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Solitary Waves of Depression

Henrik Kalisch

Department of Mathematics, NTNU, 7491 Trondheim, Norway.
kalisch@math.ntnu.no

Abstract

It is shown that the regularized long-wave equation admits a family of soli-

tary waves of depression. Some of these solitary waves are stable while others are

unstable. The proof of stability and instability is based on the general theory of

Grillakis, Shatah and Strauss. The results are illustrated by numerical simulation

using a spectral discretization.

Keywords:

Model Equations, Solitary Waves, Stability, Dispersion.

1 Introduction

This article is focused on stability properties of traveling-wave solutions to
the regularized long-wave equation

ut + ux + uux − uxxt = 0, (1.1)

which appears as a model equation for surface water waves. In particular, it
is shown that there is a family of solitary waves of depression which contains
both stable and unstable members. To put this into perspective, recall that
equation (1.1) has positive solitary-wave solutions of the form

u(x, t) = 3(c − 1)sech2

(

1

2

√

c− 1

c
(x− ct)

)

, (1.2)
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Figure 1: Solitary wave of depression with speed c = −0.8.

where c > 1 is the speed of the solitary wave. As can be seen from the for-
mula, these solutions are strictly positive progressive waves which propagate
without changing their profile over time. It is well known that these positive
solitary waves are stable with respect to small perturbations. One of the
first proofs of stability was given by Benjamin and Bona in [3, 6], where the
concept of orbital stability was introduced. In fact, it was proved by Miller
and Weinstein that these solitary waves are asymptotically stable [12].

The proof of stability and instability given in the present work relies on
the very general theory of Grillakis, Shatah and Strauss [10], and subsequent
work of Albert, Bona, Souganidis and Strauss [1, 9, 15]. Their method has
been applied to a number of evolution equations, including the equation
under study in this article [15]. However, in the existing literature, the
focus has been on positive solitary-wave solutions, rather than on solitary
waves of depression.

As is evident from (1.2), solitary waves are strictly negative when c < 0.
Figure 1 shows a typical solitary wave of depression. It is apparent that the
amplitude of the waves is of order 1 in this case. As will be explained in
section 2, these solutions therefore do not fall into the regime of physical
validity of the equation as a long-wave model. This concurs with the fact

KALISCH6



that solitary waves of depression do not occur on the surface of fluids unless
surface tension is very strong [4].

Nevertheless, it will be shown in section 3 that most of the solitary waves
of depression are observable in the sense that they are stable with respect to
small perturbations. In particular, there is a critical value c0 = 1

6
− 1

12

√
10,

such that the solitary wave is stable for c < c0, and unstable for c0 < c < 0.
This situation is similar to the fact that for the generalized regularized long-
wave equation

ut + ux + upux − uxxt = 0,

where p is a positive integer, there exist both stable and unstable positive
solitary-wave solution if p ≥ 4. The generalized equation also admits solitary
waves of depression, and their stability properties will be a topic of future
study.

In section 4, numerical simulations are presented to illustrate the results
of stability of instability obtained in section 3.

To close the introduction, we establish some notation to be used in the
proof of stability and instability. For 1 ≤ p < ∞, the space Lp = Lp(R) is
the set of measurable real-valued functions of a real variable, for which the
integral

∫ ∞

−∞
|f(x)|pdx

is finite. For s ≥ 0, the space Hs = Hs(R) is the subspace of L2(R) consist-
ing of functions such that the integral

∫ ∞

−∞
(1 + |ξ|2)s|f̂(ξ)|2dξ

is finite. Here the circumflex denotes the Fourier transform.

2 Long-wave models

Equation (1.1), which is also known as the Benjamin-Bona-Mahoney (BBM)
equation, was introduced as a model for the propagation of long surface
water waves of small amplitude in a narrow channel [5, 14]. Let us briefly
recall the rationale behind using (1.1) as an alternative model instead of the
related Korteweg-de Vries (KdV) equation

ut + ux + uux + uxxx = 0. (2.1)

Let (x, y, z) connote a standard Cartesian coordinate system with z the
vertical direction and z = 0 located at the surface of a fluid in a long narrow

SOLITARY WAVES OF DEPRESSION 7



channel of depth h. Consideration is given to waves on the surface whose
primary direction of propagation is that of increasing values of x, which do
not vary significantly in the y-direction, and for which the effects of surface
tension and viscosity may be safely ignored. It is assumed that a typical
wave amplitude is a, and a typical wavelength is λ, and that the quantities
h2

λ2 and a
h

are of comparable magnitude. The function u(x, t) describes the
vertical deviation of the surface from its rest position at the point x at time
t.

When the variables u, x and t are non-dimensional and scaled so that
the dependent variable and its derivatives are of order one, (2.1) takes the
revealing form

ut + ux + εuux + εuxxx = O(ε2), (2.2)

where ε is of order h2

λ2
∼= a

h
, and the O(ε2) represents terms in the formal ap-

proximation which are of quadratic or higher order in ε. The KdV equation
obtains by disregarding all terms of order ε2 in (2.2). It also follows from
(2.2) that

ut + ux = O(ε), (2.3)

and the small parameter ε appearing in the equation shows the dispersive
term uxxx and the nonlinear term uux to be corrections of the same order
to the basic uni-directional hyperbolic equation ut + ux = 0. Under the
assumption that differentiation does not alter the ε-order of the dependent
variable, (2.3) implies that

uxxx + uxxt = O(ε),

so that uxxx may be replaced by −uxxt in (2.2) to obtain

ut + ux + εuux − εuxxt = O(ε2).

Again, disregarding terms of order ε2 and then rescaling, there appears the
alternative model

ut + ux + uux − uxxt = 0.

Now since this equation is given in the original variables, it appears that
for solutions that are physically valid, u should be much smaller than 1.
As was stated in the introduction, the solitary waves of depression have
magnitude of order 1, so that they do not belong to the class of solutions
that have a physical significance. This is also borne out by the fact that
their velocity is negative, so that they are propagating to the left, whereas
the derivation of equation (1.1) assumes right-moving waves.

KALISCH8



Notwithstanding the size of initial data, it was proven that the initial-
value problem associated to (1.1) is well posed in appropriate function
classes. In particular, it was shown in [2] that the problem is globally well-
posed in H1(R). For the proof of global well posedness, use is made of the
invariant integral

E(u) =
1

2

∫ ∞

−∞

(

u2 + u2

x

)

dx,

which is proven to be conserved as soon as the initial data are in H 1(R).
The equation has another invariant integral, namely

F (u) =
1

2

∫ ∞

−∞

(

u2 +
1

3
u3

)

dx.

These two functionals are of critical importance in the proof of stability and
instability given in the next section.

It will be convenient to recall an alternative formulation of the equation.
Note that (1.1) can be rewritten as

(1 − ∂xx)ut + ∂x

(

u+
1

2
u2

)

= 0.

Inverting the operator 1 − ∂xx, there appears the integral equation

ut +
∂x

1 − ∂xx

(

u+
1

2
u2

)

= 0. (2.4)

Defining J = − 1

2
∂x(1 − ∂2

x)−1, it is plain that (2.4) can be written as

ut = JF ′(u).

This is the general form of an equation to which the theory in [10] is appli-
cable.

3 Stability of solitary waves

A solitary-wave solution of (1.1) has the special form u(x, t) = φ(x − ct),
where c is the speed of propagation of the solitary wave. It follows that φ
satisfies the equation

−cφ′ + cφ′′′ + φ′ + φφ′ = 0, (3.1)

SOLITARY WAVES OF DEPRESSION 9



where φ′ denotes the derivative of φ with respect to the variable η = x− ct.
The equation (3.1) can be integrated once to yield

−cφ+ cφ′′ + φ+
1

2
φ2 = 0. (3.2)

It is elementary to check that

φ(x) = 3(c− 1)sech2

(

1

2

√

c− 1

c
x

)

(3.3)

is a solution of this equation for all c < 0. Note also that equation (3.2) can
be written in variational form in terms of the functionals E and F as

−cE′(φ) + F ′(φ) = 0.

In light of the fact that the conserved integral E represents the H 1-norm,
and that the initial-value problem is therefore globally well posed in H 1, the
natural norm to use in the definition of stability is the H 1-norm. Accord-
ingly, a viable definition is the following.

Definition. A solitary-wave solution φ of (1.1) is stable if for every ε > 0
there is δ > 0 such that if u ∈ C

(

[0,∞);H1(R)
)

is a solution to (1.1) with

‖u(·, 0) − φ‖H1 ≤ δ, then for every t ∈ [0,∞)

inf
s∈R

‖u(·, t) − φ(· − s)‖H1 ≤ ε.

Otherwise, φ is called unstable.

Let us briefly explain why it is essential to consider the infimum over all
translations. The expression (1.2) shows that solitary waves of larger am-
plitude travel at a higher speed. So in particular, two solitary waves which
may differ ever so slightly in height will drift apart as time passes, even
though their crests may have been perfectly aligned initially. As a conse-
quence, the usual notion of Lyapunov stability is not appropriate for the
problem at hand. Instead, the proper framework to study the stability of
solitary waves is the stability in shape, or orbital stability. In fact, taking
the infimum over all translations effectively measures the difference in shape
of two wave profiles. With the appropriate notion of stability in place, the
following theorem can be stated.

KALISCH10



Theorem. Solitary-wave solutions of (1.1) are stable if c < c0 =
1

6
− 1

12

√
10, and unstable if c0 < c < 0.

To prove the orbital stability of the solitary waves, use is made of the
general theory of Grillakis, Shatah and Strauss [10]. To prove instability,
their result cannot be applied directly, because the operator J = − 1

2
∂x(1 −

∂2
x)−1 is not surjective. This difficulty has been surmounted however in the

work of Souganidis and Strauss [15]. They consider a fairly general family of
evolution equations which contains equation (1.1) as a special case. The only
assumption used in their proof that does not hold in the present situation is
the positivity of the solitary waves. This property is needed in one part of
their proof (Theorem 2.3 in [15]) which is replaced here by Lemma 1. The
statement is essentially the same though the proof is slightly more intricate.

We proceed to give an outline of the assumptions needed for the appli-
cation of the theory in [10, 15] As was indicated before, equation (3.2) can
be written in variational form as

−cE′(φc) + F ′(φc) = 0,

where φc denotes a solitary wave with velocity c. The functional derivative
of this relation is given by the linear operator

Lc = c∂2

x − c+ φc + 1.

Note that since c < 0, c∂2
x − c + 1 is a positive operator. The following

requirements on Lc have been shown to hold in [15] and [17] for a wide class
of operators, including the operator at hand. Since the exact form of the
function φc is known in this case, they could also be verified directly.

1. Lc has positive continuous spectrum bounded away from zero, a sim-
ple zero eigenvalue with eigenfunction φ′

c, and one negative simple
eigenvalue with corresponding eigenfunction χc.

2. The mapping c→ χc is continuous with values in H2(R),
and (1 + |x|)χc(x) ∈ L1(R).

3. The mapping c→ φc is C1 with values in H2(R), φc ∈ H4(R),
and (1 + |x|)∂φ

∂c
(x) ∈ L1(R).

With these assumptions in place, the proof of stability and instability
becomes essentially a special case of the results in [10, 15]. Accordingly, the
stability of a solitary wave with speed c is determined by the convexity of

SOLITARY WAVES OF DEPRESSION 11



the function d(c) = −cE(φc) + F (φc). In particular, a solitary wave with
speed c is stable if d(c) is convex in a neighborhood of c, and it is unstable
if d(c) is concave in a neighborhood of c.

The only missing link is Theorem 2.3 in [15], which uses the strict posi-
tivity of the solitary wave. However, as mentioned previously, the following
lemma replaces this theorem in the present case.

Lemma 1. Let c be fixed. If d′′(c) < 0, then there exists a curve ω 7→ ψω

in a neighborhood of c, such that ψc = φc, E(ψω) = E(φc) for all ω, and
F (ψω) < F (φc) for ω 6= c.

