u)
∣∣∣
∣∣nx

u − x
∣∣2r−1

ϕ(2r−1)λ(x)

( 1
xλ

+
( u

nx

)λ
)∣∣∣

∫ nx
u

x

w(x)
w(τ)

dτ
∣∣∣du.

Utilizing (2.9) we have

∣∣∣
∫ nx

u

x

w(x)
w(τ)

dτ
∣∣∣ ≤ C

∣∣∣
∫ nx

u

x

(x

τ

)a +
(x

τ

)a+b
dτ

∣∣∣

≤ C
(
1 +

(u

n

)a +
(u

n

)a+b
)∣∣nx

u
− x

∣∣.
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Hence
∣∣w(x)DjGn(R2r(g, ·, x), x)

∣∣

≤C‖wϕ2rλg(2r)‖ 1
xj+2rλ

1
n!

∫ ∞

0

e−uun
∣∣∣L(n+1−j)

j (u)
∣∣∣
(nx

u
− x

)2r

×
(
1 +

(u

n

)λ +
(u

n

)a +
(u

n

)λ+a +
(u

n

)a+b +
(u

n

)λ+a+b
)
du.

(3.6)

Utilizing (2.7) and (2.8) for ∀ β ∈ R
∫ ∞

0

e−uun
∣∣∣L(n+1−j)

j (u)
∣∣∣
(nx

u
− x

)2r(u

n

)β
du

≤
( ∫ ∞

0

e−uun+1−j
∣∣∣L(n+1−j)

j (u)
∣∣∣
2

du
) 1

2
( ∫ ∞

0

e−uun+j−1
(nx

u
− x

)4r(u

n

)2β
du

) 1
2

≤
(Γ(n + 2)

j!

) 1
2
( ∫ ∞

0

e−uun+j−1
(nx

u
− x

)8r
du

) 1
4
(
C

∫ ∞

0

e−uun+j−1
( u

u + j − 1
)4β

du
) 1

4

≤C
(
(n + 1)!

) 1
2
(
(n + j − 1)!

x8r

n4r

) 1
4
(
(n + j − 1)!

) 1
4 .

(3.7)

From (3.6) and (3.7) we obtain

I2 ≤ C
2r−1∑

j=2

n−
j
2 xj 1

xj+2rλ

1
n!

(
(n + 1)!

) 1
2
(
(n + j − 1)!

) 1
2
x2r

nr

∥∥wϕ2rλg(2r)
∥∥

≤ C
x2r(1−λ)

nr

∥∥wϕ2rλg(2r)
∥∥.

(3.8)

From the procedure of the proof of (3.8), similarly we can deduce that

I1 ≤ C
x2r(1−λ)

nr

∥∥wϕ2rλg(2r)
∥∥. (3.9)

Combining (3.4), (3.8) and (3.9) we have for g ∈ w2r
∞.

∣∣w(x)
(
G(2r−1)

n (g, x)− g(x)
)∣∣ ≤ C

ϕ2r(1−λ)(x)
nr

∥∥wϕ2rλg(2r)
∥∥. (3.10)

By the definition of K-functional and (2.17) for wf ∈ L∞ we can choose g = gn,x,λ ∈ w2r
∞ such that

‖w(f − g)‖+
ϕ2r(1−λ)(x)

nr
‖wϕ2rλg(2r)‖ ≤ Cω2r

ϕλ

(
f,

ϕ1−λ(x)√
n

)
w
. (3.11)

Then we have by (3.10)

∣∣w(x)
(
G(2r−1)

n (f, x)− f(x)
)∣∣

≤C
(‖w(f − g)‖+

∣∣w(
G(2r−1)

n (g, x)− g(x)
)∣∣)

≤C
(‖w(f − g)‖+

ϕ2r(1−λ)(x)
nr

‖wϕ2rλg(2r)‖)

≤Cω2r
ϕλ

(
f,

ϕ1−λ(x)√
n

)
w
.

Now (3.1) is proved.

Remark. In the proof of (3.1) we use (2.1), (2.2), (2.3) and (2.7) on the Laguerre polynomial. On the

other way we also can use the formula (cf. [2, (9.4.11)]

(
Gn(f, x)

)(r) =
r∑

i=0

Qi(n, x)Gn

(
(t− x)if(t), x

)
,

6
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where Qi(n, x) =
∑

2j+l−i=r

C(i, l) nj

x2j+l and so xr‖Qi(n, x)| ≤ C n
r+i

n

xi . Thus it need not use the Laguerre

polynomial in the proof of (3.1). In the next section the case is similar.

4 The Inverse Theorem

To prove the inverse theorem we need a new K- functional, for this reason we introduce some notations.

For 0 ≤ λ ≤ 1, 0 < α < 2r, we define

‖f‖0 = sup
x∈(0,∞)

∣∣w(x)ϕα(λ−1)(x)f(x)
∣∣,

C0
λ,w =

{
f
∣∣wf ∈ L∞, ‖f‖0 < ∞}

,

‖f‖2r = sup
x∈(0,∞)

∣∣w(x)ϕ2r+α(λ−1)(x)f (2r)(x)
∣∣,

C2r
λ,ω =

{
f ∈ C0

λ,ω : f (2r−1) ∈ A.C.loc, ‖f‖2r < ∞}
.

Now we give a new K-functional

Kα
λ (f, t2r)w = inf

g∈C2r
λ,ω

{‖f − g‖0 + t2r‖g‖2r}. (4.1)

The next lemma shows two inequalities which will be used.

Lemma 4.1. For n ≥ 4r we have

‖G(2r−1)
n f‖2r ≤ Cnr‖f‖0, f ∈ C0

λ,ω, (4.2)

‖G(2r−1)
n f‖2r ≤ C‖f‖2r, f ∈ C2r

λ,ω. (4.3)

Proof. At first we prove (4.1). Duo to [8, (32)] we have

∣∣w(x)ϕ2r+α(λ−1)(x)
(
G(2r−1)

n (f, x)
)(2r)∣∣

=
∣∣∣w(x)ϕ2r+α(λ−1)(x)

(
(Gnf)(2r)(x) +

( 2r−1∑

j=2

1
nj

L
(n−j)
j (n)ϕj(x)DjGn(f, x)

)(2r))∣∣∣

≤
∣∣∣w(x)ϕ2r+α(λ−1)(x)(Gnf)(2r)(x)

∣∣∣

+ Cw(x)ϕ2r+α(λ−1)(x)
2r−1∑

j=2

n−
j
2

j∑

k=0

∣∣ϕj−k(x)(Gnf)(2r+j−k)(x)
∣∣

=:J1 + J2.

(4.4)

By (1.1) and (2.5) we have

(Gnf)(2r+j−k)(x) =
∫ ∞

0

∂2r+j−k

∂x2r+j−k
gn(x, t)f

(n

t

)
dt

=
(2r + j − k)!

x2r+j−k

1
n!

∫ ∞

0

xn+1e−txtnL
(n+1−2r−j+k)
2r+j−k (xt)f

(n

t

)
dt.
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Hence

J2 ≤ C
2r−1∑

j=2

n−
j
2 w(x)ϕα(λ−1)(x)

j∑

k=0

1
n!

∫ ∞

0

e−uun
∣∣L(n+1−2r−j+k)

2r+j−k (u)
∣∣w−1

(nx

u

)
ϕα(1−λ)

(nx

u

)
du‖f‖0

≤ C
2r−1∑

j=2

n−
j
2 ‖f‖0

j∑

k=0

1
n!

(
(n + 1)!

) 1
2
( ∫ ∞

0

e−uun−1+2r+j−k w2(x)ϕ2α(λ−1)(x)
w2

(
nx
u

)
ϕ2α(λ−1)

(
nx
u

)du
) 1

2

≤ C
2r−1∑

j=2

n−
j
2 ‖f‖0

j∑

k=0

1
n!

(
(n + 1)!

) 1
2
(
(n− 1 + 2r + j − k)!

) 1
2

≤ Cnr‖f‖0.

Similarly we also have

J1 ≤ Cnr‖f‖0.

Thus, (4.2) is valid. Now we prove (4.3).

In the same way, by (2.5) and (2.6) we have

(Gnf)(2r+j−k) =
n2r(n− 2r)!

n!

∫ ∞

0

(j − k)!
xj−k

gn−2r(x, u)L(n−2r+1−j+k)
j−k (xu)f (2r)

(n

u

)
du

=
n2r(n− 2r)!

n!
(j − k)!
xj−k

1
(n− 2r)!

∫ ∞

0

e−ttn−2rL
(n−2r+1−j+k)
j−k (t)f (2r)

(nx

t

)
dt.

Similarly from above procedure we can deduce

J2 ≤ C‖f‖2r,

J1 ≤ C‖f‖2r,

and so (4.3) is proved.

Theorem 4.2. For wf ∈ L∞, 0 ≤ λ ≤ 1, 0 < α < 2r, n ≥ 4r, then

∣∣w(
G(2r−1)

n (f, x)− f(x)
)∣∣ ≤ O

((ϕ1−λ(x)√
n

)α
)

(4.5)

implies

ω2r
ϕλ(f, t)w = O

(
tα

)
. (4.6)

Proof. By the definition of Kα
λ (f, t2r)w, for a fixed x and λ we can choose g ∈ C2r

λ,w, such that

‖f − g‖0 + n−r‖g‖2r ≤ 2Kα
λ (f, n−r)w. (4.7)

By (4.5) we have
∣∣w(x)ϕα(λ−1)(x)

(
G(2r−1)

n (f, x)− f(x)
∣∣ ≤ Cn−

α
2 . (4.8)

Utilizing Lemma 4.1 we obtain

Kα
λ (f, t2r)w ≤ ‖f −G(2r−1)

n f‖0 + t2r‖G(2r−1)
n f‖2r

≤ Cn−
α
2 + t2r

(‖G(2r−1)
n (f − g)‖2r + ‖G(2r−1)

n g‖2r

)

≤ C
(
n−

α
2 + t2r(nr‖f − g‖0 + ‖g‖2r)

)

≤ C
(
n−

α
2 + t2rnrKα

λ (f, n−r)w

)
.
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By Berence-Lorentz Lemma we get

Kα
λ (f, t2r)w = O(tα). (4.9)

When λ = 1, Kα
1 (f, t2r)w = K2r

ϕ (f, t2r)w = O(tα).

So that

ω2r
ϕ (f, t)w = O(tα). (4.10)

When 0 ≤ λ < 1, x ≥ t∗ = (2rt)
1

1−λ , x− rhϕλ(x) ≥ 0, then (cf. [2, p21, p27])

x

2
≤ x + (j − r)hϕλ(x) ≤ 2x, j = 0, 1, · · · , 2r, h ≤ 1

r
.

Therefore for u ∈ [−rhϕλ(x), rhϕλ(x)] we have

ϕ(x + u) ∼ ϕ(x), w(x + u) ∼ w(x).

Then

w(x)
∫ hϕλ(x)

2

−hϕλ(x)
2

· · ·
∫ hϕλ(x)

2

−hϕλ(x)
2

ϕ−2r+α(1−λ)
(
x +

2r∑

i=1

ui

)
w−1

(
x +

2r∑

i=1

ui

)
du1 · · · du2r ≤ Ch2r ϕα(1−λ)(x)

ϕ2r(1−λ)(x)
.

For g in (4.7) and x ≥ t∗ we have

w(x)
∣∣∆2r

hϕλ(x)f(x)
∣∣

≤w(x)
∣∣∆2r

hϕλ(x)(f − g)(x)
∣∣ + w(x)

∣∣∆2r
hϕλg(x)

∣∣

=w(x)
∣∣

2r∑

k=0

(−1)k

(
2r

k

)
(f − g)(x + (r − k)hϕλ(x))

∣∣

+ w(x)
∣∣∣
∫ hϕλ(x)

2

−hϕλ(x)
2

· · ·
∫ hϕλ(x)

2

−hϕλ(x)
2

g(2r)
(
x +

2r∑

i=1

ui

)
du1 · · · du2r

∣∣∣

≤Cϕα(1−λ)(x)
(‖f − g‖0 +

h2r

ϕ2r(1−λ)(x)
‖g‖2r

)

≤Cϕα(1−λ)(x)Kα
λ

(
f,

h2r

ϕ2r(1−λ)(x)

)
w

≤Chα.

Thus by the definition of Ω2r
ϕλ(f, t)w, we have

Ω2r
ϕλ(f, t)w = O(tα). (4.11)

From (2.18) and (4.11) we have

ω2r
ϕλ(f, t)w = O(tα).

The proof of Theorem 4.2 is complete.

Remark. By Theorem 3.1 and 4.2, the weighted approximation equivalent theorem (1.5) for G
(2r−1)
n (f, x)

is valid.
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Natural Splines of Birkhoff Type and Optimal Approximation

Adrian Branga,University ”Lucian Blaga” of Sibiu, Department of
Mathematics,Str.Dr.I.Ratiu 7,RO-2400, Sibiu,Romania

1 Preliminaries

Let us consider an arbitrary finite interval [a, b], a < b, on the real line and the Lebesgue
space L2[a, b] with the usual inner product

< f, g >2:=

∫ b

a

f(x)g(x)dx(1)

and the corresponding norm

‖f‖2
2 :=

∫ b

a

f 2(x)dx.(2)

We denote by Hm,2[a, b] the linear space of all functions f : [a, b] → IR which satisfy
the following conditions:

i) f ∈ Cm−1[a, b],

ii) f (m−1) is absolutely continuous,

iii) f (m) ∈ L2[a, b],

endowed with the norm

‖f‖2
m,2 :=

∥∥f (m)
∥∥2

2
+

m−1∑
k=0

[
f (k)(a)

]2
.(3)

Let us take x1, x2, ..., xr as distinct knots in the interval [a, b], a ≤ x1 < x2 < ... <
xr ≤ b, the numbers α1, α2, ..., αr ∈ IN , where 1 ≤ αi ≤ m, i = 1, . . . , r, and the sets
Ii ⊆ {0, 1, ..., αi − 1}, i = 1, . . . , r.

Of importance is the number of interpolation conditions, namely

n :=
r∑

i=1

card(Ii).(4)

Definition 1 The set

Λ :=
{
λi,νi

: Hm,2[a, b] → IR, λi,νi
(f) = f (νi)(xi), i = 1, . . . , r, νi ∈ Ii

}
(5)

1
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is named a set of Birkhoff-type functionals on Hm,2[a, b].

Definition 2 For each y = (y1, ..., yn) ∈ IRn we define the Birkhoff-type interpolatory set

Uy :=
{
u ∈ Hm,2[a, b]|u(νi)(xi) = yi,νi

, i = 1, . . . , r, νi ∈ Ii

}
,(6)

where
y := (y1, ..., yn) = ((y1,ν1)ν1∈I1 , ..., (yr,νr)νr∈Ir) .(7)

Definition 3 The problem of finding functions s ∈ Uy which satisfy∥∥s(m)
∥∥

2
= min

u∈Uy

∥∥u(m)
∥∥

2
(8)

is called Birkhoff-type natural spline interpolation problem, corresponding to the interpo-
latory set Uy.

One such s, provided it exists, is called Birkhoff-type natural spline interpolation func-
tion, corresponding to the interpolatory set Uy.

We denote by SΛ the set of all solutions of the problems (8), where y ∈ IRn.

Lemma 1 s ∈ SΛ if and only if s satisfies the following conditions:

i) s(2m) = 0, for x ∈ (x1, x2) ∪ ... ∪ (xr−1, xr),

ii) s(m) = 0, for x ∈ [a, x1) ∪ (xr, b],

iii) a) s(j)(xi − 0) = s(j)(xi + 0), i = 1, . . . , r, j = 0, . . . ,m− 1,

b) s(2m−1−µi)(xi − 0) = s(2m−1−µi)(xi + 0), i = 1, . . . , r, µi ∈ {0, . . . ,m− 1} \ Ii.

For a proof see [3].
In the sequel we assume that n ≥ m and Πm−1∩U0 = {0}, where U0 is the interpolatory

set corresponding to y0 = (0, ..., 0) ∈ IRn. If Λ contains at least m functionals of Hermite-
type, then Πm−1 ∩ U0 = {0} (for a proof see [3]).

Lemma 2 For each y ∈ IRn, if the set Uy is nonempty, then problem (8) (corresponding
to Uy) has unique solution sy given by

sy(x) =
m−1∑
k=0

a
(y)
k

(b− x)k

k!
+

r∑
i=1

∑
νi∈Ii

b
(y)
i,νi

(x− xi)
2m−1−νi
+

(2m− 1− νi)!
,(9)

where the coefficients a
(y)
k , k = 0, . . . ,m − 1, b

(y)
i,νi

, i = 1, . . . , r, νi ∈ Ii, are given by the
following linear system

m−1∑
k=µ1

a
(y)
k (−1)µ1

(b− x1)
k−µ1

(k − µ1)!
= y1,µ1 , µ1 ∈ I1,

m−1∑
k=µj

a
(y)
k (−1)µj

(b− xj)
k−µj

(k − µj)!
+

j−1∑
i=1

∑
νi∈Ii

b
(y)
i,νi

(xj − xi)
2m−1−νi−µj

(2m− 1− νi − µj)!
= yj,µj

,

j = 2, . . . , r, µj ∈ Ij,
r∑

i=1

∑
νi∈Ii
νi≤l

b
(y)
i,νi

(b− xi)
l−νi

(l − νi)!
= 0, l = 0, . . . ,m− 1.

(10)
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The proof follows directly from Lemma 1.

Remark 1 Lemma 2 implies that the matrix PB of the system (10) is nonsingular.

Definition 4 For each j = 1, . . . , r and µj ∈ Ij, let yj,µj
∈ IRn be defined by

yj,µj
:= (δijδνi,µj

)i=1,...,r, νi∈Ii
=

(
(δ1jδν1,µj

)ν1∈I1 , ..., (δrjδνr,µj
)νr∈Ir

)
(11)

and the corresponding interpolatory set

Uj,µj
:=

{
u ∈ Hm,2[a, b]|u(νi)(xi) = δijδνi,µj

, i = 1, . . . , r, νi ∈ Ii

}
.(12)

Lemma 3 For each j = 1, . . . , r and µj ∈ Ij, if the set Uj,µj
is nonempty, then the

corresponding problem (8) has a unique solution

sj,µj
(x) =

m−1∑
k=0

a
(j,µj)
k

(b− x)k

k!
+

r∑
i=1

∑
νi∈Ii

b
(j,µj)
i,νi

(x− xi)
2m−1−νi
+

(2m− 1− νi)!
,(13)

where the coefficients a
(j,µj)
k , k = 0, . . . ,m − 1, b

(j,µj)
i,νi

, i = 1, . . . , r, νi ∈ Ii, are given by
the system of equations

PB

(
a

(j,µj)
0 , ..., a

(j,µj)
m−1 ,

(
b
(j,µj)
1,ν1

)
ν1∈I1

, ...,
(
b(j,µj)
r,νr

)
νr∈Ir

)t

(14)

=

(δ1jδν1,µj
)ν1∈I1 , ..., (δrjδνr,µj

)νr∈Ir , 0, ..., 0︸ ︷︷ ︸
m

t

.

This result is a consequence of Lemma 2.
In the sequel we assume that the sets Uj,µj

, j = 1, . . . , r, µj ∈ Ij, are nonempty.

Definition 5 sj,µj
, j = 1, . . . , r, µj ∈ Ij, defined by (13), are the fundamental Birkhoff-

type natural spline interpolation functions.

Remark 2 The functions sj,µj
, j = 1, . . . , r, µj ∈ Ij, are characterized in SΛ by the

properties

s
(νi)
j,µj

(xi) = δijδνi,µj
, i = 1, . . . , r, νi ∈ Ii.(15)

Lemma 4 For each y ∈ IRn the set Uy is nonempty and the problem (8), corresponding
to Uy, has unique solution given by

sy =
r∑

i=1

∑
νi∈Ii

yi,νi
si,νi

,(16)

where
y := (y1, ..., yn) = ((y1,ν1)ν1∈I1 , ..., (yr,νr)νr∈Ir) .(17)

The proof is a consequence of Lemma 2, Lemma 3 and relation (15).

Definition 6 With each f ∈ Hm,2[a, b] we associate yf ∈ IRn,

yf :=
(
f (νi)(xi)

)
i=1,...,r, νi∈Ii

=
((

f (ν1)(x1)
)

ν1∈I1
, ...,

(
f (νr)(xr)

)
νr∈Ir

)
,(18)

3
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and the corresponding interpolatory set

Uyf
:=

{
u ∈ Hm,2[a, b]|u(νi)(xi) = f (νi)(xi), i = 1, . . . , r, νi ∈ Ii

}
.(19)

Remark 3 The interpolatory set Uyf
is nonempty (f ∈ Uyf

).

Remark 4 Lemma 2 implies that the problem (8), corresponding to Uyf
, has unique

solution for each f ∈ Hm,2[a, b].

Definition 7 The operator S : Hm,2[a, b] → SΛ, where Sf is the unique solution of the
problem (8), corresponding to the set Uyf

, i.e.,∥∥(Sf)(m)
∥∥

2
= inf

u∈Uyf

∥∥u(m)
∥∥

2
,(20)

is called Birkhoff-type natural spline interpolation operator.
The formula

f = Sf + Rf, f ∈ Hm,2[a, b],(21)

is termed Birkhoff-type natural spline interpolation formula, where the operator

R : Hm,2[a, b] → U0

is the remainder operator.

Remark 5 Lemma 4 implies that formula (21) can be written as

f =
r∑

i=1

∑
νi∈Ii

f (νi)(xi)si,νi
+ Rf, f ∈ Hm,2[a, b].(22)

Remark 6 From Lemma 4 we obtain that the Birkhoff-type natural spline interpolation
formula is exact for every s ∈ SΛ, i.e.,

Rs = 0, for all s ∈ SΛ.(23)

Lemma 5 For the remainder operator R we have the expression

(Rf)(x) =

∫ b

a

ϕ(x, t)f (m)(t)dt, f ∈ Hm,2[a, b],(24)

where

ϕ(x, t) := Rx

[
(x− t)m−1

+

(m− 1)!

]
=

(x− t)m−1
+

(m− 1)!
−

r∑
i=1

∑
νi∈Ii

(xi − t)m−1−νi
+

(m− 1− νi)!
si,νi

(25)

(Rx means that R is acting on the variable x).

The proof is obtained from the Peano Theorem, noticing that Rs = 0, s ∈ SΛ, and
Πm−1 ⊂ SΛ.

4
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2 Main result

Let us take a linear functional λ : Hm,2[a, b] → IR which satisfies the condition

λx

(∫ b

a

(x− t)m−1
+

(m− 1)!
v(t)dt

)
=

∫ b

a

λx

(
(x− t)m−1

+

(m− 1)!

)
v(t)dt, for all v ∈ L2[a, b].(26)

(Again λx means that λ is acting on the variable x).
We suppose that the functionals λi,νi

∈ Λ, i = 1, . . . , r, νi ∈ Ii, being of Birkhoff-type,
and the functional λ are linearly independent.

Definition 8 An optimal approximation formula of Sard-type, corresponding to the func-
tional λ and the set Λ = {λi,νi

, i = 1, . . . , r, νi ∈ Ii} of Birkhoff-type functionals, is a
formula of the form

λ(f) =
r∑

i=1

∑
νi∈Ii

A∗
i,νi

f (νi)(xi) + R∗(f),(27)

which satisfies the conditions

i) R∗(ei) = 0, i = 0, . . . ,m− 1,

ii)

∫ b

a

[K∗(t)]2 dt → min,
(28)

where

K∗(t) := R∗x
[
(x− t)m−1

+

(m− 1)!

]
(29)

= λx

[
(x− t)m−1

+

(m− 1)!

]
−

r∑
i=1

∑
νi∈Ii

A∗
i,νi

(xi − t)m−1−νi
+

(m− 1− νi)!
.

Lemma 6 The remainder R∗ : Hm,2[a, b] → IR has the following properties

i) R∗(P ) = 0, for all P ∈ Πm−1,

ii) R∗(f) =

∫ b

a

K∗(t)f (m)(t)dt, f ∈ Hm,2[a, b].

The proof follows directly from Definition 8, taking into account that λ satisfies condition
(26).

Theorem 1 Let us consider the Birkhoff-type natural spline interpolation formula (22),
corresponding to the set Λ, i.e.,

f =
r∑

i=1

∑
νi∈Ii

f (νi)(xi)si,νi
+ Rf, f ∈ Hm,2[a, b].

Applying λ on both sides of this equality we obtain

λ(f) =
r∑

i=1

∑
νi∈Ii

Āi,νi
f (νi)(xi) + R̄(f), f ∈ Hm,2[a, b],(30)

where
Āi,νi

= λ(si,νi
), i = 1, . . . , r, νi ∈ Ii,(31)

5
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R̄(f) = λ(Rf), f ∈ Hm,2[a, b].(32)

Then

R̄(f) =

∫ b

a

K̄(t)f (m)(t)dt,(33)

where

K̄(t) := λx[ϕ(x, t)] = R̄x

[
(x− t)m−1

+

(m− 1)!

]
,(34)

and (30) is the unique optimal approximation formula of Sard-type, corresponding to the
functional λ and the set Λ of Birkhoff-type functionals.

Proof. Lemma 5 and relation (32) imply that

R̄(f) = λ(Rf) = λx

(∫ b

a

ϕ(x, t)f (m)(t)dt

)
.(35)

Taking into account that λ satisfies condition (26), after a rather simple computa-
tion, we obtain

R̄(f) =

∫ b

a

λx[ϕ(x, t)]f (m)(t)dt.(36)

Denoting
K̄(t) := λx[ϕ(x, t)](37)

and using relation (25) we deduce that the equalities (33) and (34) hold.
Let us show that (30) is the unique optimal approximation formula of Sard-type,

i.e.,
i) R̄(ei) = 0, i = 0, . . . ,m− 1,

ii)

∫ b

a

[
K̄(t)

]2
dt → min.

(38)

Relation (33) implies that

R̄(ei) =

∫ b

a

K̄(t)e
(m)
i (t)dt = 0, i = 0, . . . ,m− 1.(39)

Therefore (38) i) holds.
For (38) ii) let us suppose that the optimal approximation formula of Sard-type would

be

λ(f) =
r∑

i=1

∑
νi∈Ii

A∗
i,νi

f (νi)(xi) + R∗(f), f ∈ Hm,2[a, b],(40)

i.e.,
i) R∗(ei) = 0, i = 0, . . . ,m− 1,

ii)

∫ b

a

[K∗(t)]2dt → min,
(41)

where

K∗(t) := R∗x
[
(x− t)m−1

+

(m− 1)!

]
(42)

= λx

[
(x− t)m−1

+

(m− 1)!

]
−

r∑
i=1

∑
νi∈Ii

A∗
i,νi

(xi − t)m−1−νi
+

(m− 1− νi)!
.

6
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Consider the function
σ(t) = K̄(t)−K∗(t)(43)

and observe that by (34) and (42) it may be written as

σ(t) = R̄x

[
(x− t)m−1

+

(m− 1)!

]
−R∗x

[
(x− t)m−1

+

(m− 1)!

]
(44)

= −
r∑

i=1

∑
νi∈Ii

(
Āi,νi

− A∗
i,νi

) (xi − t)m−1−νi
+

(m− 1− νi)!
.

It is obvious that the function σ(t) satisfies the following conditions:

i) σ(m)(t) = 0, for t ∈ (x1, x2) ∪ ... ∪ (xr−1, xr),
ii) σ(t) = 0, for t ∈ [a, x1) ∪ (xr, b],

iii) σ(m−1−µi)(xi − 0) = σ(m−1−µi)(xi + 0), i = 1, . . . , r, µi ∈ {0, . . . ,m− 1} \ Ii.
(45)

Let us consider now a function s ∈ Hm,2[a, b] which satisfies

s(m)(t) = σ(t).(46)

Using (45), (46) and taking into account that s ∈ Hm,2[a, b] we obtain that s verifies
the conditions i), ii), iii) from Lemma 1, hence s ∈ SΛ.

We know from Remark 6 that the remainder must vanish, i.e., Rs = 0, which implies
that

R̄(s) = 0.(47)

Using (47) we conclude that∫ b

a

K̄(t)
[
K̄(t)−K∗(t)

]
dt = 0,(48)

and a direct consequence of this is the relation∫ b

a

[K∗(t)]2 dt =

∫ b

a

[
K̄(t)−K∗(t)

]2
dt +

∫ b

a

[
K̄(t)

]2
dt.(49)

Relation (41) ii) implies that∫ b

a

[K∗(t)]2 dt ≤
∫ b

a

[
K̄(t)

]2
dt,(50)

consequently from (49) we obtain the inequality∫ b

a

[
K̄(t)−K∗(t)

]2
dt ≤ 0.(51)

Using (51) we deduce that σ(t) vanishes identically on [a, b], therefore

Āi,νi
= A∗

i,νi
, i = 1, . . . , r, νi ∈ Ii,(52)

and
R̄(f) = R∗(f).(53)

This concludes the proof of Theorem 1.

7
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Cluj-Napoca 1996.
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Abstract. We give a representation for divided differences of monomials in terms
of exponential complete Bell polynomials. As an application we derive the complete
asymptotic expansion for a sequence of positive linear operators approximating
continuous functions on a finite interval.

Keywords: divided difference, asymptotic expansion, Bell polynomials

1. Introduction

2. A representation for divided differences of monomials

Let z0, . . . , zn be pairwise different points of the complex plane and
f : G→ C be an arbitrary function whose domain G contains all zj
(j = 0, . . . , n) . Denote by [z0, . . . , zn; f ] the divided difference of the
function f on the knots z0, . . . , zn, given by

[z0, . . . , zn; f ] =
n∑

j=0

f (zj)

(zj − z0) . . . (zj − zj−1) (zj − zj+1) . . . (zj − zn)
.

Consider the monomials ej : C→ C, ej (z) = zj (j = 0, 1, . . .) . It is
obvious that [z0, . . . , zn; ej ] = 0 (j = 0, . . . , n− 1) and [z0, . . . , zn; en] =
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1. In the case j > n, using the identity
[

z0, . . . , zn;
1

z − ∙

]

=
1

(z − z0) . . . (z − zn)
, (1)

Popoviciu [17] proved the formula

[z0, . . . , zn; en+r] =
∑
zk00 . . . z

kn
n , (2)

where the sum runs over all k0, . . . , kn ∈ {0, 1, . . . , r} with k0+∙ ∙ ∙+kn =
r. Formula (2) was rediscovered in 1981 by Neuman [14].
Consider a triangular matrix of complex knots (zn,k) (k = 0, . . . , n;

n = 0, 1, . . .).
In 1995 Ivan and Raşa [11] obtained the first term of the asymp-

totic expansion for [zn,0, . . . , zn,n; en+r] in the case when r is even and
the knots zn,k are equidistant real numbers in [−1, 1] satisfying the
condition

zn,n−k = −zn,k (n = 0, 1, . . . ; k = 0, 1, . . . , n). (3)

A more general system of knots is considered in [12]. In this paper
we give a representation of [zn,0, . . . , zn,n; en+r] in terms of exponential
complete Bell polynomials without any restriction on the knots zn,k.
Ivan and Raşa [11, 12] used the estimation obtained for [zn,0, . . .,

zn,n; en+r] in order to study the asymptotic behaviour of the operators
Ln : C [−a− 1, a+ 1]→ C [−a, a] ,

Ln(f ;x) = n![x+ h0, . . . , x+ hn; f
(−n)], (4)

a > 0, n = 1, 2, . . . , where hi = −1 + 2in , i = 0, . . . , n, and f
(−n) is an

n-th antiderivative of f.
The operators (4) were considered by Zwick [25] and Pečarić and

Raşa [20]. They also can be given by the n-fold integral

Ln (f ;x) = 2
−n

x+1∫

x−1

. . .

x+1∫

x−1

f

(
t1 + ∙ ∙ ∙+ tn

n

)

dt1 . . . dtn [21].

The Ln are positive linear operators of probabilistic type and Bernstein-
Schnabl type operators (cf. [21]). Various inequalities involving Lnf
have been studied in [18, 16, 25, 15, 19].
As positive operators, Ln have been studied in [20, 21]. For f ∈

C [−a− 1, a+ 1] , the operators Ln verify:

‖Lnf−f‖ ≤ 2ω
(

f,
1
√
3n

)

, ‖Lnf−f‖ ≤ 2.25ω2

(

f,
1
√
3n

)

, [20, 12]
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where ω and ω2 denotes the usual and the second order modulus of
continuity, respectively. Consequently, Eq. (4) defines a sequence of
approximation operators.
If f ∈ C [−a− 1, a+ 1] admits a second derivative at x ∈ [−a, a] ,

the Voronovskaja-type result

lim
n→∞

n (Ln (f ;x)− f (x)) =
f (2) (x)

6
(5)

is valid (see [9, 3.32]).
In [11, 12] Ivan and Raşa gave a more refined analysis of the con-

vergence behaviour of the operators Ln. They obtained the asymptotic
relation

Ln (f ;x) = f (x)+
f (2) (x)

6n
+
f (4) (x)

72n2
+
5f (6) (x)− 36f (4) (x)

6480n3
+o

(
n−3

)

as n→∞.
In [6] the complete asymptotic expansion for the operators Ln in the

case of equidistant knots is obtained in terms of the central factorial
numbers of first and second kind.
The purpose of this paper is to derive the complete asymptotic

expansion for the operators Ln when the condition of equidistance of
the knots is dropped out. We obtain the expansion

Ln (f ;x) ∼ f(x) +
∞∑

j=1

cj(f ;x)

(n+ 1)j
(n→∞), (6)

provided f ∈ C [−a− 1, a+ 1] admits derivatives of sufficiently high
order at x ∈ [−a, a] . By xm = x (x+ 1) . . . (x+m− 1), x0 = 1, we
denote the rising factorial and xm = x (x− 1) . . . (x−m+ 1), x0 = 1
denotes the falling factorial.
Formula (6) means that, for all m = 1, 2, . . ., there holds

Ln (f ;x) = f(x) +
m∑

j=1

cj(f ;x)

(n+ 1)j
+ o(n−m) (n→∞).

In the special case m = 1 one obtains the Voronovskaja-type result (5)
with c1(f ;x) = f

(2)(x)/6. All coefficients cj(f ;x) are calculated explic-
itly in terms of exponential Bell polynomials. Recall that the (exponen-
tial) partial Bell polynomials are the polynomials Bn,k = Bn,k(x1, x2, . . .)
in an infinite number of variables x1, x2, . . . , defined by the formal
double series expansion:

exp



u
∑

m≥1

xm
tm

m!



 =
∑

n,k≥0

Bn,k
tn

n!
uk [7, p.133,[3a]].
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The (exponential) complete Bell polynomialsYr (x1, x2, . . .) are defined
by

exp




∑

m≥1

xm
zm

m!



 = 1 +
∑

r≥1

Yr (x1, x2, . . .)
zr

r!
. (7)

In particular, Y0 = 1. Properties of Bell polynomials can be found in
[7, pp. 133–137].
We mention that analogous results for the Bernstein-Kantorovich

operators, the Meyer-König and Zeller operators and the operators of
Butzer, Bleimann and Hahn can be found in [4, 1, 3, 2, 5].

3. A representation for divided differences of monomials

Throughout this section we put

sm =
n∑

k=0

zmk (m = 1, 2, . . .) .

We shall prove the following representation formula for [z0, . . .,
zn; en+r].

THEOREM 3.1. Let r ∈ N0, n ∈ N and z0, . . . , zn ∈ C. Then, we have
the representation

[z0, . . . , zn; en+r] =
1

r!
Yr (0!s1, 1!s2, . . .) .

Proof. Let g be a function analytic in a simply connected region D.
Let C be a simple, closed, rectifiable curve that lies in D and contains
the points z0, . . . , zn in its interior. Using the Cauchy integral formula
and Eq. (1) we obtain the well-known formula

[z0, . . . , zn; g] =
1

2πi

∮

C

g (z)

(z − z0) . . . (z − zn)
dz

(see, e.g., [8, p. 67]). For R > max0≤j≤n |zj |, there holds

[z0, . . . , zn; en+r] =
1
2πi

∮

|z|=R

zr−1

(1− z0z )...(1−
zn
z )
dz

= 1
2πi

∮

|z|=R−1

z−r−1

(1−z0z)...(1−znz)
dz. (8)

Since |zjz| < 1 on the curve |z| = R−1, we have
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log
1

(1− z0z) . . . (1− znz)

= −
n∑

j=0

log (1− zjz) =
n∑

j=0

∞∑

k=1

1

k
(zjz)

k =
∞∑

k=1

sk
k
zk.

Note that the logarithm is univalent because [(1 − z0z) . . . (1− znz)]
−1

is contained in the right half-plane for |z| = R−1, if R is sufficiently
large. Thus, application of Eq. (7) implies

[(1− z0z) . . . (1− znz)]
−1

= exp




∑

m≥1

(m− 1)!sm
zm

m!



 = 1 +
∑

k≥1

Yk (0!s1, 1!s2, . . .)
zk

k!
.

The latter power series expansion is convergent for |z| ≤ R−1.
Inserting it into Eq. (8) yields

[z0, . . . , zn; en+r]

=
1

2πi

∞∑

k=0

1

k!
Yk (0!s1, 1!s2, . . .)

∮

|z|=R−1

zk−r−1 dz

=
1

r!
Yr (0!s1, 1!s2, . . .) .

�
For the convenience of the reader we explicitly calculate the exact

expressions of [z0, . . . , zn; en+r] for r = 0, . . . , 5.

[z0, . . . , zn; en+1] = s1

[z0, . . . , zn; en+2] =
(
s2 + s

2
1

)
/2

[z0, . . . , zn; en+3] =
(
2s3 + 3s2s1 + s

3
1

)
/6

[z0, . . . , zn; en+4] =
(
6s4 + 8s3s1 + 3s

2
2 + 6s2s

2
1 + s

4
1

)
/24

[z0, . . . , zn; en+5] = (24s5 + 30s4s1 + 20s3s2 + 20s3s
2
1

+15s22s1 + 10s2s
3
1 + s

5
1)/120

Further formulae for [z0, . . . , zn; en+r] can be constructed by using
the well-known formula

Yr (x1, x2, . . .) =
r∑

k=0

Br,k (x1, x2, . . .) (9)
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(see, e.g., [7, Formula (3c), p. 134]). We note that the partial exponen-
tial Bell polynomials Bn,k (x1, x2, . . .) are listed in [7, p. 307–308] for
all n, k ≤ 12.

4. An asymptotic expansion for divided differences of
monomials

In this section we obtain a complete asymptotic expansion for [zn,0,
. . . , zn,n; en+r] as n→∞, for all r ∈ N0.
Throughout this paper we put

Sn,m =
1

n+ 1

n∑

k=0

zmn,k (m,n = 0, 1, . . .) . (10)

In [12] Ivan and Raşa proved the following result.

THEOREM 4.1. Assume that the triangular matrix of real knots (xn,k)
satisfies the conditions

−1 ≤ xn,0 < xn,1 < ∙ ∙ ∙ < xn,n ≤ 1 (n = 0, 1, . . .)

and
xn,n−k = −xn,k (k = 0, . . . , n; n = 0, 1, . . .) . (11)

If the limit limn→∞ Sn,2 =: 2λ exists, then, for all k = 0, 1, . . . , we have
the asymptotic relation

lim
n→∞

n−k [xn,0, . . . , xn,n; en+2k] =
λk

k!
.

We will generalize the above theorem in three directions. Firstly, we
consider a fairly general system of complex knots (zn,k). Secondly, we
deal with [zn,0, . . . , zn,n; en+r], for all r ∈ N0.
The next theorem presents an explicit expression for [zn,0, . . . , zn,n;

en+r] revealing its asymptotic behaviour as n tends to infinity (r = 0, 1,
. . .).

THEOREM 4.2. Let (zn,k) be a triangular matrix of complex knots
(zn,k) such that, for all n = 0, 1, . . . , the numbers zn,0, . . . , zn,n are
pairwise different. Suppose that

Sn,1 = 0 (n = 0, 1, . . .) (12)

and
Sn,m = O (1) (n→∞) for all m = 2, 3, . . . , (13)
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where Sn,m is as defined in (10). Then, for all r = 0, 1, . . . , we have the
asymptotic relation

[zn,0, . . . , zn,n; en+r] =

br/2c∑

k=0

(n+ 1)k

(r − k)!
Br−k,k

(
1!

2
Sn,2,

2!

3
Sn,3, . . .

)

.

(14)

REMARK 4.3. Note that condition (13) guarantees

Br−k,k

(
1!

2
Sn,2,

2!

3
Sn,3, . . .

)

= O (1) (n→∞) .

Therefore, Eq. (14) yields [zn,0, . . . , zn,n; en+r] = O
(
nbr/2c

)
as n→∞.

Proof of Theorem 4.2. By Theorem 3.1, Eq. (9) and the fact that
the partial exponential Bell polynomial Br,k is homogeneous of degree
k, we obtain the representation

[zn,0, . . . , zn,n; en+r] =
1

r!

r∑

k=0

(n+ 1)kBr,k (0, 1!Sn,2, 2!Sn,3, . . .) .

Using properties of the partial exponential Bell polynomials (see, e.g.,
[7, Formula (3l’), p. 136]) it follows Eq. (14). �
The following corollary contains more explicit formulae which follow

from the exact expression

Br,k (x1, x2, . . .) = r!
∑ r∏

j=1

x
νj
j

νj ! (j!)
νj ,

where the summation takes place over all integers ν1, ν2, . . . ≥ 0, such
that ν1 + 2ν2 + 3ν3 + ∙ ∙ ∙ = r and ν1 + ν2 + ν3 + ∙ ∙ ∙ = k (see, e.g., [7,
Theorem A,p. 134]).

COROLLARY 4.4. Under the conditions of Theorem 4.2, we have,
for r = 4, 5, . . . , the asymptotic relations

(n+ 1)−r [zn,0, . . . , zn,n; en+2r]

=
Srn,2
2rr!

+

(
Sr−2n,2 Sn,4

2r (r − 2)!
+

Sr−3n,2 S
2
n,3

9 ∙ 2r−2 (r − 3)!

)

(n+ 1)−1 +O
(
n−2

)
,

and

(n+ 1)−r [zn,0, . . . , zn,n; en+2r+1]
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=
Sr−1n,2 Sn,3

3 ∙ 2r−1 (r − 1)!

+

(
Sr−2n,2 Sn,5

5 ∙ 2r−2 (r − 2)!
+
Sr−3n,2 Sn,3Sn,4

3 ∙ 2r−1 (r − 3)!
+

Sr−4n,2 S
3
n,3

34 ∙ 2r−3 (r − 4)!

)

(n+ 1)−1

+O
(
n−2

)

as n→∞.

REMARK 4.5. Both formulae of the corollary are valid also for r =
0, 1, 2, 3 if the quantities Skn,m are interpreted to be 0 if k < 0. More
precisely, we have

[zn,0, . . . , zn,n; en+r] =






1 (r = 0) ,
0 (r = 1) ,
Sn,2(n+ 1)/2 (r = 2) ,
Sn,3(n+ 1)/3 (r = 3) ,
S2n,2(n+ 1)

2/8 + Sn,4(n+ 1)/4 (r = 4) ,
Sn,2Sn,3(n+ 1)

2/6 + Sn,5(n+ 1)/5 (r = 5) .

REMARK 4.6. The result of Ivan and Raşa (Theorem 4.1) follows
from Corollary 4.4 since condition (11) immediately implies (12).More-
over, (13) is valid if all knots satisfy |zn,k| ≤ 1.

5. Application to a positive linear operator

Let
−1 ≤ zn,0 < zn,1 < ∙ ∙ ∙ < zn,n ≤ 1 (n = 0, 1, . . .) .

Obviously, we then have |Sn,m| ≤ 1, for all n,m = 0, 1, . . . , (cf. Re-
mark 4.6).
Let a > 0 be a real number. For n = 1, 2, . . . , let the operators

Ln : C [−a− 1, a+ 1]→ C [−a, a] be given by

Ln(f ;x) = n![x+ zn,0, . . . , x+ zn,n; f
(−n)] (−a ≤ x ≤ a) , (15)

where f (−n) is an n-th antiderivative of f.We derive a complete asymp-
totic expansion for the operators Ln as n→∞.
For q = 1, 2, . . . , and fixed x ∈ [−a, a] , we define K [q] (x) to be the

class of all functions f ∈ C [−a− 1, a+ 1] which are q-times differen-
tiable at x.
In the following proposition we derive an asymptotic expression for

Ln(f ;x) as n→∞.
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PROPOSITION 5.1. Let q ∈ N and x ∈ [−a, a] . Suppose that Sn,1 =
0 (n = 0, 1, . . .). Then, for f ∈ K [2q](x), the operators Ln satisfy the
asymptotic relation

Ln(f ;x)

= f(x) +
2q∑

r=1

f (r) (x)

(n+ 1)r

br/2c∑

k=0

(n+ 1)k

(r − k)!
Br−k,k

(
1!

2
Sn,2,

2!

3
Sn,3, . . .

)

+o
(
n−q

)

as n→∞, where Sn,m is as defined in Eq. (10).

For the convenience of the reader we list an explicit expression
approximating Ln(f ;x) of order o

(
n−3

)
:

Ln(f ;x)

= f(x) +
Sn,2
2(n+ 2)

f (2) (x) +
Sn,3

3(n+ 2)(n+ 3)
f (3) (x)

+
(n− 2)S2n,2 + 2Sn,4
48(n+ 1)(n+ 2)(n+ 3)

f (4) (x) +
Sn,2Sn,3

6(n+ 1)(n+ 2)(n+ 3)
f (5) (x)

+
S3n,2

48(n+ 1)(n+ 2)(n+ 3)
f (6) (x) + o(n−3) (n→∞) .

In the following theorem we present the complete asymptotic expan-
sion for the operators Ln as a reciprocal factorial series.

THEOREM 5.2. (Complete asymptotic expansion for the operators
Ln). Let q ∈ N and x ∈ [−a, a] . Suppose that

Sn,1 = 0 (n = 0, 1, . . .) ,

where Sn,m is as defined in (10). Then, for f ∈ K [2q](x), the operators
Ln possess the asymptotic expansion

Ln(f ;x) = f(x) +
q∑

j=1

cj (f ;x)

(n+ 1)j
+ o

(
n−q

)

as n→∞, where

cj (f ;x) =
2j∑

r=j

f (r) (x)
j∑

k=b(r+1)/2c

1

k!
Br−k,k

(
1!

2
Sn,2,

2!

3
Sn,3, . . .

)

×
j−k∑

i=0

(
r − k
i

)

σ
r−j
r−k−i (1− r)

i

and σij denote the Stirling numbers of the second kind.
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Recall that the Stirling numbers of the second kind are defined by
the equations

xj =
j∑

i=0

σijx
i (j = 0, 1, . . .) . (16)

For the convenience of the reader we list the explicit expressions for
the initial coefficients:

c0 (f ;x) = f(x)

c1 (f ;x) =
1

2
Sn,2f

(2) (x)

c2 (f ;x) =
1

24

(
−12Sn,2f

(2) (x) + 8Sn,3f
(3) (x) + 3S2n,2f

(4) (x)
)

c3 (f ;x) =
1

48

(
− 32Sn,3f

(3) (x) +
(
−30S2n,2 + 12Sn,4

)
f (4) (x)

+8Sn,2Sn,3f
(5) (x) + S3n,2f

(6) (x)
)

In the proof we will use a general approximation theorem for positive
linear operators due to Sikkema [24, Theorem 1 and 2].

LEMMA 5.3 (Sikkema). For q ∈ N and fixed x ∈ [−a, a], let An :
K [2q] (x) → C [−a, a] be a sequence of positive linear operators. If, for
s = 0, . . . , 2q + 2,

An
(
(∙ − x)2s ;x

)
= O

(
n−b(s+1)/2c

)
(n→∞),

then we have, for each f ∈ K [2q] (x),

An (f ;x) =
2q∑

s=0

f (s) (x)

s!
An ((∙ − x)

s ;x) + o
(
n−q

)
(n→∞). (17)

Furthermore, if f ∈ K [2q+2] (x), the term o (n−q) in Eq. (17) can be

replaced by O
(
n−(q+1)

)
.

Proof of Proposition 5.1. By the definition of the operators Ln we
obtain for their central moments the representation

Ln((∙ − x)
r ;x) =

n!r!

(n+ r)!
[x+ zn,0, . . . , x+ zn,n; (∙ − x)

n+r]

=
n!r!

(n+ r)!
[zn,0, . . . , zn,n; en+r]
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and Theorem 4.2 yields

Ln((∙ − x)
r ;x) =

n!r!

(n+ r)!

br/2c∑

k=0

(n+ 1)k

(r − k)!
Br−k,k

(
1!

2
Sn,2,

2!

3
Sn,3, . . .

)

which implies Ln((∙ − x)
r ;x) = O

(
n−b(r+1)/2c

)
(n→∞; r = 0, 1, . . .) .

Therefore, we can apply Lemma 5.3 which completes the proof of the
proposition. �

Proof of Theorem 5.2. By Proposition 5.1, we have

Ln(f ;x)

=
2q∑

r=0

f (r) (x)

(n+ 1)r

br/2c∑

k=0

(n+ 1)k

(r − k)!
Br−k,k

(
1!

2
Sn,2,

2!

3
Sn,3, . . .

)

(18)

+o
(
n−q

)
(n→∞).

Application of Eq. (16) yields

(n+ 1)k =
k∑

i=0

(
k

i

)

(1− r)k−i (n+ r)i

=
k∑

j=0

(n+ r)j
k∑

i=j

(
k

i

)

σ
j
i (1− r)

k−i .

Inserting this into (19) and using

(n+ r)j

(n+ 1)r
=

1

(n+ 1)r−j

yields after some manipulations the assertion of Theorem 5.2. �

We close this section by considering special schemes of knots. In the
case of Chebyshev’s knots

zn,k = cos

(
2k + 1

2(n+ 1)
π

)

(k = 0, . . . , n; n = 0, 1, . . .)

we have

Sn,2m =
1

4m

(
2m

m

)

, Sn,2m+1 = 0 (m,n = 0, 1, . . .) .

Thus, we obtain the asymptotic expansion

Ln(f ;x) = f(x) +
f (2) (x)

4(n+ 2)
+

f (4) (x)

32(n+ 2)(n+ 3)

+
f (6) (x)

384(n+ 2)(n+ 3)(n+ 4)
+ o

(
n−3

)
(n→∞) .
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In the case of equidistant knots

zn,k = −1 +
2k

n
(k = 0, . . . , n; n = 0, 1, . . .)

we have

Sn,2 =
n+ 2

3n
, Sn,4 =

n+ 2

15n3

(
3n2 + 6n− 4

)
, Sn,2m+1 = 0,

(m,n = 0, 1, . . .) . Thus, we obtain after simple calculations the asymp-
totic relation

Ln(f ;x) = f(x) +
f (2) (x)

6n
+
(60 + 80n+ 33n2 + 5n3)

360n2 (n+ 1) (n+ 2) (n+ 3)
f (4) (x)

+
f (6) (x)

1296(n+ 1)(n+ 2)(n+ 3)
+ o

(
n−3

)
(n→∞) ,

giving back the result of Ivan and Raşa [11] (see also [6]).
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Math. Soc. Roumaine Sci. 42(1), 65–78.

18. Popoviciu, T.: 1967, Remarques sur le reste de certaines formules
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On Ostrowski Like Integral Inequality for the Čebyšev
Difference and Applications

S.S. Dragomir
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MCMC 8001, Victoria, Australia

Email : sever@csm.vu.edu.au

Abstract. Some integral inequalities similar to the Ostrowski’s result for

Čebyšev’s difference and applications for perturbed generalized Taylor’s for-
mula are given.

Key Words: Ostrowski’s inequality, Čebyšev’s difference, Taylor’s formula.

AMS Subj. Class.: Primary 26D15; Secondary 26D10

1. Introduction

In [?], A. Ostrowski proved the following inequality of Grüss type for the dif-
ference between the integral mean of the product and the product of the integral
means, or Čebyšev’s difference, for short:

(1.1)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ 1

8
(b− a) (M −m) ‖f ′‖[a,b],∞

provided g is measurable and satisfies the condition

(1.2) −∞ < m ≤ g (x) ≤ M < ∞ for a.e. x ∈ [a, b] ;

and f is absolutely continuous on [a, b] with f ′ ∈ L∞ [a, b] .
The constant 1

8 is best possible in (??) in the sense that it cannot be replaced
by a smaller constant.

In this paper we establish some similar results. Applications for perturbed gen-
eralized Taylor’s formulae are also provided.

2. Integral Inequalities

The following result holds.
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Theorem 1. Let f : [a, b] → K (K = R, C) be an absolutely continuous function
with f ′ ∈ L∞ [a, b] and g ∈ L1 [a, b] . Then one has the inequality

(2.1)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ ‖f ′‖[a,b],∞ · 1

b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx.

The inequality (??) is sharp in the sense that the constant c = 1 in the left hand
side cannot be replaced by a smaller one.

Proof. We observe, by simple computation, that one has the identity

T (f, g) :=
1

b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx(2.2)

=
1

b− a

∫ b

a

[
f (x)− f

(
a + b

2

)][
g (x)− 1

b− a

∫ b

a

g (y) dy

]
dx.

Since f is absolutely continuous, we have∫ x

a+b
2

f ′ (t) dt = f (x)− f

(
a + b

2

)
and thus, the following identity that is in itself of interest,

(2.3) T (f, g) =
1

b− a

∫ b

a

(∫ x

a+b
2

f ′ (t) dt

)[
g (x)− 1

b− a

∫ b

a

g (y) dy

]
dx

holds.
Since∣∣∣∣∣
∫ x

a+b
2

f ′ (t) dt

∣∣∣∣∣ ≤
∣∣∣∣x− a + b

2

∣∣∣∣ ess sup
t∈[x, a+b

2 ]
(t∈[ a+b

2 ,x])

|f ′ (t)| =
∣∣∣∣x− a + b

2

∣∣∣∣ ‖f ′‖[x, a+b
2 ],∞

for any x ∈ [a, b] , then taking the modulus in (??), we deduce

|T (f, g)| ≤ 1
b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣ ‖f ′‖[x, a+b
2 ],∞

∣∣∣∣∣g (x)− 1
b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx

≤ sup
x∈[a,b]

{
‖f ′‖[x, a+b

2 ],∞
} 1

b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx

= max
{
‖f ′‖[a, a+b

2 ],∞ , ‖f ′‖[ a+b
2 ,b],∞

}
× 1

b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx

= ‖f ′‖[a,b],∞ · 1
b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx

and the inequality (??) is proved.
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To prove the sharpness of the constant c = 1, assume that (??) holds with a
positive constant D > 0, i.e.,

(2.4)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ D ‖f ′‖[a,b],∞ · 1

b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx.

If we choose K = R, f (x) = x− a+b
2 , x ∈ [a, b] and g : [a, b] → R,

g (x) =

 −1 if x ∈
[
a, a+b

2

]
1 if x ∈

(
a+b
2 , b

]
,

then

1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

=
1

b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣ dx =
b− a

4
,

1
b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx =
b− a

4
,

‖f ′‖[a,b],∞ = 1

and by (??) we deduce

b− a

4
≤ D · b− a

4
,

giving D ≥ 1, and the sharpness of the constant is proved. �

The following corollary may be useful in practice.

Corollary 1. Let f : [a, b] → K be an absolutely continuous function on [a, b] with
f ′ ∈ L∞ [a, b] . If g ∈ L∞ [a, b] , then one has the inequality:

(2.5)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ 1

4
(b− a) ‖f ′‖[a,b],∞

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],∞

.

The constant 1
4 is sharp in the sense that it cannot be replaced by a smaller constant.
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Proof. Obviously,

1
b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx(2.6)

≤

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],∞

· 1
b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣ dx

=
b− a

4

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],∞

.

Using (??) and (??) we deduce (??).
Assume that (??) holds with a constant E > 0 instead of 1

4 , i.e.,

(2.7)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ E (b− a) ‖f ′‖[a,b],∞

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],∞

.

If we choose the same functions as in Theorem ??, then we get from (??)
b− a

4
≤ E (b− a) ,

giving E ≥ 1
4 . �

Corollary 2. Let f be as in Theorem ??. If g ∈ Lp [a, b] where 1
p + 1

q = 1, p > 1,

then one has the inequality:∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣(2.8)

≤ (b− a)
1
q

2 (q + 1)
1
q

‖f ′‖[a,b],∞

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],p

.

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. By Hölder’s inequality for p > 1, 1
p + 1

q = 1, one has

1
b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx(2.9)

≤ 1
b− a

(∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣q dx

) 1
q
(∫ b

a

∣∣∣∣∣g (x)− 1
b− a

∫ b

a

g (y) dy

∣∣∣∣∣
p

dx

) 1
p

=
1

b− a

[
(b− a)q+1

2q (q + 1)

] 1
q
(∫ b

a

∣∣∣∣∣g (x)− 1
b− a

∫ b

a

g (y) dy

∣∣∣∣∣
p

dx

) 1
p

=
(b− a)

1
q

2 (q + 1)
1
q

(∫ b

a

∣∣∣∣∣g (x)− 1
b− a

∫ b

a

g (y) dy

∣∣∣∣∣
p

dx

) 1
p

.

Using (??) and (??), we deduce (??).

Dragomir116



Now, if we assume that the inequality (??) holds with a constant F > 0 instead
of 1

2 and choose the same functions f and g as in Theorem ??, we deduce

b− a

4
≤ F

(q + 1)
1
q

(b− a) , q > 1

giving F ≥ (q+1)
1
q

4 for any q > 1. Letting q → 1+, we deduce F ≥ 1
2 , and the

corollary is proved. �

Finally, we also have

Corollary 3. Let f be as in Theorem ??. If g ∈ L1 [a, b] , then one has the in-
equality

(2.10)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ 1

2
‖f ′‖[a,b],∞

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],1

.

Proof. Since

1
b− a

∫ b

a

∣∣∣∣x− a + b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx

≤ sup
x∈[a,b]

∣∣∣∣x− a + b

2

∣∣∣∣
∥∥∥∥∥g − 1

b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],1

=
b− a

2

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],1

the inequality (??) follows by (??). �

Remark 1. Similar inequalities may be stated for weighted integrals. These in-
equalities and their applications in connection to Schwartz’s inequality will be con-
sidered in [?].

3. Applications to Taylor’s Formula

In the recent paper [?], M. Matić, J. E. Pečarić and N. Ujević proved the following
generalized Taylor formula.

Theorem 2. Let {Pn}n∈N be a harmonic sequence of polynomials, that is, P ′
n (t) =

Pn−1 (t) for n ≥ 1, n ∈ N, P0 (t) = 1, t ∈ R. Further, let I ⊂ R be a closed interval
and a ∈ I. If f : I → R is a function such that for some n ∈ N, f (n) is absolutely
continuous, then

(3.1) f (x) = T̃n (f ; a, x) + R̃n (f ; a, x) , x ∈ I,

where

(3.2) T̃n (f ; a, x) = f (a) +
n∑

k=1

(−1)k+1
[
Pk (x) f (k) (x)− Pk (a) f (k) (a)

]
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and

(3.3) R̃n (f ; a, x) = (−1)n
∫ x

a

Pn (t) f (n+1) (t) dt.

For some particular instances of harmonic sequences, they obtained the following
Taylor-like expansions:

(3.4) f (x) = T (M)
n (f ; a, x) + R(M)

n (f ; a, x) , x ∈ I,

where

T (M)
n (f ; a, x) = f (a) +

n∑
k=1

(x− a)k

2kk!

[
f (k) (a) + (−1)k+1

f (k) (x)
]
,(3.5)

R(M)
n (f ; a, x) =

(−1)n

n!

∫ x

a

(
t− a + x

2

)n

f (n+1) (t) dt;(3.6)

and

(3.7) f (x) = T (B)
n (f ; a, x) + R(B)

n (f ; a, x) , x ∈ I,

where

T (B)
n (f ; a, x) = f (a) +

x− a

2
[f ′ (x) + f ′ (a)](3.8)

−
[n
2 ]∑

k=1

(x− a)2k

(2k)!
B2k

[
f (2k) (x)− f (2k) (a)

]
,

and [r] is the integer part of r. Here, B2k are the Bernoulli numbers, and

(3.9) R(B)
n (f ; a, x) = (−1)n (x− a)n

n!

∫ x

a

Bn

(
t− a

x− a

)
f (n+1) (t) dt,

where Bn (·) are the Bernoulli polynomials, respectively.
In addition, they proved that

(3.10) f (x) = T (E)
n (f ; a, x) + R(E)

n (f ; a, x) , x ∈ I,

where

T (E)
n (f ; a, x)(3.11)

= f (a) + 2
[n+1

2 ]∑
k=1

(x− a)2k−1 (4k − 1
)

(2k)!
B2k

[
f (2k−1) (x) + f (2k−1) (a)

]
and

(3.12) R(E)
n (f ; a, x) = (−1)n (x− a)n

n!

∫ x

a

En

(
t− a

x− a

)
f (n+1) (t) dt,

where En (·) are the Euler polynomials.
In [?], S.S. Dragomir was the first author to introduce the perturbed Taylor

formula

(3.13) f (x) = Tn (f ; a, x) +
(x− a)n+1

(n + 1)!

[
f (n); a, x

]
+ Gn (f ; a, x) ,

where

(3.14) Tn (f ; a, x) =
n∑

k=0

(x− a)k

k!
f (k) (a)
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and [
f (n); a, x

]
:=

f (k) (x)− f (k) (a)
x− a

;

and had the idea to estimate the remainder Gn (f ; a, x) by using Grüss and Čebyšev
type inequalities.

In [?], the authors generalized and improved the results from [?]. We mention
here the following result obtained via a pre-Grüss inequality (see [?, Theorem 3]).

Theorem 3. Let {Pn}n∈N be a harmonic sequence of polynomials. Let I ⊂ R be a
closed interval and a ∈ I. Suppose f : I → R is as in Theorem ??. Then for all
x ∈ I we have the perturbed generalized Taylor formula:

f (x) = T̃n (f ; a, x) + (−1)n [Pn+1 (x)− Pn+1 (a)]
[
f (n); a, x

]
(3.15)

+G̃n (f ; a, x) .

For x ≥ a, the remainder G̃ (f ; a, x) satisfies the estimate

(3.16)
∣∣∣G̃n (f ; a, x)

∣∣∣ ≤ x− a

2

√
T (Pn, Pn) [Γ (x)− γ (x)] ,

provided that f (n+1) is bounded and

(3.17) Γ (x) := sup
t∈[a,x]

f (n+1) (t) < ∞, γ (x) := inf
t∈[a,x]

f (n+1) (t) > −∞,

where T (·, ·) is the Čebyšev functional on the interval [a, x], that is, we recall

(3.18) T (g, h) :=
1

x− a

∫ x

a

g (t) h (t) dt− 1
x− a

∫ x

a

g (t) dt · 1
x− a

∫ x

a

h (t) dt.

In [?], the author has proved the following result improving the estimate (??).

Theorem 4. Assume that {Pn}n∈N is a sequence of harmonic polynomials and
f : I → R is such that f (n) is absolutely continuous and f (n+1) ∈ L2 (I). If x ≥ a,
then we have the inequality∣∣∣G̃n (f ; a, x)

∣∣∣(3.19)

≤ (x− a) [T (Pn, Pn)]
1
2

[
1

x− a

∥∥∥f (n+1)
∥∥∥2

2
−
([

f (n); a, x
])2
] 1

2

(
≤ x− a

2
[T (Pn, Pn)]

1
2 [Γ (x)− γ (x)] , if f (n+1) ∈ L∞ [a, x]

)
,

where ‖·‖2 is the usual Euclidean norm on [a, x], i.e.,∥∥∥f (n+1)
∥∥∥

2
=
(∫ x

a

∣∣∣f (n+1) (t)
∣∣∣2 dt

) 1
2

.

Remark 2. If f (n+1) is unbounded on (a, x) but f (n+1) ∈ L2 (a, x), then the first
inequality in (??) can still be applied, but not the Matić-Pečarić-Ujević result (??)
which requires the boundedness of the derivative f (n+1).

The following corollary [?] improves Corollary 3 of [?], which deals with the
estimation of the remainder for the particular perturbed Taylor-like formulae (??),
(??) and (??).
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Corollary 4. With the assumptions in Theorem ??, we have the following inequal-
ities ∣∣∣G̃(M)

n (f ; a, x)
∣∣∣ ≤ (x− a)n+1

n!2n
√

2n + 1
× σ

(
f (n+1); a, x

)
,(3.20)

∣∣∣G̃(B)
n (f ; a, x)

∣∣∣ ≤ (x− a)n+1

[
|B2n|
(2n)!

] 1
2

× σ
(
f (n+1); a, x

)
,(3.21) ∣∣∣G̃(E)

n (f ; a, x)
∣∣∣(3.22)

≤ 2 (x− a)n+1

(4n+1 − 1
)
|B2n+2|

(2n + 2)!
−

[
2
(
2n+2 − 1

)
Bn+2

(n + 1)!

]2
 1

2

×σ
(
f (n+1); a, x

)
,

and

(3.23) |Gn (f ; a, x)| ≤ n (x− a)n+1

(n + 1)!
√

2n + 1
× σ

(
f (n+1); a, x

)
,

where, as in [?],

G̃(M)
n (f ; a, x) = f (x)− TM

n (f ; a, x)− (x− a)n+1 [1 + (−1)n]
(n + 1)!2n+1

[
f (n); a, x

]
;

G̃(B)
n (f ; a, x) = f (x)− TB

n (f ; a, x) ;

G̃(E)
n (f ; a, x) = f (x)−

4 (−1)n (x− a)n+1 (2n+2 − 1
)
Bn+2

(n + 2)!

[
f (n); a, x

]
,

Gn (f ; a, x) is as defined by (??),

(3.24) σ
(
f (n+1); a, x

)
:=
[

1
x− a

∥∥∥f (n+1)
∥∥∥2

2
−
([

f (n+1); a, x
])2
] 1

2

,

and x ≥ a, f (n+1) ∈ L2 [a, x].

Note that for all the examples considered in [?] and [?] for f , the quantity
σ
(
f (n+1); a, x

)
can be completely computed and then those particular inequalities

may be improved accordingly. We omit the details.
Now, observe that (for x > a)

G̃n (f ; a, x) = (−1)n (x− a) Tn

(
Pn, f (n+1); a, x

)
,

where Tn (·, ·; a, x) is the Čebyšev’s functional on [a, x] , i.e.,

Tn

(
Pn, f (n+1); a, x

)
=

1
x− a

∫ x

a

Pn (t) f (n+1) (t) dt

− 1
x− a

∫ x

a

Pn (t) dt · 1
x− a

∫ x

a

f (n+1) (t) dt

=
1

x− a

∫ x

a

Pn (t) f (n+1) (t) dt− [Pn+1; a, x]
[
f (n); a, x

]
.

In what follows we will use the following lemma that summarizes some integral
inequalities obtained in the previous section.
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Lemma 1. Let h : [x, b] → R be an absolutely continuous function on [a, b] with
h′ ∈ L∞ [a, b] . Then

(3.25) |Tn (h, g; a, b)|

≤



1
4 (b− a) ‖h′‖[a,b],∞

∥∥∥g − 1
b−a

∫ b

a
g (y) dy

∥∥∥
[a,b],∞

if g ∈ L∞ [a, b] ;

(b−a)
1
q

2(q+1)
1
q
‖h′‖[a,b],∞

∥∥∥g − 1
b−a

∫ b

a
g (y) dy

∥∥∥
[a,b],p

if p > 1, 1
p + 1

q = 1

and g ∈ Lp [a, b] ;
1
2 ‖h

′‖[a,b],∞

∥∥∥g − 1
b−a

∫ b

a
g (y) dy

∥∥∥
[a,b],1

if g ∈ L1 [a, b] ;

where

Tn (h, g; a, b) :=
1

b− a

∫ b

a

h (x) g (x) dx− 1
b− a

∫ b

a

h (x) dx · 1
b− a

∫ b

a

g (x) dx.

Using the above lemma, we may obtain the following new bounds for the re-
mainder G̃n (f ; a, x) in the Taylor’s perturbed formula (??).

Theorem 5. Assume that {Pn}n∈N is a sequence of harmonic polynomials and
f : I → R is such that f (n) is absolutely continuous on any compact subinterval of
I. Then, for x, a ∈ I, x > a, we have that

(3.26)
∣∣∣G̃n (f ; a, x)

∣∣∣

≤



1
4 (x− a)2 ‖Pn−1‖[a,x],∞

∥∥f (n+1) −
[
f (n); a, x

]∥∥
[a,x],∞ if f (n+1) ∈ L∞ [a, x] ;

(x−a)
1
q
+1

2(q+1)
1
q
‖Pn−1‖[a,x],∞

∥∥f (n+1) −
[
f (n); a, x

]∥∥
[a,x],p

if p > 1, 1
p + 1

q = 1

and f (n+1) ∈ Lp [a, x] ;
1
2 (x− a) ‖Pn−1‖[a,x],∞

∥∥f (n+1) −
[
f (n); a, x

]∥∥
[a,x],1

.

The proof follows by Lemma ?? on choosing h = Pn, g = f (n+1), b = x.
The dual result is incorporated in the following theorem.

Theorem 6. Assume that {Pn}n∈N is a sequence of harmonic polynomials and
f : I → R is such that f (n+1) is absolutely continuous on any compact subinterval
of I. Then, for x, a ∈ I, x > a, we have that∣∣∣G̃n (f ; a, x)

∣∣∣(3.27)

≤



1
4 (x− a)2

∥∥f (n+2)
∥∥

[a,x],∞ ‖Pn − [Pn+1; a, x]‖[a,x],∞

(x−a)
1
q
+1

2(q+1)
1
q

∥∥f (n+2)
∥∥

[a,x],∞ ‖Pn − [Pn+1; a, x]‖[a,x],p

if p > 1, 1
p + 1

q = 1

1
2 (x− a)

∥∥f (n+2)
∥∥

[a,x],∞ ‖Pn − [Pn+1; a, x]‖[a,x],1 .

(3.28)

The proof follows by Lemma ??.

On Ostrowski Like Integral Inequality. 121



The interested reader may obtain different particular instances of integral in-
equalities on choosing the harmonic polynomials mentioned at the beginning of
this section. We omit the details.
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Abstract

We consider Dirichlet series on convex polygons and their rate of approximation
in AC(D). We show that the substitution of the respective Leont’ev coefficients by
appropriate interpolating sums preserves the order of approximation up to a factor
lnn. The estimates are given for moduli of smoothness of arbitrary order. This
extends a result of Yu. I. Mel’nik in [4].
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1 Introduction

Let D be an open convex polygon with vertices at the points a1, . . . , aN , N ≥ 3, D its
closure and ∂D = D \D the boundary of D. We assume 0 ∈ D.

By AC(D) we denote the the space of all functions f(z) holomorphic in D and con-
tinuous on D with finite norm of uniform convergence ‖f‖AC(D) = supz∈D |f(z)| < ∞.

Consider the quasipolynomial L(z) =
∑N

k=1 dke
akz, where dk ∈ C \ {0}, k = 1, . . . , N .

For the set of zeros Λ of the quasipolynomial L the following results are well known [2,
Ch. 1, §2][3]:

a) The zeros λ
(j)
n of L with |λ(j)

n | > C for sufficient large C have the form

λ(j)
n = λ̃(j)

n + δ(j)
n , (1)

where λ̃
(j)
n = 2πni

aj+1−aj
+ qje

iβj and |δ(j)
n | ≤ e−an. Here 0 < a = const., j = 1, . . . , N ,

n > n0 and aN+1 := a1. The parameters βj and qj are given by eqj(aj+1−aj)e
iβj

=

1
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− dj

dj+1
, where dN+1 := d1. Hence these zeros are simple. The set of zeros Λ can be

represented in the form

Λ = {λn}n=1,...,n0 ∪

(
N⋃

j=1

{λ(j)
n }n=n(j),n(j)+1,...

)
.

b) There is a constant c2 > 0 such that there exists a positive constant A with∣∣∣∣∣ eλ
(j)
n z

L′(λ
(j)
n )

− (−1)nBje
eλ(j)

n

“
z−

aj+1+aj
2

”∣∣∣∣∣ ≤ A e−c2n for all n > n0.

Here all Bj 6= 0 are constant, j = 1, . . . , N . This inequality is true for all z ∈ D.

For simplicity reasons we assume that all zeros of L are simple.

We can expand functions f ∈ AC(D) with respect to the family E(Λ) := {eλz}λ∈Λ

into a series of complex exponentials, the so called Dirichlet series

f(z) ∼
∑
λ∈Λ

κf (λ)
eλz

L′(λ)
, (2)

where

κf (λ) =
N∑

k=1

dke
akλ

∫ ak

aj

f(η)e−λη dη (3)

=
1

2π

N∑
k=1

dk(ak − aj)

∫ 2π

0

f

(
ak +

aj − ak

2π
θ

)
e
−λ

“
aj−ak

2π
θ

”
dθ (4)

are the Leont’ev coefficients. Here, the index j = 1, . . . , N is arbitrary, but fixed. Many
deep results on these series are due to A. F. Leont’ev [2].

We know [1] that the partial series, weighted with the generalized Jackson kernel,
approximate in the order of the modulus of continuity. The question considered in this
paper is, what happens if we substitute the integration in (3) or (4) by an appropriate ap-
proximating sum. Can we choose a sum, such that the rate of approximation is preserved?
This problem was first posed by Yu. I. Mel’nik in [4] and solved there for first moduli
of continuity. We give positive answer to that question up to a factor ln n for moduli of
arbitrary order r ∈ N.

In the following section we give the rate of approximation of the series (2) weighted
with the generalized Jackson kernel. Then we have a closer look on (3) and (4) and give
Yu. I. Mel’nik’s approach for a sum for substituting the integral, such that the order of
approximation is held for first moduli. In the last section we extend this result to moduli
of arbitrary order.
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2 Approximation with generalized Jackson weights

To estimate the regularity of functions in AC(D) we consider appropriate moduli of
smoothness introduced in [6] by P. M. Tamrazov. Let ξ ∈ D, r ∈ N, δ > 0 and A > 0.
Let U(ξ, δ) := {z ∈ C : |z − ξ| ≤ δ} be the closed δ-ball with center ξ. We denote by
T (D, ξ, r, δ, A) the set of all vectors z = (z1, . . . , zr) ∈ Cr with

(i) zi ∈ D ∩ U(ξ, δ) for all i = 1, . . . , r, and

(ii) |zi − zj| ≥ Aδ for all i 6= j, i, j = 1, . . . , r.

If there is no vector satisfying these conditions we define T (D, ξ, r, δ, A) := ∅. Never-
theless for A = 2−r there is a δ > 0 with T (D, ξ, r, δ, A) 6= ∅. Let T1 = T (D, ξ, r+1, δ, 2−r).
Let L(z, f, z1, . . . , zr) be the polynomial in z of degree at most r− 1 which interpolates f
at the points z1, . . . , zr. The r-th modulus of f is defined by

ωr(f, t) = ωr,D(f, t)∞ := sup
0<δ≤t

sup
ξ∈D

sup
z∈T1

z=(z0,...,zr)

|f(z0)− L(z0, f, z1, . . . , zr)|. (5)

Here the supremum over the empty set is defined as zero. To estimate this modulus we
consider normal majorants ϕ: These are bounded non-decreasing functions ϕ : ] 0,∞ [ →
] 0,∞ [ such that for fixed σ ≥ 1 and an exponent γ ≥ 0 the following normality condition
holds:

ϕ(tδ) ≤ σtγϕ(δ)

for all δ > 0, t > 1 [5, §1]. It is shown in [7] and [8, Thm. 1] that the modulus (5) is
normal, i.e., ωr,D(f, tδ)∞ ≤ C · tr ·ωr,D(f, δ)∞, where C > 0 depends on r and the polygon

D only. With normal majorants we thus can define classes of regularity. By AHϕ
r (D) we

denote the class of all functions f ∈ AC(D) with ωr,D(f, t) ≤ const. · ϕ(t).

Let 1 ≤ j ≤ N be fixed and r ∈ N. Let f ∈ AC(D) have r − 1 existing derivatives at
the vertices ak, k = 1, . . . , N , of the polygon. Consider for k 6= j + 1 the polynomial Pj,k

of degree at most r, that interpolates f at the vertices aj and ak and f ′, . . . , f (r−1) at the
vertex ak. For k = j + 1 let Pj,j+1 denote the polynomial of degree at most 2r − 1 that
interpolated f, f ′, . . . , f (r−1) at both points aj and aj+1. We define

δr(f, h) := max
j

N∑
k=1
k 6=j

{∫ h

0

∣∣f (ak +
aj−ak

2π
u
)
− Pj,k

(
ak +

aj−ak

2π
u
)∣∣

u
du

+ hr ·
∫ 2π

h

∣∣f (ak +
aj−ak

2π
u
)
− Pj,k

(
ak +

aj−ak

2π
u
)∣∣

ur+1
du

}
.

Let n = (n1, . . . , nN) ∈ NN be a multi-index. Consider the corresponding quasipoly-
nomial

Pn(f)(z) :=

n0∑
m=1

κf (λm)
eλmz

L′(λm)
+

N∑
j=1

nj∑
m=n(j)

(1− xnj ,r,m)κf (λ
(j)
m )

eλ
(j)
m z

L′(λ
(j)
m )

. (6)
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The coefficients xnj ,r,m are determined through the relations

xnj ,r,m =

nj∑
p=0

(−1)p

(
r

p

)
Jnj ,r,mp,

where Jnj ,r,k are the Fourier coefficients of the generalized Jackson kernel

Kn,r(t) := λn,r

(
sin Mt/2

t/2

)2r

=
Jn,r,0

2
+

n∑
k=1

Jn,r,k cos kt.

Here n ∈ N, r ≥ 2, M := bn
r
c, and λn,r is chosen such that

1

2π

∫ 2π

0

Kn,r(t) dt = 1.

For the quasipolynomials (6) the following direct approximation theorem is true:

Theorem 2.1 Let f ∈ AHωr
r (D), where ωr is a normal majorant with exponent r ∈ N

satisfying the Stechkin condition

∫ h

0

ωr(f, t)

t
dt + hr ·

∫ 2π

h

ωr(f, t)

tr+1
dt ≤ c · ωr(f, h) (7)

for all 0 < h < 2π
r

and a positive constant c. Let f be r − 1–times continuously
differentiable at the vertices ak, k = 1, . . . , N , and

N∑
k=1

dkf
(s)(ak) = 0, 0 ≤ s ≤ r − 1.

Let n = (n1, . . . , nN) ∈ NN be a multi-index.

Then we have for approximation with the quasipolynomial Pn(f) weighted with the
generalized Jackson kernel

‖f − Pn(f)‖AC(D) ≤ const.
N∑

k=1

Ωr

(
1

nk

)
,

where Ωr — a normal majorant with exponent r — satisfies inequality

Ωr(h) ≤ const. · {ωr(h) + δr(f, h)} . (8)

The proof is given in [1].