Proof: Consider the map (ω, s) 7→ E(φω+sχc), where χc is the eigenfunction
corresponding to the negative eigenvalue of the operator Lc. Note that
(c, 0) 7→ E(φc). To obtain the mapping ω 7→ ψω, one may apply the implicit
function theorem if it can be shown that

∂

∂s
{E(φω + sχc)}

∣

∣

∣

ω=c,s=0

=

∫

E′(φc)χc

is nonzero. The proof of this fact is relegated to the appendix. Once it is
noted that this derivative is nonzero, the proof of the lemma follows the
proof of Theorem 2.3 in [15] verbatim. 2

Since we are now exactly in a situation in which the theory in [10] and
[15] can be applied, the convexity properties of the function d(c) will be
investigated.

Lemma 2. The function d(c) = −cE(φc) + F (φc) is convex if c <
1

6
− 1

12

√
10, and concave if 1

6
− 1

12

√
10 < c < 0.

Proof: Consider the first derivative

d′(c) =
〈

−cE′(φc) + F ′(φc),
∂φc

∂c

〉

−E(φc) = −E(φc).

By the formula for the solitary wave, it appears that

d′(c) = −1

2

∫ ∞

−∞

(

φ2

c + (φ′c)
2
)

dx

= − 9(c − 1)2
√

c

c− 1

∫ ∞

−∞
sech4(x) dx

− 9(c − 1)2
√

c− 1

c

∫ ∞

−∞
sech4(x) tanh2(x) dx.

KALISCH12



–40

–30

–20

–10

0

d’

–1 –0.8 –0.6 –0.4 –0.2
c

Figure 2: d’(c).

Evaluating the two integrals yields

d′(c) = − 12(c − 1)2
√

c

c− 1
− 12

5
(c− 1)2

√

c− 1

c
.

Elementary computations reveal that d′′(c) has a zero at c = c0 = 1

6
− 1

12

√
10,

and that d′(c) is increasing for c < 1

6
− 1

12

√
10, and decreasing for 1

6
− 1

12

√
10 <

c < 0. 2

In connection with the theory in [10] and [15], this lemma provides a
proof of Theorem 1. The numerical value of c0 is approximately −0.097, as
is also indicated in Figure 2.

4 Numerical simulation

In the following, a numerical study is presented to illustrate the results
obtained in the previous section. To discretize equation (1.1), we use a
Fourier-collocation method coupled with a 4-stage Runge-Kutta time inte-
gration scheme. Since the system of equations resulting from the spectral
projection of (1.1) is not stiff, a high-order explicit time-stepping algorithm
is the most viable candidate to match the extreme accuracy of the spectral
discretization in the space variable.

SOLITARY WAVES OF DEPRESSION 13



For the purpose of numerical approximation, the problem is posed with
periodic boundary conditions on the domain x ∈ [0, L], where L varies be-
tween 200 and 500. It was shown by Pasciak [13] that solutions to the
initial-value problem on the real line which have algebraic decay of some
order maintain this property for all time. In particular, initial data with
exponential decay will yield solutions that decay faster than any polynomial
for positive times. For exponentially decaying initial data, it is therefore
safe to assume that the solutions have sufficient decay, so that the tails lie
below the computational accuracy of the computer if a sufficiently large do-
main is used. It was observed that L = 500 was more than sufficient for the
computations shown in this paper.

The problem is translated to the interval [0, 2π] by the scaling u(x, t) =
v(x/a, t), where a = L

2π
. The initial-value problem is then

a2vt + avx + avvx − vxxt = 0, x ∈ [0, 2π] , t ≥ 0,
v(x, 0) = u0(ax),
v(0, t) = v(2π, t), t ≥ 0.







(4.1)

Let SN be the subspace of L2(0, 2π) spanned by the set

{

eikx
∣

∣

∣
k ∈ Z, −N

2
≤ k ≤ N

2
− 1

}

,

for N even. Instead of (4.1), we use the equivalent formulation as an integral
equation as in (2.4), namely

vt = − a∂x

a2 − ∂2
x

(

v +
1

2
v2

)

.

The collocation approximation is defined as follows. Find a function vN

from [0, T ] to SN , such that

∂tvN (xj) = KN (vN + 1

2
v2

N )(xj),
vN (0) = INu0(ax) ∈ SN ,

}

(4.2)

at the collocation points xj = 2πj
N

, for j = 0, 1, 2, ...N − 1. Here IN denotes
the operator which gives the Nth degree trigonometric interpolant at the
gridpoints xj . We assume that the solution is written as the sum

vN (x, t) =

N
2
−1
∑

k=−N
2

ṽN (k, t)eikx,

KALISCH14



h L2 -error Ratio
0.1000 7.8226e-05
0.0500 4.4138e-06 17.723
0.0250 2.6056e-07 16.940
0.0125 1.5801e-08 16.490
0.0063 9.7229e-10 16.251
0.0031 6.0236e-11 16.142
0.0016 3.7116e-12 16.230
0.0008 2.1690e-13 17.112

Table 1: Regularized long-wave equation; error due to temporal discretiza-
tion.

where the ṽN (k, t) can be thought of as the discrete Fourier coefficients of
vN (x, t). KN is defined generally via the discrete Fourier coefficients ψ̃(k)
of ψ ∈ SN as

(K̃Nψ)(k) = a
ik

a2 + k2
ψ̃(k),

where

ψ̃(k) =
1

N

N−1
∑

j=0

ψ(xj)e
−ikxj ,

for −N
2
≤ k < N

2
− 1. The problem (4.2) is a system of N coupled ordinary

differential equation for the discrete Fourier coefficients ṽN (k, t). This sys-
tem is integrated using a four-stage explicit Runge-Kutta scheme with time
step h.

No attempt has been made to prove the convergence of the discretization
explained above. However, an experimental convergence study is presented
to validate the numerical method. The norm used to calculate the error is
the normalized discrete L2-norm

‖v‖2

N,2 =
1

N

N
∑

i=1

|v(xi)|2.

The L2-error is then defined to be
‖v−vN ‖N,2

‖v‖N,2
.

To check the algorithm, we used the exact form (1.2) of the solitary
waves with various values of c, both positive and negative. A representative
result for the wave appearing in Figure 1 is given in Tables 1 and 2. In this
calculation, the solution was approximated from T = 0 to T = 8 and the

SOLITARY WAVES OF DEPRESSION 15



N L2-error Ratio
1024 4.921e-01
2048 2.378e-01 2.07
4096 2.125e-02 11.19
8192 1.968e-04 107.69

16384 2.431e-08 8097.02
32768 1.335e-09 1.82

Table 2: Regularized long-wave equation; error due to spatial discretization.

size of the domain was L = 200. In the computations shown in Table 1,
4096 Fourier modes were used. The 4th-order convergence of the scheme is
apparent up to h = 0.0008. Table 2 displays the spatial convergence rate for
a calculation with time step h = 0.001. We observe exponential convergence
before reaching the limit set by the size of the time step. Similar results
obtain for all other trials.

In order to study the stability of solitary waves of depression, the exact
formulation (3.3) for various values of c < 0 is used. Initial data are chosen
as a perturbation of the solitary wave in the amplitude or the wavelength.
Thus, typical initial data have the form

u0(x) = Aφc(x) (4.3)

where A represents the perturbation of the amplitude, or

u0(x) = φc(γ x) (4.4)

where γ represents the perturbation of the wavelength.
Depending on the speed c of the perturbed solitary wave, the initial

data evolve into a solitary wave of amplitude close to the perturbed solitary
wave, or disintegrates. For solitary waves in the stable range of c, small
perturbations always yield solutions that are close to the original solitary
wave, as is to be expected. Even rather large perturbations can be used,
but the resulting solitary waves generally have different speeds. In Figures
3, 4 and 5, a calculation is shown where a solitary wave with speed c = −1
is perturbed in the amplitude with A = 0.67 in (4.3). As can be seen in
the figures, the initial wave profile sheds a dispersive tail and evolves into a
solitary wave with c ∼ −0.38 and with height close to the height of the initial
data. In order to verify that the resulting waveform is close to a solitary
wave, we measured the height, and compared it to a solitary wave of the
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Figure 3:
Initial data: solitary wave with
c = −1, perturbed with A = 0.67
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Figure 4: Resulting solitary wave
with c ∼ −0.38, and oscillatory
tail at T = 200.

according height, translated to the minimum on the numerical grid. Table
3 shows the L∞-error in shape between the evolving wave form and the
corresponding solitary wave for the same calculation as shown in Figures 3,
4 and 5. It is better to use the L∞-error for this comparison, because due to
the finite grid size, there always exists a phase shift between the computed
solitary wave and the fitted curve. The L∞-error is defined analogously to

the L2-error by
‖v−vN ‖N,∞

‖v‖N,∞
, where

‖v‖N,∞ = max
1≤i≤N

|v(xi)|.

It is apparent in Table 3 that the error in shape diminishes over time. We
also monitored discrete forms of the conserved integrals E and F , and it
can be seen in Table 3, that their conservation was superior, thus adding
confidence in the performed computations.

Experiments with solitary waves perturbed in wavelength as in (4.4)
gave similar results. One interesting case is shown in Figures 6 and 7, where
initial data were given by a solitary wave with speed c = −0.5, perturbed
in the wavelength with γ = 2. It appears that the initial data evolve into a
smaller negative solitary wave, a dispersive wavetrain and a positive solitary
wave moving into the opposite direction.

An interesting point is that as the limit speed c0 = 1

6
− 1

12

√
10 for stability

is approached, the perturbation of the solitary wave has to be smaller and
smaller in order to observe stability. If a solitary wave with speed below,
but close to c0 is perturbed too much, it will disintegrate. In consequence, it
seems that it would be difficult to determine the critical wavespeed c0 purely
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Figure 5: Close-up of the calculation in Figures 3 and 4.

through numerical experiments. A related question is whether there exists
a functional relationship between the wavespeed and the maximal allowable
perturbation in, say amplitude. Some computations have been made in the
pursuit of establishing such a relation, but no conclusive evidence can be
reported here.

In Figures 8 and 9, the evolution of the perturbation of an unstable
solitary wave is depicted. In this particular case, the solitary wave had speed
c = −0.05, and was perturbed in the amplitude with A = 0.99. To be sure,
many different runs with varying perturbations were completed, and so long
as A < 1, the solitary wave disintegrated completely. Again, the conserved
integrals were monitored for the duration of the time evolution, and it was
found that they were conserved well. In Figures 11 and 12, a computation
of a solitary wave perturbed with A = 0.99999 is shown. It is apparent
that perturbing an unstable solitary wave by lowering the amplitude ever so
slightly results in the complete dispersion if the initial profile. This might
be related to a result of Albert [1] which states that low-energy solutions of
the generalized regularized long-wave equation

ut + ux + upux − uxxt = 0, (4.5)
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t L∞-error E F
20 0.7701 42.2378 -2.0113
40 0.4340 42.2378 -2.0113
60 0.1997 42.2378 -2.0113
80 0.1058 42.2378 -2.0113

100 0.0527 42.2378 -2.0113
120 0.0272 42.2378 -2.0113
140 0.0170 42.2378 -2.0113
160 0.0280 42.2378 -2.0113
180 0.0199 42.2378 -2.0113
200 0.0039 42.2378 -2.0113

Table 3: Error in shape and conserved integrals at different times for the
computations shown in Figures 3, 4 and 5.

disperse if p > 4. However, his result does not apply directly to the regular-
ized long-wave equation proper.

The instability of solitary waves with speed above the critical speed
seems to manifest itself in a completely different manner if the amplitude is
raised, i.e. if A > 1. In this case, the initial profile develops into a stable
solitary wave with speed below c0, and a positive solitary wave, moving in
the opposite direction. Such a case is depicted in Figures 13 and 14.

In closing, we would like to reiterate that the generalized regularized
long-wave equation (4.5) also admits negative solitary waves. It will be
interesting to study the stability of these waves, and to compare a possible
instability to the instability of the positive solitary waves when p ≥ 4.