In the following section, we give Yu. I. Mel’nik’s approach to the question, if this rate
of approximation can be preserved, when we substitute the integral in (3) or in (4) by an
appropriate sum.
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3 Substitution of integrals by appropriate sums

In [4], Yu. I. Mel’nik proposed to substitute the Leont’ev coefficients in (2) by

κ
(bn)
f (λ(j)

m ) =
1

λ
(j)
m

N∑
k=1

dk
1

n̂

bn−1∑
p=0

f
(
ak + (aj − ak)

p

n̂

)(
e−λ

(j)
m (aj−ak) p+1bn − e−λ

(j)
m (aj−ak) pbn

)
(9)

for all n̂ ∈ N. He considered functions f ∈ AHω
1 (D) with

∑N
n=1 dkf(ak) = 0 and approxi-

mated them with partial series of the form

Sn,bn(f)(z) =

n0∑
m=1

κf (λm)
eλmz

L′(λm)
+

N∑
j=1

n∑
m=n(j)

κ
(bn)
f (λ(j)

m )
eλ

(j)
m z

L′(λ
(j)
m )

.

For the rate of approximation Mel’nik reached (see [4])

‖f − Sn,bn(f)‖AC(D) ≤ const. ·
{

ω

(
1

n̂

)
+ ω

(
1

n

)}
ln n. (10)

The question that remains open, is, how (9) can be extended, such that an estimate for
the rate of approximation can be reached for arbitrary moduli?

If we have a closer look at (9) and compare this formula with (3) and (4), we see that
the integral there is decomposed in n̂ integrals of length 2πbn :∫ 2π

0

f

(
ak +

aj − ak

2π
θ

)
e−λ

(j)
m

aj−ak
2π

θ dθ =

=
1

n̂

∫ bn−1

p

∫ 2π p+1bn
2π pbn

f

(
ak +

aj − ak

2π
θ

)
e−λ

(j)
m

aj−ak
2π

θ dθ. (11)

The exponential function can be integrated easily. In general, this is not the case for
f : The antiderivative might not be known explicitly, or highly oscillating f may cause
numerical problems. Therefore the term f(ak +

aj−ak

2π
θ) is estimated by the value at the

lower bound of the integral f(ak + (aj − ak)
pbn):

κ
(bn)
f (λ(j)

m ) =
N∑

k=1

dk
ak − aj

2π

1

n̂

bn−1∑
p=0

f
(
ak + (aj − ak)

p

n̂

)∫ 2π p+1bn
2π pbn

e−λ
(j)
m

aj−ak
2π

θ dθ. (12)

Evaluating the integral explicitly gives (9).

To get a better rate of approximation with coefficients of this special form we have to
find a better approximation of the function f on the staight-line interval [ aj, ak ]. We give
a solution to this problem in the following section.
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4 Higher order approximation

In this section we consider the question, if a better choice of κ
(bn)
f (λ

(j)
m ) allows a higher rate

of approximation and estimation with r-th moduli of smoothness, r ∈ N. The key to this
problem is the estimation of f in (11). We substitute f by the value of the modified r-th
difference operator

∆r
2π
rbn f(z)− f

(
z +

2π

n̂

)
=

r−1∑
k=0

(−1)k

(
r

k

)
f

(
z + k

2π

rn̂

)
. (13)

For r = 1 this expression yields ∆1
2π
rbn f(z)−f(z + 2πbn ) = f(z). If we put z = ak +(aj−ak)

pbn
here, we get Mel’nik’s formulas (9) and (12).

Substituting f in (11) with (13) for z = ak + (aj − ak)
pbn and arbitrary r ∈ N yields

κ
(bn)
f (λ(j)

m ) =
1

λ
(j)
m

N∑
k=1

dk
1

n̂

bn−1∑
p=0

r−1∑
k=0

(−1)k

(
r

k

)
f

(
ak +

aj − ak

n̂

(
p +

k

r

))
·
(
e−λ

(j)
m (aj−ak) p+1bn − e−λ

(j)
m (aj−ak) pbn

)
. (14)

Now we can formulate the following approximation theorem:

Theorem 4.1 Let ωr be a normal majorant with exponent r satisfying the Stechkin con-
dition (7). Let f ∈ AHωr

r (D) and

N∑
k=1

dkf
(s)(ak) = 0 for all 0 ≤ s ≤ r − 1.

Let n = (n1, . . . , nN) and n̂ = (n̂1, . . . , n̂N), n, n̂ ∈ NN , be multi-indices.

Consider the partial series Pn,bn weighted with the generalized Jackson kernel

Pn,bn(f)(z) =

n0∑
m=1

κf (λm)
eλmz

L′(λm)

+
N∑

j=1

nj∑
m=n(j)

(1− xnj ,r,m) κ
(bnj)
f (λ(j)

m )
eλ

(j)
m z

L′(λ
(j)
m )

, (15)

where κ
(bnj)
f (λ

(j)
m ) as in (14).

Then the approximation of f with Pn,bn(f) yields

‖f − Pn,bn(f)‖AC(D) ≤ const. ·

{
N∑

k=1

Ωr

(
1

nk

)
+

N∑
k=1

ωr

(
1

n̂k

)
ln nk

}
,

where Ωr as in (8).
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Proof. We show that

‖Pn,bn(f)− Pn(f)‖AC(D) ≤ C

N∑
k=1

ωr

(
1

n̂k

)
ln nk.

with C > 0 independent of f , n and n̂ and conclude with Theorem 2.1.

It is by (6) and (15) for all z ∈ D

Pn,bn(f)(z)− Pn(f)(z) =

=
N∑

j=1

nj∑
m=n(j)

(1− xnj ,r,m)
(
κ

(bnj)
f (λ(j)

m )− κf (λ
(j)
m )
) eλ

(j)
m z

L′(λ
(j)
m )

. (16)

We have a closer look at the difference κ
(bnj)
f (λ

(j)
m )− κf (λ

(j)
m ). Using (4), (12) and (14) we

get

κ
(bnj)
f (λ(j)

m )− κf (λ
(j)
m ) =

=
1

λ
(j)
m

N∑
k=1

dk
1

n̂j

bnj−1∑
p=0

r−1∑
l=0

(−1)l

(
r

l

)
f

(
ak +

aj − ak

n̂j

(
p +

l

r

)) (
e
−λ

(j)
m (aj−ak) p+1bnj

− e
−λ

(j)
m (aj−ak) pbnj

)
− 1

2π

N∑
k=1

dk (ak − aj)

∫ 2π

0

f

(
ak +

aj − ak

2π
θ

)
e−λ

(j)
m

aj−ak
2π

θ dθ

=
N∑

k=1

dk

ak − aj

2π

1

n̂j

bnj−1∑
p=0

r−1∑
p=0

(−1)l

(
r

l

)
f

(
ak +

aj − ak

n̂j

(
p +

l

r

))

·
∫ 2π p+1bnj

2π pbnj

e−λ
(j)
m

aj−ak
2π

θ dθ

− 1

2π
(ak − aj)

bnj−1∑
p=0

∫ 2π p+1bnj

2π pbnj

f

(
ak +

aj − ak

2π
θ

)
e−λ

(j)
m

aj−ak
2π

θ dθ


=

N∑
k=1

dk
ak−j

2π

bnj−1∑
p=0

∫ 2π p+1bnj

2π pbnj

{ r−1∑
l=0

(−1)l

(
r

l

)
f

(
ak +

aj − ak

n̂j

(
p +

l

r

))
− f

(
ak +

aj − ak

2π
θ

)}
e−λ

(j)
m

aj−ak
2π

θ dθ.

Thus for the series (16) we can write

Pn,bn(f)(z)− Pn(f)(z) =

=
N∑

j=1

nj∑
m=n(j)

(1− xnj ,r,m)
N∑

k=1

dk
ak − aj

2π

bnj−1∑
p=0

∫ 2π p+1bnj

2π pbnj

{ r−1∑
l=0

(−1)l

(
r

l

)
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· f

(
ak +

aj − ak

n̂j

(
p +

l

r

))
− f

(
ak +

aj − ak

2π
θ

)}
e−λ

(j)
m

aj−ak
2π

θ dθ
eλ

(j)
m z

L′(λ
(j)
m )

=
N∑

j=1

N∑
k=1

dk
ak − aj

2π

bnj−1∑
p=0

∫ 2π p+1bnj

2π pbnj

{ r−1∑
l=0

(−1)l

(
l

r

)
f

(
ak +

aj − ak

n̂j

(
p +

l

r

))

− f

(
ak +

ak − aj

2π
θ

)} nj∑
m=n(j)

(1− xnj ,r,m)e−λ
(j)
m

aj−ak
2π

θ eλ
(j)
m z

L′(λ
(j)
m )

dθ.

Hence

‖Pn,bn(f)− Pn(f)‖AC(D) =

≤ max
z∈D

N∑
j=1

N∑
k=1

|dk|
|aj − ak|

2π

bnj−1∑
p=0

∫ 2π p+1bnj

2π pbnj

∣∣∣∣ r−1∑
l=0

(−1)l

(
r

l

)
f

(
ak +

aj − ak

n̂j

(
p +

l

r

))

− f

(
ak +

aj − ak

2π
θ

) ∣∣∣∣
∣∣∣∣∣∣

nj∑
m=n(j)

(1− xnj ,r,m)e−λ
(j)
m

aj−ak
2π

θ eλ
(j)
m z

L′(λ
(j)
m )

∣∣∣∣∣∣ dθ

≤ max
z∈D

N∑
j=1

N∑
k=1

|dk|
|ak − aj|

2π
· ωr

(
f,
|aj − ak|

n̂j

)

·
∫ 2π

0

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m)e−λ
(j)
m

aj−ak
2π

θ · eλ
(j)
m z

L′(λ
(j)
m )

∣∣∣∣∣∣ dθ (17)

Now it is enough to estimate the integral in (17). First let k 6= j + 1. Then

<
(

i
aj − ak

aj+1 − aj

)
> 0. (18)

By (1) we infer∣∣∣e−λ
(j)
m

aj−ak
2π

θ
∣∣∣ =

∣∣∣∣e−mi
aj−ak

aj+1−aj
θ
e−qjeiβj

aj−ak
2π

θ e−δ
(j)
n θ

∣∣∣∣ ≤ C e−amθ

for some positive constants C, a and all θ ∈ [ 0, 2π ]. Thus we obtain for all z ∈ D∫ 2π

0

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m)e−λ
(j)
m

aj−ak
2π

θ eλ
(j)
m z

L′(λ
(j)
m )

∣∣∣∣∣∣ dθ

≤ const.

∫ 2π

0

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m)e−amθ

∣∣∣∣∣∣ dθ

=

nj∑
m=n(j)

(1− xnj ,r,m) · e−2πam − 1

−am
≤ const. ln(nj), (19)
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since the family

{
eλ

(j)
m z

L′(λ
(j)
m )

}
m≥n(j)

and the generalized Jackson coefficients 1 − xnj ,r,m are

bounded.

For k = j + 1 we have for the integral in (17) and property b)

∫ 2π

0

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) e−λ
(j)
m

aj−aj+1
2π

θ eλ
(j)
m z

L′(λ
(j)
m )

∣∣∣∣∣∣ dθ

≤
∫ 2π

0

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) e−λ
(j)
m

aj−aj+1
2π

θ ·
∣∣∣∣e−am + A · e

eλ(j)
m

“
z−

aj+aj+1
2

”∣∣∣∣
∣∣∣∣∣∣ dθ

≤
{∫ 2π

0

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) e−λ
(j)
m

aj−aj+1
2π

θ e−am

∣∣∣∣∣∣
+

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) e−λ
(j)
m

aj−aj+1
2π

θ ·
∣∣∣∣eeλ(j)

m

“
z−

aj+aj+1
2

”∣∣∣∣
∣∣∣∣∣∣ dθ

}
. (20)

for constants a, A > 0. Hence for the first sum by (1)∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) e−λ
(j)
m

aj−aj+1
2π

θ e−am

∣∣∣∣∣∣
≤ const. ·

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) e−ameimθ

∣∣∣∣∣∣ ≤ C

independently of nj. Now to the second sum in (20) by property a):∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) e−λ
(j)
m

aj−aj+1
2π

θ

∣∣∣∣eeλ(j)
m

“
z−

aj+aj+1
2

”∣∣∣∣
∣∣∣∣∣∣

≤ const.

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) eimθ

∣∣∣∣eeλ(j)
m

“
z−

aj+aj+1
2

”∣∣∣∣
∣∣∣∣∣∣ . (21)

Further we can write with property a)

e
eλ(j)

m

“
z−

aj+aj+1
2

”
= e

2πmi
aj+1−aj

“
z−

aj+aj+1
2

”
e

qjeiβj
“
z−

aj+aj+1
2

”
. (22)

The second complex exponential on the right hand side in (22) can be estimated by the

constant maxz∈D e
qjeiβj

“
z−

aj−aj+1
2

”
, which is independent of m. Because of (18) we have to
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estimate the first exponential for z ∈ [ aj, aj+1 ] only. Let z = aj +
aj+1−aj

2π
(t + iε), where

t ∈ [ 0, 2π ] and ε ∈ ] 0, ε1 ], ε1 > 0. Then

e
2πmi

aj+1−aj

“
aj+

aj+1−aj
2π

(t+iε)−
aj+aj+1

2

”
= emi(t+iε) e2πmi.

Thus ∫ 2π

0

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) emiθ

∣∣∣∣eeλ(j)
m

“
z−

aj+aj+1
2

”∣∣∣∣
∣∣∣∣∣∣ dθ

≤ const.

∫ 2π

0

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) emiθ
∣∣emi(t+iε)

∣∣∣∣∣∣∣∣ dθ

≤ const.

∫ 2π

0

∣∣∣∣∣∣
nj∑

m=n(j)

(1− xnj ,r,m) e−εm+imθ

∣∣∣∣∣∣ dθ

≤ c ln(nj)

in D, where c > 0 can be chosen independently of ε. For ε → 0 the claim follows for all
z ∈ D. 2
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Abstract

In this paper, a finite element method for general scalar conservation laws is analyzed:
convergence towards the unique solution is proved for two-dimensional space with initial and
boundary conditions, by using a uniqueness theorem for measure valued solutions. The method
has some advantages: it is an explicit finite element scheme, which is suitable for computing
convection dominated flows and discontinuous solutions for multi-dimensional hyperbolic con-
servation laws. It is superior to other methods in some techniques which are flexible in dealing
with convergence.

Keywords. finite element method, conservation law, convergence, measure-valued solution,
uniqueness theorem, weighted energy estimate, superconvergence.

1 Introduction

In this paper convergence of a finite element method is proved for general scalar conservation
laws in 2-D space with initial and boundary conditions. We use the concept of measure valued
solutions to scalar conservation laws with initial and boundary conditions, uniqueness theorem
about measure valued solutions proved in [8]. This uniqueness theorem, which is a generalization
of the corresponding result for the pure initial value problem proved in [6] yields convergence in Lp
norm, 1 ≤ p ≤ ∞, towards the unique solution, for approximate solutions of a scalar conservation
law provided they are: (A) uniformly bounded in the L∞ norm; (B) weakly consistent with
all entropy inequalities; (C) strongly consistent with the initial conditions. In section 4 the finite
element method is proved to satisfy (A) and in section 6 the conditions (B) and (C) are verified. We
note the convergence proof does not require estimates of the total variation, which is usually used
together with classical compactness arguments to prove convergence of finite difference schemes.
In [11], to guarantee maximum principle, it is required that the viscosity coefficient ε = O(h).
Comparing this scheme with the upwind finite element scheme in [11], the elements must be
divided into two categories in this scheme: for the elements in the interior domain, the viscosity
coefficient ε1 = O(h), but for the elements intersecting the boundary of the domain, the viscosity

coefficient ε2 = O(h
1
2 ) to guarantee the maximum principle and convergence.

An outline of the paper is as follows. In section 2, we quote the related result in [8]. In section
3, we introduce the finite element scheme. In section 4, we prove a maximum norm estimate. In

1
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[10], the proof on the uniform boundedness of ‖uh‖L∞ is rather technical. For our method, by
the nature of the explicit scheme and its monotone property, we can greatly simplify its proof.
In section 5, we prove energy estimate for the stability in L2 norm. In section 6, we prove the
convergence; Lemma 6.2 plays a critical role. Some valuable techniques are used in this paper,
such as superconvergence estimate, weighted energy estimate and L2 stability, which play a key
role in the convergence analysis. Some good ideas from [1], [12], [7], [2], [4] and [3] are also helpful
to construct the scheme. Numerical experiments, to be reported elsewhere, have shown that the
scheme gives satisfactory results.

2 Measure valued solutions with boundary condition

In this section, we quote the definition of measure valued solutions of scalar conservation laws with
initial and boundary conditions and the following uniqueness result for measure valued solutions
in [8], which still hold under our assumptions. The proof of convergence of the finite element
solutions will be based on Theorem 2.1 below.

Let Ω be a bounded open set of Rd with a Lipschitz continuous boundary Γ = ∂Ω. The outward
unit normal n exists almost everywhere on Γ. The mathematical prolem is to find u : Ω×R+ → R
satisfying the conservation law

ut +

d
∑

j=1

fj(u)xj = 0 in Ω ×R+, (1)

the initial condition

u(·, 0) = u0 in Ω, (2)

and the boundary condition: for all k ∈ R, a.e. (x, t) ∈ Γ ×R+:

(sgn (u(x, t) − k) − sgn (a(x, t) − k))(f(u(x, t)) − f(k)) · n(x) ≥ 0. (3)

Here f = (f1, f2, ..., fd): R → Rd, a : Γ × R+ → R, u0 : Ω → R, are given smooth functions, and
the function sgn : R→ R is defined by

sgn (x) =







x
|x| , x 6= 0,

0, x = 0.

Let {uj} be a uniformly bounded sequence in L∞(Ω ×R+), i.e. for some constant K,

‖uj‖L∞(Ω×R+) ≤ K, j = 1, 2, 3, ... (4)

Then according to Young’s theorem there exists a subsequence, still denoted by {uj}, and an
associated measurable measure valued mapping ν(·) : Ω ×R+ → Prob(R) such that

supp ν(x,t) ⊂ {λ : |λ| ≤ K} a.e. (x, t) ∈ Ω ×R+, (5)

and ∀g ∈ C(R), the L∞(Ω ×R+) weak star limit g(uj(·))
∗
⇀ g(·), j → ∞, exists, where

g(x, t) =

∫

R

g(λ)dν(x,t)(λ) ≡ 〈ν(x,t), g(λ)〉 a.e. (x, t) ∈ Ω ×R+. (6)

2
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A Young measure ν, associated with a sequence {uj} satisfying (4), is called a measure valued
solution (mv-solution) to (1)–(3) if for all φ ∈ C 1

0 (Ω ×R+), φ ≥ 0, and for all k ∈ R, we have

∫

Ω×R+

〈ν(x,t), |λ− k|〉φt + 〈ν(x,t), (sgn (λ− k))(f(λ) − f(k))〉 · ∇φdxdt

−

∫

Γ×R+

〈γν(x,t), f(λ) − f(k)〉 · n(x)φ sgn (a− k)dsdt ≥ 0,

lim
t→0

∫

Ω
〈ν(x,t), |λ− u0|〉dx = 0.

We introduce the following uniqueness result for mv-solutions and trace theorem proved in [8].

Theorem 2.1. Suppose that a Young measure ν associated with the sequence {uj} is a mv-solution
to (1)–(3) and let w denote the unique BV-solution of (1)–(3). Then ν(x,t) = δw(x,t) a.e., i.e., ν(x,t)

reduces a.e. to the Dirac measure concentrated at w(x, t), and the sequence {uj} converges strongly
in Lloc1 (Ω ×R+) to w.

Lemma 2.2. (Trace Theorem) Let ν : Ω ×R+ → Prob(R) be a Young measure associated with a
sequence {uj} satisfying (4). Then there are a sequence {yj ∈ (0, ε)} with yj → 0 and a measurable
Young measure γν : Γ×R+ → Prob(R) such that supp γν(x,t) ⊂ {λ : |λ| ≤ K} a.e. (x, t) ∈ Γ×R+,

and for every g ∈ C(R), the L∞(Γ × R+) weak star limit 〈ν(x(·,yj),·), g(λ)〉
∗
⇀ g(·, ·), as j → ∞

exists, i.e.

lim
j→∞

∫

Γ×R+

〈ν(x(x,yj),t), g(λ)〉ϕdsdt =

∫

Γ×R+

g(x, t)ϕdsdt ∀ϕ ∈ L1(Γ ×R+), (7)

where ds is the Lebesgue measure on Γ, and for a.e. (x, t) ∈ Γ ×R+,

g(x, t) =

∫

R

g(λ)dγν(x,t) ≡ 〈γν(x,t), g(λ)〉. (8)

3 Formulation of the finite element method

Let Ω be a polygonal domain in R2 with a Lipschitz continuous boundary Γ = ∂Ω. We assume
that supy∈R |f ′′(y)| < ∞. This is not a severe restriction since the exact solution is bounded and
thus f(y) may be modified for large |y| if necessary. Below we denote by C a positive constant
independent of h, not necessarily the same at each occurrence. Let 0 ≤ t0 < t1 < ... < tN = T ∗ be
a sequence of time levels, In = (tn, tn+1), Sn = Ω× In and Ωn = Ω×{tn}, 4t = tn+1 − tn. Let Ωh

be a quasi-uniform triangulation of Ω. Denote S1 = {T | T ∩Γ = Φ} and S2 = {T | T ∩Γ 6= Φ}. Let
hT be the diameter of element T and h = maxT hT . The shape function is continuous and linear on
each T . Let ϕi be the shape function associated with the node xi, ϕi(xj) = δij . For given node xi,
let Ti be the set of elements neighboring xi, Ωi = ∪T∈TiT , and Ii be the index set of the nodes of
T ⊂ Ωi besides xi. Introduce the sets T1,i = {T ∈ Ti | T ∩Γ = Φ} and T2,i = {T ∈ Ti | T ∩Γ 6= Φ},
where Φ is the empty set. Denote uni = u(xi, n∆t). Let δ > 0 be a sufficiently small constant,
h ≤ δ, and

4t = O(h
3
2 ), ε1 = hδ−

1
4 , ε2 = h

1
2 δ

1
4 . (9)
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ε1 and ε2 will be used as artificial viscosity constants.
We then define some quantities

Kn
1i = −

∆t

Ai

∑

T∈T1,i

∑

j∈Ii

aTi jJ1(u
n
i , u

n
j )hij ,

Kn
2i = −

∆t

Ai

∑

T∈T2,i

∑

j∈Ii

aTi jJ2(u
n
i , u

n
j )hij ,

where

aTij =

∫

T

∇ϕi · ∇ϕjdx, Ai =

∫

Ωi

ϕidx,

ψ1 = −

∫ x

xi

f(u) · τE
ε1u

ds if E ∩ Γ = Φ, ψ2 = −

∫ x

xi

f(u) · τE
ε2u

ds if E ∩ Γ 6= Φ,

J1(u
n
i , u

n
j ) =

(eψ1u)nj − (eψ1u)ni
∫ xj
xi

eψ1

ε1
ds

, J2(u
n
i , u

n
j ) =

(eψ2u)nj − (eψ2u)ni
∫ xj
xi

eψ2

ε2
ds

.

We note aTij ≤ 0 for i 6= j, |aTij | ≤ C. The point x ∈ E, E is the edge of T connecting xi and xj ,
∫ x

xi
·ds denotes a line integral from xi to x, τE is the unit vector pointing from xi to xj, and hi j is

the length of E. For i = 1, 2, (eψiu)nj is the value of eψiu at the point of (xj , n∆t). The scheme is
as follows:

un+1
i = uni +Kn

1i +Kn
2i, n ≥ 0 (10)

u0
i =

∫

Ωi

u0ϕi dx/Ai. (11)

uni = ani , if xi ∈ Γ, n > 0. (12)

Without loss of generality we let a : Ω × [0, T ∗] → R be a smooth extension of a. u0 ∈
L∞(Ω), suppu0 ⊂⊂ Ω. Interpolating a linearly on each element T , we get anh(n ≥ 0). Then we
extend anh(n ≥ 0) to the whole domain Ω × [0, T ∗] = {(x, t) | x ∈ Ω, t ∈ [0, T ∗]} such that it keeps
constant on [n∆t, (n+1)∆t), ∀n, which is denoted by ah. Similarly, by using the value uni on each
node, and interpolating linearly on each element T , we extend the solution to (10) to the whole
domain Ω × [0, T ∗] such that it is constant on [n∆t, (n+ 1)∆t), ∀n, denoted by uh. Let

vh = uh − ah, V n
h = {v | v ∈ H1(Sn), v|T ∈ P1(T ), v|Γ×R+ = 0}. (13)

Then vh ∈ Vh = Πn≥0V
n
h . Let π : Πn≥0C(Sn) → Vh be the usual linear interpolation operator.

The main result is the following.

Theorem 3.1. We assume that m ≤ u0 ≤ M , m ≤ a ≤ M . The functions uh converge strongly
in Lloc1 (Ω ×R+) to the unique BV-solution of (1)–(3) as h→ 0.

We introduce some lemmas to prove Theorem 3.1. The lemmas are easy to prove, and we only
show Lemma 3.5. For notational convenience, we omit the superscript n.

Lemma 3.2. If u is a constant function, namely, ui = uj = u, then

J1(u, u) = J2(u, u) = −f(u) · τE. (14)
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Lemma 3.3. If u, v ∈ P1(T ), and c is a constant vector, then
∫

T

∇u · ∇v dx =
∑

i<j

aTi j(ui − uj)(vj − vi), (15)

∫

T

c · ∇v dx =
∑

i<j

aTi jc · τEhi j(vi − vj), (16)

where ui, uj, vi, vj are the values of u, v at nodes xi and xj.

Lemma 3.4. Assume that ui, uj ∈ [m,M ] and (9) holds. Then

J1(ui, uj) =
eψ1j (uj − ui)
∫ xj
xi

eψ1

ε1
ds

− f(ui) · τE + uiO(uj − ui), (17)

J2(ui, uj) =
eψ2j (uj − ui)
∫ xj
xi

eψ2

ε2
ds

− f(ui) · τE + uiO(uj − ui), (18)

where ψ1j = ψ1(xj), ψ2j = ψ2(xj).

Lemma 3.5. Assume that ui, uj ∈ [m,M ] and (9) holds. Then

∂J1

∂uj
=

ε1e
ψ1j

∫ xj
xi
eψ1ds

{1 +O(
hij
ε1

)},
∂J1

∂ui
= O(

ε1
hij

), (19)

∂J2

∂uj
=

ε2e
ψ2j

∫ xj
xi
eψ2ds

{1 +O(
hij
ε2

)},
∂J2

∂ui
= O(

ε2
hij

). (20)

Proof: By the definition of J1 and J2, we have

∂J1

∂ui
=
eψ1j

∫ xj
xi

(

−f(u)
ε1u

)′ |xj−x|
hi j

· τE dsuj − 1
∫ xj
xi

eψ1

ε1
ds

−

(eψ1juj − ui)
∫ xj
xi
eψ1

(

∫ x

xi

(

−f(u)
ε1u

)′ |xj−x|
hi j

· τE ds

)

ds

(

∫ xj
xi

eψ1

ε1
ds

)2 ,

∂J1

∂uj
=

ε1e
ψ1j

∫ xj
xi
eψ1 ds

{

1 +

∫ xj

xi

(

−
f(u)

ε1u

)′ |x− xi|

hi j
· τE dsuj

−

(uj − e−ψ1jui)
∫ xj
xi
eψ1

(

∫ x

xi

(

−f(u)
ε1u

)′
|x−xi|
hi j

· τE ds

)

ds

∫ xj
xi
eψ1 ds

}

.

Since ui, uj ∈ [m,M ] and δ is sufficiently small,

∂J1

∂ui
= O(

ε1
hij

),
∂J1

∂uj
=

ε1e
ψ1j

∫ xj
xi
eψ1ds

{1 +O(
hij
ε1

)}.

The relation (20) is proved similarly.
�

Lemma 3.6. If v ∈ C1(Ω), then limη→0

∫

{x∈Ω | |v(x)|<η} |∇v|dx = 0.
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4 Maximum norm estimate

Lemma 4.1. Under the assumptions of Lemma 3.5, if uni ∈ [m,M ] and δ is sufficiently small,
then un+1

i ∈ [m,M ].

Proof: If xi ∈ Γ, then un+1
i = an+1

i ∈ [m,M ]. Now assume xi 6∈ Γ. Applying Lemmas 3.5, 3.2,
3.3, and the condition uni ∈ [m,M ], for sufficiently small δ, we have

∂un+1
i

∂ui
≥ 1 − C

∆t

Ai
(sup
j

∑

T∈T1,i

aTij)
ε1
h
h− C

∆t

Ai
(sup
j

∑

T∈T2,i

aTij)
ε2
h
h = 1 +O(δ

1
4 ) ≥ 0,

∂un+1
i

∂uj
≥ −

∆tε1
Ai

(
∑

T∈T1,i

aTij)
eψ1jhij

∫ xj
xi
eψ1 ds

{

1 +O(
hi j
ε1

)

}

−
∆tε2
Ai

(
∑

T∈T2,i

aTij)
eψ2jhij

∫ xj
xi
eψ2 ds

{

1 +O(
hi j
ε2

)

}

= C(δ
1
4 +

h
1
2

δ
1
4

)(1 +O(δ
1
4 )) ≥ 0,

un+1
i ≥ m+

∆t

Ai

∑

T∈T1,i

∑

j∈Ii

aTijf(m)τEhij +
∆t

Ai

∑

T∈T2,i

∑

j∈Ii

aTijf(m)τEhij

= m+
∆t

Ai

∑

T∈Ti

∫

T

f(m)∇ϕidx

= m+
∆t

Ai

∫

Ωi

f(m)∇ϕidx = m.

Similarly, un+1
i ≤M .

�

5 Energy estimate

Lemma 5.1. Under the assumption of Lemma 3.5, if δ is sufficiently small, then

1

2

∑

i

(vN+1
i )2Ai −

∆t

2

N
∑

n=0

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij

−
∆t

2

N
∑

n=0

∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )

2

∫ xj
xi

eψ2

ε2
ds

hij

≤ C{
1

2
∆t

N
∑

n=0

∑

i

(
an+1
i − ani

∆t
)2Ai + ∆t

N
∑

n=0

∫

∂Ωh

|anhf(anh) − F (anh)|ds

+
1

2

∑

i

(v0
i )

2Ai + C2∆tε2

N
∑

n=0

∑

T∈S2

∫

T

|∇(πan+1)|2dx

+ C1∆tε1

N
∑

n=0

∑

T∈S1

∫

T

|∇(πan+1)|2dx+ C3∆t

N
∑

n=0

∑

T

∫

T

|∇(πan+1)|dx},

where we define F (u) as the entropy flux with respect to U(u) = u2/2, and by (13), vni = uni − ani .
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Proof: We multiply (10) by vn+1
i Ai, and sum over i. Write

∑

i

(Kn
1i +Kn

2i)(u
n+1
i − an+1

i )Ai =
∑

i

{Kn
1i(u

n
i − an+1

i ) +Kn
2i(u

n
i − an+1

i ) + (Kn
1i +Kn

2i)
2}Ai.

Applying Lemma 3.4, we have

∑

i

K1i(u
n
i − an+1

i )Ai

= −∆t
∑

T∈S1

∑

i<j

aTij(
eψ1j (unj − uni )

∫ xj
xi

eψ1

ε1
ds

− f(uni ) · τE + uni O(unj − uni )) · (u
n
i − unj )hij

+ ∆t
∑

T∈S1

∑

i<j

aTij(
eψ1j (unj − uni )

∫ xj
xi

eψ1

ε1
ds

− f(uni ) · τE + uni O(unj − uni ))(a
n+1
i − an+1

j ))hij

= ∆t
∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij + ∆t
∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )(a

n+1
i − an+1

j )
∫ xj
xi

eψ1

ε1
ds

hij

− ∆t
∑

T∈S1

∑

i<j

aTij(−f(uni )τE + uiO(unj − uni ))(u
n
i − unj )hij

+ ∆t
∑

T∈S1

∑

i<j

aTij(−f(uni )τE + uni O(unj − uni ))(a
n+1
i − an+1

j )hij .

Changing the index from 1 to 2, we get a similar expression for
∑

iK
n
2i(u

n
i − an+1

i )Ai. Here and
below we let unT be the mean value of un on T . By Lemma 3.2 and the definition of F (U), we have

∫

Ωh

∇ · F (un)dx =

∫

∂Ωh

n · F (anh)ds =

∫

Ωh

un∇ · f(un)dx

= −

∫

Ωh

f(un) · ∇undx+

∫

∂Ωh

anhf(anh) · nds

=

∫

∂Ωh

anhf(anh) · nds−
∑

T∈S1

∫

T

f(un) · ∇undx

−
∑

T∈S2

∫

T

f(un) · ∇undx

=

∫

∂Ωh

anhf(anh) · nds−
∑

T∈S1

∑

i<j

aTijf(unT ) · τEhij(u
n
i − unj )

−
∑

T∈S2

∑

i<j

aTijf(unT ) · τEhij(u
n
i − unj ).
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Then
∑

i

Kn
1i(u

n
i − an+1

i )Ai +
∑

i

Kn
2i(u

n
i − an+1

i )Ai

= ∆t
∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij + ∆t
∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )

2

∫ xj
xi

eψ2

ε2
ds

hij

+ ∆t
∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )(a

n+1
i − an+1

j )
∫ xj
xi

eψ1

ε1
ds

hij

+ ∆t
∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )(a

n+1
i − an+1

j )
∫ xj
xi

eψ2

ε2
ds

hij

− ∆t
∑

T∈S1

∑

i<j

aTij(f(unT ) − f(uni ))τE + uni O(unj − uni ))hij(u
n
i − unj )

− ∆t
∑

T∈S2

∑

i<j

aTij(f(unT ) − f(uni ))τE + uni O(unj − uni ))hij(u
n
i − unj )

+ ∆t
∑

T∈S1

∑

i<j

aTij(f(unT ) − f(uni ))τE + uni O(unj − uni ))hij(a
n+1
i − an+1

j )

+ ∆t
∑

T∈S2

∑

i<j

aTij(f(unT ) − f(uni ))τE + uni O(unj − uni ))hij(a
n+1
i − an+1

j )

+ ∆t

∫

∂Ωh

(anhf(anh) − F (anh)) · nds− ∆t
∑

T

aTijf(unT ) · τEhij(a
n+1
i − an+1

j ).

We will bound each of the terms. By Schwarz inequality, for δ small enough, we have

− ∆t
∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )(a

n+1
i − an+1

j )
∫ xj
xi

eψ1

ε1
ds

hij

≤ −
1

16
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij − 4∆t
∑

T∈S1

∑

i<j

aTij
eψ1j (an+1

j − an+1
i )2

∫ xj
xi

eψ1

ε1
ds

hij

≤ −
1

16
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij + Cε1∆t
∑

T∈S1

∫

T

|∇π(an+1
h )|2dx.

Changing the index from 1 to 2, we have a similar estimate for the term

−∆t
∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )(a

n+1
i − an+1

j )
∫ xj
xi

eψ2

ε2
ds

hij .

Next,

|f(unT ) − f(uni )| ≤ C|unT − uni | ≤ ChT |∇u
n|0,∞,T

≤ C|un|1,T = C(−
∑

l<m

aTlm(unl − unm)2)
1
2 ;

|unj − uni | ≤ |uni − unT | + |unj − unT | ≤ C(−
∑

l<m

aTlm(unl − unm)2)
1
2 .
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Also,

− ∆t
∑

T∈S2

∑

i<j

aTij(f(unT ) − f(uni )) · τE + uni O(unj − uni ))(u
n
i − unj )hij

≤ −C∆th
∑

T∈S2

∑

i<j

aTij(u
n
i − unj )

2 ≤ −C∆tδ
1
4

∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )

2

∫ xj
xi

eψ2

ε2
ds

hij

≤ −
1

16
∆t

∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )

2

∫ xj
xi

eψ2

ε2
ds

hij ,

and a similar bound for the term

−∆t
∑

T∈S1

∑

i<j

aTij(f(unT ) − f(uni )) · τE + uni O(unj − uni ))(u
n
i − unj )hij .

Note that

∆t
∑

T∈S1

∑

i<j

aTiju
n
i O(unj − uni )(a

n+1
i − an+1

j )hij

≤ −
1

8
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij − 2∆tε1
∑

T∈S1

∑

i<j

aTij(a
n+1
i − an+1

j )2

= −
1

8
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij + 2∆tε1
∑

T∈S1

∫

T

|∇(πan+1)|2dx.

Changing the index from 1 to 2, we get an estimate for

∆t
∑

T∈S2

∑

i<j

aTiju
n
i O(unj − uni )(a

n+1
i − an+1

j )hij .

By Lemma 4.1 and Lemma 3.3, we have

−∆t
∑

T

aTijf(unT ) · τEhij(a
n+1
i − an+1

j ) ≤ C3∆t
∑

T

∫

T

|∇(πan+1)|dx.

Furthermore,

∆t
∑

T∈S1

∑

i<j

aTij(f(unT ) − f(uni )) · τE(an+1
i − an+1

j )hij

≤ 2∆tε1
∑

T∈S1

∫

T

|∇(πan+1)|2dx−
1

8
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij ,

and we have a similar estimate for the term

∆t
∑

T∈S2

∑

i<j

aTij(f(uTn ) − f(uni )) · τE(an+1
i − an+1

j )hij .

Finally, we estimate
∑

i

(Kn
1i +Kn

2i)
2Ai.
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Let p(x) = f(uni )(x− xi), then 4p = 0. By Lemma 3.3, we have

0 =

∫

Ωi

∇p · ∇ϕi dx

=
∑

T∈T1,i

∑

j∈Ii

aTi jf(uni ) · τEhi j +
∑

T∈T2,i

∑

j∈Ii

aTi jf(uni ) · τEhi j .

Next, by Lemma 3.4 we have

|Kn
1i +Kn

2i|

= |
∆t

Ai
{

∑

T∈T1,i

∑

j∈Ii

aTij
eψ1j (unj − uni )

∫ xj
xi

eψ1

ε1
ds

hij

+
∑

T∈T2,i

∑

j∈Ii

aTij
eψ2j (unj − uni )

∫ xj
xi

eψ2

ε2
ds

hij + uni O(unj − uni )hij}|

≤ C
∆t

Ai
{

∑

T∈T1,i

∑

j∈Ii

(h+ ε1)|a
T
ij ||u

n
j − uni | +

∑

T∈T2,i

∑

j∈Ii

(h+ ε2)|a
T
ij ||u

n
j − uni |},

which implies that
∑

i

|Kn
1i +Kn

2i|
2Ai

≤ 2C
∑

i

∆t2

Ai
{

∑

T∈T1,i

∑

j∈Ii

(h+ ε1)|a
T
ij ||u

n
j − uni |}

2

+ 2C
∑

i

∆t2

Ai
{

∑

T∈T2,i

∑

j∈Ii

(h+ ε2)|a
T
ij ||u

n
j − uni |}

2

≤ 2Cε1∆t(δ
1
4h

1
2 + 2h

1
2 + h

1
4 )

∑

T∈S1

∑

i<j

|aTij|(u
n
j − uni )

2

+ 2Cε2∆t(h
3
4 + 2h

1
2 + δ

1
4 )

∑

T∈S2

∑

i<j

|aTij|(u
n
j − uni )

2

≤ −
1

8
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij −
1

8
∆t

∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )

2

∫ xj
xi

eψ2

ε2
ds

hij .

Combining all estimates above, we get
∑

i

(Kn
1i +Kn

2i)(u
n+1
i − an+1

i )Ai

≤
1

2
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij + ∆t

∫

∂Ωh

|anhf(anh) − F (anh)|ds.

+
1

2
∆t

∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )

2

∫ xj
xi

eψ2

ε2
ds

hij + C1∆tε1
∑

T∈S1

∫

T

|∇(πan+1)|2dx

+ C2∆tε2
∑

T∈S2

∫

T

|∇(πan+1)|2dx+ C3∆t
∑

T

∫

T

|∇(πan+1)|dx.
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On the other hand,
∑

i

(un+1
i − uni )v

n+1
i =

∑

i

{(vn+1
i )2 − vni v

n+1
i + vn+1

i (an+1
i − ani )},

1

∆t

∑

i

∆tvn+1
i (an+1

i − ani ) ≥ −
1

2
∆t{

∑

i

(vn+1
i )2 +

∑

i

(
an+1
i − ani

∆t
)2},

−
∑

i

vni v
n+1
i ≥ −

1

2
(
∑

i

(vn+1
i )2 +

∑

i

(vni )2),

1

2

∑

i

{(vn+1
i )2 − (vni )2} −

1

2
∆t{

∑

i

{(vn+1
i )2 + (

an+1
i − ani

∆t
)2}}

≤
∑

i

(un+1
i − uni )v

n+1
i .

Hence

1

2

∑

i

(vn+1
i )2Ai −

1

2
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij

−
1

2
∆t

∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )

2

∫ xj
xi

eψ2

ε2
ds

hij

≤
1

2
∆t{

∑

i

(vn+1
i )2Ai +

∑

i

(
an+1
i − ani

∆t
)2Ai} +

1

2

∑

i

(vni )2Ai

+C1∆tε1
∑

T∈S1

∫

T

|∇(πan+1)|2dx+ C2∆tε2
∑

T∈S2

∫

T

|∇(πan+1)|2dx

+C3∆t
∑

T

∫

T

|∇(πan+1)|dx+ ∆t

∫

∂Ωh

|anhf(anh) − F (anh)|ds.

By summing them up with respect to n, n = 0, 1, ...N, we get

1

2

∑

i

(vN+1
i )2Ai −

1

2
∆t

N
∑

n=0

∑

T∈S1

∑

i<j

aTij
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij

−
1

2
∆t

N
∑

n=0

∑

T∈S2

∑

i<j

aTij
eψ2j (unj − uni )

2

∫ xj
xi

eψ2

ε2
ds

hij

≤
1

2
∆t

N
∑

n=0

{
∑

i

(vn+1
i )2Ai +

∑

i

(
an+1
i − ani

∆t
)2Ai} +

1

2

∑

i

(v0
i )

2Ai

+ C3∆t
N

∑

n=0

∑

T

∫

T

|∇(πan+1)|dx+ C2∆tε2

N
∑

n=0

∑

T∈S2

∫

T

|∇(πan+1)|2dx

+ C1∆tε1

N
∑

n=0

∑

T∈S1

∫

T

|∇(πan+1)|2dx+ ∆t

N
∑

n=0

∫

∂Ωh

|anhf(anh) − F (anh)|ds.

Now applying a discrete Gronwall inequality yields the conclusion of Lemma 5.1.
�
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6 Proof of convergence

To prove Theorem 3.1, we first note that by Lemma 4.1, the discrete solutions uh are uniformly
bounded in L∞ norm. Thus, the sequence {uh} satisfies (4). Then there exists according to
Young’s theorem a Young measure ν(·) : Ω × R+ → Prob(R) associated with a subsequence
{uhj} such that ν satisfies (5)–(6). By Lemma 2.2, there exists an associated Young measure
γν(·) : Γ ×R+ → Prob(R) satisfying (8). Introduce the following notation:

◦
Sn = {(x, t) | x ∈ S1, t ∈ In}, ∂Sn = Sn\

◦
Sn,

◦

SN =

N
⋃

n=0

◦
Sn, ∂SN =

N
⋃

n=0

∂Sn.

Let sgη = sgn ∗ ωη ∈ C∞(R) be the standard mollification of sgn, where

ωη(y) =
ω(y

η
)

η
, ω ∈ C∞

0 (−1, 1), ω ≥ 0,

∫

R

ωdy = 1, sg′η(s) = 2ωη(s) ≥ 0.

Further, φ ∈ C∞
0 (Ω×(0, T ∗)), φ ≥ 0, χ ∈ Vh with χ linear on T , is constant on [n∆t, (n+1)∆t),∀n,

and χ| ◦

SN
= 1. Proofs of Lemmas 6.1 and 6.2 will be given later.

Lemma 6.1. The Young measure ν associated with {uhj} is a mv-solution in the interior domain:

∂

∂t
〈ν(x,t), |λ− k|〉 +

∂

∂t
〈ν(x,t), (sgn (λ− k))(f(λ) − f(k))〉 ≤ 0 ∀ k ∈ R, in D ′(Ω ×R+).

Lemma 6.2. The Young measure γν associated with ν given in Lemma 6.1 satisfies

〈γν(x,t), (sgn (λ− k) − sgn (a− k))(f(λ) − f(k))〉 · n ≥ 0 ∀ k ∈ R, in D ′(Γ ×R+).

Lemma 6.3. (Superconvergence) If w ∈W 1,∞(Ω), then for r = 0, 1,

‖w − πw‖W r,∞(Ω) ≤ Ch1−r‖w‖W 1,∞(Ω),

‖vw − π(vw)‖W r,∞(Ω) ≤ Ch1−r‖v‖L∞(Ω)‖w‖W 1,∞(Ω) ∀ v ∈ Vh.

Proof: It is sufficient to consider one triangle T ∈ Ω. We use standard interpolation error estimate
in [5]:

‖w − πw‖0,∞,T ≤ Ch|w|1,∞,T ≤ Ch‖w‖1,∞,T ,

‖w − πw‖1,∞,T ≤ Ch0|w|1,∞,T ≤ C‖w‖1,∞,T .

For φ|T ∈ L1(T ), define Pφ =
∫

T
φdx/

∫

T
dx, the L2 projection of φ. Then

‖w −Pw‖0,∞,T ≤ Ch‖∇w‖L∞(T ),

‖vw − π(vw)‖0,∞,T ≤ ‖vPw − π(vPw)‖0,∞,T + ‖(I − π)(v(w −Pw))‖0,∞,T .
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For v ∈ Vh, Pw|T is constant, which implies π(vPw) = Pwπv = vPw. By the inverse inequality
and above interpolation error estimate, we have

‖(I − π)(v(w −Pw))‖0,∞,T ≤ Ch‖v(w −Pw)‖1,∞,T

≤ C‖v(w −Pw)‖0,∞,T ≤ Ch‖∇(v(w −Pw))‖0,∞,T

= Ch‖(w −Pw)∇v + v∇(w −Pw)‖0,∞,T

≤ Ch(‖∇v‖0,∞,T ‖w −Pw‖0,∞,T + ‖w −Pw‖1,∞,T ‖v‖0,∞,T )

≤ Ch(‖v‖0,∞,T ‖w‖1,∞,T + h‖∇w‖0,∞,T ‖v‖1,∞,T )

≤ Ch(‖v‖0,∞,T ‖w‖1,∞,T + h‖w‖1,∞,T
‖v‖0,∞,T

h
)

= Ch‖v‖0,∞,T ‖w‖1,∞,T .

Thus ‖vw − π(vw)‖0,∞,T ≤ Ch‖v‖0,∞,T ‖w‖1,∞,T . By the inverse inequality, we have

‖vw − π(vw)‖1,∞,T ≤
C

h
‖vw − π(vw)‖0,∞,T ≤ C‖v‖0,∞,T ‖w‖1,∞,T .

�

Now we begin with convergence analysis. Taking

U(un+1
i ) = (un+1

i − k)sgη(u
n+1
i − k), ψni = sgη(u

n
i − k)φni · χ

n
i ,

multiplying (10) by ψni and summing up, we get

∑

n

∑

i

(un+1
i − k) − (uni − k)

∆t
ψni ∆tAi +

∑

n

∑

i

∑

T∈T1,i

∑

j∈Ii

∆taTijJ1(u
n
i , u

n
j )hijψ

n
i

+
∑

n

∑

i

∑

T∈T2,i

∑

j∈Ii

∆taTijJ2(u
n
i , u

n
j )hijψ

n
i = 0.

By (4)–(6) and Lemma 4.1 and Lemma 3.6, as η → 0 and h→ 0,

∑

n

∑

i

(un+1
i − k) − (uni − k)

∆t
ψni ∆tAi

=
∑

n

∑

i

U(un+1
i )

φni χ
n
i − φn+1

i χn+1
i

∆t
Ai

+
∑

i

∑

n

(un+1
i − k)sgη(u

n
i − k) − (un+1

i − k)sgη(u
n+1
i − k)

∆t
φni χ

n
i ∆tAi

→ −

∫

Ω×R+

〈ν(x,t), (λ− k)sgn(λ− k)〉 · φtdxdt.

Consider

∑

n

∑

i

∆t

Ai
Ai

∑

T∈T1,i

∑

j∈Ii

aTijJ1(ui, uj)hijψ
n
i +

∑

n

∑

i

∆t

Ai
Ai

∑

T∈T2,i

∑

j∈Ii

aTijJ2(ui, uj)hijψ
n
i

≡ A+B + C +D +E,
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where

A = ∆t
∑

n

∑

T∈S1

∑

i<j

aTij(J1(ui, uj) − J1(ui, ui))hijsgη(u
n
i − k)((φχ)ni − (φχ)nj ),

B = ∆t
∑

n

∑

T∈S2

∑

i<j

aTij(J1(ui, uj) − J1(ui, ui))hijsgη(u
n
i − k)((φχ)ni − (φχ)nj ),

C = ∆t
∑

n

∑

T

∑

i<j

(−aTij)f(uni ) · τEhijsgη(u
n
i − k)((φχ)ni − (φχ)nj ),

D = ∆t
∑

n

∑

T∈S1

∑

i<j

aTijJ1(u
n
i , u

n
j )hij(sgη(u

n
i − k) − sgη(u

n
j − k))(φχ)nj ,

E = ∆t
∑

n

∑

T∈S2

∑

i<j

aTijJ2(u
n
i , u

n
j )hij(sgη(u

n
i − k) − sgη(u

n
j − k))(φχ)nj .

We consider each of these five terms.

A = ∆t
∑

n

∑

T∈S1

∑

i<j

aTij
∂J1

∂uj
(unj − uni )hijsgη(u

n
i − k)(φni − φnj )χ

n
i ,

B = ∆t
∑

n

∑

T∈S2

∑

i<j

aTij
∂J2

∂uj
(unj − uni )hijsgη(u

n
i − k)(φni − φnj )χ

n
j

+ ∆t
∑

n

∑

T∈S2

∑

i<j

aTij
∂J2

∂uj
(unj − uni )hijsgη(u

n
i − k)φni (χ

n
i − χnj )

≡ BI +BII ,

where ∂J1
∂uj

, ∂J2
∂uj

are mean values determined by intermediate value theorem. By Cauchy’s inequality,

interpolation error estimate Lemma 5.1, Lemma 3.5, and Lemma 4.1, we get

|A| ≤ C{∆t
∑

n

∑

T∈S1

∑

i<j

(−aTij)
eψ1j (unj − uni )

2

∫ xj
xi

eψ1

ε1
ds

hij}
1
2 ·

{∆t
∑

n

∑

T∈S1

∑

i<j

ε1(−a
T
ij)

∫ xj
xi
eψ1ds

eψ1jhij
· (φnj − φni )

2(χi)
2}

1
2

≤ C{∆tε1
∑

n

∑

T∈S1

∑

i<j

(−aTij)(φ
n
i − φnj )

2}
1
2

= C{∆tε1
∑

n

∫

Ωh

|∇(πφn)|2dx}
1
2

= C{∆tε1(
∑

n

∫

Ωh

|∇(φn − πφn)|2dx+
∑

n

∫

Ωh

|∇φn|2dx)}
1
2

≤ Cε
1
2
1 (‖φ‖1,Ω×[0,T ∗] + h‖φ‖2,Ω×[0,T ∗]) → 0 as h→ 0.
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Similarly, BI → 0 as h→ 0. Let

CIII = −∆t
∑

n

∑

T

∫

T

(f(un) − f(k))sgη(u
n − k)∇(π(φnχ))dx

= −∆t
∑

n

∑

T

∫

T

f(un)sgη(u
n − k)∇(π(φnχ))dx

+ ∆t
∑

n

∑

T

∫

T

f(k)sgη(u
n − k)∇(π(φnχ))dx

= −∆t
∑

n

∑

T

∫

T

f(un)sgη(u
n − k)∇(π(φnχ))dx

− ∆t
∑

n

∑

T

∫

T

f(k)∇(sgη(u
n − k))π(φnχ)dx

≡ CI + CII .

By Lemma 3.6, CII → 0, as η → 0. On the other hand,

CI = −∆t
∑

n

∑

T

∑

i<j

aTijf(unT )sgη(u
n
T − k)τEhij((φχ)ni − (φχ)nj ),

where unT is a mean value on T . To guarantee convergence, we will prove |C − CI | → 0 as η → 0,
h→ 0 in Proposition 2 later. On the other hand, in order to prove Lemma 6.1, we analyze

CIII = ∆t
∑

n

∑

T

∫

T

(f(un) − f(k))sgη(u
n − k)∇((I − π)(φnχ))dx

− ∆t
∑

n

∑

T

∫

T

(f(un) − f(k))sgη(u
n − k)(∇φnχ+ ∇χφn)dx

≡ CI′ + CII′ .

CI′ = ∆t
∑

n

∑

T∈S1

∫

T

(f(un) − f(k))sgη(u
n − k)∇((I − π)(φnχ))dx

+ ∆t
∑

n

∑

T∈S2

∫

T

(f(un) − f(k))sgη(u
n − k)∇((I − π)(φnχ))dx

≡ Ca + Cb.

Similar to the estimate in A, we have

|Ca| ≤ C‖(I − π)φn‖1,Ωh ≤ Ch|φ|2,Ω×R+ → 0 as h→ 0.
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D = ∆t
∑

n

∑

T∈S1

∑

i<j

aTijJ1(u
n
i , u

n
j )hij(sgη(u

n
i − k) − sgη(u

n
j − k))(φχ)nj

− ∆t
∑

n

∑

T∈S1

∑

i<j

aTijJ1(u
n
i , u

n
i )hij(sgη(u

n
i − k) − sgη(u

n
j − k))(φχ)nj

+ ∆t
∑

n

∑

T∈S1

∑

i<j

aTijJ1(u
n
i , u

n
i )hij(sgη(u

n
i − k) − sgη(u

n
j − k))(φχ)nj

= −∆t
∑

n

∑

T∈S1

∑

i<j

aTij(u
n
i − unj )

2sg′η(u− k)(φχ)nj hij
ε1e

ψ1j

∫ xj
xi
eψ1ds

(1 +O(
h

ε1
))

− ∆t
∑

n

∑

T∈S1

∑

i<j

aTijf(uni ) · τEhij(sgη(u
n
i − k) − sgη(u

n
j − k))(φχ)nj

≡ DI +DII ,

E = −∆t
∑

n

∑

T∈S2

∑

i<j

aTij(u
n
i − unj )

2sg′η(u− k)(φχ)ni hij
ε2e

ψ2j

∫ xj
xi
eψ2ds

(1 +O(
h

ε2
))

− ∆t
∑

n

∑

T∈S2

∑

i<j

aTijf(uni ) · τEhij(sgη(u
n
i − k) − sgη(u

n
j − k))(φχ)nj

≡ EI +EII .

For δ is sufficiently small, sg′η(u−k) ≥ 0, h ≤ δ, 1+O( h
ε1

) ≥ 0, 1+O( h
ε2

) ≥ 0. Thus DI ≥ 0,
EI ≥ 0, DI +EI ≥ 0. By Lemma 3.6, we prove easily as η → 0,

EII +DII = −∆t
∑

n

∑

T

∑

i<j

aTijf(uni )τEhij(sgη(u
n
i − k) − sgη(u

n
j − k))(φχ)nj → 0.

With the above preparations, we now prove Lemma 6.1.
Proof of Lemma 6.1: Take φ ∈ C∞

0 (Ω×R+), φ ≥ 0. For h is sufficiently small, we have BII = 0,
Cb = 0, ∇χφn = 0. As η → 0, h→ 0, by the dominated convergence theorem and (4)–(6), we get

CII′ → −

∫

Ω×R+

〈ν(x,t), (f(λ) − f(k))sgn(λ− k)〉∇φdxdt, (21)

∫

Ω×R+

(〈ν(x,t), (λ− k)sgn(λ− k)〉φt + 〈ν(x,t), (f(λ) − f(k))sgn(λ− k)〉∇φ)dxdt ≥ 0. (22)

�

We shall use Lemma 6.4 (weighted energy estimate) below to estimate vh near the boundary.
We first discuss the continuous model of Lemma 6.4. Since Ω is polygonal, for a.e. x ∈ Γ, there
exists a positive ε0, and the change of coordinate: x = x − yn(x), (x, y) ∈ Γ × (0, ε0), n(x) is
the outward unit normal of Γ at x. ∇y = −n(x), where y = |x − x| = dist (x,Γ) = d̂x, which is
uniformly Lipschitz continuous. Let

dx =

{

d̂x, x ∈ Ω

0, x /∈ Ω.
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Taking ε̃ < h
40 and letting dε̃x = dx ∗ ρε̃ be a standard mollification of dx, we have

|dε̃x − d̂x| = |

∫

|x−y|<ε̃
ρε̃(x− y)(d̂x − d̂y)dy|

≤

∫

|x−y|<ε̃
ρε̃(x− y)|x− y|dy

≤ |x− y1| ≤ ε̃, y1 ∈ B(x, ε̃).

The unique BV-solution of (1)–(3) is bounded. Let CM be a constant such that |v| ≤ CM ,
∀(x, t) ∈ Ω × (0, T ∗) and define β as follows:

β−1 = sup
|w|≤CM ,

4|F (w, x, t)|

w2
,

where v = u− a, f ′(u) = (f ′1(u), f
′
2(u))

T , and

F = (F1(v, x, t), F2(v, x, t))
T = (

∫ v

0
f ′1(w + a)wdw,

∫ v

0
f ′2(w + a)wdw)T .

Further we introduce the direction β = (1 +β2)−
1
2 (β, 1) = (β1, β2) ∈ R2, and for n = 0, 1, 2, ..., we

define the cut-off function ψ : Sn → R+,

ψ|Sn =







e−
β1(dε̃x−h)+β2(t−tn+1)

τ , β1(d
ε̃
x − h) + β2(t− tn+1) > 0,

1, β1(d
ε̃
x − h) + β2(t− tn+1) ≤ 0,

where there exists a sufficiently large constant C ′, such that τ = C ′hα, α ∈ (1
2 ,

3
4). Note that ψ

equals one on ∂Sn and decays exponentially in
◦
Sn. We analyze the continuous model of Lemma

6.4 (weighted energy estimate) as follows:











∂u

∂t
+ ∇ · f(u) = ε · 4u in Ω ×R+,

u|t=0 = u0 in Ω,
u|∂Ω = a(x, t) on ∂Ω ×R+,

(23)

where

ε|Sn =







ε1, (x, t) ∈
◦
Sn,

ε2, (x, t) ∈ ∂Sn.

Multiplying the equation by vψ and integrating by parts on Sn, we analyze items respectively:

∫

Sn

∂u

∂t
vψdxdt =

∫

Sn

∂( v
2

2 )

∂t
ψdxdt+

∫

Sn

v
∂a

∂t
ψdxdt,

∫

Sn

∂( v
2

2 )

∂t
ψdxdt =

∫

Ωn+1

v2

2
ψdx−

∫

Ωn

v2

2
ψdx−

∫

Sn

v2

2
ψtdxdt,

∫

Sn

v
∂a

∂t
ψdxdt ≤

∫

Sn

v2ψ

2
dxdt+

1

2

∫

Sn

|
∂a

∂t
|2ψdxdt.
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Moreover,
∫

Sn

∇ · f(u)vψdxdt =

∫

Sn

f ′(v + a)∇(v + a)vψdxdt

=

∫

Sn

f ′(v + a)∇vvψdxdt

+

∫

Sn

f ′(v + a)∇avψdxdt;

∫

Sn

f ′(v + a)∇avψdxdt ≤

∫

Sn

v2ψ

2
dxdt+ C

∫

Sn

|∇a|2ψdxdt.

Using the property of F , we get

F1x1(v, x, t) = f ′1(v + a)vvx1 +

∫ v

0
(f ′1(w + a))′x1

wdw,

F2x2(v, x, t) = f ′2(v + a)vvx2 +

∫ v

0
(f ′2(w + a))′x2

wdw,

∇ · F = f ′(v + a)∇vv +

∫ v

0

2
∑

i=1

(f ′i(w + a))′xiwdw ≡ FI + FII .

Since supy∈R |f ′′(y)| ≤ C, FII ≤ C v2

2 . And

∫

Sn

∇ · Fψdxdt =

∫

Sn

f ′(v + a)∇vvψdxdt +

∫

Sn

∫ v

0

2
∑

i=1

(f ′i(w + a))′xiwdwψdxdt.

Since
∫

Sn

∇ · Fψdxdt =

∫

Γ×(tn ,tn+1)
Fψ · ndsdt−

∫

Sn

F∇ψdxdt,

v|∂Ω = 0, F |∂Ω = (0, 0),

we have
∫

Sn

f ′(v + a)∇vvψdxdt = −

∫

Sn

F∇ψdxdt

−

∫

Sn

∫ v

0

2
∑

i=1

(f ′i(w + a))′xiwdwψdxdt.

Moreover,

| −

∫

Sn

∫ v

0

2
∑

i=1

(f ′i(w + a))′xiwdwψdxdt| ≤ C

∫

Sn

ψv2dxdt.

Next, we analyze

−

∫

Sn

ε4u(u− a)ψdxdt =

∫

Sn

ε∇u · v∇ψdxdt +

∫

Sn

ε∇u∇vψdxdt.

18
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Here and below c > 0 is a constant to be chosen sufficiently small. For a.e. x ∈ Γ, we have
∇dε̃x = (∇dx)

ε̃ = (∇d̂x)
ε̃ = (−n(x))ε̃, therefore |∇dε̃x| ≤ 1. On the other hand, we note that

∇ψ = −
β1

τ
∇dε̃xψ, ψt = −

β2

τ
ψ, h ≤ δ, ε1 ≤ ε2,

δ is sufficiently small and C ′ is a sufficiently large constant, we have

β1

4cτ
ε21 =

β1h

4cC ′hαδ
1
4

ε1

=
β1

4cC ′
(
h

δ
)

1
4h

3
4
−αε1

≤
β1

4cC ′
h

3
4
−αε1 ≤

1

8
ε1,

∫

Sn

ε∇uv∇ψdxdt ≤ c

∫

Sn

v2|∇ψ|dxdt+

∫

Sn

β1

4cτ
ε21|∇u|

2ψdxdt

≤ c

∫

Sn

v2|∇ψ|dxdt+
1

8

∫

Sn

ε1|∇u|
2ψdxdt

≤ c

∫

Sn

v2ψ

τ
dxdt+

1

4

∫

Sn

ε(|∇v|2 + |∇a|2)ψdxdt,

∫

Sn

ε∇u∇vψdxdt =

∫

Sn

ε|∇v|2ψdxdt+

∫

Sn

ε∇a∇vψdxdt,

∫

Sn

ε∇a∇vψdxdt ≤
1

4

∫

Sn

ε|∇v|2ψdxdt+

∫

Sn

ε|∇a|2ψdxdt.

Combining all above estimates, we have

∫

Ωn+1

v2ψ

2
dx+

1

2

∫

Sn

ε|∇v|2ψdxdt−

∫

Sn

(
v2

2
ψt + F∇ψ)dxdt

≤

∫

Ωn

v2ψ

2
dx+ C

∫

Sn

v2ψdxdt+
1

2

∫

Sn

|
∂a

∂t
|2ψdxdt

+ C

∫

Sn

|∇a|2ψdxdt+ c

∫

Sn

v2ψ

τ
dxdt.

Since β−1 ≥ 4|F |/v2, we have

1 +
2F

v2
β∇dε̃x ≥ 1 −

2|F |

v2
β|∇dε̃x| ≥ 1 −

2|F |

v2
β ≥

1

2
,

−

∫

Sn

(
v2

2
ψt + F∇ψ)dxdt = −

∫

Sn

v2

2
(1,

F
v2

2

)(ψt,∇ψ)dxdt

=
1

τ

∫

Sn

v2

2
(1,

2F

v2
)(1 + β2)−

1
2 (1, β∇dε̃x)ψdxdt

≥ c

∫

Sn

v2ψ

τ
dxdt.
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Then,
∫

Ωn+1

v2ψ

2
dx+

1

2

∫

Sn

ε|∇v|2ψdxdt ≤

∫

Ωn

v2ψ

2
dx+ C

∫

Sn

v2ψdxdt

+
1

2

∫

Sn

|
∂a

∂t
|2ψdxdt+ C

∫

Sn

|∇a|2ψdxdt.

By Growall’s inequality, we have
∫

Ωn+1

v2ψ

2
dx+

1

2

∫

Sn

ε|∇v|2ψdxdt

≤ C{

∫

Ωn

v2ψ

2
dx+

1

2

∫

Sn

|
∂a

∂t
|2ψdxdt+ C

∫

Sn

|∇a|2ψdxdt}

≤ C(

∫

Ωn

ψdx+

∫

Sn

ψdxdt) ≤ C(h+ τ).

We can then establish the following local stability result.

Lemma 6.4. (Weighted Energy Estimate) Under the assumptions of the continuous model and
(9), we have for h sufficiently small,

1

2

∑

i

(vn+1
i )2ψn+1

i Ai −
∆t

2

∑

T∈S1

∑

i<j

aTij
eψ1j (vnj − vni )2

∫ xj
xi

eψ1

ε1
ds

hijψ
n
i

−
∆t

2

∑

T∈S2

∑

i<j

aTij
eψ2j (vnj − vni )2

∫ xj
xi

eψ2

ε2
ds

hijψ
n
i ≤ C(h+ τ).

On the basis of Lemma 6.4, we have the following estimate of vh near the boundary.

Lemma 6.5. Under the assumptions of Lemma 6.4, there is a constant C such that for h suffi-
ciently small,

‖vh‖0,∞,∂SN ≤ C(
h+ τ

ε2
)

1
2 ,

which in particular implies that
lim
h→0

‖vh‖0,∞,∂SN = 0.

Proof: By the definition of vh, Lemma 6.4, and the property of affine family of finite elements,
∃T0 ∈ ∂Sn, such that

‖vh‖0,∞,∂Sn = ‖vh‖0,∞,T0 ≤ C‖v̂h‖0,∞,T̂0
≤ C‖v̂h‖1,T̂0

≤ C‖B‖|detB|−
1
2 |vh|1,T0 = C|vh|1,T0

≤ C|vh|1,∂Sn = C{−∆t
∑

T∈S2

∑

i<j

aTij(v
n
j − vni )2}

1
2

≤ C{
−1

ε2

∆t

2

∑

T∈S2

∑

i<j

aTij
eψ2j (vnj − vni )2

∫ xj
xi

eψ2

ε2
ds

hijψ
n
i }

1
2

≤ C(
h+ τ

ε2
)

1
2 → 0 as h→ 0,
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which prove the Lemma 6.5.
�

Let φ = φχξ, where 0 ≤ φ ∈ C∞
0 (Ω ×R+), and for ξ > 0, we set

Hξ = 1 +
1

2
(sgn (·,−

3

4
ξ) − sgn (·,+

3

4
ξ)) ∗ ω 1

4
ξ, χξ = Hξ(a− k).

Then χξ ∈ C∞(Ω ×R+), χξ(x, t) ∈ [0, 1], and

χξ =

{

0, |a(x, t) − k| < ξ
2 ,

1, |a(x, t) − k| ≥ ξ.

For h small enough, we obtain by Lemma 6.5, ‖vh‖L∞(∂SN ) ≤ C(h+τ
ε2

)
1
2 ≤ ξ

3 − η and

sgη(uh − k)φχξχ|∂SN = sgn (a− k)φχξχ|∂SN .

Consider the change of coordinates x→ (x, y) for x in a neighborhood of Γ:

x = x− yn(x), a.e. (x, y) ∈ Γ × (0, ρ).

Let

J = |
∂x

∂(x, y)
|, Ω′ ⊂⊂ Ω, dist (Ω′, ∂Ω) = ρ.

We define open sets Ω1 = {x ∈ Ω | dist(x, ∂Ω) > 2ρ/3}, Ω2 = {x ∈ Ω | dist(x, ∂Ω) > ρ/3}, and let
φ1 be the characteristic function of Ω1.

φ1 =







1, x ∈ Ω1,

0, x /∈ Ω1.

Let ρ1ξ ∗ φ1 = χρ be the standard mollification of φ1. For a.e. (x, y) ∈ Γ × (0, ρ), we have
∇y = −n(x) and

χρ =











1, y ≥ ρ,

g(y), y ∈ [ρ3 , ρ],

0, y ∈ [0, ρ3 ],

and ∇χρ =

{

−g′(y)n(x), y ∈ [ ρ3 , ρ],

0, otherwise.
(24)

For h is sufficiently small, χρ|S2 = 0 and we obtain

BII = ∆t
∑

n

∑

T∈S2

∑

i<j

aTij
∂J2

∂unj
(unj − uni )hijsgn (ani − k)φni {(χ

n
i − χnρi) − (χnj − χnρj )}. (25)

With the choice of φ, χρ, we have the next result.

Lemma 6.6.

BII → −

∫

Γ×R+

sgn(a− k)〈γν(x,t), f(a) − f(λ)〉 · nφdsdt as h→ 0, η → 0. (26)
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Proof: Multiplying the scheme (10) with ψni = sgn (ani − k)φni (χi − χρi)Ai, and summing over i,
we get

∑

n

∑

i

un+1
i

ψni − ψn+1
i

∆t
∆tAi + ∆t

∑

n

∑

T∈S1

∑

i<j

aTijJ1(u
n
i , u

n
j )hij(ψ

n
i − ψnj )

+ ∆t
∑

n

∑

T∈S2

∑

i<j

aTijJ2(u
n
i , u

n
j )hij(ψ

n
i − ψnj ) = 0.

We analyze three items above respectively. First we consider

G = ∆t
∑

n

∑

T

∫

T

f(un)∇(π(sgn (a− k)φ(χ− χρ)))dx

= ∆t
∑

n

∑

T

∫

T

f(unT )∇(π(sgn (a− k)φ(χ− χρ)))dx

= ∆t
∑

n

∑

T

f(unT )τEhija
T
ij{sgn (ani − k)φni (χ

n
i − χnρi) − sgn (anj − k)φnj (χ

n
j − χnρj )}

≡ P + PI + PII + PIII + PIV + PV + PV I ,
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where

P = ∆t
∑

n

∑

T∈S1

∑

i<j

(J1(u
n
i , u

n
j ) − J1(u

n
i , u

n
i ))hija

T
ijsgn (ani − k)φni (χ

n
i − χnρi)

− ∆t
∑

n

∑

T∈S1

∑

i<j

(J1(u
n
i , u

n
j ) − J1(u

n
i , u

n
i ))hija

T
ijsgn (ani − k)φni (χ

n
j − χnρj )

+ ∆t
∑

n

∑

T∈S2

∑

i<j

(J2(u
n
i , u

n
j ) − J2(u

n
i , u

n
i ))hija

T
ijsgn(ani − k)φni (χ

n
i − χnρi)

− ∆t
∑

n

∑

T∈S2

∑

i<j

(J2(u
n
i , u

n
j ) − J2(u

n
i , u

n
i ))hija

T
ijsgn(ani − k)φni (χ

n
j − χnρj ),

PI = −∆t
∑

n

∑

T∈S1

∑

i<j

J1(u
n
i , u

n
j )hija

T
ijsgn (ani − k)φni (χ

n
i − χnρi)

+ ∆t
∑

n

∑

T∈S1

∑

i<j

J1(u
n
i , u

n
j )hija

T
ijsgn (anj − k)φnj (χ

n
j − χnρj )

− ∆t
∑

n

∑

T∈S2

∑

i<j

J2(u
n
i , u

n
j )hija

T
ijsgn (ani − k)φni (χ

n
i − χnρi)

+ ∆t
∑

n

∑

T∈S2

∑

i<j

J2(u
n
i , u

n
j )hija

T
ijsgn (anj − k)φnj (χ

n
j − χnρj ),

PII = ∆t
∑

n

∑

T∈S1

∑

i<j

(J1(u
n
i , u

n
j ) − J1(u

n
i , u

n
i ))hija

T
ijsgn (ani − k)(φni − φnj )(χ

n
j − χnρj )

+ ∆t
∑

n

∑

T∈S2

∑

i<j

(J2(u
n
i , u

n
j ) − J2(u

n
i , u

n
i ))hija

T
ijsgn (ani − k)(φni − φnj )(χ

n
j − χnρj ),

PIII = ∆t
∑

n

∑

T

∑

i<j

(f(unT ) − f(uni ))τEa
T
ijhijsgn (ani − k)(φni − φnj )(χ

n
j − χnρj ),

PIV = ∆t
∑

n

∑

T∈S1

∑

i<j

J1(u
n
i , u

n
j )hija

T
ij(sgn (ani − k) − sgn (anj − k))φnj (χ

n
j − χnρj )

− ∆t
∑

n

∑

T∈S1

∑

i<j

J1(u
n
i , u

n
i )hija

T
ij(sgn (ani − k) − sgn (anj − k))φnj (χ

n
j − χnρj )

+ ∆t
∑

n

∑

T∈S2

∑

i<j

J2(u
n
i , u

n
j )hija

T
ij(sgn (ani − k) − sgn (anj − k))φnj (χ

n
j − χnρj ),

− ∆t
∑

n

∑

T∈S2

∑

i<j

J2(u
n
i , u

n
i )hija

T
ij(sgn (ani − k) − sgn (anj − k))φnj (χ

n
j − χnρj ),

PV = ∆t
∑

n

∑

T

∑

i<j

(f(unT ) − f(uni ))τEa
T
ijhij(sgn (ani − k) − sgn (anj − k))φnj (χ

n
j − χnρj ),

PV I = ∆t
∑

n

∑

T

∑

i<j

(f(unT ) − f(uni ))τEa
T
ijhijsgn (ani − k)φni {(χ

n
i − χnρi) − (χnj − χnρj )}.

It is trivial to prove that as h→ 0, PII → 0, PIII → 0, and

PI =
∑

n

∑

i

un+1
i

ψni − ψn+1
i

∆t
∆tAi → −

∫

Ω×R+

〈ν(x,t), λ〉sgn (a− k)φt(1 − χρ)dxdt.

As ρ → 0, by the dominated convergence theorem, PI → 0. Using φ∇sgn (a − k) = 0, we know
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that as h→ 0, PIV → 0, PV → 0.
Now we consider

PV I = ∆t
∑

n

∑

T∈S2

∑

i<j

(f(unT ) − f(uni ))τEa
T
ijhijsgn (ani − k)φni (χi − χj)

− ∆t
∑

n

∑

T

∑

i<j

(f(unT ) − f(uni ))τEa
T
ijhijsgn (ani − k)φni (χρi − χρj )

≡ Pa + Pb;

First, by Lemma 3.6, and lemma 4.1, we have Pb → 0 as ρ → 0; second we estimate Pa. Let
ah(xT , n∆t) = anT . Since |φni | ≤ C, |χi − χj| ≤ 2,

∑

T∈S2
1 ≤ C

h
, and

|f(uni ) − f(unT )| ≤ C|uni − unT |

= C|uni − ani + ani − anT + anT − unT |

≤ |vni | + |a′(ξ)(xT − xi)| + |vT |0,∞,T

≤ 2‖v‖0,∞,T + h|a|1,∞,T ,

we have

Pa ≤
C

h
(‖v‖0,∞,∂SN + h|a|1,∞,(Ω×R+))h→ 0 as h→ 0.

Consider

G1 = ∆t
∑

n

∑

T

∫

T

f(un)∇(sgn (an − k)φ(χ − χρ))dx. (27)

By Lemma 6.3, we get

|G−G1| = |∆t
∑

n

∑

T

∫

T

f(un)∇((π − I)sgn (an − k)φ(χ− χρ))dx|

≤ C(h+ ρ)‖(I − π)sgn (a− k)φ(χ− χρ)‖1,∞,Ω

= C(h+ ρ)‖(I − π)sgn (a− k)φ(χ− χρ)‖1,∞,T ∗

≤ C(h+ ρ)‖χ− χρ‖0,∞,T ∗‖φn‖1,∞,T ∗ → 0 as h→ 0, ρ→ 0.

Write

G1 = ∆t
∑

n

∑

T

∫

T

f(un)∇φnsgn (an − k)(χ− χρ)dx

+ ∆t
∑

n

∑

T

∫

T

f(un)φnsgn (an − k)(∇χ−∇χρ)dx

≡ Ga +Gb.

By (4)–(6),

Ga →

∫

Ω×R+

〈ν(x,t), f(λ)〉∇φsgn (a− k)(1 − χρ)dxdt as h→ 0.
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As ρ→ 0, by the dominated convergence theorem, we get Ga → 0. As h→ 0, we have

−∆t
∑

n

∑

T

∫

T

f(un)sgn (an − k)φ∇χρdx→ −

∫

Ω×R+

〈ν(x,t), f(λ)〉∇χρφ
nsgn (a− k)dxdt ≡ Ra.

We analyze Ra in the following proposition.
Proposition 1:

Ra →

∫

Γ×R+

〈γν(x,t), f(λ)〉sgn (a− k)φ · ndsdt as ρ→ 0.

Proof: We notice (24) and we have
∫ ρ
ρ
3
g′(y)dy = g(ρ) − g( ρ3 ) = 1. By Fubini theorem and

intermediate value theorem, we have

Ra =

∫

Γ×(0,ρ)×R+

〈ν(x(x,y),t), f(λ)〉sgn (a− k)φn(x)g′(y)Jdxdydt

=

∫

Γ×R+

∫ ρ

0
〈ν(x(x,y),t), f(λ)〉sgn (a− k)φn(x)g′(y)Jdydxdt

=

∫

Γ×R+

〈ν(x(x,y),t), f(λ)〉sgn (a− k)φn(x)J

∫ ρ

0
g′(y)dydxdt

=

∫

Γ×R+

〈ν(x(x,y),t), f(λ)〉sgn (a− k)φ(x, y, t)n(x)J(x, y)dxdt.

When y ≤ y ≤ ρ→ 0, J(·, y) → J0 in L1(Γ) and J0dx = ds, by Lemma 2.2, we get

Ra →

∫

Γ×R+

〈γν(x,t), f(λ)〉sgn (a− k)φ · ndsdt as ρ→ 0.

�

Let χε = χ ∗ ρ1ε be the mollification of χ. By Cauchy’s inequality, we have as ε ≤ h→ 0,

|∆t
∑

n

∑

T

∫

T

f(un)φnsgn (an − k)(∇χ−∇χε)dx| ≤ C‖χ− χε‖1,Ω → 0. (28)

By Lemma 6.5, ‖vh‖0,∞,∂SN ≤ C(h+τ
ε2

)
1
2 , and by similar proof in Proposition 1, as ε ≤ h → 0, we

have

∆t
∑

n

∑

T

∫

T

φf(un)sgn (an − k)∇χεdx→ −

∫

Γ×R+

f(a)sgn (a− k) · nφdsdt.