Acknowledgements. This research was supported by the BeMatA
program of the Research Council of Norway.

A Spectral Analysis of Lc

In the proof of Lemma 1, it is used for the application of the implicit function
theorem that the integral

∫

E′(φc)χc =
1

c

∫

F ′(φc)χc =
1

c

∫
(

φc +
1

2
φ2

c

)

χc (A.1)

is nonzero. Recall that φc is the solitary wave with speed c, and that χc is
the eigenfunction corresponding to the sole negative eigenvalue of the linear
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Figure 6:
Initial data: solitary wave with
c = −0.5, perturbed in the wave-
length with γ = 2.
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Figure 7: Resulting negative and
positive solitary waves, separated
by a dispersive wavetrain.

operator Lc given by
Lc = c∂2

x − c+ φc + 1.

In the present context, the exact form of the eigenfunction χc may be used
to evaluated the integral (A.1). The spectral problem is of the form

Lcχc = λcχc,

and it can be shown that φ′c is the unique eigenfunction for the eigenvalue
0 (cf. [16]). Since φ′c has exactly one zero, it follows from the general
theory of second-order linear operators that 0 is the second eigenvalue from
the left. Therefore, there is precisely one negative eigenvalue. In general,
the eigenfunctions are given in terms of Gamma functions, but the case at
hand is particularly simple. It can be checked that the lowest eigenvalue is
λc = 5

4
(c− 1), and the corresponding eigenfunction is

χc(x) = sech3

(

1

2

√

c− 1

c
x

)

.
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Moreover, χc spans the eigenspace corresponding to λc. Using the expres-
sions for φc and χc, the integral (A.1) can be evaluated as follows.

1

c

∫ ∞

−∞

(

φc +
1

2
φ2

c

)

χc dx =
1

c
3(c− 1)

∫ ∞

−∞
sech5

(

1

2

√

c− 1

c
x

)

dx

+
1

2c
9(c− 1)2

∫ ∞

−∞
sech7

(

1

2

√

c− 1

c
x

)

dx

=
1

c
3(c− 1)

(

2

√

c

c− 1

) [

3

8
π +

3

2
(c− 1)

5

16
π

]

.

Thus it becomes obvious that this integral is nonzero for all negative c, and
in particular for c0 < c < 0.
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Figure 8:
Initial data: Perturbed unstable
solitary wave with c = −0.05 and
A = 0.99.
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Figure 9: Resulting wave profile at
T = 160.
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Figure 10: Perturbed unstable solitary wave with c = −0.05, close-up.
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Figure 11:
Initial data: Perturbed unstable
solitary wave with c = −0.05 and
A = 0.99999.
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Figure 12: Resulting wave profile
at T = 160.
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Figure 13:
Initial data: Perturbed unstable
solitary wave with c = −0.05 and
A = 1.01.

200 250 300 350 400 450 500
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 14: Resulting wave profile
at T = 160. The negative solitary
wave has a speed of approximately
c = −0.1754.
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Let X be a real Banach space and X∗ be the dual space of X. Let J
denote the normalized duality mapping from X into 2X∗

defined by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖ · ‖f‖, ‖f‖ = ‖x‖}

for all x ∈ X, where 〈·, ·〉 denotes the generalized duality pairing between X
and X∗.
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2 J. I. KANG, Y. J. CHO AND H. Y. ZHOU

Now we give some elementary definitions:

Definition 1. (1) A Banach space X is said to be strictly convex if

‖x + y‖
2

< 1

for all x, y ∈ SX , where SX = {z ∈ X : ‖z‖ = 1}.
(2) For any ε with 0 ≤ ε ≤ 2, we define the modulus δ(ε) of convexity of

X by

δ(ε) = inf
{

1− ‖x + y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}

.

A Banach space X is said to be uniformly convex if δ(ε) > 0 for any ε > 0.
(3) A Banach space X is said to be smooth if

lim
λ→0

‖x + λy‖ − ‖x‖
λ

exists for all x, y ∈ SX . In this case, the norm of E is said to be Gâteaux
differentiable

(4) A Banach space X is uniformly smooth if the limit

lim
λ→0

‖x + λy‖ − ‖x‖
λ

exists and is attained uniformly in x, y ∈ SX .
(5) The norm of X is said to be uniformly Gâteaux differentiable if, for

any y ∈ SX ,

lim
λ→0

‖x + λy‖ − ‖x‖
λ

exists uniformly for all x ∈ SX .

Remark 1. (1) Banach space X is strictly convex if and only if ‖x‖ =
‖y‖ = ‖(1− λ)x + λy‖ for all x, y ∈ X and 0 < λ < 1 implies that x = y.

(2) A uniformly convex Banach space X is strictly convex, but the converse
is not true.

(3) If a Banach space X is (uniformly) smooth, then the normalized du-
ality mapping J is single-valued. Moreover, if the norm of X is uniformly
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APPROXIMATION OF COMMON FIXED POINTS 3

Gâteaux differentiable, then the normalized duality mapping J is norm to
weak∗ uniformly continuous on any bounded subsets of X.

Definition 2. Let C be a closed convex subset of a Banach space E and
F be a subset of C.

(1) A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C.
(2) A mapping P of C onto F is said to be sunny if

P (Px + t(x− Px)) = Px

for any x ∈ C and t ≥ 0 with Px + t(x− Px) ∈ C.
(3) A subset F of C is called a nonexpansive retract of C if there exists a

nonexpansive retraction of C onto F .

Remark 2. (1) Let C be a nonempty closed convex subset of a Hilbert
space H. Then a mapping P on H is the metric projection onto C if and
only if, for any x ∈ H and y ∈ C,

< x− Px, Px− y >≥ 0.

Thus, if P is the metric projection of H onto C, then P is sunny and non-
expansive.

(2) Let C be a nonempty convex subset of a smooth Banach space X. We
call C a retract of X if there exists a continuous mapping r : X → C with
r(x) = x for all x ∈ C and the mapping r is called a retraction. If C0 ⊂ C
and P is a retraction of C onto C0 such that

< x− Px, J(Px− y) >≥ 0

for all x ∈ C and y ∈ C0, then P is sunny and nonexpansive.

For a fixed u ∈ C and each t ∈ (0, 1), we can define a contractive mapping
Tt : C → C by

(1) Ttx = tu + (1− t)Tx

for all x ∈ C. Then, by Banach’s contraction principle, there exists a unique
fixed point zt ∈ C of Tt, that is, zt is the unique solution of the equation

(2) zt = tu + (1− t)Tzt.
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4 J. I. KANG, Y. J. CHO AND H. Y. ZHOU

In [2], Browder proved that, if X is a Hilbert space, then zt converges
strongly to a fixed point of T as t → 0 and, in [9], Reich extended Browder’s
result to the setting of uniformly smooth Banach spaces.

The fixed point zt of Tt in (2) is defined implicitly, but we can devise
explicitly an iterative method which converges in norm to a fixed point of
T . In [5], Halpern studied initially such a method, which is called Halpern’s
iterative sequence, as follows:

Let {αn} be a sequence in (0,1], u be a fixed anchor in C and x0 ∈ C be
any initial value. Define a sequence {xn} ⊂ C in an explicit and iterative
way by

(H) xn+1 = αnu + (1− αn)Txn, n ≥ 0.

Then the sequence {xn} converges strongly to a fixed point of T if {αn}
satisfies certain control conditions, two of which are

(C1) αn → 0 (n →∞),

(C2)
∞∑

n=0

αn = ∞ or, equivalently,
∞∏

n=0

(1− αn) = 0.

In [7], Lions improves Halpern’s control conditions by showing the strong
convergence of the sequence {xn} if {αn} satisfies (C1), (C2) and the follow-
ing condition:

(C3)
αn+1 − αn

α2
n+1

→ 0 (n →∞).

Note that, for the natural and important choice { 1
n} of {αn}, the results

of both Halpern and Lions don’t work.

In [16], Wittmann overcame the problem mentioned above by proving the
strong convergence of {xn} if {αn} satisfies control conditions (C1) and (C2)
and the following:

(C4)
∞∑

n=0

|αn+1 − αn| < ∞.
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APPROXIMATION OF COMMON FIXED POINTS 5

Recently, Xu [17] suggested the following control condition instead of the
conditions (C3) or (C4):

(C5)
αn+1 − αn

αn+1
→ 0 or, equivalently,

αn

αn+1
→ 1 (n →∞)

and proved the strong convergence of Halpern’s iterative sequence {xn} and,
in [18], he also proved the strong convergence of the sequence {xn} by using
the control conditions (C1) and (C2).

Very recently, in [3], Cho, Kang and Zhou considered the following control
condition:

(C6) |αn+1 − αn| ≤ ◦(αn+1) + σn,

where
∑∞

n=0 σn < ∞, and proved some strong convergence theorems of the
Halpern’s iterative sequence {xn} for nonexpansive mappings in uniformly
smooth Banach spaces. Their results improve the corresponding results of
Lions [7], Wittmann [16], Xu [17], [18] and others. For further some examples
and relations of the control conditions (C1)∼(C6) on the sequence {αn}, see
Cho, Kang and Zhou [3].

In this paper, we consider the new control condition to prove some strong
convergence theorems of Halpern’s iterative sequence for a class of finite
nonexpansive mappings T1, T2, · · · , Tr of C into itself with Tn+r = Tn,
where C is a subset of X, without using the concept of Banach’s limit (see
Remark 4):

(C7) |αn+r − αn| ≤ ◦(αn+r).

Now, we introduce several lemmas for our main results in this paper.

Lemma 1. ([15]) Let {an} be a real sequence of nonnegative numbers
such that

an+1 ≤ (1− tn)an + ◦(tn), n ≥ 0,

where tn ∈ (0, 1) with
∑∞

n=0 tn = ∞. Then limn→∞ an = 0.

Lemma 2. ([9]) Let X be a uniformly convex Banach space whose norm
is uniformly Gâteaux differentiable, C be a closed convex subset of X and
T be a nonexpansive mapping of C into itself with F (T ) 6= ∅. Let x0 ∈ C
and zt be a unique element of C which satisfies zt = tx0 + (1 − t)Tzt and
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6 J. I. KANG, Y. J. CHO AND H. Y. ZHOU

0 < t < 1. Then {zt} converges strongly to a fixed point of T as t → 0.
Further, if Px0 = limt→0 zt for each x0 ∈ C, then

< x0 − Px0, J(Px0 − z) >≥ 0

for all z ∈ F (T ) and P is a sunny nonexpansive retraction of C onto F (T ).

Lemma 3. ([14]) Let E be a strictly convex Banach space and C be a
closed convex subset of E. Let S1, S2, · · · , Sr be nonexpansive mappings
of C into itself such that the set of common fixed points of S1, S2, · · · ,
Sr is nonempty. Let T1, T2, · · · , Tr be mappings of C into itself given by
Ti = (1−λi)I + λiSi for any 0 < λi < 1 and i = 1, 2, · · · , r, where I denotes
the identity mapping on C. Then {T1, T2, · · · , Tr} satisfies the following:

r⋂
i=1

F (Ti) =
r⋂

i=1

F (Si)

and
r⋂

i=1

F (Ti) = F (TrTr−1 · · ·T1)

= F (T1Tr · · ·T2)
= · · ·
= F (Tr−1 · · ·T1Tr).

Now, we give our main results in this paper.

Theorem 4. Let X be a uniformly convex Banach space whose norm is
uniformly Gâteaux differentiable and C be a closed convex subset of X. Let
T1, T2, · · · , Tr be nonexpansive mappings of C into itself such that the set
F =

⋂r
i=1 F (Ti) of common fixed points of T1, T2, · · · , Tr is nonempty and

satisfies that
r⋂

i=1

F (Ti) = F (TrTr−1 · · ·T1)

= F (T1Tr · · ·T2)
= · · ·
= F (Tr−1 · · ·T1Tr).
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Let {αn} be a sequence in (0, 1) which satisfies limn→∞ αn = 0,
∑∞

n=1 αn =
∞ and the control condition (C7), that is, |αn+r − αn| ≤ ◦(αn+r). Define a
sequence {xn} in C by{

x0 ∈ C,

xn+1 = αn+1x0 + (1− αn+1)Tn+1xn, n ≥ 0,

where Tn+r = Tn. Then the sequence {xn} converges strongly to a point
z in F . Further, if Px0 = limn→∞ xn for each x0 ∈ C, then P is a sunny
nonexpansive retraction of C onto F .