So as h→ 0 and ρ→ 0,

G→

∫

Γ×R+

〈γν(x,t), f(λ) − f(a)〉sgn (a− k)φ · ndsdt,

P → −

∫

Γ×R+

〈γν(x,t),−f(λ) + f(a)〉sgn (a− k)φ · ndsdt.
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Now we set

P = ∆t
∑

n

∑

T∈S2

∑

i<j

∂J2(u
n
i , u

n
j )

∂unj
(unj − uni )hija

T
ijsgn (ani − k)φni {(χ

n
i − χnρi) − (χnj − χnρj )}

+ ∆t
∑

n

∑

T∈S1

∑

i<j

∂J1(u
n
i , u

n
j )

∂unj
(unj − uni )hija

T
ijsgn (ani − k)φni {−χ

n
ρi

+ χnρj}

≡ BII + Ps.

By Lemma 3.5 and Lemma 3.6, as ρ→ 0, Ps → 0, and as h, ρ→ 0, we have

BII → −

∫

Γ×R+

〈γν(x,t),−f(λ) + f(a)〉sgn (a− k)φ · ndsdt.

As one more step for the proof of Lemma 6.2, we show the following result.
Proposition 2:

|C − CI | → 0 as η, h→ 0.

Proof: By Lemma 6.3, in CI′ ,

|Cb| ≤ C‖(I − π)(φnχ)‖1,∞,Ω×R+h ≤ C‖φn‖1,∞,Ω×R+‖χ‖0,∞,Ωh→ 0 as h→ 0.

Let CII′ ≡ Ca′ + Cb′ , where

Ca′ = −∆t
∑

n

∑

T

∫

T

(f(un) − f(k))sgη(u
n − k)∇φnχdx, (29)

Cb′ = −∆t
∑

n

∑

T

∫

T

(f(un) − f(k))sgη(u
n − k)∇χφndx. (30)

Then as η, h→ 0,

Ca′ → −

∫

Ω×R+

〈ν(x,t), (f(λ) − f(k))sgn(λ− k)〉∇φdxdt,

Cb′ →

∫

Γ×R+

(−f(k) + f(a))sgn (a− k)φ · ndsdt.

C − CI = ∆t
∑

n

∑

T

∑

i<j

aTij(f(unT ) − f(uni )) · τEhijsgη(u
n
i − k)((φχ)ni − (φχ)nj )

− ∆t
∑

n

∑

T

∑

i<j

aTijf(unT ) · τEhij(sgη(u
n
i − k) − sgη(u

n
T − k))((φχ)ni − (φχ)nj )

≡ Cs + Ct.

Since

sgη(u
n
i − k) − sgη(u

n
T − k) = sg′η · (−uT + ui),

|uT − ui| ≤ ChT |∇u
n| ≤ C|un|1,T ≤ Ch−1|un|1,1,T ,
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We have, by Lemma 3.6 and Lemma 4.1,

|Ct| ≤ C∆t
∑

n

∑

T

|un|1,1,T sg′η ≤ C

∫

Ω
|∇sgη(u

n)|dx → 0 as η → 0.

Let Cs = Csa + Csb, where

Csa = ∆t
∑

n

∑

T∈S1

∑

i<j

aTij(f(unT ) − f(uni )) · τEhijsgη(u
n
i − k)(φni − φnj ),

Csb = ∆t
∑

n

∑

T∈S2

∑

i<j

aTij(f(unT ) − f(uni )) · τEhijsgη(u
n
i − k)((φχ)ni − (φχ)nj ).

Similar to the estimate in A, we have Csa → 0 as h→ 0. For Csb,

|f(uni ) − f(unT )| ≤ C|uni − unT | ≤ C(2‖v‖0,∞,T + h|a|1,∞,T ),

|(φχ)i − (φχ)j)| ≤ Ch|∇(φχ)| ≤ C|φχ|1,T ≤ Ch−1|φχ|1,1,T ,

|∇χ|0,∞,T ≤
C

h
,

∑

T∈S2

∫

T

dx ≤ Ch.

We have

|Csb| ≤ C(2‖v‖0,∞,T + h|a|1,∞,T )∆t
∑

n

∑

T∈S2

∫

T

|∇(φχ)|dx → 0 as h→ 0,

which implies that as η, h → 0,|C −CI | → 0 , and

C → −

∫

Ω×R+

〈ν(x,t), (f(λ) − f(k))sgn(λ− k)〉∇φdxdt

+

∫

Γ×R+

(−f(k) + f(a))sgn (a− k)φ · ndsdt.

�

Now we prove Lemma 6.2.
Proof of Lemma 6.2: Combining the estimates for the terms A, B, C, D, E, we have

∫

Ω×R+

〈ν(x,t), (λ− k)sgn(λ− k)〉 · φtdxdt

+

∫

Ω×R+

〈ν(x,t), (f(λ) − f(k))sgn(λ− k)〉∇φdxdt

−

∫

Γ×R+

(f(a) − f(k))sgn(a− k) · nφdsdt

+

∫

Γ×R+

〈γν(x,t),−f(λ) + f(a)〉sgn (a− k)φ · ndsdt ≥ 0.

We obtain the estimate with φ = φχξ,

∫

Ω×R+

(〈ν(x,t), |λ− k|〉φt + 〈ν(x,t), (sgn (λ− k)(f(λ) − f(k))〉 · 5φ)dxdt
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−

∫

Γ×R+

〈γν(x,t), f(λ) − f(k)〉 · n(x)φsgn (a− k)dsdt ≥ 0.

By the dominated convergence theorem, as ξ → 0, we have

∫

Ω×R+

〈ν(x,t), |λ− k|〉φtχξdxdt+

∫

Ω×R+

〈ν(x,t), (f(λ) − f(k))sgn (λ− k)〉∇φχξdxdt→ 0.

By Lemma 2.2 and the same coordinate change as before, as ξ → 0,

∫

Ω×R+

〈ν(x,t), (f(λ) − f(k))sgn (λ− k)〉φ∇χξdxdt→

∫

Γ×R+

〈γν(x,t), (f(λ) − f(k))sgn (λ− k)〉φn(x)dsdt.

By the dominated convergence theorem again,

∫

Γ×R+

〈γν(x,t), (sgn (λ− k) − sgn (a− k))(f(λ) − f(k))〉 · n lim
ξ→0

χξφdsdt ≥ 0.

Since (sgn (λ − ·) − sgn (a(x, t) − ·))(f(λ) − f(·)) is locally Lipschitz continuous on R\{a(x, t)},
there is a set Ŝ2 with Lebesgue measure on Γ × R+ of Γ × R+\Ŝ2 equal to zero, such that for
∀k ∈ R, k 6= a(x, t) a.e. on Γ ×R+,

〈γν(x,t), (sgn (λ− k) − sgn (a− k))(f(λ) − f(k))〉 · n(x) ≥ 0.

Letting then k → a(x, t)+−, we have proved Lemma 6.2.
�

Take φ ∈ C1
0 (Ω ×R+), φ ≥ 0. Let χξ(x(x, y)) =











0, y ∈ [0, ξ],
1
2 + 3

4
y−2ξ
ξ

− 1
4(y−2ξ

ξ
)3, y ∈ [ξ, 3ξ],

1, y ≥ 3ξ.

where

x, y are defined as before. We write

∫

Ω×R+

〈ν(x,t), |λ− k|〉φt + 〈ν(x,t), sgn (λ− k))(f(λ) − f(k))〉∇φdxdt

−

∫

Γ×R+

〈γν(x,t), f(λ) − f(k)〉 · nφsgn (a− k)dsdt

=

∫

Ω×R+

〈ν(x,t), |λ− k|〉(χξφt) + 〈ν(x,t), sgn (λ− k)(f(λ) − f(k))〉∇(χξφ)dxdt

+

∫

Ω×R+

〈ν(x,t), |λ− k|〉(1 − χξ)φt + 〈ν(x,t), sgn (λ− k)(f(λ) − f(k))〉∇((1 − χξ)φ)dxdt

−

∫

Γ×R+

〈γν(x,t), f(λ) − f(k)〉 · nφsgn (a− k)dsdt ≡ Iξ + IIξ + IIIξ.

For χξφ ∈ C1
0 (Ω × R+), by Lemma 6.1, Iξ ≥ 0, and ∇((1 − χξ)φ) = (1 − χξ)∇φ + φ(−∇χξ). As

ξ → 0, by the dominated convergence theorem, we have

∫

Ω×R+

〈ν(x,t), |λ− k|〉(1 − χξ)φt + 〈ν(x,t), sgn (λ− k)(f(λ) − f(k))〉(1 − χξ)∇φdxdt→ 0.
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By Lemma 2.2 and the change of coordinate used as before,

IIξ →

∫

Γ×R+

〈γν(x,t), (f(λ) − f(k))sgn (λ− k)〉 · nφdsdt (ξ → 0).

By Lemma 6.2,

lim
ξ→0

(IIξ + IIIξ) =

∫

Γ×R+

〈γν(x,t), (sgn (λ− k) − sgn (a− k))(f(λ) − f(k))〉 · nφdsdt ≥ 0.

This proves that ν and γν satisfy the first part of definition. The fact that ν also satisfies the
initial condition, which is proved by weak convergence and the following L2 stability.

Lemma 6.7. For φ̂ ∈ C1
0 (Ω), we have

lim
t→0

∫

Ω
〈ν(x,t), λ〉φ̂dx =

∫

Ω
u0φ̂dx, (31)

lim
t→0

∫

Ω
〈ν(x,t), |λ− u0|〉dx = 0. (32)

Proof: Let φ̂ ∈ C1
0 (Ω), and take ψ̂ ∈ C1

0 ([0,+∞)), ψ̂(0) = 1. Let χ̂ = φ̂ψ̂. Multiplying the scheme
(10) by χ̂ni and summing up, we get for sufficiently small h,

∑

n

∑

i

un+1
i

χ̂ni − χ̂n+1
i

∆t
∆tAi + ∆t

∑

n

∑

T∈S1

∑

i<j

aTijJ1(u
n
i , u

n
j )hij(χ̂

n
i − χ̂nj ) =

∑

i

u0
i χ̂

0
iAi.

Write

∆t
∑

n

∑

T∈S1

∑

i<j

aTijJ1(u
n
i , u

n
j )hij(χ̂

n
i − χ̂nj ) = −∆t

∑

n

∑

T∈S1

∑

i<j

aTijf(uni ) · τEhij(χ̃
n
i − χ̂nj ) +R1,

−∆t
∑

n

∑

T∈S1

∑

i<j

aTi jf(uni ) · τEhij(χ̂
n
i − χ̂nj ) = −∆t

∑

n

∑

T∈S1

∫

T

f(un) · ∇(πχ̂n)dx+R2,

where

R1 = ∆t
∑

n

∑

T∈S1

∑

i<j

aTij
∂J1

∂uj
(unj − uni )hij(χ̂

n
i − χ̂nj ),

R2 = ∆t
∑

n

∑

T∈S1

∑

i<j

aTi j(f(uT ) − f(uni )) · τEhi j(χ̂
n
i − χ̂nj ).

Similar to the estimate of A, we prove R1 → 0, R2 → 0 as h→ 0.
By (4)–(6),

∫

Ω×R+

〈νx,t, λ〉φ̂dxψ̂tdt+

∫

Ω×R+

〈νx,t, f(λ)〉 · ∇φ̂dxψ̂dt+

∫

Ω
u0φ̂(x, 0)dx = 0. (33)

We define the functions Â, B̂ ∈ L∞((0, T ∗)) by

Â(t) =

∫

Ω
〈ν(x,t), λ〉φ̂(x)dx, B̂(t) =

∫

Ω
〈ν(x,t), f(λ)〉∇φ̂(x)dx.
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Since ν(x,t) is a measure-valued solution, Ât + B̂ = 0 in the sense of distributions on R+. We note

B̂ ∈ L1((0, T
∗)), which implies Ât ∈ L1(0, T

∗). Hence Â(t) has bounded variation and limt→0 Â(t)

exists. Take ψ̂1 ≡ ψ̂n =

{

(1 − nt)2, t ≤ 1
n
,

0, t > 1
n
.

By the dominated convergence theorem,

∫

Ω
u0φ̂dx = − lim

n→∞

∫

Ω
Â(t)(ψ̂n)tdt = lim

t→0
Â(t).

In order to prove (32), we shall use a technique which involves a similar L2 stability in [9]:
Proposition 3:

∫

Ω
〈ν(x,t), λ

2〉dx ≤

∫

Ω
u2

0dx, for a.e. t ∈ (0, T ∗).

We postpone the proof of Proposition 3 to the end of the section. Assuming first that u0 ∈
C1

0 (Ω). By Proposition 3 and (31):

lim
t→0

sup

∫

Ω
〈ν(x,t), (λ− u0)

2〉dx = lim
t→0

sup

∫

Ω
〈ν(x,t), λ

2 − u2
0 − 2u0(λ− u0)〉dx

≤ −2 lim
t→0

sup

∫

Ω
〈ν(x,t), λ− u0〉u0dx = 0.

Further, by using that Jensen’s inequality,

lim
t→0

sup

∫

Ω
〈ν(x,t), |λ− u0|〉dx ≤ C lim

t→0
sup(

∫

Ω
〈ν(x,t), (λ− u0)

2〉dx)
1
2 = 0, (34)

which proves the initial condition for regular initial data.
In the more general case u0 ∈ L∞(Ω) with supp u0 ⊂⊂ Ω, we choose functions fn ∈ C1

0 (Ω),
with supp fn ⊆ Ω and limn→∞ ‖fn − u0‖0,Ω = 0. By using Jensen’s inequality and Proposition 3,
we obtain

lim
t→0

∫

Ω
〈ν(x,t), (λ− u0)

2〉dx = lim
n→∞

lim
t→0

∫

Ω
〈ν(x,t), (λ− fn)

2〉dx = 0,

lim
t→0

sup

∫

Ω
〈ν(x,t), |λ− u0|〉dx ≤ C lim

t→0
(

∫

Ω
〈ν(x,t), (λ− u0)

2〉dx)
1
2 = 0.

We now turn to the proof of Proposition 3. Take an arbitrary Ŝ1 ⊂⊂ Ω and Ŝ1 is a closed
polygonal domain, such that suppu0 ⊂⊂ Ŝ1, Ŝ1 = {T ∈ S1 | T

⋂

S2 = Φ}. Take the characteristic
function of Ŝ1,

φ2 =

{

1, x ∈ Ŝ1,

0, x /∈ Ŝ1.

We denote the scheme (10) un+1
i ≡ uni + L(uni , u

n
j ). Next, we define the sequence {wnj }. For

suppu0 ⊂⊂ Ŝ1, we set

Step 1. w0
i = u0

iφ2i ≡ u0
i .

Step 2. wn+1
i = (wni + L(wni , w

n
j ))φ2i, n = 0, 1, 2, ...
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By using the value wni on each node, and interpolating linearly on each element T , we extend wn
i

to the whole domain Ω × [0, T ∗] such that it is constant on [n∆t, (n+ 1)∆t), ∀n, denoted by wh.
We note that

0 =

∫

Ωh

∇ · F (wn)dx =

∫

∂Ωh

n · F (wn)ds

=

∫

Ωh

wn∇ · f(wn)dx = −

∫

Ωh

f(wn) · ∇wndx

= −
∑

T∈S1

∫

T

f(wn) · ∇wndx = −
∑

T∈S1

∑

i<j

aTijf(wnT ) · τEhij(w
n
i − wnj ).

Then we obtain from definition

wn+1
i = {wni +

∆t

Ai

∑

T∈T1,i

∑

j∈Ii

aTi jJ1(w
n
i , w

n
j )hij}φ2i

≡ wni φ2i +Qiφ2i.

Multiplying the equality by wni+1φ2iAi and we notice

(wn+1
i −wni φ2i)w

n+1
i φ2i = Qiφ2iw

n+1
i

= Qiφ2i(w
n
i φ2i +Qiφ2i)

= Qiw
n
i φ2i +Q2

iφ2i.

Summing over i and applying Lemma 3.4 and Lemma 5.1, we have
∑

i

Qiw
n
i φ2iAi

= −∆t
∑

T∈S1

∑

i<j

aTij(
eψ1j (wnj − wni )

∫ xj
xi

eψ1

ε1
ds

+ (f(wnT ) − f(wni )) · τE + wni O(wnj − wni )) · (w
n
i −wnj )hij

≤ −C∆th
∑

T∈S1

∑

i<j

aTij(w
n
i − wnj )

2 ≤ −C∆tδ
1
4

∑

T∈S1

∑

i<j

aTij
eψ1j (wnj − wni )

2

∫ xj
xi

eψ1

ε1
ds

hij

≤ −
1

4
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (wnj − wni )

2

∫ xj
xi

eψ1

ε1
ds

hij .

Let p(x) = f(wni )(x− xi), then 4p = 0. By Lemma 3.3, we have

0 =

∫

Ωi

∇p · ∇ϕi dx =
∑

T∈Ti

∑

j∈Ii

aTi jf(wni ) · τEhi j.

Next by Lemma 3.4, we have

|Qi| = |
∆t

Ai
{

∑

T∈T1,i

∑

j∈Ii

aTij
eψ1j (wnj − wni )

∫ xj
xi

eψ1

ε1
ds

hij + wni O(wnj − wni )hij}|

≤ C
∆t

Ai
{

∑

T∈T1,i

∑

j∈Ii

(h+ ε1)|a
T
ij ||w

n
j − wni |},
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which implies that

∑

i

|Qi|
2φ2iAi ≤ 2C

∑

i

∆t2

Ai
{

∑

T∈T1,i

∑

j∈Ii

(h+ ε1)|a
T
ij ||w

n
j − wni |}

2

≤ 2Cε1∆t(δ
1
4h

1
2 + 2h

1
2 + h

1
4 )

∑

T∈S1

∑

i<j

|aTij|(w
n
j − wni )

2

≤ −
1

4
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (wnj − wni )

2

∫ xj
xi

eψ1

ε1
ds

hij .

On the other hand, we have

1

2

∑

i

{(wn+1
i )2 − (wni )2}φ2i ≤

∑

i

(wn+1
i − wni φ2i)w

n+1
i φ2i =

∑

i

Qiφ2iw
n+1
i ,

Combing all above estimates, we obtain

1

2
{
∑

i

(wn+1
i )2 −

∑

i

(wni )
2}φ2iAi −

1

2
∆t

∑

T∈S1

∑

i<j

aTij
eψ1j (wnj − wni )

2

∫ xj
xi

eψ1

ε1
ds

hij ≤ 0.

For a.e. t ∈ (0, T ∗), there exists a positive integral number nk, such that nk∆t ≤ t < (nk + 1)∆t.
Summing them up with respect to n, n = 0, 1, ..nk − 1, and noting that wh(·, t) = wh(·, nk∆t), we
get

1

2

∑

i

(wnki )2φ2iAi −
1

2
∆t

nk−1
∑

n=0

∑

T∈S1

∑

i<j

aTij
eψ1j (wnj − wni )2

∫ xj
xi

eψ1

ε1
ds

hij ≤
1

2

∑

i

(u0
i )

2φ2iAi

≤
1

2

∑

i

(u0
i )

2Ai.

Obviously ‖wh‖L∞(Ω×R+) ≤ ‖uh‖L∞(Ω×R+) and using (4)–(6), we obtain Proposition 3. The proof
of the initial condition is completed.

�

Hence, ν is a mv-solution and by Theorem 2.1 this implies that uh convergences strongly in
Lloc1 (Ω ×R+) to the unique BV-solution of (1)–(3) as h → 0. We have accomplished the proof of
Theorem 3.1.
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Uniform null controllability of the 1-D finite differences space, semi-
discretization of the heat equation with locally distributed control

Louis Roder Tcheugoué Tébou
Department of Mathematics, College of Arts and Sciences, Florida International University,

University Park, Miami, Florida 33199, USA. E-mail:teboul@fiu.edu

Abstract. We consider the 1-D finite-difference space semi-discretization of the heat
equation with locally distributed control. First, using a result of Russell and Fattorini
on biorthogonal series and a seemingly new trigonometrical inequality, we prove the
uniform (with respect to the step size) null controllability of this system. Then we show
that the sequence of discrete optimal controls strongly converges in a suitable topology
to the optimal control of the corresponding continuous model.

Key words. Heat equation, finite differences, space discretization, controllability.

1. Introduction. Our main purpose in this paper is to investigate the uniform null
controllability of the finite difference space semi-discretization of the heat equation
with locally distributed controls and mixed boundary conditions. Before we get into
the heart of the matter, let us say a few words about the existing literature.

Recently, a special attention has been devoted to the study of the boundary observ-
ability of the finite difference space semi-discretization of the wave and heat equations
(cf. [6, 7, 12, 13, 15]). As far as the wave equation is concerned, it has been observed
that the numerical scheme introduces spurious modes at high frequencies which pre-
vents from obtaining uniform observability inequalities. To overcome this obstacle, the
authors in [6, 7, 15] use a filtering technique to eliminate the short wave length com-
ponents of the solutions of the discretized system. This technique was introduced in
[4, 5] and its efficiency was highlighted by several numerical experiments. It was also
proved in [13] that one might get rid of the filtering technique by choosing analytic
initial data. However the situation seems to be completely different in the case of the
heat equation; in fact in [12], it is shown that the boundary controllability of the finite
difference semi-discretization of the heat equation, with Dirichlet boundary conditions,
is uniform without any filtering of high frequency components. To our knowledge, no
such result is proved for locally distributed controls. Unlike the case of the boundary
control for which the result of [1] leads directly to the uniform discrete observability
of the uncontrolled adjoint system, here we still need to prove that each eigenvector
of the underlying discrete eigenvalue problem is uniformly (w.r.t. the step size) locally
observable (see (A.3)-(A.5) in Appendix). This observation explains our interest in this
problem. Besides, our method of proof of the convergence of controls is based on the
introduction of extension operators as in [10, 14] while that of [12] amounts to proving
the convergence of Fourier coefficients as in [15].
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Consider the 1-d heat equation

(1.1)


yt − yxx = vχω in (0, 1)× (0, T )
y(0, t) = 0, yx(1, t) = 0 in (0, T )

y(x, 0) = y0(x) in (0, 1)

where ω is a nonempty open subset of (0, 1), χω is the characteristic function of ω, and
v is the control of minimal L2(0, T ;L2(ω))-norm such that

(1.2) y(x, T ) = 0 in (0, 1).

It is well-known that System (1.1) is null controllable for arbitrarily small time
T > 0; this means that for any initial datum y0 in L2(0, 1), one can find a control
function v which brings the temperature of the system to zero in an arbitrarily short
time. This fact is proved in the literature, for all space dimensions, in two different
ways:
- by using the Carleman estimates (cf. [2, 3, 9],...)
- by using the biorthogonal series method based on a result of Fattorini and Russell
(cf. [1, 12]). This second method is well-adapted to one-dimensional problems since
it requires a uniform gap between consecutive eigenvalues of the underlying eigenvalue
problem.

One of our objectives in this paper is to find out whether the finite-difference space
semi-discretization of (1.1) is uniformly (with respect to the step size) null controllable.
To proceed, let N be a positive integer. Set h = 1/(N +1) and consider the subdivision
of (0, 1) given by

0 = x0 < x1 < ... < xN < xN+1 = 1,

where xj = jh.
The finite-difference space semi-discretization of System (1.1) that we consider is

given by

(1.3)


y′j −

yj+1 − 2yj + yj−1

h2
= vjχj in (0, T ), j = 1, 2, ..., N

y0(t) = 0,
yN+1(t)− yN (t)

h
= 0 in (0, T )

yj(0) = y0
j , j = 1, 2, ..., N

where y0
j , χj , j = 1, 2, ..., N are approximations of the functions y0 and χω respectively.

Observe that we do not require that the vjs be approximations of v. As mentioned above,
our main goal is to prove that (1.3) is uniformly (with respect to the net-spacing size
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parameter) null controllable for arbitrarily small time, and for every (y0
j )j ∈ RN . As will

be shown in the sequel, this amounts to proving that the homogeneous adjoint system
associated with (1.3) is uniformly observable. After proving the null controllability
result, we will show that the sequence of controls (vj)j strongly converges to the control
of minimal norm v of System (1.1). This convergence result shows that (1.3) is a
good approximation scheme for (1.1). The rest of the paper is organized as follows: in
Section 2, we state our main results while Section 3 is devoted to their proofs. Finally,
in Appendix, we provide proofs of some estimates used in the proof of Theorem 2.1.

2. Statements of the main results.

THEOREM 2.1. (Controllability). Let T > 0, and 0 < h < 1. Let y0
h = (y0

j )j ∈ RN .
Assume that ω = (l1, l2) with 0 ≤ l1 < l2 ≤ 1. Set l = floor( l1

h ), and m = ceil( l2
h ).

Then there exists a unique control (vj)j of minimal L2(0, T ;Rm−l+1)-norm such that
the solution of System (1.3) satisfies

(2.1) yj(T ) = 0, j = 1, 2, ..., N.

Moreover the control (vj)j satisfies

(2.2) h
m∑

j=l

∫ T

0

|vj |2dt ≤ Ch
N∑

j=1

|y0
j |2,

where C is a positive constant independent of h.

If the approximations y0
j converge in a suitable topology to y0, (2.2) tells us that

the sequence of controls is uniformly bounded with respect to the net-spacing h. In
view of the Hilbert uniqueness method of Lions [11], this result is in contrast with the
nonuniform observability results established in the case of wave equations (cf. [6, 7, 13,
15]).

We recall that in the statement of Theorem 2.1, floor(x) denotes the greatest
integer less than or equal to x while ceil(x) denotes the smallest integer greater than
or equal to x.

Before stating our convergence result, we need some additional notations. Set
yh = (yj)j , y0

h = (y0
j )j . Introduce the extension operators defined by (see [10]):

(2.3) phvh =

{
the continuous function, linear in each interval [jh, (j + 1)h],
such that phvh(jh) = vj , j = 0, 1, ..., N + 1,

(2.4)

qhvh =

 the step function defined in each interval ((j − 1
2
)h, (j +

1
2
)h) ∩ (0, 1)

by qhvh(x) = vj , j = 0, 1, ..., N + 1.
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It is not hard to check that

(2.5)

∫ 1

0

(phvh)x(phwh)xdx = h
N∑

j=0

(vj+1 − vj

h

)(wj+1 − wj

h

)
∫ 1

0

(qhvh)(qhwh)dx = h
N∑

j=0

vjwj .

We are now in the position to state our convergence result:

THEOREM 2.2. (Convergence). Let yh denote the solution of (1.3), and let vh = (vj)j

be the optimal control. Assume that as h tends to zero,

(2.6) qhy0
h → y0 strongly in L2(0, 1)

where y0 is the initial datum of (1.1).
Then

(2.7) qhvh → v strongly in L2(0, T ;L2(ω)),

where v is the optimal control of System (1.1). Moreover, we have

(2.8)

{
phyh → y strongly in L2(0, T ;H1(0, 1))

qhyh → y strongly in L∞(0, T ;L2(0, 1))

where y is the solution of System (1.1).

The convergence hypothesis (2.6) makes sense; indeed with y0
j = 1

h

∫ (j+1)h

jh
y0(x)dx,

one can prove that (2.6) holds (cf. [14]). A different convergence approach based on the
convergence of Fourier coefficients is presented in [12, 15].

3. Proofs of Theorems 2.1 and 2.2.

3.1. Proof of Theorem 2.1.This proof essentially relies on the following lemma

LEMMA 3.1. Let T > 0 and 0 < h < 1. Let 0 ≤ l < m ≤ N . The following assertions
are equivalent:

(i) There exists a positive constant C0, independent of h, such that for every (u0
j )j ∈

RN , one has

(3.1) h
m∑

j=l

∫ T

0

|uj |2dt ≥ C0h
N∑

j=1

|uj(0)|2
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where (uj)j is the solution of the system

(3.2)


u′j +

uj+1 − 2uj + uj−1

h2
= 0 in (0, T ), j = 1, 2, ..., N

u0(t) = 0,
uN+1(t)− uN (t)

h
= 0 in (0, T )

uj(T ) = u0
j , j = 1, 2, ..., N.

(ii) For every (y0
j )j ∈ RN , there exists a unique control (vj)j with minimal

L2(0, T ;Rm−l+1)-norm such that the solution (yj)j of (1.3) satisfies

(3.3) yj(T ) = 0, j = 1, 2, ..., N

and the control (vj)j satisfies

(3.4) h
m∑

j=l

∫ T

0

|vj |2dt ≤ h

C0

N∑
j=1

|y0
j |2.

where the constant C0 is the same as above.
Proof of Lemma 3.1. First we assume that (i) holds and prove (ii). To this end, let
Jh : RN → R be the functional defined by

(3.5) Jh((u0
j )j) =

h

2

m∑
j=l

∫ T

0

|uj |2dt + h
m∑

j=l

uj(0)y0
j .

It is easy to check that Jh is continuous. On the other hand, thanks to (3.1), Jh is
strictly convex and coercive. Therefore, it achieves its minimum value at a unique
vector (z0

j )j in RN , and we have the Euler equation

(3.6) h
m∑

j=l

∫ T

0

ujzjdt + h
m∑

j=l

uj(0)y0
j = 0,∀(uj)j , solution of (3.2),

where (zj)j is solution of (3.2) with zj(T ) = z0
j . With (3.6), if we choose vj = zj for

all j, then we get the control satisfying the claimed conditions. In fact with this choice,
multiplying the first equation of (1.3) by huj , taking the sum over j and integrating by
parts over [0, T ], we find

(3.7) h
N∑

j=1

yj(T )u0
j − h

N∑
j=1

y0
j uj(0) = h

m∑
j=l

∫ T

0

ujzjdt.
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The combination of (3.6) and (3.7) leads to the equation

(3.8) h
N∑

j=1

yj(T )u0
j = 0, for all (u0

j )j ∈ RN ,

from which we easily derive yj(T ) = 0 for all j. Thanks to (3.1) and (3.6) we also have

(3.9) h
m∑

j=l

∫ T

0

|zj |2dt = −h
m∑

j=l

zj(0)y0
j ≤

∣∣∣∣h m∑
j=l

|zj(0)|2
∣∣∣∣ 1
2
∣∣∣∣h m∑

j=l

|y0
j |2

∣∣∣∣ 1
2

,

whence (3.4).
It remains now to show that (ii) implies (i). To this end, multiply the first equation

of (1.3) by huj , take the sum over j and integrate by parts over [0, T ]; this operation
yields

(3.10) h
m∑

j=l

uj(0)y0
j = −h

m∑
j=l

∫ T

0

ujvjdt.

Thanks to (3.4), we derive from (3.10) that

(3.11)
∣∣∣∣h m∑

j=l

uj(0)y0
j

∣∣∣∣ ≤ h
m∑

j=l

∫ T

0

|ujvj |dt ≤ C
− 1

2
0

∣∣∣∣h m∑
j=l

∫ T

0

|uj |2dt

∣∣∣∣ 1
2
∣∣∣∣h m∑

j=l

|y0
j |2

∣∣∣∣ 1
2

whence (3.1) and Lemma 3.1 is proved. tu

Remark. Lemma 3.1 reduces the proof of Theorem 2.1 to the proof of an inequality of
type (3.1) for the solutions (uj)j of (3.2). Therefore, we will be done with the proof of
Theorem 2.1 if we prove (3.1) for all solutions of (3.2). We have the following result:

PROPOSITION 3.2. There exists a positive constant C0 bounded with respect to h such
that

(3.12) h
m∑

j=l

∫ T

0

|uj |2dt ≥ C0h
N∑

j=1

|uj(0)|2, ∀0 < h < 1.

The dependence of C0 with respect to h will be given in the proof.

To prove Proposition 3.2, we use the Fourier expansion of the solutions of (3.2),
and we essentially rely on the following result due to Fattorini and Russell [1]:
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LEMMA 3.3. Let a0 > 0, and let ν : R+ → N be a decreasing function satisfying:
ν(δ) → 0 as δ → 0. Let L(a0, ν) denote the family of sequences of positive real numbers
(λn)n, n = 0, 1, 2, ... satisfying

(3.13)

λ0 ≥ a0, λn+1 − λn ≥ a0, ∀n = 0, 1, 2, ...

∀δ > 0,
∞∑

n=ν(δ)

1
λn

≤ δ.

Then for all T > 0, there exists a constant C(T ) depending only on a0, ν, and T such
that

(3.14)
∫ T

0

∣∣∣∣ ∞∑
n=0

cne−λnt

∣∣∣∣2dt ≥ C(T )
∞∑

n=0

1
λn

∞∑
n=0

|cn|2e−2λnT ,

for all sequences of real numbers (cn)n.

Proof of Proposition 3.2. We use the Fourier expansion of the solutions to prove this
proposition. To this end, we proceed in two steps. First, we state some important results
related to the spectral problem associated with System (1.3). Some of these results are
elementary and do not need proofs along these lines, the others are not straightforward,
and proofs for these are provided in Appendix. Afterwards we use Lemma 3.3 to derive
(3.12) and complete the proof.
Step 1. Consider the eigenvalue problem

(3.15)


− Xj+1 − 2Xj + Xj−1

h2
= λXj

X0 = 0,
XN+1 −XN

h
= 0, j = 1, 2, ..., N.

Proceeding as in [8], one can show that

(3.16)
Xk,h

j = sin(
(2k + 1)πjh

2− h
), j = 0, 1, ..., N

λk,h =
4
h2

sin2(
(2k + 1)πh

2(2− h)
), k = 0, 1, ..., N − 1.

Moreover, the eigenvectors Xk,h, k = 0, 1, 2, ..., N − 1 are pairwise orthogonal and

(3.17)

h
N∑

j=1

|Xk,h
j |2 =

2− h

4
, ∀k, h

h
m∑

j=l

|Xk,h
j |2 ≥ 2

π

[
h(m− l)π

2− h
− sin(

h(m− l)π
2− h

)
]
h

N∑
j=1

|Xk,h
j |2, ∀k, h
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while the eigenvalues satisfy the following estimates

(3.18) λ0,h ≥ 1, λn+1,h − λn,h ≥ 8, ∀n = 0, 1, 2, ...N − 2, ∀0 < h < 1.

The proofs of (3.17) and (3.18) are provided in Appendix.
Step 2. Any solution of (3.2) may be written as

(3.19) uj(t) =
N−1∑
n=0

cne−λn,h(T−t)Xn,h
j , with cn =

4
2− h

h
N∑

j=1

u0
jX

n,h
j .

With (3.19), it is easy to check that estimate (3.12) is equivalent to

(3.20) h
m∑

j=l

∫ T

0

|
N−1∑
n=0

cne−λn,h(T−t)Xn,h
j |2dt ≥ C0

N−1∑
n=0

|cn|2e−2λn,hT .

On the other hand the sequence (λn,h)n may be completed appropriately so as to fulfill
all the requirements of Lemma 3.3; indeed it suffices to set λn,h = [ (2n+1)π

2 ]2 for n ≥ N .
Therefore we may apply Lemma 3.3; this operation yields

(3.21)

h
m∑

j=l

∫ T

0

|
N−1∑
n=0

cne−λn,h(T−t)Xn,h
j |2dt

≥ C(T )
∞∑

n=0

1
λn,h

N−1∑
n=0

|cn|2e−2λn,hT h
m∑

j=l

|Xn,h
j |2.

Combining (3.21) with the second line of (3.17), we get (3.20), which completes the
proof of Proposition 3.2, and consequently that of Theorem 2.1. tu

3.2. Proof of Theorem 2.2. From now on, C denotes different positive constants
independent of h.

Using the definitions of ph and qh, one easily checks that for every T ≥ t ≥ 0

(3.22)
‖qhyh(t)‖2L2(0,1) + 2

∫ t

0

‖phyh(s)‖2H1(0,1)ds = ‖qhy0
h‖2L2(0,1)

+ 2
∫ t

0

∫ 1

0

qhvh(x, s)qhχh(x)qhyh(x, s)ds

where χh = (χj)j .
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Applying the Gronwall Lemma, and taking into account (2.6) and (3.4) in (3.22)
we find, for every T ≥ t ≥ 0

(3.23) ‖qhyh(t)‖2L2(0,1) + 2
∫ t

0

‖phyh(s)‖2H1(0,1)ds ≤ C

which shows that phyh is bounded in L2(0, T ;H1(0, 1)), while qhyh is bounded in
L∞(0, T ;L2(0, 1)). On the other hand, (3.4), (2.6) and the definitions of m and l show
that qhvh is bounded in L2(0, T ;L2(ω)). Thus, up to the extraction of a subsequence,
we have

(3.24)



phyh → y weakly in L2(0, T ;V )

phy′h → y′ weakly * in L2(0, T ;V ′)

phyh → y strongly in L2(0, T ;L2(0, 1))

qhyh → y weakly * in L∞(0, T ;L2(0, 1))

qhvh → v weakly in L2(0, T ;L2(ω)),

where V = {u ∈ H1(0, 1);u(0) = 0}, and V ′ is its topological dual.
Thanks to (2.5), (3.23), and the definitions of ph and qh, we have

(3.25)
∫ T

0

∫ 1

0

|(phyh − qhyh)(x, t)|2dx =
h3

12

N∑
j=0

∫ T

0

(yj+1 − yj

h

)2
dt ≤ Ch2,

so that in (3.24), the implicit claim that the limits of phyh and qhyh are the same makes
sense.

We have to show now that the limit y is the solution of (1.1), (1.2), the control
v being the optimal one. To this end, let w ∈ D([0, 1] × (0, T )) with w(0, .) ≡ 0, and
set wh = (wj)j where wj = w(jh, .). Multiplying the first equation of (1.3) by hwj ,
integrating by parts over (0, T ) and taking the sum over j, we find

(3.26)

− h
N∑

j=1

∫ T

0

yjw
′
jdt + h

N∑
j=0

∫ T

0

(yj+1 − yj

h

)(wj+1 − wj

h

)
dt

= h
m∑

j=l

∫ T

0

vjwjdt.

Using the definitions of ph and qh, it is easy to check that (3.26) is equivalent to

(3.27)
−

∫ T

0

∫ 1

0

(qhyh)(qhw′h)dxdt +
∫ T

0

∫ 1

0

(phyh)x(phwh)xdxdt

=
∫ T

0

∫ 1

0

(qhvh)(qhχh)(qhwh)dxdt.
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At this stage, we recall the elementary convergence results: For every w ∈ D([0, 1]×
(0, T ))

(3.28)

phwh → w strongly in L2(0, T ;H1(0, 1)),

qhwh → w strongly in L2(0, T ;L4(0, 1)),

qhχh → χω strongly in L2(0, 1),

in particular, ‖qhχh − χω‖Lp(0,1) ≤ h
1
p , ∀1 ≤ p < ∞.

Thanks to (3.28) and (3.24), we can pass to the limit in all the terms in (3.27) getting

(3.29) −
∫ T

0

∫ 1

0

yw′dxdt +
∫ T

0

∫ 1

0

yxwxdxdt =
∫ T

0

∫
ω

vwdxdt.

Now, choose w such that we also have w(1, .) ≡ 0, then we easily derive the first
equation of (1.1) from (3.29). Then choose w with w(1, .) 6≡ 0, it follows that y satisfies
the boundary condition at x = 1. Thus for y to solve (1.1)-(1.2), it remains to show
that y(0) = y0, y(T ) = 0, and v is the optimal control of (1.1).

First, we show that y(0) = y0 and y(T ) = 0. For this purpose, let w ∈ D((0, 1))
and l ∈ D([0, T ]), and set wh = (wj)j where wj = w(jh). Multiplying the first equation
of (1.3) by hwj l, integrating by parts over [0, T ] and taking the sum over j, we find

(3.30)

− h
N∑

j=1

y0
j wj l(0)− h

N∑
j=1

∫ T

0

yjwj l
′dt + h

N∑
j=0

∫ T

0

(yj+1 − yj

h

)(wj+1 − wj

h

)
ldt

= h
m∑

j=l

∫ T

0

vjwjdt.

Using the definitions of ph and qh once more, it is easy to check that (3.30) is equivalent
to

(3.31)
− l(0)

∫ 1

0

(qhy0
h)(qhwh)dx−

∫ T

0

∫ 1

0

(qhyh)(qhwh)l′dxdt

+
∫ T

0

∫ 1

0

(phyh)x(phwh)xldxdt =
∫ T

0

∫ 1

0

(qhvh)(qhχh)(qhwh)ldxdt.

Passing to the limit as h → 0 in (3.31), we get

(3.32) − l(0)
∫ 1

0

y0wdx−
∫ T

0

∫ 1

0

ywl′dxdt +
∫ T

0

∫ 1

0

yxwxldxdt =
∫ T

0

∫
ω

vwldxdt
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from which we easily derive y(0) = y0 and y(T ) = 0. Thus v is a control for System
(1.1). It remains to prove that the sequences (qhyh), (phyh), (qhvh) strongly converge
in their respective spaces, and that v is the optimal control of (1.1). This will show
in particular that the whole sequence (qhvh), not only a subsequence, converges, from
which we will derive (2.7)-(2.8) and complete the proof of Theorem 2.2. To this end, we
proceed in steps, and we assume that the sequence {h} denotes the subsequence extracted
above.
Step 1. (Strong convergence of controls). Let τ ∈ (0, T ). Proceeding as in the proof of
Proposition 3.2, one can show that

(3.33) ||qhvh(τ)||L2((0,1)) ≤ C(T − τ),

where C(T − τ) is independent of h.
Consequently, there exists some v0 ∈ L2((0, 1)) such that, up to a subsequence,

(3.34) qhvh(τ) → v0 weakly in L2((0, 1)).

It follows from (3.34) that

(3.35)

qhvh → v weakly * in L∞(0, τ ;L2((0, 1)))

phvh → v weakly in L2(0, τ ;V )

(phvh)t → vt weakly * in L2(0, τ ;V ′)

where v is the same as in (3.24), ( remember our remark about the sequence {h} just
before this step). Accordingly,

(3.36) qhvh → v strongly in L2(0, τ ;L2(ω)),∀0 < τ < T.

Hence

(3.37) qhvh → v strongly in L2(0, T ;L2(ω)).

Before showing that v is the optimal control for System (1.1), it is worth noting
that

(3.38) qhvh(0) → v(0) weakly in L2((0, 1)).

Step 2. (v is the optimal control of (1.1)). By optimal control of (1.1), we mean a
control function v which minimizes the quantity

∫ T

0

∫
ω
|v|2dxdt among the admissible

controls. To show this, it is enough to prove that v satisfies

(3.39)
∫ T

0

∫
ω

|v|2dxdt +
∫ 1

0

v(0)y0dx = 0,
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and the Euler equation

(3.40)
∫ T

0

∫
ω

vudxdt +
∫ 1

0

u(0)y0dx = 0,

for all u solution of

(3.41)


ut + uxx = 0 in (0, 1)× (0, T )
u(0, t) = 0, ux(1, t) = 0

u(x, T ) = u0(x) in (0, 1),

where u0 ∈ L2((0, 1)).
The equation (3.39) follows from (3.6), (3.28), (2.6), (3.37), and (3.38). It remains

to show that (3.40) holds. To this end, let u0 be an arbitrary element of L2((0, 1)).
Assuming that u0

j = 1
h

∫ (j+1)h

jh
u0(x)dx in (3.2), one can show that

(3.42)

qhu0
h → u0 strongly in L2((0, 1))

qhuh(0) → u(0) weakly in L2((0, 1))

qhuh → u strongly in L2(0, T ;L2(ω)),

where u solves (3.41).
Now we know that the discrete optimal control (vj)j satisfies (3.6) so that

(3.43)
∫ T

0

∫ 1

0

qhvhqhχhqhuhdxdt +
∫ 1

0

qhuh(0)qhy0
hdx = 0.

Passing to the limit in (3.43) we get (3.40). Since the optimal control for (1.1) is unique,
it follows that the whole sequence (qhvh) converges to v.
Step 3. (Strong convergence of states). We shall now prove (2.8). We already have the
corresponding weak convergences; if we can prove the convergence of norms, then we
will be done. First we show that ||phyh||L2(0,T ;V ) → ||y||L2(0,T ;V ). Since qhyh(T ) = 0,
it follows from (3.22) that

(3.44)
2

∫ T

0

‖phyh(s)‖2V ds = ‖qhy0
h‖2L2(0,1)

+ 2
∫ T

0

∫ 1

0

qhvh(x, s)qhχh(x)qhyh(x, s)ds,
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so that using (2.6), (3.28), (3.37) and passing to the limit in (3.44), one finds

(3.45)
lim
h→0

2
∫ T

0

‖phyh(s)‖2H1(0,1)ds = ‖y0‖2L2(0,1) + 2
∫ T

0

∫
ω

v(x, s)y(x, s)ds

= 2
∫ T

0

‖y(s)‖2V ds, (since y satisfies (1.2).

Therefore phyh → y stronly in L2(0, T ;V ) as claimed. Let us now show that
||qhyh||L∞(0,T ;L2(0,1)) → ||y||L∞(0,T ;L2(0,1)). Thanks to (3.22) and (3.45) we have, for
0 < t < T

‖qhyh(t)‖L2(0,1) → ||y(t)||L2(0,1),

which coupled with (3.24) completes the proof of Theorem 2.2. tu
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Appendix. Proofs of (3.17) and (3.18).

Proof of (3.17.1). We have

(A.1)

h
N∑

j=0

|Xk,h
j |2 = h

N∑
j=0

| sin(
(2k + 1)πjh

2− h
)|2

=
1
2
− h

2

N∑
j=0

cos(
2(2k + 1)πjh

2− h
), (since h(N + 1) = 1)

=
1
2
− h

2
cos( (2k+1)πNh

2−h ) sin( (2k+1)π(N+1)h
2−h )

sin( (2k+1)πh
2−h )

=
1
2
− h

4
(sin( (2k+1)π(2N+1)h

2−h ) + sin( (2k+1)πh
2−h ))

sin( (2k+1)πh
2−h )

=
2− h

4
, ∀k, h.

Proof of (3.17.2). For this proof, we will use the elementary trigonometric inequalities

(A.2)

| sin(nx)| ≤ n| sin(x)|, for all nonnegative integer n, and all x

x

tanx
< 1 for all x ∈ (0, π/2).

The first -from top- of these inequalities seems to be new, though it is simple and
can be easily proved by an induction argument. We now turn to the proof of (3.17.2)
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(A.3)

h
m∑

j=l

|Xn,h
j |2 = h

m∑
j=l

| sin(
(2n + 1)πjh

2− h
)|2

=
(m− l + 1)h

2
− h

2

m∑
j=l

cos(
2(2n + 1)πjh

2− h
)

=
(m− l + 1)h

2
− h

2

cos( (2n+1)(m+l)πh
(2−h) ) sin( (2n+1)(m−l+1)πh

(2−h) )

sin( (2n+1)πh
(2−h) )

=
(m− l + 1)h

2
− h

2

cos( (2n+1)(m+l)πh
(2−h) ) sin( (2n+1)(m−l)πh

(2−h) )

tan( (2n+1)πh
(2−h) )

− h

2
cos(

(2n + 1)(m + l)πh

(2− h)
) cos(

(2n + 1)(m− l)πh

(2− h)
)

≥ (m− l + 1)h
2

− h

2

| sin( (2n+1)(m−l)πh
(2−h) )|

|tan( (2n+1)πh
(2−h) )|

− h

2

≥ (m− l)h
2

− h(2n + 1)
2

sin( (m−l)πh
(2−h) )

|tan( (2n+1)πh
(2−h) )|

,

by applying the first (from top) inequality of (A.2).
At this stage, we observe that if (2n+1)h

(2−h) < 1
2 , then (2n+1)πh

(2−h) < π
2 so that we may

be able to apply the second inequality of (A.2). From now on, we proceed in steps.
Step 1. We assume (2n+1)h

(2−h) < 1
2 . It then follows from (A.3) that

(A.4)

h
m∑

j=l

|Xn,h
j |2 = h

m∑
j=l

| sin(
(2n + 1)πjh

2− h
)|2

≥ (m− l)h
2

− (2− h)
2π

h(2n + 1)π

(2− h)tan( (2n+1)πh
(2−h) )

sin(
(m− l)πh

(2− h)
)

≥ (m− l)h
2

− (2− h)
2π

sin(
(m− l)πh

(2− h)
),

by applying the second (from top) inequality of (A.2).
Step 2. We assume (2n+1)h

(2−h) > 1
2 . An elementary algebra shows that equality never

holds, so that this is the last step in our proof. We will reduce this case to the preceding
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one. To proceed, set pn = N−1−n. It is easy to check that (2pn+2)h
(2−h) = 1− (2n+1)h

(2−h) < 1/2.
Using these relations in (A.3), we get

(A.5)

h
m∑

j=l

|Xn,h
j |2 = h

m∑
j=l

| sin(
(2n + 1)πjh

2− h
)|2

≥ (m− l + 1)h
2

− h

2

| sin( (2pn+2)(m−l)πh
(2−h) )|

|tan( (2pn+2)πh
(2−h) )|

− h

2

≥ (m− l)h
2

− h(2pn + 2)
2

sin( (m−l)πh
(2−h) )

|tan( (2pn+2)πh
(2−h) )|

.

From this point we proceed as in Step 1, since (2pn+2)h
2−h < 1/2. This completes the proof

of (3.17).
Let us turn now to the proof of (3.18). To prove the estimates, we use the fact that

(A.6) sinx ≥ 2x/π, for all x ∈ [0, π/2].

We have for all n

(A.7) λn,h =
4
h2

sin2(
(2n + 1)πh

2(2− h)
) ≥ 4

h2
(
2
π

(
(2n + 1)πh

2(2− h)
))2 = 4(2n + 1)2/(2− h)2

from which we derive λ0,h ≥ 1. It remains to check the uniform gap condition. For
n = 0, 1, 2, ..., N − 2, we have

(A.8)

λn+1,h − λn,h =
4
h2

[
sin2(

(2n + 3)πh

2(2− h)
)− sin2(

(2n + 1)πh

2(2− h)
)
]

=
2
h2

[
cos(

(2n + 1)πh

2− h
)− cos(

(2n + 3)πh

2− h
)
]

=
4
h2

sin(
πh

2− h
) sin(

(2n + 2)πh

2− h
)

At this stage, we observe that for n large enough, (2n+2)πh
(2−h) may be greater than π/2

thus precluding us from using (A.2) to conclude. So we proceed in steps.
Step 1. Assume that (2n+2)h

(2−h) ≤ 1
2 . It follows from (A.8) that

(A.9)

λn+1,h − λn,h =
4
h2

sin(
πh

2− h
) sin(

(2n + 2)πh

2− h
)

≥ 4
h2

2
π

πh

(2− h)
2
π

(2n + 2)πh

(2− h)

≥ 32(n + 1)
(2− h)2

≥ 8.
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Step 2. Assume now that (2n+2)h
(2−h) > 1

2 . We proceed as in Step 2 of the proof of (3.17.2).

Set pn = N − 2− n. It follows that (2pn+3)h
(2−h) = 1− (2n+2)h

(2−h) < 1
2 . Using these relations

and the identity sin(π − x) = sin x in (A.8), we find

(A.10)

λn+1,h − λn,h =
4
h2

sin(
πh

2− h
) sin(

(2n + 2)πh

2− h
)

=
4
h2

sin(
πh

2− h
) sin(

(2pn + 3)πh

2− h
)

≥ 4
h2

2
π

πh

(2− h)
2
π

(2pn + 3)πh

(2− h)

≥ 32(pn + 1)
(2− h)2

≥ 8.
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1 Introduction

In recent years a number of authors have written about generalizations of Os-
trowski’s inequality. Ostrowski’s inequality gives an error bound for the follow-
ing simple quadrature rule:

b∫
a

f(t)dt = f(x)(b− a) + R(f ; a, b, x), (1)

where x ∈ [a, b]. The mentioned generalizations often lead to estimates of errors
for some known and some new quadrature rules. (They have many other uses.)

In this paper we consider the following 3-point quadrature rule:

b∫
a

f(t)dt =
1
4

[
f(a) + 2f(

a + b

2
) + f(b)

]
(b− a) + R(f ; a, b) (2)

and the well-known Simpson’s quadrature rule:

b∫
a

f(t)dt =
1
6

[
f(a) + 4f(

a + b

2
) + f(b)

]
(b− a) + R(f ; a, b). (3)

1
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In [9] it is shown that (2) has a better estimate of error than (3) when these
estimates are expressed in terms of first derivatives. Here we consider perturba-
tions of (2) and (3). Similar perturbations for the mid-point and trapezoid rules
are considered in [5] and [6]. A perturbed Simpson’s rule is also considered in
[13].

Let us additionally mention that Simpson’s inequality is considered in [8],
[9] and [13], while some inequalities for (2) are derived in [9] and [13].

Furthermore, we give upper and lower error bounds for the above quadrature
rules. In Section 3 we give applications in numerical integration.

2 Main results

We begin with general considerations and observations.
Let g : [a, b] → R be an absolutely continuous function. Let γ, Γ be real

numbers such that γ ≤ g′(t) ≤ Γ, t ∈ [a, b] (a.e). If g′(t0) does not exist, for
some t0 ∈ [a, b], then we set g′(t0) = Γ+γ

2 , by definition. This restriction does
not affect to validity of the results obtained in this paper. That is, we consider
such types of problems that the above restriction has no practical importance.
It is only important from a theoretical point of view.

We now describe a general setting from which we derive all further results.

If we have a Peano kernel pk(t) then R(f) =
b∫

a

pk(t)f (k)(t)dt is a remainder

term (error) of a corresponding quadrature formula Q(f). We have
b∫

a

f(t)dt =

Q(f) + R(f). The usual Peano error bound is given by

|R(f)| ≤
∥∥∥f (k)

∥∥∥
∞

b∫
a

|pk(t)| dt. (4)

In recent time it is shown that many improvements of the estimation (4) can be
obtained if we replace pk(t)f (k)(t) with [pk(t)− C1] f (k)(t) or pk(t)

[
f (k)(t)− C2

]
or [pk(t)− C3]

[
f (k)(t)− C4

]
, where Ci, i = 1, 2, 3, 4, are constants. For exam-

ple, in [7] the author choose C1 = 1
b−a

b∫
a

pk(t)dt. In [13] the authors choose

C2 = 1
b−a

b∫
a

f (k)(t)dt. Such perturbations lead to inequalities of Ostrowski

(Ostrowski-Grüss, Ostrowski-Chebyshev, etc.) type.
In such a way we also derive new quadrature formulas and perturbations of

known quadrature formulas. The best possible results are obtained if we can
prove that the error bounds are sharp.

Here we choose C2 = Γk+γk

2 , where γk,Γk are real numbers such that γk ≤
f (k)(t) ≤ Γk, t ∈ [a, b]. Specially, if f (k) is a continuous function and

γk = min
t∈[a,b]

f (k)(t), Γk = max
t∈[a,b]

f (k)(t) (5)

2
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then P (t) = Γk+γk

2 is a polynomial of best uniform approximation and we have∥∥∥f (k) − P
∥∥∥
∞

=
Γk − γk

2
.

Thus, such a choice is a natural choice. It causes a perturbation in the original

quadrature formula (obtained from
b∫

a

pk(t)f (k)(t)dt). The main consequences of

such a choice are:
(i) error bounds of perturbed formulas are better than error bounds of

original formulas (see Remarks 4 and 11),
(ii) error bounds of perturbed formulas are sharp (see Theorems 3 and 10),
(iii) corresponding composite quadrature formulas have only one additional

term with respect to original composite formulas (see Theorems 15 and 17),
(iv) error bounds of corresponding composite formulas are better than error

bounds of original composite formulas (a consequence of (i)),
(v) degrees of precision of the perturbed formulas are higher than degrees

of precision of the original formulas (see Remarks 4 and 11).
We also choose C2 = γk and C2 = Γk. Sometimes these choices give better

error bounds than the choice C2 = Γk+γk

2 (see Remarks 6 and 13).
We now define two finite sequences of harmonic (Appell-like) polynomials:

P0(t) = 1 Q0(t) = 1
P1(t) = t− a+α(x)

2 Q1(t) = t− b+β(x)
2

P2(t) = 1
2 (t− a)(t− α(x)) Q2(t) = 1

2 (t− b)(t− β(x))

where x ∈ [a, b] and α(x), β(x) depend on x. We also define the functions:

Sk(t) =
{

Pk(t), a ≤ t ≤ x
Qk(t), x < t ≤ b,

(6)

for k = 0, 1, 2. Additionally, we need the following functions:

I1(f ; a, b, α, β, x) =
α(x)− a

2
f(a) +

b + β(x)− a− α(x)
2

f(x) +
b− β(x)

2
f(b),

(7)

I2(f ; a, b, α, β, x) = −1
2
f ′(x) [(x− a)(x− α(x))− (x− b)(x− β(x))] , (8)

I3(f ; a, b, α, β, x) =
(x− a)3 + (b− x)3

6
+

1
4

[
(x− a)2(a− α(x))− (x− b)2(b− β(x))

]
.

(9)

Lemma 1 Let Sk, k = 0, 1, 2 and Ij, j = 1, 2, 3 be defined by (6)–(9). If f ′ :
[a, b] → R is an absolutely continuous function then we have

b∫
a

f(t)dt = I1 + I2 + CI3 + R(f) (10)

3
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where C is a constant, Ij = Ij(f ; a, b, α, β, x), j = 1, 2, 3 and

R(f) =

b∫
a

[f ′′(t)− C]S2(t)dt, (11)

|R(f)| ≤ sup
t∈[a,b]

|f ′′(t)− C|
b∫

a

|S2(t)| dt. (12)

Proof. Integrating by parts, we obtain

b∫
a

S2(t)f ′′(t)dt = −I2 −
b∫

a

S1(t)f ′(t)dt = −I1 − I2 +

b∫
a

f(t)dt.

We also have
b∫

a

S2(t)dt = I3.

From the above two relations we see that (10)-(11) hold. The estimation (12)
is obvious.

Remark 2 The results of Lemma 1 can be generalized in a way given in [2]
or [3]. Such a generalization leads to a summation formula for approximate
determining of definite integrals with a corresponding error bound. Here we give
different approach to the same problem. Namely, we derive a perturbed quadra-
ture formula (from Lemma 1) and give a corresponding composite formula. In
fact, the main goal is to obtain error bounds for these formulas.

Theorem 3 Under the assumptions of Lemma 1 suppose that γ ≤ f ′′(t) ≤ Γ,
t ∈ [a, b], where γ, Γ are real numbers. Then we have∣∣∣∣∣∣

b∫
a

f(t)dt−
f(a) + 2f(a+b

2 ) + f(b)
4

(b− a) +
Γ + γ

96
(b− a)3

∣∣∣∣∣∣ ≤ Γ− γ

96
(b− a)3.

(13)
The inequality (13) is sharp.

Proof. If we choose α(x) = β(x) = x = a+b
2 then we have

I1(f ; a, b,
a + b

2
,
a + b

2
,
a + b

2
) =

f(a) + 2f(a+b
2 ) + f(b)

4
(b− a), (14)

I2(f ; a, b,
a + b

2
,
a + b

2
,
a + b

2
) = 0, (15)

I3(f ; a, b,
a + b

2
,
a + b

2
,
a + b

2
) = − (b− a)3

48
(16)

4
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and
b∫

a

|S2(t)| dt =
(b− a)3

48
. (17)

From (14)–(16) and (10) with C = Γ+γ
2 it follows

b∫
a

f(t)dt−
f(a) + 2f(a+b

2 ) + f(b)
4

(b− a) +
Γ + γ

96
(b− a)3 (18)

=

b∫
a

[
f ′′(t)− Γ + γ

2

]
S2(t)dt.

From (12), (17), (18) and sup
t∈[a,b]

∣∣∣f ′′(t)− Γ+γ
2

∣∣∣ ≤ Γ−γ
2 we get (13).

We now show that (13) is sharp. Let us define the function

f(t) =
∣∣∣∣t− a + b

2

∣∣∣∣r , r > 2.

Then we have

f ′(t) = r

∣∣∣∣t− a + b

2

∣∣∣∣r−1

sgn(t− a + b

2
),

f ′′(t) = r(r − 1)
∣∣∣∣t− a + b

2

∣∣∣∣r−2

sgn(t− a + b

2
),

γ = −r(r − 1)
(b− a)r−2

2r−2
, Γ = r(r − 1)

(b− a)r−2

2r−2

and
b∫

a

f(t)dt =
(b− a)r+1

(r + 1)2r
.

The left-hand side of (13) becomes:

L.H.S.(13) =
(b− a)r+1

2r

∣∣∣∣ 1
r + 1

− 1
2

∣∣∣∣ .

The right-hand side of (13) becomes:

R.H.S.(13) =
1
3

r(r − 1)
2r+2

(b− a)r+1.

We have

lim
r→2

L.H.S.(13) =
(b− a)3

24

5
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and

lim
r→2

R.H.S.(13) =
(b− a)3

24
.

Hence,
lim
r→2

L.H.S.(13) = lim
r→2

R.H.S.(13).

Thus, (13) is sharp.

Remark 4 In the above theorem a perturbation of the averaged midpoint-trapezoidal
quadrature rule

b∫
a

f(t)dt =
f(a) + 2f(a+b

2 ) + f(b)
4

(b− a) + R(f) (19)

is considered. Since |R(f)| ≤ ‖f ′′‖∞
48 (b − a)3 it is not difficult to see that the

perturbed rule

b∫
a

f(t)dt =
f(a) + 2f(a+b

2 ) + f(b)
4

(b− a)− Γ + γ

96
(b− a)3 + R1(f) (20)

has a better estimation of error. Further, the rule (19) is exact for polynomials
of degree ≤ 1, while the perturbed rule (20) is exact for polynomials of degree
≤ 3, if we choose γ, Γ as in (5) (k = 2, γ = γ2, Γ = Γ2).

Corollary 5 Under the assumptions of Theorem 3 we have∣∣∣∣∣∣
b∫

a

f(t)dt−
f(a) + 2f(a+b

2 ) + f(b)
4

(b− a) +
γ

48
(b− a)3

∣∣∣∣∣∣ ≤ S − γ

32
(b−a)3 (21)

and∣∣∣∣∣∣
b∫

a

f(t)dt−
f(a) + 2f(a+b

2 ) + f(b)
4

(b− a) +
Γ
48

(b− a)3

∣∣∣∣∣∣ ≤ Γ− S

32
(b− a)3,

(22)
where S = f ′(b)−f ′(a)

b−a .

Proof. We choose α(x) = β(x) = x = a+b
2 . Then we have

b∫
a

S2(t) [f ′′(t)− γ] dt (23)

=

b∫
a

f(t)dt−
f(a) + 2f(a+b

2 ) + f(b)
4

(b− a) +
γ

48
(b− a)3,
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∣∣∣∣∣∣
b∫

a

S2(t) [f ′′(t)− γ] dt

∣∣∣∣∣∣ ≤ max
t∈[a,b]

|S2(t)|
b∫

a

|f ′′(t)− γ| dt, (24)

max
t∈[a,b]

|S2(t)| =
(b− a)3

32
(25)

and

b∫
a

|f ′′(t)− γ| dt = f ′(b)− f ′(a)− γ(b− a) (26)

= (S − γ)(b− a).

From (23)-(26) we easily get (21).
In a similar way we can prove that (22) holds.

Remark 6 The above obtained estimates can be better than the estimate ob-
tained in Theorem 3. For example, if we consider the function f(x) = exp(t2−4)
on the interval [0, 4] then we find: Γ = 66, γ = 2 exp(−4), S = 2, b− a = 4. If
we substitute these values in (13) and (21) we shall see that (21) is better than
(13).

The next Corollary gives upper and lower error bounds for the simple 3-point
quadrature rule considered above.

Corollary 7 Under the assumptions of Theorem 3 we have

γ

48
(b− a)3 ≤

f(a) + 2f(a+b
2 ) + f(b)

4
(b− a)−

b∫
a

f(t)dt ≤ Γ
48

(b− a)3. (27)

The above inequalities are sharp if γ, Γ are given by (5) (γ = γ2, Γ = Γ2).

Proof. The proof of (27) follows immediately from (13). It is not difficult
to show that both above inequalities become equalities if we substitute f(t) =
(t− a)2 in (27). Thus they are sharp.

We now consider a perturbation of the well-known Simpson’s quadrature
rule. For that purpose, we define two finite sequences of harmonic (Appell-like)
polynomials:

P0(t) = 1 Q0(t) = 1
P1(t) = t− 3a+α(x)

4 Q1(t) = t− 3b+β(x)
4

P2(t) = 1
2 (t− a)(t− a+α(x)

2 ) Q2(t) = 1
2 (t− b)(t− b+β(x)

2 )
P3(t) = 1

6 (t− a)2(t− a+3α(x)
4 ) Q3(t) = 1

6 (t− b)2(t− b+3β(x)
4 )

P4(t) = 1
24 (t− a)3(t− α(x)) Q4(t) = 1

24 (t− b)3(t− β(x))

where x ∈ [a, b] and α(x), β(x) depend on x. We also define the functions
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Sk(t) =
{

Pk(t), a ≤ t ≤ x
Qk(t), x < t ≤ b,

(28)

for k = 0, 1, 2, 3, 4. Additionally, we define

I1(f ; a, b, α, β, x) = − 1
24

f ′′′(x)
[
(x− a)3(x− α(x))− (x− b)3(x− β(x))

]
,

(29)

I2(f ; a, b, α, β, x) =
1
6
f ′′(x)

[
(x− a)2(x− a + 3α(x)

4
)− (x− b)2(x− b + 3β(x)

4
)
]

,

(30)

I3(f ; a, b, α, β, x) = −1
2
f ′(x)

[
(x− a)(x− a + α(x)

2
)− (x− b)(x− b + β(x)

2
)
]

(31)

I4(f ; a, b, α, β, x) = −a− α(x)
4

f(a)+
3b + β(x)− 3a− α(x)

4
f(x)−β(x)− b

4
f(b),

(32)

I5(f ; a, b, α, β, x) =
(x− a)4

480
(a + 4x− 5α(x)) +

(b− x)4

480
(b + 4x− 5β(x)). (33)

Lemma 8 Let Sk, k = 0, 1, 2, 3, 4 and Ij, j = 1, 2, 3, 4, 5 be defined by (28)–
(33). If f ′′′ : [a, b] → R is an absolutely continuous function then we have

b∫
a

f(t)dt = I1 + I2 + I3 + I4 + CI5 + R(f) (34)

where C is a constant, Ij = Ij(f ; a, b, α, β, x), j = 1, ..., 5 and

R(f) =

b∫
a

[
f (4)(t)− C

]
S4(t)dt, (35)

|R(f)| ≤ sup
t∈[a,b]

∣∣∣f (4)(t)− C
∣∣∣ b∫

a

|S4(t)| dt. (36)

Proof. Integrating by parts, we have

b∫
a

S4(t)f ′′(t)dt = −I1 −
b∫

a

S3(t)f ′′′(t)dt = −I1 − I2 +

b∫
a

S2f
′′(t)dt

= −I1 − I2 − I3 −
b∫

a

S1f
′(t)dt = −I1 − I2 − I3 − I4 +

b∫
a

f(t)dt.

We also have
b∫

a

S4(t)dt = I5.
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From the above relations we see that (34)-(35) hold. The estimation (36) is
obvious.

Remark 9 The results of Lemma 8 can be generalized in a way given in [2] or
[3]. All other observations from Remark 2 are valid in this case, too.

Theorem 10 Under the assumptions of Lemma 8 suppose that γ ≤ f (4)(t) ≤ Γ,
t ∈ [a, b], where γ, Γ are real numbers. Then we have

∣∣∣∣∣∣b− a

6

[
f(a) + 4f(

a + b

2
) + f(b)

]
−

b∫
a

f(t)dt− Γ + γ

5760
(b− a)5

∣∣∣∣∣∣ ≤ Γ− γ

5760
(b−a)5.

(37)
The inequality (37) is sharp.

Proof. If we choose α(x) = a+2b
3 , β(x) = 2a+b

3 , x = a+b
2 then we have

I4(f ; a, b,
a + 2b

3
,
2a + b

3
,
a + b

2
) =

f(a) + 4f(a+b
2 ) + f(b)

6
(b− a), (38)

I3(f ; a, b,
a + 2b

3
,
2a + b

3
,
a + b

2
) = 0, (39)

I2(f ; a, b,
a + 2b

3
,
2a + b

3
,
a + b

2
) = 0, (40)

I1(f ; a, b,
a + 2b

3
,
2a + b

3
,
a + b

2
) = 0, (41)

I5(f ; a, b,
a + 2b

3
,
2a + b

3
,
a + b

2
) = − (b− a)5

2880
(42)

and

b∫
a

|S4(t)| dt =
(b− a)5

2880
. (43)

From (38)–(42) and (34) with C = Γ+γ
2 it follows

b∫
a

f(t)dt−
f(a) + 4f(a+b

2 ) + f(b)
6

(b− a) +
Γ + γ

5760
(b− a)5 (44)

=

b∫
a

[
f (4)(t)− Γ + γ

2

]
S4(t)dt.

From (36), (43), (44) and sup
t∈[a,b]

∣∣∣f (4)(t)− Γ+γ
2

∣∣∣ ≤ Γ−γ
2 we get (37).
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We now show that (37) is sharp. Let us define the function

f(t) =
∣∣∣∣t− a + b

2

∣∣∣∣r , r > 4.

Then we have

f IV (t) = r(r − 1)(r − 2)(r − 3)
∣∣∣∣t− a + b

2

∣∣∣∣r−4

sgn(t− a + b

2
),

γ = −r(r − 1)(r − 2)(r − 3)
(b− a)r−4

2r−4
,

Γ = r(r − 1)(r − 2)(r − 3)
(b− a)r−4

2r−4

and
b∫

a

f(t)dt =
(b− a)r+1

(r + 1)2r
.

The left-hand side of (37) becomes:

L.H.S.(37) =
(b− a)r+1

2r

∣∣∣∣ 1
r + 1

− 1
3

∣∣∣∣ .

The right-hand side of (37) becomes:

R.H.S.(37) =
1
2r

r(r − 1)(r − 2)(r − 3)
180

(b− a)r+1.

We have

lim
r→4

L.H.S.(37) =
(b− a)5

120
and

lim
r→4

R.H.S.(37) =
(b− a)5

120
.

Hence,
lim
r→4

L.H.S.(37) = lim
r→4

R.H.S.(37).

Thus, (37) is sharp.

Remark 11 In the above theorem a perturbation of the Simpson’s quadrature
rule

b∫
a

f(t)dt =
f(a) + 4f(a+b

2 ) + f(b)
6

(b− a) + R(f) (45)
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is considered. Since |R(f)| ≤ ‖f(4)‖∞
2880 (b − a)5 it is not difficult to see that the

perturbed rule
b∫

a

f(t)dt =
f(a) + 4f(a+b

2 ) + f(b)
6

(b− a)− Γ + γ

5760
(b− a)5 + R1(f) (46)

has a better estimation of error. Furthermore, the rule (45) is exact for poly-
nomials of degree ≤ 3, while the perturbed rule (46) is exact for polynomials of
degree ≤ 5, if we choose γ, Γ as in (5) (k = 4, γ = γ4, Γ = Γ4).

Corollary 12 Under the assumptions of Theorem 10 we have∣∣∣∣∣∣
b∫

a

f(t)dt− b− a

6

[
f(a) + 4f(

a + b

2
) + f(b)

]
+

γ

2880
(b− a)5

∣∣∣∣∣∣ ≤ S − γ

1152
(b− a)5

(47)
and∣∣∣∣∣∣

b∫
a

f(t)dt− b− a

6

[
f(a) + 4f(

a + b

2
) + f(b)

]
+

Γ
2880

(b− a)5

∣∣∣∣∣∣ ≤ Γ− S

1152
(b− a)5,

(48)
where S = f ′′′(b)−f ′′′(a)

b−a .

Proof. We choose α(x) = β(x) = x = a+b
2 . Then we have

b∫
a

S4(t)
[
f (4)(t)− γ

]
dt (49)

=

b∫
a

f(t)dt− b− a

6

[
f(a) + 4f(

a + b

2
) + f(b)

]
+

γ

2880
(b− a)5,

∣∣∣∣∣∣
b∫

a

S4(t)
[
f (4)(t)− γ

]
dt

∣∣∣∣∣∣ ≤ max
t∈[a,b]

|S4(t)|
b∫

a

∣∣∣f (4)(t)− γ
∣∣∣ dt, (50)

max
t∈[a,b]

|S4(t)| =
(b− a)4

1152
(51)

and
b∫

a

∣∣∣f (4)(t)− γ
∣∣∣ dt = f ′(b)− f ′(a)− γ(b− a) (52)

= (S − γ)(b− a).

From (49)-(52) we easily get (47).
In a similar way we can prove that (48) holds.
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Remark 13 The above obtained estimates can be better than the estimate ob-
tained in Theorem 10.

The next Corollary gives upper and lower error bounds for Simpson’s quadra-
ture rule.

Corollary 14 Under the assumptions of Theorem 4 we have

γ

2880
(b− a)5 ≤ b− a

6

[
f(a) + 4f(

a + b

2
) + f(b)

]
−

b∫
a

f(t)dt ≤ Γ
2880

(b− a)5.

(53)
The above inequalities are sharp if γ, Γ are given by (5) (γ = γ4, Γ = Γ4).

Proof. The proof of (53) follows immediately from (37). It is not difficult
to show that both above inequalities become equalities if we substitute f(t) =
(t− a)4 in (53). Thus they are sharp.

3 Applications in numerical integration

Here we denote a given partition of the interval [a, b] by

π = {x0 = a < x1 < · · · < xn = b} .

Theorem 15 Let the assumptions of Theorem 3 hold. If π is a given partition
of the interval [a, b] and hi = xi+1 − xi, then we have

b∫
a

f(t)dt = AM (f, π) + RM (f, π), (54)

where

AM (f, π) =
1
4

n−1∑
i=0

[
f(xi) + 2f(

xi + xi+1

2
) + f(xi+1)

]
hi −

Γ + γ

96

n−1∑
i=0

h3
i (55)

and

|RM (f, π)| ≤ Γ− γ

96

n−1∑
i=0

h3
i . (56)

Proof. From (18), with a = xi and b = xi+1 we get

xi+1∫
xi

pi(t)
[
f ′′(t)− Γ + γ

2

]
dt (57)

=

xi+1∫
xi

f(t)dt−
f(xi) + 2f(xi+xi+1

2 ) + f(xi+1)
4

hi +
Γ + γ

96
h3

i ,
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where

pi(t) =


t−xi

2 (t− xi+xi+1
2 ), t ∈

[
xi,

xi+xi+1
2

]
t−xi+1

2 (t− xi+xi+1
2 ), t ∈

(
xi+xi+1

2 , xi+1

] ,

for i = 0, 1, ..., n− 1 (pi(t) corresponds to S2(t)).
From (13) we have∣∣∣∣∣∣
xi+1∫
xi

f(t)dt−
f(xi) + 2f(xi+xi+1

2 ) + f(xi+1)
4

hi +
Γ + γ

96
h3

i

∣∣∣∣∣∣ ≤ Γ− γ

96
h3

i , (58)

for i = 0, 1, ..., n− 1.
If we now sum (57) over i from 0 to n− 1 and apply the triangle inequality

and (58) then we get (54)-(56).

Theorem 16 Let the assumptions of Theorem 3 hold. If π is a given partition
of the interval [a, b] and hi = xi+1 − xi, Si = f ′(xi+1)−f ′(xi)

hi
, i = 0, 1, ..., n − 1,

then we have
b∫

a

f(t)dt = AN (f, π) + RN (f, π), (59)

where

AN (f, π) =
1
4

n−1∑
i=0

[
f(xi) + 2f(

xi + xi+1

2
) + f(xi+1)

]
hi −

γ

48

n−1∑
i=0

h3
i (60)

and

|RN (f, π)| ≤ 1
32

n−1∑
i=0

(Si − γ)h3
i . (61)

We also have
b∫

a

f(t)dt = AP (f, π) + RP (f, π), (62)

where

AP (f, π) =
1
4

n−1∑
i=0

[
f(xi) + 2f(

xi + xi+1

2
) + f(xi+1)

]
hi −

Γ
48

n−1∑
i=0

h3
i (63)

and

|RP (f, π)| ≤ 1
32

n−1∑
i=0

(Γ− Si)h3
i . (64)
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Proof. From (23), with a = xi and b = xi+1 we get

xi+1∫
xi

pi(t) [f ′′(t)− γ] dt (65)

=

xi+1∫
xi

f(t)dt−
f(xi) + 2f(xi+xi+1

2 ) + f(xi+1)
4

hi +
γ

48
h3

i ,

for i = 0, 1, ..., n− 1 (pi(t) are defined in the proof of Theorem 15).
From (21) we have∣∣∣∣∣∣

xi+1∫
xi

f(t)dt−
f(xi) + 2f(xi+xi+1

2 ) + f(xi+1)
4

hi +
γ

48
h3

i

∣∣∣∣∣∣ ≤ Si − γ

32
h3

i , (66)

for i = 0, 1, ..., n− 1.
If we now sum (65) over i from 0 to n− 1 and apply the triangle inequality

and (66) then we get (59)-(61).
In a similar way we get (62)-(64).

Theorem 17 Let the assumptions of Theorem 10 hold. If π is a given partition
of the interval [a, b] and hi = xi+1 − xi, then we have

b∫
a

f(t)dt = AS(f, π) + RS(f, π), (67)

where

AS(f, π) =
1
6

n−1∑
i=0

[
f(xi) + 4f(

xi + xi+1

2
) + f(xi+1)

]
hi −

Γ + γ

5760

n−1∑
i=0

h5
i (68)

and

|RS(f, π)| ≤ Γ− γ

5760

n−1∑
i=0

h5
i . (69)

Proof. From (44), with a = xi and b = xi+1 we get

xi+1∫
xi

pi(t)
[
f (4)(t)− Γ + γ

2

]
dt (70)

=

xi+1∫
xi

f(t)dt−
f(xi) + 4f(xi+xi+1

2 ) + f(xi+1)
6

hi +
Γ + γ

5760
h5

i ,
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where

pi(t) =


(t−xi)

3

24 (t− xi+2xi+1
3 ), t ∈

[
xi,

xi+xi+1
2

]
(t−xi+1)

3

24 (t− 2xi+xi+1
3 ), t ∈

(
xi+xi+1

2 , xi+1

] ,

for i = 0, 1, ..., n− 1 (pi(t) corresponds to S4(t)).
From (37) we have∣∣∣∣∣∣
xi+1∫
xi

f(t)dt−
f(xi) + 4f(xi+xi+1

2 ) + f(xi+1)
6

hi +
Γ + γ

5760
h5

i

∣∣∣∣∣∣ ≤ Γ− γ

5760
h5

i , (71)

for i = 0, 1, ..., n− 1.
If we now sum (70) over i from 0 to n− 1 and apply the triangle inequality

and (71) then we get (67)-(69).

Theorem 18 Let the assumptions of Theorem 10 hold. If π is a given partition
of the interval [a, b] and hi = xi+1−xi, Si = f ′′′(xi+1)−f ′′′(xi)

hi
, i = 0, 1, ..., n− 1,

then we have
b∫

a

f(t)dt = AT (f, π) + RT (f, π), (72)

where

AT (f, π) =
1
6

n−1∑
i=0

[
f(xi) + 4f(

xi + xi+1

2
) + f(xi+1)

]
hi −

γ

2880

n−1∑
i=0

h5
i (73)

and

|RT (f, π)| ≤ 1
1152

n−1∑
i=0

(Si − γ)h5
i . (74)

We also have
b∫

a

f(t)dt = AU (f, π) + RU (f, π), (75)

where

AU (f, π) =
1
6

n−1∑
i=0

[
f(xi) + 4f(

xi + xi+1

2
) + f(xi+1)

]
hi −

Γ
2880

n−1∑
i=0

h5
i (76)

and

|RU (f, π)| ≤ 1
1152

n−1∑
i=0

(Γ− Si)h5
i . (77)
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Proof. From (49), with a = xi and b = xi+1 we get

xi+1∫
xi

pi(t)
[
f (4)(t)− γ

]
dt (78)

=

xi+1∫
xi

f(t)dt−
f(xi) + 4f(xi+xi+1

2 ) + f(xi+1)
6

hi +
γ

2880
h5

i ,

for i = 0, 1, ..., n− 1 (pi(t) are defined in the proof of Theorem 17).
From (47) we have∣∣∣∣∣∣
xi+1∫
xi

f(t)dt−
f(xi) + 4f(xi+xi+1

2 ) + f(xi+1)
6

hi +
γ

2880
h5

i

∣∣∣∣∣∣ ≤ Si − γ

1152
h5

i , (79)

for i = 0, 1, ..., n− 1.
If we now sum (78) over i from 0 to n− 1 and apply the triangle inequality

and (79) then we get (72)-(74).
In a similar way we get (75)-(77)
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Abstract

An upper and lower solution theory is presented for the Dirichlet boundary
value problem y′′ + f(t, y, y′) = 0, 0 < t < 1 with y(0) = y(1) = 0. Our
nonlinearity may be singular in its dependent variable and is allowed to change
sign.

Keywords: Boundary value problem, upper and lower solutions, singular, ex-
istence.

Subject Classes: 34B16.

1. Introduction

An approach based on upper and lower solutions and a truncation technique
is presented for the singular boundary value problem

(1.1)

{
y′′ + q(t) f(t, y, y′) = 0, 0 < t < 1
y(0) = 0 = y(1),

where our nonlinearity f is allowed to change sign. In addition f may not be
a Carathéodory function because of the singular behavior of the y variable i.e.
f may be singular at y = 0. In the literature the case when f is independent
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of its third variable (i.e. when f(t, y, z) ≡ f(t, y)) has received almost all the
attention, see [2-4, 6, 7] and the references therein. Only a few papers [1, 8]
have appeared when f depends on the y′ variable. This paper presents a new
and very general result for (1.1) when f : (0, 1)×(0,∞)×R → R. In addition
our results are new even when f is independent of the third variable. It is
also worth remarking here that we could consider Sturm-Liouville boundary
data in (1.1); however since the arguments are essentially the same we will
restrict our discussion to Dirichlet boundary data.

2. Existence Theory

In this section we present an upper and lower solution theory for the Dirich-
let singular boundary value problem

(2.1)

{
y′′ + q(t) f(t, y, y′) = 0, 0 < t < 1
y(0) = y(1) = 0,

where our nonlinearity f may change sign.

Theorem 2.1. Let n0 ∈ {1, 2, ...} be fixed and suppose the following condi-
tions are satisfied:

(2.2) f : (0, 1) × (0,∞) × R → R is continuous

(2.3) q ∈ C(0, 1) ∩ L1[0, 1] with q > 0 on (0, 1)

(2.4)





let n ∈ {n0, n0 + 1, ...} and associated with each n we
have a constant ρn such that {ρn} is a nonincreasing
sequence with limn→∞ ρn = 0 and such that for

1
2n+1 ≤ t ≤ 1 and z ∈ R we have f(t, ρn, z) ≥ 0

(2.5)





∃ α ∈ C[0, 1] ∩ C2(0, 1) with α(0) = α(1) = 0,
α > 0 on (0, 1) such that
q(t) f(t, α(t), z) + α′′(t) ≥ 0 for (t, z) ∈ (0, 1) × R

(2.6)





∃ β ∈ C1[0, 1] ∩ C2(0, 1) with β(t) ≥ α(t), β(t) ≥ ρn0

for t ∈ [0, 1] with q(t) f(t, β(t), β ′(t)) + β ′′(t) ≤ 0

for t ∈ (0, 1) and q(t) f
(

1
2n0+1 , β(t), β ′(t)

)
+ β ′′(t) ≤ 0

for t ∈
(
0, 1

2n0+1

)
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(2.7)





for any ε > 0, ε < a0 = supt∈[0,1] β(t), ∃ a function

ψε continuous on [0,∞) with |f(t, y, z)| ≤ ψε(|z|)
for (t, y, z) ∈ (0, 1) × [ε, a0] × R

and

(2.8) for any ε > 0, ε < a0, we have
∫ 1

0
q(s) ds <

∫ ∞

0

du

ψε(u)
.

Then (2.1) has a solution y ∈ C[0, 1] ∩ C2(0, 1) with α(t) ≤ y(t) ≤ β(t) for
t ∈ [0, 1].

PROOF: For n = n0, n0 + 1, ... let

en =
[

1

2n+1
, 1
]

and θn(t) = max
{

1

2n+1
, t
}
, 0 ≤ t ≤ 1

and
fn(t, x, z) = max {f(θn(t), x, z) , f(t, x, z)} .

Next we define inductively

gn0(t, x, z) = fn0(t, x, z)

and

gn(t, x, z) = min {fn0(t, x, z), ..., fn(t, x, z)} , n = n0 + 1, n0 + 2, ... .

Notice

f(t, x, z) ≤ ... ≤ gn+1(t, x, z) ≤ gn(t, x, z) ≤ ... ≤ gn0(t, x, z)

for (t, x, z) ∈ (0, 1) × (0,∞) × R and

gn(t, x, z) = f(t, x, z) for (t, x, z) ∈ en × (0,∞) × R.

Without loss of generality assume ρn0 ≤ mint∈[ 1
3
, 2
3 ]
α(t). Fix n ∈ {n0, n0 +

1, ...}. Let tn ∈
[
0, 1

3

]
and sn ∈

[
2
3
, 1
]

be such that

α(tn) = α(sn) = ρn and α(t) ≤ ρn for t ∈ [0, tn] ∪ [sn, 1].

Define

αn(t) =

{
ρn if t ∈ [0, tn] ∪ [sn, 1]
α(t) if t ∈ (tn, sn).
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We begin with the boundary value problem

(2.9)

{
y′′ + q(t) g?n0

(t, y, y′) = 0, 0 < t < 1
y(0) = y(1) = ρn0 ;

here

g?n0
(t, y, z) =





gn0(t, αn0(t), z
?) + r(αn0(t) − y), y ≤ αn0(t)

gn0(t, y, z
?), αn0(t) ≤ y ≤ β(t)

gn0(t, β(t), z?) + r(β(t) − y), y ≥ β(t),

with

z? =





Mn0 , z > Mn0

z, −Mn0 ≤ z ≤Mn0

−Mn0 , z < −Mn0

and r : R → [−1, 1] the radial retraction defined by

r(u) =

{
u, |u| ≤ 1
u
|u| , |u| > 1,

and Mn0 ≥ sup[0,1] |β ′(t)| is a predetermined constant (see (2.15)). Now
Schauder’s fixed point theorem [7] guarantees that there exists a solution yn0 ∈
C1[0, 1] to (2.9). We first show

(2.10) yn0(t) ≥ αn0(t), t ∈ [0, 1].

Suppose (2.10) is not true. Then yn0 − αn0 has a negative absolute minimum
at τ ∈ (0, 1). Now since yn0(0) − αn0(0) = 0 = yn0(1) − αn0(1) there exists
τ0, τ1 ∈ [0, 1] with τ ∈ (τ1, τ2) and

yn0(τ0) − αn0(τ0) = yn0(τ1) − αn0(τ1) = 0

and
yn0(t) − αn0(t) < 0, t ∈ (τ0, τ1).

We now claim

(2.11) (yn0 − αn0)
′′(t) < 0 for a.e. t ∈ (τ0, τ1).

If (2.11) is true then

yn0(t) − αn0(t) = −
∫ τ1

τ0
G(t, s) [y′′n0

(s) − α′′
n0

(s)] ds for t ∈ (τ0, τ1)
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with

G(t, s) =





(s−τ0) (τ1−t)
τ1−τ0 , τ0 ≤ s ≤ t

(t−τ0) (τ1−s)
τ1−τ0 , t ≤ s ≤ τ1

so we have
yn0(t) − αn0(t) > 0 for t ∈ (τ0, τ1),

a contradiction. As a result if we show that (2.11) is true then (2.10) will
follow. To see (2.11) we will show

(yn0 − αn0)
′′(t) < 0 for t ∈ (τ0, τ1) provided t 6= tn0 or t 6= sn0.

Fix t ∈ (τ0, τ1) and assume t 6= tn0 or t 6= sn0. Then

(yn0 − αn0)
′′(t) = − [q(t) { gn0(t, αn0(t), (y

′
n0

(t))?)

+r(αn0(t) − yn0(t)) } + α′′
n0

(t)]

=





− [q(t)
{
gn0(t, α(t), (y′n0

(t))?) + r(α(t) − yn0(t))
}

+α′′(t)] if t ∈ (tn0 , sn0)

−
[
q(t)

{
gn0(t, ρn0, (y

′
n0

(t))?) + r(ρn0 − yn0(t))
}]

if t ∈ (0, tn0) ∪ (sn0 , 1).

Case (A). t ∈
[

1
2n0+1 , 1

)
.

Then since gn0(t, x, z) = f(t, x, z) for (x, z) ∈ (0,∞) × R (note t ∈ en0)
we have

(yn0 − αn0)
′′(t) =





− [q(t)
{
f(t, α(t), (y′n0

(t))?) + r(α(t) − yn0(t))
}

+α′′(t)] if t ∈ (tn0 , sn0)

−
[
q(t)

{
f(t, ρn0, (y

′
n0

(t))?) + r(ρn0 − yn0(t))
}]

if t ∈ (0, tn0) ∪ (sn0, 1)

< 0,

from (2.4) and (2.5).

Case (B). t ∈
(
0 , 1

2n0+1

)
.

Then since

gn0(t, x, z) = max
{
f
(

1

2n0+1
, x, z

)
, f(t, x, z)

}

we have

gn0(t, x, z) ≥ f(t, x) and gn0(t, x, z) ≥ f
(

1

2n0+1
, x, z

)
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for (x, z) ∈ (0,∞) × R. Thus we have

(yn0 − αn0)
′′(t) ≤





− [q(t)
{
f(t, α(t), (y′n0

(t))?) + r(α(t) − yn0(t))
}

+α′′(t)] if t ∈ (tn0 , sn0)

− [q(t) {f
(

1
2n0+1 , ρn0, (y

′
n0

(t))?
)

+r(ρn0 − yn0(t))}] if t ∈ (0, tn0) ∪ (sn0 , 1)

< 0,

from (2.4) and (2.5).

Consequently (2.11) (and so (2.10)) holds and now since α(t) ≤ αn0(t) for
t ∈ [0, 1] we have

(2.12) α(t) ≤ αn0(t) ≤ yn0(t) for t ∈ [0, 1].

Next we show

(2.13) yn0(t) ≤ β(t) for t ∈ [0, 1].

If (2.13) is not true then yn0 − β would have a positive absolute maximum
at say τ0 ∈ (0, 1), in which case (yn0 − β)′(τ0) = 0 and (yn0 − β)′′(τ0) ≤ 0.

There are two cases to consider, namely τ0 ∈
[

1
2n0+1 , 1

)
and τ0 ∈

(
0, 1

2n0+1

)
.

Case (A). τ0 ∈
[

1
2n0+1 , 1

)
.

Then yn0(τ0) > β(τ0), y′n0
(τ0) = β ′(τ0) together with gn0(τ0, x, z) =

f(τ0, x, z) for (x, z) ∈ (0,∞) × R and Mn0 ≥ sup[0,1] |β ′(t)| gives

(yn0 − β)′′(τ0) = − q(τ0)
[
gn0(τ0, β(τ0), (y

′
n0

(τ0))
?) + r(β(τ0) − yn0(τ0))

]

− β ′′(τ0)

= −q (τ0) [f(τ0, β(τ0), β
′(τ0)) + r(β(τ0) − yn0(τ0))]

− β ′′(τ0)

> 0

from (2.6), a contradiction.

Case (B). τ0 ∈
(
0, 1

2n0+1

)
.

Now

gn0(τ0, x, z) = max
{
f
(

1

2n0+1
, x, z

)
, f(τ0, x, z)

}

for (x, z) ∈ (0,∞) × R gives

(yn0 − β)′′(τ0) = −q(τ0) [max{f(
1

2n0+1
, β(τ0), β

′(τ0)), f(τ0, β(τ0), β
′(τ0))}

+ r(β(τ0) − yn0(τ0))] − β ′′(τ0)

> 0
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from (2.6), a contradiction.

Thus (2.13) holds. Next we show

(2.14) |y′n0
|∞ = sup

[0,1]
|y′n0

(t)| ≤Mn0 .

With ε = min[0,1] αn0(t), then (2.7) guarantees the existence of ψε (as de-
scribed in (2.7)) with

|f(t, y, z)| ≤ ψε(|z|) for (t, y, z) ∈ (0, 1) × [ε, a0] × R

where a0 = sup[0,1] β(t). Let Mn0 ≥ sup[0,1] |β ′(t)| be chosen so that

(2.15)
∫ 1

0
q(s) ds <

∫ Mn0

0

du

ψε(u)

holds. Suppose (2.14) is false. Without loss of generality assume y′n0
(t) 6≤Mn0

for some t ∈ [0, 1]. Then since yn0(0) = yn0(1) = ρn0 there exists τ1 ∈
(0, 1) with y′n0

(τ1) = 0, and so there exists τ2, τ3 ∈ (0, 1) with y′n0
(τ3) = 0,

y′n0
(τ2) = Mn0 and 0 ≤ y′n0

(s) ≤Mn0 for s between τ3 and τ2. Without loss
of generality assume τ3 < τ2. Now since αn0(t) ≤ yn0(t) ≤ β(t) for t ∈ [0, 1]
and

gn0(t, x, z) = max
{
f
(

1

2n0+1
, x, z

)
, f(t, x, z)

}

for (t, x, z) ∈ (0, 1) × (0,∞) × R, we have for s ∈ (τ3, τ2) that

y′′n0
(s) ≤ q(s)ψε(y

′
n0

(s)),

and so ∫ Mn0

0

du

ψε(u)
=
∫ τ2

τ3

y′′n0
(s)

ψε(y′n0
(s)

ds ≤
∫ 1

0
q(s) ds.

This contradicts (2.15). The other cases are treated similarly. As a result
α(t) ≤ yn0(t) ≤ β(t) for t ∈ [0, 1] and |y′n0

|∞ ≤ Mn0 . Thus yn0 satisfies
y′′n0

+ q gn0(t, yn0, y
′
n0

) = 0 on (0, 1).
Next we consider the boundary value problem

(2.16)

{
y′′ + q(t) g?n0+1(t, y, y

′) = 0, 0 < t < 1
y(0) = y(1) = ρn0+1

where

g?n0+1(t, y, z) =





gn0+1(t, αn0+1(t), z
?) + r(αn0+1(t) − y), y ≤ αn0+1(t)

gn0+1(t, y, z
?), αn0+1(t) ≤ y ≤ yn0(t)

gn0+1(t, yn0(t), z
?) + r(yn0(t) − y), y ≥ yn0(t)
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with

z? =





Mn0+1, z > Mn0+1

z, −Mn0+1 ≤ z ≤Mn0+1

−Mn0+1, z < −Mn0+1;

here Mn0+1 ≥ Mn0 is a predetermined constant (see (2.22)). Now Schauder’s
fixed point theorem guarantees that there exists a solution yn0+1 ∈ C1[0, 1] to
(2.16). We first show

(2.17) yn0+1(t) ≥ αn0+1(t), t ∈ [0, 1].

Suppose (2.17) is not true. Then there exists τ0, τ1 ∈ [0, 1] with

yn0+1(τ0) − αn0+1(τ0) = yn0+1(τ1) − αn0+1(τ1) = 0

and
yn0+1(t) − αn0+1(t) < 0, t ∈ (τ0, τ1).

If we show

(2.18) (yn0+1 − αn0+1)
′′(t) < 0 for a.e. t ∈ (τ0, τ1),

then as before (2.17) is true. Fix t ∈ (τ0, τ1) and assume t 6= tn0+1 or
t 6= sn0+1. Then

(yn0+1 − αn0+1)
′′(t) =





− [q(t) {gn0+1(t, α(t), (y′n0+1(t))
?)

+r(α(t) − yn0+1(t))} + α′′(t)]
if t ∈ (tn0+1, sn0+1)

− [ q(t) {gn0+1(t, ρn0+1, (y
′
n0+1(t))

?)
+r(ρn0+1 − yn0+1(t))} ]

if t ∈ (0, tn0+1) ∪ (sn0+1, 1).

Case (A). t ∈
[

1
2n0+2 , 1

)
.

Then since gn0+1(t, x, z) = f(t, x, z) for (x, z) ∈ (0,∞) × R (note t ∈
en0+1) we have

(yn0+1 − αn0+1)
′′(t) =





− [q(t) {f(t, α(t), (y′n0+1(t))
?)

+r(α(t) − yn0+1(t))} + α′′(t)]
if t ∈ (tn0+1, sn0+1)

− [ q(t) {f(t, ρn0+1, (y
′
n0+1(t))

?)
+r(ρn0+1 − yn0+1(t))} ]

if t ∈ (0, tn0+1) ∪ (sn0+1, 1)

< 0,
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from (2.4) and (2.5).

Case (B). t ∈
(
0 , 1

2n0+2

)
.

Then since gn0+1(t, x, z) equals

min{max{f
(

1

2n0+1
, x, z

)
, f(t, x, z)} , max{f

(
1

2n0+2
, x, z

)
, f(t, x, z)}}

we have
gn0+1(t, x, z) ≥ f(t, x, z)

and

gn0+1(t, x, z) ≥ min
{
f
(

1

2n0+1
, x, z

)
, f

(
1

2n0+2
, x, z

)}

for (x, z) ∈ (0,∞) × R. Thus we have

(yn0+1 − αn0+1)
′′(t) ≤





− [q(t) {f(t, α(t), (y′n0+1(t))
?)

+r(α(t) − yn0+1(t))} + α′′(t)]
if t ∈ (tn0+1, sn0+1)

− [q(t) {min{f
(

1
2n0+1 , ρn0+1, (y

′
n0+1(t))

?
)
,

f
(

1
2n0+2 , ρn0+1, (y

′
n0+1(t))

?
)
}

+r(ρn0+1 − yn0+1(t))}]
if t ∈ (0, tn0+1) ∪ (sn0+1, 1)

< 0,

from (2.4) and (2.5) since f
(

1
2n0+1 , ρn0+1, (y

′
n0+1(t))

?
)
≥ 0 because

f
(
t, ρn0+1, (y

′
n0+1(t))

?
)
≥ 0 for t ∈

[
1

2n0+2
, 1
]

and
1

2n0+1
∈
[

1

2n0+2
, 1
]
.

Consequently (2.17) is true so

(2.19) α(t) ≤ αn0+1(t) ≤ yn0+1(t) for t ∈ [0, 1].

Next we show

(2.20) yn0+1(t) ≤ yn0(t) for t ∈ [0, 1].

If (2.20) is not true then yn0+1−yn0 would have a positive absolute maximum
at say τ0 ∈ (0, 1), in which case

(yn0+1 − yn0)
′(τ0) = 0 and (yn0+1 − yn0)

′′(τ0) ≤ 0.
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Then yn0+1(τ0) > yn0(τ0) together with gn0(τ0, x, z) ≥ gn0+1(τ0, x, z) for
(x, z) ∈ (0,∞) × R gives (note (y′n0+1(τ0))

? = (y′n0
(τ0))

? = y′n0
(τ0) since

Mn0+1 ≥Mn0 and |y′n0
|∞ ≤ Mn0),

(yn0+1 − yn0)
′′(τ0) = − q(τ0) [gn0+1(τ0, yn0(τ0), (y

′
n0+1(τ0))

?)

+ r(yn0(τ0) − yn0+1(τ0))] − y′′n0
(τ0)

≥ − q(τ0) [gn0(τ0, yn0(τ0), y
′
n0

(τ0))

+ r(yn0(τ0) − yn0+1(τ0))] − y′′n0
(τ0)

= −q (τ0) [r(yn0(τ0) − yn0+1(τ0))]

> 0,

a contradiction. Thus (2.20) holds. Next we show

(2.21) |y′n0+1|∞ ≤Mn0+1.

With ε = min[0,1] αn0+1(t), then (2.7) guarantees the existence of ψε (as
described in (2.7)) with

|f(t, y, z)| ≤ ψε(|z|) for (t, y, z) ∈ (0, 1) × [ε, a0] × R

where a0 = sup[0,1] β(t). Let Mn0+1 ≥Mn0 be chosen so that

(2.22)
∫ 1

0
q(s) ds <

∫ Mn0+1

0

du

ψε(u)
.

Essentially the same argument as before guarantees that (2.21) holds. Thus
y′′n0+1 + q gn0+1(t, yn0+1, y

′
n0+1) = 0 on (0, 1).

Now proceed inductively to construct yn0+2, yn0+3, .... as follows. Suppose
we have yk for some k ∈ {n0 + 1, n0 + 2, ...} with α(t) ≤ αk(t) ≤ yk(t) ≤
yk−1(t) (≤ β(t)) for t ∈ [0, 1]. Then consider the boundary value problem

(2.23)

{
y′′ + q(t) g?k+1(t, y, y

′) = 0, 0 < t < 1
y(0) = y(1) = ρk+1

where

g?k+1(t, y, z) =





gk+1(t, αk+1(t), z
?) + r(αk+1(t) − y), y ≤ αk+1(t)

gk+1(t, y, z
?), αk+1(t) ≤ y ≤ yk(t)

gk+1(t, yk(t), z
?) + r(yk(t) − y), y ≥ yk(t)

with

z? =





Mk+1, z > Mk+1

z, −Mk+1 ≤ z ≤Mk+1

−Mk+1, z < −Mk+1;
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here Mk+1 ≥ Mk is a predetermined constant. Now Schauder’s fixed point
theorem guarantees that (2.23) has a solution yk+1 ∈ C1[0, 1], and essentially
the same reasoning as above yields

α(t) ≤ αk+1(t) ≤ yk+1(t) ≤ yk(t) for t ∈ [0, 1], |y′k+1|∞ ≤ Mk+1,

so y′′k+1 + q gk+1(t, yk+1, y
′
k+1) = 0 on (0, 1).

Now lets look at the interval [ 1
2n0+1 , 1 − 1

2n0+1 ]. We claim

(2.24)

{
{y(j)

n }∞n=n0+1 , j = 0, 1, is a bounded, equicontinuous

family on
[

1
2n0+1 , 1 − 1

2n0+1

]
.

Firstly note

(2.25) |yn|∞ ≤ |yn0|∞ ≤ sup
[0,1]

β(t) = a0 for t ∈ [0, 1] and n ≥ n0 + 1.

Let
ε = min

t∈
[

1

2n0+1 ,1−
1

2n0+1

] α(t).

Now (2.7) guarantees the existence of ψε (as described in (2.7)) with

|f(t, y, z)| ≤ ψε(|z|) for (t, y, z) ∈ (0, 1) × [ε, a0] × R.

This implies

|gn(t, yn(t), y′n(t))| ≤ ψε(|y′n(t)|) for t ∈ [a, b] ≡
[

1

2n0+1
, 1 − 1

2n0+1

]
⊆ en0

and n ≥ n0 + 1. As a result

(2.26) |y′′n(t)| ≤ q(t)ψε(|y′n(t)|) for t ∈ [a, b] and n ≥ n0 + 1.

The mean value theorem implies that there exists τ1,n ∈ (a, b) with

|y′(τ1,n)| =
|y(b) − yn(a)|

b− a
≤ 2 a0

b− a
= dn0 for n ≥ n0.

Fix n ≥ n0 + 1 and let t ∈ [a, b]. Without loss of generality assume y′n(t) >
dn0 . Then there exists τ1 ∈ (a, b) with y′n(τ1) = dn0 and y′n(s) > dn0 for s
between τ1 and t. Without loss of generality assume τ1 < s. From (2.26) we
have

y′′n(s)

ψε(y′n(s))
≤ q(s) for s ∈ (τ1, t),
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so integration from τ1 to t yields

∫ y′n(t)

dn0

du

ψε(u)
≤
∫ 1

0
q(s) ds.

Let In0(z) =
∫ z
dn0

du
ψε(u)

, so

|y′n(t)| ≤ I−1
n0

(∫ 1

0
q(s) ds

)
≡ Rn0.

A similar bound is obtained for the other cases, so

(2.27) |y′n(s)| ≤ Rn0 for s ∈ [a, b] =
[

1

2n0+1
, 1 − 1

2n0+1

]

and n ≥ n0 + 1. Now (2.25), (2.26) and (2.27) guarantee that (2.24) holds.
The Arzela–Ascoli theorem guarantees the existence of a subsequence Nn0

of integers and a function zn0 ∈ C1
[

1
2n0+1 , 1 − 1

2n0+1

]
with y(j)

n , j = 0, 1,

converging uniformly to z(j)
n0

on
[

1
2n0+1 , 1 − 1

2n0+1

]
as n → ∞ through Nn0.

Similarly

(2.28)

{
{y(j)

n }∞n=n0+2 , j = 0, 1, is a bounded, equicontinuous

family on
[

1
2n0+2 , 1 − 1

2n0+2

]
,

so there is a subsequence Nn0+1 of Nn0 and a function

zn0+1 ∈ C1
[

1

2n0+2
, 1 − 1

2n0+2

]

with y(j)
n , j = 0, 1, converging uniformly to z

(j)
n0+1 on

[
1

2n0+2 , 1 − 1
2n0+2

]
as n→

∞ through Nn0+1. Note zn0+1 = zn0 on
[

1
2n0+1 , 1 − 1

2n0+1

]
since Nn0+1 ⊆ Nn0.

Proceed inductively to obtain subsequences of integers

Nn0 ⊇ Nn0+1 ⊇ ... ⊇ Nk ⊇ ...

and functions

zk ∈ C1
[

1

2k+1
, 1 − 1

2k+1

]

with

y(j)
n , j = 0, 1, converging uniformly to z

(j)
k on

[
1

2k+1
, 1 − 1

2k+1

]
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as n→ ∞ through Nk, and

zk = zk−1 on
[

1

2k
, 1 − 1

2k

]
.

Define a function y : [0, 1] → [0,∞) by y(x) = zk(x) on
[

1
2k+1 , 1 − 1

2k+1

]
and

y(0) = y(1) = 0. Notice y is well defined and α(t) ≤ y(t) ≤ yn0(t) ≤ β(t) for
t ∈ (0, 1). Next fix t ∈ (0, 1) (without loss of generality assume t 6= 1

2
) and

let m ∈ {n0, n0 + 1, ...} be such that 1
2m+1 < t < 1 − 1

2m+1 . Let N?
m = {n ∈

Nm : n ≥ m}. Now yn, n ∈ N?
m, satisfies the integral equation

yn(x) = yn

(
1

2

)
+ y′n

(
1

2

)(
x− 1

2

)
+
∫ x

1
2

(s− x)q(s)gn(s, yn(s), y
′
n(s)) ds

= yn

(
1

2

)
+ y′n

(
1

2

)(
x− 1

2

)
+
∫ x

1
2

(s− x)q(s)f(s, yn(s), y
′
n(s)) ds

for x ∈
[

1
2m+1 , 1 − 1

2m+1

]
. Let n→ ∞ through N?

m to obtain

zm(x) = zm

(
1

2

)
+ z′m

(
1

2

) (
x− 1

2

)
+
∫ x

1
2

(s− x)q(s)f(s, zm(s), z′m(s)) ds,

so in particular

y(t) = y
(

1

2

)
+ y′

(
1

2

) (
t− 1

2

)
+
∫ t

1
2

(s− t) q(s) f(s, y(s), y′(s)) ds.

We can do this argument for each t ∈ (0, 1), so y′′(t)+q(t) f(t, y(t), y′(t)) = 0
for t ∈ (0, 1). It remains to show y is continuous at 0 and 1.

Let ε > 0 be given. Now since limn→∞ yn(0) = 0 there exists n1 ∈
{n0, n0 +1, ...} with yn1(0) < ε

2
. Since yn1 ∈ C[0, 1] there exists δn1 > 0 with

yn1(t) <
ε

2
for t ∈ [0, δn1].

Now for n ≥ n1 we have, since {yn(t)} is nonincreasing for each t ∈ [0, 1],

α(t) ≤ yn(t) ≤ yn1(t) <
ε

2
for t ∈ [0, δn1].

Consequently

α(t) ≤ y(t) ≤ ε

2
< ε for t ∈ (0, δn1]

and so y is continuous at 0. Similarly y is continuous at 1. As a result
y ∈ C[0, 1]. 2
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Suppose (2.2)–(2.5) hold and in addition assume the following conditions
are satisfied:

(2.29)

{
q(t) f(t, y, α′(t)) + α′′(t) > 0 for
(t, y) ∈ (0, 1) × { y ∈ (0,∞) : y < α(t) }

and

(2.30)





there exists a function β ∈ C[0, 1] ∩ C2(0, 1)
with β(t) ≥ ρn0 for t ∈ [0, 1] and with
q(t) f(t, β(t), β ′(t)) + β ′′(t) ≤ 0 for t ∈ (0, 1) and

q(t) f
(

1
2n0+1 , β(t), β ′(t)

)
+ β ′′(t) ≤ 0 for t ∈

(
0, 1

2n0+1

)
.

Also if (2.7) and (2.8) hold, then the result in Theorem 2.1 is again true. This
follows immediately from Theorem 2.1 once we show (2.6) holds i.e. once we
show β(t) ≥ α(t) for t ∈ [0, 1]. Suppose it is false. Then α − β would have
a positive absolute maximum at say τ0 ∈ (0, 1), so (α − β)′(τ0) = 0 and
(α− β)′′(τ0) ≤ 0. Now α(τ0) > β(τ0) and (2.29) implies

q(τ0) f(τ0, β(τ0), β
′(τ0)) + α′′(τ0) = q(τ0) f(τ0, β(τ0), α

′(τ0)) + α′′(τ0) > 0,

and this together with (2.30) yields

(α− β)′′(τ0) = α′′(τ0) − β ′′(τ0) ≥ α′′(τ0) + q(τ0) f(τ0, β(τ0), β
′(τ0)) > 0,

a contradiction. Thus we have

Corollary 2.2. Let n0 ∈ {1, 2, ...} be fixed and suppose (2.2) − (2.5), (2.7),
(2.8), (2.29) and (2.30) hold. Then (2.1) has a solution y ∈ C[0, 1] ∩C2(0, 1)
with α(t) ≤ y(t) ≤ β(t) for t ∈ [0, 1].

Remark 2.1. (i). If in (2.4) we replace 1
2n+1 ≤ t ≤ 1 with 0 ≤ t ≤ 1 − 1

2n+1

then one would replace (2.6) with

(2.31)





∃ β ∈ C1[0, 1] ∩ C2(0, 1) with β(t) ≥ α(t), β(t) ≥ ρn0

for t ∈ [0, 1] with q(t) f(t, β(t), β ′(t)) + β ′′(t) ≤ 0

for t ∈ (0, 1) and q(t) f
(
1 − 1

2n0+1 , β(t), β ′(t)
)

+ β ′′(t) ≤ 0

for t ∈
(
1 − 1

2n0+1 , 1
)
.

(ii). If in (2.4) we replace 1
2n+1 ≤ t ≤ 1 with 1

2n+1 ≤ t ≤ 1 − 1
2n+1 then one

would replace (2.6) with

(2.32)





∃ β ∈ C1[0, 1] ∩ C2(0, 1) with β(t) ≥ α(t), β(t) ≥ ρn0

for t ∈ [0, 1] with q(t) f(t, β(t), β ′(t)) + β ′′(t) ≤ 0

for t ∈ (0, 1) and q(t) f
(

1
2n0+1 , β(t), β ′(t)

)
+ β ′′(t) ≤ 0

for t ∈
(
0, 1

2n0+1

)
, q(t) f

(
1 − 1

2n0+1 , β(t), β ′(t)
)

+ β ′′(t) ≤ 0

for t ∈
(
1 − 1

2n0+1 , 1
)
.
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This is clear once one changes the definition of en and θn. For example in
case (ii), take

en =
[

1

2n+1
, 1 − 1

2n+1

]
and θn(t) = max

{
1

2n+1
, min

{
t, 1 − 1

2n+1

}}
.

Finally we discuss condition (2.5) and (2.29). Suppose the following con-
dition is satisfied:

(2.33)





let n ∈ {n0, n0 + 1, ...} and associated with each n we
have a constant ρn such that {ρn} is a decreasing
sequence with limn→∞ ρn = 0 and there exists a constant
k0 > 0 such that for 1

2n+1 ≤ t ≤ 1, 0 < y ≤ ρn and z ∈ R
we have q(t) f(t, y, z) ≥ k0.

We will show if (2.33) holds then (2.5) (and of course (2.4)) and (2.29) are
satisfied (we also note that 1

2n+1 ≤ t ≤ 1 in (2.33) could be replaced by
0 ≤ t ≤ 1− 1

2n+1 (respectively 1
2n+1 ≤ t ≤ 1− 1

2n+1 ) and (2.5), (2.29) hold with
1

2n+1 ≤ t ≤ 1 replaced by 0 ≤ t ≤ 1− 1
2n+1 (respectively 1

2n+1 ≤ t ≤ 1− 1
2n+1 )).

To show (2.5) and (2.29) recall the following Lemma from [5].

Lemma 2.3. Let en be as described in Theorem 2.1 (or Remark 2.1) and let
0 < εn < 1 with εn ↓ 0. Then there exists λ ∈ C2[0, 1] with sup[0,1] |λ′′(t)| > 0
and λ(0) = λ(1) = 0 with

0 < λ(t) ≤ εn for t ∈ en\en−1, n ≥ 1.

Let εn = ρn (and n ≥ n0) and let λ be as in Lemma 2.3. From (2.33)
there exists k0 > 0 with

(2.34)

{
q(t) f(t, y, z) ≥ k0 for
(t, y, z) ∈ (0, 1) × {y ∈ (0,∞) : y ≤ λ(t)} × R,

since if t ∈ en \ en−1 (n ≥ n0) then y ≤ λ(t) implies y ≤ ρn. Let

M = sup
[0,1]

|λ′′(t)|, m = min

{
1 ,

k0

M + 1

}
and α(t) = mλ(t), t ∈ [0, 1].

In particular since α(t) ≤ λ(t) we have from (2.34) that

q(t) f(t, α(t), z) + α′′(t) ≥ k0 + α′′(t) ≥ k0 − k0 |λ′′(t)|
M + 1

> 0

...Singular Boundary Value Problems 219



for (t, z) ∈ (0, 1) × R, and also

q(t) f(t, y, α′(t)) + α′′(t) ≥ k0 + α′′(t) > 0

for (t, y) ∈ (0, 1) × {y ∈ (0,∞) : y ≤ α(t)}. Thus (2.5) and (2.29) hold.

Theorem 2.4. Let n0 ∈ {1, 2, ...} be fixed and suppose (2.2), (2.3), (2.7),
(2.8), (2.30) and (2.33) hold. Then (2.1) has a solution y ∈ C[0, 1] ∩C2(0, 1)
with y(t) > 0 for t ∈ (0, 1).

Example. Consider the boundary value problem

(2.35)

{
y′′ + t

y2
+ |y′|α − µ2 = 0, 0 < t < 1

y(0) = y(1) = 0

with µ > 0 and 0 ≤ α ≤ 1. Then (2.35) has a solution y ∈ C[0, 1] ∩C2(0, 1)
with y(t) > 0 for t ∈ (0, 1).

To see that (2.35) has the desired solution we will apply Theorem 2.4 with
q = 1, f(t, y, z) = t

y2
+ |z|α − µ2 and

ρn =

(
1

2n+1 (µ2 + 1)

) 1
2

, k0 = 1 and n0 = 1.

Clearly (2.2) and (2.3) hold and notice also if n ∈ {1, 2, ...}, 1
2n+1 ≤ t ≤ 1,

0 < y ≤ ρn and z ∈ R we have

q(t) f(t, y, z) ≥ t

ρ2
n

− µ2 ≥ 1

2n+1 ρ2
n

− µ2 = (µ2 + 1) − µ2 = 1,

so (2.33) is also true. Next let β(t) = M+ρ1 where M is chosen large enough
so that

1

(M + ρ1)2
≤ µ2.

Notice (2.30) is immediate since

q(t) f(t, β(t), β ′(t)) + β ′′(t) =
t

[β(t)]2
− µ2 ≤ 1

(M + ρ1)2
− µ2 ≤ 0

for t ∈ (0, 1), and

q(t) f
(

1

2n0+1
, β(t), β ′(t)

)
+ β ′′(t) =

1

4 [β(t)]2
− µ2 ≤ 1

(M + ρ1)2
− µ2 ≤ 0
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for t ∈
(
0, 1

4

)
. Next let

ψε(z) =
1

ε2
+ µ2 + zα

and notice (2.7) and (2.8) are satisfied since

|f(t, y, z)| ≤ 1

ε2
+ µ2 + |z|α = ψε(|z|) for t ∈ (0, 1), y ≥ ε, z ∈ R

and ∫ ∞

0

du

ψε(u)
= ∞ since 0 ≤ α ≤ 1.

Existence now follows from Theorem 2.4.
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Abstract. A large variety of very general Lp (1 ≤ p ≤ ∞) form
Opial type inequalities ([10]) is presented involving generalized frac-
tional derivatives ([5], [8]) of several functions in different orders
and powers. The above are based on a generalization of Taylor’s
formula for generalized fractional derivatives ([5]). From the estab-
lished results derive several other particular results of special inter-
est. Applications of some of these special inequalities are given in
proving uniqueness of solution and in giving upper bounds to so-
lutions of initial value problems involving a very general system of
several fractional differential equations. Upper bounds to various
fractional derivatives of the solutions that are involved in the above
systems are given too.

0 Introduction

Opial inequalities appeared for the first time in [10] and then many authors
dealt with them in different directions and for various cases. For a complete
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recent account on the activity of this field see [3], and still it remains a very
active area of research. One of their main attractions to these inequalities is
their applications, especially to proving uniqueness and upper bounds of solution
of initial value problems in differential equations. The author was the first to
present Opial inequalities involving fractional derivatives of functions in [4], [5]
with applications to fractional differential equations.

Fractional derivatives come up naturally in a number of fields, especially
in Physics, see the recent book [9]. To name a few topics such as, fractional
Kinetics of Hamiltonian Chaotic systems, Polymer Physics and Rheology, Reg-
ular variation in Thermodynamics, Biophysics, fractional time evolution, fractal
time series, etc. One there deals also with stochastic fractional-difference equa-
tions and fractional diffusion equations. Great applications of these can be
found in the study of DNA sequences. Other fractional differential equations
arise in the study of suspensions, coming from the fluid dynamical modeling of
certain blood flow phenomena. An excellent account in the study of fractional
differential equations is in the recent book [11].

The study of fractional calculus started from 1695 by L’Hospital and Leibniz,
also continued later by J. Fourier in 1822 and Abel in 1823, and continuous to
our days in an increased fashion due to its many applications and necessity to
deal with fractional phenomena and structures.

In this paper the author is greatly motivated and inspired by the very impor-
tant papers [1], [2]. Of course there the authors are dealing with other kinds of
derivative. Here the author continues his study of fractional Opial inequalities
now involving several different functions and produces a wide variety of cor-
responding results with important applications to systems of several fractional
differential equations. This article is a generalization of the author’s earlier
article [6].

We start in Section 1 with Preliminaries, we continue in Section 2 with the
main results and we finish in Section 3 with applications.

To give an idea to the reader of the kind of inequalities we are dealing with,
briefly we mention a simple one

∫ x

a

 M∑
j=1

|(Dγ
afj)(w)| |(Dν

afj)(w)|

 dw

≤
(

(x− a)ν−γ

2Γ(ν − γ)
√

ν − γ
√

2ν − 2γ − 1

)
∫ x

a

 M∑
j=1

(
(Dν

afj)(w)
)2 dw

 , (∗)

all a ≤ x ≤ b, for certain kind of continuous functions fj , j = 1, . . . ,M ∈ N;
γ, ν ≥ 1, ν − γ ≥ 1, etc. Furthermore one system of fractional differential
equations we are dealing with briefly is of the form

(Dν
afj)(t) = Fj

(
t, {(Dγi

a f1)(t)}r
i=1, {(Dγi

a f2)(t)}r
i=1,

. . . , {(Dγi
a fM )(t)}r

i=1

)
, all t ∈ [a, b], (∗∗)
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for j = 1, 2, . . . ,M ∈ N and with f
(i)
j (a) = aij ∈ R, i = 0, 1, . . . , n − 1, where

n := [ν], ν ≥ 2, etc.
In the literature there are many different definitions of fractional derivatives,

some of them being equivalent, see [9], [11]. In this article we use one of the
most recent due to J. Canavati [8], generalized in [4] and [5] by the author.

One of the advantages of Canavati fractional derivatives is that in appli-
cations to fractional initial value problems we need only n initial conditions,
like with the ordinary derivative case, while with other definitions of fractional
derivatives we need n + 1 or more initial conditions, see [11].

1 Preliminaries

In the next we follow [8]. Let g ∈ C([0, 1]). Let ν be a positive number, n := [ν]
and α := ν − n (0 < α < 1). Define

(Jνg)(x) :=
1

Γ(ν)

∫ x

0

(x− t)ν−1g(t) dt, 0 ≤ x ≤ 1, (1)

the Riemann–Liouville integral, where Γ is the gamma function. We define the
subspace Cν([0, 1]) of Cn([0, 1]) as follows:

Cν([0, 1]) := {g ∈ Cn([0, 1]):J1−αDng ∈ C1([0, 1])},

where D := d
dx . So for g ∈ Cν([0, 1]), we define the ν-fractional derivative of g

as
Dνg := DJ1−αDng. (2)

When ν ≥ 1 we have the Taylor’s formula

g(t) = g(0) + g′(0)t + g′′(0)
t2

2!
+ · · ·+ g(n−1)(0)

tn−1

(n− 1)!
+ (JνDνg)(t), for all t ∈ [0, 1]. (3)

When 0 < ν < 1 we find

g(t) = (JνDνg)(t), for all t ∈ [0, 1]. (4)

Next we transfer above notions over to arbitrary [a, b] ⊆ R (see [5]). Let
x, x0 ∈ [a, b] such that x ≥ x0, where x0 is fixed. Let f ∈ C([a, b]) and define

(Jx0
ν f)(x) :=

1
Γ(ν)

∫ x

x0

(x− t)ν−1f(t) dt, x0 ≤ x ≤ b, (5)

the generalized Riemann–Liouville integral . We define the subspace Cν
x0

([a, b])
of Cn([a, b]):

Cν
x0

([a, b]) := {f ∈ Cn([a, b]):Jx0
1−αDnf ∈ C1([x0, b])}.
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For f ∈ Cν
x0

([a, b]), we define the generalized ν-fractional derivative of f over
[x0, b] as

Dν
x0

f := DJx0
1−αf (n) (f (n) := Dnf). (6)

Observe that

(Jx0
1−αf (n))(x) =

1
Γ(1− α)

∫ x

x0

(x− t)−αf (n)(t) dt

exists for f ∈ Cν
x0

([a, b]).
We recall the following generalization of Taylor’s formula (see [8], [5]).

Theorem 1. Let f ∈ Cν
x0

([a, b]), x0 ∈ [a, b], fixed.

(i) If ν ≥ 1 then

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)2

2

+ · · ·+ f (n−1)(x0)
(x− x0)n−1

(n− 1)!
+ (Jx0

ν Dν
x0

f)(x), for all x ∈ [a, b]:x ≥ x0. (7)

(ii) If 0 < ν < 1 then

f(x) = (Jx0
ν Dν

x0
f)(x), for all x ∈ [a, b]:x ≥ x0. (8)

We make

Remark 1. 1) (Dn
x0

f) = f (n), n ∈ N.
2) Let f ∈ Cν

x0
([a, b]), ν ≥ 1 and f (i)(x0) = 0, i = 0, 1, . . . , n − 1; n := [ν].

Then by (7)
f(x) = (Jx0

ν Dν
x0

f)(x).

I.e.
f(x) =

1
Γ(ν)

∫ x

x0

(x− t)ν−1(Dν
x0

f)(t) dt, (9)

for all x ∈ [a, b] with x ≥ x0. Notice that (9) is true, also when 0 < ν < 1.
We also make

Remark 2. Let ν, γ ≥ 1 such that ν − γ ≥ 1, so that γ < ν. Call n := [ν],
α := ν − n; m := [γ], ρ := γ − m. Note that ν − m ≥ 1 and n − m ≥ 1. Let
f ∈ Cν

x0
([a, b]) be such that f (i)(x0) = 0, i = 0, 1, . . . , n− 1. Hence by (7)

f(x) = (Jx0
ν Dν

x0
f)(x), for all x ∈ [a, b]:x ≥ x0.

Therefore by Leibnitz’s formula and Γ(p + 1) = pΓ(p), p > 0, we get that

f (m)(x) = (Jx0
ν−mDν

x0
f)(x), for all x ≥ x0.

4
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It follows that f ∈ Cγ
x0

([a, b]) and thus (Dγ
x0

f)(x) := (DJx0
1−ρf

(m))(x) exists for
all x ≥ x0.

Easily we obtain

(Dγ
x0

f)(x) = D((Jx0
1−ρf

(m))(x)) =
1

Γ(ν − γ)

∫ x

x0

(x− t)(ν−γ)−1(Dν
x0

f)(t) dt,

(10)
and thus

(Dγ
x0

f)(x) = (Jx0
ν−γ(Dν

x0
f))(x)

and is continuous in x on [x0, b].

2 Main Results

Here we use a lot the following basic inequalities.
Let a1, . . . , an ≥ 0, n ∈ N, then

ar
1 + · · ·+ ar

n ≤ (a1 + · · ·+ an)r, r ≥ 1, (11)

and
ar
1 + · · ·+ ar

n ≤ n1−r(a1 + · · ·+ an)r, 0 ≤ r ≤ 1. (12)

Our first result follows next

Theorem 2. Let ν, γ1, γ2 ≥ 1 such that ν − γ1 ≥ 1, ν − γ2 ≥ 1 and fj ∈
Cν

x0
([a, b]) with f

(i)
j (x0) = 0, i = 0, 1, . . . , n − 1, n := [ν], j = 1, . . . ,M ∈ N.

Here x, x0 ∈ [a, b]:x ≥ x0. Consider also p(t) > 0, and q(t) ≥ 0 continuous
functions on [x0, b]. Let λν > 0 and λα, λβ ≥ 0 such that λν < p, where p > 1.
Set

Pk(w) :=
∫ w

x0

(w − t)
(ν−γk−1)p

p−1 (p(t))−
1

p−1 dt, k = 1, 2, x0 ≤ w ≤ b; (13)

A(w) :=
q(w) · (P1(w))λα

(
p−1

p

)
· (P2(w))λβ

(
p−1

p

)
(p(w))−

λν
p

(Γ(ν − γ1))λα · (Γ(ν − γ2))λβ
; (14)

A0(x) :=
(∫ x

x0

A(w)
p

p−λν dw

) p−λν
p

. (15)

Call

ϕ1(x) :=
(
A0(x)

∣∣
λβ=0

)
·
(

λν

λα + λν

)λν
p

, (16)

δ∗1 :=

M1−
(

λα+λν
p

)
, if λα + λν ≤ p,

2
(

λα+λν
p

)
−1, if λα + λν ≥ p.

(17)

5
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If λβ = 0, we obtain that∫ x

x0

q(w)

 M∑
j=1

|(Dγ1
x0

fj)(w)|λα |(Dν
x0

fj)(w)|λν

 dw

≤ δ∗1 · ϕ1(x) ·

∫ x

x0

p(w)

 M∑
j=1

|(Dν
x0

fj)(w)|p
 dw


(

λα+λν
p

)
, (18)

all x0 ≤ x ≤ b.

Proof. From Theorem 2 of [6] we get∫ x

x0

q(w)
[
|(Dγ1

x0
fj)(w)|λα |(Dν

x0
fj)(w)|λν

+ |(Dγ1
x0

fj+1)(w)|λα |(Dν
x0

fj+1)(w)|λν
]
dw (19)

≤ δ1ϕ1(x)
[∫ x

x0

p(w)
[
|(Dν

x0
fj)(w)|p + |(Dν

x0
fj+1)(w)|p

]
dw

](λα+λν
p

)
,

j = 1, 2, . . . ,M − 1, where

δ1 :=

21−
(

λα+λν
p

)
, if λα + λν ≤ p,

1, if λα + λν ≥ p.
(20)

Hence by adding all the above we find∫ x

x0

q(w)
(M−1∑

j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dν

x0
fj)(w)|λν

+ |(Dγ1
x0

fj+1)(w)|λα |(Dν
x0

fj+1)(w)|λν
])

dw (21)

≤ δ1ϕ1(x) ·
(M−1∑

j=1

[∫ x

x0

p(w)[|(Dν
x0

fj)(w)|p + |(Dν
x0

fj+1)(w)|p] dw

](λα+λν
p

))
.

Also it holds∫ x

x0

q(w)
[
|(Dγ1

x0
f1)(w)|λα |(Dν

x0
f1)(w)|λν

+ |(Dγ1
x0

fM )(w)|λα |(Dν
x0

fM )(w)|λν
]
dw (22)

≤ δ1ϕ1(x)
[∫ x

x0

p(w)
[
|(Dν

x0
f1)(w)|p + |(Dν

x0
fM )(w)|p

]
dw

](λα+λν
p

)
.

Call

ε1 =

{
1, if λα + λν ≥ p

M1−
(

λα+λν
p

)
, if λα + λν ≤ p.

(23)

6
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Adding (21) and (22), and using (11) and (12) we have

2
∫ x

x0

q(w)

 M∑
j=1

|(Dγ1
x0

fj)(w)|λα |(Dν
x0

fj)(w)|λν

 dw

≤ δ1ϕ1(x)

{{M−1∑
j=1

[∫ x

x0

p(w)[|(Dν
x0

fj)(w)|p

+ |(Dν
x0

fj+1)(w)|p]dw

](λα+λν
p

)}

+
{∫ x

x0

p(w)[|(Dν
x0

f1)(w)|p + |(Dν
x0

fM )(w)|p]dw

}(λα+λν
p

)}

≤ δ1ε1ϕ1(x)
{∫ x

x0

p(w)
[
2

M∑
j=1

|(Dν
x0

fj)(w)|p
]
dw

}(λα+λν
p

)
.

We have proved∫ x

x0

q(w)

 M∑
j=1

|(Dγ1
x0

fj)(w)|λα |(Dν
x0

fj)(w)|λν

 dw

≤ δ1

(
2
(

λα+λν
p

)
−1

)
ε1ϕ1(x)

·


∫ x

x0

p(w)
[ M∑

j=1

|(Dν
x0

fj)(w)|p
]

dw


(

λα+λν
p

)
. (24)

Clearly here we have

δ∗1 = δ1

(
2
(

λα+λν
p

)
−1

)
ε1. (25)

From (24) and (25) we derive (18). �

Next we give

Theorem 3. All here as in Theorem 2. Denote

δ3 :=

{
2

λβ
λν − 1, if λβ ≥ λν ,

1, if λβ ≤ λν ,
(26)

ε2 :=

{
1, if λν + λβ ≥ p,

M1−
(

λν+λβ
p

)
, if λν + λβ ≤ p,

(27)

and

ϕ2(x) :=
(
A0(x)

∣∣
λα=0

)
2
(

p−λν
p

) (
λν

λβ + λν

)λν
p

δ
λν
p

3 . (28)

7
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If λα = 0, then it holds∫ x

x0

q(w)

{{M−1∑
j=1

[
|(Dγ2

x0
fj+1)(w)|λβ |(Dν

x0
fj)(w)|λν

+ |(Dγ2
x0

fj)(w)|λβ |(Dν
x0

fj+1)(w)|λν
]}

+
[
|(Dγ2

x0
fM )(w)|λβ |(Dν

x0
f1)(w)|λν

+ |(Dγ2
x0

f1)(w)|λβ |(Dν
x0

fM )(w)|λν
]}

dw

≤ 2
(

λν+λβ
p

)
ε2ϕ2(x) ·

{∫ x

x0

p(w)

·
[ M∑

j=1

|(Dν
x0

fj)(w)|p
]
dw

}(λν+λβ
p

)
, x ≥ x0. (29)

Proof. From Theorem 3 of [6] we have∫ x

x0

q(w)
[
|(Dγ2

x0
fj+1)(w)|λβ |(Dν

x0
fj)(w)|λν

+ |(Dγ2
x0

fj)(w)|λβ |(Dν
x0

fj+1)(w)|λν
]
dw

≤ ϕ2(x)
(∫ x

x0

p(w)
[
|(Dν

x0
fj)(w)|p + |(Dν

x0
fj+1)(w)|p

]
dw

)(λν+λβ
p

)
, (30)

for j = 1, . . . ,M − 1. Hence by adding all the above we get∫ x

x0

q(w)
(M−1∑

j=1

[
|(Dγ2

x0
fj+1)(w)|λβ |(Dν

x0
fj)(w)|λν

+ |(Dγ2
x0

fj)(w)|λβ |(Dν
x0

fj+1)(w)|λν
])

dw

≤ ϕ2(x)

{
M−1∑
j=1

(∫ x

x0

p(w)[|(Dν
x0

fj)(w)|p

+ |(Dν
x0

fj+1)(w)|p dw

)(λν+λβ
p

)}
. (31)

Similarly it holds∫ x

x0

q(w)
[
|(Dγ2

x0
fM )(w)|λβ |(Dν

x0
f1)(w)|λν

+ |(Dγ2
x0

f1)(w)|λβ |(Dν
x0

fM )(w)|λν
]
dw

≤ ϕ2(x)
(∫ x

x0

p(w)
[
|(Dν

x0
f1)(w)|p + |(Dν

x0
fM )(w)|p

]
dw

)(λν+λβ
p

)
. (32)

8
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Adding (31) and (32) and using (11), (12) we produce (29). �

It follows the general case

Theorem 4. All here as in Theorem 2. Denote

γ̃1 :=

{
2
(

λα+λβ
λν

)
− 1, if λα + λβ ≥ λν ,

1, if λα + λβ ≤ λν ,
(33)

and

γ̃2 :=

{
1, if λα + λβ + λν ≥ p,

21−
(

λα+λβ+λν

p

)
, if λα + λβ + λν ≤ p.

(34)

Set

ϕ3(x) := A0(x) ·
(

λν

(λα + λβ)(λα + λβ + λν)

)λν
p

·
[
λ

λν
p

α γ̃2 + 2
(

p−λν
p

)
(γ̃1λβ)

λν
p

]
, (35)

and

ε3 :=

{
1, if λα + λβ + λν ≥ p,

M1−
(

λα+λβ+λν

p

)
, if λα + λβ + λν ≤ p.

(36)

Then it holds∫ x

x0

q(w)
[M−1∑

j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dγ2

x0
fj+1)(w)|λβ |(Dν

x0
fj)(w)|λν

+ |(Dγ2
x0

fj)(w)|λβ |(Dγ1
x0

fj+1)(w)|λα |(Dν
x0

fj+1)(w)|λν
]

+
[
|(Dγ1

x0
f1)(w)|λα |(Dγ2

x0
fM )(w)|λβ |(Dν

x0
f1)(w)|λν

+ |(Dγ2
x0

f1)(w)|λβ |(Dγ1
x0

fM )(w)|λα |(Dν
x0

fM )(w)|λν
]]

dw (37)

≤ 2
(

λα+λβ+λν

p

)
ε3ϕ3(x) ·

{∫ x

x0

p(w)
[ M∑

j=1

|(Dν
x0

fj)(w)|p
]

dw

}(λα+λβ+λν

p

)
,

all x0 ≤ x ≤ b.

Proof. From Theorem 4 of [6] and adding altogether we have

M−1∑
j=1

∫ x

x0

q(w)
[
|(Dγ1

x0
fj)(w)|λα |(Dγ2

x0
fj+1)(w)|λβ |(Dν

x0
fj)(w)|λν

+ |(Dγ2
x0

fj)(w)|λβ |(Dγ1
x0

fj+1)(w)|λα |(Dν
x0

fj+1)(w)|λν
]
dw (38)

≤ ϕ3(x)
M−1∑
j=1

(∫ x

x0

p(w)
(
|(Dν

x0
fj)(w)|p + |(Dν

x0
fj+1)(w)|p

)
dw

)(λα+λβ+λν

p

)
,
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all x0 ≤ x ≤ b.
Also it holds∫ x

x0

q(w)
[
|(Dγ1

x0
f1)(w)|λα |(Dγ2

x0
fM )(w)|λβ |(Dν

x0
f1)(w)|λν

+ |(Dγ2
x0

f1)(w)|λβ |(Dγ1
x0

fM )(w)|λα |(Dν
x0

fM )(w)|λν
]
dw (39)

≤ ϕ3(x)
(∫ x

x0

p(w)(|(Dν
x0

f1)(w)|p + |(Dν
x0

fM )(w)|p) dw

)(λα+λβ+λν

p

)
,

all x0 ≤ x ≤ b.
Adding (38) and (39), along with (11) and (12) we produce (37). �

We continue with

Theorem 5. Let ν ≥ 3 and γ1 ≥ 1 such that ν − γ1 ≥ 2. Let fj ∈ Cν
x0

([a, b])
with f

(i)
j (x0) = 0, i = 0, 1, . . . , n − 1, n := [ν], j = 1, . . . ,M ∈ N. Here

x, x0 ∈ [a, b]:x ≥ x0. Consider also p(t) > 0, and q(t) ≥ 0 continuous functions
on [x0, b]. Let λα ≥ 0, 0 < λα+1 < 1, and p > 1. Denote

θ3 :=

{
2
(

λα
λα+1

)
− 1, if λα ≥ λα+1,

1, if λα ≤ λα+1

}
(40)

L(x) :=
(

2
∫ x

x0

(q(w))
(

1
1−λα+1

)
dw

)(1−λα+1)( θ3λα+1

λα + λα+1

)λα+1

, (41)

and

P1(x) :=
∫ x

x0

(x− t)
(ν−γ1−1)p

p−1 (p(t))−
1

p−1 dt, (42)

T (x) := L(x) ·

P1(x)
(

p−1
p

)
Γ(ν − γ1)

(λα+λα+1)

, (43)

and

ω1 :=

{
21−
(

λα+λα+1
p

)
, if λα + λα+1 ≤ p,

1, if λα + λα+1 ≥ p

}
, (44)

Φ(x) := T (x)ω1. (45)

Also put

ε4 :=

{
1, if λα + λα+1 ≥ p,

M1−
(

λα+λα+1
p

)
, if λα + λα+1 ≤ p

}
. (46)

Then it holds∫ x

x0

q(w)

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dγ1+1

x0
fj+1)(w)|λα+1
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+ |(Dγ1
x0

fj+1)(w)|λα |(Dγ1+1
x0

fj)(w)|λα+1
]}

+
[
|(Dγ1

x0
f1)(w)|λα |(Dγ1+1

x0
fM )(w)|λα+1

+ |(Dγ1
x0

fM )(w)|λα |(Dγ1+1
x0

f1)(w)|λα+1
]}

dw

≤ 2
(

λα+λα+1
p

)
ε4Φ(x)

[∫ x

x0

p(w)
( M∑

j=1

|(Dν
x0

fj)(w)|p
)

dw

](λα+λα+1
p

)
, (47)

all x0 ≤ x ≤ b.

Proof. From Theorem 5 ([6]) we get∫ x

x0

q(w)
M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dγ1+1

x0
fj+1)(w)|λα+1

+ |(Dγ1
x0

fj+1)(w)|λα |(Dγ1+1
x0

fj)(w)|λα+1
]
dw

≤ Φ(x)
M−1∑
j=1

[∫ x

x0

p(w)
(
|(Dν

x0
fj)(w)|p + |(Dν

x0
fj+1)(w)|p

)
dw

](λα+λα+1
p

)
(48)

all x0 ≤ x ≤ b.
Also it holds∫ x

x0

q(w)
[
|(Dγ1

x0
f1)(w)|λα |(Dγ1+1

x0
fM )(w)|λα+1

+ |(Dγ1
x0

fM )(w)|λα |(Dγ1+1
x0

f1)(w)|λα+1
]
dw

≤ Φ(x)
[∫ x

x0

p(w)(|(Dν
x0

f1)(w)|p + |(Dν
x0

fM )(w)|p
]
dw

](λα+λα+1
p

)
, (49)

all x0 ≤ x ≤ b. Adding (48) and (49), along with (11) and (12) we derive (47).
�

Next it comes

Theorem 6. All here as in Theorem 2. Consider the special case λβ = λα +λν .
Denote

T̃ (x) := A0(x)
(

λν

λα + λν

)λν
p

2
(

p−2λα−3λν
p

)
, (50)

ε5 :=

{
1, if 2(λα + λν) ≥ p,

M1−
(

2(λα+λν )
p

)
, if 2(λα + λν) ≤ p

}
. (51)

Then it holds∫ x

x0

q(w)

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dγ2

x0
fj+1)(w)|λα+λν |(Dν

x0
fj)(w)|λν
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+ |(Dγ2
x0

fj)(w)|λα+λν |(Dγ1
x0

fj+1)(w)|λα |(Dν
x0

fj+1)(w)|λν
]}

+
[
|(Dγ1

x0
f1)(w)|λα |(Dγ2

x0
fM )(w)|λα+λν |(Dν

x0
f1)(w)|λν

+ |(Dγ2
x0

f1)(w)|λα+λν |(Dγ1
x0

fM )(w)|λα |(Dν
x0

fM )(w)|λν
]}

dw

≤ 22
(

λα+λν
p

)
ε5T̃ (x)

[∫ x

x0

p(w)
( M∑

j=1

|(Dν
x0

fj)(w)|p
)

dw

](2(λα+λν
p

))
, (52)

all x0 ≤ x ≤ b.

Proof. Based on Theorem 6 ([6]). The rest as in the proof of Theorem 5. �

Next we give special cases of the above theorems.

Corollary 1 (to Theorem 2; λβ = 0, p(t) = q(t) = 1). It holds∫ x

x0

( M∑
j=1

|(Dγ1
x0

fj)(w)|λα |(Dν
x0

fj)(w)|λν

)
dw

≤ δ∗1ϕ1(x)

[∫ x

x0

[ M∑
j=1

|(Dν
x0

fj)(w)|p
]

dw

](λα+λν
p

)
(53)

all x0 ≤ x ≤ b.
In (53)

(
A0(x)

∣∣
λβ=0

)
of ϕ1(x) is given in [6], Corollary 1, by equation (55).

Corollary 2 (to Theorem 2; λβ = 0, p(t) = q(t) = 1, λα = λν = 1, p = 2). In
detail:

Let ν, γ1 ≥ 1 such that ν − γ1 ≥ 1, fj ∈ Cν
x0

([a, b]) with f
(i)
j (x0) = 0,

i = 1, . . . , n − 1, n := [ν], j = 1, . . . ,M ∈ N. Here x, x0 ∈ [a, b]:x ≥ x0. Then
it holds∫ x

x0

( M∑
j=1

|(Dγ1
x0

fj)(w)| |(Dν
x0

fj)(w)|
)

dw (54)

≤
(

(x− x0)ν−γ1

2Γ(ν − γ1)
√

ν − γ1

√
2ν − 2γ1 − 1

)
·


∫ x

x0

[ M∑
j=1

((Dν
x0

fj)(w))2
]

dw

 ,

all x0 ≤ x ≤ b.

Proof. Based on our Corollary 1 and Corollary 1 of [6], especially equation
(55) there. �

Corollary 3 (to Theorem 3, λα = 0, p(t) = q(t) = 1). It holds∫ x

x0

{{M−1∑
j=1

[
|(Dγ2

x0
fj+1)(w)|λβ |(Dν

x0
fj)(w)|λν

12
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+ |(Dγ2
x0

fj)(w)|λβ |(Dν
x0

fj+1)(w)|λν
]}

+
[
|(Dγ2

x0
fM )(w)|λβ |(Dν

x0
f1)(w)|λν

+ |(Dγ2
x0

f1)(w)|λβ |(Dν
x0

fM )(w)|λν
]}

dw

≤ 2
(

λν+λβ
p

)
ε2ϕ2(x) ·


∫ x

x0

[ M∑
j=1

|(Dν
x0

fj)(w)|p
]

dw


(

λν+λβ
p

)
, (55)

all x0 ≤ x ≤ b.
In (55),

(
A0(x)

∣∣
λα=0

)
of ϕ2(x) is given in [6], Corollary 3, by equation (59).

Corollary 4 (to Theorem 3, λα = 0, p(t) = q(t) = 1, λβ = λν = 1, p = 2). In
detail:

Let ν, γ2 ≥ 1 such that ν − γ2 ≥ 1 and fj ∈ Cν
x0

([a, b]) with f
(i)
j (x0) = 0,

i = 0, 1, . . . , n− 1, n := [ν], j = 1, . . . ,M ∈ N. Here x, x0 ∈ [a, b]:x ≥ x0. Then
it holds∫ x

x0

{{M−1∑
j=1

[
|(Dγ2

x0
fj+1)(w)| |(Dν

x0
fj)(w)|

+ |(Dγ2
x0

fj)(w)| |(Dν
x0

fj+1)(w)
]}

+
[
|(Dγ2

x0
fM )(w)| |(Dν

x0
f1)(w)|

+ |(Dγ2
x0

f1)(w)| |(Dν
x0

fM )(w)|
]}

dw

≤

( √
2(x− x0)(ν−γ2)

Γ(ν − γ2)
√

ν − γ2

√
2ν − 2γ2 − 1

)

∫ x

x0

 M∑
j=1

((Dν
x0

fj)(w))2

 dw

 , (56)

all x0 ≤ x ≤ b.

Proof. From our Corollary 3 and Corollary 3 of [6], especially equation (59)
there. �

Corollary 5 (to Theorem 4, λα = λβ = λν = 1, p = 3, p(t) = q(t) = 1). It
holds ∫ x

x0

[M−1∑
j=1

[
|(Dγ1

x0
fj)(w)| |(Dγ2

x0
fj+1)(w)||(Dν

x0
fj)(w)|

+ |(Dγ2
x0

fj)(w)| |(Dγ1
x0

fj+1)(w)| |(Dν
x0

fj+1)(w)|
]

+
[
|(Dγ1

x0
f1)(w)| |(Dγ2

x0
fM )(w)| |(Dν

x0
f1)(w)|

13
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+ |(Dγ2
x0

f1)(w)| |(Dγ1
x0

fM )(w)| |(Dν
x0

fM )(w)|
]]

dw

≤ 2ϕ∗3(x) ·

∫ x

x0

[ M∑
j=1

|(Dν
x0

fj)(w)|3 dw

] , (57)

all x0 ≤ x ≤ b.
Here

ϕ∗3(x) :=
(

3
√

2 +
1
3
√

6

)
A0(x), (58)

where in this special case

A0(x) :=
4(x− x0)(2ν−γ1−γ2)

Γ(ν − γ1)Γ(ν − γ2)[3(3ν − 3γ1 − 1)(3ν − 3γ2 − 1)(2ν − γ1 − γ2)]2/3
.

(59)

Proof. From Theorem 4 and equation (62) of [6], which is here equation (59).
�

Corollary 6 (to Theorem 5, λα = 1, λα+1 = 1
2 , p = 3

2 , p(t) = q(t) = 1). In
detail:

Let ν ≥ 3 and γ1 ≥ 1 such that ν − γ1 ≥ 2. Let fj ∈ Cν
x0

([a, b]) with
f

(i)
j (x0) = 0, i = 0, 1, . . . , n − 1, n := [ν], j = 1, . . . ,M ∈ N. Here x, x0 ∈

[a, b]:x ≥ x0. Set

Φ∗(x) :=
(√

2
3ν − 3γ1 − 2

)
(x− x0)

(
3ν−3γ1−1

2

)
(Γ(ν − γ1))3/2

, (60)

all x0 ≤ x ≤ b.
Then it holds∫ x

x0

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|

√
|(Dγ1+1

x0 fj+1)(w)|

+ |(Dγ1
x0

fj+1)(w)|
√
|(Dγ1+1

x0 fj)(w)|
]}

+
[
|(Dγ1

x0
f1)(w)|

√
|(Dγ1+1

x0 fM )(w)|

+ |(Dγ1
x0

fM )(w)|
√
|(Dγ1+1

x0 f1)(w)|
]}

dw

≤ 2Φ∗(x) ·

∫ x

x0

 M∑
j=1

|(Dν
x0

fj)(w)|3/2

 dw

 , (61)

all x0 ≤ x ≤ b.

Proof. Based on Theorem 5 here, and equation (64) of [6] to establish coefficient
Φ∗(x) in (61). �
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Corollary 7 (to Theorem 6, p = 2(λα + λν) > 1, p(t) = q(t) = 1). It holds∫ x

x0

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dγ2

x0
fj+1)(w)|λα+λν |(Dν

x0
fj)(w)|λν

+ |(Dγ2
x0

fj)(w)|λα+λν |(Dγ1
x0

fj+1)(w)|λα |(Dν
x0

fj+1)(w)|λν
]}

+
[
|(Dγ1

x0
f1)(w)|λα |(Dγ2

x0
fM )(w)|λα+λν |(Dν

x0
f1)(w)|λν

+ |(Dγ2
x0

f1)(w)|λα+λν |(Dγ1
x0

fM )(w)|λα |(Dν
x0

fM )(w)|λν
]}

dw

≤ 2T̃ (x)

∫ x

x0

 M∑
j=1

|(Dν
x0

fj)(w)|2(λα+λν)

 dw

 , (62)

all x0 ≤ x ≤ b.
Here T̃ (x) in (62) is given precisely by equations (66)–(70) of [6].

Corollary 8 (to Theorem 6, p = 4, λα = λν = 1, p(t) = q(t) = 1). It holds∫ x

x0

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|((Dγ2

x0
fj+1)(w))2|(Dν

x0
fj)(w)|

+ ((Dγ2
x0

fj)(w))2|(Dγ1
x0

fj+1)(w)| |(Dν
x0

fj+1)(w)|
]}

+
[
|(Dγ1

x0
f1)(w)|((Dγ2

x0
fM )(w))2|(Dν

x0
f1)(w)|

+ ((Dγ2
x0

f1)(w))2|(Dγ1
x0

fM )(w)| |(Dν
x0

fM )(w)|
]}

dw

≤ 2T̃ (x)

∫ x

x0

 M∑
j=1

((Dν
x0

fj)(w))4

 dw

 , (63)

all x0 ≤ x ≤ b.
Here in (63) we have that T̃ (x) = T ∗(x) of Corollary 8 in [6], for it see there

equations (72)–(76).
Next we present the supremum case

Theorem 7. Let ν, γ1, γ2 ≥ 1 such that ν − γ1 ≥ 1, ν − γ2 ≥ 1 and fj ∈
Cν

x0
([a, b]) with f

(i)
j (x0) = 0, i = 0, 1, . . . , n − 1, n := [ν], j = 1, . . . ,M ∈ N.

Here x, x0 ∈ [a, b]:x ≥ x0. Consider p(x) ≥ 0 continuous function on [x0, b].
Let λα, λβ , λν ≥ 0. Set

ρ(x) :=
(x− x0)(νλα−γ1λα+νλβ−γ2λβ+1)‖p(x)‖∞

(νλα − γ1λα + νλβ − γ2λβ + 1)(Γ(ν − γ1 + 1))λα(Γ(ν − γ2 + 1))λβ
.

(64)
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Then it holds∫ x

x0

p(w)

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dγ2

x0
fj+1)(w)|λβ |(Dν

x0
fj)(w)|λν

+ |(Dγ2
x0

fj)(w)|λβ |(Dγ1
x0

fj+1(w)|λα |(Dν
x0

fj+1)(w)|λν
]}

+
[
|(Dγ1

x0
f1)(w)|λα |(Dγ2

x0
fM )(w)|λβ |(Dν

x0
f1)(w)|λν

+ |(Dγ2
x0

f1)(w)|λβ |(Dγ1
x0

fM )(w)|λα |(Dν
x0

fM )(w)|λν
]}

dw

≤ ρ(x)
{ M∑

j=1

{‖(Dν
x0

fj)‖2(λα+λν)
∞ + ‖(Dν

x0
fj)‖

2λβ
∞ }

}
, (65)

all x0 ≤ x ≤ b.

Proof. Based on Theorem 7 of [6]. �

Similarly we give

Theorem 8 (as in Theorem 7, λβ = 0). It holds∫ x

x0

p(w)
( M∑

j=1

|(Dγ1
x0

fj)(w)|λα |(Dν
x0

fj)(w)|λν

)
dw

≤
(

(x− x0)(νλα−γ1λα+1)‖p(x)‖∞
(νλα − γ1λα + 1)(Γ(ν − γ1 + 1))λα

)
·

 M∑
j=1

‖Dν
x0

fj‖λα+λν
∞

 , (66)

all x0 ≤ x ≤ b.

Proof. Based on Theorem 8 of [6]. �

It follows

Theorem 9 (as in Theorem 7, λβ = λα + λν). It holds∫ x

x0

p(w)

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dγ2

x0
fj+1)(w)|λα+λν |(Dν

x0
fj)(w)|λν

+ |(Dγ2
x0

fj)(w)|λα+λν |(Dγ1
x0

fj+1)(w)|λα |(Dν
x0

fj+1)(w)|λν
]}

+
[
|(Dγ1

x0
f1)(w)|λα |(Dγ2

x0
fM )(w)|λα+λν |(Dν

x0
f1)(2)|λν

+ |(Dγ2
x0

f1)(w)|λα+λν |(Dγ1
x0

fM )(w)|λα |(Dν
x0

fM )(w)|λν
]}

dw

≤
(

2(x− x0)(2νλα−γ1λα+νλν−γ2λα−γ2λν+1)‖p(x)‖∞
(2νλα − γ1λα + νλν − γ2λα − γ2λν + 1)(Γ(ν − γ1 + 1))λα(Γ(ν − γ2 + 1))(λα+λν)

)

·

 M∑
j=1

‖Dν
x0

fj‖2(λα+λν)
∞

 , (67)
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all x0 ≤ x ≤ b.

Proof. By Theorem 9 of [6]. �

We continue with

Theorem 10 (as in Theorem 7, λν = 0, λα = λβ). It holds∫ x

x0

p(w)

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dγ2

x0
fj+1)(w)|λα

+ |(Dγ2
x0

fj)(w)|λα |(Dγ1
x0

fj+1)(w)|λα
]}

+
[
|(Dγ1

x0
f1)(w)|λα |(Dγ2

x0
fM )(w)|λα

+ |(Dγ2
x0

f1)(w)|λα |(Dγ1
x0

fM )(w)|λα
]}

dw

≤ 2ρ∗(x)

 M∑
j=1

‖Dν
x0

fj‖2λα
∞

 , (68)

all x0 ≤ x ≤ b.
Here we have

ρ∗(x) :=
(

(x− x0)(2νλα−γ1λα−γ2λα+1)‖p(x)‖∞
(2νλα − γ1λα − γ2λα + 1)(Γ(ν − γ1 + 1))λα(Γ(ν − γ2 + 1))λα

)
.

(69)

Proof. Based on Theorem 10 of [6]. �

Next we give

Theorem 11 (as in Theorem 7, λα = 0, λβ = λν). It holds∫ x

x0

p(w)

{{M−1∑
j=1

[
|(Dγ2

x0
fj+1)(w)|λβ |(Dν

x0
fj)(w)|λβ

+ |(Dγ2
x0

fj)(w)|λβ |(Dν
x0

fj+1)(w)|λβ
]}

+
[
|(Dγ2

x0
fM )(w)|λβ |(Dν

x0
f1)(w)|λβ

+ |(Dγ2
x0

f1)(w)|λβ |(Dν
x0

fM )(w)|λβ
]}

dw

≤ 2 ·
(

(x− x0)(νλβ−γ2λβ+1)‖p(x)‖∞
(νλβ − γ2λβ + 1)(Γ(ν − γ2 + 1))λβ

) M∑
j=1

‖Dν
x0

fj‖
2λβ
∞

 , (70)

all x0 ≤ x ≤ b.

Proof. Based on Theorem 11 of [6]. �
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Some special cases follow.

Corollary 9 (to Theorem 10, all as in Theorem 7, λν = 0, λα = λβ , γ2 = γ1+1).
It holds ∫ x

x0

p(w)

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)|λα |(Dγ1+1

x0
fj+1)(w)|λα

+ |(Dγ1+1
x0

fj)(w)|λα |(Dγ1
x0

fj+1)(w)|λα
]}

+
[
|(Dγ1

x0
f1)(w)|λα |(Dγ1+1

x0
fM )(w)|λα

+ |(Dγ1+1
x0

f1)(w)|λα |(Dγ1
x0

fM )(w)|λα
]}

dw

≤ 2 ·
(

(x− x0)(2νλα−2γ1λα−λα+1)‖p(x)‖∞
(2νλα − 2γ1λα − λα + 1)(ν − γ1)λα(Γ(ν − γ1))2λα

)

·

 M∑
j=1

‖Dν
x0

fj‖2λα
∞

 , (71)

all x0 ≤ x ≤ b.

Proof. Based on Corollary 9 of [6]. �

Corollary 10 (to Corollary 9). In detail:
Let ν, γ1 ≥ 1 such that ν − γ1 ≥ 2 and fj ∈ Cν

x0
([a, b]) with f

(i)
j (x0) = 0,

i = 0, 1, . . . , n− 1, n := [ν], j = 1, . . . ,M ∈ N. Here x, x0 ∈ [a, b]:x ≥ x0. Then∫ x

x0

{{M−1∑
j=1

[
|(Dγ1

x0
fj)(w)| |(Dγ1+1

x0
fj+1)(w)|

+ |(Dγ1+1
x0

fj)(w)| |(Dγ1
x0

fj+1)(w)|
]}

+
[
|(Dγ1

x0
f1)(w)| |(Dγ1+1

x0
fM )(w)|

+ |(Dγ1+1
x0

f1)(w)| |(Dγ1
x0

fM )(w)|
]}

dw

≤
(

(x− x0)2(ν−γ1)

(ν − γ1)2(Γ(ν − γ1))2

) M∑
j=1

‖Dν
x0

fj‖2
∞

 , (72)

all x0 ≤ x ≤ b.