Proof. We first show that

lim
n→∞

‖xn+r − xn‖ = 0.

Since F 6= ∅, the sequences {xn} and {Tn+1xn} are bounded. Then there
exists L > 0 such that

‖xn+r − xn‖ ≤ L|αn+r − αn|+ (1− αn+r)‖xn+r−1 − xn−1‖

for each n ≥ 1. Therefore, by the control condition (C7), we have

‖xn+r − xn‖
≤ L|αn+r − αn|+ (1− αn+r)‖xn+r−1 − xn−1‖
≤ ◦(αn+r) + (1− αn+r)‖xn+r−1 − xn−1‖.

Thus, by Lemma 1, it follows that

lim
n→∞

‖xn+r − xn‖ = 0.

Next, we prove

lim
n→∞

‖xn − Tn+r · · ·Tn+1xn‖ = 0.

It suffices to show that

lim
n→∞

‖xn+r − Tn+r · · ·Tn+1xn‖ = 0.
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8 J. I. KANG, Y. J. CHO AND H. Y. ZHOU

Since xn+r − Tn+rxn+r−1 = αn+r(x0 − Tn+rxn+r−1) and limn→∞ αn = 0,
we have xn+r − Tn+rxn+r−1 → 0. From

‖xn+r − Tn+rTn+r−1xn+r−2‖
≤ ‖xn+r − Tn+rxn+r−1‖+ ‖Tn+rxn+r−1 − Tn+rTn+r−1xn+r−2‖
≤ ‖xn+r − Tn+rxn+r−1‖+ ‖xn+r−1 − Tn+r−1xn+r−2‖
= ‖xn+r − Tn+rxn+r−1‖+ αn+r−1‖x0 − Tn+r−1xn+r−2‖,

it follows that xn+r − Tn+rTn+r−1xn+r−2 → 0. Similarly, we obtain the
conclusion. Let zn

t be a unique element of C which satisfies 0 < t < 1 and

zn
t = tx0 + (1− t)Tn+rTn+r−1 · · ·Tn+1z

n
t .

From F (Tn+rTn+r−1 · · ·Tn+1) = F and Lemma 2, we know that {zn
t } con-

verges strongly to Px0 of as t → 0, where P is a sunny nonexpansive retrac-
tion of C onto F .

Next, we prove that

lim sup
n→∞

< x0 − Px0, j(xn − Px0) >≤ 0.

In fact, assume that n = k mod r for some k ∈ {0, 1, 2, · · · , r − 1}. Since

‖xn − Tn+r · · ·Tn+1z
k
t ‖2

≤ [‖xn − Tn+r · · ·Tn+1xn‖
+ ‖Tn+r · · ·Tn+1xn − Tn+r · · ·Tn+1z

k
t ‖]2

≤ ‖xn − Tn+r · · ·Tn+1xn‖2

+ 2‖xn − zk
t ‖‖xn − Tn+r · · ·Tn+1xn‖+ ‖xn − zk

t ‖2,

‖xn − Tn+r · · ·Tn+1xn‖ → 0 (n →∞),

(1− t)(xn − Tn+r · · ·Tn+1z
k
t ) = (xn − zk

t )− t(xn − x0),

(1− t)2‖xn − Tn+r · · ·Tn+1z
k
t ‖2

≥ ‖xn − zk
t ‖2 − 2t < xn − x0, j(xn − zk

t ) >

= (1− 2t)‖xn − zk
t ‖2 + 2t < x0 − zk

t , j(xn − zk
t ) >,
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we have

2t < x0 − zk
t , j(xn − zk

t ) >

≤ (1− t)2‖xn − Tn+r · · ·Tn+1z
k
t ‖2 − (1− 2t)‖xn − zk

t ‖2

≤ (1− t)2[‖xn − Tn+r · · ·Tn+1xn‖2

+ 2‖xn − zk
t ‖‖xn − Tn+r · · ·Tn+1xn‖+ ‖xn − zk

t ‖2]

− (1− 2t)‖xn − zk
t ‖2

≤ t2‖xn − zk
t ‖2 + (1− t2)‖xn − Tn+r · · ·Tn+1xn‖

× (‖xn − Tn+r · · ·Tn+1xn‖+ 2‖xn − zk
t ‖).

Therefore, we have

(3)

< x0 − zk
t , j(xn − zk

t ) >

≤ t

2
‖xn − zk

t ‖2 +
(1− t)2

2t
‖xn − Tn+r · · ·Tn+1xn‖

× (‖xn − Tn+r · · ·Tn+1xn‖+ 2‖xn − zk
t ‖).

Note that

(4)

< x0 − Px0, j(xn − Px0) >

=< x0 − Px0, j(xn − Px0)− j(xn − zk
t ) >

+ < x0 − Px0, j(xn − zk
t ) >

=< x0 − Px0, j(xn − Px0)− j(xn − zk
t ) >

+ < x0 − zk
t , j(xn − zk

t ) > + < zk
t − Px0, j(xn − zk

t ) > .

Since X has a uniformly Gâteaux differentiable norm, we see that j : X →
X∗ is norm to weak∗ uniformly continuous on any bounded subsets of X.
Hence, for any ε > 0, there exists δ > 0 such that

| < x0 − Px0, j(x)− j(y) > | < ε

for all x, y ∈ B(0, s) with ‖x − y‖ < δ, where B(0, s) = {z ∈ X : ‖x‖ ≤ s}
and

s = max{sup
n≥0

{‖xn − Px0‖}, sup
n≥0

{‖xn − zk
t ‖}}.
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On the other hand, since zk
t → Px0 as t → 0, it follows that, for the number

δ > 0, there exists µ > 0 such that

(5) ‖zk
t − Px0‖ < δ

for 0 < t < µ and so we have

(6) | < x0 − Px0, j(xn − Px0)− j(xn − zk
t ) > | < ε

for all 0 < t < µ, n ≥ 0 and k ∈ {1, 2, · · · , r}. Thus it follows from (3)∼(6)
that

(7)

lim sup
n→∞

< x0 − Px0, j(xn − Px0) >

≤ ε +
t

2
lim sup

n→∞
‖xn − zk

t ‖2 + ‖zk
t − Px0‖ lim sup

n→∞
‖xn − zk

t ‖.

Letting t → 0 in (7) and noting ‖zk
t − Px0‖ → 0 as t → 0, we have

(8) lim sup
n→∞

< x0 − Px0, j(xn − Px0) >≤ ε.

Since ε > 0 is arbitrary, we have the desired conclusion.
Finally, we prove that the sequence {xn} converges strongly to Px0. Let

ε > 0. From (8), there exists a positive integer n0 such that

< x0 − Px0, j(xn − Px0) ><
ε

2

for all n ≥ n0. Since

(1− αn)(Tnxn−1 − Px0) = (xn − Px0)− αn(x0 − Px0),

we have

(1− αn)2‖Tnxn−1 − Px0‖2

≥ ‖xn − Px0‖2 − 2αn < x0 − Px0, j(xn − Px0) >

≥ ‖xn − Px0‖2 − αnε

for all n ≥ n0, which implies that

‖xn − Px0‖2 ≤ (1− αn)2‖Tnxn−1 − Px0‖2 + αnε

≤ (1− αn)‖xn−1 − Px0‖2 + αnε.
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Therefore, by Lemma 1, we have ‖xn − Px0‖ → 0 as n → ∞, that is, the
sequence {xn} converges strongly to Px0. This completes the proof.

Next, as an application of Theorem 4, we introduce the strong convergence
theorems which are connected with the feasibility problem.

Using a nonlinear ergodic theorem, Crombez [4] considered the feasibility
problem in the setting of Hilbert spaces. Let H be a Hilbert space, C1, C2,
· · · , Cr be closed convex subsets of H and I be the identity operator on H.
Then the feasibility problem in the setting of Hilbert spaces may be stated
as follows: The original (unknown) image z is known a priori to belong to
the intersection C0 of r well-defined sets C1, C2, · · · , Cr in a Hilbert space,
given only the metric projection Pi of H onto Ci (i = 1, 2, · · · , r), recover z
by an iterative sequence. In [4], by using the weak convergence theorem by
Opial [8], Crombez proved the following:

Theorem 5. Let T = α0I +
∑r

i=1 αiTi with Ti = I + λi(Pi − I) for all
0 < λi < 1 and αi ≥ 0 for i = 0, 1, 2, · · · , r with

∑r
i=0 αi = 1, where each Pi

is the metric projection of H onto Ci and C0 =
⋂r

i=1 Ci is nonempty. Then,
starting from an arbitrary element x ∈ H, the sequence {Tnx} converges
weakly to an element of C0.

Later, Kitahara and Takahashi [6], Takahashi and Tamura [13] dealt with
the feasibility problem by convex combinations of sunny nonexpansive re-
tractions in uniformly convex Banach spaces.

Using Lemma 3 and Theorem 4, we have the following:

Corollary 6. Let X be a uniformly convex Banach space whose norm
is uniformly Gâteaux differentiable and C be a closed convex subset of X.
Let S1, S2, · · · , Sr be nonexpansive mappings of C into itself such that
the set F =

⋂r
i=1 F (Si) 6= ∅. Define a family of finite {T1, T2, · · · , Tr} by

Ti = (1 − λi)I + λiSi for all 0 < λi < 1 (i = 1, 2, · · · , r). Let {αn} be a
sequence in (0, 1) which satisfies limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and the

control condition (C7), that is, |αn+r − αn| = ◦(αn+r). Define a sequence
{xn} in C by{

x0 ∈ C,

xn+1 = αn+1x0 + (1− αn+1)Tn+1xn, n ≥ 0,

where Tn+r = Tn. Then the sequence {xn} converges strongly to a common
fixed point of S1, S2, · · · , Sr. Further, if Px0 = limn→∞ xn for each x0 ∈ C,
then P is a sunny nonexpansive retraction of C onto

⋂r
i=1 F (Si).
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Proof. By Lemma 3 and Theorem 4, the sequence {xn} converges strongly
to a common fixed point of S1, S2, · · · , Sr.

Corollary 7. Let X be a uniformly convex Banach space whose norm is
uniformly Gâteaux differentiable and C be a closed convex subset of X. Let
C1, C2, · · · , Cr be nonexpansive retracts of C into itself such that the set⋂r

i=1 Ci 6= ∅. Define a family of finite {T1, T2, · · · , Tr} by Ti = (1 − λi)I +
λiPCi

for all 0 < λi < 1,(i = 1, 2, · · · , r). Let {αn} be a sequence in (0, 1)
which satisfies limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and the control condition

(C7), that is, |αn+r − αn| = ◦(αn+r). Define a sequence {xn} in C by{
x0 ∈ C,

xn+1 = αn+1x0 + (1− αn+1)Tn+1xn, n ≥ 0,

where Tn+r = Tn. Then the sequence {xn} converges strongly to a point z
of

⋂r
i=1 Ci. Further, if Px0 = limn→∞ xn for each x0 ∈ C, then P is a sunny

nonexpansive retraction of C onto
⋂r

i=1 Ci.

Proof. By Corollary 6 and
⋂r

i=1 Ci =
⋂r

i=1 F (PCi
), the conclusion fol-

lows.