Proof. Based on Corollary 10 of [6]. �

Corollary 11 (to Corollary 10). It holds∫ x

x0

 M∑
j=1

|(Dγ1
x0

fj)(w)| |(Dγ1+1
x0

fj)(w)|

 dw

18
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≤
(

(x− x0)2(ν−γ1)

2(ν − γ1)2(Γ(ν − γ1))2

) M∑
j=1

‖Dν
x0

fj‖2
∞

 , (73)

all x0 ≤ x ≤ b.

Proof. Based on equation (97) of [6]. �

3 Applications

We present our first application.

Theorem 12. Let ν, γi ≥ 1, ν − γi ≥ 1, i = 1, . . . , r ∈ N, n := [ν], fj ∈
Cν

a ([a, b]), j = 1, 2, 3, . . . ,M , f
(i)
j (a) = aij ∈ R, i = 0, 1, . . . , n− 1. Furthermore

we have for j = 1, 2, . . . ,M that

(Dν
afj)(t) = Fj

(
t,
{
(Dγi

a f1)(t)
}r

i=1
,
{
(Dγi

a f2)(t)
}r

i=1
, . . . ,

{
(Dγi

a fM )(t)
}r

i=1

)
,

(74)
all t ∈ [a, b].

Here Fj are continuous functions on [a, b]× (Rr)M and satisfy the Lipschitz
condition∣∣Fj(t, x11, x12, . . . , x1r, x21, . . . , x2r, x31, . . . , x3r, . . . , xM1, . . . , xMr)

− Fj(t, x′11, x
′
12, . . . , x

′
1r, x

′
21, . . . , x

′
2r, x

′
31, . . . , x

′
3r, x

′
M1, . . . , x

′
Mr)

∣∣
≤

r∑
i=1

(
M∑

`=1

q`,i,j(t)|x`i − x′`i|

)
, (75)

j = 1, 2, . . . ,M , where all q`,i,j ≥ 0, 1 ≤ i ≤ r, are continuous functions over
[a, b].

Call
W := max

{
‖q`,i,j‖∞, `, j = 1, 2, . . . ,M, i = 1, . . . , r

}
. (76)

Assume here that

φ∗(b) := W

(
1
2

+
M − 1√

2

)( r∑
i=1

(
(b− a)ν−γi

Γ(ν − γi)
√

ν − γi

√
2ν − 2γi − 1

))
< 1.

(77)
Then if system (74) has two M -tuples of solutions (f1, f2, . . . , fM ) and
(f∗1 , f∗2 , . . . , f∗M ) we prove that

fj = f∗j , j = 1, 2, . . . ,M,

that is we have uniqueness of solution.

Proof. Assume that there are two M -tuples of solutions (f1, f2, . . . , fM ) and
(f∗1 , . . . , f∗M ) satisfying the system (74). Set gj := fj − f∗j , j = 1, 2, . . . ,M .
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Then g
(i)
j = f

(i)
j − f

∗(i)
j and g

(i)
j (a) = 0, i = 0, 1, . . . , n − 1; j = 1, 2, . . . ,M . It

holds

(Dν
agj)(t) = Fj

(
t,
{
(Dγi

a f1)(t)
}r

i=1
, . . . ,

{
(Dγi

a fM )(t)
}r

i=1

)
− Fj

(
t,
{
(Dγi

a f∗1 )(t)
}r

i=1
, . . . ,

{
(Dγi

a f∗M )(t)
}r

i=1

)
.

Therefore by (75) we get

|(Dν
agj)(t)| ≤

r∑
i=1

[
q1,i,j(t)|(Dγi

a g1)(t)|+ q2,i,j(t)|(Dγi
a g2)(t)|

+ · · ·+ qM,i,j(t)|(Dγi
a gM )(t)|

]
.

And thus

|(Dν
agj)(t)| ≤

r∑
i=1

[
‖q1,i,j‖∞|(Dγi

a g1)(t)|+ ‖q2,i,j‖∞|(Dγi
a g2)(t)|

+ · · ·+ ‖qM,i,j‖∞|(Dγi
a gM )(t)|

]
,

furthermore we have

|(Dν
agj)(t)| ≤ W

{ r∑
i=1

[
|(Dγi

a g1)(t)|+ |(Dγi
a g2)(t)|

+ · · ·+ |(Dγi
a gM )(t)|

]}
. (78)

Clearly (78) implies

M∑
j=1

(
(Dν

agj)(t)
)2 ≤ W

{ r∑
i=1

M∑
j=1

[
|(Dγi

a g1)(t)| |(Dν
agj)(t)|

+ |(Dγi
a g2)(t)| |(Dν

agj)(t)|

+ · · ·+ |(Dγi
a gM )(t)| |(Dν

agj)(t)|
]}

, (79)

j = 1, 2, . . . ,M .
Integrating (79) we observe

I :=
∫ b

a

 M∑
j=1

(
(Dν

agj)(t)
)2 dt

≤ W

{
r∑

i=1

M∑
j=1

[∫ b

a

|(Dγi
a g1)(t)| |(Dν

agj)(t)| dt

+
∫ b

a

|(Dγi
a g2)(t)| |(Dν

agj)(t)| dt

+ · · ·+
∫ b

a

|(Dγi
a gM )(t)| |(Dν

agj)(t)| dt

]}
. (80)
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That is

I ≤ W

{
r∑

i=1

[(∫ b

a

( M∑
λ=1

|(Dγi
a gλ)(t)| |(Dν

agλ)(t)|
)

dt

)

+
∑

τ,m∈{1,...,M}
τ 6=m

(∫ b

a

(|(Dγi
a gm)(t)| |(Dν

agτ )(t)|

+ |(Dγi
a gτ )(t)| |(Dν

agm)(t)|
)

dt

)]}
. (81)

Using Corollary 2 from here and Corollary 4 of [6] we obtain

I ≤ W

{
r∑

i=1

[(
(b− a)ν−γi

2Γ(ν − γi)
√

ν − γi

√
2ν − 2γi − 1

)
I

+
(

(b− a)ν−γi

√
2Γ(ν − γi)

√
ν − γi

√
2ν − 2γi − 1

)
(M − 1)I

]}
. (82)

I.e. we got that
I ≤ φ∗(b) · I. (83)

If I 6= 0 then φ∗(b) ≥ 1, a contradiction by the assumption that φ∗(b) < 1,
see (77). Therefore I = 0, implying that

M∑
λ=1

(
(Dν

agλ)(t)
)2 = 0, a.e. in [a, b].

I.e.
(Dν

agλ)2(t) = 0, a.e. in [a, b].

That is
(Dν

agλ)(t) = 0, λ = 1, 2, . . . ,M, a.e. in [a, b].

But for λ = 1, 2, . . . ,M we got that

g
(i)
λ (a) = 0, 0 ≤ i ≤ n− 1.

Hence from fractional Taylor’s Theorem 1 we get that gλ(t) = 0 on [a, b]. That
is

fλ = f∗λ , λ = 1, 2, . . . ,M,

proving the uniqueness argument of this theorem. �

It follows another related application.

Theorem 13. Let ν, γi ≥ 1, ν − γi ≥ 1, i = 1, . . . , r ∈ N, n := [ν], fj ∈
Cν

a ([a, b]), j = 1, 2, . . . ,M ; f
(i)
j (a) = 0, i = 0, 1, . . . , n − 1, and (Dν

afj)(a) =
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Aj ∈ R. Furthermore for a ≤ t ≤ b we have holding the system of fractional
differential equations

(Dν
afj)′(x) = Fj

(
t, ({(Dγi

a fλ)(t)}r
i=1, (D

ν
afλ)(t));

λ = 1, 2, . . . ,M
)
, j = 1, 2, . . . ,M. (84)

Here Fj are continuous functions on [a, b]× (Rr+1)M such that

|Fj(t, x11, x12, . . . , x1r, x1,r+1;x21, x22, . . . , x2r, x2,r+1;x31, x32, . . . , x3,r+1;

xM1, xM2, . . . , xM,r+1)| ≤
r∑

i=1

(
M∑

`=1

q`,i,j(t)|x`i|

)
, (85)

where
q`,i,j(t) ≥ 0, 1 ≤ i ≤ r; `, j = 1, 2, . . . ,M,

are continuous functions on [a, b].
Call

W := max
{
‖q`,i,j‖∞; `, j = 1, 2, . . . ,M, i = 1, . . . , r

}
. (86)

Also we set (a ≤ x ≤ b)

θ(x) :=
M∑

λ=1

(
(Dν

afλ)(x)
)2

, (87)

ρ :=
M∑

λ=1

A2
λ, (88)

Q(x) := W
(
1 +

√
2(M − 1)

)( r∑
i=1

(
(x− a)ν−γi

Γ(ν − γi)
√

ν − γi

√
2ν − 2γi − 1

))
(89)

and

χ(x) :=
√

ρ ·
{

1 + Q(x) · e
(∫ b

a
Q(s)ds

)
·
[∫ x

a

(
e−
(∫ t

a
Q(s)ds

))
dt

]}1/2

. (90)

Then it holds √
θ(x) ≤ χ(x), a ≤ x ≤ b. (91)

Consequently we get

|(Dν
afj)(x)| ≤ χ(x), (92)

|fj(x)| ≤ 1
Γ(ν)

∫ x

a

(x− t)ν−1χ(t) dt, (93)

all a ≤ x ≤ b, j = 1, 2, . . . ,M . Also it holds

|(Dγi
a fj)(x)| ≤ 1

Γ(ν − γi)

∫ x

a

(x− t)ν−γi−1χ(t) dt, (94)
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all a ≤ x ≤ b, j = 1, 2, . . . ,M , i = 1, . . . , r.

Proof. We easily get that (a ≤ x ≤ b)∫ x

a

(Dν
afj)(t)(Dν

afj)′(t)dt =
∫ x

a

(Dν
afj)(t) · Fj

(
t, ({(Dγi

a fλ)(t)}r
i=1,

(Dν
afλ)(t)); λ = 1, 2, . . . ,M

)
dt. (95)

Hence we obtain
((Dν

afj)(t))2

2

∣∣∣∣x
a

≤
∫ x

a

|(Dν
afj)(t)| |Fj · · · |dt

≤
∫ x

a

|(Dν
afj)(t)|

[ r∑
i=1

( M∑
`=1

q`,i,j(t)|(Dγi
a f`)(t)|

]
dt

≤
r∑

i=1

( M∑
`=1

‖q`,i,j‖∞
∫ x

a

|(Dν
afj)(t)| |(Dγi

a f`)(t)| dt

)

≤ W

( r∑
i=1

M∑
`=1

(∫ x

a

|(Dν
afj)(t)| |(Dγi

a f`)(t)| dt

))
.

Thus we have for j = 1, . . . ,M that(
(Dν

afj)(x)
)2 ≤ A2

j + 2W

{ r∑
i=1

M∑
`=1

·
(∫ x

a

|(Dν
afj)(t)| |(Dγi

a f`)(t)| dt

)}
. (96)

Consequently it holds

θ(x) ≤ ρ + 2W

{
r∑

i=1

( M∑
j=1

M∑
`=1

(∫ x

a

|(Dν
afj)(t)| |(Dγi

a f`)(t)| dt

))}

= ρ + 2W

{
r∑

i=1

{∫ x

a

( M∑
λ=1

|(Dγi
a fλ)(t)| |(Dν

afλ)(t)|
)

dt

+
∑

τ,m∈{1,...,M}
τ 6=m

(∫ x

a

(|(Dγi
a fm)(t)| |(Dν

afτ )(t)|

+ |(Dγi
a fτ )(t)| |(Dν

afm)(t)|) dt

)}}
. (97)

Using Corollary 2 from here and Corollary 4 of [6] we obtain

θ(x) ≤ ρ + 2W

{
r∑

i=1

{(
(x− a)ν−γi

2Γ(ν − γi)
√

ν − γi

√
2ν − 2γi − 1

)(∫ x

a

θ(t) dt

)

+
(

(x− a)ν−γi

√
2Γ(ν − γi)

√
ν − γi

√
2ν − 2γi − 1

)
(M − 1)

(∫ x

a

θ(t) dt

)}}
. (98)
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Hence we have

θ(x) ≤ ρ + Q(x)
∫ x

a

θ(t) dt, all a ≤ x ≤ b. (99)

Here ρ ≥ 0, Q(x) ≥ 0, Q(a) = 0, θ(x) ≥ 0, all a ≤ x ≤ b. As in the proof of
Theorem 13 of [6], see also [5], we get (91) and (92). Using (9) we get (93), and
using (10) we establish (94). �

Finally we give a specialized application.

Theorem 14. Let a 6= b, ν ≥ 3, γi ≥ 1, ν − γi ≥ 1, i = 1, . . . , r ∈ N, n := [ν],
fj ∈ Cν

a ([a, b]), j = 1, 2, . . . ,M ; f
(i)
j (a) = 0, i = 0, 1, . . . , n− 1, and

(Dν
afj)(a) = Aj ∈ R. (100)

Furthermore for a ≤ t ≤ b we have holding the system of fractional differential
equations

(Dν
afj)′(t) = Fj

(
t, ({(Dγi

a f`)(t)}r
i=1, (D

ν
af`)(t));

` = 1, . . . ,M
)
, for j = 1, 2, . . . ,M. (101)

For fixed i∗ ∈ {1, . . . , r} we assume that γi∗+1 = γi∗ +1, and ν− γi∗ ≥ 2, where
γi∗ , γi∗+1 ∈ {γ1, . . . , γr}. Call k := γi∗ , γ := γi∗ + 1, i.e. γ = k + 1.

Here Fj are continuous functions on [a, b]× (Rr+1)M such that

|Fj(t, x11, x12, . . . , x1r, x1,r+1;x21, x22, . . . , x2r, x2,r+1;
x31, x32, . . . , x3r, x3,r+1; . . . ;xM1, xM2, . . . , xMr, xM,r+1)|

≤

{{M−1∑
`=1

(
q`,1,j(t)|x`i∗ |

√
|x`+1,i∗+1|+ q`,2,j(t)|x`+1,i∗ |

√
|x`,i∗+1|

)}

+
(

qM,1,j(t)|x1i∗ |
√
|xM,i∗+1|+ qM,2,j(t)|xMi∗ |

√
|x1,i∗+1|

)}
, (102)

where all 0 ≤ q`,1,j, q`,2,j 6≡ 0 are continuous functions over [a, b].
Put

W := max
{
‖q`,1,j‖∞, ‖q`,2,j‖∞

}M

`,j=1
. (103)

Also set

θ(x) :=
M∑

j=1

|(Dν
afj)(x)|, a ≤ x ≤ b, (104)

ρ :=
M∑

j=1

|Aj |, (105)

Φ∗(x) :=

(√
2

3ν − 3k − 2

)
(x− a)

(
3ν−3k−1

2

)
(Γ(ν − k))3/2

, (106)
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all a ≤ x ≤ b, and

Q(x) := 2MWΦ∗(x), a ≤ x ≤ b, (107)

σ := ‖Q(x)‖∞, a ≤ x ≤ b. (108)

We assume that
(b− a)σ

√
ρ < 2. (109)

Call

ϕ̃(x) := ρ + Q(x) ·
[
4ρ3/2(x− a)− σρ2(x− a)2

(2− σ
√

ρ(x− a))2

]
, all a ≤ x ≤ b. (110)

Then it holds
θ(x) ≤ ϕ̃(x), all a ≤ x ≤ b, (111)

in particular we have

|(Dν
afj)(x)| ≤ ϕ̃(x), j = 1, . . . ,M, all a ≤ x ≤ b. (112)

Furthermore we get

|fj(x)| ≤ 1
Γ(ν)

∫ x

a

(x− t)ν−1ϕ̃(t) dt, (113)

and
|(Dγi

a fj)(x)| ≤ 1
Γ(ν − γi)

∫ x

a

(x− t)ν−γi−1ϕ̃(t) dt, (114)

j = 1, . . . ,M ; i = 1, . . . , r; all a ≤ x ≤ b.

Proof. Notice that W > 0 and σ > 0. For a ≤ x ≤ b we get∫ x

a

(Dν
afj)′(t)dt =

∫ x

a

Fj

(
t, ({Dγi

a f`)(t)}r
i=1, (D

ν
af`)(t));

` = 1, . . . ,M
)
dt, j = 1, . . . ,M. (115)

That is
(Dν

afj)(x) = Aj +
∫ x

a

Fj(t, . . .) dt. (116)

Then we observe

|(Dν
afj)(x)| ≤ |Aj |+

∫ x

a

|Fj(t, . . .)| dt

≤ |Aj |+
∫ x

a

{{M−1∑
`=1

(
q`,1,j(t)|(D

γi∗
a f`)(t)|

√
|(Dγi∗+1

a f`+1)(t)|

+ q`,2,j(t)|(D
γi∗
a f`+1)(t)|

√
|(Dγi∗+1

a f`)(t)|
)}

+
(
qM,1,j(t)|(D

γi∗
a f1)(t)|

√
|(Dγi∗+1

a fM )(t)|

+ qM,2,j(t)|(D
γi∗
a fM )(t)|

√
|(Dγi∗+1

a f1)(t)|
)}

dt. (117)
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Thus

|(Dν
afj)(x)| ≤ |Aj |+ W

(∫ x

a

{{M−1∑
`=1

(
|(Dk

af`)(t)|
√
|(Dk+1

a f`+1)(t)|

+ |(Dk
af`+1)(t)|

√
|(Dk+1

a f`)(t)|
)}

+
(
|(Dk

af1)(t)|
√
|(Dk+1

a fM )(t)|

+ |(Dk
afM )(t)|

√
|(Dk+1

a f1)(t))|

}
dt. (118)

By Corollary 6 we obtain

|(Dν
afj)(x)| ≤ |Aj |+ 2WΦ∗(x)

(∫ x

a

(
M∑

`=1

|(Dν
af`)(t)|3/2

)
dt

)
, (119)

j = 1, 2, . . . ,M .
Therefore by adding all of inequalities (119) we get

θ(x) ≤ ρ + 2MΦ∗(x)W

(∫ x

a

(
M∑

`=1

|(Dν
af`)(t)|3/2

)
dt

)
(by (11))

≤ ρ + 2MΦ∗(x)W

∫ x

a

(
M∑

`=1

|(Dν
af`)(t)|

)3/2

dt

 . (120)

I.e.

θ(x) ≤ ρ + (2MΦ∗(x)W )
(∫ x

a

(θ(t))3/2 dt

)
, all a ≤ x ≤ b. (121)

More precisely we get that

θ(x) ≤ ρ + Q(x)
(∫ x

a

(θ(t))3/2 dt

)
, a ≤ x ≤ b. (122)

Notice that θ(x) ≥ 0, ρ ≥ 0, Q(x) ≥ 0 and Q(a) = 0 by Φ∗(a) = 0. Acting here
as in the proof of Theorem 14 of [6] we derive (111) and (112). Using (9) we
get (113), and using (10) we establish (114). �
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Abstract

A random variable X is said to have the skew-t distribution if its pdf is f(x) =
2g(x)G(λx), where g(·) and G(·), respectively, denote the pdf and the cdf of the
Student’s t distribution with degrees of freedom ν. The moments of this distrib-
ution appear not to have been studied in detail. The only work that appears to
give some details is Gupta et al. [Random Operators and Stochastic Equations,
10, 2002, 133–140], where expressions for the first four moments are given. But
these expressions appear to be incorrect. In this paper, we derive general ex-
pressions for the nth moment of X by considering the cases ν odd and ν even
separately. These expressions turn out to involve sums of the Gauss hypergeo-
metric function. We also provide closed form expressions for the moments of X
for the particular cases ν = 2, . . . , 10.

1. Introduction

The Student’s t distribution with degrees of freedom ν has the probability density function
(pdf) specified by

g(x) =
1√

νB (ν/2, 1/2)

(

1 +
x2

ν

)

−(1+ν)/2

, (1.1)

where −∞ < x < ∞, ν > 0 is an integer and B(·, ·) denotes the Beta function defined by

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
.

Nadarajah and Kotz (2003) have shown that the cumulative distribution function (cdf)
corresponding to (1.1) can be expressed by:

G(x) =
1

2
+

1

π
arctan

(

x√
ν

)

+
1

2π

(ν−1)/2
∑

l=1

B
(

l,
1

2

)

νl−1/2x
(

ν + x2
)l (1.2)
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if ν is odd and by

G(x) =
1

2
+

1

2π

ν/2
∑

l=1

B
(

l − 1

2
,
1

2

)

νl−1x
(

ν + x2
)l−1/2

(1.3)

if ν is even. A random variable X is said to have skew-t distribution if its pdf is

f(x) = 2g(x)G(λx), (1.4)

where x ∈ ℜ and λ ∈ ℜ. The Student’s t distribution given by (1.1) has major applications
in the construction of tests and confidence intervals and in Bayesian analysis. It has also
attracted interesting applications in the modeling of depth map data, prices of speculative
assets such as stocks, and the phase derivative (random frequency of a narrowband mobile
channel) of air components in an urban environment. The main feature of the skew-t dis-
tribution in (1.4) is that a new parameter λ is introduced to control skewness and kurtosis.
Thus, (1.4) allows for a greater degree of flexibility and we can expect this to be useful in
many more practical situations.

It follows from (1.4) that the pdf of X is

f(x) =















































































1√
νB (ν/2, 1/2)

(

1 +
x2

ν

)

−(1+ν)/2 {

1 +
2

π
arctan

(

λx√
ν

)

+
λ

π

(ν−1)/2
∑

l=1

B
(

l,
1

2

)

νl−1/2x
(

ν + λ2x2
)l

}

, for ν odd,

1√
νB (ν/2, 1/2)

(

1 +
x2

ν

)

−(1+ν)/2 {

1

+
λ

π

ν/2
∑

l=1

B
(

l − 1

2
,
1

2

)

νl−1x
(

ν + λ2x2
)l−1/2

}

, for ν even,

(1.5)

where x ∈ ℜ and λ ∈ ℜ. The particular case of (1.1) and (1.2)–(1.3) for ν = 1 is the
well known Cauchy distribution. Thus, when ν = 1, (1.5) reduces to what is known as the
skew-Cauchy distribution with the pdf

f(x) =
1

π
(

1 + x2
)

{

1 +
2

π
arctan(λx)

}

.

When λ = 0, (1.5) reduces to the standard Student’s t pdf (1.1). Figure 1 illustrates the
shape of the pdf (1.5) for λ = 0, 1, 2, 5, 10 and ν = 1.

The moments of the skew-t distribution appear not to have been studied in detail. The
only work that appears to give some details is Gupta et al. (2002), where expressions for
the first four moments are given. However, these expressions appear to be incorrect. In this
paper, we derive general formulas for the nth moment of the distribution by considering the
cases ν odd and ν even separately. We also provide closed form expressions for the particular
cases ν = 2, . . . , 10.
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Figure 1. The skew-t pdf (1.5) for λ = 0, 1, 2, 5, 10 and ν = 1.

In addition to those mentioned above, the calculations of the paper make use of the
following special functions: the complete elliptical integral of the first kind defined by

K(a) =
∫ 1

0

dx√
1 − x2

√
1 − a2x2

dx;

the complete elliptical integral of the second kind defined by

E(a) =
∫ 1

0

√
1 − a2x2

√
1 − x2

dx;

and, the Gauss hypergeometric function defined by

2F1 (a, b; c; x) =
∞
∑

k=0

(a)k(b)k

(c)k

xk

k!
,
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where (z)k = z(z + 1) · · · (z + k − 1) denotes the ascending factorial. The properties of
these special functions can be found in Prudnikov et al. (1986) and Gradshteyn and Ryzhik
(2000).

2. The nth Moment

By Lemma 2 in Gupta et al. (2002), the even order moments of X are the same as those
of the standard Student’s t distribution given by (1.1), which are well known in the literature
(see, for example, Chapter 28, Johnson et al., 1995). Thus,

E (Xn) =
νn/2B

(

n + 1

2
,
ν − n

2

)

B
(

1

2
,
ν

2

) (2.1)

when n < ν is even. Theorem 1 derives the expression for the odd order moments of X for
the case of odd ν.

Theorem 1 If X is a random variable having the pdf (1.5) for odd ν and n < ν is odd then

E (Xn) = In +
λνn/2

πB (ν/2, 1/2)

(ν−1)/2
∑

k=1

B
(

k,
1

2

)

B
(

n

2
+ 1, k +

ν − n − 1

2

)

× 2F1

(

k,
n

2
+ 1; k +

1 + ν

2
; 1 − λ2

)

, (2.2)

where

In =
2ν(n−1)/2

πB (ν/2, 1/2)

∞
∑

k=0

(2k)!λ2k+1

4k(k!)2(2k + 1)
B
(

n

2
+ k + 1,

ν − n

2

)

× 2F1

(

k +
1

2
,
n

2
+ k + 1;

ν

2
+ k + 1; 1 − λ2

)

.

Proof: Using (1.5), one can write

E (Xn) =
2Mn

π
√

νB (ν/2, 1/2)
+

λ

π
√

νB (ν/2, 1/2)

(ν−1)/2
∑

k=1

νk−1/2B
(

k,
1

2

)

Nn,k, (2.3)

where Mn and Nn,k are the integrals

Mn =
∫

∞

−∞

xn

(

1 +
x2

ν

)

−(1+ν)/2

arctan

(

λx√
ν

)

dx

and

Nn,k =
∫

∞

−∞

xn+1
(

ν + λ2x2
)

−k
(

1 +
x2

ν

)

−(1+ν)/2

dx.
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By expanding the arctan(·) term using equation (1.644.1) of Gradshteyn and Ryzhik (2000)
and then integrating term by term, one can rewrite Mn as

Mn = ν(1+ν)/2
∞
∑

k=0

(2k)!Ln,k

4k(k!)2(2k + 1)
, (2.4)

where

Ln,k =
∫

∞

0
xn/2+k

(

ν

λ2
+ x

)

−(k+1/2)

(ν + x)−(1+ν)/2 dx.

The integral Nn,k can be simplified to

Nn,k =
ν(1+ν)/2

λ2k

∫

∞

0
xn/2

(

ν

λ2
+ x

)

−k

(ν + x)−(1+ν)/2 dx.

Both Ln,k and Nn,k can be expressed in terms of the Gauss hypergeometric function by using
equation (3.197.1) in Gradshteyn and Ryzhik (2000). It becomes that

Ln,k = ν(n−ν)/2λ2k+1B
(

k + 1 +
n

2
,
ν − n

2

)

2F1

(

k +
1

2
, k + 1 +

n

2
; k + 1 +

ν

2
; 1 − λ2

)

(2.5)

and

Nn,k = νn/2+1−kB
(

1 +
n

2
, k +

ν − n − 1

2

)

2F1

(

k, 1 +
n

2
; k +

1 + ν

2
; 1 − λ2

)

. (2.6)

The result follows on substituting (2.5)–(2.6) into (2.3)–(2.4).

Theorem 2 is the analogue of Theorem 1 for the case of even ν. The proof is similar and
is thus avoided.

Theorem 2 If X is a random variable having the pdf (1.5) for even ν and n < ν is odd then

E (Xn) =
λνn/2

πB (ν/2, 1/2)

ν/2
∑

k=1

B
(

k − 1

2
,
1

2

)

B
(

n

2
+ 1, k − 1 +

ν − n

2

)

× 2F1

(

k − 1

2
,
n

2
+ 1; k +

ν

2
; 1 − λ2

)

. (2.7)

3. Particular Cases

Here, we derive particular forms of (2.1), (2.2) and (2.7) for ν = 2, . . . , 10. In our
calculations, we have used various special properties of the Gauss hypergeometric function
(see, for example, Section 7.3 of Prudnikov et al. (1986, volume 3)). When ν is odd the
expressions for E(Xn) involve the infinite sum In which should be computed numerically.
When ν is even the expressions involve the complete elliptical integrals of the first kind and
second kind.
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Corollary 1 If X is a random variable having the pdf (1.5) with ν = 2 then

E (X) =

√
2

λ2 − 1

{

λ2E(µ) −K(µ)
}

,

where µ =
√

(λ2 − 1)/λ2.

Corollary 2 If X is a random variable having the pdf (1.5) with ν = 3 then

E (X) = I1 +

√
3λ

π (1 + δλ)2 ,

E
(

X2
)

= 3,

where δ = sign(λ).

Corollary 3 If X is a random variable having the pdf (1.5) with ν = 4 then

E (X) =
λ2

2
(

λ2 − 1
)3

{(

2λ4 − 7λ2 − 3
)

E(µ) +
(

9 − λ2
)

K(µ)
}

,

E
(

X2
)

= 2,

E
(

X3
)

=
2

(

λ2 − 1
)3

{

λ2
(

4λ4 − 11λ2 + 15
)

E(µ) −
(

2λ4 − 3λ2 + 9
)

K(µ)
}

,

where µ =
√

(λ2 − 1)/λ2.

Corollary 4 If X is a random variable having the pdf (1.5) with ν = 5 then

E (X) = I1 +
2
√

5λ
(

9λ6 − 16δλ5 − 21λ4 + 64δλ3 − 41λ2 + 5
)

9π
(

λ2 − 1
)4 ,

E
(

X2
)

=
5

3
,

E
(

X3
)

= I3 +
10
√

5λ
(

λ2 + 4δλ + 5
)

3π (1 + δλ)4 ,

E
(

X4
)

= 25,

where δ = sign(λ).

Corollary 5 If X is a random variable having the pdf (1.5) with ν = 6 then

E (X) =
3
√

6λ2

64
(

λ2 − 1
)5

{

(

8λ8 − 43λ6 + 108λ4 + 65λ2 − 10
)

E(µ)

−
(

4λ6 − 21λ4 + 150λ2 − 5
)

K(µ)

}

,
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E
(

X2
)

=
3

2
,

E
(

X3
)

=
3
√

6λ2

32
(

λ2 − 1
)5

{

(

16λ8 − 76λ6 + 131λ4 − 410λ2 − 45
)

E(µ)

−
(

8λ6 − 37λ4 − 70λ2 − 285
)

K(µ)

}

,

E
(

X4
)

=
27

2
,

E
(

X5
)

=
9
√

6

16
(

λ2 − 1
)5

{

λ2
(

64λ8 − 304λ6 + 569λ4 − 410λ2 + 465
)

E(µ)

−
(

32λ8 − 148λ6 + 305λ4 − 30λ2 + 225
)

K(µ)

}

,

where µ =
√

(λ2 − 1)/λ2.

Corollary 6 If X is a random variable having the pdf (1.5) with ν = 7 then

E (X) = I1 +
2
√

7λ

75π
(

λ2 − 1
)6

{

75λ10 − 144δλ9 − 275λ8 + 672δλ7 + 390λ6

−1808δλ5 + 1314λ4 − 257λ2 + 33

}

,

E
(

X2
)

=
7

5
,

E
(

X3
)

= I3 +
14
√

7λ

75π
(

λ2 − 1
)6

{

15λ10 − 115λ8 + 48δλ7 + 270λ6 + 32δλ5

−990λ4 + 1200δλ3 − 493λ2 + 33

}

,

E
(

X4
)

=
49

5
,

E
(

X5
)

= I5 +
98
√

7λ
(

3λ4 + 18δλ3 + 44λ2 + 54δλ + 33
)

15π (1 + δλ)6 ,

E
(

X6
)

= 343,

where δ = sign(λ).

Corollary 7 If X is a random variable having the pdf (1.5) with ν = 8 then

E (X) =
5
√

2λ2

384
(

λ2 − 1
)7

{

(

48λ12 − 352λ10 + 1167λ8 − 2549λ6 − 1771λ4

+441λ2 − 56
)

E(µ)
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−
(

24λ10 − 173λ8 + 563λ6 − 3675λ4 + 217λ2 − 28
)

K(µ)

}

,

E
(

X2
)

=
4

3
,

E
(

X3
)

=

√
2λ2

16
(

λ2 − 1
)7

{

(

32λ12 − 216λ10 + 603λ8 − 731λ6 + 4767λ4

+735λ2 − 70
)

E(µ)

−
(

16λ10 − 106λ8 + 289λ6 + 1561λ4 + 3395λ2 − 35
)

K(µ)

}

,

E
(

X4
)

= 8,

E
(

X5
)

=

√
2λ2

6
(

λ2 − 1
)7

{

(

128λ12 − 864λ10 + 2482λ8 − 4009λ6 − 1617λ4

−10955λ2 − 525
)

E(µ)

−
(

64λ10 − 424λ8 + 1191λ6 − 3941λ4 − 6475λ2 − 5775
)

K(µ)

}

,

E
(

X6
)

= 160,

E
(

X7
)

=
4
√

2

3
(

λ2 − 1
)7

{

λ2
(

768λ12 − 5184λ10 + 14892λ8 − 23529λ6 + 23443λ4

−3675λ2 + 8645
)

E(µ)

−
(

384λ12 − 2544λ10 + 7146λ8 − 10521λ6 + 14735λ4

+2485λ2 + 3675
)

K(µ)

}

,

where µ =
√

(λ2 − 1)/λ2.

Corollary 8 If X is a random variable having the pdf (1.5) with ν = 9 then

E (X) = I1 +
6λ

245π
(

λ2 − 1
)8

{

245λ14 − 512δλ13 − 1225λ12 + 3072δλ11 + 2597λ10

−8704δλ9 − 3073λ8 + 20480δλ7 − 16057λ6 + 3949λ4 − 865λ2 + 93

}

,

E
(

X2
)

=
9

7
,

E
(

X3
)

= I3 +
18λ

1225π
(

λ2 − 1
)8

{

525λ14 − 5425λ12 + 3072δλ11 + 17885λ10 − 11776δλ9

−28105λ8 − 16384δλ7 + 151823λ6 − 189952δλ5 + 87221λ4 − 9721λ2 + 837

}

,
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E
(

X4
)

=
243

35
,

E
(

X5
)

= I5 +
162λ

245π
(

λ2 − 1
)8

{

63λ14 − 539λ12 + 2191λ10 − 512δλ9 − 4739λ8

+4096δλ7 − 4325λ6 + 17920δλ5 − 29561λ4 + 21504δλ3 − 6467λ2 + 279

}

,

E
(

X6
)

=
729

7
,

E
(

X7
)

= I7 +
4374λ

(

5λ6 + 40δλ5 + 139λ4 + 272δλ3 + 323λ2 + 232δλ + 93
)

35π (1 + δλ)8
,

E
(

X8
)

= 6561,

where δ = sign(λ).

Corollary 9 If X is a random variable having the pdf (1.5) with ν = 10 then

E (X) =
35
√

10λ2

16384
(

λ2 − 1
)9

{

(

128λ16 − 1192λ14 + 5067λ12 − 13324λ10 + 26930λ8

+20268λ6 − 6357λ4 + 1392λ2 − 144
)

E(µ)

−
(

64λ14 − 588λ12 + 2463λ10 − 6380λ8 + 39690λ6 − 3096λ4

+687λ2 − 72
)

K(µ)

}

,

E
(

X2
)

=
5

4
,

E
(

X3
)

=
25
√

10λ2

8192
(

λ2 − 1
)9

{

(

256λ16 − 2240λ14 + 8550λ12 − 17819λ10 + 13720λ8

−201834λ6 − 35070λ4 + 5565λ2 − 504
)

E(µ)

−
(

128λ14 − 1104λ12 + 4143λ10 − 8440λ8 − 82710λ6 − 143892λ4

+2751λ2 − 252
)

K(µ)

}

,

E
(

X4
)

=
25

4
,

E
(

X5
)

=
25
√

10λ2

4096
(

λ2 − 1
)9

{

(

1024λ16 − 8960λ14 + 34704λ12 − 78521λ10 + 124054λ8

+323010λ6 + 706944λ4 + 47775λ2 − 3150
)

E(µ)

−
(

512λ14 − 4416λ12 + 16824λ10 − 37351λ8 + 235404λ6 + 559062λ4

+378420λ2 − 1575
)

K(µ)

}

,
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E
(

X6
)

=
625

8
,

E
(

X7
)

=
125

√
10λ2

2048
(

λ2 − 1
)9

{

(

2048λ16 − 17920λ14 + 69408λ12 − 155992λ10 + 222383λ8

−367020λ6 − 470022λ4 − 418740λ2 − 11025
)

E(µ)

−
(

1024λ14 − 8832λ12 + 33648λ10 − 74177λ8 + 48708λ6 − 481446λ4

−478380λ2 − 187425
)

K(µ)

}

,

E
(

X8
)

=
21875

8
,

E
(

X9
)

=
625

√
10

1024
(

λ2 − 1
)9

{

λ2
(

16384λ16 − 143360λ14 + 555264λ12 − 1247936λ10

+1790089λ8 − 1659780λ6 + 1416534λ4 + 164220λ2 + 255465
)

E(µ)

−
(

8192λ16 − 70656λ14 + 269184λ12 − 593416λ10 + 841689λ8 − 589428λ6

+971670λ4 + 210420λ2 + 99225
)

K(µ)

}

,

where µ =
√

(λ2 − 1)/λ2.
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Abstract

In [6] we proved that the functions

(∗)
∞

∑

k=1

ak
(1 + z)k

k!
, 0 6= a1 ≥ a2 ≥ · · · ≥ 0,

are convex univalent in the unit disk D, which extended previous results of Suf-

fridge [8]. In the present paper we prove a conjecture made in [6], namely, that

the functions (∗), under the further restriction that 0 6= a1 = a2, even belong to

the much narrower class DCP of the functions which, under Hadamard product,

preserve direction-convexity of univalent functions in the unit disk D.
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1. Introduction

This paper as well as [6] were inspired by Ted J. Suffridge [8] who studied the

partial sums

Qn(z) =

n
∑

k=0

(1 + z)k

k!
, z ∈ C , n ∈ N , (1.1)

of the series e1+z =
∞
∑

k=0

(1 + z)k/k! . The main result in [8] was that the Qn are in

the class K of convex univalent functions in the unit disk D. Note that Q′

n = Qn−1,

so that all derivatives of Qn are as well convex univalent or constants which made

this system of functions particularly interesting.

In [6] we studied convex combinations of the Qn, and obtained the following

extension of Suffridge’s result.

Theorem 1. For 0 6= a1 ≥ a2 ≥ · · · ≥ 0 we have

f(z) :=

∞
∑

k=1

ak
(1 + z)k

k!
∈ K. (1.2)

Note that this convex set of functions is (essentially) also invariant with respect

to differentiation.

In the present paper we shall establish a conjecture about the functions (1.1)

made in [6] which asserts that (most of) those functions actually belong to a much

smaller class of functions, called DCP , contained in the set of convex univalent

functions in D. We recall the definition of the DCP functions.

Let A denote the set of analytic functions in D, f ∗ g the Hadamard product

or convolution between to members of A, and K ⊂ A the set of convex univalent

functions in D. A domain Ω ⊂ C is said to be convex in the direction eiϕ, ϕ ∈ R,

if and only if for every a ∈ C the set

Ω ∩
{

a + teiϕ : t ∈ R
}
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is either connected or empty. Accordingly we define the classes K(ϕ) ⊂ A, ϕ ∈ R,

of the functions convex in the direction eiϕ as

K(ϕ) :=
{

f ∈ A : f univalent and f(D) convex in the direction eiϕ
}

.

Finally, a function g ∈ A is called Direction-Convexity-Preserving (g ∈ DCP ) if

and only if

g ∗ f ∈ K(ϕ) for all f ∈ K(ϕ) and all ϕ ∈ R.

Functions in DCP have many other intriguing convolution-type properties, for

instance the preservation of convex harmonic functions in D, and of Jordan curves

in the plane with convex interior domain; we refer to [4], [5] for more details.

Note that, by definition, we have ∩ϕ∈RK(ϕ) = K so that g ∈ DCP preserves,

under convolution, the class K as well, which by the results in [7], obtained in

the context of the former Pólya-Schoenberg conjecture, implies that DCP ⊂ K.

Actually, DCP is much smaller than K. The following result has been conjectured

in [6] and sharpens Theorem 1.

Theorem 2. For 0 6= a1 = a2 ≥ a3 ≥ · · · ≥ 0 we have

g(z) :=
∞

∑

k=1

ak
(1 + z)k

k!
∈ DCP. (1.3)

The special case ak = 1, k ∈ N, namely g(z) = e1+z − 1 ∈ DCP has first been

established by G. Kurth [2]. Another proof can be found in [6].

The condition a1 = a2 cannot be just dropped, as it is readily verified that,

for instance,

2
1 + z

1!
+

(1 + z)2

2!
+

(1 + z)3

3!
6∈ DCP. (1.4)

However there may be weaker conditions than a1 = a2 which do the same job.

The class DCP is somewhat special in the following sense: for f ∈ DCP we

do not necessarily have fr(z) := f(rz) ∈ DCP for 0 < r < 1. There are very
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good reasons, however, to assume that the following generalization of Theorem 2

is valid.

Conjecture 1. For 0 6= a1 = a2 ≥ a3 ≥ · · · ≥ 0 and 0 < r ≤ 1 we have

∞
∑

k=1

ak
(1 + rz)k

k!
∈ DCP. (1.5)

Let 1F1 be the confluent hypergeometric function, so that

1F1(a, b, 1 + z) =
∞

∑

k=0

(a)k

(b)k

(1 + z)k

k!
.

An immediate consequence of Theorem 1 is

Corollary 1. For 0 < a ≤ b we have 1F1(a, b, 1 + z) ∈ K.

However, because of the restriction a1 = a2 in Theorem 2, we cannot conclude

the corresponding result with K replaced by DCP . Nevertheless, there is some

evidence for this to hold anyway.

Conjecture 2. For 0 < a ≤ b we have 1F1(a, b, 1 + z) ∈ DCP .

The rest of this paper is devoted to the proof of Theorem 2. It is highly com-

putational, using computer algebra and numerical evaluations. However, the com-

puter algebra part is restricted to the manipulation of trigonometric expressions,

rearrangements of polynomials of modest degree (≤ 22) with rational coefficients,

and numerical work to the identification of maxima and minima of those poly-

nomials in the unit interval [0, 1]. These calculations have been performed using

the software package Mathematica 4.1 [3], applying high-precision mode for the

numerics. The scripts of these calculations, in form of Mathematica notebooks,

are available from the authors upon request. In the sequel we shall not comment

on this approach any more.
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2. Proof of Theorem 2

The following criterion for membership in DCP is a slight variant of [4, The-

orem 4]:

Lemma 1. Let g ∈ K be analytic in D and let v(x) := Re g(eix), x ∈ R. Then

g ∈ DCP if and only if

σv(x) := (v′′(x))
2 − v′(x) v′′′(x) ≥ 0 , x ∈ R . (2.1)

Proof of Theorem 2. Let g be the function in (1.3). Then g is entire

and, by Theorem 1, in K. Therefore we only have to verify that the function

v(x) := Re g(eix) satisfies (2.1). Writing

uj(x) := Re

j
∑

k=1

(1 + eix)k

k!
, j = 2, 3, . . . , x ∈ R , (2.2)

we find that

v(x) =
∞

∑

j=2

λkuj(x) with λj := aj − aj+1 ≥ 0 and a2 =
∞

∑

j=2

λj > 0 . (2.3)

Condition (2.1) is then equivalent to

∞
∑

j,k=2

λjλkuj,k(x) ≥ 0, x ∈ R , (2.4)

with

ujk(x) := u′′

j (x)u′′

k(x) − 1

2
(u′

j(x)u′′′

k (x) + u′

k(x)u′′′

j (x)), (2.5)

for j, k = 2, 3, 4, . . . and x ∈ R . This should hold for arbitrary coefficients λk ≥ 0

with
∑

∞

k=2 λk > 0, and thus, by definition, if and only if the doubly-infinite

matrices {uj,k(x)}j,k≥2 are co-positive for all x ∈ R. In the subsequent sections we

shall show that

ujk(x) ≥ 0, j, k ≥ 2, x ∈ R , (2.6)

which will complete the proof of Theorem 2.
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It should be observed that actually u1,j(x) ≥ 0 does not hold generally for

j ≥ 2. This does not contradict a prori Conjecture 2 since in those cases only

specific systems {λk} are involved.

3. Preliminaries I

3.1. For the functions uj, j ∈ N, of (2.2) we find

uj(x) =

j
∑

k=1

2k

k!
Tk(ν)νk = pj,0(ν

2), (3.1)

where Tk denotes the Chebychev polynomial of degree k, while ν = ν(x) := cos(x
2
),

and pj,0 is some polynomial. Using the relations

(ν ′)2 =
1 − ν2

4
, ν ′′ = −ν

4
, (3.2)

we find polynomials pj,s, j ∈ N, s = 1, 2, 3, such that

u′

j(x) = νν ′pj,1(ν
2), u′′

j (x) = pj,2(ν
2), u′′′

j (x) = νν ′pj,3(ν
2), (3.3)

This shows, in particular, that all terms in the expressions uj,k, and therefore uj,k

itself, are polynomials in the variable ν2, and the proof of (2.6) has to be given

for ν ∈ [0, 1] only.

3.2. When dealing with large values of j it will be convenient to write uj(x) =

u(x) − rj(x), with

u(x) := Re e1+eix

, rj(x) := Re
∞

∑

k=j+1

(1 + eix)k

k!
.

Using

µ = µ(x) := |e1+eix|
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we obtain

u′(x)

µ
= (2ν2 − 1) sin(4νν ′) + 4νν ′ cos(4νν ′) ,

u′′(x)

µ
= 4(4ν2 − 1)νν ′ sin(4νν ′) − ν2(8ν2 − 6) cos(4νν ′) ,

u′′′(x)

µ
= −(4ν2 + 1) [(1 − 8ν2 + 8ν4) sin(4νν ′)

+8νν ′(2ν2 − 1) cos(4νν ′)] .

(3.4)

Together with (3.3) we thus get for

uj,∞ := u′′u′′

j −
1

2

(

u′u′′′

j + u′′′u′

j

)

the representations

uj,∞

µ
= p∗j,1(ν

2)νν ′ sin(4νν ′) + p∗j,2(ν
2) cos(4νν ′), (3.5)

with p∗j,1, p
∗

j,2 polynomials. Furthermore, for u
∞,∞ := (u′′)2 − u′u′′′, we find

u
∞,∞

µ2
= −1

2
+ ν2 + 4ν4 +

(

1
2
− ν2(3 − 4ν2)2

)

cos(8νν ′)

+2νν ′(3 − 16ν2 + 16ν4) sin(8νν ′)
(3.6)

3.3. In the sequel we shall approximate the trigonometric functions appearing

explicitly in (3.5),(3.6) by their Taylor expansions with remainder:

cos(y) =

n−1
∑

k=0

(−1)k y2k

(2k)!
+ a (−1)n y2n

(2n)!
,

sin(y) =

n−1
∑

k=0

(−1)k y2k+1

(2k + 1)!
+ b (−1)n y2n+1

(2n + 1)!
,

(3.7)

with y ∈ R, n ∈ N, where a = a(y) and b = b(y) are the error terms. We shall

apply these formulas only for y = 4νν ′ and y = 4νν ′, i.e. for values of y with

|y| ≤ 2. In these cases the expansions in (3.7) are (essentially) of the Leibniz type

and this implies that we have

0 ≤ an(y), bn(y) ≤ 1. (3.8)
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We shall make use of these approximations in the sense that we carry a, b along

as if they were independent of y, but only restricted by (3.8)

4. Preliminaries II

We shall need estimates for the expressions |u(k)|, |u(k)
j |, |r(k)

j |. They will be

given in this section.

4.1. In Sect. 5.1 we make use of the following estimates:

|u′(x)| ≤ 8

5
µ|ν|3, |u′′(x)| ≤ 3µ|ν|2, |u′′′(x)| ≤ 5µ|ν|. (4.1)

We prove the first one of these, using approximations from (3.7) (with n = 4 for

cos and n = 3 for sin). Inserting this into (3.4) we get
∣

∣

∣

∣

u′(x)

µν3

∣

∣

∣

∣

= 8
315

|ν ′(315 − 14ν4(1 − ν2)3 − 210(1 − ν4) + 42(2ν2 + ν4)(1 − ν2)2)

+a4ν
′ν6(1 − ν2)4 − 2b3ν

′ν4(1 − ν2)3(2ν2 − 1)|

= 8
315

|ν ′Q + a4q1 + b3q2|, say.

We easily estimate

|q1| = |ν ′ν6(1 − ν2)4| ≤ 1
2
(ν2(1 − ν2))3 ≤ 1

128
,

|q2| = |2ν ′ν4(1 − ν2)3(2ν2 − 1)| ≤ (ν2(1 − ν2))2 ≤ 1
16

,

so that we are left with a proof for

|ν ′Q| ≤ 63 − 1

128
− 1

16
.

Taking squares and using (3.2) we find that

(1 − ν2)
(

105 + 84ν2 + 70ν4 + 42ν6 + 14ν10
)2 ≤ 15840, 0 ≤ ν ≤ 1, (4.2)

is a sufficient condition for the truth of the first inequality in (4.1). This is not

critical at all and has been verified numerically. The remaining two estimates in

(4.1) can be derived in the same fashion.
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4.2. In Sect. 5.2 we shall need upper bounds bj,k in

|u(k)
j (x)| ≤ bj,k, j ≤ 5, k = 1, 2, 3.

Using the method mentioned in Sect. 3.1 we obtain the needed representations for

the u
(k)
j and the bounds bj,k. This information is collected in Table 1. The given

bounds bj,k have been numerically verified.

4.3. To obtain suitable bounds for the rj(x) we proceed as follows: define

Rj(x) :=

∞
∑

k=j+1

(1 + eix)k

k!
, j = 2, 3, . . . , (4.3)

and note that

Rj(x) =
wj+1

(j + 1)!
1F1(1, j + 2, w) , w = 1 + eix,

where 1F1 denotes the confluent hypergeometric function.

Lemma 2. Let vj(x) := |1F1(1, j + 1, 1 + eix)|. Then

vj(x) ≤ µ(x)(1 − 43jν2(x)

50(j + 1)
) =: µ dj(ν) , x ∈ R. (4.4)

Proof From [1, 13.2.1] we get

1F1(a, b, z) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0

ezt ta−1 (1 − t)b−a−1 dt , (4.5)

for Re b > Re a > 0. The convexity of the exponential function gives

∣

∣

∣
e−(1+eix)t

∣

∣

∣
= e−(1+cos x)t ≤ 1 − c̃0(1 + cos x) t ,
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for x ∈ R, 0 ≤ t ≤ 1, and c̃0 :=
1 − e−2

2
= 0.432332 . . . Inserting this into (4.5)

we obtain:

vj(x) ≤ e1+cos x

∫ 1

0

e−(1+cos x)t j tj−1 dt

≤ µ

∫ 1

0

(1 − c0(1 + cos x) t) j tj−1 dt

= µ

(

1 − 2c0jν
2(x)

j + 1

)

,

where c0 := 43
100

< c̃0.

Since

R′

j(x) = Rj−1(x) i eix ,

R′′

j (x) = −Rj−2(x) e2ix − Rj−1(x) eix ,

R′′′

j (x) = Rj−3(x) e4ix + Rj−2(x) e3ix − 2 i Rj−2(x) e2ix − i Rj−1(x) eix ,

we find, using Lemma 2,

∣

∣

∣
r
(k)
j (x)

∣

∣

∣
≤

∣

∣

∣
R

(k)
j (x)

∣

∣

∣
≤ µrj,k, k = 1, 2, 3, j ≥ 2, (4.6)

where

rj,1 :=
(2|ν|)j

j!
dj(ν) ,

rj,2 :=
(2|ν|)j−1

(j − 1)!

[

dj−1(ν) +
2|ν|
j

dj(ν)

]

,

rj,3 :=
(2|ν|)j−2

(j − 2)!

[

dj−2(ν) +
6|ν|
j − 1

dj−1(ν) +
4|ν|2

j(j − 1)
dj(ν)

]

.

(4.7)

Note that

rn,k ≤ rm,k, n ≥ m ≥ 4, k = 1, 2, 3 . (4.8)
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5. Proof of (2.6)

5.1. The cases j, k ≥ 6. Since uj(x) = u(x) − rj(x) we have

uj,k(x) = (u − rj)
′′(u − rk)

′′−
1
2
{(u − rj)

′ (u − rk)
′′′ + (u − rk)

′ (u − rj)
′′′}

= (u′′)2 − u′u′′′ − u′′(r′′j + r′′k) + r′′j r
′′

k+

1
2

{

u′(r′′′j + r′′′k ) + u′′′(r′j + r′k) − r′jr
′′′

k − r′kr
′′′

j

}

≥ (u′′)2 − u′u′′′ − |u′′|(|r′′j | + |r′′k|) − |r′′j ||r′′k|−
1
2

[

|u′|(|r′′′j | + |r′′′k |) + |u′′′|(|r′j| + |r′k|) + |r′j||r′′′k | + |r′k||r′′′j |
]

.

Furthermore, in view of (4.1), (4.7) we may write this inequality in the form:

uj,k

µ2
≥ u

∞,∞

µ2
−

[

3ν2(rj,2 + rk,2) + rj,2rk,2 +
4

5
ν3 (rj,3 + rk,3)

+
5

2
ν (rj,1 + rk,1) +

1

2
(rj,1rk,3 + rk,1rj,3)

]

=: sj,k.

(5.1)

The sj,k depend on ν only, and in Sect. 3.1 we pointed out that we need to verify

uj,k ≥ 0 for 0 ≤ ν ≤ 1 only. Therefore we can replace |ν| by ν wherever it

appears in (5.1). Taking this into account, and using (4.8), we find that the sj,k

are increasing with both, j, k. Hence uj,k ≥ 0 for j, k ≥ 6 will follow if s6,6 ≥ 0

holds. Using (3.6), (4.7) and (3.7) with n = 3 we find the equivalent condition

ν4(Q(ν) + a q1(ν) + b q2(ν)) ≥ 0, ν, a, b ∈ [0, 1], (5.2)
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where


























Q(ν) = 4
3

+ 8
5
ν2 − 28

9
ν3−]3736

75
ν4 + 81346

39375
ν5 + 1084136

4725
ν6 − 1616

118125
ν7

−148115552
354375

ν8 + 12212
70875

ν9 + 3326016569
8859375

ν10 − 7396
118125

ν11 − 940859168
6890625

ν12 ,

q1(ν) = −128
45

ν2(ν2 − 1)3(2ν2 − 1)(1 − 16ν2 + 16ν4) ,

q2(ν) = −1024
315

ν4(ν2 − 1)4(4ν2 − 1)(4ν2 − 3) .

It is sufficient to show that

min
0≤ν≤1

Q(ν) + min

(

0, min
0≤ν≤1

q1(ν)

)

+ min

(

0, min
0≤ν≤1

q2(ν)

)

≥ 0. (5.3)

Numerically we find

min
0≤ν≤1

Q(ν) = 0.543527... ,

min
0≤ν≤1

q1(ν) = −0.0644599... ,

min
0≤ν≤1

q2(ν) = −0.0375348... ,

with all digits significant. (5.3) follows.

5.2. The cases 2 ≤ j ≤ 5, k ≥ 6. We consider again the functions uj,k but now

in a slightly different arrangement:

uj,k = u′′

j (u − rk)
′′ − 1

2

(

u′′′

j (u − rk)
′ + u′

j(u − rk)
′′′

)

= uj,∞ − u′′

j r
′′

k + 1
2

(

u′′′

j r′k + u′

jr
′′′

k

)

≥ uj,∞ − |u′′

j ||r′′k| − 1
2

(

|u′′′

j ||r′k| + |u′

j|r′′′k |
)

.

Hence, using (4.6),(4.7) and Sect. 3.1, we find

uj,k

µ
≥ uj,∞

µ
− bj,2rk,2 −

1

2
(bj,3rk,1 + bj,1rk,3) ,

and since the rk,j are decreasing with k, we need to verify only Aj ≥ 0 for j =

2, 3, 4, 5 with

Aj :=
uj,∞

µ
− bj,2r6,2 −

1

2
(bj,3r6,1 + bj,1r6,3) . (5.4)
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We proceed as before: to the functions
uj,∞

µ
we apply (3.8) with n = 2, and

then we are left with expressions of the form

Aj = νc(j) (Qj(ν) + a q1,j(ν) + b q1,j(ν)) ,

with polynomials Qj , q1,j, q2,j, and numbers a, b depending on x, j but satisfying

0 ≤ a, b ≤ 1. Here c(3) = 6 and c(j) = 4 otherwise. We set

Mj := min
0≤ν≤1

Qj(ν), mk,j := min

(

0, min
0≤ν≤1

qk,j(ν)

)

, k = 1, 2,

and show that Mj +m1,j +m2,j > 0, j = 2, 3, 4, 5, which implies our assertion con-

cerning Aj . The following expressions for the polynomials as well as the numerical

values of the minima were computed using [3].



































































Q2 = 8 − 32ν3

5
− 1504ν4

15
+

32804ν5

7875
+

236028ν6

875
+

688ν7

2625
− 384ν8 + 384ν10 − 512ν12

3
,

q1,2 = −8ν2

3
(−1 + ν2)

2
(3 − 25ν2 + 60ν4 − 72ν6 + 32ν8) ,

q2,2 = −8ν2

15
(−1 + ν2)

3
(3 − 24ν2 + 72ν4 − 112ν6 + 64ν8) ,

M2 = 0.367404 , m1,2 = −0.245545 , m2,2 = −0.0333333 .

Thus A2 ≥ M2 + m1,2 + m2,2 > 0.
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Q3 = − 8

7875
(−10500 − 99750ν2 + 19250ν3+

429800ν4 − 13017ν5 − 899595ν6 − 516ν7+

1155000ν8 − 924000ν10 + 336000ν12) ,

q1,3 = −32ν2

3
(−1 + ν2)

2
(5 − 27ν2 + 49ν4 − 44ν6 + 16ν8) ,

q2,3 = −32ν2

15
(−1 + ν2)

3
(5 − 28ν2 + 66ν4 − 72ν6 + 32ν8) ,

M3 = 7.44432 , m1,3 = −2.38551 , m2,3 = 0 .

Thus A3 ≥ M3 + m1,3 + m2,3 > 0.















































































































Q4 =
4

3
− 1549ν3

225
− 28202ν4

675
+

75766ν5

16875
+

236101ν6

630
+

3698ν7

13125
− 9280ν8

9
+

16960ν10

9
−

19712ν12

9
+

13312ν14

9
− 4096ν16

9
,

q1,4 = −4ν2

9
(−1 + ν2)

2
(3 − 25ν2+

396ν4 − 1528ν6 + 2272ν8 − 1664ν10 + 512ν12) ,

q2,4 = −4ν2

45
(−1 + ν2)

3
(3 − 24ν2+

408ν4 − 1712ν6 + 3264ν8 − 2816ν10 + 1024ν12) ,

M4 = 0.893447 , m1,4 = −0.315326 , m2,4 = 0 .

Thus A4 ≥ M4 + m1,4 + m2,4 > 0.
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Q5 =
4

3
+

8ν2

3
− 178ν3

25
+

18104ν4

3375
+

400976ν5

84375
−

1899013ν6

13125
+

4988ν7

21875
+

2216ν8

3
− 1680ν10+

2752ν12 − 8704ν14

3
+

5120ν16

3
− 4096ν18

9
,

q1,5 = −4ν2

9
(−1 + ν2)

2
(3 + 5ν2 − 102ν4+

798ν6 − 2408ν8 + 3072ν10 − 1920ν12 + 512ν14) ,

q2,5 = −4ν2

45
(−1 + ν2)

3
(3 + 6ν2 − 96ν4+

860ν6 − 2864ν8 + 4608ν10 − 3328ν12 + 1024ν14) ,

M5 = 1.09764 , m1,5 = −0.23118 , m2,5 = 0 .

Thus A5 ≥ M5 + m1,5 + m2,5 > 0.

5.3. The cases 2 ≤ j ≤ k ≤ 5. As mentioned before, the uj,k are all even

polynomials in the variable ν = ν(x), which are easily determined by the method

explained in Sect. 3.1. They are listed in Table 2, along with the numerical

(positive!) minima mj,k of the functions u∗

j,k := uj,k(x)/ν(x)c, 0 ≤ x ≤ π where

c = c(j, k) has been choosen to eliminate the zero at x = π. This completes the

proof of (2.6).
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Table 1. Upper bounds for the derivatives (u
(k)
j )2.

j k (u
(k)
j )2 bj,k

2 1 64ν6(1 − ν2) 8ν3

2 2 16ν4(3 − 4ν2)2 12ν2

2 3 16ν2(1 − ν2)(3 − 8ν2)2 12ν

3 1 256ν10(1 − ν2) 16ν5

3 2 64ν8(5 − 6ν2)2 40ν4

3 3 256ν6(1 − ν2)(5 − 9ν2)2 80ν3

4 1 16
9
ν6(1 − ν2)(1 + 16ν4)2 34

5
ν3

4 2 4
9
ν4(3 − 4ν2 + 112ν4 − 128ν6)2 34

3
ν2

4 3 4
9
ν2(1 − ν2)(3 − 8ν2 + 336ν4 − 512ν6)2 112

5
ν

5 1 16
9
ν6(1 − ν2)(1 + 3ν2 + 16ν6)2 174

25
ν3

5 2 4
9
ν4(3 + 11ν2 − 18ν4 + 144ν6 − 160ν8)2 40

3
ν2

5 3 4
9
ν2(1 − ν2)(3 + 22ν2 − 54ν4 + 576ν6 − 800ν8)2 28ν
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Table 2. The cases 2 ≤ j ≤ k ≤ 5.

j k uj,k(x) mj,k

2 2 16ν4(3 − 2ν2) 16

2 3 32ν6 (2 + ν2 − 2ν4) 32

2 4 8
3
ν4 (3 − 2ν2 − 48ν4 + 192ν6 − 128ν8) 5.27605

2 5 8
3
ν4 (3 + 4ν2 + 3ν4 − 198ν6 + 496ν8 − 288ν10) 5.72455

3 3 64ν8 (5 − 4ν2) 8

3 4 16
3
ν6 (2 + ν2 + 62ν4 − 16ν6 − 32ν8) 32

3

3 5 4
9
ν4 (3 − 2ν2 − 96ν4 + 384ν6 + 1536ν8 − 1536ν10) 32

3

4 4 4
9
ν4 (3 − 2ν2 − 96ν4 + 384ν6 + 1536ν8 − 1536ν10) 1.0315

4 5
4
9
ν4 (3 + 4ν2 − 45ν4 + 186ν6 + 320ν8 + 1152ν10

−768ν12 − 512ν14)

4
3

5 5
4
9
ν4 (3 + 10ν2 + 51ν4 − 432ν6 + 896ν8 + 384ν10

+1536ν12 − 2048ν14)

4
3
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1. Introduction

The following Ostrowski inequality is well known [8]:
∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2

(b− a)2

]
(b− a) ‖f ′‖∞ .

It holds for every x ∈ [a, b] whenever f : [a, b] → R is continuous on [a, b] and
differentiable on (a, b) with derivative f ′ : (a, b) → R bounded on (a, b) i.e.

‖f ′‖∞ := sup
t∈(a,b)

|f ′ (t)| < +∞.

Ostrowski proved this inequality in 1938.and since then it has been generalized in a
number of ways. Also over the last few years some new inequalities of this type have
been intensively considered together with their applications in Numerical analysis
and Probability.

Recently Dragomir and Barnet [5] proved the following result:
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Theorem A. Let f : [a, b] → R be continuous on [a, b] and twice differentiable on
(a, b) whose second derivative f ′′ : (a, b) → R is bounded on (a, b). Then we have
the inequality

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt− f (b)− f (a)
b− a

(
x− a + b

2

)∣∣∣∣∣

≤ 1
2




((
x− a+b

2

)2

(b− a)2
+

1
4

)2

+
1
12


 · (b− a)2 ‖f ′′‖∞ (1.1)

≤ 1
6

(b− a)2 ‖f ′′‖∞ ,

for every x ∈ [a, b].

This result is not the best possible. Namely Dedić et al. in [3] among other results
obtained an improvement of the inequalities (1.1) valid also for a wider class of
functions, as follows:

Theorem B. Let f : [a, b] → R be such that f ′ is L-Lipschitzian function on [a, b]
i.e., |f ′ (x)− f ′ (y)| ≤ L (x− y), for all x ∈ [a, b]. Then

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt− f (b)− f (a)
b− a

(
x− a + b

2

)∣∣∣∣∣

≤ 1
2

[
8
3
δ3 (x)− δ2 (x) +

1
12

]
· (b− a)2 L (1.2)

≤ 1
12

(b− a)2 L,

for every x ∈ [a, b], where

δ (x) :=

∣∣x− a+b
2

∣∣
b− a

, x ∈ [a, b] .

A generalization due to Matić at al. of the result stated in Theorem A. can be
found in [7]. We also refer reader to the recent article [4] by Dedić et al., in which
an interesting further generalization of Ostrowski inequality was obtained.

In the recent paper [1] G.A. Anastassiou proved yet another result related to the
one stated in Theorem A.:

Theorem C. Let f : [a, b] → R be 3-times differentiable on [a, b]. Assume that f ′′′

is bounded on [a, b]. Then we obtain
∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt− f (b)− f (a)
b− a

(
x− a + b

2

)

−f ′ (b)− f ′ (a)
2 (b− a)

[
x2 − (a + b)x +

a2 + b2 + 4ab

6

]∣∣∣∣ (1.3)

≤ ‖f ′′′‖∞ · A(x)
(b− a)3

,
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where

A(x) = abx4 − 1
3
a2b3x +

1
3
a3bx2 − ab2x3 − 1

3
a3b2x +

1
3
ab3x2 + a2b2x2 − a2bx3

− 1
2
ax5 − 1

2
bx5 +

1
6
x6 +

3
4
a2x4 +

3
4
b2x4 +

1
3
b2a4 − 2

3
a3x3 − 2

3
b3x3 − 1

3
b3a3

+
5
12

a4x2 +
5
12

b4x2 +
1
3
b4a2 − 2

15
ba5 − 2

15
ab5 − 1

6
a5x− 1

6
b5x +

a6

20
+

b6

20
.

Inequality is attained by

f (x) = (x− a)3 + (b− x)3 ,

in that case both sides of inequality equals zero.

We stated the inequality (1.3) with somewhat simplified expression within the ab-
solute value signs at the left hand side.

Theorem C. was obtained by using the following generalized Montgomery iden-
tity also proved in [1]:

Theorem D. Let f : [a, b] → R be n-times differentiable on [a, b] , n ∈ N. The
n-th derivative f (n) : [a, b] → R is integrable on [a, b]. Let x ∈ [a, b] . Define the
kernel

P (r, s) :=
{ s−a

b−a , a ≤ s ≤ r,
s−b
b−a , r < s ≤ b,

where r, s ∈ [a, b] . Then it holds

f (x)− 1
b− a

∫ b

a

f (s1) ds1

−
n−2∑

k=0

f (k) (b)− f (k) (a)
b− a

∫ b

a

· · ·
∫ b

a

P (x, s1)

(
k∏

i=1

P (si, si+1)

)
ds1 · · · dsk+1

=
∫ b

a

· · ·
∫ b

a

P (x, s1)

(
n−1∏

i=1

P (si, si+1)

)
f (n) (sn) ds1 · · · dsn (1.4)

We make conventions that
0∏

k=1

• := 1,
−1∑
k=0

• := 0 .

This paper is motivated mostly by Theorems C. and D. as well as with some
interesting results from [3] and [4] which allow us to improve almost all results from
[1]. First, in Section 2. we establish a connection between generalized Montgomery
identity, Bernoulli polynomials and Euler identity. This connection enables us to
improve the result stated in Theorem C. along with all other univariate Ostrowski
type results from [1]. We do this in Section 3. Finally in Section 4. we give a
generalization of one multivariate result from [1].

Remark 1. It should be noted that recently a paper [2] appeared. The basic result
in that paper is an identity for n-time differentiable functions which in turn is
Montgomery identity (1.4) stated with somewhat different notation. Moreover, all
the inequalities obtained in [2] follow from that identity and are obtained in quite
the same manner as those in [1]. Hence, some of the results from our paper can be
regarded as improvements of corresponding results from [2].
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2. Generalized Montgomery identity and Bernoulli polynomials

Consider the sequence (Bk (t) , k ≥ 0) of Bernoulli polynomials which is uniquely
determined by the following identities:

B′
k (t) = kBk−1 (t) , k ≥ 1, B0 (t) = 1

and
Bk (t + 1)−Bk (t) = ktk−1, k ≥ 0.

The values Bk = Bk (0), k ≥ 0 are known as Bernoulli numbers. For our purposes,
the first five Bernoulli polynomials are

B0 (t) = 1, B1 (t) = t− 1
2
, B2 (t) = t2 − t +

1
6
,

B3 (t) = t3 − 3
2
t2 +

1
2
t, B4 (t) = t4 − 2t3 + t2 − 1

30
. (2.1)

Let (B∗
k (t) , k ≥ 0) be a sequence of periodic functions of period 1, related to

Bernoulli polynomials as

B∗
k (t) = Bk (t) , 0 ≤ t < 1, B∗

k (t + 1) = B∗
k (t) , t ∈ R.

¿From the properties of Bernoulli polynomials it easily follows that B∗
0 (t) = 1, B∗

1

is discontinuous function with a jump of −1 at each integer, while B∗
k , k ≥ 2, are

continuous functions.
For every function f : [a, b] → R with continuous n-th derivative, n ≥ 1, and for

every x ∈ [a, b] the following formula is valid (see [6]):

f (x) =
1

b− a

∫ b

a

f (t) dt + Tn−1 (x) + Rn (x)

where

Tm (x) =
m∑

k=1

(b− a)k−1

k!
Bk

(
x− a

b− a

) [
f (k−1) (b)− f (k−1) (a)

]
, (2.2)

with convention T0 (x) = 0, and

Rn (x) = − (b− a)n−1

n!

∫ b

a

[
B∗

n

(
x− t

b− a

)
−Bn

(
x− a

b− a

)]
f (n) (t) dt.

The formula (2.2) can be rewritten as

f (x)− 1
b− a

∫ b

a

f (t) dt−
n−2∑

k=0

(b− a)k+1

(k + 1)!
Bk+1

(
x− a

b− a

)
f (k) (b)− f (k) (a)

b− a

=
(b− a)n−1

n!

∫ b

a

[
Bn

(
x− a

b− a

)
−B∗

n

(
x− t

b− a

)]
f (n) (t) dt. (2.3)

We claim that the formula (2.3) coincide with the generalized Montgomery identity
stated in Theorem D. We prove this claim by the following two lemmas.

Lemma 1. For all k ∈ {0, 1, 2, 3, ..} we have
∫ b

a

· · ·
∫ b

a

P (x, s1)

(
k∏

i=1

P (si, si+1)

)
ds1 · · · dsk+1

=
(b− a)k+1

(k + 1)!
Bk+1

(
x− a

b− a

)
. (2.4)
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Proof. We prove our assertion by induction with respect to k. For m = 1, 2, · · · let
us denote

Qm (x) :=
∫ b

a

· · ·
∫ b

a

P (x, s1) P (s1, s2) · · ·P (sm−1, sm) ds1 · · · dsm.

For k = 0 the left hand side of (2.4) is equal to

Q1 (x) =
∫ b

a

P (x, s1) ds1 =
∫ x

a

s1 − a

b− a
ds1 +

∫ b

x

s1 − b

b− a
ds1

=
1

2 (b− a)

[
(x− a)2 − (x− b)2

]
= x− a + b

2
,

while the right hand side of (2.4) is equal to

(b− a)1

1!
B1

(
x− a

b− a

)
= (b− a)

(
x− a

b− a
− 1

2

)
= x− a + b

2
.

Hence the formula (2.4) is valid for k = 0. Now suppose that for some k > 0

Qk (y) =
(b− a)k

k!
Bk

(
y − a

b− a

)

is true for all y ∈ [a, b]. Then we have

Qk+1 (x) =
∫ b

a

P (x, s1)Qk (s1) ds1 =
∫ b

a

P (x, s1)
(b− a)k

k!
Bk

(
s1 − a

b− a

)
ds1

=
(b− a)k

k!

[∫ x

a

s1 − a

b− a
Bk

(
s1 − a

b− a

)
ds1 +

∫ b

x

s1 − b

b− a
Bk

(
s1 − a

b− a

)
ds1

]
.

Because of the properties of Bernoulli polynomials we have

d
ds1

[
b− a

m
Bm

(
s1 − a

b− a

)]
= Bm−1

(
s1 − a

b− a

)
, m ≥ 1,

and partial integration yields

Qk+1 (x) =
(b− a)k

k!

[
s1 − a

k + 1
Bk+1

(
s1 − a

b− a

)∣∣∣∣
x

a

−
∫ x

a

1
k + 1

Bk+1

(
s1 − a

b− a

)
ds1

]

+
(b− a)k

k!

[
s1 − b

k + 1
Bk+1

(
s1 − a

b− a

)∣∣∣∣
b

x

−
∫ b

x

1
k + 1

Bk+1

(
s1 − a

b− a

)
ds1

]

=
(b− a)k

k!

[
x− a

k + 1
Bk+1

(
x− a

b− a

)
− x− b

k + 1
Bk+1

(
x− a

b− a

)]

− (b− a)k

(k + 1)!

∫ b

a

Bk+1

(
s1 − a

b− a

)
ds1

=
(b− a)k+1

(k + 1)!
Bk+1

(
x− a

b− a

)
− (b− a)k

(k + 1)!
· b− a

k + 2
· Bk+2

(
s1 − a

b− a

)∣∣∣∣
b

a

=
(b− a)k+1

(k + 1)!
Bk+1

(
x− a

b− a

)
− (b− a)k+1

(k + 2)!
[Bk+2 (1)−Bk+2 (0)]

=
(b− a)k+1

(k + 1)!
Bk+1

(
x− a

b− a

)
,
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where we used the fact that Bm (1) = Bm (0) for all m ≥ 2. We see that (2.4) is
valid for k + 1 and our assertion is proved. ¤

Lemma 2. For all n ∈ N we have
a)

∫ b

a

· · ·
∫ b

a

P (x, s1)

(
n−1∏

i=1

P (si, si+1)

)
f (n) (sn) ds1 · · · dsn

=
(b− a)n−1

n!

∫ b

a

[
Bn

(
x− a

b− a

)
−B∗

n

(
x− t

b− a

)]
f (n) (t) dt.

b)
∫ b

a

· · ·
∫ b

a

P (x, s1)

(
n−1∏

i=1

P (si, si+1)

)
ds1 · · · dsn−1

=
(b− a)n−1

n!

[
Bn

(
x− a

b− a

)
−B∗

n

(
x− sn

b− a

)]
.

Here we make convention that
0∏

i=1

• := 1.

Proof. It is obvious that a) follows from b) so that we only have to prove b). We
do this again by induction. Let us denote

qk (x, t) =
∫ b

a

· · ·
∫ b

a

P (x, s1)P (s1, s2) · · · P (sk, t) ds1 · · · dsk. (2.5)

Then our claim is that

qk (x, t) =
(b− a)k

(k + 1)!

[
Bk+1

(
x− a

b− a

)
−B∗

k+1

(
x− t

b− a

)]
(2.6)

is true for all k ∈ {0, 1, 2, 3, ...}. For k = 0 we have

q0 (x, t) = P (x, t) =
{ t−a

b−a , a ≤ t ≤ x,
t−b
b−a , x < t ≤ b,

while

1
1!

[
B1

(
x− a

b− a

)
−B∗

1

(
x− t

b− a

)]
=





(
x−a
b−a − 1

2

)
−

(
x−t
b−a − 1

2

)
, a ≤ t ≤ x(

x−a
b−a − 1

2

)
−

(
x−t
b−a + 1− 1

2

)
, x < t ≤ b

=
{ t−a

b−a , a ≤ t ≤ x
t−b
b−a, , x < t ≤ b

and it is clear that our assertion is true for k = 0. Further suppose that (2.6) is
true for some k ≥ 0 and note that in that case we can write

qk+1 (x, t) =
∫ b

a

· · ·
∫ b

a

P (x, s1)P (s1, s2) · · · P (sk+1, t) ds1 · · · dsk+1.

=
∫ b

a

P (x, s1) qk (s1, t) ds1

=
∫ b

a

P (x, s1)
(b− a)k

(k + 1)!

[
Bk+1

(
s1 − a

b− a

)
−B∗

k+1

(
s1 − t

b− a

)]
ds1.
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Now we must consider two cases: t ≤ x and t > x. In the first case when t ≤ x we
have

qk+1 (x, t) =
∫ t

a

s1 − a

b− a
· (b− a)k

(k + 1)!

[
Bk+1

(
s1 − a

b− a

)
−Bk+1

(
s1 − t

b− a
+ 1

)]
ds1

+
∫ x

t

s1 − a

b− a
· (b− a)k

(k + 1)!

[
Bk+1

(
s1 − a

b− a

)
−Bk+1

(
s1 − t

b− a

)]
ds1

+
∫ b

x

s1 − b

b− a
· (b− a)k

(k + 1)!

[
Bk+1

(
s1 − a

b− a

)
−Bk+1

(
s1 − t

b− a

)]
ds1.

Let us denote the three integrals at the right hand side respectively by I1, I2 and
I3. Using partial integration and properties of Bernoulli polynomials we get

I1 =
(b− a)k

(k + 2)!
(s1 − a)

[
Bk+2

(
s1 − a

b− a

)
−Bk+2

(
s1 − t

b− a
+ 1

)]∣∣∣∣
t

a

− (b− a)k+1

(k + 3)!

[
Bk+3

(
s1 − a

b− a

)
−Bk+3

(
s1 − t

b− a
+ 1

)]∣∣∣∣
t

a

=
(b− a)k

(k + 2)!
(t− a)

[
Bk+2

(
t− a

b− a

)
−Bk+2 (1)

]

− (b− a)k+1

(k + 3)!

[
Bk+3

(
t− a

b− a

)
−Bk+2 (0)−Bk+2 (1) + Bk+3

(
b− t

b− a

)]
,

I2 =
(b− a)k

(k + 2)!
(s1 − a)

[
Bk+2

(
s1 − a

b− a

)
−Bk+2

(
s1 − t

b− a

)]∣∣∣∣
x

t

− (b− a)k+1

(k + 3)!

[
Bk+3

(
s1 − a

b− a

)
−Bk+3

(
s1 − t

b− a

)]∣∣∣∣
x

t

=
(b− a)k

(k + 2)!
(x− a)

[
Bk+2

(
x− a

b− a

)
−Bk+2

(
x− t

b− a

)]

− (b− a)k

(k + 2)!
(t− a)

[
Bk+2

(
t− a

b− a

)
−Bk+2 (0)

]

− (b− a)k+1

(k + 3)!

[
Bk+3

(
x− a

b− a

)
−Bk+3

(
t− a

b− a

)
−Bk+3

(
x− t

b− a

)
+ Bk+3 (0)

]

and

I3 =
(b− a)k

(k + 2)!
(s1 − b)

[
Bk+2

(
s1 − a

b− a

)
−Bk+2

(
s1 − t

b− a

)]∣∣∣∣
b

x

− (b− a)k+1

(k + 3)!

[
Bk+3

(
s1 − a

b− a

)
−Bk+3

(
s1 − t

b− a

)]∣∣∣∣
b

x

= − (b− a)k

(k + 2)!
(x− b)

[
Bk+2

(
x− a

b− a

)
−Bk+2

(
x− t

b− a

)]

− (b− a)k+1

(k + 3)!

[
Bk+3 (1)−Bk+3

(
x− a

b− a

)
−Bk+3

(
b− t

b− a

)
+ Bk+3

(
x− t

b− a

)]
.
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Finally, after adding and simplifying we obtain

qk+1 (x, t) = I1 + I2 + I3

=
(b− a)k

(k + 2)!
[(x− a)− (x− b)]

[
Bk+2

(
x− a

b− a

)
−Bk+2

(
x− t

b− a

)]

=
(b− a)k+1

(k + 2)!

[
Bk+2

(
x− a

b− a

)
−B∗

k+2

(
x− t

b− a

)]
,

which is desired result for the case when t ≤ x. The case when t > x is handled
quite analogously and we get the same formula again. So, the formula (2.6) is valid
with k replaced with k + 1, which proves our assertion. ¤

3. Main results

As we noted in Introduction, Theorem C. in [1] was obtained as one possible
generalization of the result stated in Theorem A. The proof of that result in [1] was
carried out via generalized Montgomery identity (1.4) in the following way. For
n = 3 the identity (1.4) is just

f (x)− 1
b− a

∫ b

a

f (s1) ds1 − f (b)− f (a)
b− a

∫ b

a

P (x, s1) ds1

− f ′ (b)− f ′ (a)
b− a

∫ b

a

∫ b

a

P (x, s1) P (s1, s2) ds1ds2

=
∫ b

a

∫ b

a

∫ b

a

P (x, s1)P (s1, s2) P (s2, s3) f ′′′ (s3) ds1ds2ds3,

and the inequality (1.3) was obtained after calculating all the integrals in the fol-
lowing inequality

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (s1) ds1 − f (b)− f (a)
b− a

∫ b

a

P (x, s1) ds1

−f ′ (b)− f ′ (a)
b− a

∫ b

a

∫ b

a

P (x, s1)P (s1, s2) ds1ds2

∣∣∣∣∣

≤ ‖f ′′′‖∞
∫ b

a

|P (x, s1)|
(∫ b

a

|P (s1, s2)|
(∫ b

a

|P (s2, s3)| ds3

)
ds2

)
ds1.

Similarly, if we do the same for n = 2 , then by calculating all the integrals in the
inequality

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (s1) ds1 − f (b)− f (a)
b− a

∫ b

a

P (x, s1) ds1

∣∣∣∣∣

≤ ‖f ′′‖∞
∫ b

a

|P (x, s1)|
(∫ b

a

|P (s1, s2)| ds2

)
ds1

we get the inequality (1.1).
Instead of the approach explained above, we suggest the better one in which the

key role plays the connection between two identities, (1.4) and (2.3), established in
the preceding section.
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Let us denote the left hand side in (1.4), that is the left hand side in (2.3), by
Rn (x). Then by Lemma 2. we have

Rn (x) =
∫ b

a

· · ·
∫ b

a

P (x, s1) P (s1, s2) · · · P (sn−1, sn) f (n) (sn) ds1 · · · dsn

=
∫ b

a

qn−1 (x, sn) f (n) (sn) dsn,

where qn−1 (·, ·) is defined by (2.5). Now, for any function f satisfying the assump-
tions of Theorem D. the following inequality obviously holds

|Rn (x)| ≤
∥∥∥f (n)

∥∥∥
∞

∫ b

a

|qn−1 (x, sn)|dsn, (3.1)

for all x ∈ [a, b]. The crucial point in this approach is that we can exactly evaluate
the integral

∫ b

a
|qn−1 (x, sn)|dsn, using the formula (2.6).

For example, if we do this for n = 2 we get
∫ b

a

|q1 (x, t)| dt =
b− a

2

∫ b

a

∣∣∣∣B∗
2

(
x− t

b− a

)
−B2

(
x− a

b− a

)∣∣∣∣ dt

=
(b− a)2

2

∫ 1

0

∣∣∣∣B2 (t)−B2

(
x− a

b− a

)∣∣∣∣ dt

=
(b− a)2

2

∫ 1

0

∣∣∣∣∣t
2 − t−

(
x− a

b− a

)2

+
x− a

b− a

∣∣∣∣∣ dt

=
1
2

[
8
3
δ3 (x)− δ2 (x) +

1
12

]
· (b− a)2 ,

where δ (x) := |x− a+b
2 |

b−a , x ∈ [a, b]. On the other side using Lemma 1. and (2.1) we
easily get

R2(x) = f (x)− 1
b− a

∫ b

a

f (t) dt− f (b)− f (a)
b− a

(
x− a + b

2

)
,

so that the inequality (3.1) reduces to the result from Theorem B. for the special
case when f : [a, b] → R is twice differentiable with bounded second derivative on
[a, b] and L = ‖f ′′‖∞.

Now we come to the main result, that is improvement of the inequality (1.3).

Theorem 1. Let f : [a, b] → R be 3-times differentiable on [a, b]. Assume that f ′′′

is bounded on [a, b]. Then, for all x ∈ [a, b] we have
∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt− f (b)− f (a)
b− a

(
x− a + b

2

)

−f ′ (b)− f ′ (a)
2 (b− a)

[
x2 − (a + b)x +

a2 + b2 + 4ab

6

]∣∣∣∣ (3.2)

≤ ‖f ′′′‖∞ · (b− a)3

6
I

(
x− a

b− a

)
,
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where

I (λ) =





− 3
2 (t1)

4 + 2 (t1)
3 − 1

2 (t1)
2 + 3

2λ4 − λ3 − λ2 + 1
2λ, λ ∈ [0, 3−√3

6 ]
3
2 (t1)

4 − 2 (t1)
3 + 1

2 (t1)
2 − 3

2λ4 + 3λ3 − 2λ2 + 1
2λ, λ ∈ ( 3−√3

6 , 1
2 ]

3
2 (t2)

4 − 2 (t2)
3 + 1

2 (t2)
2 − 3

2λ4 + λ3 + λ2 − 1
2λ, λ ∈ ( 1

2 , 3+
√

3
6 ]

− 3
2 (t2)

4 + 2 (t2)
3 − 1

2 (t2)
2 + 3

2λ4 − 3λ3 + 2λ2 − 1
2λ, λ ∈ ( 3+

√
3

6 , 1]

and

t1 =
3
4
− 1

2
λ− 1

2

√
1
4

+ 3λ− 3λ2, t2 =
3
4
− 1

2
λ +

1
2

√
1
4

+ 3λ− 3λ2. (3.3)

Furthermore, for the term A(x)/ (b− a)3 in (1.3) we have

A(x)
(b− a)3

=
(b− a)3

6
B

(
x− a

b− a

)
, (3.4)

where
B(λ) = λ6 − 3λ5 +

9
2
λ4 − 4λ3 +

5
2
λ2 − λ +

3
10

,

and for all λ ∈ [0, 1] the following inequalities are valid

1
32
≤ I(λ) ≤

√
3

36
<

41
320

≤ B(λ) ≤ 3
10

. (3.5)

Proof. For given x ∈ [a, b] let us define λ = x−a
b−a and note that 0 ≤ λ ≤ 1. Now, for

n = 3, applying formula (2.6) and using (2.1) we get
∫ b

a

|q2 (x, t)| dt =
(b− a)2

6

∫ b

a

∣∣∣∣B∗
3

(
x− t

b− a

)
−B3

(
x− a

b− a

)∣∣∣∣ dt

=
(b− a)3

6

∫ 1

0

|B3 (t)−B3(λ)| dt

=
(b− a)3

6

∫ 1

0

∣∣∣∣t3 −
3
2
t2 +

1
2
t− λ3 +

3
2
λ2 − 1

2
λ

∣∣∣∣ dt.

The polynomial

p (t) = B3 (t)−B3(λ) = t3 − 3
2
t2 +

1
2
t− λ3 +

3
2
λ2 − 1

2
λ

has three roots. One of them obviously is t0 = λ, and two others are t1 and t2
given by (3.3). For the sake of simplicity let us denote the integral

∫ 1

0
|p (t)| dt by

Ĩ(λ). It is easily seen that we must consider four different cases:
(i) if λ ∈

(
0, 3−√3

6

)
, then 0 < λ < t1 < 1 < t2 and we get

Ĩ(λ) = (2λ− 2t1 + 1)B3(λ) +
1
2
[B4(t1)−B4(λ)];

(ii) if λ ∈
(

3−√3
6 , 1

2

)
, then 0 < t1 < λ < 1 < t2 and we get

Ĩ(λ) = (2t1 − 2λ + 1)B3(λ) +
1
2
[B4(λ)−B4(t1)];

(iii) if λ ∈
(

1
2 , 3+

√
3

6

)
, then t1 < 0 < λ < t2 < 1 and we get

Ĩ(λ) = (2t2 − 2λ− 1)B3(λ) +
1
2
[B4(λ)−B4(t2)];
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(iv) if λ ∈
(

3+
√

3
6 , 1

)
, then t1 < 0 < t2 < λ < 1 and we get

Ĩ(λ) = (2λ− 2t2 − 1)B3(λ) +
1
2
[B4(t2)−B4(λ)].

Now, using (2.1) and the fact that t1 and t2 are the roots of p(t) which implies

(t1)B3(λ) = (t1)4 − 3
2
(t1)3 +

1
2
(t1)2, (t2)B3(λ) = (t2)4 − 3

2
(t2)3 +

1
2
(t2)2,

we easily see that Ĩ(λ) coincides with I(λ) as stated in Theorem. Hence, the first
assertion in Theorem is proved. To check out the formula (3.4) we set x = a+λ(b−a)
in the expression for A(x) and then simplify it, or simply force Mathematica 4 to
do this job for us. Finally, the inequalities stated in (3.5) are consequences of the
fact that

min
λ∈[0,1]

I (λ) = I (0) = I

(
1
2

)
= I (1) =

1
32

,

max
λ∈[0,1]

I (λ) = I

(
3−√3

6

)
= I

(
3 +

√
3

6

)
=
√

3
36

and

min
λ∈[0,1]

B (λ) = B

(
1
2

)
=

41
320

, max
λ∈[0,1]

B (λ) = B (0) = B (1) =
3
10

¤

¿From Theorem 1. it is evident that our approach gives strictly better estimates
than those of Anastassiou. Also, the best estimates are obtained for λ ∈ {

0, 1
2 , 1

}
,

i.e. in corresponding trapezoid and midpoint inequalities:

Corollary 1. Under the assumptions of Theorem 1. we have
∣∣∣∣∣
f (a) + f (b)

2
− b− a

12
[f ′ (b)− f ′ (a)]− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣

≤ ‖f ′′′‖∞ · (b− a)3

192
(3.6)

and
∣∣∣∣∣f

(
a + b

2

)
+

b− a

24
[f ′ (b)− f ′ (a)]− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣

≤ ‖f ′′′‖∞ · (b− a)3

192
. (3.7)

Proof. For x = a, λ = 0 or x = b, λ = 1 the inequality (3.2) reduces to the trapezoid
inequality (3.6). Similarly for x = a+b

2 the inequality (3.2) reduces to the midpoint
inequality (3.7). ¤

We give yet another interesting special case which improves the corresponding
Anastassiou’s result [1, Corollary 4.]:

...Ostrowski type inequalities 299



Corollary 2. Suppose all the assumptions of Theorem 1. hold. Additionally as-
sume that f (a) = f (b) and f ′ (a) = f ′ (b). Then∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt ≤
∣∣∣∣∣ ‖f

′′′‖∞ · (b− a)3

6
I

(
x− a

b− a

)
.

Proof. Obvious. ¤
Next we proceed with exploiting our idea to improve the rest of univariate results

from [1]. Those results are consequences of generalized Montgomery’s identity [1,
Theorem 2.]. First we state that identity with somewhat changed notation:

Proposition 1. Let f : [a, b] → R be n-times differentiable on [a, b] , n ∈ N.
Assume n-th derivative f (n) : [a, b] → R to be integrable on [a, b]. Let also g :
[a, b] → R be a function of bounded variation , such that g (a) 6= g (b). For any
x ∈ [a, b] define

Pg (x, t) :=

{
g(t)−g(a)
g(b)−g(a) , a ≤ t ≤ x,
g(t)−g(b)
g(b)−g(a) , x < t ≤ b.

Then it holds

f (x)−
∫ b

a
f (s1) dg (s1)

g (b)− g (a)

−
n−2∑

k=0

∫ b

a
f (k+1) (s1) dg (s1)

g (b)− g (a)

∫ b

a

· · ·
∫ b

a

Pg (x, s1)

(
k∏

i=1

Pg (si, si+1)

)
ds1 · · · dsk+1

=
∫ b

a

· · ·
∫ b

a

Pg (x, s1)

(
n−1∏

i=1

Pg (si, si+1)

)
f (n) (sn) ds1 · · · dsn. (3.8)

Proof. See [1, Theorem 2.]. ¤
Theorem 2. Suppose all the assumptions of Proposition 1. are satisfied. Ad-
ditionally assume that

∥∥f (n)
∥∥
∞ < +∞. If R̃g,n(x) is the left hand side of (3.8),

then
∣∣∣R̃g,n(x)

∣∣∣ ≤
∥∥∥f (n)

∥∥∥
∞
·

b∫

a

|q̃g,n−1 (x, sn)|dsn, (3.9)

where

q̃g,k (x, t) =
∫ b

a

· · ·
∫ b

a

Pg (x, s1) Pg (s1, s2) · · ·Pg (sk, t) ds1 · · · dsk.

Proof. The identity (3.8) can be rewritten as

R̃g,n(x) =

b∫

a

q̃g,n−1 (x, sn) f (n) (sn) dsn (3.10)

and (3.9) follows immediately, since
∣∣∣∣∣∣

b∫

a

q̃g,n−1 (x, sn) f (n) (sn) dsn

∣∣∣∣∣∣
≤

∥∥∥f (n)
∥∥∥
∞
·

b∫

a

|q̃g,n−1 (x, sn)| dsn,

by triangle inequality ¤
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Remark 2. The inequality (3.9) is an improvement of the corresponding result [1,
Theorem 8.] where

∫ b

a

· · ·
∫ b

a

|Pg (x, s1)|
(

n−1∏

i=1

|Pg (si, si+1)|
)

ds1 · · · dsn

stands in place of
b∫

a

|q̃g,n−1 (x, sn)| dsn

In the special case when g (x) = x we have

q̃g,k (x, t) = qk (x, t) =
(b− a)k

(k + 1)!

[
Bk+1

(
x− a

b− a

)
−B∗

k+1

(
x− t

b− a

)]

and (3.9) reduces to the result from [3, Theorem 7.]

For the sake of completeness we also present Lp Ostrowski type result:

Theorem 3. Suppose all the assumptions of Proposition 1. are satisfied. Addi-
tionally assume that

∥∥f (n)
∥∥

p
< +∞ for some p ≥ 1. If R̃g,n(x) is the left hand side

of (3.8) and r ≤ +∞ such that 1
p + 1

r = 1, then
∣∣∣R̃g,n(x)

∣∣∣ ≤
∥∥∥f (n)

∥∥∥
p
· ‖q̃g,n−1 (x, •)‖r .

Proof. The result follows directly from (3.10) by the Hölder inequality. ¤
Remark 3. The above result improves the corresponding Lp Ostrowski type results
from [1]. Also, in the special case when g (x) = x, the above Theorem recaptures
the results from [3, Theorem 9., Corollary 3.].

4. Generalization of the multivariate result

In this section we consider one multivariate result from [1]. We give it here with
a slight changed notation (see [1, Theorem 3.]):

Proposition 2. Let Q be a compact convex subset of Rn, n ≥ 2; x = (x1, ..., xn) ∈
Q and 0 = (0, ..., 0) ∈ Q. Let f ∈ C2 (Q) and assume that all partial derivatives of
f of order one are coordinatewise absolutely continuous functions. Then

f (x) =
∫ 1

0

f (t1x) dt1 +
n∑

i=1

xi

∫ 1

0

∫ 1

0

t1
∂f (t1t2x)

∂xi
dt1dt2

+
n∑

i=1

n∑

j=1

xixj

∫ 1

0

∫ 1

0

t21t2
∂2f (t1t2x)

∂xi∂xj
dt1dt2. (4.1)

Now, if we assume that f ∈ C3 (Q) and that all partial derivatives of f of order
one and two are coordinatewise absolutely continuous functions, then we can apply
the identity (see [1])

f (x) =
∫ 1

0

f (t1x) dt1 +
n∑

i=1

xi

∫ 1

0

t1
∂f (t1x)

∂xi
dt1

to the function ∂2f
∂xi∂xj

. Doing so we get

∂2f (x)
∂xi∂xj

=
∫ 1

0

∂2f (t3x)
∂xi∂xj

dt3 +
n∑

k=1

xk

∫ 1

0

t3
∂3f (t3x)

∂xi∂xj∂xk
dt3,
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so that

t21t2
∂2f (t1t2x)

∂xi∂xj
= t21t2

∫ 1

0

∂2f (t1t2t3x)
∂xi∂xj

dt3

+
n∑

k=1

t31t
2
2xk

∫ 1

0

t3
∂3f (t1t2t3x)
∂xi∂xj∂xk

dt3,

and

∫ 1

0

∫ 1

0

t21t2
∂2f (t1t2x)

∂xi∂xj
dt1dt2

=
∫ 1

0

∫ 1

0

t21t2

∫ 1

0

∂2f (t1t2t3x)
∂xi∂xj

dt1dt2dt3

+
∫ 1

0

∫ 1

0

n∑

k=1

t31t
2
2xk

∫ 1

0

t3
∂3f (t1t2t3x)
∂xi∂xj∂xk

dt1dt2dt3.

Finally we obtain

n∑

i=1

n∑

j=1

xixj

∫ 1

0

∫ 1

0

t21t2
∂2f (t1t2x)

∂xi∂xj
dt1dt2

=
n∑

i=1

n∑

j=1

xixj

∫ 1

0

∫ 1

0

t21t2

∫ 1

0

∂2f (t1t2t3x)
∂xi∂xj

dt1dt2dt3

+
n∑

i=1

n∑

j=1

xixj

∫ 1

0

∫ 1

0

n∑

k=1

xkt31t
2
2

∫ 1

0

t3
∂3f (t1t2t3x)
∂xi∂xj∂xk

dt1dt2dt3.

Putting this in the identity (4.1) we obtain new identity

f (x) =
∫ 1

0

f (t1x) dt1 +
n∑

i=1

xi

∫ 1

0

∫ 1

0

t1
∂f (t1t2x)

∂xi
dt1dt2

+
n∑

i=1

n∑

j=1

xixj

∫ 1

0

∫ 1

0

∫ 1

0

t21t2
∂2f (t1t2t3x)

∂xi∂xj
dt1dt2dt3

+
n∑

i=1

n∑

j=1

n∑

k=1

xkxixj

∫ 1

0

∫ 1

0

∫ 1

0

t31t
2
2t3

∂3f (t1t2t3x)
∂xi∂xj∂xk

dt1dt2dt3.

Proceeding in this way we easily obtain the following generalization of the identity
(4.1):

Theorem 4. Let Q be a compact convex subset of Rn, n ≥ 2, x = (x1, ..., xn) ∈ Q
and 0 = (0, ..., 0) ∈ Q. Let f ∈ Cm (Q) and assume that all partial derivatives
of f of order less than or equal to m − 1 are coordinatewise absolutely continuous
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functions. Then

f (x)

=
∫ 1

0

f (t1x) dt1 +
n∑

i=1

xi

∫ 1

0

∫ 1

0

t1
∂f (t1t2x)

∂xi
dt1dt2

+
n∑

i1=1

n∑

i2=1

xi1xi2

∫ 1

0

∫ 1

0

∫ 1

0

t21t2
∂2f (t1t2t3x)

∂xi1∂xi2

dt1dt2dt3

+ · · ·

+
n∑

i1=1

· · ·
n∑

im−1=1

xi1 · · ·xim−1

∫ 1

0

· · ·
∫ 1

0

tm−1
1 · · · tm−1

∂m−1f (t1 · · · tmx)
∂xi1 · · · ∂xim−1

dt1 · · · dtm

+
n∑

i1=1

· · ·
n∑

im=1

xi1 · · ·xim

∫ 1

0

· · ·
∫ 1

0

tm1 tm−1
2 · · · tm ∂mf (t1t2 · · · tmx)

∂xi1 · · · ∂xim

dt1 · · · dtm.

Proof. Similar as for the above explained case m = 3. ¤

Theorem 5. Suppose that all the assumptions of Theorem 4 hold. Additionally
assume that

γi1,..,im :=
∥∥∥∥

∂mf

∂xi1 · · · ∂xim

∥∥∥∥
∞

< +∞,

for all i1, .., im ∈ {1, 2, · · · , n}. If

Rm (x)

= f (x)−
∫ 1

0

f (t1x) dt−
n∑

i=1

xi

∫ 1

0

∫ 1

0

t1
∂f (t1t2x)

∂xi
dt1dt2

−
n∑

i1=1

n∑

i2=1

xi1xi2

∫ 1

0

∫ 1

0

∫ 1

0

t21t2
∂2f (t1t2t3x)

∂xi1∂xi2

dt1dt2dt3

− · · ·

−
n∑

i1=1

· · ·
n∑

im−1=1

xi1 · · ·xim−1

∫ 1

0

· · ·
∫ 1

0

tm−1
1 · · · tm−1

∂m−1f (t1 · · · tmx)
∂xi1 · · · ∂xim−1

dt1 · · · dtm,

then

|Rm (x)| ≤ 1
(m + 1)!

(
n∑

i1=1

· · ·
n∑

im=1

|xi1 | · · · |xim
| · γi1,..,im

)
.

Proof. Follows from the identity stated in Theorem 4. and the fact that
∫ 1

0

· · ·
∫ 1

0

tm1 tm−1
2 · · · tmdt1 · · · dtm =

1
(m + 1)!

.

¤

Remark 4. In the case when m = 2 the inequality from Theorem 5. reduces to
Anastasiou’s result [1, Theorem 9.].
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An R-order four iteration in Banach space

Xiangjiang Mi Xinghua Wang
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Abstract

In this paper, we apply a R-order four iterative method to solve non-linear opera-

tor equations in Banach spaces. We prove a semilocal convergence theorem which guaran-

tees local convergence with R-order four under conditions similar to those of the Newton-

Kantorovich theorem, assuming that the second derivative is bounded, and also give a priori

error bounds. Moreover, we apply our results to the numerical solution of a non-linear

boundary value problem of second-order.

Keywords: Convergence; A priori error bounds; Recurrence relations; Boundary value prob-

lems

1.Introduction

Most of the iterative methods of R-order four convergence need to calculate the second

derivative, in this paper we will discuss an iterative method proposed by Ostrawski in [1] and

Traub in [2]:

yn = xn − f
′
(xn)−1f(xn)

xn+1 = yn − yn − xn

2f(yn)− f(xn)
f(yn)

which has R-order four convergence but only need to calculate the first derivative.

Notice the divided difference of first-order for the operator f
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f [x, y] =
f(x)− f(y)

x− y

we get

yn = xn − f
′
(xn)−1f(xn)

xn+1 = yn − f(yn)
2f [yn, xn]− f ′(xn)

In this paper we will discuss this iterative method in Banach spaces rather than 1st-

dimensional real space in which we always discuss the divided difference.

Let X,Y be Banach spaces, and let F : Ω ⊆ X → Y be a nonlinear operator and consider

the equation

F (x) = 0 (1)

Let us denote by L(X,Y) the space of bounded linear operators from X to Y. An operator

[x, y;F ] ∈ L(X,Y) is called a divided difference of first-order for the operator F on the points

x and y(x 6= y) if the following equality holds:

[x, y;F ](x− y) = F (x)− F (y).

Using this definition, the iteration above can be described by the following:

yn = xn − F
′
(xn)−1F (xn)

xn+1 = yn −
(
[yn, xn;F ] + [xn, yn;F ]− F

′
(xn)

)−1
F (yn) (2)

Compared with the Newton’s method it takes one time computation of derivatives but has

almost the same convergence speed as Newton method.

The convergence of (2) to a solution of (1) has been usually studied from majorizing

sequences [3,4]. In this paper, we analysis the convergence of (2) by using a technique that

consists of a new system of recurrence relations [5,6]. And the use of these recurrence relations

allows us to obtain a priori error bounds.

Further more we will apply this method to the numerical solution of a non-linear bound-

ary value problem of second-order, it is faster than the method discussed in [5], and has the
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same speed as the method in [7] but without calculating the second derivative.

2.Recurrence relations

We establish the recurrence relations from which the convergence of (2) is proved later.

Let X,Y be Banach spaces, and let F : Ω ⊆ X → Y be a nonlinear twice Fréchet

differentiable operator in an open convex domain Ω0 ⊆ Ω. Now we will study the convergence

of (2) to a solution x∗ of equation F (x) = 0.

In Section 3 and 4 we assume that

(i) ‖F ′
(x0)−1‖ ≤ β

(ii) ‖y0 − x0‖ = ‖F ′
(x0)−1F (x0)‖ ≤ η

(iii) ‖F ′′
(x)‖ ≤ k

Let us suppose that

a0 = kβη

and let us define the sequence

an = f(an−1)2g(an−1)an−1

where

f(x) =
2(1− x)

2− 4x + x2
, g(x) =

x3

8(1− x)2

Notice that

k‖F ′
(x0)−1‖‖F ′

(x0)−1F (x0)‖ ≤ a0,

‖x1 − x0‖ ≤
(
1 +

a0

2(1− a0)

)
‖y0 − x0‖.

Given this situation, we prove, for n ≥ 1, the following statement:

(In) ‖F ′
(xn)−1‖ ≤ f(an−1)‖F ′

(xn−1)−1‖

(IIn) ‖yn − xn‖ ≤ ‖F ′
(xn)−1F (xn)‖ ≤ f(an−1)g(an−1)‖yn−1 − xn−1‖

(IIIn) k‖F ′
(xn)−1‖‖F ′

(xn)−1F (xn)‖ ≤ an

(IVn) ‖xn+1 − xn‖ ≤
(
1 +

an

2(1− an)

)
‖yn − xn‖
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Assuming

a0

(
1 +

a0

2(1− a0)

)
< 1 x1 ∈ Ω0,

then we have

‖I − F
′
(x0)−1F

′
(x1)‖ ≤ ‖F ′

(x0)−1‖‖F ′
(x0)− F

′
(x1)‖

≤ k‖F ′
(x0)−1‖

(
‖x1 − y0‖+ ‖y0 − x0‖

)

≤ a0

(
1 + a0

2(1−a0)

)
< 1

so F
′
(x1)−1 is defined and since

F (x1) =
∫ 1

0
F
′′
( y0 + θ(x1 − y0))(1− θ)dθ(x1 − y0)2

−[y0, x0;F ]− [x0, y0;F ](x1 − y0)

+F
′
(x0)(x1 − y0) + F

′
(y0)(x1 − y0)

=
∫ 1

0
F
′′
( y0 + θ(x1 − y0))(1− θ)dθ(x1 − y0)2

+
∫ 1

0
F
′
(y0)− F

′
(x0 + θ(y0 − x0))dθ(x1 − y0)

+
∫ 1

0
F
′
(x0)− F

′
(x0 + θ(y0 − x0))dθ(x1 − y0)

=
∫ 1

0
F
′′
( y0 + θ(x1 − y0))(1− θ)dθ(x1 − y0)2

so

‖F ′
(x1)−1F

′
(x1)‖ ≤ ‖F ′

(x1)−1F
′
(x0)‖‖F ′

(x0)−1‖‖F (x1)‖

≤ k

2(1− a0(1 + a0
2(1−a0)))

‖F ′
(x0)−1‖‖x1 − y0‖2

≤ 1
1− (1 + a0

2(1−a0))a0

a3
0

8(1− a0)2
‖y0 − x0‖

= f(a0)g(a0)‖y0 − x0‖

and
∥∥∥I − F

′
(x1)−1

(
[y1, x1;F ] + [x1, y1;F ]− F

′
(x1)

)∥∥∥

≤ ‖F ′
(x1)−1‖‖F ′

(x1)− [y1, x1;F ]− [x1, y1;F ] + F
′
(x1)‖

≤ k‖F ′
(x1)−1‖‖y1 − x1‖ ≤ a1 < 1
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so
(
[y1, x1;F ] + [x1, y1;F ]− F

′
(x1)

)−1
is defined and since

F (y1) =
∫ 1

0
F
′′
(x1 + θ(y1 − x1))(1− θ)dθ(y1 − x1)2

we get

‖x2 − y1

∥∥∥ =
∥∥∥
(
[y1, x1;F ] + [x1, y1;F ]− F

′
(x1)

)−1
F (y1)

∥∥∥

≤ k
1

1− a1
‖F ′

(x1)−1‖1
2
‖y1 − x1‖2

=
a1

2(1− a1)
‖y1 − x1‖

Now following an inductive procedure and assuming that

xn, yn ∈ Ω0, an

(
1 +

an

2(1− an)

)
< 1, n ∈ N (3)

items (In)− (IVn) are proved.

Now we must analyze the real sequence {an} to study the sequence {xn} defined in

a Banach space. To establish the convergence of {xn}, we have only to prove that it is a

Cauchy sequence and prove the above assumption (3).

3.Convergence Study

In this section, we study sequence {an} defined above, to prove the convergence of

the sequence {xn} given by (1). First of all, we give a technical lemma including results

concerning functions of one variables, which will be needed later.

Lemma 3.1 Under the previous notations, we have that f(x) is increasing and f(x) > 1

for x ∈ (0, 0.5), and the same to g(x). Moreover, if γ ∈ (0, 1), then g(γx) ≤ γ3(x), for

x ∈ (0, 0.5)

Lemma 3.2 Let 0 < a0 < 0.5 and f(a0)2g(a0) < 1. Then, the sequence {an} is decreasing.

Proof. From the hypotheses, we deduce that 0 < a1 < a0, since f(x) > 1 in (0, 0.5). Now,

we suppose that 0 < ak < ak−1 < · · · < a1 < a0 < 0.5. Then, 0 < ak+1 < ak if and only if
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f(ak)2g(ak) < 1. Notice that

f(ak) < f(a0), g(ak) < g(a0).

Consequently,

f(ak)2g(ak) < 1.

Then the result holds.

In the following lemma, whose proof is obvious,we give sufficient conditions so that the

real sequence {an} is decreasing.

Lemma 3.3 If 0 < a0 < 0.5 then f(a0)2g(a0) < 1.

The next step is to prove (3). Under the hypotheses of the previous lemma, we have

that,

an

(
1 +

an

2(1− an)

)
< a0

(
1 +

a0

2(1− a0)

)
< 1, if and only if

a2
0 − 4a0 + 2
2(a0 − 1)

< 0.

This inequality is true since a0 ∈ (0, 0.5).

We will now prove that (1 + an
2(1−an))‖yn − xn‖ is a Cauchy sequence. We note that

(
1+

an

2(1− an)

)
‖yn − xn‖

≤
(
1 +

a0

2(1− a0)

)
f(an−1)g(an−1)‖yn−1 − xn−1‖

≤ · · · ≤
(
1 +

a0

2(1− a0)

)
‖F ′

(x0)F (x0)‖
n−1∏

k=0

f(ak)g(ak).

We analyze next the factor
n−1∏

k=0

f(ak)g(ak)

by means of the following lemma.

Lemma 3.4 Let us define γ = a1/a0. Then,

(i) γ = f(a0)2g(a0) ∈ (0, 1),

(iin) an ≤ γ4n−1
an−1 ≤ γ(4n−1)/3a0,

(iiin) f(an)g(an) ≤ γ4n
[f(a0)g(a0)/γ] = γ4n

/f(a0).
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Proof. Notice that (i) is trivial. We prove (iin) by following an inductive procedure. We

have,

a1 ≤ γa0

and by Lemma 3.1 the result holds. If we suppose that (iin) is true, then

an+1 = anf(an)2g(an)

≤ γ4n−1
an−1f(γ4n−1

an−1)2g(γ4n−1
an−1)

≤ γ4n−1
an−1f(γ4n−1

an−1)2(γ4n−1
)3g(an−1) = γ4n

an.

Now as an+1/an ≤ γ4n
, (iin) also holds. Moreover,

an+1 ≤ γ4n
an ≤ γ4n

γ4n−1
an−1 ≤ · · · ≤ γ(4n+1−1)/3a0.

Finally, we observe that

f(an)g(an) ≤ f(γ(4n−1)/3a0)g(γ(4n−1)/3a0)

≤ γ4n
[f(a0g(a0)/γ]

= γ4n
/f(a0),

and the proof is complete. 2

As a consequence of all the above, if we denote ∆ = 1/f(a0), it follows that

n−1∏

k=0

f(ak)g(ak) ≤
n−1∏

k=0

(γ4n
∆) = γ(4n−1)/3∆n.

So, from ∆ < 1, we deduce that
n−1∏

k=0

f(ak)g(ak) converges to zero by letting n →∞.

We are now ready to state the following result on convergence for (1).

Theorem 3.1 Let X,Y be Banach spaces, and let F : Ω ⊆ X → Y be a nonlinear twice

Fréchet differentiable operator in an open convex domain Ω0 ⊆ Ω. Let us assume that (i)-

(iv) are satisfied. Let us denote an = kβη. Suppose that 0 < a0 < 0.5. Then if B(x0, Rη) =

{x ∈ X; ‖x − x0‖ ≤ Rη} ⊆ Ω0, where R = (1 + a0
2(1−a0))

1
1−∆ and ∆ = 1/f(a0), the sequence
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{xn} defined (1) and starting at x0 converges R-cubically to a solution x∗ of the equation

F (x) = 0. In this case, the solutio x∗ and the iterates yn, xn belong to B(x0, Rη). Moreover,

the solution x∗ is unique in B(x0, 2/kβ −Rη) ∩ Ω0. Furthermore, we can give the following

error estimates:

‖x∗ − xn‖ ≤
(
1 +

a0

2(1− a0)
γ(4n−1)/3

)
γ(4n−1)/3

[ ∆n

1−∆

]
η (4)

Proof. When 0 < a0 < 0.5, the convergence of the sequence {xn} follows immediately from

the previous lemmas. We consider p ≥ 1 and

‖ xn+p − xn‖

≤ ‖xn+p − xn+p−1‖+ ‖xn+p−1 − xn+p−2‖+ · · ·+ ‖xn+1 − xn‖

≤
(
1 +

an+p−1

2(1− an+p−1)

)
η

n+p−2∏

j=0

f(aj)g(aj) + · · ·+
(
1 +

an

2(1− an)

)
η

n−1∏

j=0

f(aj)g(aj)

≤
(
1 +

an

2(1− an)

)[
γ(4n+p−1−1)/3∆n+p−1 + · · ·+ γ(4n−1)/3∆n

]
η

≤
(
1 +

a0

2(1− a0)
γ(4n−1)/3

)
γ(4n−1)/3

[∆n(1−∆p)
(1−∆)

]
η (5)

Therefore, we obtain

‖xp − x0‖ ≤
(
1 +

a0

2(1− a0)

)[1−∆p

1−∆

]
η < Rη,

for n = 0. By letting p → ∞ in (5), we also get (4). Similarly, we infer that yn belongs to

B(x0, Rη).

To prove that F (x∗) = 0, notice that

‖F ′
(xn)−1F (xn)‖ → 0, as n →∞.

Since

‖F (xn)‖ ≤ ‖F ′
(xn)‖ · ‖F ′

(xn)−1F (xn)‖

and {‖F ′
(xn)‖} is a bounded sequence, we deduce that ‖F (xn)‖ → 0 and then F (x∗) = 0

from the continuity of F .
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To show uniqueness, suppose that y∗ ∈ B(x0, 2/kβ − Rη) ∩ Ω0 is another solution of

F (x) = 0. Then

0 = F (y∗)− F (x∗) =
∫ 1

0
F ”(x∗ + θ(y∗ − x∗))dθ(y∗ − x∗).

Using the estimate

‖F ′
(xn)−1‖

∫ 1

0
‖F ′

(x∗ + θ(y∗ − x∗))− F
′
(x0)‖dθ

≤ kβ

∫ 1

0
‖x∗ + θ(y∗ − x∗)− x0‖dθ

≤ kβ

∫ 1

0
[(1− θ)‖x∗ − x0‖+ θ‖y∗ − x0‖]dθ

< (kβ/2)(Rη + 2/kβ −Rη)

= 1

we infer that the operator
∫ 1
0 F

′
(x∗+ t(y∗−x∗))dt has an inverse, and consequently, y∗ = x∗.

Finally, from (4), we deduce that the R-order of convergence of the sequence (1) is four,

‖x∗ − xn‖ ≤
(
1 +

a0

2(1− a0)

)
γ−1/3

[ η

1−∆

]
(γ1/3)4

n
, γ < 1

The proof is complete. 2

4.Numerical example

Now we apply the semilocal convergence result given above to an example also consid-

ered in [5]. We consider the following non-linear boundary value problem of second-order:

x
′′

+ x1+p = 0, p ∈ (0, 1)

x(0) = x(1) = 0.

(6)

To solve this problem by finite differences, we start by drawing the usual grid line with

grid points ti = ih, where h = 1/n and n is an appropriate integer. Note that x0 and xn

are given by the boundary conditions, then xn = 0 = xn. We first approximate the second

derivative x
′′
(t) in the differential equation by
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x
′′
(t) ≈ [x(t + h)− 2x(t) + x(t− h)]/h2,

x
′′
(ti) = (xi+1 − 2xi + xi−1)/h2, i = 1, 2, · · · , n− 1.

By substituting this expression into the differential equation, we have the following system

of non-linear equations:

2x1 − h2x1+p
1 − x2 = 0

−xi−1 + 2xi − h2x1+p
i − xi+1 = 0, i = 2, 3, · · · , n− 2,

−xn−2 + 2xn−1 − h2x1+p
n−1 = 0.

(7)

We therefore have an operator F : Rn−1 → Rn−1 such that F (x) = H · x− h2g(x), where

H =




2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2




, g(x) =




x1+p
1

x1+p
2

...

x1+p
n−1




, x =




x1

x2

...

xn−1




Thus

F
′
(x) = H − h2(1 + p)diag{xp

1, x
p
2, · · · , xp

n−1}.

Let x ∈ Rn−1. Then our norm will be ||x|| = max
1≤i≤n−1

||xi||. The corresponding norm on

A ∈ Rn−1 ×Rn−1 is

||A|| = max
1≤i≤n−1

n−1∑

j=1

||aij ||.

It is known (see [8,9]) that F has a divided difference at the points u, v ∈ Rn−1, which is

defined by the matrix whose entries are

[u, v;F ]ij =
1

uj − vj
(Fi(u1, · · · , uj , vj+1, · · · , vn−1)

−Fi(u1, · · · , uj−1, vj , · · · , vn−1)).

Therefore
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[u, v;F ] = H − h2




u1+p
1 − v1+p

1

u1 − v1
0 · · · 0

0
u1+p

2 − v1+p
2

u2 − v2
· · · 0

...
...

. . .
...

0 0 · · · u1+p
n−1 − v1+p

n−1

un−1 − vn−1




.

In this case, we have that [u, v;F ] =
∫ 1
0 F

′
(u + θ(u − v))dθ. So we study the value

||F ′
(x)− F

′
(u)|| to obtain a bound for ||[x, y;F ]− [u, v;F ]||.

For all with x, u ∈ Rn−1,con|xi| > 0, |ui| > 0, (i = 1, 2, · · · , n − 1), and taking into

account the max-norm it follows:

||F ′
(x)− F

′
(u)||= ||diag{h2(1 + p)(up

i − xp
i )}||

= h2(1 + p) max
1≤i≤n−1

|up
i − xp

i |

≤ h2(1 + p)[ max
1≤i≤n−1

|ui − xi|]p

= h2(1 + p)||u− x||p.

Therefore

||[x, y;F ]− [u, v;F ]|| ≤
∫ 1

0
||F ′

(x + θ(y − x))− F
′
(u + θ(v − u))||dθ

≤ h2(1 + p)
∫ 1

0
||(1− θ)(x− u) + θ(y − v)||pdθ

≤ h2(1 + p)
∫ 1

0
((10θ)p||x− u||p + θp||y − v||p)dθ

= h2(||x− u||p + ||y − v||p),

so k = 2h2.

Now we apply the R-order four method to approximate the solution of F (x) = 0.

If we choose p = 1/2 and if n = 10, then (7)gives nine equations. We choose x0 as
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x0 =




33.57498274928053

65.20452867501265

91.56893412724006

109.1710943553677

115.3666988182897

109.1710943553677

91.56893412724006

65.20452867501265

33.57498274928053




With the notation of Theorem 3.1 we can easily obtain the following results:

β = 26.5876, η = 0.00366509, Rη = 1.88058

a0 = 0.00194892 < 0.5, f(a0)2g(a0) = 9.32570911847766481× 1−10 < 1

so the hypotheses of Lemma 3.2 are satisfied. We obtain by Theorem 3.1 that the sequence

{xn} given by the R-order four method converges to a solution x∗ in B(x0, Rη) of equation

F (x) = 0. After one step we get the vector x∗ as the solution of system (7):

x∗ =




33.57391204833779

65.20245092365435

91.56602003553957

109.1676242966423

115.3630336377466

109.1676242966423

91.56602003553957

65.20245092365435

33.57391204833779




and if we use the Secant method in [5], then we need 3 steps.
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And if we choose p = 1 and n = 10 and

x0 =




0.0772542

0.1469460

0.2022540

0.2377640

0.2500000

0.2377640

0.2022540

0.1469460

0.0772542




( [7]) then we get the solution

x∗ =




−8.026098× 10−7

−1.578568× 10−6

−2.251941× 10−6

−2.71847× 10−6

−2.886245× 10−6

−2.71847× 10−6

−2.251941× 10−6

−1.578568× 10−6

−8.026098× 10−7




without calculating the second derivative.
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continuous, Applied Mathematics and Computation 124,139-149(2001).

[6] M.A.Hernández, Second-Derivative-Free Variant of the Chebyshev Method for Nonlin-

ear Equations, Journal of oprimization theory and applications, 11:3,501-515(2000).

[7] A.Ezquerro, A modification of the Chebyshev method, IMA Journal of Numerical Anal-

ysis, 17,511-525(1997).

[8] F.A.Potra and V.Ptak, Nondiscrete induction and iterative processes, Pitman, London,

1984.

[9] F.A.Potra, On an iterative algorithm of order 1.893... for solving nonlinear operator

equations, Numer. Funct. Anal. and Optimiz. 7:1,75-106(1984-85).

Mi and Wang318



Numerical Treatment Of The Two-dimensional

Heat Radiation Integral Equation

Naji A. Qatanani* and Imad A. Barghouthi**

* Department of Mathematics, Al-Quds University, Jerusalem, Palestine.

nqatanani@science.alquds.edu

** Department of Physics, Al-Quds University, Jerusalem, Palestine.

barghouthi@yahoo.com

The radiation exchange in both convex and non-convex enclosures of diffuse gray

surfaces is given in the form of a Fredholm boundary integral equation of the second

kind. A boundary element method which is based on the Galerkin discretization

schem is implemented for this integral equation. Four iterative methods are used

to solve the linear system of equations resulted from the Galerkin discretization

scheme. A comparison is drawn between these methods.

Theoretical error estimates for the Galerkin method has shown to be in a good

agreement with numerical experiments.

KEYWORDS: Fredholm integral equation; heat radiation; iterative methods;

error estimations.

1. INTRODUCTION

Transport of heat radiative energy between two points in convex or non-convex

enclosures of diffuse gray surfaces is one of the few phenomena that are often gov-

erned directly by an integral equation. One of the consequences of this fact is that

the pencil of rays emitted at one point can impinge another point only if these

two points can “see” each other, i.e. the line segment connected these points does

not intersect any surface. The presence of the shadow zones should be taken into

account in heat radiation analysis whenever the domain where the radiation heat

transfer is taking place, is not convex.
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Shadow zones computation in some respect is not easy, but we were able to de-

velop an efficient algorithm for this purpose and was implemented in our computer

program. The integral equation governing the heat radiation (see section 2 for the

formulation of the problem) was earlier solved for the convex enclosure using the

Monte Carlo method [5].

In [2, 3] a boundary element method was implemented to obtain a direct numerical

solution for this integral equation. This latter method permits quite high error

bounds. For two-dimensional enclosure and three-dimensional rotational symmet-

ric convex enclosure a Panel method has been developed [9] and then coupled with

heat transport through radiation and conduction.

In this paper we are concerned to use the boundary element method, which is

regarded to be the most popular numerical method for solving this type of prob-

lems. Thus we will present an efficient and reliable iterative methods to solve the

linear system arises from Galerkin discretization scheme for the boundary integral

equation. Numerical results for both convex and non-convex geometries have been

obtained. We will present some error estimates for the Galerkin discretization

method. Theoretically Galerkin method requires a time consuming double inte-

gral over Γ for the calculation of every element of the stiffness matrix. Thus we

choose the corresponding numerical Gaussian quadrature formula with respect to

a fast computation, i.e. by evaluating the kernel of the integral equation as sel-

dom as possible. Numerical experiments with examples show high accuracy and

efficiency of this method. The theoretical asymptotic error estimates are in rather

good agreement with numerical experiments.

2. THE FORMULATION OF THE TWO

DIMENSIONAL HEAT RADIATION PROBLEM

We consider an enclosure Ω ⊂ R
2 with boundary Γ. The boundary of the enclosure

is composed of N elements as shown in Fig. 1.
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Fig.1

element k

elements j

The heat balance for an element k with area dAk reads as

Qk = qkdAk = (q0,k − qi,k)dAk, (2.1)

where

qi,k : is the rate of incomming radiant energy per unit area on the element k.

qo,k : is the rate of outgoing radiant energy per unit area on the elment k.

dAk : is the area of element k.

qk : is the energy flux supplied to the element k by some means other than the radiation

inside the enclosure to make up for the net radiation loss and maintain the specified

inside surface temperature.

A second equation results from the fact that the energy flux leaving the surface is

composed of emitted plus reflected energy. This yields to

q0,k = εkσT k
4 + lkqi,k (2.2)
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where

εk : is the emissivity coefficient (0 < εk < 1).

σ : is the Stefan-Boltzmann constant which has the value 5.6696 × 10−8 W/m2K.

lk : is the reflection coefficient with the reation lk = 1 − εk is used for a gray surfaces.

The incident flux qi,k is composed of the portion of the energy leaving the viewable

surfaces of the enclosure and arriving at the k-th surface. If the k-th surface can

view itself (is non convex), a portion of its outgoing flux will contribute directly

to its incidient flux. The incidient energy is then equal

dAkqi,k = dA1q0,1F1,kβ(1, k) + dA2q0,2F2,kβ(2, k) + . . .

+dAjq0,jFj,kβ(j, k) + . . . + dAkq0,kFk,kβ(k, k) + . . . (2.3)

+dANq0,NFN,kβ(N, k).

From the view factor reciprocity relation [11] follows

dA1F1,kβ(1, k) = dAkFk,1β(k, 1)

dA2F2,kβ(2, k) = dAkFk,2β(k, 2)
...

dANFN,kβ(N, k) = dAkFk,Nβ(k, N)



























(2.4)

Then equation (2.3) can be rewritten in such a way that the only area appearing

is dAk:

dAkqi,k = dAkFk,1β(k, 1)q0,1 + dAkFk,2β(k, 2)q0,2 + . . .

+dAkFk,jβ(k, j)q0,j + . . . + dAkFk,kβ(k, k)q0,k + . . . (2.5)

+dAkFk,Nβ(k, N)q0,N .

so that the incident flux can be expressed as

qi,k =

N
∑

j=1

Fk,jβ(k, j)q0,j (2.6)
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The visibility factor β(k, j) is defined as (see for example [12])

β(k, j) =















1 when there is a heat exchange between the

surface element k and the surface element j

0 otherwise
(2.7)

Substituting (2.6) into (2.2) and using the relation lk = 1 − εk yields

q0,k = εkσT 4
k + (1 − εk)

N
∑

j=1

Fk,jβ(k, j)q0,j. (2.8)

2.1. The Calculation Of The View Factor Fk,j

The total energy per unit time leaving the surface element dAk and incident at

the element dAj is given through

Qk,j = LkdAk cos (θk)dωk, (2.9)

where dωk is the solid angle subtended by dAj when viewed from dAk (see Fig.2)

and Lk is the total intensity of a black body leaving the element dAk.
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Fig.2

k

θ

θ j

k

dA
k

dA j

n

n

j

k

ωd

The solid angle dωk is related to the projected area dAk and the distance Sk,j

between the elements dAk and dAj and can be calculated as

dωk =
dAj cos (θj)

S2
k,j

, (2.10)
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where θj denotes the angle between the normal vector nj and the distance vector

Sk,j. Substituting (2.10) into (2.9) gives the following equation for the total energy

per unit time leaving dAk and arriving at dAj:

Qk,j =
LkdAk cos (θk)dAj cos (θj)

S2
k,j

(2.11)

In [12], we have the relation between the total intensity Ek of a black body i.e.,

Lk =
Ek

π
=

σT 4
k

π
(2.12)

and consequantly equation (2.11) becomes

Qk,j =
σT 4

k cos (θk) cos (θj)dAkdAj

πS2
k,j

. (2.13)

From the definition of the view factor Fk,j (see [11]) together with (2.13), we get

Fk,j =
Qk,j

σT 4
k dAk

=
cos (θk) cos (θj)dAj

πS2
k,j

. (2.14)

2.2. The Boundary Integral Equation

Now we are able to derive the boundary integral equation describing the heat

balance in a gray body. The substitution of equation (2.14) into equation (2.8)

leads to

q0,k = εkσT 4
k + (1 − εk)

N
∑

j=1

cos (θk) cos (θj)dAj

πS2
k,j

β(k, j)q0,j. (2.15)

If the number of the area elements N → ∞, then for all x ∈ dAk we obtain the

following boundary integral equation

q0(x) = ε(x)σT 4(x) + (1 − ε(x))

∫

Γ

G(x, y)q0(y)dΓy for x ∈ Γ, (2.16)

where the kernel G(x, y) denotes the view factor between the points x and y of Γ.

From the above consideration and for general enclosure geometries G(x, y) is given

through
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G(x, y) := G∗(x, y)β(x, y) =
[n(y) · (y − x)] · [n(x) · (x − y)] · β(x, y)

2|x − y|3
. (2.17)

For convex enclosure geometries β(x, y) ≡ 1. If the enclosure ist not convex then

we have to take into account the visibility function β(x, y):

β(x, y) =

{

1 for n(y) · (y − x) ∧ n(x) · (x − y) > 0 ∧ ~xy ∩ Γ = ∅

0 for ~xy ∩ Γ 6= ∅ (2.18)

where ~xy denotes the open straight segment between the points x and y. Definition

(2.18) implies that β(x, y) = β(y, x). Since G∗(x, y) is symmetric then G(x, y) is

also symmetric.

Equation (2.16) is a Fredholm boundary integral equation of the second kind. We

introduce the integral operator ˜K : L∞(Γ) → L∞(Γ) with

˜Kq0(x) :=

∫

Γ

G(x, y)q0(y)dΓy for x ∈ Γ, q0 ∈ L∞(Γ). (2.19)

Some of the properties of the integral operator (2.19) along with the solvability of

equation (2.16) have been investigated in [12].

3. NUMERICAL APPROXIMATION TO THE

SOLUTION OF THE FREDHOLM INTEGRAL

EQUATION

3.1. Boundary Element Method and Galerkin Discretization

In a two-dimensional case we let Γ be a curve that is given by a regular parameter

representation [10]

Γ : y = Zj(t) for t ∈ R, j = 1, . . . , L (3.1)
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We choose on R a family of 1-periodic interval partition:

0 = t0 < t< · · · < tN = 1,

Πh = {tk}
∞
−∞ , tk+N = tk + 1 with h = max{tk+1 − tk} → 0. (3.2)

Let Sd,r
h be a family of 1-periodic piecewise polynomials of degree (d − 1) with

respect to the partition Πh in the sense of Babuska an Aziz [1] which is (r − 1)

times continuous and differntiable. We denote with Φk(t) the basis trial functions

with a smallest possible support (B-splines) (see Fig.3).

1

1

0

Fig. 3

t3t2 t4 t5 t

Φ2

Γh : y = Zh(t)

Γ : y = Z(t)

t1

The approximate solution has the general form

qh(t) =

n
∑

k=1

qkΦk,n(t) (3.3)

where n is the number of free grids and qk ∈ R, k = 1, . . . , n are the partition

coefficients.

On partition in the parameter domain we use Sm+1,1
h -Lagrange-System of finite ele-

ments. Then the local representation of Γ transplant these finite element functions

onto Γh. The ansatz functions (3.3) on Γh will then be defined by

Γh : y = Zjh(t) (3.4)
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with Zjh(t) = Zj(tk).

The ansatz functions (3.3) have the following approximation property

Approximation Property:

Let σ ≤ τ ≤ d be fulfilled and, for

σ < r +
1

2
, σ <

3

2
(3.5)

with the boundary approximation Γh, then there exists a constant c depending

only on τ , σ and r and to any v ∈ Hτ (Γ) and any Sd,r
h of our family there exists

a finite element χh ∈ Sd,r
h such that

‖v − χh‖Hσ(Γ) ≤ chτ−σ‖v‖Hτ (Γ). (3.6)

Sometimes we shall additionally use the inverse property which holds for regular

families Sd,r
h subject to quasi-uniform of meshes.

Inverse Property:

For τ ≤ σ with (3.5) there holds an estimate

‖χh‖Hσ(Γ) ≤ c∗hτ−σ‖χh‖Hτ (Γ) for χh ∈ Sd,r
h (3.7)

where the constant c∗ is independent of χh and h.

3.1.1. Representation Of System Of Equations

The Fredholm integral equation (2.16) can be expressed as

q = g + Kq (3.8)

where Kq = (1 − ε) ˜Kq and

˜Kq(x) =

∫

Γ

G(x, y)q(y)dΓy for x ∈ Γ and q ∈ L∞(Γ) (3.9)

We let

〈u, v〉Γ :=

∫ 1

0

u(t)v(t)|ẋ(t)|dt.
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The Galerkin discretization of the integral equation (2.16) with the ansatz function

(3.3) is given by

n
∑

k=1

qk 〈Φk,n, Φl,n〉Γ = 〈g, Φl,n〉Γ +

n
∑

k=1

qk 〈KΦk,n, Φl,n〉Γ (3.10)

Equation (3.10) can be written in the following short form:

(An − Bn)an = bn (3.11)

using the abbreviation A = (ql,k)l,k=1,...,n for the mass matrix, with

ql,k = 〈Φk,n, Φl,n〉Γ =

∫ 1

0

Φl,n(t)Φk,n(t)|ẋ(t)|dt, (3.12)

B = (Bl,k)l,k=1,...,n for the view factor matrix with

Bl,k = 〈KΦk,n, Φl,n〉Γ =

∫ 1

0

∫ 1

0

(1 − ε(t))Φl,n(t)G(t, τ)Φk,n(τ)|ẋ(t)||ẋ(τ)|dtdτ

(3.13)

and the vectors a = (qk)k=1,...,n and b = 〈g, Φl,n〉Γ, l = 1, . . . , n.

Properties Of The Matrices

The mass matrix A in (3.11) is symmetric, positive definite and diagonal dom-

inant hence it is invertible. Let λmin and λmax be the minimum and the maximum

eigenvalues of the matrix A respectively then follows the well known estimations

λmin‖q‖
2
l2 ≤ (Anq, q) ≤ λmax‖q‖

2
l2 (3.14)

1

λmax

‖q‖2
l2 ≤ (A−1

n q, q) ≤
1

λmin

‖q‖2
l2 (3.15)

where (·, ·) denotes the Euclidean scalar product of R
n with (q, q) = ‖q‖2

l2
.

Furthermore holds

‖An‖l2 = λmax,
1

‖A−1
n ‖l2

= λmin. (3.16)
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Also the system of equations (An − Bn) is symmetric and positve definite.

Since the mass matrix A is invertible, equation (3.11) can then be expressed in the

form

(I − A−1
n Bn)an = A−1

n bn (3.17)

Equation (3.17) can also be written as

qn = gn + Knqn, (3.18)

where qn = an, gn = A−1
n bn and Kn = A−1

n Bn.

3.1.2. Hiearchie Discretized Problem

The discretization parameter n defines in general the dimension of the problem.

For the multi-grid method we use the hiearchie of discretization in multi levels.

For each stepwise hl there is a corresponding parameter nl. Hence the discretized

vector equation of level l has the form

qnl
= gnl

+ Knl
qnl

(3.19)

To avoid the double indices nl, we use for short

ql = gl + Klql (l ≥ 0) (3.20)

where ql = al, gl = A−1
l bl and Kl = A−1

l Bl.

3.2. Solution Methods

To solve equation (3.20) we use four approximate iterative methods. These are

the Picard-iteration or Neumann series method, two-grid and multi-grid methods

and the conjugate gradient method.

3.2.1. Picard-Iteration

This is one of the iterative approximate method in which the pre-iteration step

qi+1
l = gl + Klq

i
l (3.21)
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with the iteration step index i is directly obtained from the linear system of equa-

tions. It converges if and only if the spectral radius

ρ(Kl) < 1 (3.22)

holds [7].

A sufficient condition for the convergence of this iteration method is

‖Kl‖ < 1 (3.23)

for a suitable matrix norm.

3.2.2. Two-Grid Method

The usual two-grid iteration of level l for one iteration step qi
l → qi+1

l :

Smoothing step: qi+1
l = gl + Klq

i
l i = 1, . . . , ν, ν ≥ 2 (3.24)

Residues: rν+1
l = (qν+1

l − gl − Klq
ν+1
l ) (3.25)

Breakdown criterion: ρν+1
l =

∥

∥rν+1
l

∥

∥

2
,

ρν+1
l

ρ0

< ε stop

Coarse grid correction: dl = r(qν+1
l − gl − Klq

ν+1
l ) (3.26)

δl−1 = (I − Kl−1)
−1dl−1 (3.27)

q0
l+1 = qν+1

l − Pδl−1 (3.28)

Here r is nl × nl−1 restriction matrix and P is nl−1 × nl prolongation matrix. The

indices l − 1 and l are used for the coarse grid and fine grid respectively.

Convergence Of The Two-Grid Method

The mapping qi
l → qi+1

l of the two-grid algorithm is affined an has the repre-

sentation

qi+1
l = MTGM

l qi
l + Cl (3.29)

where MTGM
l is the two-grid iteration matrix.
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Lemma 3.1. The two-grid iteration matrix MTGM
l has the form [7]

MTGM
l =

[

I − P (I − Kl−1)
−1r(I − Kl)

]

Kl for all l ≥ 1

The partition of this matrix yields

MTGM
l =

{

(I − Pr) + P (I − Kl−1)
−1 [(I − Kl−1)r − r(I − Kl)]

}

Kl

=
{

(I − Pr) + P (I − Kl−1)
−1 [rKl − Kl−1r]

}

Kl (3.30)

A sufficient condition for the convergence of this method ist the validity of the

contraction condition
∥

∥MTGM
l

∥

∥

Al

< 1 (3.31)

where MTGM
l is given in (3.30).

3.2.3. Multi-Gird Method

The multi-grid iteration consists of a smoothing step and a coarse grid correction.

The latter step uses the restricted defect r(qν+1
l − gl − Klq

ν+1
l ). The resulting

iteration is defined by the following recursive procedure:

Smoothing step: qi+1
l = gl + Klq

i
l i = 1, . . . , ν, ν ≥ 2 (3.32)

Residues: rν+1
l = (qν+1

l − gl − Klq
ν+1
l ) (3.33)

Breakdown criterion: ρν+1
l =

∥

∥rν+1
l

∥

∥

2
,

ρν+1
l

ρ0

< ε stop

Coarse grid correction: dl−1 = r(qν+1
l − gl − Klq

ν+1
l ) (3.34)

Multi-grid approximation (δl−1 = dl−1 + Kl−1δl−1) (3.35)

q0
l+1 = qν+1

l − Pδl−1. (3.36)

Convergence Of The Multi-Grid Method

The mapping qi
l → qi+1

l of the multi-grid algorithm has the representation [7]

qi+1
l = MMGM

l qi
l + Cl (3.37)

where MMGM
l is the multi-grid iteration matrix.
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Lemma 3.2. The multi-grid iteration matrix MMGM
l has the form [7]

MMGM
l = MTGM

l + P (MMGM
l−1 )2(I − Kl−1)

−1r(I − Kl)Kl. (3.38)

An alternative representation to (3.38) is

MMGM
l = MTGM

l + P (MMGM
l−1 )2

[

r − (I − Kl−1)
−1(rKl − Kl−1r)

]

Kl. (3.39)

A sufficient condition for the convergence of this method ist the validity of the

contraction condition
∥

∥MMGM
l

∥

∥

Al

< 1 (3.40)

where MMGM
l is given in (3.39).

3.2.4. Conjugate Gradient Iteration

This is an iteration method for solving the linear system

Clal = bl (3.41)

where Cl = (Al − Bl).

It is an effective method for symmetric and positive definite systems.

This CG-iteration is given by the following algorithm [6]:

1. Choose an initial vector a0
l and compute r0 = Cla

0
l − bl.

Set p0 = r0 and k = 0

2. Compute

αk =
rT
k pk

pT
k Clpk

ak+1
l = ak

l + αkpk

rk+1 = Cla
k+1
l

3. Stop if
‖rk+1‖2

‖rk‖2
< ε
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4. Compute

βk =
rT
k+1Clpk

pT
k Clpk

pk+1 = rk+1 + βlpk.

Convergence Of The Conjugate Gradient Method

From [12] follows that

ε · 〈q, q〉L2(Γ) ≤ 〈Aq, q〉L2(Γ) ≤ (2 − ε) · 〈q, q〉L2(Γ) (3.42)

where A = (I − K).

Let q ∈ Hl ⊂ L2(Γ) then we define

q(t) =

nl
∑

k=1

qkΦk(t). (3.43)

Set equation (3.43) into (3.42) we get

ε ·

∥

∥

∥

∥

∥

nl
∑

k=1

qkΦk

∥

∥

∥

∥

∥

2

L2(Γ)

≤

nl
∑

k,j

qkqj 〈AΦk, Φj〉L2(Γ) ≤ (2 − ε) ·

∥

∥

∥

∥

∥

nl
∑

k=1

qkΦk

∥

∥

∥

∥

∥

2

L2(Γ)

. (3.44)

Now
∥

∥

∥

∥

∥

nl
∑

k=1

qkΦk

∥

∥

∥

∥

∥

2

L2(Γ)

=

∫ 1

0

∣

∣

∣

∣

∣

nl
∑

k=1

qkΦk(t)

∣

∣

∣

∣

∣

2

dt =

nl
∑

k,j

qkqj

∫ 1

0

Φk(t)Φj(t)dt = (Alq, q)

(3.45)

Substituting (3.45) into (3.44) yields

ε(Alq, q) ≤ (Clq, q) ≤ (2 − ε) · (Alq, q). (3.46)

Lemma 3.3. Let λk be the real, positive eigenvalue of the mass matrix Al, and

it holds
∣

∣

∣

∣

λmax

λmin

∣

∣

∣

∣

≤ c (3.47)

then follows

λmin(q, q)Al
≤ (Alq, q) ≤ λmax(q, q)Al

. (3.48)
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Thus one obtains

λmin‖q‖
2
l2(Γ) ≤ (Alq, q) ≤ λmax‖q‖

2
l2(Γ). (3.49)

From (3.46) follows immediately

(ε)λmin‖q‖
2
l2(Γ) ≤ (Clq, q)Al

≤ (2 − ε) · λmax‖q‖
2
l2(Γ). (3.50)

The condition number κ(Cl) of the matrix Cl can then be estimated to give

κ(Cl) ≤
(2 − ε) · λmax

(ε) · λmin

(3.51)

using (3.47) then follows

κ(Cl) ≤ c ·
(2 − ε)

(ε)
.

Theorem 3.1. For a positive matrix Cl converges the Conjugate Gradient itera-

tion with the convergence estimation [8]

∥

∥ek
∥

∥

Cl

≤ 2

(

(κ(Cl) − 1)
1
2

(κ(Cl) + 1)
1
2

)k
∥

∥e0
∥

∥

Cl

(3.52)

where
∥

∥ek
∥

∥

Cl

=
∥

∥ak
l − al

∥

∥

Cl

and
∥

∥e0
∥

∥

Cl

=
∥

∥a0
l − al

∥

∥

Cl

.

3.3. Computation Of The Visibility Function β(x, y)

We illustrate in the following steps the method for which how the visibility func-

tion β(x, y) can be computed (see Fig.4)

Fig.4

Γ

z

y

z
Γ

x

o
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• We define

G : be the straight segment between the points x and y

G := {z ∈ R
2 : z = x + ϕ(x + y), ϕ ∈ [0, 1]}.

Question (1): is G ⊂ Ω ?

• We define

˜G : be the set of points such that

˜G :=
{

zi : zi = x + ϕi · (y − x), ϕi = i−1
|x−y|

, i = 1, . . . , m, m ∈ N

}

˜G is thus an approximation of the line G.

Question (2): is ˜G ⊂ Ω ?

For all z ∈ ˜G

• We require the point 0 to be always situated in the region Ω,

• We determine next zΓ, and

• Prove then if |zΓ| < |z|

If this is the case then follows immediately that β(x, y) = 0

Question (3): How can zΓ be determined ?

First we set zΓ = αz, α ∈ R.

The determination of α is necessary, therefore we demand

• zΓ ∈ Γ (see Fig.5)
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Fig.5

Γ

z

z

o

y

z
Γ

x

• arg zΓ =arg z

To satisfy the first requirement, we set x = X(t0) and define Γ = {x = X(t), t ∈ [0, 1]}.

Determine next t1 = t0 + ε:

When zΓ = X(t1), follows immediately the first requirement.

4. THE ASYMPTOTIC ERROR ANALYSIS

4.1. Theoretical Error Estimation

Most the asymptotic error estimates ‖q−qh‖L2(Γ) are formulated in Sobolev spaces.

It holds the following lemma

Lemma 4.1. (Cea’s Lemma [10, 13])

The integral operator A = I − K is a pseudodifferential operator of order zero.

Therefore follows that for all q ∈ L2(Γ) the quasi-optimal error estimates

‖q − qh‖L2(Γ) ≤ c inf
wh∈Hh

‖q − wh‖L2(Γ) (4.1)

holds, where the constant c is independent of h and q.
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Theorem 4.1. The integral operator A is a strongly elliptic pseudodifferential

operator of order α. Further holds for the two dimensional case

α < 2r + 1 (4.2)

Let α − d ≤ σ ≤ α
2
≤ τ ≤ d be satisfied and in addition let qh be the Galerkin

solution of the Galerkin equation

〈Aqh, wh〉L2(Γ) = 〈g, wh〉L2(Γ) for all wh ∈ Hh

then we have the asymptotic error estimate

‖qh − q‖Hσ(Γ) ≤ chτ−σ ‖q‖Hτ (Γ) . (4.3)

Lemma 4.2. Let the ansatz functions be piecewise linear. Moreover (I − K) is

a pseudodifferential operator of order α = 0, then follows from (4.3) the error

estimate

‖qh − q‖L2(Γ) ≤ ch2 ‖q‖H2(Γ) . (4.4)

For the boundary method one needs to compute numerically the coefficients Bl,k

of the view factor matrix B. Its computation is carried out by a suitable form of

numerical integration. If the numerical integration is not accurately carried out

then one expects quite high integration error. The accuracy of the numerical inte-

gration must be discussed in relation to the asymptotic error estimation therefore

it is necessary to consider the following Lemma from Strang [4].

Theorem 4.2. (Strang Lemma [4])

We consider a family of approximated bilinear forms ah which are uniformly Hh-

elliptic. Then there exists a constant c that is independent of q and h and it holds

the following inequality

‖q − qh‖L2(Γ) ≤ c

(

inf
wh∈Hh

{

‖q − wh‖L2(Γ) + sup
wh∈Hh

|a(vh, wh) − ah(vh, wh)|

‖wh‖L2(Γ)

}

+ sup
wh∈Hh

|g(wh) − gh(wh)|

‖wh‖L2(Γ)

)

(4.5)

where the terms a(vh, wh), g(wh), gh(wh) and ah(vh, wh) in (4.5) are defined as

follows
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a(vh, wh) = 〈(I − K)vh, wh〉L2(Γ) = 〈Avh, wh〉L2(Γ)

g(wh) = 〈g, wh〉L2(Γ)

gh(wh) = 〈gh, wh〉L2(Γ)

and

ah(vh, wh) = 〈ah, wh〉L2(Γ).

The approximation ah(vh, wh) has the form

ah(vh, wh) =

∫

Γ

(I − K)vhwhdΓx =

∫

Γ

vh(x)wh(x)dΓx

−

∫

Γ

∫

Γ

(1 − ε(x))G(x, y)vh(x)wh(y)dΓxdΓy

The coefficients Ak,l of the mass matrix A (without the Quadrature error) are

Ak,l = a(Φk, Φl) =

n
∑

k=1

{
∫

Γ

Φk(x)Φl(x)dΓx −

∫

Γ

∫

Γ

(1 − ε(x))G(x, y)Φk(x)Φl(y)dΓxdΓy

}

.

If we now replace the above integration by Gaussian quadrature. This yields the

following approximation formula

˜Ak,l = ah(Φk, Φl) =

m
∑

i=1

WiFk,l(xi) +

m
∑

i=1

m
∑

j=1

WiWjEk,l(xi, yj),

where Fk,l and Ek,l are given by

Fk,l = Φk(x)Φl(x),

and

Ek,l(x, y) = (1 − ε(x))G(x, y)Φk(x)Φl(y)

here m denotes the order of the quadrature and the coefficients Wi and Wj are the

weights of the quadrature form.

The ellipticity of ah follows directly from Lemma 2.8 [12].

It holds

ε‖q‖2
L2(Γ) ≤ 〈Aq, q〉L2(Γ) ≤ (2 − ε)‖q‖2

L2(Γ) (4.6)

Let the approximation operator Ah satisfies the approximation inequality

‖(A − Ah)q‖L2(Γ) ≤ chτ
l ‖q‖Hτ (Γ) (4.7)
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where τ is defined in (3.5).

Let qh be our assigned ansatz function, then follows

ε‖qh‖
2
L2(Γ) ≤ 〈Aqh, qh〉L2(Γ) + chτ

l ‖qh‖Hτ (Γ) · ‖qh‖L2(Γ) (4.8)

with the help of the inverse inequality (3.7) we get

ε‖qh‖
2
L2(Γ) ≤ 〈Aqh, qh〉L2(Γ) + c∗1

(

hl

hl−1

)τ

‖qh‖
2
L2(Γ). (4.9)

Finally we obtain
(

ε − c∗1

(

hl

hl−1

)τ)

‖qh‖
2
L2(Γ) ≤ 〈Ahqh, qh〉L2(Γ) (4.10)

under the assumption c∗2 ≤

(

hl

hl−1

)

≤ c∗3 one obtains for the case τ = 1

〈Ahqh, qh〉L2(Γ) ≥
1

2
ε · ‖qh‖

2
L2(Γ). (4.11)

Hence ellipticity is proved. From this condition follows how exact the numerical

quadrature error must be.

5. NUMERICAL RESULTS

5.1. Numerical Examples For The Solution Of The System Of

Equations

Since the convergence requirements of the four solution methods are satisfied [12],

then we can apply now these methods to solve the following two-dimensional con-

vex and non-convex enclosures.

Convex Enclosure

Example 5.1. Let Ω be the domain of an ellipse. The boundary of this ellipse

has the following parameterization

Gamma =

{

x ∈ R
2 : x =

(

a cos 2πt

b sin 2πt

)

, a = 4, b = 2, 0 ≤ t < 1

}

. (5.1)
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The computation of the coefficients Al,k = 〈Φk,n, Φl,n〉, bn = 〈g, Φl,n〉 and Bl,k =

〈KΦk,n, Φl,n〉 have been carried out be Gaussian quadrature form.

Here we have g(t) = ε(t)σT 4(t) with

The emissivity coefficient ε = 0.9

The Boltzmann coefficient σ = 5.6696 × 10−8 and

The surface temperature T (t) = 1
2
(T1 + T2) −

1
2
(T2 − T1) cos 2πt, where T1 = 1000

and T2 = 1800.

Table (I) shows the numerical results for the solutions of equation (3.20) by using

Picard’s iteration, two-grid and multi-grid methods and CG-iteration method for

the ellipse. It contains both the number of iteration steps and the required CPU-

time in second. The mesh width hl = 1
nl

with nl = 2l. The number n = nl denotes

the parameter of the solved problem. The four iteration methods converge for all

levels l. Comparing these iterations together we see clearly that the two-grid and

multi-grid methods require both a small number of iterations and CPU-time in

comparison with the Picard’s iteration. On the other hand the CG-iteration needs

more iteration steps but less CPU-time in comparison with the other methods.

Table I. Solution Methods for an Ellipse

nl Picard Two-grid Multi-grid CG

Iter sec Iter sec Iter sec Iter sec

32 14 < 1 6 < 1 2 < 1 16 < 1

64 14 0.50 6 < 1 2 < 1 18 < 1

128 14 2.02 6 1.12 2 < 1 19 < 1

256 14 8.05 6 4.42 2 1.51 20 0.51

512 14 32.09 6 16.69 2 6.01 20 2.05

1024 14 128.26 6 69.98 2 24.07 20 8.16

Non-Convex Enclosure

Example 5.2. We consider for an example the non-convex curve shown in Fig.6.

In this case the visibility function β(t, τ) must be taken into consideration, with

β(t, τ) is defined in (2.18). The computation of this visibility function has been
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illustrated in section 3.3. Table (II) contains the numerical resuts for this non-

convex case.

Table II. Solution Methods for the Nonconvex Curve in Fig.6

nl Picard Two-grid Multi-grid CG

Iter sec Iter sec Iter sec Iter sec

32 16 < 1 8 < 1 3 < 1 27 < 1

64 16 0.58 8 < 1 3 < 1 31 < 1

128 16 2.31 8 1.38 3 0.53 40 < 1

256 16 9.14 8 5.49 3 2.09 43 1.07

512 16 36.50 8 21.98 3 8.31 43 4.23

1024 16 145.48 8 86.92 3 33.02 43 16.88

5.2. Numerical Examples For The Error Estimation

5.2.1. Convex Case

a) Γ Describes the boundary of a circle

Example 5.3. Let q(t) = cos 2πt for 0 ≤ t ≤ 1 be the exact solution of the

integral equation

q(t) = g(t) + (1 − ε)

∫ 1

0

G∗(t, τ)q(τ)|ẋ(τ)|dτ . (5.2)

Then the exact g(t) for the given exact q(t) has been calculated as follows

For the unit circle ~n(τ) · (~t − ~τ) = 1
2

and |~τ − ~t| = 2| sinπ(t − τ)|.

Then the kernel G∗(t, τ) in (2.17) reduced to

G∗(t, τ) =
1

2
·
1

4
|~t − ~τ | =

1

4
| sin π(t − τ)|. (5.3)

Substituting (5.3) into (5.2) with |ẋ(τ)| = cos 2πt to obtain the exact g(t) as

g(t) = cos 2πt +
1

3
(1 − ε(t)) cos 2πt (5.4)

This computed exact g(t) in (5.4) has then been used in our program to

obtain the approximat solution qh with the help of our numerical iterations.
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b) Γ Describes the boundary of square

Example 5.4. Let q(t) = x1(t) be the exact solution for the case of a unit

square. Then the exact g(t) can be computed as follows:

For t ≥ 0 and t < 0.25 we have

g1(t) = 4t − 4(1 − ε(t))

{

∫ 1/4

0

G∗
11(t − τ) · 4τdτ +

∫ 1/2

1/4

G∗
12(t, τ) · 1dτ

+

∫ 3/4

1/2

G∗
13(t − τ) · (3 − 4τ)dτ +

∫ 1

3/4

G∗
14(t, τ) · 0dτ

}

, (5.5)

where

G∗
11 = 0, G∗

12 = G∗
21 =

(1 − 4t)(4τ − 1)

2 [(4t − 1)2 + (4τ − 1)2]
2/3

,

G∗
13 = G∗

31 =
1

2
[

16(t − 3
4

+ τ)2 + 1
]2/3

and

G∗
14 = G∗

41 =
16t

2 [16t2 + 16(1 − τ)2 + 1]
2/3

For t ≥ 0.25 and t < 0.5 we have

g2(t) = 1.0 − 4(1 − ε(t))

{

∫ 1/4

0

G∗
21(t, τ) · 4dτ +

∫ 1/2

1/4

G∗
22(t, τ) · 1dτ

+

∫ 3/4

1/2

G∗
23(t, τ) · (3 − 4τ)dτ +

∫ 1

3/4

G∗
24(t, τ) · 0dτ

}

, (5.6)

with G∗
22 = 0, G∗

23 = G∗
32 =

(1 − 2t)(2τ − 1)

2 [(2t − 1)2 + (2τ − 1)2]
2/3

,

and G∗
24 = G∗

42 =
1

2
[

16(t − 5
4

+ τ)2 + 1
]2/3

.

For t ≥ 0.5 and t < 0.75 we have

g3(t) = (3 − 4t) − 4(1 − ε(t))

{

∫ 1/4

0

G∗
31(t, τ) · 4τdτ +

∫ 1/2

1/4

G∗
32(t, τ) · 1dτ

+

∫ 3/4

1/2

G∗
33(t, τ) · (3 − 4τ)dτ +

∫ 1

3/4

G∗
34(t, τ) · 0dτ

}

, (5.7)
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where G∗
33 = 0 and G∗

34 = G∗
43 =

(3 − 4t)(4τ − 3)

2 [(3 − 4t)2 + (4τ − 3)2]
2/3

.

For t ≥ 0.75 and t < 1.0 holds

g4(t) = −4(1 − ε(t))

{

∫ 1/4

0

G∗
41(t, τ) · 4τdτ +

∫ 1/2

1/4

G∗
42(t, τ) · 1dτ

+

∫ 3/4

1/2

G∗
43(t, τ) · (3 − 4τ)dτ +

∫ 1

3/4

G∗
44(t, τ) · 0dτ

}

, (5.8)

where G∗
44 = 0.

The exact g(t) in (5.5), (5.6), (5.7) and (5.8) has been explicity calculated.

Tables (III) and (IV) contain the numerical results for the two computed g(t)

in (5.4) and (5.5 − 5.8) respectively. They show the L2−error ‖q − qh‖L2

and the order of convergence. In this case we obtain an error estimation for

‖q − qh‖L2 of order O(h2).

We conlude that the theoretical error estimation (4.4) and the numerical

results in tables (III) and (IV) are equivalent.