Remark 3. In 1992, Wittmann [16] dealt with the iterative process for
r = 1 in a Hilbert space and Shioji and Takahashi [10] extended the result
of Wittmann to the setting of Banach spaces. On the other hand, in 1996,
Bauschke [1] dealt with the iterative process for finding a common fixed
point of finite nonexpansive mappings in a Hilbert space (see also Lions
[7]). Recently, in [14], Takahashi, Tamura and Toyoda obtained a strong
convergence theorem which unifies the results by Bauschke [1], Shioji and
Takahashi [10] and, using their result, they considered the problem of image
recovery in the setting of Banach spaces.

Remark 4. The proof lines of our main result, Theorem 4, are different
from those of Takahashi, Tamura and Toyoda [14]. To prove Theorem 4,
we used the control condition (C7) and Weng’s lemma (Lemma 1) instead
of the condition

∑∞
n=1 |αn+r − αn| < ∞ and the following Banach’s limit,

respectively. Let µ be a continuous linear functional on l∞ and (a0, a1, · · · ) ∈
l∞. We write µn(an) instead of µ((a0, a1, · · · )). We call µ Banach’s limit if
µ satisfies ‖µ‖ = µn(1) = 1 and µn(an+1) = µn(an) for all (a0, a1, · · · ) ∈ l∞.
If µ is Banach’s limit, then we have the following:

lim inf
n→∞

an ≤ µn(an) ≤ lim sup
n→∞

an
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for all (a0, a1, · · · ) ∈ l∞. Further, if an → p as n →∞, then µn(an) = p (see
[11] for more details on Banach’s limit).

Remark 5. All the results in this paper can be extended to the setting
of more general Banach space, that is, X is a reflexive Banach space with
a uniformly Gâteaux differentiable norm and every weakly compact convex
subset of X has the fixed point property for nonexpansive mappings.

Remark 6. If the control condition (C7) is replaced by more general
assumption that xn+r − xn → 0 as n → ∞, then all the conclusions of
Theorem 4 with corollaries are still true.

Remark 7. We note that, if limn→∞
αn

αn+r
exists and (C2) holds, then the

control condition used in Takahashi, Tamura and Toyoda [14]
∑∞

n=1 |αn −
αn+r| < ∞ implies the control condition (C7). In general, these control
conditions are independent each other. For the details, refer to Cho, Kang
and Zhou [3].
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Úd�D Ûï ��Ûï Ý Ü §K��ÛïEð ÜA f ì ���i>yÿ
d;D Ûï � >�ÿ:A � Dv²ë§ÙjÛ�Ù.>�
Úd;D Ûï Ü�ÚÔào>�ÿ�d�D Ûï Ü�Û�Ù�à�Ù-4ÔÚÔÙjà�æ�ÞuêÞÀÝÀÜ�Û�ÝÀéÜ�æOìBÙ
áÌåeÛ�Ùeç3à�âÔÙ7ä�å�ä�ë§ÙoáøÜ�ã
ä�ä�ëÔÜ�äid;Ûï
Þ®æ�à�Ù-4ÔÚÔÙjà�å�Ú§ÝÀé�áÌåeÛ û ê�âÔÝtä"ÞJ)§ÝÀÙ�å�á�áÌå�â§Û[]IáÌå�Û û�� �Ôç
Þtá û ^ ü��;� ä�ëÔÙVÚ >yÿ
d�D Ûï ^ ÿB ��dQÛï Ý�� §Kd;ÛïEð �  ��

Ü�Ú^à >�
Úd�D Ûï ^ d Ûï Ý�� f|Ad Ûï f�d Ûïyð �ü �
Þtá û ^ ü��bf²ÿ
�8ä�ëÔÙVÚ >yÿ
d�D Ûï ^ ÿÿ`ý � d;Û� Þ Ý�� §KdQÛ� Þ   f �

ÿjý � dQÛ� Þ §`d;Û� Þ ð �   �
Ü�Ú^à >�
Úd�D Ûï ^ d;Û� Þ Ý�� f|Ad;Û� Þ f�dQÛ� Þ ð �ü

Þtá û ^ ü��bftA+�8ä�ëÔÙVÚ >yÿ
d�D Ûï ^ ÿü � dQÛ� Þ Ý�� §`d;Û� Þ   �
Ü�Ú^à >�
Úd�D Ûï ^ d;Û� Þ Ý�� f�dQÛ� Þ ð �A �

Þtá û ^ ü��bf����8ä�ëÔÙVÚ >yÿ
d�D Ûï ^ �
ÿ`ý � d;Û� Þ Ý�� §KdQÛ� Þ   f ÿÿjý � dQÛ� Þ Ý�� §Kd;Û� Þ Ý��   �

Ü�Ú^à >�
Úd�D Ûï ^ d;Û� Þ Ý�� f|Ad;Û� Þ Ý�� f�dQÛ� Þü �
þ§åeÛ û ê�âÔÝtä"ÞJ)§ÝÀÙ�å�áIüÔçpä"ë§Ùb4ÔÛ{æ�ä�Ù[Zeâ^Ü<ä�ÞÀå�Ú�ÞÀÚj>�ÿ[A
D>Þ®æ7à�Þ®æ"ã
Û"Ù
ä�ÞÀßVÙ`à$ìpéS>�ÿ[A Ü Dd Û�Ý Üï ^ d Ûï § ì d Ûï d;Ûï Ý�� §`d;Ûïyð �B f ì ��Ûï Ý Ü §j��Ûïyð ÜA � >�ÿ:A Ü D

ZALZALI,ABBAS44



6�ë§ÙjÛ�Ù d Ûï ^ dQÛï Ý�� f|Ad;Ûï f�d;ÛïEð �ü /·�¸� �Ú¾q¼�Æ�ø�ÁPÈ;À�ú.ø+Æ�Ìh¾qú\¿+Ì(rÚ+ä�ë§ÙoÚ3âÔê+ÙjÛ�Þ®ãVÜ�Ý§Ù-,§Ü�ê�)ÔÝuÙ`æVç<ä"ë§Ù7ÝÀÙ
á ä>ë^Ü�ÚÔà�æ�ÞÀà§Ù�èXÜ�ÝuâÔÙjæOå�á;d ¤ Ü�Û"Ù�ÿ��NA+�P�)æ�â^ãVã
Ù`æ�æ�ÞÀè�ÙVÝÀé�ç
Ü�Ú^à`� ¤ ^ ��n£ä"ë§Ù�Û�Þ2*�ë3ä�ëÔÜ�ÚÔàºæ�Þ®à�Ùè<Ü�ÝÀâ§Ùjæ�Ü�Û�ÙÜ�Ý26@ÜXépæ�d;« ^ ��Ü�ÚÔàK��« ^ �+/ G@ëÔÛ�ÙjÙä�Ù`æ�ä{æ�ã
åeÛ�Û"ÙjæP)^åeÚÔà�ÞÀÚ+*4ä�å+ä�ë§Ù9ä"ë§Û"ÙVÙ�è<Ü�ÝÀâ§Ùjæ@å�áUd ¤ Ü�Û�Ùb*eÞuèeÙVÚ�ì^ÙjÝuå6M/(rÚKÜ�ÝuÝ9ãVÜeæ�Ù`æVç�ä"ë§Ùºæ�åeÝuâ�ä"ÞuåeÚ ã
åeÚÔæ�ÞÀæ�ä"æ$å�á4Üt)ÔÜ�ÞÀÛ�å�á�æ�ëÔåpãc<V6@ÜXè�Ù`æ�æ�Ù�)ÔÜ�Û{Ü<ä"ÙjàÇìpé
ã
åeÚÔæ�ä"Ü�Ú3ä�è<Ü�ÝÀâ§Ùjæ��d�Ü�ÚÔà���Lå�á}d�Ü�ÚÔà#�¶Û"ÙjæP)^Ù`ã&ä"ÞuèeÙVÝÀé�/G@ë§Ù�ä"ë§ÙVåeÛ�ÙVä�Þ®ãVÜ�ÝÔèXÜ�ÝuâÔÙjæ�å�á��d�Ü�ÚÔà����ãVå�Û"Û�Ù`æ@)Bå�ÚÔà§ÞuÚ+*)ä"å�æ�é�æ�ä�ÙjêÃ>�ÿeÿ[D�>øÛ�Ù`æ@)BÙjã
ä�ÞÀè�ÙjÝué>�ÿ:A�DPD7Ü�Û"Ù4ãVå�ê8)§â�ä"Ùjà�áÌÛ"å�ê ä"ë§Ù+Ü�ÝJ*eÙVì§Û{Ü�Þ®ã9áÌåeÛ�ê4â§ÝÀÜS>yB
D
ç=>y��D&ç-Ü�ÚÔà|>�ÿjü�DY>øÛ�Ù`æ@)BÙjã
ä�ÞÀè�ÙjÝué>yB�D&ç�>y��D&çIÜ�ÚÔàV>�ÿ`ý
DPD�6�Þtä"ë Ü�ÚºÙVÛ"Û�åeÛ�������ÿ�� ð ��/OG@ë§Ù�å�ì^æ�ÙjÛ�èeÙjà�è<Ü�Ýuâ§Ù`æ�å�á��d Ü�ÚÔà���
Ü�Û"Ù�*�ÞÀè�ÙVÚK6�Þuä�ë Ü�Ú»ÙVÛ"Û�åeÛ�������ÿ[� ð Õ /�v»Ù�ã
åeê8)§â�ä�Ù`àºæ�åeÝuâ�ä"ÞuåeÚÔæ�6�Þtä"ë ìO^ �+� A���áÌå�ÛdQ¤ ^ ÿ��NA+Ü�ÚÔà ìY^ �+� A�áÌåeÛ�dT¤ ^ ��/�vLÙb4�,pÙ`à�ä�ë§Ù�æ�Þuê4â§Ý®Ü<ä�ÞÀå�Ú�ä�ÞÀêÙ��KÜ�ä�ÿ�/0pé�æ�ä"ÙVê´>�ÿ�ÿ:D¡]OÓX÷§õjùøÒÇÿ

èXÜ�ÝuâÔÙ�å�á ä�ë§Ùjå�Û"Ù
ä�Þ®ãVÜ�Ý åeìÔæ�ÙjÛ�èeÙjà ä"ë§ÙVåeÛ�ÙVä�Þ®ãVÜ�Ý å�ì^æ�ÙjÛ�èeÙjà
å�áUdT¤ è<Ü�ÝÀâ§Ù�å�á��d è<Ü�ÝÀâ§Ù9å�á��d èXÜ�ÝuâÔÙ>å�á�§��� è<Ü�ÝÀâ§ÙFå�á�§���
ÿ �+/ � �+/ � ��/ ü���ü�� �+/ �A ÿ
/ ÿ�/ �+/ �
�
��� ÿ�/� ÿ�/ � ÿ�/ � ÿ
/ ����A§ÿ ÿ�/ �0pé�æ�ä�ÙVê >�ÿ[A
DF]OÓ<÷�õ`ùøÒÇÿ

èXÜ�ÝuâÔÙ�å�á ä�ë§Ùjå�Û"Ù
ä�Þ®ãVÜ�Ý åeìÔæ�ÙjÛ�èeÙjà ä"ë§ÙVåeÛ�ÙVä�Þ®ãVÜ�Ý å�ì^æ�ÙjÛ�èeÙjà
å�áUd ¤ è<Ü�ÝÀâ§Ù�å�á��d è<Ü�ÝÀâ§Ù9å�á��d èXÜ�ÝuâÔÙ>å�á�§��� è<Ü�ÝÀâ§ÙFå�á�§���
ÿ �+/ � �+/ � ��/ ���
�
A �+/ �A ÿ
/ ÿ�/ ÿ�/ ��ü
�eý ÿ�/� ÿ�/ � ÿ�/ � ÿ
/ ý������ ÿ�/ �0pé�æ�ä�ÙVê >�ÿ�ÿ:DF]�ÓX÷§õjùøÒºü