Table III. Error Estimation

Theoretical Value = 2.0

l nl L2−Error Conv. Ord

2 4 8.505 × 10−2

2.28
3 8 1.747 × 10−2

2.08
4 16 4.139 × 10−3

2.02
5 32 1.021 × 10−3

2.01
6 64 2.536 × 10−4

2.00
7 128 6.534 × 10−5

2.00
8 256 1.588 × 10−5

2.00
9 512 3.976 × 10−6
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Table IV. Error Estimation

Theoretical Value = 2.0

l nl L2−Error Conv. Ord

2 4 4.457 × 10−2

2.23
3 8 9.483 × 10−3

2.10
4 16 2.207 × 10−3

2.01
5 32 5.490 × 10−4

2.01
6 64 1.369 × 10−4

2.00
7 128 3.414 × 10−5

2.00
8 256 5.537 × 10−6

2.00
9 512 2.139 × 10−6

5.2.2. Non-Convex Case

Example 5.5. Let

q(t) = 1 +































t2(t − 1
4
)2 for t ∈ [0, 1

4
)

(t − 1
4
)2(t − 1

2
)2 for t ∈ [1

4
, 1

2
)

(t − 1
2
)2(t − 3

4
)2 for t ∈ [1

2
, 3

4
)

(t − 3
4
)2(t − 1)2 for t ∈ [3

4
, 1)

(5.9)

be the exact solution for the non-convex curve (see Fig.6),

Fig.6

t = 0.75

t = 0.5

t = 0.25

t = 0
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then the exact g(t) can be calculated from the integral equation (2.17) as follows:

For t ≥ 0 and t < 0.5 we have

g1(t) = q1(t) − (1 − ε(t))

(

∫ 1/4

0

G1(t, τ) · q1(τ) · 4πdτ

)

(5.10)

where q1(t) = 1 + t2(t − 1
4
)2 and G1(t, τ) = 1

4
| sin 2π(t − τ)|.

For t ≥ 0.25 and t < 0.5 we have

g2(t) = q2(t) − (1 − ε(t))

(

∫ 1/2

1/4

G2(t, τ) · q2(τ) · 4πdτ

)

(5.11)

where q2(t) = 1 + (t − 1
4
)2(t − 1

2
)2 and G2(t, τ) = 1

4
| sin 2π(t − τ)|.

For t ≥ 0.5 and t < 0.75 we have

g3(t) = q3(t) − (1 − ε(t))

(

∫ 3/4

1/2

G3(t, τ) · q3(τ) · 4πdτ

)

(5.12)

where q3(t) = 1 + (t − 1
2
)2(t − 3

4
)2 and G3(t, τ) = 1

4
| sin 2π(t − τ)|.

For t ≥ 0.75 and t < 1.0 we have

g4(t) = q4(t) − (1 − ε(t))

(
∫ 1

3/4

G4(t, τ) · q4(τ) · 12πdτ

)

(5.13)

where q4(t) = 1 + (t − 3
4
)2(t − 1)2 and G4(t, τ) = 1

12
| sin 2π(t − τ)|.

The exact g(t) in (5.10), (5.11), (5.12) and (5.13) has been explicity computed.

Table (V) contains the numerical results for this computed exact g(t) (5.10 −

5.13). The table shows the L2−error ‖q − qh‖L2 and the order of convergence. We

see clearly that the L2−error ‖q− qh‖L2 for this non-convex case is of order O(h2).

We finally conclude that the theoretical error estimation (4.4) for ‖q − qh‖L2 and

the numerical results in table (V) for the non-convex case are in good agreement.
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Table V. Error Estimation

Theoretical Value = 2.0

l nl L2−Error Conv. Ord

2 4 1.2345 × 10−1

2.16
3 8 2.6834 × 10−2

2.09
4 16 6.3138 × 10−3

2.03
5 32 1.5437 × 10−3

2.01
6 64 3.8210 × 10−4

2.01
7 128 9.5049 × 10−5

2.00
8 256 2.3760 × 10−5

2.00
9 512 5.9400 × 10−6
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ABSTRACT. The aim of this paper is to study the Blackman-type sampling series. In Signal Analy-
sis the Blackman window has been used over 40 years [1], [4]. Main goal of this paper is to present
a mathematical treatment of approximation problems by the Blackman-type sampling series. We
considered cases when we have a very good order of approximation. In some cases we are able to
compute exact values of those operator norms.

Keywords: Blackman window function, Blackman kernel, operator norms, order of approximation.

1. INTRODUCTION

Let N, Z, R, C denote the sets of all naturals, all integers, all real and all complex numbers,
respectively. Let C(R) be the space of all uniformly continuous and bounded functions f : R→R
(orC) endowed with the supremum norm ‖·‖C. Let Lp(R), 1 6 p 6 ∞ be the space of all measurable
functions f on R for which the norm

‖ f‖p :=
{

1√
2π

Z
R
| f (t)|pdt

}1/p

,

‖ f‖∞ := esssup{| f (t)| : t ∈ R}
is finite. For σ > 0 and 1 6 p 6 ∞ let Bp

σ be the class of those bounded functions f ∈ Lp(R) which
can be extended to an entire function f (z) (z ∈ C) of exponential type σ ([3] or [10], 4.3.1), i. e.,

| f (z)|6 eσ|y|‖ f‖C (z = x+ iy ∈ C).

The Fourier transform f∧ of f ∈ L(R) is defined for v ∈ R by

f∧(v) :=
1√
2π

Z
R

f (t)e−ivtdt.
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In [3] (and references cited there), P.L.Butzer and his school have considered the generalized sam-
pling series given by (t ∈ R; W > 0)

(SW f )(t) :=
∞

∑
k=−∞

f (
k

W
)s(Wt− k) (1)

for a f ∈C(R). There it was shown that the equality

lim
W→∞

(SW f )(t) = f (t),

uniformly on R, is essentially equivalent to each of the following two assertions

(i)
∞

∑
k=−∞

s(x− k) = 1, x ∈ [0,1);

(ii) s∧(2kπ) = 0, k ∈ Z\{0}; s∧(0) = (2π)−1/2.

The well known Whittaker-Kotelnikov-Shannon sampling series is defined by the kernel s(x) =
sinc(x) := sinπx/(πx). Let us introduce a band-limited kernel s defined via a window function
λ ∈C[0,1], λ(0) = 1, λ(u) = 0 (|u|> 1) by equality

s(t) :=
1Z

0

λ(u)cos(πtu) du. (2)

A lot of kernels are defined by (2) , e.g.
1) λ(u) = 1 defines the sinc function,
2) λ(u) = 1−u defines the Fejér kernel sF(t) = 1

2 sinc 2 t
2 ,

3) λ j(u) = cosπ( j + 1/2)u, j = 0,1,2, . . . defines the Rogosinski-type kernel (see [7], [6]) in
the form

r j(t) :=
1
2
[sinc(t + j +1/2)+ sinc(t− j−1/2)] (3)

=
(−1) j

π
( j +1/2)cosπt
( j +1/2)2− t2 . (4)

Let us recall some auxiliary results.
It is known ([3],[5]), that in (2) the kernel s∈B1

π (i.e the kernel is band-limited) and for f ∈C(R)
we have SW f ∈ B∞

πW . We need the classical sampling theorem ([3], Th. 6.3a): for g ∈ B∞
σ with

σ < πW we have

g(t) =
∞

∑
k=−∞

g(
k

W
)sinc(Wt− k) =: (Ssinc

W g)(t) (5)

and if σ = πW this is not valid.
Below let us denote the sampling series (5) by Ssinc

W g.
Some auxiliary facts from the approximation theory are needed. For f ∈ C(R) and δ > 0 the

k-th modulus of continuity ([2], p.76) is defined by

ωk( f ,δ) := sup
|h|6δ

‖∆k
h f (·)‖C,
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where

∆k
h f (x) =

k

∑
l=0

(−1)k−l
(

k
l

)
f (x+ lh). (6)

The modulus of continuity has the following properties ([2], p. 76; [10], 3.3):

ωk( f ,δ) 6 2k−rωr( f ,δ) for any r ∈ N, r 6 k,
ωk( f , jδ) 6 jkωk( f ,δ) for any j ∈ N,
ωk( f ,λδ) 6 (1+λ)kωk( f ,δ) for any λ > 0,

ωk( f ,δ) 6 δk‖ f (k)‖C for any f (k) ∈C(R).

(7)

We need a special Jackson-type inequality (cf. [10], 8.7, Problem 23 or [9], Lemma 2).
Proposition 1. For given f ∈C(R) there exist g∗ ∈ B∞

σ and Mk > 0 (k ∈N) such that for every σ > 2

‖ f −g∗‖C 6 Mkωk( f ,
1
σ

).

The aim of this paper is to study the generalized sampling series (1) defined by the Blackman-
type window functions. In Signal Analysis the Blackman window

λB(u) = 0.42+
1
2

cosπu+0.08cos2πu.

has been used in many situations (see [1],[4] and references cited there). Main goal of this paper is
to present a mathematical treatment of approximation problems by the Blackman sampling series.
We shall consider a family of windows

λB,a(u) := a+
1
2

cosπu+(
1
2
−a)cos2πu (a ∈ R), (8)

which gives by (2) for sampling series a kernel

sB,a(t) :=
1Z

0

λB,a(u)cos(πut)du. (9)

Among other results we proved that the value of parameter a = 27/64 = 0.4218 . . . gives a very
small value of the norm of sampling operator BW,27/64 : C(R) → C(R), but a very good order of
approximation we have in case a = 5/8. For finding exact values of norms we used computer-aided
(Mathematica) hypotheses, but all results can be proved analytically too.

The Blackman window is a special case of the general cosine window in the form (here and in
following formulas [x] is entire part of x ∈ R)

λm(u) =
m

∑
k=0

ck coskπu =
[m

2 ]
∑
k=0

c2k cos(2kπu)+
[m+1

2 ]
∑
k=1

c2k−1 cos((2k−1)πu).

For λm to be a window function we require that λm(0) = 1 and λm(1) = 0. Then we must have

[m
2 ]

∑
k=0

c2k =
[m+1

2 ]
∑
k=1

c2k−1 =
1
2
,

Blackman-type Windows for Sampling
Series
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which for m = 2 gives c1 = 1/2 and c0 +c2 = 1/2. Therefore, from the mathematical point of view,
the most general Blackman window can be represented in the form (8). The family of windows λB,a

in (8) contains also the Hann window (see [4]), if take a = 1/2.

2. EXACT VALUES OF NORMS OF SOME BLACKMAN-TYPE SAMPLING OPERA-
TORS

The kernel (9) has representations

sB,a(t) =
[(3−8a)t2 +8a]sinc t

2(1− t2)(4− t2)
(10)

= asinc(t)+
1
4
[sinc(t−1)+ sinc(t +1)]

+
1−2a

4
[sinc(t−2)+ sinc(t +2)]. (11)

We want to compute the norm of the Blackman sampling operators BW,a : C(R)→C(R) using
equation ([3], Th.4.1)

‖BW,a‖= sup
06u61

∞

∑
k=−∞

|sB,a(u− k)|. (12)

In [8] we proved that the Hann sampling operator HW : C(R)→C(R) has the norm

‖HW‖= ‖BW,1/2‖=
10
3π

.

By the representation (10) we could claim that an easy case to compute norms ‖BW,a‖ might be
when 0 6 a 6 3/8, since in (10) (3−8a)t2 +8a > 0 and then we are able to consider signs of sB,a.

All computations of exact values of norms of sampling operators are based on the following
steps. First, we identify the signs of sB,a(u− k) in (12) depending on k ∈ Z and u, which belongs to

an interval with length one (keeping in mind, that the function u 7→
∞
∑

k=−∞
|sB,a(u−k)| is 1-periodic).

Secondly, we split the series in (12) into parts (mainly into two parts) in such way as stated by the
first step, i.e. we must be able to find closed expressions for all parts of our partition. Thirdly, the
value of the operator norm is an extreme value of a function given in closed-form in second step.
For reasonable hypotheses in steps two and three we used computer-package Mathematica.

We start with boundary cases a = 0 or a = 3/8 as the following theorem states.
Theorem 1. We have

‖BW,0‖=
362

105π
= 1.0974..., ‖BW,3/8‖=

332
105π

= 1.0064...

Proof. By (12) we have to consider the quantity

Na(u) :=
∞

∑
k=−∞

|sB,a(u− k)|, (13)
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where by 1-periodicity we will consider the arguments u ∈ (0,1) only. We have by (10) for 0 6 a 6
3/8

sgnsB,a(u− k) =
{

1, |k|6 2,
(−1)k+1sgnk, |k|> 3.

Therefore, by (13)

Na(u) =
∞

∑
k=1

(|sB,a(u− k)|+ |sB,a(u+ k−1)|)

=
3

∑
k=1

[sB,a(u− k)+ sB,a(u+ k−1)]

+
∞

∑
k=4

(−1)k+1[sB,a(u− k)+ sB,a(u+ k−1)]

=: Na,1(u)+Na,2(u). (14)

Using the Rogosinski kernel (3) we can represent (11) in another form

sB,a(t) = a[r0(t− 1
2
)+ r0(t +

1
2
)]+

1−2a
2

[r0(t− 3
2
)+ r0(t +

3
2
)]. (15)

Denote (k ∈ Z)

Dk(u) := r0(u− k− 1
2
)+ r0(u+ k− 1

2
)

=
{

2r0(u− 1
2), k = 0,

rk−1(u− 1
2)+ rk(u− 1

2), k ∈ N,
(16)

hence, by (15)

sB,a(u− k)+ sB,a(u+ k−1) = a[Dk(u)+Dk−1(u)]

+
1−2a

2
[Dk+1(u)+Dk−2(u)]. (17)

First, let consider Na,2 in (14). Since by (10) sB,a(t) = O(t−3) as t → ∞, the series Na,2(u) in (14) is
convergent. Therefore, we consider the partial sums of Na,2(u) in form

4n+3
∑

k=4
(−1)k−1[sB,a(u− k)+ sB,a(u+ k−1)]

=
4n+3

∑
k=4

(−1)k−1
(

a[Dk(u)+Dk−1(u)]+
1−2a

2
[Dk+1(u)+Dk−2(u)]

)

= a
2n+1

∑
k=2

[−D2k(u)−D2k−1(u)+D2k+1(u)+D2k(u)]

+
1−2a

2

n

∑
k=1

[−D4k+1(u)−D4k−2(u)+D4k+2(u)+D4k−1(u)

−D4k+3(u)−D4k(u)+D4k+4(u)+D4k+1(u)]
= a[D4n+3(u)−D3(u)]

+
1−2a

2
[D4n+4(u)−D4n+3(u)+D4n+2(u)−D4(u)+D3(u)−D2(u)].
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In process n→ ∞ we obtain

Na,2(u) =−aD3(u)+
1−2a

2
[−D2(u)+D3(u)−D4(u)]. (18)

For Na,1(u) in (14) we get by (17) the representation

Na,1(u) = a[D0(u)+2D1(u)+2D2(u)+D3(u)]

+
1−2a

2
[D−1(u)+D2(u)+D0(u)+D3(u)+D1(u)+D4(u)],

which by (14) and (18) gives for Na(u) the following expression

Na(u) = a[D0(u)+2D1(u)+2D2(u)]+
1−2a

2
[D0(u)+2D1(u)+2D3(u)]

= 2a[D2(u)−D3(u)]+
1
2

D0(u)+D1(u)+D3(u).

Using (16), we have for 0 6 a 6 3/8

Na(u) = 2a[r1(u− 1
2
)− r3(u− 1

2
)]

+ 2r0(u− 1
2
)+ r1(u− 1

2
)+ r2(u− 1

2
)+ r3(u− 1

2
) (19)

For sampling operators BW,a by (12) and (13) we obtain

‖BW,a‖= sup
06u61

Na(u) = sup
|u|61/2

Na(u+1/2).

Since by (19) Na(u+1/2) is even, we write

‖BW,a‖= sup
06u61/2

Na(u+1/2). (20)

From this point we are able to consider the cases a = 3/8 and a = 0 only. First, let a = 3/8. Then
by (19) the integral representation of r j yields

N3/8(u+1/2)=
1Z

0

[
2cos

1
2

πt +
7
4

cos
3
2

πt + cos
5
2

πt +
1
4

cos
7
2

πt
]

cosπutdt. (21)

Denote

B(t) := 2cos
1
2

πt +
7
4

cos
3
2

πt + cos
5
2

πt +
1
4

cos
7
2

πt (22)

=
1
2
(1+ cosπt)cos

πt
2

(1+2cosπt +2cos2πt).

Since computations using Mathematica show that B(t) > 0 on [0,2/5]∪ [4/5,1] and B(t) 6 0 on
[2/5,4/5] we write

N3/8(1/2)−N3/8(u+1/2) =




2/5Z
0

+

4/5Z
2/5

+
1Z

4/5


B(t)(1− cosπtu)dt

>




2/5Z
0

+

4/5Z
2/5


B(t)(1− cosπtu)dt.
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On the one hand, an elementary inequality sinπx 6 πx for x > 0 gives for 0 6 t 6 1, 0 6 u 6 1/2,
that

1− cosπtu = 2sin2 πtu
2

6 π2

2
u2t2. (23)

On the other hand sinc(x) is decreasing on [0,1/2], therefore we obtain for 0 6 t 6 2/5, 0 6 u 6 1/2

1− cosπtu = 2sin2 πtu
2

=
π2u2t2

2
sinc 2 tu

2

> π2u2t2

2
sinc 2 1

10
=

75−25
√

5
4

u2t2. (24)

Using computations with Mathematica these estimates yield

N3/8(1/2)−N3/8(u+1/2) > 75−25
√

5
4

u2

2/5Z
0

t2B(t)dt +
π2

2
u2

4/5Z
2/5

t2B(t)dt

=
u2

2
(0.251...−0.223...) > 0.

Now the proof for the case a = 3/8 is completed by (20), (19) and (2), that is

‖BW,3/8‖= sup
06u61/2

N3/8(u+1/2) = N3/8(1/2) =
332

105π
.

The same scheme of the proof gives the result in the case a = 0.
To consider the norm ‖BW,a‖ for all values a ∈ [0,3/8] we deduce a simple but effective upper

bound for ‖BW,a‖.
Theorem 2. For any three parameters a0,a1,a ∈ R with a0 6= a1 we have

‖BW,a‖6
∣∣∣∣

a1−a
a1−a0

∣∣∣∣‖BW,a0‖+
∣∣∣∣

a−a0

a1−a0

∣∣∣∣‖BW,a1‖.

In particular, if 0 = a0 6 a 6 a1 = 3/8, then

‖BW,a‖6 362−80a
105π

.

Proof. It is easy to check that for any a0,a1,a ∈ R with a0 6= a1 the Blackman window λB,a enjoys
the interpolation formula

λB,a(t) =
a1−a
a1−a0

λB,a0(t)+
a−a0

a1−a0
λB,a1(t). (25)

From this by (9) and (1) we obtain

BW,a f =
a1−a
a1−a0

BW,a0 f +
a−a0

a1−a0
BW,a1 f (26)
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for any f ∈C(R) which gives our assertions.
In fact we can show that the upper bound in Theorem 2 is sharp for any a ∈ [0,3/8].

Theorem 3. For 0 6 a 6 3/8

‖BW,a‖=
362−80a

105π
.

Proof. By Theorem 2 we have to show for 0 6 a 6 3/8 that

‖BW,a‖> 362−80a
105π

.

From (12) and (13) we get

‖BW,a‖>
∞

∑
k=−∞

|sB,a(k− 1
2
)|= Na(1/2).

In the case 0 6 a 6 3/8 by (19) and (4) we obtain

Na(1/2) = 2a[r1(0)− r3(0)]+2r0(0)+ r1(0)+ r2(0)+ r3(0) =
362−80a

105π
.

By the representation (10) we see that the window λB,27/64 = λB,0.4218..., close to the classical
Blackman window λB,0.42, might be an another easy case to compute the norm ‖BW,a‖. For the proof
we used the scheme described before Theorem 1.
Theorem 4. We have

‖BW,27/64‖= ‖BW,0.4218...‖=
3973

1260π
= 1.0036...

3. ORDER OF APPROXIMATIONS BY BLACKMAN-TYPE SAMPLING SERIES

In this section we will find the order of approximation by Blackman-type sampling series.
Theorem 5. If BW,a is the sampling operator for f ∈C(R) defined by (1), then for some Ma > 0

‖ f −BW,a f‖C 6 Maω2( f ,
1

W
)

uniformly in W > 4/π.
Proof. Let g ∈ B∞

σ (σ < πW ). Then by (5) we have Ssinc
W g = g. Motivated by (11) we denote

fW,a(t) := a f (t)+
1
4
[ f (t− 1

W
)+ f (t +

1
W

)]+
1−2a

4
[ f (t− 2

W
)+ f (t +

2
W

)]

and then

f −BW,a f = f −BW,a( f −g+g) = f −BW,a( f −g)−gW,a

= f − fW,a−BW,a( f −g)− (gW,a− fW,a). (27)
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We get

f (t)− fW,a(t)

= f (t)−a f (t)− 1
4
[ f (t− 1

W
)+ f (t +

1
W

)]− 1−2a
4

[ f (t− 2
W

)+ f (t +
2

W
)]

= −1
4
[ f (t− 1

W
)−2 f (t)+ f (t +

1
W

)]− 1−2a
4

[ f (t− 2
W

)−2 f (t)+ f (t +
2

W
)]

= −1
4

∆2
1/W f (t− 1

W
)− 1−2a

4
∆2

2/W f (t− 2
W

). (28)

By the definition of the modulus of continuity we have

‖∆m
h f‖C 6 ωm( f ,h)

and therefore by (27), (28) (recall that h = 1/W ) and (7)

‖ f −BW,a f‖C 6 ‖ f − fW,a‖C +‖BW,a‖‖ f −g‖C +‖ fW,a−gW,a‖C

6 1
4

ω2

(
f ,

1
W

)
+
|1−2a|

4
ω2

(
f ,

2
W

)

+
(
‖BW,a‖+ |a|+ 1

2
+
|1−2a|

2
+

)
‖ f −g‖C

6 (C1,a +‖BW,a‖)‖ f −g‖C +C2,aω2

(
f ,

1
W

)
. (29)

Now let us take in (29) the function g = g∗ ∈B∞
σ (2 6 σ = επW < πW , 0 < ε < 1) as in Proposition 1.

We have by (7)

‖ f −g∗‖6 C2ω2

(
f ,

1
επW

)
6 C2

(
1+

1
επ

)2

ω2

(
f ,

1
W

)
,

and the proof is completed due to (29).
Since in the case a = 5/8 from (28) we get

f (t)− fW,5/8(t)=
1
16

[ f (t− 2
W

)+ f (t +
2

W
)]− 1

4
[ f (t− 1

W
)+ f (t +

1
W

)]+
3
4

f (t)

=
1
16

∆4
1/W f (t− 2

W
),

then following the scheme of the proof of Theorem 5 we can achieve much better order of approxi-
mation.
Theorem 6. The Blackman sampling operator BW,5/8, defined by (1) enjoys the inequality

‖ f −BW,5/8 f‖C 6 Mω4( f ,
1

W
)

uniformly in W > 4/π.
As we see, the Blackman sampling operator BW,5/8 gives a good order of approximation. Let us

estimate the norm of that sampling operator.
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In general for ‖BW,a‖ more tight lower bound then in the proof of Theorem 3 we get from the
following estimation.
Theorem 7. For all a ∈ R

‖BW,a‖> 2
4

∑
k=1
|sB,a(1/2− k)|+2

∣∣∣∣sB,a(7/2)+
1

9π
− 88a

315π

∣∣∣∣ .

Proof. By (12) we have

‖BW,a‖ >
∞

∑
k=−∞

|sB,a(1/2− k)|= 2
∞

∑
k=1
|sB,a(1/2− k)|

> 2
4

∑
k=1
|sB,a(1/2− k)|+2|

∞

∑
k=5

(−1)k+1sB,a(1/2− k)|.

The definition (14) of Na,2 gives

Na,2(1/2) = 2
∞

∑
k=5

(−1)k+1sB,a(1/2− k)−2sB,a(7/2).

Therefore,

‖BW,a‖> 2
4

∑
k=1
|sB,a(1/2− k)|+ |Na,2(1/2)+2sB,a(7/2)|.

Since by (16), (18) and (4)

Na,2(1/2) =
2
π

(
1
9
− 88a

315

)
,

we obtain our assertion.
Corollary. The Blackman sampling operator BW,5/8, defined by (1) enjoys the inequality

1.18 . . . =
56

15π
6 ‖BW,5/8‖6 176

35π
= 1.60 . . .

Proof. The lower bound for ‖BW,5/8‖ we compute by Theorem 7. For the upper bound we use
Theorem 2. The computations with Mathematica show, that the minimal value results when we take
a0 = 0 and a1 = 1/2 in Theorem 2.
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Abstract

In this note, given a multiresolution analysis, we construct a class of four-coefficient

scaling filters using only elementary algebraic operations. The method of construction also

reveals that the sum conditions
∑
aeven =

∑
aodd = 1 can also be verified without referring

to the vanishing moment property.

1 A Review of Construction of Wavelets

We begin this note by recalling the definition of a multiresolution analysis.

Definition A multiresolution analysis · · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · with scaling function ϕ is an

increasing sequence of subspaces of L2(R) satisfying the following four conditions:

1. (density) ∪jVj is dense in L2(R),

2. (separation) ∩jVj = {0},

3. (scaling) f(x) ∈ Vj ⇔ f(2−jx) ∈ V0,

4. (orthonormality) {ϕ(x− γ)}γ∈Z is an orthonormal basis for V0.

0
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First of all, {2j/2ϕ(2jx−γ)}γ∈Z forms an orthonormal basis for Vj . This is evident from the

definition. In order to form an orthonormal basis for L2(R), the density condition 1 seems to

suggest, at first, to combine all the orthonormal bases {2j/2ϕ(2jx− γ)}γ∈Z of Vj . But this does

not work since there are distinct elements from two orthonormal bases, {2j/2ϕ(2jx − γ)}γ∈Z

for Vj and {2(j+1)/2ϕ(2j+1x− γ)}γ∈Z for Vj+1, that are not orthogonal to each other. What is

required at this point is the construction of an orthonormal basis for the orthogonal complement

W0 of V0 in V1. More generally, we need to find an orthonormal basis for Wj where

Vj+1 = Vj ⊕Wj ,

for j = 0, 1, . . . The function ψ for which {ψ(x − γ)}γ∈Z is an orthonormal basis for W0 is the

wavelet generator . Once ψ is found, then {2j/2ψ(2jx − γ)}γ∈Z form an orthonormal basis for

Wj and as

L2(R) = V0 ⊕ (⊕∞j=0Wj) = ⊕j∈ZWj ,

{ϕ(x−γ)}γ∈Z∪{2j/2ψ(2jx−γ)}γ∈Z,j≥0 or {2j/2ψ(2jx−γ)}γ∈Z,j≥0 form an orthonormal wavelet

basis for L2(R).

Since ϕ ∈ V0 ⊆ V1, we must have the following scaling identity ,

ϕ(x) =
∑
γ∈Z

aγϕ(2x− γ). (1.1)

It is well known [1] that the conditions that must be met by the coefficients ai’s are the

following: ∑
γ∈Z

|aγ |2 = 2, (1.2)

∑
γ′∈Z

aγ′a2γ+γ′ = 2δ(γ, 0), (1.3)

and ∑
γ∈Z

aγ = 2. (1.4)

Equation (1.2) is a consequence of the scaling identity and of the fact that ‖ϕ‖2 = 1.

Equation (1.3) is obtained from condition 4 of the definition, -i.e.,∫
ϕ(x− γ)ϕ(x) dx = δ(γ, 0),

upon substituting the scaling identities for ϕ(x − γ) and ϕ(x). Equation (1.4) is obtained also

from the scaling identity with additional condition that
∫
ϕ(x)dx 6= 0. Namely, integrate both

1
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sides of (1.1) and make a change of variable. Note that (1.2) is a special case of (1.3). Clearly,

the scaling function determines a multiresolution analysis, but not conversely. A construction

of wavelets involves reversing the procedure. In other words, we need a characterization of a

function that satisfies the scaling identity (1.1) and that generates a multiresolution analysis.

In order to better explain the content of the present note which is described in the next section,

let us review below in five steps how a general construction of wavelets is done. We refer the

reader to [1] and [3] for a more complete descriptions of these steps.

Step 1: This step consists of producing solutions to algebraic identities (1.2)-(1.4).

Step 2: Once ai’s are determined, a possible scaling function ϕ is defined. This can be done,

for instance, by finding a fixed point of the linear transformation

Sf(x) =
∑
γ∈Z

aγf(2x− γ)

by iterations

ϕ = lim
n→∞

Snf

with an appropriate initial function f .

Step 3: Now, we must verify that the function ϕ, defined in Step 2, generates a multiresolution

analysis. To this end, we let

A0(ξ) =
1
2

∑
γ∈Z

aγe
2πiγξ.

It turns out that the following condition (1.5) along with (1.2)-(1.4) serve as sufficient conditions

for the orthonomality of {ϕ(x− γ)}γ∈Z .

A0(ξ) 6= 0 for |ξ| ≤ 1
4
. (1.5)

Step 4: This step is to study those conditions that are necessary to construct wavelets. Let

ψ0 = ϕ and ψ1 = ψ, a wavelet generator to be determined. Also, let a0
γ = aγ , the solutions of

(1.2)-(1.4). Since {ψk(x− γ)}γ∈Z,k=0,1 must be an orthonormal basis for V1 = V0 ⊕W0, noting

that {ϕ(2x− γ)}γ∈Z is an orthonormal basis for V1,

ψk(x) =
∑
γ∈Z

ak
γϕ(2x− γ), k = 0, 1. (1.6)

Equation (1.6) with k = 0 is the scaling identity (1.1). The condition that ψ0 ⊥ ψ1, or more

precisely, with j, k ∈ {0, 1}, γ ∈ Z,∫
ψj(x− γ)ψk(x)dx = δ(j, k)δ(γ, 0),

2
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leads to, upon replacing ψ0 and ψ1 by the corresponding expressions in (1.6),

∑
γ′∈Z

aj
γ′a

k
2γ+γ′ = 2δ(j, k)δ(γ, 0). (1.7)

Equation (1.7) contains (1.2) and (1.3) as special cases. We can not expect the wavelet generator

ψ to satisfy
∫
ψ(x)dx 6= 0, so we do not have an equivalent condition to (1.4) for a1

γ . Hence, we

can only use (1.4), restated below in the current notation as

∑
γ∈Z

a0
γ = 2. (1.8)

At this point, we have reduced the problem of constructing wavelets to the solution of algebraic

identities (1.7) and (1.8), together with condition (1.5), which was to guarantee the orthonoma-

lity condition 4 for ϕ. In summary, we have (Theorem 4.3, [3]) that

Theorem 1.1 Suppose ϕ generates a multiresolution analysis and ak
γ satisfy (1.7) and (1.8)

with ψk defined by (1.6) and ψ0 = ϕ. Then the functions {2j/2ψ1(2jx − γ)} for j ∈ Z, γ ∈ Z

form an orthonormal basis of L2(R).

Step 5: This step completes the task that began in Step 4. Namely, we need to produce the

solutions of (1.7) and (1.8) that satisfy (1.5). The function A0 defined earlier can be written as

A0(ξ) =
1
2

∑
γ∈Z

a0
γe

2πiγξ.

Similarly, we define

A1(ξ) =
1
2

∑
γ∈Z

a1
γe

2πiγξ.

In terms of A0 and A1, equations (1.7) and (1.8) can be shown to be equivalent to

2∑
p=1

Ak(ξ + ηp)Aj(ξ + ηp) = δ(j, k), (1.9)

and

A0(0) = 1, (1.10)

respectively [1] where η1 = 0 and η2 = 1
2 . One method of construction presented by Daubechies

is to first solve for {a0
γ} using

A0(0) = 1

3
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|A0(ξ)|2 + |A0(ξ +
1
2
)|2 = 1

A0(ξ) 6= 0 for |ξ| ≤ 1
4 ,

and subsequently incorporate the remaining equations from (1.9) to find A1(ξ) which in turn

gives {a1
γ}. The remaining equations are

|A1(ξ)|2 + |A1(ξ +
1
2
)|2 = 1, (1.11)

and

A0(ξ)A1(ξ) +A0(ξ +
1
2
)A1(ξ +

1
2
) = 0. (1.12)

It is shown [1] that

A1(ξ) = e2πiξA0(ξ +
1
2
)

solves (1.11) and (1.12) and this amounts to setting

a1
γ = (−1)γ+1a0

1−γ . (1.13)

2 A Construction of Scaling Functions and Their Wavelets

In this section, we present a method of constructing a class of four-coefficient scaling filters

using only elementary algebraic operations. Particularly, we are interested in obtaining the

solutions aγ ≡ a0
γ of equations (1.2), (1.3) and (1.4). Recall from the previous section, each

solution will generate a multiresolution analysis provided that condition (1.5) holds. Formulas

for constructing four-coefficient scaling filters already exist. An elegant approach of Daubechie

is well documented in [1]. Therefore, we do not claim that the results obtained in this section are

new. But rather, the purpose of the present note is to shed another perspective in constructions

of scaling filters and to demonstrate the fact that the sum condition
∑
aeven =

∑
aodd = 1 can

be derived without referring to the vanishing moment property. The fact that the sum condition

is a consequence of (2.1), which will be established in this section, appears to be new. We do

not discuss a complete construction of wavelets in this note. However, once aγ ≡ a0
γ are found,

the associated wavelets can be generated simply from (1.13).

We consider the case where only a0, a1, a2 and a3 are the terms which could possibly be

4
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nonzero. We also assume that they are real. Equations (1.2), (1.4) and (1.3) become respectively,

a2
0 + a2

1 + a2
2 + a2

3 = 2

a0 + a1 + a2 + a3 = 2

a0a2 + a1a3 = 0.

(2.1)

If a3 6= 0, then a1 = −a0a2
a3

, and substituting, we get

a2
0 + a2

0a2
2

a2
3

+ a2
2 + a2

3 = 2

a0 − a0a2
a3

+ a2 + a3 = 2.

Let x ≡ a0, y ≡ a2 and c ≡ 1
a3

, thereby obtaining

x2 + c2x2y2 + y2 = 2− 1
c2

x− cxy + y = 2− 1
c .

(2.2)

Assuming 1− cx 6= 0, (2.2) yields

y =
2− 1

c − x

1− cx
and y2 =

2− 1
c2
− x2

1 + c2x2
. (2.3)

Squaring the first equation and equating it to the second equation yields

2c2x4 − 4c2x3 + (2c2 − 4c+ 4)x2 + 4(c− 1)x+ 2− 4
c

+
2
c2

= 0. (2.4)

In order to study the solutions of (2.4), let

f(x) = 2c2x4 − 4c2x3 + (2c2 − 4c+ 4)x2 + 4(c− 1)x+ 2− 4
c

+
2
c2
.

First, we observe that, for every c 6= 0,

f ′(
1
2
) = 0, (2.5)

and that

f(x+
1
2
) = 2c2x4 + (4− 4c− c2)x2 +

1
8
c2 + c+ 1− 4

c
+

2
c2
. (2.6)

Equation (2.6) shows that the graph of f is symmetric about the line x = 1
2 . Let f̃(x) ≡ f(x+ 1

2).

Then f̃ ′(x) = 0 has roots

0 and ± 1
2

√
1 +

4
c
− 4
c2
.

When ±1
2

√
1 + 4

c −
4
c2

are real, -i.e., for

c < −2− 2
√

2 or c > −2 + 2
√

2, (2.7)

5
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f̃ attains its minimum at ±1
2

√
1 + 4

c −
4
c2

. For the values of c specified in (2.7), we have

f̃(±1
2

√
1 + 4

c −
4
c2

) = 0. Translating back into f , we conclude that

1
2
± 1

2

√
1 +

4
c
− 4
c2
, (2.8)

are the roots of f(x) = 0. Each is a double root of the quartic f(x) = 0. If we denote two roots

in (2.8) by x1 and x2, then notice that x2 = 1− x1. This, of course, is a rehash of the fact that

the graph of f is symmetric about x = 1
2 . The following theorem serves as the first step toward

establishing the algorithm that generates many wavelets.

6
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Theorem 2.1 Consider the equations in (2.1) and let x ≡ a0, y ≡ a2 and c ≡ 1
a3

. Then

x+ y = 1.

Proof: Since x1 = 1
2 + 1

2

√
1 + 4

c −
4
c2

and x2 = 1
2 −

1
2

√
1 + 4

c −
4
c2

are two roots of f(x) = 0,

(x− 1
2
− 1

2

√
1− 4

c2
+

4
c
)(x− 1

2
− 1

2

√
1− 4

c2
+

4
c
),

are two linear factors of f(x), and upon multiplying and simplifying, we obtain x2− x+ 1
c2
− 1

c .

If x = x1 or x = x2, then x2 − x+ 1
c2
− 1

c = 0, which reduces

cx− 1 = cx2 +
1
c
− 2. (2.9)

But we have, from (2.3) and (2.9),

x+ y = x+
2− 1

c − x

1− cx
=
−cx2 − 1

c + 2
1− cx

= 1.

2

Note that from (2.1) and Theorem 2.1, we obtain

a0 + a2 = 1 and a1 + a3 = 1. (2.10)

Note also that (1.13) implies A0(1
2) = 0 and A1(0) = 0, which is the well known vanishing

moment condition for wavelets. A0(1
2) = 0 is satisfied by (2.10). And this is what is done

generally for construction of wavelets. More specifically, (2.1) and (1.13), and hence (2.10),

are solved together to get the complete descriptions of scaling filters as well as wavelets. As

pointed out earlier, the task of this note has been different. We examined the solutions of (2.1)

independently, and derived (2.10) without referring to (1.13). In [2] (p. 296), it is noted that

“the sum condition
∑
aeven =

∑
aodd = 1 is always imposed”. Theorem 2.1 tells us that, with

wavelets whose scaling relation involves four terms, it is necessary that
∑
aeven =

∑
aodd = 1.

Some other immediate consequences of Theorem 2.1 are:

(a0 − 1
2)2 + (a1 − 1

2)2 = 1
2

(a2 − 1
2)2 + (a2 − 1

2)2 = 1
2

(a0 − 1
2)2 + (a3 − 1

2)2 = 1
2

(a2 − 1
2)2 + (a3 − 1

2)2 = 1
2

a2
1 − a1 − a0a2 = 0

a2
3 − a3 − a0a2 = 0.

7
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Now, we are ready to present the algorithm for the solution of our problem:

ALGORITHM:

1. Choose a3 ∈ ( 1
−2−2

√
2
, 1
−2+2

√
2
).

2. Find a0 = 1
2 ±

1
2

√
1 + 4a3 − 4a2

3.

3. Get a2 = 1− a0.

4. Get a1 = 1− a3.

The corresponding scaling function ϕ can be derived by finding a fixed point of the mapping

Sf(x) = a0f(2x) + a1f(2x− 1) + a2f(2x− 2) + a3f(2x− 3),

by iteration with a reasonable starting function, f0, -i.e.,

ϕ(x) = lim
n→∞

Snf0(x).

To install p accuracy condition on wavelets, -i.e., to establish the p vanishing moment properties

of wavelets, it is required [2] that

∑
(−1)kkmak = 0, for m < p. (2.11)

By (2.10), (2.11) is satisfied with m = 0. Therefore, the algorithm, when a3 is taken in the

range specified, will generates a family of wavelets whose accuracy order is 1. If we want the

second order accuracy in wavelets, then we must also have equation (2.11) with m = 1. In our

case, this is

−a1 + 2a2 − 3a3 = 0. (2.12)

Since a1 = 1− a3 and a0 = 1− a2, substituting into (2.12), we obtain 2a0 = 1− 2a3. Replacing

a0 by 1
2 ±

1
2

√
1 + 4a3 − 4a2

3 and solving for a3, we obtain a3 = 1±
√

3
4 . If we take a3 = 1−

√
3

4 , then

the following wavelet is generated by the algorithm;

a0 =
1 +

√
3

4
, a1 =

3 +
√

3
4

, a2 =
3−

√
3

4
, a3 =

1−
√

3
4

.

8
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Of course, this is one of Daubechies wavelets. It is important to note that our approach

can be extended to any scaling function that involves four nonzero coefficients. For instance,

consider the case;

ϕ(x) = a−1ϕ(2x+ 1) + a0ϕ(2x) + a1ϕ(2x− 1) + a2ϕ(2x− 2).

Then the algorithm is modified to

1. Choose a2 ∈ ( 1
−2−2

√
2
, 1
−2+2

√
2
).

2. Find a−1 = 1
2 ±

1
2

√
1 + 4a2 − 4a2

2.

3. Get a1 = 1− a−1.

4. Get a0 = 1− a2.

Arguing as before to obtain the second order accuracy in the wavelet, we get once again the

coefficients,

a−1 =
1 +

√
3

4
, a0 =

3 +
√

3
4

, a1 =
3−

√
3

4
, a2 =

1−
√

3
4

.

The support of the scaling function is [−1, 2]. Also, we note that choosing a2 = 0 and the

minus sign for a−1 in the algorithm, yields a−1 = a2 = 0, a0 = a1 = 1. These values yield the

scaling function ϕ for the classical Haar wavelets.
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Abstract

Many definitions of second order generalized derivatives have been
introduced to study optimization problems involving C1,1 data. The aim
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prove necessary and sufficient conditions for C1,1 optimization problems.
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1 Introduction

The class of C1,1 functions, that is the class of differentiable functions with a
locally Lipschitzian gradient, was first studied by Hiriart-Urruty, Strodiot and
Hien Nguyen in [19]. Several problems of applied mathematics (variational in-
equalities, semi-infinite programming, penalty functions, augmented lagrangian,
proximal point methods, iterated local minimization by decomposition) involve
differentiable functions with no hope of being twice differentiable but with lo-
cally Lipschitzian gradient; for this class of functions many second order gen-
eralized derivatives have been introduced to obtain generalized optimality con-
ditions (see the references). In this paper we will give some relations among
several definitions that one can find in literature and we will study necessary
and sufficient conditions for optimization problems expressed by means of these
derivatives.

2 Preliminary definitions and results

In the following Ω will denote an open subset of Rn.
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Definition 2.1. A function f : Ω → R is of class C1,1, or briefly a C1,1

function, at x0 if it is differentiable and ∇f(x) is locally Lipschitzian at x0, i.e.
there exists a constant K > 0 such that:

‖∇f(x)−∇f(y)‖ ≤ K‖x− y‖,

for all x and y in a neighborhood U of x0.

Example 2.1. Let g : Ω ⊂ Rn → R be of class C2 on Ω and consider f(x) =
[g+(x)]2 where g+(x) = max{g(x), 0}. This type of functions arises in some
penalty methods. It is easy to prove that f is a C1,1 function on Ω [19].

We now remember the notions of second order generalized derivative on
which we will focus our attention.

Definition 2.2. Let us consider a function f : Ω → R of class C1,1 at x0.

i) Peano’s second upper derivative of f at x0 in the direction d ∈ Rn is
defined as:

f
′′
P (x0; d) = 2 lim sup

t↓0

f(x0 + td)− f(x0)− t∇f(x0)d
t2

.

ii) Dini-Hadamard’s second upper derivative of f at x0 in the direction d ∈ Rn

is defined as:

f
′′
H(x0; d) = 2 lim sup

t↓0,d′→d

f(x0 + td′)− f(x0)− t∇f(x0)d′

t2
.

iii) Riemann’s second upper derivative of f at x0 in the directions d, w ∈ Rn

is defined as:

f
′′
R(x0; d, w) = lim sup

t↓0

f(x0 + td + tw)− f(x0 + td)− f(x0 + tw) + f(x0)
t2

.

iv) Dini’s second upper derivative of f at x0 in the directions d, w ∈ Rn is
defined as:

f
′′
D(x0; d, w) = lim sup

t↓0

∇f(x + td)w −∇f(x)w
t

.

v) Yang-Jeyakumar’s second upper derivative of f at x0 in the directions
d, w ∈ Rn is defined as:

f
′′
Y (x0;u, v) = sup

z∈Rn

lim sup
t↓0

∇f(x0 + td + tz)w −∇f(x0 + tz)w
t

.

vi) Clarke’s second upper derivative of f at x0 in the directions d, w ∈ Rn is
defined as:

f
′′
C(x0; d,w) = lim sup

x′→x, t↓0

∇f(x′ + td)w −∇f(x′)w
t

.
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vii) BenTal-Zowe’s second upper derivative of f at x0 in the directions d, w ∈
Rn is defined as:

f
′′
B(x0; d, w) = 2 lim sup

t↓0

f(x0 + td + 2−1t2w)− f(x0)− t∇f(x0)d
t2

.

Remark 2.1. In an analogous way one can define lower derivatives and we
denote them by f ′′.

In the following results we will give some relations among the derivatives of
definition 2.2.

Remark 2.2. In [49] is given the following chain of inequalities:

f
′′
D(x0; d, w) ≤ f

′′
Y (x0; d, w) ≤ f

′′
C(x0; d, w).

Furthermore f
′′
Y (x0; d,w) = f

′′
C(x0; d,w) if and only if the map f

′′
Y (·; d, w) is

upper semicontinuous .

Remark 2.3. In [9] is given the following characterization of Clarke’s gener-
alized derivative:

f
′′
C(x0; d, w) = lim sup

x→x0, s,t↓0

∆
d,w

2 f(x; s, t)
st

where:

∆
d,w

2 f(x; s, t) = f(x + sd + tw)− f(x + sd)− f(x + tw) + f(x).

From this characterization one can trivially deduce that f
′′
R(x0; d,w) ≤ f

′′
C(x0; d, w).

Proposition 2.1. Let f be a function of class C1,1 at x0. Then:

f
′′
B(x0; d, w) = ∇f(x0)w + f

′′
P (x0; d).

Proof. Let lB ∈ ∂2
Bf(x0; d, w) and lP ∈ ∂2

P f(x0; d) where:

∂2
Bf(x0; d, w) =

{
l = 2 lim

k→+∞

f(x0 + tkd + 2−1t2kw)− f(x0)− tk∇f(x0)d
t2k

, tk ↓ 0
}

∂2
P f(x0; d) =

{
l = 2 lim

k→+∞

f(x0 + tkd)− f(x0)− tk∇f(x0)d
t2k

, tk ↓ 0
}

Eventually by extracting subsequences, we have:

lB = 2 lim
k→+∞

f(x0 + tkd + 2−1t2kw)− f(x0)− tk∇f(x0)d
t2k

=

2 lim
k→+∞

f(x0 + tkd + 2−1t2kw)− f(x0 + tkd)
t2k

+
f(x0 + tkd)− f(x0)− tk∇f(x0)d

t2k
=

2 lim
k→+∞

∇f(ξk)w +
f(x0 + tkd)− f(x0)− tk∇f(x0)d

t2k
= ∇f(x0)w + lP
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Lemma 2.1. Let f be a function of class C1,1 at x0. Then f
′′
P (x0; d) =

f
′′
H(x0; d) and f ′′

P
(x0; d) = f ′′

H
(x0; d).

Proof. It is trivial that f
′′
P (x0; d) ≤ f

′′
H(x0; d). Vice versa, let l ∈ ∂2

Hf(x0; d)
where:

∂2
Hf(x0; d) := {l = lim

k→+∞
2
f(x0 + tkdk)− f(x0)− tk∇f(x0)dk

t2k
, tk ↓ 0, dk → d}.

Then there exist tk ↓ 0, dk → d s.t.:

l

2
= lim

k→+∞

f(x0 + tkdk)− f(x0)− tk∇f(x0)dk

t2k
=

lim
k→+∞

f(x0 + tkdk)− f(x0 + tkd) + f(x0 + tkd)− f(x0)− tk∇f(x0)d− tk∇f(x0)(dk − d)
t2k

.

Taking eventually a subsequence:

lim
k→+∞

f(x0 + tkd)− f(x0)− tk∇f(x0)d
t2k

=
l′

2
, l′ ≤ f

′′
P (x0; d)

lim
k→+∞

∣∣∣∣f(x0 + tkdk)− f(x0 + tkd)− tk∇f(x0)(dk − d)
t2k

∣∣∣∣ =
lim

k→+∞

∣∣∣∣ tk∇f(ξk)(dk − d)− tk∇f(x0)(dk − d)
t2k

∣∣∣∣ ≤
lim

k→+∞

K‖dk − d‖‖ξk − x0‖
tk

= 0,

where ξk ∈ [x0 + tkdk, x0 + tkd] and then ξk−x0
tk

→ d. Therefore:

lim
k→+∞

f(x0 + tkdk)− f(x0 + tkd)− tk∇f(x0)(dk − d)
t2k

= 0

and then l′ = l. Then f
′′
H(x0; d) ≤ f

′′
P (x0; d). The proof of the second equality

is analogous.

Theorem 2.1. Let f be a function of class C1,1 at x0. Then:

i) f
′′
H(x0; d) = f

′′
P (x0; d) ≤ f

′′
D(x0; d, d) ≤ f

′′
Y (x0; d, d) ≤ f

′′
C(x0; d, d).

ii) f
′′
H(x0; d) = f

′′
P (x0; d) ≤ f

′′
R(x0; d, d) ≤ f

′′
Y (x0; d, d) ≤ f

′′
C(x0; d, d).

Proof. i) From the previous remarks, it is only necessary to prove the in-
equality f

′′
P (x0; d) ≤ f

′′
D(x0; d, d). If we take the functions φ1(t) = f(x0 +

td)− t∇f(x0)d and φ2(t) = t2, applying Cauchy’s theorem, we obtain:

2
f(x0 + td)− f(x0)− t∇f(x0)d

t2
= 2

φ1(t)− φ1(0)
φ2(t)− φ2(0)

=

2
φ′1(ξ)
φ′2(ξ)

=
∇f(x0 + ξd)d−∇f(x0)d

ξ
,

where ξ = ξ(t) ∈ (0, t), and then f
′′
P (x0; d) ≤ f

′′
D(x0; d, d).
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ii) From the previous remarks, it is only necessary to prove the inequalities
f
′′
P (x0; d) ≤ f

′′
R(x0; d, d) ≤ f

′′
Y (x0; d, d). Concerning the first inequality,

from the definition of f
′′
P (x0; d) we have:

f(x0 + td) = f(x0) + t∇f(x0)d +
t2

2
f
′′
P (x0; d) + g(t)

where:

lim sup
t↓0

g(t)
t2

= 0

and:

f(x0 + 2td) = f(x0) + 2t∇f(x0)d + 2t2f
′′
P (x0; d) + g(2t)

where:

lim sup
t↓0

g(2t)
t2

= 4 lim sup
t↓0

g(2t)
4t2

= 0.

Then:

lim sup
t↓0

f(x0 + 2td)− 2f(x0 + td) + f(x0)
t2

=

lim sup
t↓0

t2f
′′
P (x0; d) + g(2t)− g(t)

t2
≥

f
′′
P (x0; d) + lim sup

t↓0

g(2t)
t2

− lim sup
t↓0

g(t)
t2

.

Then f
′′
R(x0; d, d) ≥ f

′′
P (x0; d). For the second inequality, we define φ1(t) =

f(x0 + 2td)− 2f(x0 + td) and φ2(t) = t2. Then, by Cauchy’s theorem, we
obtain:

f(x0 + 2td)− 2f(x0 + td) + f(x0)
t2

=
φ1(t)− φ1(0)
φ2(t)− φ2(0)

=

φ′1(ξ)
φ′2(ξ)

=
∇f(x0 + 2ξd)d−∇f(x0 + tξd)d

ξ
,

where ξ = ξ(t) ∈ (0, t), and then f
′′
R(x0; d, d) ≤ f

′′
Y (x0; d, d).

3 Optimality conditions for constrained optimiza-
tion problems

The aim of this section is to give necessary and sufficient conditions for the
following optimization problem:

OP ) min
x∈S

f(x)

where S is the feasible region defined as:

S = {x ∈ Rn : hi(x) = 0, i = 1 . . .m, gj(x) ≤ 0, j = 1 . . . r, x ∈ X}.
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We suppose that the functions f : Rn → R, hi : Rn → R and gj : Rn → R,
are of class C1,1, i = 1 . . .m, j = 1 . . . r and X is a closed convex subset of Rn.
From these conditions one can easily deduce the results in [19, 28, 49].

The following definitions will be useful in order to obtain optimality condi-
tions for OP).

Definition 3.1. Let A be a subset of Rn and x0 ∈ clA, where clA denotes the
closure of A. The sets:

• i) WF (A, x0) = {d : ∃tk ↓ 0, x0 + tkd ∈ A,∀k}

• ii) F (A, x0) = {d : ∀tk ↓ 0, x0 + tkd ∈ A,∀k}

• iii) T (A, x0) = {d : ∃dk → d, ∃tk ↓ 0, x + tkdk ∈ A}

• iv) T 2(A, x0, d) = {w ∈ Rn : ∃wk → w,∃tk ↓ 0, x + tkd + 2−1t2kwk ∈ A}

• v) T 2
0 (A, x0, d) = {w ∈ Rn : ∃wk → w,∃tk ↓ 0,∃γk ↓ 0, γ−1

k t2k → 0, x +
tkd + γkwk ∈ A}

are called, respectively, the cone of weakly feasible directions of A at x0, the
cone of feasible directions of A at x0, the contingent cone of A at x0, the second
order contingent set and the asymptotic second order contingent set of A at x0

in the direction d.

Theorem 3.1 (Proposition 3.3.11, [3]). Let x0 be a local minimum point of
the problem OP) where f , hi, and gj are of class C1 from Rn to R and X is
a closed convex set. Then there exists a scalar µ0 and Lagrange multipliers λi

and µj satisfying the following conditions:

• i) for all x ∈ X, we have:µ0∇f(x0) +
m∑

i=1

λi∇hi(x0) +
r∑

j=1

µj∇gj(x0)

 (x− x0) ≥ 0

• ii) µj ≥ 0, j = 0 . . . r

• iii) µ0, λi and µj are not all equal to 0.

• iv) in every neighborhood N of x0 there is an x ∈ X ∩ N such that
λihi(x) > 0 for all i with λi 6= 0 and µjgj(x) > 0 for all j with µj 6= 0
(this condition implies complementary slackness µjgj(x0) = 0.)

Theorem 3.2 (Proposition 3.3.12, [3]). Let x0 be a local minimum of the
problem OP) and assume that the following two conditions hold:

• a) there does not exist a nonzero vector λ = (λ1, . . . , λm) such that:(
m∑

i=1

λi∇hi(x0)

)
(x− x0) ≥ 0,∀x ∈ X
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• b) there exists a feasible direction d of X at x0 such that:

∇hi(x0)d = 0, i = 1 . . .m,∇gj(x0)d < 0,∀j ∈ A(x0)

where A(x0) = {j : gj(x0) = 0}.

Then the previous condition holds with µ0 = 1.

Given λ ∈ Rm, µ0 ∈ R and µ ∈ Rr, let L(x, λ, µ) the usual Lagrangian
function, that is:

L(x, λ, µ) = µ0f(x) +
m∑

i=1

λihi(x) +
r∑

j=1

µjgj(x),

and G(µ) = {x ∈ X : µg(x) = 0, h(x) = 0}. We will write L(x) instead of
L(x, λ, µ) when this doesn’t create confusion. The function L(·, λ, µ) is of class
C1,1.

Theorem 3.3 (Necessary optimality condition). Let x0 be a local mini-
mum point and assume that the previous two conditions a) and b) are satisfied.
Then:

• there exists λ ∈ Rm, µ ∈ Rr, µj ≥ 0, j = 1 . . . r, such that µjgj(x0) = 0
and ∇xL(x0, λ, µ)d ≥ 0, ∀d ∈ T (G(µ), x0);

• ∀d ∈ T (G(µ), x0) such that ∇xL(x0, λ, µ)d = 0, we have:

∇xL(x0, λ, µ)w + Lx
′′
H(x0, λ, µ; d) ≥ 0,

∀w ∈ T 2(G(µ), x0, d).

Proof. • i) See theorem 3.1.

• ii) Suppose, ab absurdo, ∃d ∈ T (G(µ), x0) with ∇xL(x0, λ, µ)d = 0, and
w ∈ T 2(G(λ), x0, d) such that:

∇xL(x0, λ, µ)w + Lx
′′
H(x0, λ, µ; d) < 0.

Since w ∈ T 2(G(µ), x0, d) then there exist wk → w, tk ↓ 0 such that
x0 + tkd + 2−1t2kwk ∈ G(µ). So, by extracting eventually subsequences,
we have:

l = lim
k→+∞

2
L(x0 + tk(d + 2−1tkwk))− L(x0)− tk∇xL(x0)(d + 2−1tkwk)

t2k

where l ∈ ∂2
HL(x0; d). We observe that:

L(x0 + tk(d + 2−1tkwk))− L(x0) =

f(x0+tk(d+2−1tkwk))+µg(x0+tk(d+2−1tkwk))+λh(x0+tk(d+2−1tkwk))−

f(x0)− µg(x0)− λh(x0) ≥ 0.

Then:
0 ≤ L(x0 + tk(d + 2−1tkwk))− L(x0) =
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tk∇xL(x0)(d + 2−1tkwk) + t2k
l

2
+ o(t2k) =

2−1t2k(∇xL(x0)wk + l) + o(t2k).

Taking the limit when n → +∞, we have:

0 ≤ ∇xL(x0)w + l ≤ ∇xL(x0)w + Lx
′′
H(x0; d).

Corollary 3.1. Let x0 be a local minimum point for the problem:

min
x∈X

f(x).

Then:

i) ∇f(x0)d ≥ 0, ∀d ∈ T (X, x0).

ii) f
′′
H(x0; d) ≥ 0, ∀d ∈ WF (X;x0), ∇f(x0)d = 0.

Proof. i) Trivial. ii) If d ∈ WF (X, x0), ∇f(x0)d = 0, then 0 ∈ T 2(X, x0, d) and
so f

′′
H(x0; d) ≥ 0.

Theorem 3.4 (Sufficient optimality condition). Let x0 ∈ S, µ ∈ Rr,
µi ≥ 0, µigi(x0) = 0, λ ∈ Rm, such that ∇xL(x0, λ, µ)d ≥ 0, ∀d ∈ T (S, x0).
Suppose that ∀d ∈ T (S, x0) such that ∇xL(x0, λ, µ)d = 0, we have:

∇xL(x0)w + Lx
′′
H

(x0, λ, µ; d) > 0

∀w ∈ T 2(S, x0, d), wd = 0 and:

∇xL(x0, λ, µ)w > 0

∀w ∈ T 2
0 (S, x0, d), w 6= 0, wd = 0. Then x0 is a strict local minimum point.

Proof. Ab absurdo, let xk → x0, xk ∈ S, be a sequence such that f(xk) ≤ f(x0),
xk 6= x0. If tk = ‖xk−x0‖ and dk = t−1

k (xk−x0) then, eventually by extracting
subsequences, tk ↓ 0, dk → d and d ∈ T (S, x0). So:

0 ≥ f(xk) + µg(xk) + λh(xk)− f(x0)− µg(x0)− λh(x0) = L(xk)− L(x0)

and then ∇xL(x0)d ≤ 0. So ∇xL(x0)d = 0. Now let sk = ‖dk − d‖ and
wk = s−1

k (dk − d). If dk 6= d, ∀n ∈ N (eventually by extracting a subsequence)
then xk = x0 + tkd + tkskwk, sk 6= 0 and wk → w 6= 0. Since dk, d ∈ S1, then:

‖dk‖2 = ‖d‖2 + ‖skwk‖2 + 2skwkd

and then wkd = −2−1sk‖wk‖2. Taking the limit when k → +∞, we have
wd = 0. So, by C1,1 regularity, we have:

l = 2 lim
k→+∞

L(x0 + tkdk)− L(x0)− tk∇xL(x0)dk

t2k
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and then:

0 ≥ L(xk)− L(x0) = tk∇xL(x0)(d + skwk) + t2k
l

2
+ o(t2k),

and so:
0 ≥ 2skt−1

k ∇xL(x0)wk + l + εk.

Now if t−1
k sk → r ≥ 0 then, taking the limit when n → +∞, we obtain:

0 ≥ 2r∇L(x0)w + Lx
′′
H

(x0; d)

which contradicts the hypothesis, since 2rw ∈ T 2(S, x0, d). If t−1
k sk → +∞

then w ∈ T 2
0 (S, x0, d) and:

0 ≥ ∇L(x0)wk + tks−1
k

l

2
+ tks−1

k o(t2k)

and so ∇xL(x0)w ≤ 0, which contradicts the hypothesis. If dk = d, ∀n ∈ N,
then d ∈ F (S, x0) and then 0 ∈ T 2(S, x0, d). Following the same calculations of
the previous case, we obtain a contradiction.

4 Final remarks on optimality conditions for C1,1

vector optimization problems by scalarization

In this section we briefly discuss how to obtain optimality conditions for C1,1

vector optimization problems by scalarization techniques. Many different ways
to reduce a multi-objective problem to a single-objective ones have been pro-
posed; we focus the attention on linear scalarization methods which preserve
the C1,1 regularity of the involved data. A vector function f : Rn → Rm is said
to be of class C1,1 if and only if each component of f is of class C1,1. Given
f : Rn → Rs, g : Rn → Rr and h : Rn → Rm, and a given subset X of Rn,
consider the following optimization problems:

1) min
x∈S

f(x)

2) min
x∈S

θf(x)

where S, the feasible region, is defined as:

S = {x ∈ Rn : hi(x) = 0, i = 1 . . .m, gj(x) ≤ 0, j = 1 . . . r, x ∈ X}.

We remember the following definition of vector minimum point and weak vector
minimum point of the problem 1).

Definition 4.1. A point x̄ ∈ S is said to be a vector minimum point of f if
there is no x ∈ S, x 6= x̄, such that f(x)− f(x̄) ∈ Rm

− .

Definition 4.2. A point x̄ ∈ S is said to be a weak vector minimum point of f
if there is no x ∈ S, such that f(x)− f(x̄) ∈ intRm

−.

The following theorem gives a necessary and sufficient condition for vector
minimum points.
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Theorem 4.1. [33] Let θ ∈ intRm
+ . Then, x̄ is a vector minimum point of 1)

if an only if it is a minimum point of the single objective problem:

3) min
x∈S′

θf(x)

where S′ = {x ∈ S : f(x̄)− f(x) ∈ Rm
+}.

A sufficient condition for vector weak minimum point is given in the following
result.

Definition 4.3. [33] The function f : Rn → Rm is said to be convexlike on
S ⊂ Rn if and only if for any x1, x2 ∈ S and any t ∈ [0, 1] there exists x3 ∈ S
such that:

tf(x1) + (1− t)f(x2)− f(x3) ∈ Rm
+

Theorem 4.2. [33]

• Let θ ∈ Rm
+ and x̄ be a minimum point of 2). If θ 6= 0, then x̄ is a vector

weak minimum point of 1).

• Suppose that f is convexlike on S. If x̄ ∈ S is a vector weak minimum
point of 1), then there exists θ ∈ Rm

+\{0} such that x̄ is a minimum point
of 2).

Nonlinear scalarizations of vector problems don’t preserve the C1,1 regular-
ity, that is starting from a C1,1 vector function the scalarized vector function is
not a C1,1 function. Indeed, by linear scalarization, one can use the results of
the previous sections for the problem 2) in order to obtain optimality conditions
for the problem 1).
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Abstract

In this paper, we investigate the Hyers-Ulam stability problem for the difference equation
f(x+ p, y + q) + ϕ(x, y)f(x, y) + ψ(x, y) = 0 and its applications.
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1 Introduction

In 1940, S. M. Ulam [16] raised a question concerning the stability of group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given

ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfies

the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a

homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

In other words, we are looking for situations when the homomorphisms are stable, i.e., if

a mapping is almost a homomorphism, then there exists a true homomorphism near it. If the

answer is affirmative, we would call the equation of homomorphism H(xy) = H(x)H(y) stable.

During the last decades, the stability problems of several functional equations have been extensively

investigated by a number of authors [2–12,14,15].

Mathematical computations frequently are based on equations, called difference equations or

recurrence equations that allows us to compute the value of a function recursively from a given set
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of values. These equations occur in numerous settings and forms, both in mathematics itself and in

its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics,

biology, and other fields. The study of linear difference equations is important for a number of

reactions. Many types of problems are naturally formulated as linear equations [1, 13].

In the next section we consider the following difference equation of the form

f(x+ p, y + q) + ϕ(x, y)f(x, y) + ψ(x, y) = 0, (1.1)

f(x+ p, y + q) + ϕ(x, y)f(x, y) = 0 (1.2)

with restricted conditions of ϕ(x, y) and ψ(x, y).

It is important to provide methods and suitable criterion that describe the nature and behavior

of solutions of difference systems, without actually constructing or approximating them. In contrast

with differential equations, since the existence and uniqueness of solutions of discrete initial value

problems is already guaranteed, one of the problems is the study of asymptotic behavior of solutions

of the difference system [1].

Apart from the stability of solutions of the difference equation, in this paper we examine the

situations that the difference equation (1.1) is stable in the sense of Hyers and Ulam, i.e., for a given

δ-approximate function we construct a true solution of the difference equation near it. Throughout

this paper, let δ > 0 and p, q ∈ N be fixed, and N denote the set of all positive integers and for

some nonnegative integer k, Nk := {k, k + 1, k + 2, · · · }.

2 Main Results

Before taking up the main subject we point out the following situation which is similar to that of

elementary homogeneous linear differential equation. That is, if a particular solution fp of (1.1) is

given, then the general solution f of (1.1) has the form f = fh + fp, where fh is a solution of (1.2).

In the next theorem, let two functions ϕ : Nk × Nk → (0,∞), ψ : Nk × Nk → R satisfy

ε(x, y) :=
∞∑

j=0

j∏
i=0

1
ϕ(x+ ip, y + iq)

<∞, (2.1)

ε
′
(x, y) :=

∞∑
j=0

(−1)jψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

<∞ (2.2)

for all x, y ∈ Nk. We now investigate the Hyers-Ulam stability problem for the equation (1.1).

2
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That is, the difference equation (1.1) is stable in the sense of Hyers and Ulam under the conditions

subject to (2.1), (2.2).

Theorem 2.1 Suppose that functions f, ψ : Nk × Nk → R and ϕ satisfy the inequality

|f(x+ p, y + q) + ϕ(x, y)f(x, y) + ψ(x, y)| ≤ δ (2.3)

for all x, y ∈ Nk. Then there exist unique functions T, Th, Tp : Nk × Nk → R such that T, Tp satisfy

the equation (1.1), Th satisfies the equation (1.2) and the relations

|f(x, y)− T (x, y)| ≤ δε(x, y), (2.4)

|f(x, y)− Th(x, y)| ≤ δε(x, y) + |ε′(x, y)|,

|Tp(x, y)| ≤ |ε′(x, y)|,

T (x, y) = Th(x, y) + Tp(x, y)

hold for all x, y ∈ Nk. If lim inf{f(x, y)|x, y ∈ N} > 0, then the range of Th is in (0,∞).

Proof. We prove the theorem by dividing into various steps.

Step 1. We show that there exists a limit function

T (x, y) := lim
m→∞

T2m(x, y) :=
f(x+ 2mp, y + 2mq)∏2m−1
i=0 ϕ(x+ ip, y + iq)

−
2m−1∑
j=0

(−1)j ψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)


for any x, y ∈ Nk.

Replacing x, y by x+ p, y + q, respectively, in (2.3), we have

|f(x+ 2p, y + 2q) + ϕ(x+ p, y + q)f(x+ p, y + q) + ψ(x+ p, y + q)| ≤ δ (2.5)

for all x, y ∈ Nk. Combining the last inequality with (2.3), we get the relation

|f(x+ 2p, y + 2q) − ϕ(x+ p, y + q)ϕ(x, y)f(x, y) + ψ(x+ p, y + q) (2.6)

− ϕ(x+ p, y + q)ψ(x, y)| ≤ δ + δϕ(x+ p, y + q)

for all x, y ∈ Nk. Now we use the induction on m ∈ N to prove∣∣∣f(x+ 2mp, y + 2mq)−
2m−1∏
i=0

ϕ(x+ ip, y + iq)f(x, y) (2.7)

−
2m−1∑
j=0

(−1)jψ(x+ jp, y + jq)
2m−1∏
i=j+1

ϕ(x+ ip, y + iq)
∣∣∣

≤ δ

2m−1∑
j=0

2m−1∏
i=j+1

ϕ(x+ ip, y + iq),

3
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and ∣∣∣f(x+ (2m+ 1)p, y + (2m+ 1)q) +
2m∏
i=0

ϕ(x+ ip, y + iq)f(x, y) (2.8)

+
2m∑
j=0

(−1)jψ(x+ jp, y + jq)
2m∏

i=j+1

ϕ(x+ ip, y + iq)
∣∣∣

≤ δ
2m∑
j=0

2m∏
i=j+1

ϕ(x+ ip, y + iq)

for all x, y ∈ Nk, where
∏j

i (·) = 1 conveniently if i > j. The validity of (2.7) and (2.8) is easily

proved by joining it to the other together with (2.3). Thus we obtain the inequalities which play

an important role in the sequel,∣∣∣ f(x+ 2mp, y + 2mq)∏2m−1
i=0 ϕ(x+ ip, y + iq)

− f(x, y)−
2m−1∑
j=0

(−1)j ψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

∣∣∣ (2.9)

≤ δ
2m−1∑
j=0

1∏j
i=0 ϕ(x+ ip, y + iq)

,

and ∣∣∣f(x+ (2m+ 1)p, y + (2m+ 1)q)∏2m
i=0 ϕ(x+ ip, y + iq)

+ f(x, y) +
2m∑
j=0

(−1)j ψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

∣∣∣ (2.10)

≤ δ
2m∑
j=0

1∏j
i=0 ϕ(x+ ip, y + iq)

.

We claim that the even sequenceT2m(x, y) =
f(x+ 2mp, y + 2mq)∏2m−1
i=0 ϕ(x+ ip, y + iq)

−
2m−1∑
j=0

(−1)j ψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

 (2.11)

is a Cauchy sequence. Indeed, for m > n we get from (2.9)

|T2m(x, y)− T2n(x, y)| = 1∏2n−1
i=0 ϕ(x+ ip, y + iq)

·
∣∣∣ f(x+ 2mp, y + 2mq)∏2m−1

i=2n ϕ(x+ ip, y + iq)
(2.12)

−f(x+ 2np, y + 2nq)−
2m−1∑
j=2n

(−1)j ψ(x+ jp, y + jq)∏j
i=2n ϕ(x+ ip, y + iq)

∣∣∣
≤ δ∏2n−1

i=0 ϕ(x+ ip, y + iq)

2m−1∑
j=2n

1∏j
i=2n ϕ(x+ ip, y + iq)

→ 0 as n→∞.

Therefore, we can now define a function T : Nk × Nk → R by

T (x, y) = lim
m→∞

T2m(x, y) (2.13)

4
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for any x, y ∈ Nk.

Step 2. We claim that T satisfies the equation (1.1).

We denote the odd sequence in (2.10) byS2m+1(x, y) =
f(x+ (2m+ 1)p, y + (2m+ 1)q)∏2m

i=0 ϕ(x+ ip, y + iq)
+

2m∑
j=0

(−1)j ψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

 . (2.14)

Replacing x, y by x+2mp, y+2mq, respectively, in (2.3) and dividing by
∏2m

i=0 ϕ(x+ ip, y + iq),

we obtain

|S2m+1(x, y) + T2m(x, y)| ≤ δ∏2m
i=0 ϕ(x+ ip, y + iq)

, (2.15)

which implies that a function S given by

S(x, y) = lim
m→∞

S2m+1(x, y) (2.16)

is defined since the right hand side in (2.15) tends to 0 as m→∞, and so S(x, y) +T (x, y) = 0 for

any x, y ∈ Nk by (2.15).

Since T2m(x+ p, y + q) = ϕ(x, y)S2m+1(x, y)− ψ(x, y), we have

T (x+ p, y + q) = ϕ(x, y)S(x, y)− ψ(x, y) = −ϕ(x, y)T (x, y)− ψ(x, y) (2.17)

for any x, y ∈ Nk. That is, T is a solution of the equation (1.1).

Step 3. We conclude that there exists a limit

Th(x, y) := lim
m→∞

{
f(x+ 2mp, y + 2mq)∏2m−1
i=0 ϕ(x+ ip, y + iq)

,

}
which satisfies the equation (1.2) for any x, y ∈ Nk.

From (2.9) we obtain that for any x, y ∈ Nk∣∣∣ f(x+ 2mp, y + 2mq)∏2m−1
i=0 ϕ(x+ ip, y + iq)

− f(x, y)
∣∣∣ (2.18)

≤ δ
2m−1∑
j=0

1∏j
i=0 ϕ(x+ ip, y + iq)

+

∣∣∣∣∣∣
2m−1∑
j=0

(−1)j ψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

∣∣∣∣∣∣ .
Also from (2.10) we have that for any x, y ∈ Nk∣∣∣f(x+ (2m+ 1)p, y + (2m+ 1)q)∏2m

i=0 ϕ(x+ ip, y + iq)
+ f(x, y)

∣∣∣ (2.19)

≤ δ
2m∑
j=0

1∏j
i=0 ϕ(x+ ip, y + iq)

+

∣∣∣∣∣∣
2m∑
j=0

(−1)jψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

∣∣∣∣∣∣ .
5
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Using the similar argument to that of (2.12), we obtain that the sequence{
f(x+ 2mp, y + 2mq)∏2m−1
i=0 ϕ(x+ ip, y + iq)

}
(2.20)

is a Cauchy sequence due to (2.18), and the function Th given by

Th(x, y) = lim
m→∞

{
f(x+ 2mp, y + 2mq)∏2m−1
i=0 ϕ(x+ ip, y + iq)

}
(2.21)

is defined for any x, y ∈ Nk.

As in the case of (2.15), we have from (2.3)∣∣∣f(x+ (2m+ 1)p, y + (2m+ 1)q)∏2m
i=0 ϕ(x+ ip, y + iq)

+
f(x+ 2mp, y + 2mq)∏2m−1
i=0 ϕ(x+ ip, y + iq)

(2.22)

+
ψ(x+ 2mp, y + 2mq)∏2m

i=0 ϕ(x+ ip, y + iq)

∣∣∣ ≤ δ∏2m
i=0 ϕ(x+ ip, y + iq)

,

which yields that a function Sh given by

Sh(x, y) = lim
m→∞

{
f(x+ (2m+ 1)p, y + (2m+ 1)q)∏2m

i=0 ϕ(x+ ip, y + iq)

}
is defined and Sh(x, y) + Th(x, y) = 0 by (2.22), and hence

Th(x+ p, y + q) = ϕ(x, y)Sh(x, y) = −ϕ(x, y)Th(x, y)

for any x, y ∈ Nk. That is, Th is a solution of the equation (1.2).

Step 4. We obtain that Tp(x, y) := T (x, y) − Th(x, y) is a particular solution of the equation

(1.1) and T, Tp and Th satisfy the inequalities (2.4).

By the comment preceding the theorem,

Tp(x, y) := T (x, y)− Th(x, y) = −
∞∑

j=0

(−1)j ψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

(2.23)

is well defined and a particular solution of the equation (1.1).

We also have the inequalities (2.4) by taking the limit on both sides in (2.9) and (2.18).

Step 5. We prove the uniqueness of T, Tp and Th subject to (2.4).

Now assume that T
′
, T

′
h, T

′
p are another mappings satisfying the conclusions in the theorem.

Since T, T
′
satisfy the equation (1.1),

T (x, y) =
T (x+ 2mp, y + 2mq)∏2m−1
i=0 ϕ(x+ ip, y + iq)

−
2m−1∑
j=0

(−1)j ψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

6
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and

T
′
(x, y) =

T
′
(x+ 2mp, y + 2mq)∏2m−1

i=0 ϕ(x+ ip, y + iq)
−

2m−1∑
j=0

(−1)j ψ(x+ jp, y + jq)∏j
i=0 ϕ(x+ ip, y + iq)

for any x, y ∈ Nk and thus it then follows from (2.4) that

|T (x, y)− T
′
(x, y)| = |T (x+ 2mp, y + 2mq)− T

′
(x+ 2mp, y + 2mq)|∏2m−1

i=0 ϕ(x+ ip, y + iq)
(2.24)

≤ 2δ∏2m−1
i=0 ϕ(x+ ip, y + iq)

∞∑
j=0

j∏
i=0

1
ϕ(x+ 2mp+ ip, y + 2mq + iq)

→ 0 as m→∞.

This implies the uniqueness of T. Similarly we have the uniqueness of Th by the same method of

(2.24). This completes the proof of the theorem. �

Remark 2.2 If ψ = 0, then T = Th, Tp = 0 since ε
′
(x, y) = 0 for any x, y ∈ Nk.

In the next theorem, let two functions ϕ : Nk → (0,∞), ψ : Nk → R satisfy

ε(x) :=
∞∑

j=0

j∏
i=0

1
ϕ(x+ ip)

<∞, (2.25)

ε
′
(x) :=

∞∑
j=0

(−1)jψ(x+ jp)∏j
i=0 ϕ(x+ ip)

<∞ (2.26)

for all x ∈ Nk. Then we obtain the Hyers-Ulam stability problem for a single variable.

Theorem 2.3 Suppose that functions f, ψ : Nk → R and ϕ satisfy the inequality

|f(x+ p) + ϕ(x)f(x) + ψ(x)| ≤ δ

for all x ∈ Nk. Then there exist unique functions T, Th, Tp : Nk → R such that T, Tp satisfy the

equation f(x + p) + ϕ(x)f(x) + ψ(x) = 0, Th satisfies the equation f(x + p) + ϕ(x)f(x) = 0 and

the relations

|f(x)− T (x)| ≤ δε(x),

|f(x)− Th(x)| ≤ δε(x) + |ε′(x)|,

|Tp(x)| ≤ |ε′(x)|,

T (x) = Th(x) + Tp(x)

hold for all x ∈ Nk.
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3 Applications

We list some examples of difference equations which are stable by Theorem 2.1 in the sense of Hyers

and Ulam.

The function f(x) =
∫ e
1 (lnt)xdt (x ∈ N0) is a solution of the nonhomogeneous difference equation

f(x+ 1) + (x+ 1)f(x)− e = 0. (3.1)

We obtain from Theorem 2.3 the Hyers-Ulam stability for a single variable as follows.

Corollary 3.1 Suppose that a function f : N0 → R satisfies the inequality

|f(x+ 1) + (x+ 1)f(x)− e| ≤ δ (3.2)

for all x ∈ N0. Then there exist unique functions T, Th, Tp : N0 → R such that T, Tp satisfy the

equation (3.1), Th satisfies the equation f(x+ 1) + (x+ 1)f(x) = 0 and the relations

|f(x)− T (x)| ≤ (e− 1)δ, |f(x)− Th(x)| ≤ (e− 1)δ + e, (3.3)

|Tp(x)| ≤ e, T (x) = Th(x) + Tp(x)

hold for all x ∈ N0.

Proof. We apply Theorem 2.3 with ϕ(x) = x+ 1 and ψ(x) = −e. For any x ∈ N0

∞∑
j=0

j∏
i=0

1
x+ i+ 1

=
1

x+ 1
+

1
(x+ 1)(x+ 2)

+ · · · (3.4)

≤ e− 1

and ∣∣∣∣∣∣
∞∑

j=0

(−1)j(−e)∏j
i=0 x+ i+ 1

∣∣∣∣∣∣ =
e

x+ 1

(
1− 1

x+ 2
+

1
(x+ 2)(x+ 3)

+ · · ·
)

(3.5)

≤ e.