èXÜ�ÝuâÔÙ�å�á ä�ë§Ùjå�Û"Ù
ä�Þ®ãVÜ�Ý åeìÔæ�ÙjÛ�èeÙjà ä"ë§ÙVåeÛ�ÙVä�Þ®ãVÜ�Ý å�ì^æ�ÙjÛ�èeÙjà
å�áUdT¤ è<Ü�ÝÀâ§Ù�å�á��d è<Ü�ÝÀâ§Ù9å�á��d èXÜ�ÝuâÔÙ>å�á�§��� è<Ü�ÝÀâ§ÙFå�á�§���
ÿ �+/ �����
� ��/ �����
� ��/ ü���ü�� ��/ ü���ü�AA ÿ�/ �����
� ÿ�/ ���§ÿ ��/ ���
��� ��/ ����ý��� ÿ�/ �����
� ÿ�/ ���
� ÿ
/ ����A§ÿ ÿ
/ ����ÿ��
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0pé�æ�ä�ÙVê >�ÿ[A
DF]OÓ<÷�õ`ùøÒºü
èXÜ�ÝuâÔÙ�å�á ä�ë§Ùjå�Û"Ù
ä�Þ®ãVÜ�Ý åeìÔæ�ÙjÛ�èeÙjà ä"ë§ÙVåeÛ�ÙVä�Þ®ãVÜ�Ý å�ì^æ�ÙjÛ�èeÙjà
å�áUd ¤ è<Ü�ÝÀâ§Ù�å�á��d è<Ü�ÝÀâ§Ù9å�á��d èXÜ�ÝuâÔÙ>å�á�§��� è<Ü�ÝÀâ§ÙFå�á�§���
ÿ �+/ �����
� ��/ �������Ôÿ ��/ ���
�
A ��/ ���
���A ÿ�/ �����
� �+/ ����B ÿ
/ ��ü
�eý ÿ
/ ��üeý� ÿ�/ �����
� ÿ�/ ü
��B ÿ
/ ý������ ÿ
/ ýeý�üvLÙ�Û�Ùjê�Ü�ÛN<�ä�ë^Ü<ä>ä"ë§ÙoÞÀÚ3ä�ÙjÛ�êÙjà§ÞÀÜ�ä�Ùoæ�ä�Ù�)�è<Ü�ÝÀâ§Ù7áÌåeÛ�ä�ëÔÙoè�ÙjÝuå�ãVÞtä�é'd�Ü�ÚÔà+ä�ë§Ù)æ�ä"Û�Ù`æ�æ�YÜ�Û�ÙãVÜ�ÝÀãVâ§Ý®Ü<ä�Ù`àS6�Þuä�ëºêå�Û"ÙÜ�ãVãVâ§Û{Ü�ã
é#6�Þuä�ë»ä�ëÔÙà§å�â§ì§ÝÀÙ�æ"ãVÜ�ÝÀÙ+ê+ÙVä�ë§å�à`6�Þtä"ëºÛ"Ü�ä�ÞÀå

ü�/ G@ëÔÞÀæM)^Ü�Û�ä�Þ®ã
â§Ý®Ü�Û9Û{Ü<ä�ÞÀå�ü�ÞÀæ�Ü�)+)§Û"å�)§Û"Þ®Ü<ä�Ù4áÌå�Û9ä"ë§Ùjæ�ÙH)§Û"å�ì§ÝÀÙVê�æ�/Hv²Þtä"ë ÜÈæ�ä"Û�åeÚ+*�ÙjÛ
à�Þ®æ�ãVå�Ú3ä�ÞÀÚpâ§Þuä�é$Ü+ÝÀÜ�ÛP*eÙVÛ@Û"Ü�ä�ÞÀå'60å�âÔÝÀà�ì^Ù�ÚÔÙVÙjà§Ùjà�/{7Ú�áÌåeÛ�ä"â§ÚÔÜ�ä�ÙVÝÀé�ç�áÌå�Û.ÙjÜ�ã{ë�å�á§ä"ë§Ù>ä"Ùjæ�ä"æjçXä�ë§Ù@Úpâ§êÙVÛ"Þ®ãVÜ�Ýpæ�å�ÝÀâ�ä�ÞÀå�ÚY)ÔÛ�Ù`æ�ÙjÚeä{æ�Ü)æ�â§ÛP)ÔÝuâÔæ
å�á§à�ÞJ_iâÔæ�ÞÀå�Ú�/�(rÚ�å�Û{à�ÙjÛiä�å7ÞÀê8)§Û�å<èeÙIä�ë§ÙiZeâ^Ü�ÝÀÞtä�é)Ü�ÚÔà9Ú§Ù`Ü<ä"Ú§Ùjæ"æ-å�ápä"ë§Ù>Úpâ§êÙVÛ"Þ®ãVÜ�Ý�Û�Ù`æ�â§Ýuä"æ60Ù�ÞuÚ3ä"Û�å�à�âÔãVÙ�Ü�ã
Ý®Ü�æ"æ�ÞÀãjÜ�ÝvÜ�Úeä"ÞÀà§Þ5_iâÔæ�ÞuåeÚ�êÙ
ä�ëÔåpà�/7G@ë§ÞÀæoêåpà§Þ54^ãjÜ<ä"ÞuåeÚ¶à�åpÙjæ�ÚÔå�ä¡)ÔÝÀÜXé
ÜÈÛ"å�ÝÀÙ�ÞÀÚ ä�ë§Ù�ã
åeÚpè�ÙVÛN*�ÙjÚÔã
Ùå�á�ä�ë§Ù�æ�ã{ë§ÙjêÙ$ì§â�ä+Þtäê�Ü�<eÙjæ9ä"ë§Ù�æ�ë§å�ãc<»Ú§ÙjÜ�ä�ÙVÛ[/�( ä+ÞÀæ
à�Ù`æ�ãVÛ�ÞÀì^Ù`àLÜeæ)áÌå�ÝÀÝuå67æ�/þ§å�Û�� ^ dU�P�Iç�60ÙÞuÚ3ä�Û"å�à�âÔãVÙÜ�ãVå�Û"Û�Ù`ã&ä�ÞÀå�ÚLå�Ú§ÝÀé�ÞÀÚ¶ä"ë§Ùä\60åãVÜeæ�Ù`æ&] � Ûïyð � è � Ûïyð Ü è!� Ûï è�� Ûï Ý Ü � >øÜ
D
å�Û � Ûïyð � � � Ûïyð Ü � � Ûï � � Ûï Ý Ü � >ÌìTDv»Ù�æ�ÙVä

�¨ Ûï ^�" êÞuÚ # ææ � Ûï §$� Ûïyð Ü ææü � ææ � Ûïyð � §�� Ûïyð Ü ææA � ææ � Ûï Ý Ü §$� Ûï ææA % �6�Þuä�ëVl&§7m4ÞuÚ�ä�ëÔÙ�ãVÜ�æ�ÙH>�&-D@Ü�ÚÔà|lcf�m4ÞuÚ�ä�ëÔÙ�ãVÜ�æ�Ù8>('�DF/�v²ë§ÙjÚ#6FÙ�Ü�Û�Ù)Ú§å�ä�ÞÀÚ�ä�ë§Ù�ãjÜ�æ�Ù>('�D@Ü�ÚÔà`>�&-D$60Ù9æ�Ù
ä��¨&Ûï ^ �+/�(rÚ�ä�ë§Ù�æ"ã{ë§Ùjê+Ùeç)�qÛï ÞÀæ@Û"Ù&)ÔÝÀÜeã
Ùjà�ìpé*�qÛï §!�¨-Ûï f+�¨-Ûïyð Ü /þ§åeÛ�Û"Ü�ä�ÞÀå4áÌåeâ§Û`ç�6FÙ9ÞÀÚeä"Û�å�à�â^ã
Ù9ä�ëÔÙ�áÌåeÝuÝÀå6�ÞÀÚ+*�ã
å�Û"Û"Ùjã&ä"ÞuåeÚ$åeÚ§Ýué$ÞuÚ�ä�ëÔÙ9ä\6Få�ãVÜeæ�Ù`æ� Ûïyð � è � Ûïyð � è!� Ûï è�� Ûï Ý�� � >øã�D
å�Û � Ûïyð � � � Ûïyð � � � Ûï � � Ûï Ý�� � >øà�Dv»Ù�æ�ÙVä

�¨ Ûï ^�" êÞuÚ # ææ � Ûï §$� Ûïyð � ææÿjý � ææ � Ûïyð � §�� Ûïyð � ææB � ææ � Ûï Ý�� §$� Ûï ææB % �6�Þuä�ëVl&§7m4ÞuÚ�ä"ë§Ù�ãVÜ�æ�ÙH>yÿhD@Ü�ÚÔàëlFf�m�ÞÀÚ$ä"ë§Ù�ãVÜeæ�ÙH>�¨&DF/�v²ë§ÙjÚ#6FÙ�Ü�Û"Ù9Ú§å�ä�ÞÀÚ�ä�ë§Ù�ãjÜ�æ�Ù>y¨�D@Ü�ÚÔàK>yÿhD�60Ù9æ�Ù
ä,�¨ Ûï ^ �+/�(rÚ�ä�ë§Ù�æ"ã{ë§Ùjê+Ùeç)� Ûï ÞÀæ�Û"Ù&)ÔÝÀÜeã
Ùjà�ìpé*� Ûï §-�¨ Ûï f+�¨ Ûïyð � /
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Velocity of system (11)

Exact = 1.

Observed = 1.0001

exact
num.
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Stress of system (11)

Exact = - 0.9574

Observed = - 0.9564

exact
num.
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Stress of system (12)

Exact = - 1.043620

Observed = - 1.0462

exact
num.
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Velocity of system (12)

Exact = 1.

Observed  = 0.9988

exact
num.