Thus we lead to the conclusion. �

The function f(x) =
∫ 1
0 t

xet−1dt is a solution of the nonhomogeneous difference equation

f(x+ 1) + (x+ 1)f(x)− 1 = 0 (x ∈ N0). (3.6)

We obtain from Theorem 2.3 the Hyers-Ulam stability of (3.6), of which the proof is similar to that

of Corollary 3.1.

8
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Corollary 3.2 Suppose that a function f : N0 → R satisfies the inequality

|f(x+ 1) + (x+ 1)f(x)− 1| ≤ δ (3.7)

for all x ∈ N0. Then there exist unique functions T, Th, Tp : N0 → R such that T, Tp satisfy the

equation (3.6), Th satisfies the equation f(x+ 1) + (x+ 1)f(x) = 0 and the relations

|f(x)− T (x)| ≤ (e− 1)δ, |f(x)− Th(x)| ≤ (e− 1)δ + 1, (3.8)

|Tp(x)| ≤ 1, T (x) = Th(x) + Tp(x)

hold for all x ∈ N0.

The function f(x) =
∫ 1
0

tx

5+tdt (x ∈ N) is a solution of the nonhomogeneous difference equation

f(x+ 1) + 5f(x)− 1
x+ 1

= 0. (3.9)

We obtain from Theorem 2.3 the Hyers-Ulam stability of (3.9) as follows.

Corollary 3.3 Suppose that a function f : N → R satisfies the inequality∣∣∣∣f(x+ 1) + 5f(x)− 1
x+ 1

∣∣∣∣ ≤ δ (3.10)

for all x ∈ N. Then there exist unique functions T, Th, Tp : N → R such that T, Tp satisfy the

equation (3.9), Th satisfies the equation f(x+ 1) + 5f(x) = 0 and the relations

|f(x)− T (x)| ≤ δ

4
, |f(x)− Th(x)| ≤ δ

4
+

1
10
, (3.11)

|Tp(x)| ≤
1
10
, T (x) = Th(x) + Tp(x)

hold for all x ∈ N.

Proof. We apply Theorem 2.3 with ϕ(x) = 5 and ψ(x) = −1
x+1 . For any x ∈ N

∞∑
j=0

j∏
i=0

1
5

=
1
5

+
1
52

+ · · · ≤ 1
4

(3.12)

and ∣∣∣∣∣∣
∞∑

j=0

(−1)j −1
x+j+1∏j

i=0 5

∣∣∣∣∣∣ =
1
5

(
1

x+ 1
− 1

5(x+ 2)
+ · · ·

)
≤ 1

10
. (3.13)
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This leads to the conclusion. �

The function f(x) =
∫∞
1

√
3+6t
tx dt (x ∈ N2) is a solution of the nonhomogeneous difference

equation

f(x+ 1) +
2x− 3
x

f(x)− 9
x

= 0. (3.14)

Here we denote κ :=
∑∞

j=0
(j+2)!∏j
i=0 2i+1

for the sake of abbreviation. We obtain the Hyers-Ulam

stability of (3.14) from Theorem 2.3.

Corollary 3.4 Suppose that a function f : N2 → R satisfies the inequality∣∣∣∣f(x+ 1) +
2x− 3
x

f(x)− 9
x

∣∣∣∣ ≤ δ (3.15)

for all x ∈ N2. Then there exist unique functions T, Th, Tp : N2 → R such that T, Tp satisfy the

equation (3.14), Th satisfies the equation f(x+ 1) + 2x−3
x f(x) = 0 and the relations

|f(x)− T (x)| ≤ κδ, |f(x)− Th(x)| ≤ κδ + 9, (3.16)

|Tp(x)| ≤ 9, T (x) = Th(x) + Tp(x)

hold for all x ∈ N2.

Proof. We apply Theorem 2.3 with ϕ(x) = 2x−3
x and ψ(x) = −9

x . For any x ∈ N2

∞∑
j=0

j∏
i=0

x+ i

2x+ 2i− 3
=

x

2x− 3
+

x(x+ 1)
(2x− 3)(2x− 1)

+ · · · (3.17)

≤ κ

and ∣∣∣∣∣∣
∞∑

j=0

(−1)j −9
x+j∏j

i=0
2x+2i−3

x+i

∣∣∣∣∣∣ =
9

2x− 3

(
1− x

2x− 1
+

x(x+ 1)
(2x− 1)(2x+ 1)

+ · · ·
)

(3.18)

≤ 9.

This yields the conclusion. �

The function f(x) =
∫∞
1

1
tx
√

3+6t
dt (x ∈ N) is a solution of the nonhomogeneous difference

equation

f(x+ 1) +
2x− 1
x

f(x)− 1
x

= 0. (3.19)

10
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Here we denote ω =
∑∞

j=1
j!∏j

i=1 2i−1
for abbreviation. We obtain from Theorem 2.3 the Hyers-Ulam

stability as follows. The proof of Corollary 3.5 is similar to that of Corollary 3.4.

Corollary 3.5 Suppose that a function f : N → R satisfies the inequality

|f(x+ 1) +
2x− 1
x

f(x)− 1
x
| ≤ δ (3.20)

for all x ∈ N. Then there exist unique functions T, Th, Tp : N → R such that T, Tp satisfy the

equation (3.19), Th satisfies the equation f(x+ 1) + 2x−1
x f(x) = 0 and the relations

|f(x)− T (x)| ≤ ωδ, |f(x)− Th(x)| ≤ ωδ + 1, (3.21)

|Tp(x)| ≤ 1, T (x) = Th(x) + Tp(x)

hold for all x ∈ N.
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1. Introduction

The following two theorems are important in coding theory (see, for instance,
[1], [4, p. 43–47]):

Theorem 1.1. (Kraft’s Theorem) We have the following:
(1) If C is an r-ary instantaneous code with codeword lengths l1, l2, · · · , ln, then

these lengths must satisfy Kraft’s inequality:

(1.1)
n∑

k=1

1
rlk

≤ 1.

(2) If the numbers l1, l2, · · · , ln and r satisfying Kraft’s inequality (1.1), then
there is an instantaneous r-ary code with codeword lengths l1, l2, · · · , ln.
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Theorem 1.2. (McMillan’s Theorem) If C = {c1, c2, · · · , cn} is a uniquely deci-
pherable r-ary code, then its codeword lengths must satisfy Kraft’s inequality (1.1).

Let us consider, for an r-ary code C having the codeword lengths l1, l2, · · · , ln,
the Kraft numbers

Kr(l1, l2, · · · , ln) =
n∑

k=1

1
rlk

(r > 1).

The following estimates of these numbers are given in [1]:

Theorem 1.3. Let C = {c1, c2, · · · , cn} be an r-ary code having the codeword
lengths l1, l2, · · · , ln. Then we have the following inequalities:

1
n ln r

n∑

k=1

[
ln(nr)− li(ln r)2

]

≤ Kr(l1, l2, · · · , ln)

≤ 1
n ln r

n∑

k=1

[
rli ln r + n ln n− nli(ln r)2

rli

]
.

The equality holds if and only if li = logr n.

In this paper, we shall give some further improvements of Theorem 1.3 as well
as some related results.

II. The Main Results

First, let us prove the following:

Theorem 2.1. Let C = (c1, c2, · · · , cn) be an r-ary code having the codeword
lengths l1, l2, · · · , ln. Then we have the following inequalities:

(2.1)
nr−

1
n

∑n
i=1 li ≤ Kr(l1, l2, · · · , ln)

≤ nr−(
∑n

i=1 lir
−ci )/(

∑n
i=1 r−li ).

The equality holds if and only if l1 = l2 = · · · = ln.

Proof. We shall use the well-known Jensen inequality for convex functions f : I →
R, that is,

(2.2) f

(
1
n

n∑

i=1

xi

)
≤ 1

n

n∑

i=1

f(xi),

where I is an interval of R and xi ∈ I for i = 1, 2, · · · , n.
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For f(x) = rx, if xi = −li for all i = 1, 2, · · · , n, then we have the first inee-
quality in (2.1). Note also that the function f(x) = x logr x is convex since r > 1.
Thus the inequality (2.2) for xi = r−li (i = 1, 2, · · · , n) becomes the following
inequalities:

1
n

n∑

i=1

r−ci logr

(
1
n

n∑

i=1

r−ci

)
≤ − 1

n

n∑

i=1

lir
−li ,

i.e.,

logr

(
1
n

n∑

i=1

r−ci

)
≤ −

∑n
i=1 lir

−li

∑n
i=1 r−ci

and so we have the second inequality in (2.1). This completes the proof.

As consequences of Theorem 2.1, we have the following corollaries from [1]:

Corollary 2.2. Let C = (c1, c2, · · · , cn) be an r-ary code having the codeword
lengths l1, l2, · · · , ln. If we have the following inequalities:

(2.3)
1
n

n∑

i=1

li < logr n,

then C is not uniquely decipherable.

Corollary 2.3. If the real numbers r and li (i = 1, 2, · · · , n) satisfy the following
inequality:

(2.4)
∑n

i=1 lir
−li

∑n
i=1 r−ci

≥ logr n,

then there is an instantaneous r-ary code with codeword lengths l1, l2, · · · , ln.

An extension of Theorem 1.3 is given by the following:

Theorem 2.4. Let C = (c1, c2, · · · , cn) be an r-ary code having the codeword
lengths l1, l2, · · · , ln. For arbitrary y, z ∈ R, we have the following inequalities:

(2.5) F (y) ≤ Kr(l1, l2, · · · , ln) ≤ G(z),

where

(2.6) F (y) = nry − ry ln r

(
n∑

i=1

li + ny

)
,

(2.7) G(z) = nrz −
n∑

i=1

r−li(li + z) ln r.
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The strongest inequalities of this form (2.5), that is,

(2.8)
F (ỹ) = max

y
F (y) ≤ Kr(l1, l2, · · · , ln)

≤ G(z̃) = min
z

G(z),

are obtained for

(2.9) ỹ = − 1
n

n∑

i=1

li, z̃ = logr

(
1
n

n∑

i=1

r−ci

)

Proof. Let us start, as in N. M. Dragomir et al. [1], from the following inequalities
for a differentiable and convex function f : D(f) ⊆ R→ R,

f ′(y)(x− y) ≤ f(x)− f(y) ≤ f ′(x)(x− y)

for all x, y ∈ D(f) (: the domain of f). Then, letting f(x) = rx in the first
inequality and f(x) = rx, y = z, in the second inequality, then we have

(2.10) ry + ry(x− y) ln r ≤ rx ≤ r2 + rx(x− z) ln r.

Also setting x = −li (i = 1, 2, · · · , n) and adding all such inequalities, we have

(2.11) F (y) ≤
n∑

i=1

r−li ≤ G(z).

Further we have also

F ′(y) = −ry(ln r)2
(

n∑

i=1

li + ny

)
,

F ′′(y) = (ln r)2
{
−ry ln r

(
n∑

i=1

li + ny

)
− ry

}
.

From F ′(y) = 0, it follows that y = ỹ, while F ′′(ỹ) = −ry(ln r)2 < 0 and so we
have the maximum. Similarly, we have also

G′(y) = nrz ln r − ln r
n∑

i=1

r−li ,

G′′(y) = nrz(ln r)2.

From G′(z) = 0, it follows that the minimum value is obtained for

nrz̃ =
n∑

i=1

r−li ,

that is, for z = z̃. This completes the proof.
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Remark 2.1. Note that the first inequality in (2.8) is equivalent to the first
inequality in (2.1) and so the following improvement of the first inequality in (2.5)
is valid:

(2.12) F (y) ≤ nr−
1
n

∑n
i=1 li ≤ Kr(l1, l2, · · · , ln).

Moreover, this result is a simple consequence of the first inequality in (2.1) and
the first inequality in (2.10). Indeed, setting

x = − 1
n

n∑

i=1

li

in the first inequality in (2.10), we have

ry − ry

(
1
n

n∑

i=1

li + y

)
ln r ≤ r−

1
n

∑n
i=1 li ,

which is equivalent to the first inequality in (2.12).
For y = z = logr

(
1
n

)
, (2.12) together with the second inequality in (2.5) gives

the following inequalities:

(2.13)

1
n ln r

n∑

i=1

[
ln(nr)− li(ln r)2

]

≤ nr−
1
n

∑n
i=1 li

≤ Kr(l1, l2, · · · , ln)

≤ 1
n ln r

n∑

i=1

[
rli ln r + n ln n− nli(ln r)2

rli

]
.

Remark 2.2. The second inequality in (2.8), after some elementary transforma-
tions, gives the second inequality in (2.1). The upper bounds for Kr(l1, l2, · · · , ln)
are nontrivial if they are ≤ 1. For example, for (2.1), we should have

(2.14) nr−(
∑n

i=1 lir
−li )/(

∑n
i=1 r−li ) ≤ 1,

while, for (2.13), we should have

(2.15)
1

n ln r

n∑

i=1

[
rli ln r + n ln n− nli(ln r)2

rli

]
≤ 1.

The first condition, (2.14) and (2.15) give (2.4), which is the conclusion of Corollary
2.3.

Since the expression on the right-hand side of (2.4) is not simple one, we shall
give some simple results. First, we prove the following:

...Kraft Numbers 413



Theorem 2.5. Let the assumptions of Theorem 2.1 be satisfied and let

(2.16) m ≤ li ≤ M (i = 1, 2, · · · , n).

Then we have the following inequality:

(2.17) Kr(l1, l2, · · · , ln) ≤ nr−
1

K2n

∑n
i=1 li ,

where

(2.18) K =

√
me−m +

√
Me−M

√
me−M +

√
Me−m

.

Proof. Note that the following result is valid (see, for instance, [2, p. 307]):
If 0 < a ≤ ai ≤ A and 0 < b ≤ bi ≤ B for all i = 1, 2, · · · , n, then we have

(2.19)
1

K̃2
≤ n

∑n
i=1 aibi∑n

i=1 ai

∑n
i=1 bi

≤ K̃2,

where

K̃ =

√
ab +

√
AB√

aB +
√

Ab
(≥ 1).

Setting ai = li, bi = r−li (i = 1, 2, · · · , n), a = m, A = M , b = r−M and B = r−m,
then the first inequality in (2.19) gives the following inequality:

(2.20)
∑n

i=1 lir
−li

∑n
i=1 r−li

≥ 1
K2

1
n

n∑

i=1

li.

Therefore, from the second inequality in (2.1), we obtain (2.17). This completes
the proof.

Corollary 2.6. If the real numbers r and li (i = 1, 2, · · · , n) such that 0 < m ≤
li < M and r > 1 satisfy the following inequality:

(2.21)
1
n

n∑

i=1

li ≥ K2 logr n,

where K is defined by (2.18), then there is an instantaneous r-ary code with code-
word lengths l1, l2, · · · , ln.

Proof. The inequalities (2.20) and (2.21) gives the conclusion (2.4).
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Theorem 2.7. Let the assumptions of Theorem 2.5 be satisfied. Then we have
the following inequalities:

(2.22) Kr(l1, l2, · · · , ln) ≤ nM −∑n
i=1 li

M −m
r−m +

∑n
i=1 li − nm

M −m
r−M .

Proof. The following result for a convex function f : I → R is valid [3, p. 98]: If
m ≤ xi ≤ M for m,M ∈ I and i = 1, 2, · · · , n, then we have

(2.23)
1
n

n∑

i=1

f(xi) ≤
M − 1

n

∑n
i=1 xi

M −m
f(m) +

1
n

∑n
i=1 xi −m

M −m
f(M).

Letting f(x) = rx, xi = −li (i = 1, 2, · · · , n), M → −m and m → −M , then we
obtain (2.22). This completes the proof.

Corollary 2.8. If the real numbers r and li (i = 1, 2, · · · , n) such that 0 < m ≤
li < M and r > 1 satisfy the following inequality:

(2.24)
1
n

n∑

i=1

li ≥ Mr−m −mr−m

r−m − r−M
− 1

n

M −m

r−m − r−M
,

then there is an instantaneous r-ary code with codeword lengths l1, l2, · · · , ln.

Proof. It is easy to see that (2.24) is equivalent to the following:

nM −∑n
i=1 li

M −m
r−m +

∑n
i=1 li − nm

M −m
r−M ≤ 1

and so (2.22) gives
Kr(l1, l2, · · · , ln) ≤ 1.

Applying Kraft’s theorem, we get the above result. This completes the proof.

Theorem 2.9. Let the assumptions of Theorem 2.1 be satisfied. Then we have
the following inequality:

(2.25)

Kr(l1, l2, · · · , ln)

≤ nr−
1
n

∑n
i=1 li − ln r

n∑

i=1

lir
−li +

ln r

n

n∑

i=1

li

n∑

i=1

r−li

If m ≤ li ≤ M for all i = 1, 2, · · · , n, then we have the following inequality:

(2.26)
Kr(l1, l2, · · · , ln)

≤ nr−
1
n

∑n
i=1 li +

ln r

n

[
n2

4

]
(M −m)(r−m − r−M ).
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Proof. The inequality (2.25) is a special case of the second inequality in (2.5) for
z = − 1

n

∑n
i=1 li. For the proof of (2.26), we need the following results ([2, p. 299],

[3, p. 206]): Let a and b be n-tuples such that u ≤ ai ≤ U and v ≤ bi ≤ V for all
i = 1, 2, · · · , n and real numbers u, v, U, V . Then we have the following inequality:

(2.27)

∣∣∣∣∣
n∑

i=1

aibi − 1
n

n∑

i=1

ai

n∑

i=1

bi

∣∣∣∣∣ ≤
1
n

[
n2

4

]
(U − u)(V − v).

Note that, for ai = li and bi = r−ci (i = 1, 2, · · · , n), we have U = M , u = m,
V = r−m, v = r−M and, by Čebysev’s inequality, for oppositely ordered n-tuples
{li} and {v−li}, we have∣∣∣∣∣

n∑

i=1

lir
−li −

n∑

i=1

li

n∑

i=1

r−li

∣∣∣∣∣ =
1
n

n∑

i=1

li

n∑

i=1

r−li −
n∑

i=1

lir
−li .

Therefore, (2.27) becomes the following inequality:

1
n

n∑

i=1

li

n∑

i=1

r−li −
n∑

i=1

lir
−li

≤ 1
n

[
n2

4

]
(M −m)(r−m − r−M )

and, from (2.25), we have (2.26). This completes the proof.

Corollary 2.10. If the real numbers r > 1 and li (i = 1, 2, · · · , n) satisfy the
following inequality:

nr−
1
n

∑n
i=1 li ≤ 1 + ln r

n∑

i=1

ln r−li − ln r

n

n∑

i=1

li

n∑

i=1

r−li

or if the real numbers li (i = 1, 2, · · · , n) are such that m ≤ li ≤ M and satisfy the
following inequality:

nr−
1
n

∑n
i=1 li ≤ 1− ln r

n

[
n2

4

]
(M −m)(r−m − r−M ),

then there is an instantaneous r-ary code with codeword lengths l1, l2, · · · , ln.
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E-mail : ouansafi@fsr.ac.ma

E-mail : abdeljalil s@yahoo.com

Abstract. In this work we consider approximations to the solution of a system of ordinary dif-
ferential equations (ODE) in presence of possibly infinitely many state dependent impulses on the
righthand side. We use a simple transformation that allows us to show that the problem is equivalent
to an ordinary differential equation without impulse with its solution in H1(0, T ;E). This transfor-
mation is numerically important. Indeed, to approximate the solution of the initial problem, we just
have to approximate the solution of the equivalent problem which is regular. We then obtain better
rates of convergence. Moreover we obtain an approximation of the solution which looks like the
initial solution. Both, the solution and its approximation, are in BV (0, T ;E), the space of functions
of bounded variation on [0, T ].

Keywords : ordinary differential equation, impulse, Galerkin method, numerical scheme.
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1 Introduction

In this paper we consider approximations to the solution of a system of ordinary differential equations
(ODE) in presence of possibly infinitely many state dependent impulses on the righthand side [7],
[8]:

{

ẋ(t) = f(x(t), t) +
∑

j∈J

αj(x(τ
−
j ))δ(t− τj), t ∈ [0, T ] ,

x(0) = x0,
(1)

where T > 0 is a real number , x0 ∈ E is the initial condition, where E = R
d with d a positive

integer, x : [0, T ] −→ E is a vector function , f : E × [0, T ] −→ E is a given map, δ (.) is the Dirac
delta distribution at 0, J ⊆ N

∗ = {1, 2, 3, ...} is a countable set of indices, αj : E −→ E is a given
map for all j ∈ J and {τj}j∈J is a strictly increasing sequence on ]0, T ].

In [6], the variational formulation is applied to obtain existence and uniqueness of the solution of
(1). Then, using a Galerkin method with piecewise polynomial functions of degree K , it is proved
that the rate of convergence in the L2 -norm is h1/2 and the rate of convergence at the nodes is h1 .
In the state independent impulses case the rate of convergence at the nodes grows up to hK+2 [3].
Moreover, when the solution is in HK+1(0, T ;E), the rate of convergence in the L2-norm and at the
nodes become respectively hK+1 and h2K+2 [2] , [5].

In this paper we use a simple transformation that allows us to show that the problem is equivalent
to an ordinary differential equation without impulse with its solution in H1(0, T ;E). This trans-
formation is numerically important. Indeed, to approximate the solution of (1), we just have to
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approximate the solution of the equivalent problem which is regular. We then obtain better rates of
convergence. Moreover we obtain an approximation of the solution which looks like the solution of
(1). Both, the solution and its approximation, are in BV (0, T ;E), the space of functions of bounded
variation on [0, T ] .

In section 2, we present the equivalent problem without impulses (1). Its variational formulation is
given in section 3, and we show existence and uniqueness of the solution under weaker assumptions
than those required in [6]. In section 4, we consider the approximation problem by using piecewise
polynomial functions. Then, in section 5, we show that the L2 and the nodal convergence rates are
h1. Moreover, in the state-independent impulse case, we show that the nodal convergence rate is
h2 for nonlinear systems and hK+2 for linear systems. Numerical implementation is considered in
section 6 and examples are given in section 7.

2 Transformation of the problem into an ordinary differential

equation without impulse

A solution x of (1) is a function of bounded variation which is the sum of two parts: x(t) =
xR(t) + xJ(t), a continuous part xR in H1(0, T ;E) (the Sobolev space of L2-function with L2-

derivative) xR(t) = x0 +
∫ t

0
f(x(τ), τ)dτ, and a jump part xJ in L∞(0, T ;E) (the space of essentially

bounded functions) where xJ(t) =
∑

j∈J

αj(x(τ
−
j ))χ[τj ,+∞)(t).

We introduce two families of functions: {θj}j∈J and {βj}j∈J from C(0, T ;E) to E defined by

{

θ1(y) = y(τ1),
θj(y) = y(τj) +

∑

i<j

αi ◦ θi(y) for j > 1,

and βj = αj ◦θj for j ∈ J. If x is the solution of (1), then αj(x(τ
−
j )) = βj(x), and xR is the solution

of the following ODE
{

ẋR(t) = F (xR, t), t ∈ [0, T ] ,
xR(0) = x0,

(2)

where F : C(0, T ;E) × [0, T ] −→ E and F (y, t) = f
(

y(t) +
∑

j∈J

βj(y)χ[τj ,+∞)(t), t
)

.

3 Weak Formulation

Using the Galerkin method we approach the solution of (2) by a piecewise polynomial function uh .
The values uh(τj) approach xR(τj) (j ∈ J). Then we show that uh +

∑

j∈J

βj(uh)χ[τj ,+∞) converges

to the solution of (1).

The (global) weak variational formulation of (2) is







find (xR, X) ∈ H1(0, T ;E) × E such that

X · v(T ) −
∫ T

0
xR(τ) · v̇(τ)dτ = x0 · v(0) +

∫ T

0
F (xR, τ) · v(τ)dτ,

for all v ∈ H1(0, T ;E).

(3)

Theorem 3.1. Problems (2) and (3) are equivalent.

Proof : See [3,Theorem 3.3].

A partition of the interval [0, T ] of size h is characterized by an integer N ≥ 1 and a sequence
{tn}N

n=0 of real numbers such that 0 = t0 < · · · < tn < · · · < tN = T , with h = max{tn − tn−1 : n =
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1, 2, . . . , N}. Subintervals will be denoted by In = ] tn−1, tn[ , n = 1, . . . , N . A family of partitions
indexed by h is said to be regular if there exists a constant c > 0 such that as h goes to zero
c h ≤ tn − tn−1 ≤ h, n = 1, . . . , N. Throughout this paper we shall only consider regular families of
partitions.

For any n = 1, ..., N , let Un = En+1 ×
n
∏

k=1

H1(Ik;E) and for ũn = (U0, ..., Un;u1, ..., un) ∈ Un we

define

ûn(t) =

{

Uk if t = tk (k = 0, ..., n),
uk(t) if t ∈]tk−1, tk[ (k = 1, ..., n).

To obtain a piecewise polynomial approximation of the solution, we consider the following variational
formulation















If U0 = x0, and (uk, Uk) ∈ H1(Ik;E) × E is given
for k = 1, 2, ....n− 1,find (un, Un) ∈ H1(In;E) × E such that
Un · vn(tn) −

∫

In
un(τ) · v̇n(τ)dτ = Un−1 · vn(tn−1) +

∫

In
F (ûn, τ) · vn(τ)dτ,

for all vn ∈ H1(In;E).

(4)

If this problem has a solution, we obtain, as in the proof of Theorem 3.1, Un = un(tn) and Un−1 =
un(tn−1). Thus, we can easily show that ûn(.) is continuous and belongs to H1(0, tn;E).

Theorem 3.2. Problems (3) and (4) are equivalent.

Proof : See [3,Theorem 3.3].

Let us define
Jn = {j ∈ J : τj ∈ ]tn−1, tn]} , n = 1, ..., N,

J≤
n = {j ∈ J : τj ∈ ]0, tn]} , n = 1, ..., N

and
l∞(EJ ) = {ξ ∈ EJ :‖ ξ ‖∞= sup{|ξj | : j ∈ J} < +∞}.

By the same way we define l∞(EJn) and l∞(EJ≤
n ).

To show existence and uniqueness of the solution to (4) we use the next lemmas [8] . To simplify

we suppose J = N
∗, however our results remain true for any subset J of N

∗. Let Λ =
+∞
∑

i=1

λi, and set

n
∏

i=m

γi = 1 if n < m and
n
∑

i=m

γi = 0 if n < m.

Lemma 3.1. Let {λj}j∈J be a sequence of positive real numbers , then

1 +

+∞
∑

i=1

λi

i−1
∏

k=1

(1 + λk) ≤ eΛ.

Let us remark that the functions θj(.) are well defined only if the values y(τj), j ∈ J , are defined.
For a sequence ξ = {ξj}j∈J we can define

{

θ1(ξ) = ξ1,
θj(ξ) = ξj +

∑

i<j

αi ◦ θi(ξ) for j > 1,

with, as previously defined, βj = αj ◦ θj for j ∈ J .

Lemma 3.2. For any ξ1 and ξ2 in l∞(Ej), we have

|βj(ξ
1) − βj(ξ

2)| ≤ λje
Λ max{|ξ1k − ξ2k| : k = 1, ..., j}

≤ λje
Λ‖ξ1 − ξ2‖∞.
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Remark 3.1. If x1, x2 ∈ C(0, T ;E) and ξk
j = xk(τj) (k = 1, 2), then

|βj(ξ
1) − βj(ξ

2)| ≤ λje
Λ max{|x1(τk) − x2(τk)| : k = 1, ..., j}

≤ λje
Λ‖x1 − x2‖∞.

Lemma 3.3. We have
∑

j∈J

|βj(0)| ≤ eΛ
∑

j∈J

|αj(0)|.

Lemma 3.4. Let I = [α, β].
(i) The map

H1(I;E) −→ L2(I;E) × E

v 7−→ (v̇, v(β))

is an isomorphism.

(ii) Let b be an arbitrary element of H1(I, E)∗, the variational problem






find (u,U) ∈ L2(I;E) × E such that

U.v(β) −
∫ β

α
u(t) · v̇(t)dt = b(v)

for all v ∈ H1(I;E)

(5)

has a unique solution.

Proof : See [10].

Theorem 3.3. Let x0 ∈ E,

(a) assume the map f : E × [0, T ] −→ E verifies the following conditions :

(i) for all x ∈ E, the map t −→ f(x, t) is ( Lebesgue ) measurable,

(ii) there exists q ∈ L2(0, T ; R) such that, for any x1, x2 ∈ L2(0, T ;E)

| f(x1(t), t) − f(x2(t), t) |≤ q(t) | x1(t) − x2(t) | a.e.,
(iii) the map t −→ f(0, t) belongs to L2(0, T ;E);
(b) suppose also the functions αj (j ∈ J) verify the following conditions :

(iv)
∑

j∈J

|αj(0)| < +∞,

(v) there exists a sequence of positive real numbers {λj}j∈J such that
∑

j∈J

λj < +∞ and for all j ∈ J

and x1, x2 ∈ E
| αj(x1) − αj(x2) |≤ λj | x1 − x2 | .

Then

(1) the solution (U1, ..., UN , u1, ..., uN ) ∈ UN to (4) exists and is unique, moreover, xR = ûN is the

unique solution in H1(0, T ;E) to the system (2), and

(2) the solution to (1) exists and is unique in BV (0, T ;E), moreover, we have

x(t) = ûN (t) +
∑

j∈J

βj(ûN )χ[τj ,+∞)(t).

Proof : Similar to the proof of Theorem 3.5 in [6]. See also [11].

Let us consider the Hilbert spaces U and V defined by

U = EN+1 ×
N
∏

n=1

H1(In;E) = UN and V = E ×
N
∏

n=1

H1(In;E) = VN .

In order to apply a Galerkin method we consider the following equivalent problem which is a global
mesh-dependent variational formulation































find ũ = (U0, U1, ..., UN ;u1, ..., uN ) ∈ U such that

U0(V0 − v1(t0)) +
N
∑

n=1
Un(vn(tn) − vn+1(tn)) + UN · vN (tN ) −

N
∑

n=1

∫

In
un(τ) · v̇n(τ)dτ

= x0 · V0 +
N
∑

n=1
[
∫

In
F (ûn, τ) · vn(τ)dτ ],

for all ṽ = (V0, v1, ..., vN ) ∈ V.

(6)
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4 Galerkin Approximation

Let us define the subspaces U h and Vh of U and V by

U h =

{

ũh = (U0, U1, .., UN ;u1, ..., uN ) ∈ U
such that un ∈ PK(In;E) for n = 1, ...N

}

, (7)

and

Vh =

{

ṽh = (V0, v1, v2, ..., vN ) ∈ V
such that vn ∈ PK+1(In;E); for n = 1, ..., N

}

, (8)

where PK(In;E) is the set of polynomials of degree at most K on In. For each n = 1, ..., N we set

Uh
n = En+1 ×

n
∏

k=1

PK(Ik, E),

and for each ũn = (U0, ..., Un;u1, ..., un) ∈ Uh
n we define

ûn(t) =

{

Uk if t = tk (k = 0, ..., n),
uk(t) if t ∈]tk−1, tk[ (k = 1, ..., n).

(9)

The discrete problem associated to (6) is






find ũh = (U0, ..., UN ;u1, ..., uN ) ∈ Uh such thatU0 = x0 and for n = 1, ..., N
Un · vn(tn) −

∫

In
un(τ) · v̇n(τ)dτ = Un−1 · vn(tn−1) +

∫

In
F (ûn, τ) · vn(τ)dτ,

for all vn ∈ PK+1(In;E).
(10)

We will show that (10) has a unique solution for h small enough. Similar to Lemma 3.4 and Theorem
3.3 we have

Lemma 4.1. Let In = [tn−1, tn].
(i) The map

PK+1(In;E) −→ PK(In;E) × E

v 7−→ (−v̇, v(tn))

is an isomorphism.

(ii) Let b an arbitrary element of PK+1(In;E)∗, the variational problem

{

find (u,U) ∈ PK(In;E) × E such that

U.v(tn) −
∫

In
u(t).v̇(t)dt = b(v) for all v ∈ PK+1(In;E),

has a unique solution.

Theorem 4.1. Let the assumptions of Theorem 3.3 be verified, then the variational problem (10)
has a unique solution.

Proof : Let U0 = x0 and, on each interval In, we suppose that (uk, Uk), k = 1, ..., n− 1, are given.
We look for (un, Un) ∈ PK(In;E) × E such that

{

Un · vn(tn) −
∫

In
un(τ) · v̇n(τ)dτ = Un−1 · vn(tn−1) +

∫

In
F (ûn, τ) · vn(τ)dτ

for vn ∈ PK+1(In;E).

For all un ∈ PK(In;E), the map v −→ bn(v;un) = Un−1.v(tn−1) +
∫

In
F (ûn, τ) · v(τ)dτ is

well defined, linear and continuous on PK(In;E), thus bn(.;un) ∈ PK+1(In;E)∗. Let (u0
n, U

0
n) ∈

PK(In;E)×E be arbitrary and fixed. We construct the sequence {(um
n , U

m
n )}+∞

m=0 as follows : given
(um

n , U
m
n ) ∈ PK(In;E) × E, (um+1

n , Um+1
n ) ∈ PK(In;E) × E is the solution of the problem

Um+1
n .vn(tn) −

∫

In

um+1
n (τ) · v̇n(τ)dτ = bn(vn;um

n ), (11)
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for all vn ∈ PK+1(In;E). We show that {um
n }+∞

m=0 is a Cauchy sequence in PK(In;E). We have

| F (ûm+1
n , τ) − F (ûm

n , τ) |

≤ q(τ)

[

| um+1
n (τ) − um

n (τ) | + |
∑

j∈J

(βj(û
m+1
n )χ[τj ,+∞)(τ) − βj(û

m
n )χ[τj ,+∞)(τ)) |

]

.

For vn satisfying v̇n(t) = −
(

um+1
n − um

n

)

(t) in In, vn(tn) = 0, and using Lemma 4.1 and (11) , we
show that

‖um+1
n − um

n ‖0,n ≤ h1/2
n ‖q‖0,n

[

‖um
n − um−1

n ‖0,n + h1/2
n ΛeΛ‖ζm − ζm−1‖∞,n

]

with ζj = un(τj), j ∈ Jn, and
∥

∥ζm − ζm−1
∥

∥

∞,n
= sup{|um

n (τj) − um−1
n (τj)|; j ∈ J≤

n }. For all

j ∈ J≤
n−1 we have ûm

n (τj) = ûm−1
n (τj) since uk, k = 1, ..., n − 1, are fixed. By using the following

inequalities [2]

∥

∥ζm − ζm−1
∥

∥

∞,n
≤ h−1/2

n [
∥

∥ζm − ζm−1
∥

∥

0,n
+ hn

∥

∥ζm − ζm−1
∥

∥

1,n
]

∥

∥ζm − ζm−1
∥

∥

1,n
≤ ch−1

n

∥

∥ζm − ζm−1
∥

∥

0,n
,

we obtain
∥

∥um+1
n − um

n

∥

∥

0,n
≤ ch

1/2
n ‖q‖0,n

∥

∥um
n − um−1

n

∥

∥

0,n
. If hn is small enough then {um

n }+∞
m=0 is

a Cauchy sequence in PK(In;E). Then {um
n }+∞

m=0 converge to un ∈ PK(In;E). By continuity we
obtain −

∫

In
un(τ) · v̇n(τ)dτ = bn(vn;un) for all vn ∈ H1(In;E), such that vn(tn) = 0. If in (11)

we take vn(t) = V ∈ E, we obtain Um+1
n .V = bn(V ;um

n ) for all V in E. Then {Um
n }+∞

m=0 converge to
Un ∈ E and Un.V = bn(V ;un) for all V ∈ E. Let wn(t) = vn(t) − vn(tn) with vn ∈ H1(In;E), we
have −

∫

In
un(τ) · ẇn(τ)dτ = bn(wn;un), since wn(tn) = 0, and we obtain

−
∫

In

un(τ) · v̇n(τ)dτ = bn(vn;un) − bn(vn(tn);un) = bn(vn;un) − Un.vn(tn).

Then (un, Un) is a solution of (10) on In.

5 L2 and nodal errors

5.1 Convergence results

Theorem 5.1. Let x ∈ HK+1(0, T ;E), then

Inf{‖x− un‖0,n : un ∈ PK(In;E)} ≤ chk+1‖xK+1‖0,n, (12)

Inf{‖x− uh‖0 : uh|In
= un ∈ PK(In;E)} ≤ chk+1‖xK+1‖0. (13)

Let us set e0,n = ‖un − xR‖0,n, e0 = ‖un − xR‖0, e0,n = ‖un − xR‖0,n, En = |Un − xR(tn)|,
e1,n = ‖un − xR‖1,n, e1,n = ‖un − xR‖1,n, e∞,n = sup{|un(τj) − xR(τj)| : j ∈ Jn} and
e∞,n≤ = sup{|ûn(τj) − xR(τj)| : j ∈ J≤

n } where un ∈ PK(In;E).

Theorem 5.2. Suppose the assumptions of Theorem 3.3 are verified. If h is small enough we have

‖ûN − xR(t)‖0 ≤ c h1
∥

∥

∥
x

(1)
R

∥

∥

∥

0
, (14)

max {|Un − xR(tn)| ;n = 0, 1, .., N} ≤ ch1
∥

∥

∥
x

(1)
R

∥

∥

∥

0
. (15)
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Proof : We use a proof by induction. Suppose that Ek = |Uk − xR(tk)| = O(h), k = 1, ..., n − 1,
and ‖u− xR‖0,[0,tn−1] = O(h). From the following problems on In







find xn ∈ H1(In;E), with x1, ..., xn−1 already known xn = xR|In
, such that

xR(tn) · vn(tn) −
∫

In
xR(τ) · v̇n(τ)dτ = xR(tn−1) · vn(tn−1) +

∫

In
F (xR, τ) · vn(τ)dτ,

for all vn ∈ H1(In;E)

and






find un ∈ PK(In;E) with u1, ..., un−1 already known, such that
Un · vn(tn) −

∫

In
un(τ) · v̇n(τ)dτ = Un−1 · vn(tn−1) +

∫

In
F (ûn, τ) · vn(τ)dτ,

for all vn ∈ PK+1(In;E),

we obtain

[Un − xR(tn)] · vn(tn) −
∫

In
(un(τ) − xR(τ)) · v̇n(τ)dτ = [Un−1 − xR(tn−1)] · vn(tn−1)

+
∫

In
[F (ûn, τ) − F (xR, τ)] · vn(τ)dτ.

(16)

Take vn = Un − xR(tn) in this equation. Since e∞,n ≤ h
−1/2
n [e0,n + hne1,n], see [2], we obtain the

following estimates

En ≤ En−1 + (1 + Λne
Λn)‖q‖0,ne0,n + Λne

Λnh1
ne1,n‖q‖0,n + Λne

Λn‖q‖0,nh
1/2e∞,n−1≤ .

Moreover, e1,n ≤ ‖un − un‖1,n + e1,n and ‖un − un‖1,n ≤ ch−1
n ‖un − un‖0,n. Then we obtain

En ≤ En−1+(1+Λne
Λn)‖q‖0,ne0,n+Λne

Λnh1
n{ch−1

n ‖un−un‖0,n+e1,n+h−1/2e∞,n−1≤}‖q‖0,n. (17)

By taking vn such that v̇n(τ) = −(un − un)(τ), t ∈ In, and vn(tn) = 0 in (16), we obtain

‖un − un‖0,n ≤ 1

1 − θn

{

h1/2
n En−1 + (1 + θn)e0,n + h3/2

n ‖q‖0,nΛne
Λne1,n

}

+
1

1 − θn
hn‖q‖0,nΛne

Λne∞,n−1≤ , (18)

where θn = h
1/2
n ‖q‖0,n(1 + (1 + c)Λne

Λn). By using this inequality for the L2-error, we obtain

e0,n ≤ 1

1 − θn

[

h1/2
n En−1 + 2e0,n + h3/2

n ‖q‖0,nΛne
Λne1,n + h1

n‖q‖0,nΛne
Λne∞,n−1≤

]

.

By the same way for the nodal estimates, we use (18), then (17) becomes

En ≤ En−1
1 + ‖q‖0,nΛne

Λnh1/2

1 − θn

+e0,n

[

(1 + Λne
Λn)‖q‖0,n +

1 + θn

1 − θn
(‖q‖0,n(1 + Λne

Λn) + ‖q‖0,nΛne
Λn)

]

+e1,n

[

hn‖q‖0,nΛne
Λn + h3/2

n ‖q‖0,nΛne
Λn

‖q‖0,n(1 + Λne
Λn) + c‖q‖0,nΛne

Λn

1 − θn

]

+e∞,n−1≤Λne
Λnh1/2

n ‖q‖0,n

[

1 +
c′

1 − θn
(1 + Λne

Λn)h1/2
n ‖q‖0,n

]

.

For h small enough, the coefficient of e∞,n−1≤ can be rearranged as follows

Λne
Λnh1/2

n ‖q‖0,n

[

1 +
c′

1 − θn
(1 + Λne

Λn)h1/2
n ‖q‖0,n

]

≤ Λne
Λnh1/2

n ‖q‖0,n(1 +
c′

1 − θn
θn),

≤ c′θn

1 − θn
.
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The coefficient of e0,n is

(1 + Λne
Λn)‖q‖0,n

1 − θn

{

(1 − θn) + (1 + θn) + c(1 + θn)
Λne

Λn

1 + ΛneΛn

}

≤ (1 + Λne
Λn)‖q‖0,n

(3 + θn)

1 − θn
.

and the coefficient of e1,n is

hn‖q‖0,nΛne
Λn

1 − θn

[

1 − θn + θnh
1/2
n + ch1/2

n ‖q‖0,nΛne
Λn

]

≤ hn‖q‖0,nΛne
Λn

1 − θn

[

1 + ch1/2
n ‖q‖0,nΛne

Λn

]

.

If we take αn = 1+θn

1−θn
, βn =

‖q‖0,n[1+ΛneΛnc]
1−θn

(3+θn), γn = 1
1−θn

{hn‖q‖0,nΛne
Λn(1+‖q‖0,nh

1/2
n Λne

Λnc)}
and δn = c′θn

1−θn
, we obtain En ≤ αnEn−1 + βne0,n + γne1,n + δne∞,n−1≤ . Step by step we show that

En ≤ KE0 + K
n
∑

j=0

βn−je0,n−j + K
n
∑

j=0

γn−je1,n−j + K
n
∑

j=0

δn−je∞,n−j≤ , where K is defined by

K =
n
∏

i=1

αi ≤ e
2

n
∑

i=1

θi
1−θi

with αn = 1+θn

1−θn
= 1+ 2θn

1−θn
. If h is small enough so that θl < 1/2 for all l in

the set {1, ..., N}, then K ≤ e
4

n
∑

i=1

θi

< +∞. We also have
n
∑

j=0

βn−je0,n−j ≤ (
n
∑

j=0

β2
n−j)

1/2e0 where

e0 = (
n
∑

j=0

e20,n−j)
1/2. By the same way, if we take e1 = (

n
∑

j=0

e21,n−j)
1/2, we obtain

n
∑

j=0

γn−je1,n−j ≤

(
n
∑

j=0

γ2
n−j)

1/2e1. We show that

n
∑

j=0

β2
n−j =

n
∑

m=0

β2
m ≤ max{ (3 + θl)

2

(1 − θl)2
: 0 ≤ l ≤ n}

n
∑

m=0

‖q‖2
0,m(1 + Λme

Λmc)2.

If h is small enough, such that θi ≤ 1/2, we have
n
∑

j=0

β2
n−j ≤ c(1+ΛeΛc)2‖q‖2

0. Since 1+h
1/2
n Λne

Λnc‖q‖0,n ≤

1 + θn, then γn ≤ hn
1

1−θn
‖q‖0,nΛne

Λn(1 + θn), and we obtain

n
∑

j=0

γ2
n−j ≤ c‖q‖2

0,m(ΛeΛc)2h2.

We also have
n
∑

j=0

δn−j =
n
∑

k=0

δk =
n
∑

k=0

c′θk

1−θk
≤ 2c′

n
∑

k=0

θk ≤ 2hc′‖q‖0(1 + cΛeΛ). Finally

En ≤ KE0 +Kc(1 + ΛeΛc)‖q‖0e0 + c‖q‖0(Λe
Λc)h1e1 +K2c′‖q‖0h

1(1 + cΛeΛ)e∞,n−j≤ .

We have e∞,n ≤ h
1/2
n [e0,n + hne1,n], moreover e1,n ≤ e1,n + ch−1

n ‖un − un‖0,n, then

e∞,n ≤ h−1/2
n e0,n + h1/2

n e1,n + ch−1/2
n ‖un − un‖0,n,

≤ 2h−1/2
n e0,n + h−1/2 (1 + c)

1 − θn

{

h1/2
n En−1 + (1 + θn)e0,n + h3/2

n ‖q‖0,nΛne
Λne1,n

+ hn‖q‖0,nΛne
Λne∞,n−1≤

}

,

≤ O(h1/2) + cEn−1 +O(h1) +O(h3/2) +
1

1 − θn
h1/2

n ‖q‖0,nΛne
Λne∞,n−1≤ .

On the other hand

e0,n ≤ 1

1 − θn

[

h1/2En−1 + 2e0,n + h3/2
n ‖q‖0,nΛne

Λne1,n + hn‖q‖0,nΛne
Λne∞,n−1≤

]
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then

e0 ≤ C

[

max
n

En + 2e0 + h3/2 max{‖q‖0,nΛne
Λn , n = 1, ..., N}e1

+h1/2
n max{‖q‖0,nΛne

Λn , n = 1, ..., N}e∞,n−1≤

]

.

Let us go back to our proof by induction. For n = 1 we have E0 = U0 − x0 = 0, then E1
∼= O(h),

therefore the result is true for E1 and e0,1. Let us suppose that it is true up to n − 1 and we
show that it is true for n. Since E1

∼= O(h) and e0,1
∼= O(h) then e∞,1 ≤ O(h1/2). Consequently

e∞,2 ≤ O(h1/2). Finally e∞,l
∼= O(h1/2) for all l ≤ n and

En ≤ C
(

E0 +O(h1) +O(h3/2)
)

,

e0 ≤ [E0 +O(hn) +O(h3/2)].

Theorem 5.3. Under the assumptions of Theorem 3.3 and if h is small enough, we have

‖ûN +
∑

j∈J

βj(ûN )χ[τj ,+∞) − x‖0 ≤ ch1‖x(1)
R ‖0, (19)

max
{∣

∣Un +
∑

j∈J

βj(ûN )χ[τj ,+∞)(tn) − x(tn)
∣

∣;n = 0, 1, .., N
}

≤ ch1
∥

∥

∥
x

(1)
R

∥

∥

∥

0
(20)

where x is the solution of (1).

Proof : We have x(t) = xR(t) +
∑

j∈J

βj(xR)χ[τj ,+∞)(tn), then

∥

∥ûN +
∑

j∈J

βj(ûN )χ[τj ,+∞) − x
∥

∥

0
≤ ‖ûN − xR‖0 + ‖

∑

j∈J

[βj(ûN ) − βj(xR)]χ[τj ,+∞)‖0.

Using the definition of the norm ‖.‖0, we obtain

∥

∥

∑

j∈J

[βj(ûN ) − βj(xR)]χ[τj ,+∞)

∥

∥

0
=

{ N
∑

n=1

∥

∥

∑

j∈Jn

[βj(ûN ) − βj(xR)]χ[τj ,+∞)

∥

∥

2

0,n

}1/2

,

≤ eΛe∞,N≤

{ N
∑

n=1

∥

∥

∑

j∈Jn

λj

∥

∥

2

0,n

}1/2

≤ h1/2ΛeΛe∞,N≤ .

From the results of the preceding theorem, we obtain (19). Finally (20) follows.

5.2 Superconvergence results for nonlinear systems

In this paragraph we suppose the impulses are state-independent, αj(x(τ
−
j )) = αj , j ∈ J. In this

case βj(xR) = αj , j ∈ J , and the assumption (b) of Theorem 3.3 becomes
∑

j∈J

|αj | < +∞. With this

condition, (10) reduces to the following problem



















find ũh = (U0, ..., UN ;u1, ..., uN ) ∈ Uh such that U0 = x0 and for n = 1, ..., N
Un · vn(tn) −

∫

In
un(τ) · v̇n(τ)dτ

= Un−1 · vn(tn−1) +
∫

In
f(un(τ) +

∑

j∈J

αjχ[τj ,+∞)(τ), τ) · vn(τ)dτ,

for all vn ∈ PK+1(In;E).

(21)

For nonlinear systems, if we use the results of Theorem 5.2 and consider additional conditions on
F , we obtain higher rates of convergence.
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Theorem 5.4. If A = (aij)1≤i,j≤d, where aij ∈ L2(0, T ; R) and f ∈ L2(0, T ;E) then (i) the

unique solution w of the system ẇ(t) = A(t)w(t) + f(t), w(0) = α, is in H1(0, T ;E), (ii) the map

(x0, f) 7→ w from E × L2(0, T ;E) to H1(0, T ;E) is linear and continuous, and (iii) there exists a

constant c such that

‖w‖1 ≤ c{|α| + ‖f‖0}.

Proof : See [4].

Lemma 5.1. Let x be a function defined from [0, T ] to E, and let xI
n be its Lagrange interpolation

of degree 0 on each subinterval In. If x ∈ H1(In;E), we have

‖xI
n − x‖0,n ≤ ch1‖x1‖0,n ≤ ch1‖x‖1,n

and

‖xI − x‖0 ≤ ch1‖x1‖0 ≤ ch1‖x‖1.

Proof : See [1].

Theorem 5.5. Suppose the solution of (2) is in H1(0, T ;E), the solution of (6) exists and is unique,

and the following conditions hold:

(i) the matrix A(t) = Fx(x, t), such that aij(t) = ∂Fi

∂xj
(x, t), exists and its columns are in L2(0, T ;E),

(ii) there exists a neighborhood V of the origin of E and a constant B ≥ 0 such that for any t ∈ [0, T ]
and y ∈ xR(t) + V

|F (y, t) − F (xR, t) −A(t)(y − xR(t))| ≤ B|y − xR(t)|2.

There exist a constant c independent of h such that for h small enough

max {|Un − xR(tn)| : n = 0, 1, .., N} ≤ c ‖u− xR‖0 [h1 + ‖u− xR‖0], (22)

max







∣

∣

∣

∣

∣

∣

Un +
∑

j∈J

αjχ[τj ,+∞)(tn) − x(tn)

∣

∣

∣

∣

∣

∣

: n = 0, 1, .., N







≤ c ‖u− xR‖0 [h1 + ‖u− xR‖0]. (23)

Proof : Similar to Theorem 4.6 of [3], based on Theorem 5.4 and Lemma 5.1.

5.3 Superconvergence results for linear systems

In this paragraph we suppose that f(x(t), t) = A(t)x(t) + b(t) where A(t) is a matrix of dimension
d×d whose elements are measurable and bounded on [0, T ], and b(t) and the columns of A(t) belongs
to HK+1(0, T ;E).

Lemma 5.2. Let w ∈ HK+2(In;E) such that ẇ(t) +ATw(t) = 0, w(t−n ) = En. Then

∥

∥

∥
w(l)

∥

∥

∥

∞,n
≤ c |En| (l = 0, ...,K + 1), (24)

∥

∥

∥
w(l)

∥

∥

∥

0,n
≤ ch1/2 |En| (l = 0, ...,K + 2). (25)

Moreover, let v ∈ PK(In;E) such that v(t) = En −
∫ tn

t
PK(ẇ)(τ)dτ , where PK is the L2-projection

on PK(In;E), then

‖v‖∞,n ≤ (1 + ch) |En| , (26)

‖v − w‖∞,n ≤ chK+2 |En| , (27)

‖v − w‖0,n ≤ chK+5/2 |En| , (28)

‖v̇ − ẇ‖0,n ≤ chK+3/2 |En| . (29)
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Proof : See [3], Lemma 5.7.

Lemma 5.3. The following inequality is verified

∏N

n=1
(1 + ch1/2

n ‖q‖0,n) ≤ exp(cT 1/2 ‖q‖0). (30)

Proof : See [3], Lemma 5.4.

Theorem 5.6. Under the assumptions of Theorem 3.3 and if the impulses are state-independent,

then for h small enough and un ∈ Pk+1(In;E) we have

|Un − xR(tn)| ≤
[

1 + ch1/2
n ‖q‖0,n

]

|Un−1 − xR(tn−1)| + c ‖q‖0,n ‖un − xR‖0,n , (31)

‖un − xR‖0,n ≤ ch1/2
n |Un−1 − xR(tn−1)| + c ‖un − xR‖0,n . (32)

Proof : See [2], Theorem 4.10.

Remark 5.1. When the elements of A are in H1(0, T ;E), they are continuous and bounded, there-

fore q is bounded and for any interval In, ‖q‖0,n is proportional to h1/2.

Theorem 5.7. Suppose that f(x(t), t) = A(t)x(t) + b(t) where b(t) and the columns of A(t) are in

HK+1(0, T ;E), and
∑

j∈J

|αj | < +∞. Then if h is small enough we have

|Un − xR(tn)| ≤ (1 + ch)
[

|Un−1 − xR(tn−1)| + chK+3/2 ‖un − xR‖0,n

]

.

Proof : Similar to the proof of Theorem 5.10 of [2].

As a consequence of Theorems 5.1, 5.6 and 5.7 and Lemma 5.3 we obtain the next superconvergence
result.

Theorem 5.8. Under the assumptions of Theorem 5.7, we have the following result

|Un − xR(tn)| ≤ c
{

∣

∣U0 − x0
∣

∣ + hK+2
∥

∥

∥
x

(1)
R

∥

∥

∥

0

∑

j∈J
|αj |

}

.

6 Numerical implementation

In this paragraph we suppose that E = R, we shall also write PK(In) and PK(0, 1) for PK(In;E)
and PK([0, 1];E). We shall construct basis for PK(0, 1) and PK+1(0, 1) and we deduce basis for
PK(In) and PK+1(In), n = 1, .., N . Consider a (k + 1)-points quadrature formula of the form

∫ 1

0

ψ (ζ) dζ =

K+1
∑

k=1

akψ(ηk), (33)

where 0 ≤ η1 ≤ ... ≤ ηl ≤ ηl+1 ≤ ... ≤ ηK+1 ≤ 1, such that this formula is exact for polynomials of
degree at most 2K + 1. Once the quadrature points have been obtained, we use them to construct
bases for un in PK(In) and vn in PK+1(In). Let us denote by {φk : k = 1, . . . ,K +1} the Lagrange
interpolating polynomials associated with the K + 1 points {ξk}K+1

k=1 ,

φk(ξ) =
∏K+1

i=1
i6=k

ξ − ξi
ξk − ξi

, k = 1, . . . ,K + 1, (34)

and let

φnk(t) = φk

( t− tn−1

hn

)

, tn−1 ≤ t ≤ tn. (35)
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Then {φnk : k = 1, . . . ,K + 1} is the desired basis of PK(In), and the polynomial un has the
following representation

un(t) =
∑K+1

k=1
unkφnk(t), (36)

where unk = un(tnk), tnk = tn−1 + hnξk, k = 1, . . . , K + 1. The basis for the polynomials vn

in PK+1(In) is obtained in the following manner. We construct the new family of polynomials as
follows

{

ψk(τ) =
∫ 1

τ
φk(ξ) dξ, 0 ≤ τ ≤ 1, k = 1, . . . ,K + 1,

ψ0(τ) = 1, 0 ≤ τ ≤ 1.
(37)

It is readily seen that the new family of polynomials {ψk : k = 0, . . . ,K+1} is a basis of PK+1(0, 1).
The set of polynomials

ψnk(t) = ψk

( t− tn−1

hn

)

, tn−1 ≤ t ≤ tn, (38)

will be the desired basis for PK+1(In).

We now derive an equivalent set of equations for system (10). First, set vn(t) = ψn0(t) = 1 in (10).
We obtain

Un = Un−1 +

∫

In

F (ûn, t)dt. (39)

Then set vn = ψnk, k = 1, ..., K + 1 in (10) and use the quadrature (33) to integrate exactly the
polynomial un · v̇n with un given by (36). We obtain

Unψnk(tn) −
∫

In

unψ̇nk(t)dt = Un−1ψnk(tn−1) +

∫

In

F (ûn, t)ψnk(t)dt.

But ψnk(tn) = ψk(1) = 0, and ψnk(tn−1) = ψk(0) =
∫ 1

0
φk(ζ)dζ =

K+1
∑

l=1

alφk(ηl) = ak, then

∫

In

un(t)ψ̇nk(t)dt =
K+1
∑

j=1

unj

∫

In

φnj(t)

(

− 1

hn
ψ̇nk(

t− tn−1

hn
)

)

dt,

= −
K+1
∑

j=1

unj

∫ 1

0

φj(ζ)φk(ζ)dζ,

= −
K+1
∑

j=1

unj

K+1
∑

i=1

ajφj(ηi)φk(ηi),

= unkak.

Also for k = 1, ..,K + 1 we have

unk = Un−1 +
1

ak

∫

In

F (ûn, t)ψnk(t)dt, (40)

with un(t) =
K+1
∑

k=1

unkφnk(t).

The equation (10) is equivalent to: U0 = x0, and for n = 1, ..., N

un(t) = Un−1 +

K+1
∑

k=1

φnk(t)

ak

∫

In

F (ûn, t)ψnk(t)dt

and

Un = Un−1 +

∫

In

F (ûn, t)dt,
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where ûnis the function defined by (9).

If we assume the integrals containing the nonlinear term F are evaluated with the (K + 1)-point
quadrature (33) which is exact for polynomials of degree 2K + 1, then (10) leads to the following
numerical scheme : U0 = x0, and

unk = Un−1 +
hn

ak

K+1
∑

l=1

alF (ûn, tnl)ψk(ηl),

for all k = 1, ...,K + 1 and

Un = Un−1 + hn

K+1
∑

l=1

alF (ûn, tnl).

for all n = 1, ..., N , with un(t) =
K+1
∑

k=1

unkφnk(t) and ûn is the function defined by (9).

7 Numerical tests

To validate the convergence results we consider two problems. In the first one, we consider a linear
ordinary differential equation

{

ẋ(t) = 2tx(t), t ∈ [0, 1] ,
x(0) = 1.

while in the second one, we take a nonlinear ordinary differential equation

{

ẋ(t) = −2tx2(t), t ∈ [0, 1] ,
x(0) = 1.

In this example the assumptions of Theorem 5.5 are satisfied with B = 2. In Figures 1 and 2 we
consider the first example with one state-dependent impulse at the point 0.5 where α1(x(0.5

−)) =
x(0.5−). Then we consider state-independent impulses. Two cases are considered for each example.

In the first case we suppose that we have 1000 impulses in τi = 7i
√

2
104 and αi = (−1)i+1. For the

second case we suppose infinitely many state-independent impulses with an accumulation point at
1/3, with

τi =
1

3
− 1

3i+1
and αi =

1000

2i
.

For each case, we compute the logarithm of L2-error (ln(eL2)) and the logarithm of the nodal error
(ln(eN)) as functions of the logarithm of the step of the partition ln(h).
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Figure 1: Nodal error with one state-dependent impulse
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Dubeau,Quansafi,Sakat

430



-30

-25

-20

-15

-10

-5

0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

ln
(e

n)

ln(h)

k=0

k=1

k=2

Figure 3: Nodal error for example 1 with 1000 impulses

-14

-12

-10

-8

-6

-4

-2

-10 -9 -8 -7 -6 -5 -4 -3 -2

ln
(e

L2
)

ln(h)

k = 0

k = 1

k = 2

Figure 4: L2-error for example 1 with 1000 impulses
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Figure 5: Nodal error for example 1 with infinitely many impulses
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Figure 9: Nodal error for example 2 with infinitely many impulses

-12

-10

-8

-6

-4

-2

0

2

4

-12 -11 -10 -9 -8 -7 -6 -5 -4

ln
(e

L2
)

ln(h)

k=0

k=1

k=2

Figure 10: L2-error for example 2 with infinitely many impulses

Dubeau,Quansafi,Sakat

434



REFERENCES

[1] P.G. Ciarlet, “The Finite Element Method for Elliptic Problems”, North-Holland, Amsterdam,
1978.

[2] M.C. Delfour and F. Dubeau, “Discontinuous Polynomial Approximations in the Theory of One-
Step, Hybrid and Multistep Methods for Nonlinear Ordinary Differential Equations”, Math.

Comp., 47 (1986), 169-189 and s1-s8.

[3] M.C. Delfour and F. Dubeau, “Fixed Mesh Approximation of Ordinary Differential Equations
with Impulses”, Numer. Math., 78 (1998), 377-401.

[4] M. Delfour, W. Hager and F. Trochu, “Discontinuous Galerkin Methods for Ordinary Differential
Equations”, Math. Comp., 36 (1981), 455-473.
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Abstract

We study the convergence of Newton’s method to a solution of a nonlinear in-
tegral equation of the Hammerstein type and second kind. We analyse the conver-
gence of the method from a point of view different to traditional ones. We localize
a solution of a particular integral equation and it is approximated directly by New-
ton’s method. Finally, some numerical tests are provided, where nonlinear integral
equations of the Hammerstein type with degenerated kernels are considered.

Keywords: nonlinear equations in Banach spaces, Newton’s method, semilocal
convergence theorem, recurrence relations, integral equation of the Hammerstein type.
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1 Introduction

In this paper, we study a particular nonlinear integral equation of the Hammerstein type
and second kind:

x(s) = `(s) +

∫ b

a

K(s, t, x(t)) dt, (1)

where K(s, t, x(t)) = K(s, t)[x(t)1+p + x(t)2], p ∈ [0, 1], and K is continuous and non-
negative in [a, b]× [a, b], and ` is a continuous function such that `(s) > 0, s ∈ [a, b].

This type of integral equation has two interesting aspects for us. Firstly, if we use in
the study of (1) the usual procedure, the method of successive approximations, we need
that the kernel K(s, t, x(t)) is Lipschitz continuous in its third argument (see [3]). Observe
that (1) does not satisfy this condition. Moreover, in this paper, contrary to Davis, we
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do not consider a homogenous situation. Secondly, it is known (see [4]) that by means
of the study of Newton’s method we can locate domains of existence and uniqueness of
solutions for (1) if we consider:

F : D ⊆ C[a, b] → C[a, b], D = {x ∈ C[a, b]; x(s) > 0, s ∈ [a, b]},

[F (x)](s) = x(s)− `(s)−
∫ b

a

K(s, t)[x(t)1+p + x(t)2] dt, p ∈ [0, 1], (2)

and we set out F (x) = 0.
The Newton method is the most used iteration to solve those equations as a conse-

quence of computational efficiency even less speed of convergence can be got. Attention
will now be given to the conditions under which the Newton sequence {xn} defined, start-
ing from some point x0 ∈ X, by the algorithm:

xn+1 = xn − F ′(xn)−1F (xn), n ≥ 0, (3)

if (F ′(xn))−1 ≡ Γn exists for n = 0, 1, 2, . . . , will converge to a solution x∗ of the equation
F (x) = 0.

Under the hypothesis of the Newton-Kantorovich theorem [6]:

(C1) ‖Γ0‖ ≤ β,

(C2) ‖x1 − x0‖ ≤ η,

(C3) ‖F ′′(x)‖ ≤ L in some closed ball B(x0, ρ),

(C4) h = βηL ≤ 1/2,

the convergence of the Newton sequence {xn} implies the existence of the solution x∗. This
theorem gives not only conditions for the existence of x∗ but also information concerning
the regions of existence and uniqueness of x∗ and error bounds for the terms xn of the
Newton sequence as approximations to x∗.

Once the values of β and η are calculated, we only need to determine ‖F ′′(x)‖ in
a neighborhood of x0. The original proof, given by Kantorovich [7], uses recurrence
relations. In [6], a new proof is presented where the concept of majorant function is used.

In [8], it is given another proof where majorant sequences are used and changes con-
dition (C3) by

‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖, L ≥ 0, (4)

where x, y are in an open convex domain Ω ⊆ X. Other authors ([1], [2], [5]) consider the
following generalization of the previous conditions:

‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖p, L ≥ 0, p ∈ [0, 1], (5)
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where x, y are in an open convex domain Ω ⊆ X. Observe that if p = 1, (5) is reduced to
(4).

However, operator (2) satisfies neither (C3) nor (4) and (5) in D.
For (2), we have:

[F ′(x)y](s) = y(s)−
∫ b

a

K(s, t)[(1 + p)x(t)p + 2x(t)]y(t) dt, (6)

[F ′′(x)yz](s) = −
∫ b

a

K(s, t)[(1 + p)px(t)p−1 + 2]z(t)y(t) dt,

and
‖F ′′(x)‖ ≤ A‖x‖p−1 + B, x ∈ D, (7)

where A = (1 + p)pM , B = 2M and M = max
s∈[a,b]

∫ b

a

|K(s, t)| dt for the max-norm.

The interest of this paper is to prove the convergence of the Newton method for
operators with second Fréchet derivative satysfying condition (7). For this, we use a new
technique where a system of recurrence relations is constructed, and starting from them,
the semilocal convergence of Newton’s method is proved and a domain of existence of
solutions of F (x) = 0, where F is given by (2), is also provided. After that, a domain of
uniqueness of solutions for F (x) = 0 is obtained.

Finally, we consider a particular integral equation of type (1) and the domains of
existence and uniqueness of solution are calculated. We also approximate its solution by
the direct application of the Newton method. We finish with different numerical tests
where integral equations of type (1) are considered.

Throughout the paper we denote

B(x, r) = {y ∈ X; ‖y − x‖ ≤ r} y B(x, r) = {y ∈ X; ‖y − x‖ < r}.

2 Localization of the solution

Firstly, we locate a starting point x0 for Newton’s iteration, so that Γ0 = F ′(x0)
−1 exists.

So, from (6), it follows that

‖I − F ′(x)‖ = ((1 + p)‖xp‖+ 2‖x‖)M.

By the Banach lemma, if ((1 + p)‖xp‖+ 2‖x‖)M < 1, we have

‖F ′(x)−1‖ ≤ 1

1− ((1 + p)‖xp‖+ 2‖x‖)M
.

Therefore, Γ0 = F ′(x0)
−1 ∈ L(C[a, b], C[a, b]) exists for some x0 ∈ D, where L(C[a, b], C[a, b])

is the set of bounded linear operators from C[a, b] into C[a, b], if

((1 + p)‖xp
0‖+ 2‖x0‖)M < 1. (8)
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Moreover,

‖Γ0‖ ≤
1

1− ((1 + p)‖xp
0‖+ 2‖x0‖)M

= β.

Furthermore, ‖F (x0)‖ ≤ ‖x0− `‖+
(∥∥x1+p

0

∥∥ + ‖x2
0‖

)
M , according to the definition of

the operator F , and, in consequence,

‖x1 − x0‖ = ‖Γ0F (x0)‖ ≤
‖x0 − `‖+

(∥∥x1+p
0

∥∥ + ‖x2
0‖

)
M

1− ((1 + p) ‖xp
0‖+ 2‖x0‖)M

= η.

The next aim is to prove the convergence of sequence (3) to a solution of the equation
F (x) = 0, where the operator F is defined in (2), and to obtain the domains of existence
and uniqueness of solution. For, the first, it suffices to see that (2) is a Cauchy sequence.
Firstly, we introduce the following auxiliary equation in t:

[2− 3βt(A(‖x0‖ − t)p−1 + B)]t− 2[1− βt(A(‖x0‖ − t)p−1 + B)]η = 0, p ∈ [0, 1], (9)

and we assume that it has one positive root less than ‖x0‖ at least. The smallest root
satisfying this condition is denoted by R (i. e.: R < ‖x0‖).

Secondly, for f(x) = (1− x)−1, we observe that

η
n∑

i=0

(α

2
f(α)

)i

= η
1−

(
α
2
f(α)

)n+1

1− α
2
f(α)

<
η

1− α
2
f(α)

= R (10)

if α = βR(A(‖x0‖ −R)p−1 + B) < 2/3. Therefore, it is supposed that α < 2/3.
Thirdly, for x ∈ B(x0, R), we have

‖I − Γ0F
′(x)‖ ≤ ‖Γ0‖‖F ′(x)− F ′(x0)‖ < α.

Since α < 2/3 < 1, then, by the Banach lemma, F ′(x)−1 exists and

‖F ′(x)−1F ′(x0)‖ ≤ f(α).

Moreover, for (10), ‖x1 − x0‖ ≤ η < R, x1 ∈ B(x0, R) and Γ1 = F ′(x1)
−1 exists with

‖Γ1F
′(x0)‖ ≤ f(α).

From Taylor’s formula and (3) it follows that

F (x1) = F (x0) + F ′(x0)(x1 − x0) +

∫ x1

x0

F ′′(x)(x1 − x) dx

=

∫ 1

0

F ′′(x0 + t(x1 − x0))(x1 − x0)(1− t) dt (x1 − x0)
2,

and consequently

‖F (x1)‖ ≤
∫ 1

0

‖F ′′(x0 + t(x1 − x0))‖(1− t) dt ‖x1 − x0‖2
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≤ 1

2
(A(‖x0‖ −R)p−1 + B)‖x1 − x0‖2 <

1

2
(A(‖x0‖ −R)p−1 + B)R‖x1 − x0‖.

Thus
‖x2 − x1‖ ≤ ‖Γ1F

′(x0)‖‖Γ0‖‖F (x1)‖ <
α

2
f(α)‖x1 − x0‖ < η < R

and
‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ <

(
1 +

α

2
f(α)

)
η < R.

Hence we can follow the procdure because x2 ∈ B(x0, R). We then assume, for k =
1, 2, . . . , n− 1, that the next conditions are true:

(a) Γk exists and ‖ΓkF
′(x0)‖ ≤ f(α),

(b) ‖F (xk)‖ <
1

2
(A(‖x0‖ −R)p−1 + B)R‖xk − xk−1‖,

(c) ‖xk+1 − xk‖ <
α

2
f(α)‖xk − xk−1‖,

(d) ‖xk+1 − x0‖ < η
k∑

i=0

(α

2
f(α)

)i

< R.

So, we can prove, by induction, that (a)–(d) also hold for k = n.
As xn ∈ B(x0, R), then Γn exists and ‖ΓnF

′(x0)‖ ≤ f(α). Since ‖xn − xn−1‖ < R, we
have

‖F (xn)‖ <
1

2
(A(‖x0‖ −R)p−1 + B)R‖xn − xn−1‖ (11)

and, by (10), we obtain

‖xn+1−xn‖ ≤ ‖ΓnF
′(x0)‖‖Γ0‖‖F (xn)‖ <

α

2
f(α)‖xn−xn−1‖ <

(α

2
f(α)

)n

‖x1−x0‖ < R.

Therefore

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖+ ‖xn − x0‖ < η

n∑
i=0

(α

2
f(α)

)i

< R.

Finally, it follows immediately that (3) is a Cauchy sequence. Indeed,

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖+ ‖xn+m−1 − xn+m−2‖+ · · ·+ ‖xn+1 − xn‖

≤
n+m−1∑

i=n

(α

2
f(α)

)i

‖x1 − x0‖ ≤
1−

(
α
2
f(α)

)m

1− α
2
f(α)

(α

2
f(α)

)n

η

and consequently {xn} is a Cauchy sequence, since α < 2/3. Thus, {xn} converges to a
limit x∗ such that F (x∗) = 0 by letting n →∞ in (11).

So, the folowing semilocal convergence theorem is given for the Newton method when
it is applied to operator (2).
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Theorem 2.1 We suppose that condition (8) is satisfied and let R be the small-
est positive root of equation (9) which is less than ‖x0‖. Assume that R exists, α =
βR(A(‖x0‖ −R)p−1 + B) < 2/3, where p ∈ [0, 1],

A = (1 + p)pM, B = 2M, β =
1

1− ((1 + p)‖xp
0‖+ 2‖x0‖)M

,

and B(x0, R) ⊆ D. Then the Newton method (3) converges to a zero x∗ of operator (2).

3 Uniqueness of the solution

Now, we provide a result on the uniqueness of the zero x∗ of operator (2).

Theorem 3.1 Under the hypotheses of the last theorem, we can guarantee the unique-
ness of x∗ in B(x0, R). Moreover, x∗ is unique in D0 = B(x0, r) ∩ D, where r is the
smallest positive root of the equation:

(1 + p)pAβ‖x0‖p−1(t2 −R2)− 2Aβ(t1+p −R1+p) + (1 + p)p(t−R)(Bβ(t + R)− 2) = 0,

provided that r exists and r > R.

Proof. Firstly, we prove that x∗ is unique in B(x0, R). It is supposed that z∗ is
another zero of (1) in B(x0, R). So, from the approximation

0 = Γ0[F (z∗)− F (x∗)] =

[∫ 1

0

Γ0F
′(x∗ + t(z∗ − x∗)) dt

]
(z∗ − x∗) = P (z∗ − x∗),

it follows that if the operator P =
∫ 1

0
Γ0F

′(x∗ + t(z∗ − x∗)) dt is invertible, then z∗ = x∗.
Then, by the Banach lemma, we only have to prove taht ‖I − P‖ < 1. Indeed,

‖I − P‖ ≤ ‖Γ0‖
∫ 1

0

‖F ′(x∗ + t(z∗ − x∗))− F ′(x0)‖ dt

≤ β

∫ 1

0

∫ 1

0

‖F ′′(x0 + s(x∗ + t(z∗ − x∗)− x0))‖ ds ‖x∗ + t(z∗ − x∗)− x0‖ dt

< β(A(‖x0‖ −R)p−1 + B)

∫ 1

0

((1− t)‖x∗ − x0‖+ t‖z∗ − x0‖) dt

≤ β(A(‖x0‖ −R)p−1 + B)R = α < 2/3 < 1.

Secondly, we assume that z∗ is in D0 = B(x0, r) ∩D. Similarly to the above, we have

‖I − P‖ ≤ ‖Γ0‖
∥∥∥∥∫ 1

0

F ′(x∗ + t(z∗ − x∗))− F ′(x0) dt

∥∥∥∥

Ezquerro,Hernandez442



≤ β

∥∥∥∥∫ 1

0

∫ 1

0

F ′′(x0 + s((1− t)(x∗ − x0) + t(z∗ − x0))) ds ((1− t)(x∗ − x0) + t(z∗ − x0)) dt

∥∥∥∥
< Aβ

∫ 1

0

∫ 1

0

‖(x0 + s((1− t)(x∗ − x0) + t(z∗ − x0))‖p−1 ds (R + t(r −R)) dt

+Bβ

∫ 1

0

∫ 1

0

(R + t(r −R)) ds dt

≤ Aβ

∫ 1

0

∫ 1

0

(
‖x0‖p−1 − sp−1‖(1− t)(x∗ − x0) + t(z∗ − x0)‖p−1

)
ds (R + t(r −R)) dt

+Bβ
r + R

2

< Aβ

∫ 1

0

(R + t(r −R))

(
‖x0‖p−1 − 1

p
(R + t(r −R))p−1

)
dt + Bβ

r + R

2

≤ Aβ

(
r + R

2
‖x0‖p−1 − r1+p −R1+p

(1 + p)p(r −R)

)
+ Bβ

r + R

2
= 1

if r > R. �

4 Application

Next, we solve a nonlinear integral equation of type (1) by direct application of Newton’s
method. It is considered that K is a degenerated kernel, which is considered by other
authors (see [3]), i. e., the kernel K is such that K(s, t) = S(s)T (t), so that the problem
in infinite dimension can be solved.

Let be the following particular integral equation of type (1):

x(s) = 1 + s

∫ 1

0

t8[x(t)3/2 + x(t)2] dt. (12)

First of all, we calculate the domains of existence and uniqueness of solution. If we choose
x0(s) = 1 for theorem 2.1, we have

A = 1/12, B = 2/9, β = 18/11, η = 4/11.

Equation (9) is then

1

242

(
−176 +

(
548 +

24√
1− t

)
t−

(
264 +

99√
1− t

)
t2

)
= 0

...Hammerstein Equations 443



The smallest positve root and less than ‖x0‖ = 1 is R = 0.4289 . . . . So α = 0.2333 . . .
and the hypotheses of theorem 2.1 hold. In consequence, (12) has a solution x∗ in

{u ∈ C[0, 1]; ‖u− 1‖ ≤ 0.4289 . . . }.

Following theorem 3.1, x∗ is unique in

{u ∈ C[0, 1]; ‖u− 1‖ < 5.3598 . . . } ∩ D.

For (12), the operators F and F ′, given respectively by (2) and (6), are

[F (x)](s) = x(s)− 1− s

∫ 1

0

t8[x(t)3/2 + x(t)2] dt, p ∈ [0, 1],

[F ′(x)y](s) = y(s)− s

∫ 1

0

t8[(3/2)x(t)1/2 + 2x(t)]y(t) dt.

If it is supposed that (F ′(x))−1 exists, then y(s) = (F ′(x))−1w(s). So, we consider,

y(s) = w(s) + sI,

where

I =

∫ 1

0

t8[(3/2)x(t)1/2 + 2x(t)]y(t) dt.

If the last equality is multiplied by s8[(3/2)x(s)1/2 + 2x(s)] and integrated between 0 and
1, we obtain

I =

∫ 1

0
s8[(3/2)x(s)1/2 + 2x(s)]w(s) ds

1−
∫ 1

0
s9[(3/2)x(s)1/2 + 2x(s)] ds

provided that
∫ 1

0
s9[(3/2)x(s)1/2 + 2x(s)] ds 6= 1. Therefore

y(s) = (F ′(x))−1w(s) = w(s) + s

∫ 1

0
t8[(3/2)x(t)1/2 + 2x(t)]w(t) dt

1−
∫ 1

0
t9[(3/2)x(t)1/2 + 2x(t)] dt

.

The direct application of Newton’s method is then

xn+1(s) = xn(s)− (F ′(xn))−1F (xn)(s) = 1 + s
An −Bn + Dn

1− Cn

,

where

An =

∫ 1

0

t8[xn(t)3/2 + xn(t)2] dt, Bn =

∫ 1

0

t8[(3/2)xn(t)1/2 + 2xn(t)]xn(t) dt,

Cn =

∫ 1

0

t9[(3/2)xn(t)1/2 + 2xn(t)] dt, Dn =

∫ 1

0

t8[(3/2)xn(t)1/2 + 2xn(t)] dt.

We start at x0(s) = 1 and the approximated solution is x∗(s) = 1+0.367498s (see table 1).
Note that the approximated solution x∗ lies within the existence domain of solution

obtained above (see figure 1).
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i xi(s)
1 1 + 0.341880s
2 1 + 0.367558s
3 1 + 0.367498s

Table 1: Approximated solution of (12).

1

0.6

0.8

1.2

1.4

x0 + R = 1.4289 . . .

x0 −R = 0.5711 . . .

x0 = 1

x∗

Figure 1: Graph of the approximated solution of (12)
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