þ.ÞJ*eâ§Û"Ù�ÿ�]O�Fåeê8)ÔÜ�Û"ÞÀæ�å�ÚºìBÙ
ä\60ÙVÙjÚ ä�ëÔÙ$Ù-,§Üeã&ä+æ�å�ÝÀâ�ä"ÞuåeÚÔæ�å�á.>�ÿeÿ[D�Ü�ÚÔàk>�ÿ[A�D
ç�Ü�ÚÔà ä�ë§Ù
Úpâ§êÙVÛ"ÞÀãjÜ�Ý-æ�å�ÝÀâ�ä�ÞÀå�ÚÔæ@åeì�ä"Ü�ÞuÚÔÙjà�ìpé$à�å�âÔì§ÝuÙ�æ"ãVÜ�ÝuÙ9êÙ
ä"ë§å�à$áÌåeÛ�Û"Ü�ä�ÞÀåü
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. ���#�7�'������%&"��Y� �Y�#� � !o���7�=%&"��Y�Ú���7�U!o�F�U��%&� ���X���U�¡����'�0/S!o%-� �#�I�#�Y� %-"��(rÚ�ä�ë§Þ®æ�æ�Ùjã&ä"ÞuåeÚ£ç+60Ù�ã
å�Ú^æ�Þ®à�ÙVÛ0ä"ë§Ù�ã
Ý®Ü�æ"æ�Þ®ãVÜ�Ý£æ�é�æ�ä�Ùjê å�áOÜ�ÙjÛ�å�à�épÚÔÜ�ê+Þ®ãVæ�>@? ��çT�§ç+�CEDÑÒÒÒÓ ÒÒÒÔ � e f�> � d;D g ^ ���> � d�D e f � � d � f�ñ   g ^ �+�> �21 DËe�fk> �31 d'f�ñ�d�D g ^ �+�ñXar>	4X§ ÿ[D �25 � >�ÿ�B
D
6�ë§ÙjÛ�Ù � ç�d�ç�Ü�ÚÔàqñ�à�ÙjÚ§å�ä"ÙFÛ"ÙjæP)BÙjã&ä"ÞuèeÙVÝÀé�çXä"ë§Ù7à�ÙVÚ^æ�Þuä�é�çXä"ë§Ù�è�ÙjÝuå�ã
Þuä�é�ç�Ü�ÚÔà�ä"ë§Ù�)§Û"Ùjæ"æ�â§Û"Ù�/(rÚ�ä�ëÔÞÀæ)æ�é�æ�ä�Ùjê�çT6FÙ4æ�ä{Ü<ä�Ù�ä�ë§Ù�Ý®Ü:67æ7å�á�)§ëpépæ�Þ®ãVæY>Ìä�ë§Ù4ÞuÚ3ä�ÙjÛ�Ú^Ü�ÝvÙjÚ§ÙVÛN*�éI)^ÙjÛoâ§ÚÔÞtä)êÜeæ�æ5 ^ 1 §Xd ��Ð A§ç 1 ìBÙVÞÀÚ+*�ä�ëÔÙ7ä�å�ä"Ü�ÝÔÙVÚÔÙVÛN*�é.)BÙVÛ0â§Ú§ÞuäFê�Üeæ�æcD�6�Þuä�ë�ä"ë§Ùoæ�ä�Û"å�Ú+*�Ù[Zeâ^Ü�ÝÀÞtä"ÞuÙ`æVçÜ�Ú^à�ä"ë§Ù�ã
åeÚÔæ�ä"Þtä"â�ä�ÞÀè�Ù�Ù[Z3âÔÜ<ä"ÞuåeÚI6�Þuä�ë�ä�ëÔÙ�Ü�æ"æ�å�ã
Þ®Ü<ä"ÞuåeÚ�/G@ë§ÙVÚ+Þuä>ãVÜ�Ú4ì^Ù@ä"Û"Ü�ÚÔæ�áÌå�Û"ê+Ù`à�ÞÀÚ3ä�å9è<Ü�Û"ÞuåeâÔæ�æ�é�æ�ä"ÙVê�æIÞÀÚ�ä"ë§Ù@Ú§å�ÚÔãVå�ÚÔæ�ÙVÛ"è<Ü<ä"ÞuèeÙ�áÌå�Û"ê
ëÔÜXèpÞÀÚ+*�ä"ë§Ù�æ"Ü�êÙb)§ÞuÙ`ã
Ù�6�ÞÀæ�Ù�ã
å�Ú3ä"ÞuÚpâ§åeâÔæ�æ�åeÝuâ§ä�ÞÀå�ÚÔæ�/�G�6Fåå�á.ä�ëÔÙjæ�Ù9æ�é�æ�ä"ÙVê�æ�Ü�Û"ÙÑÒÒÓ ÒÒÔ � e�f�> � d;D g ^ �+�dTe�ftdTd;g7f ÿ� ñTg ^ �+�ñ�e�fzd�ñTg7f64�ñTdQgYa��+� >�ÿ��
D
Ü�Ú^à ÑÒÓ ÒÔ87 e f�d 7 g § 7 d g ^ �+�d e ftdTd g f 7 ñ g ^ �+�ñ e fzd�ñ g f64�ñTd g a��+� >LA��
D
6�ë§ÙjÛ�Ù 7 ^ ÿ Ð � ÞÀæoä�ëÔÙ4æP)^Ù`ã
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Vibrations of Elastic Strings: Unilateral Problem
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Abstract

In a previous paper, [17] Part Two, was investigated an initial boundary value problem for

the operator

Lu(x, t) =
∂2u

∂t2
−

"
τ0

m
+

k

m

γ(t)− γ0

γ0
+

k

2mγ(t)

Z β(t)

α(t)

„
∂u

∂x

«2

dx

#
∂2u

∂x2
,

which is a model for small vibrations of an elastic string with moving ends and variable tension.

Without restrictions on the initial data we proved local solutions in t. The present paper is

dedicated to study a unilateral problem for Lu with no restriction on the initial configuration

u0 and the initial velocity u1 has a bounded gradient. We succeed to prove that the solution

of the unilateral problem has a solution for all t ∈ [0, T ], T a positive arbitrary number.

Keywords: Elastic strings, unilateral problem, moving ends, penalty method, nonlocal solu-

tions.

Mathematics Subject Classification: 35L85, 35L20.

1 INTRODUCTION

In [17] it was deduced a model describing the small vertical vibrations of an elastic string in the

case of moving ends and variable tension. In fact, it was deduced the mathematical model

∂2u

∂t2
−

(
τ0

m
+

k

m

γ(t)− γ0

γ0
+

k

2mγ(t)

∫ β(t)

α(t)

(
∂u

∂x

)2

dx

)
∂2u

∂x2
= 0. (1.1)
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Note that u = u(x, t) is the deformation of the string; τ0 the initial tension in the rest position

[α0, β0]; [α(t), β(t)] the deformations of [α0, β0] after the time t > 0, with α0 = α(0), β0 = β(0),

γ(t) = β(t) − α(t), γ0 = γ(0), 0 < α(t) < α0 < β0 < β(t). By m we represent the mass of the

string and k = σE, with σ the area of the cross section of the string and E the Young’s modulus

of the material.

It is opportune to observe that when we have fixed ends, that is, α(t) = α0, β(t) = β0 for all

t ≥ 0, the model (1.1) reduces to

∂2u

∂t2
−

(
τ0

m
+

k

2mγ0

∫ β0

α0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
= 0, (1.2)

called the Kirchhoff model, see [1], [6], [9], [10], [11], [12], [13], [16], [18], [20], [21], [22], [26].

If in (1.2) we suppose fixed ends and constant tension τ0 , we ignore the non linear contribution

σ(t) =
k

2mγ0

∫ β0

α0

(
∂u

∂x

)2

dx,

which appears from the variation of the tension, then we obtain, from (1.2), the well known

D’Alembert model, [8],
∂2u

∂t2
− τ0

m

∂2u

∂x2
= 0. (1.3)

In order to propose our problem we need some notation. Let

Q̂ =
{
(x, t) ∈ R2; α(t) < x < β(t), 0 < t < T

}
, (1.4)

with 0 < α(t) < α0 < β0 < β(t) for t > 0.

The lateral boundary of Q̂ is defined by

∧∑
=

⋃
0<t<T

[{α(t), β(t)} × {t}]. (1.5)
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Set â(t) =
τ0

m
+

k

m

γ(t)− γ0

γ0
; b̂(t) =

k

2mγ(t)
and

M̂(t, λ) = â(t) + b̂(t)λ.

(1.6)

Thus, we consider the nonlinear differential operator

L̂u(x, t) =
∂2u

∂t2
− M̂

(
t,

∫ β(t)

α(t)

(
∂u

∂x

)2

dx

)
∂2u

∂x2
, (1.7)

defined for functions u : Q̂ → R.

Let us consider the closed convex set Kt , contained in H1
0 (Ωt), for t ≥ 0, defined by

Kt =
{

w ∈ H1
0 (Ωt);

∣∣∣∣∂w

∂x

∣∣∣∣ ≤ 1
γ(t)

a.e. in Ωt

}
. (1.8)

Note that H1
0 (Ωt) is the Sobolev space on Ωt = (α(t), β(t)), the sections of Q̂ at level t; see [15].

Remark 1.1. In previous work, cf. [17], was investigated an initial boundary value problem for

L̂u in Q̂, where we chose initial values u0 ∈ H1
0 (Ω0) ∩H2(Ω0), u1 ∈ H1

0 (Ω0), Ω0 = (α0, β0). It

was proved, cf. [17], that the initial boundary value problem for L̂u in Q̂ with these initial values

and zero on Σ̂ has only one local solution u = u(x, t). It means that the solution u = u(x, t) is

defined for (x, t) ∈ Q̂, but for 0 < t < T0 , T0 a fixed number. However, to obtain solution defined

for all t > 0, we need restrict u0, u1 to be inside a fixed ball, what is called “small initial data”.

In the present work, we consider a unilateral problem or a variational inequality cf. [3] for the

operator L̂u, to be defined in Section 2. We prove, that considering u0 ∈ H1
0 (Ω0) ∩ H2(Ω0) and

u1 ∈ K0 ⊂ H1
0 (Ω0), the unilateral problem for L̂u in Q̂ has a unique solution u = u(x, t), defined

for all number t ≥ 0. Note that u0 is arbitrary in H1
0 (Ω0) ∩H2(Ω0).

The methodology employed to study the unilateral problem of L̂u in Q̂ consists in the trans-

formation of the noncylindrical domain Q̂ into a cylinder Q and the operator L̂u into an operator

Lv defined for functions v : Q → R. Thus we obtain an equivalent cylindrical unilateral problem

for Lv in Q and we are able to apply the penalty method idealized by Lions [14].
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2 NOTATIONS AND RESULTS

We consider the following hypotheses:

(H1) α, β ∈ C3([0,∞); R), such that 0 < α(t) < α0 < β0 < β(t), for all t > 0, α′(t) < 0,

β′(t) > 0 and α′(0) = β′(0) = 0, with f ′ the derivative of f(t).

(H2) |α′(t) + yγ′(t)| ≤
√

m0

2
, for all t ≥ 0, 0 < y < 1 with 0 < m0 ≤

τ0

m
·

Theorem 2.1. Suppose

u0 ∈ H1
0 (Ω0) ∩H2(Ω0) and u1 ∈ K0 ⊂ H1

0 (Ω0).

There exists one and only one function u : Q̂ → R, satisfying the conditions:

u ∈ L∞(0, T ;H1
0 (Ωt) ∩H2(Ωt)); u′ ∈ L∞(0, T ;H1(Ωt));

u′′ ∈ L∞(0, T ;L2(Ωt)),
(2.1)

Du(t) ∈ Kt a.e. in (0, T ), (2.2)∫ T

0

∫ β(t)

α(t)

L̂u(x, t)
[
w(x, t)−Du(x, t)

]
dxdt ≥ 0, (2.3)

for all w ∈ L1(0, T ;H1
0 (Ωt)), with w(t) ∈ Kt a.e. in (0, T ).

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω0 = (α0, β0). (2.4)

The operator D is defined by

Du(x, t) = u′(x, t) +
[
γ′(t)
γ(t)

(x− α(t)) + α′(t)
]

∂u(x, t)
∂x

· (2.5)

To prove theorem 2.1 we transform it in an equivalent unilateral problem in a cylindrical

domain.
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In fact, if (x, t) ∈ Q̂, the point (y, t) ∈ Q, for y =
x− α(t)

γ(t)
and Q = (0, 1) × (0, T ). Thus the

mapping τtx = y, with y =
x− α(t)

γ(t)
, transforms (α(t), β(t)), t ≥ 0, into (0, 1). The inverse is

τ−1
t y = x, with x = γ(t)y + α(t). Note that τt and τ−1

t are C3, by (H1).

The next step is to obtain the operator Lv(y, t) transformed from L̂u(x, t) by τt . In fact, if we

set v(y, t) = u(x, t) with y = τtx, we obtain

Lv(y, t) =
∂2v

∂t2
− 1

γ2(t)

[
−m0

2
+ â(t) +

b̂(t)
γ(t)

∫ 1

0

(
∂v

∂y

)2

dy

]
∂2v

∂y2
−

− ∂

∂y

(
a(y, t)

∂v

∂y

)
+ b(y, t)

∂2v

∂y∂t
+ c(y, t)

∂v

∂y
,

(2.6)

where

a(y, t) =

[
m0

2γ2(t)
−
(

α′(t) + yγ′(t)
γ(t)

)2
]

, (2.7)

b(y, t) = −2
[
α′(t) + yγ′(t)

γ(t)

]
, (2.8)

c(y, t) = −
[
α′′(t) + yγ′′(t)

γ(t)

]
. (2.9)

By (H2) we have −m0

2
+ â(t) ≥ m0

2
, then the coefficient of −∂2v

∂y2
is strictly positive. Also by

(H2), a(y, t) ≥ 0 for all (y, t) ∈ Q.

Observe also that v′(y, t) = Du(x, t) and if z(y, t) = w(x, t), y = τtx,
∂z

∂y
= γ

∂w

∂x
and Kt is

transformed into the closed convex set

K =
{

z ∈ H1
0 (Ω);

∣∣∣∣∂z

∂y

∣∣∣∣ ≤ 1 a.e. in Ω
}

(2.10)

with Ω = (0, 1).

Prior to completing the proof of theorem 2.1, we state another result.

Theorem 2.2. Suppose

v0 ∈ H1
0 (Ω) ∩H2(Ω) and v1 ∈ K.
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Then, there exists one and only one function v : Q → R, such that

v ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)); v′ ∈ L∞(0, T ;H1

0 (Ω)) ∩ L4(0, T ;W 1,4
0 (Ω));

v′′ ∈ L∞(0, T ;L2(Ω))
(2.11)

v′(t) ∈ K a.e. in (0, T ) (2.12)∫ T

0

∫ 1

0

Lv(y, t)
[
z(y, t)− v′(y, t)

]
γ(t) dydt ≥ 0, (2.13)

for all z ∈ L4(0, T ;W 1,4
0 (Ω)), with z(t) ∈ K a.e. in (0, T )

v(y, 0) = v0(y) and v′(y, 0) = v1(y) in Ω = (0, 1). (2.14)

Remark 2.1. Note that, as we will prove in Section 3, T is any positive number.

By the inverse mapping τ−1
t we prove that theorem 2.2 implies theorem 2.1. By this reason we

need only to prove theorem 2.2.

To prove theorem 2.2 we transform, by penalty, the inequality (2.13) into a family of equations

depending of a parameter ε > 0 and apply Galerkin’s method.

First of all, let us define a penalty operator convenient to our problem, cf. Lions [14]. By

W 1,4
0 (Ω) we represent the Sobolev space whose topological dual is W−1,4/3(Ω). The closed convex

set K, defined in (2.10), is also contained in W 1,4
0 (Ω). Represent by v− the negative part of the

function v defined by v−(y) = max(−v(y), 0). For u, v ∈ W 1,4
0 (Ω), we have

(1−
∣∣∣∣∂u

∂y

∣∣∣∣2
)−

∂u

∂y

∂v

∂y

 ∈ L1(Ω).

For u ∈ W 1,4
0 (Ω) consider the linear form

〈P (u), v〉 =
∫ 1

0

(
1−

∣∣∣∣∂u

∂y

∣∣∣∣2
)−

∂u

∂y

∂v

∂y
dy,
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defined for v ∈ W 1,4
0 (Ω), which is continuous, then it is an object of the dual W−1,4/3(Ω). We

obtain

P (u) = − ∂

∂y

(1−
∣∣∣∣∂u

∂y

∣∣∣∣2
)−

∂u

∂y

 (2.15)

in the sense of distributions on Ω = (0, 1).

We prove, cf. Lions [14], that the operator P : W 1,4
0 (Ω) → W−1,4/3(Ω), is monotone, hemicon-

tinuous, takes bounded sets of W 1,4
0 (Ω) into bounded sets of W−1,4/3(Ω) and its kernel is K. This

operator is called the penalty operator relating to the closed convex set K.

We prove the following result from which we obtain the proof of theorem 2.2.

Theorem 2.3. Suppose 0 < ε < 1, v0 ∈ H1
0 (Ω) ∩ H2(Ω) and v1 ∈ K. There exists a unique

function vε : Q → R satisfying

vε ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)); v′ε ∈ L∞(0, T ;H1

0 (Ω)) ∩ L4(0, T ;W 1,4
0 (Ω));

v′′ε ∈ L∞(0, T ;L2(Ω))
(2.16)

∫ T

0

(Lvε(t), w(t)) dt +
1
ε

∫ T

0

〈P (v′ε(t)), w(t)〉 dt = 0, (2.17)

for all w ∈ L4(0, T ;W 1,4
0 (Ω)).

vε(y, 0) = v0(y), v′ε(y, 0) = v1(y) in Ω = (0, 1). (2.18)

The proof of theorem 2.3 will be given in Section 3. For the moment let us prove that it implies

the proof of theorem 2.2. Observe that in (2.17) we represent by ( , ) the scalar product in L2(Ω)

and 〈 , 〉 the duality pairing between W−1,4/3(Ω) and W 1,4
0 (Ω).

In fact, set in (2.17) w(t) = (z(t) − v′ε(t))γ(t) with z ∈ L4(0, T ;W 1,4
0 (Ω)) such that z(t) ∈ K

a.e. in (0, T ). We have

∫ T

0

(Lvε(t), z(t)− v′ε(t))γ(t)dt +
1
ε

∫ T

0

〈P (v′ε(t)), z(t)− v′ε(t)〉γ(t)dt = 0. (2.19)
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By monotonicity of P and because z(t) ∈ K, we have 〈P (v′ε(t)) − P (z(t)), v′ε(t) − z(t)〉 ≥ 0, then

it follows from (2.19) that ∫ T

0

(Lvε(t), z(t)− v′ε(t))γ(t) dt ≥ 0 (2.20)

for all z ∈ L4(0, T ;W 1,4
0 (Ω)) with z(t) ∈ K a.e. in (0, T ). We prove in Section 3, that when

0 < ε < 1 and if ε → 0, (2.20) converges to

∫ T

0

(Lv(t), z(t)− v′(t))γ(t)dt ≥ 0

for all z ∈ L4(0, T ;W 1,4(Ω)) with z(t) ∈ K a.e. in (0, T ) and v : Q → R satisfies the regularity, the

unicity and the initial conditions of theorem 2.2.

3 PROOF OF THE THEOREM 2.3

We apply Galerkin’s method with the Hilbertian basis of spectral objects (wν)ν∈N and (λν)ν∈N for

the operator − ∂2

∂y2
in H1

0 (Ω), Ω = (0, 1), cf. Brezis [2]. We know that the eigenvectors (wν)ν∈N

are orthonormal and complete in L2(Ω) and complete in H1
0 (Ω) ∩ H2(Ω), H1

0 (Ω) and W 1,4
0 (Ω).

We represent by VN = [w1, w2, . . . , wN ] the subspace of H1
0 (Ω) generated by the first N vectors

wν . The approximate problem consists in determining vεN (x, t) =
N∑

j=1

gjN (t)wj(x) in VN , the

solution of the system of ordinary differential equations

∣∣∣∣∣∣∣∣∣∣∣

(LvεN (t), w) +
1
ε
〈P (v′εN (t)), w〉 = 0 for all w in VN

vεN (0) = v0N → v0 strong in H1
0 (Ω) ∩H2(Ω)

v′εN (0) = v1N → v1 strong in H1
0 (Ω), with v1N ∈ K.

(3.1)

The system (3.1) has a local solution vεN = vεN (x, t), for x ∈ Ω and 0 ≤ t < TN , cf.

Coddington-Levinson [7]. The extension of vεN from [0, tN ) to [0, T ), for all number T > 0,

DA SILVA ET AL60



is a consequence of an a priori estimate obtained in Estimate (i).

Remark 3.1. Since K is a closed convex set of H1
0 (Ω), there exists a projection operator

πK : H1
0 (Ω) → K, cf. Brezis [2]. We have ||πK v1N − πK v1|| ≤ ||v1N − v1||, which converges

to zero. But πK v1 = v1 because v1 ∈ K. Then πK v1N ∈ K approximates v1 in H1
0 (Ω) norm. So

we can consider the approximations of v1 belonging to K.

In order to have a better notation, we consider, in the computation, vεN = v,
∂2v

∂y2
= ∆v,

∂v

∂y
= ∇v and

∂v

∂t
= v′,

∂2v

∂t2
= v′′. By |v(y, t)| we represent the absolute value of the real number

v(y, t) and |v(t)|, ||v(t)|| the norms of v = v(y, t) in L2(Ω) and H1
0 (Ω) respectively, that is,

|v(t)|2 =
∫

Ω

|v(y, t)|2 dy and ||v(t)||2 =
∫

Ω

|∇v(y, t)|2 dy.

Estimate (i). Set w = v′(t) in (3.1) and observe the definition of Lv given in (2.6). We obtain

1
2

d

dt
|v′(t)|2 + µ(t)

1
2

d

dt
||v(t)||2 + a(t, v(t), v′(t))+

+ (b(t)∇v′(t), v′(t)) + (c(t)∇v(t), v′(t))+

+
1
ε
〈P (v′(t)), v′(t)〉 = 0.

(3.2)

Observe that we employ the notation a(t, v(t), w) =
∫

Ω

a(y, t)∇v(y, t)∇w(y) dy and

(b(t)g(t), w) =
∫

Ω

b(y, t)g(y, t)w(y) dy. Note that µ(t) =
1

γ2(t)

[
−m0

2
+ â(t) +

b̂(t)
γ(t)

∫
Ω

|∇v(y, t)|2 dy

]
.
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After computations we obtain for all 0 ≤ t < tN ,

d

dt

{
|v′(t)|2 +

 â(t)− m0

2
γ2(t)

 ||v(t)||2 +
b̂(t)

2γ3(t)
||v(t)||4 +

+
∫ 1

0

a(y, t)|∇v(y, t)|2 dy

}
+ 2

∫ 1

0

γ′(t)
γ(t)

|v′(y, t)|2 dy +

+
2
ε
〈P (v′(t), v′(t)〉 =

=

 â′(t)
γ2(t)

−
2
(
â(t)− m0

2

)
γ′(t)

γ3(t)

 ||v(t)||2 +

+

[
b̂′(t)
γ3(t)

− 3b̂(t)γ′(t)
γ4(t)

]
||v(t)||4 +

+
∫ 1

0

a′(y, t)|∇v(y, t)|2 dy + c(y, t)
[
||v(t)||2 + |v′(t)|2

]
.

(3.3)

Integrating (3.3) on (0, t), 0 < t < tN , we obtain

|v′(t)|2 +

 â(t)− m0

2
γ2(t)

 ||v(t)||2 +
b̂(t)

2γ3(t)
||v(t)||4 +

+
∫ 1

0

a(y, t)|∇v(y, t)|2 dy +
2
ε

∫ t

0

〈P (v′(s), v′(s)〉 ds ≤

≤ |v1N |2 +

 â(0)− m0

2
γ2
0

 ||v0N ||2 +
b̂(0)
2γ3

0

||v0N ||4 +

+
m0

2γ2
0

∫ 1

0

|∇v0N (y)|2 dy +
∫ t

0

 â′(s)
γ2(s)

−
2
(
â(s)− m0

2

)
γ′(s)

γ3(s)

 ||v(s)||2ds+

+
∫ t

0

[
b̂′(s)
γ3(s)

− 3b̂(s)γ′(s)
γ4(s)

]
||v(s)||4 ds +

+
∫ t

0

∫ 1

0

a′(y, s)|∇v(y, s)|2 dyds+

+
∫ t

0

|c(y, s)|
[
||v(s)||2 + |v′(s)|2

]
ds.

(3.4)

Remark 3.2. In (3.4), by the convergences in (3.1), the sum of the terms evaluated in t = 0 is
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less than a positive constant C2 , independent of N and tN . Also we have

•

 â(t)− m0

2
γ2(t)

 ≥
(

m0

2γ2(t)

)
> C3

• b̂(t)
γ3(t)

≥ k

2mγ3(t)
> C4

Note that C3 and C4 depend on T > 0 but T is an arbitrary positive number, not depending of N

and tN .

•
∫ 1

0

a(y, t)|∇v(y, t)|2 dy ≥ 0 by (H2) and (2.7).

From Remark 3.2 we modify (3.4), obtaining

ϕ(t) +
1
ε

∫ t

0

〈P (v′(s), v′(s)〉 ds ≤ C5 + C7

∫ t

0

ϕ(s) ds, (3.5)

with ϕ(t) = |v′(t)|2 + ||v(t)||2 + ||v(t)||4. Since the penalty term is positive, the Gronwall inequality

implies ϕ(t) ≤ C8 , that is, after the extension of the solution

|v′εN (t)|2 + ||vεN (t)||2 + ||vεN (t)||4 < C8 , (3.6)

for all N ∈ N, ε > 0 and t ∈ [0, T ], T > 0.

From (3.5) and (3.6) it follows that

∫ T

0

〈P (v′εN (t)), v′εN (t)〉 dt < C9 ,

for all N ∈ N, 0 < ε < 1, and any fixed T > 0.

By definition of P , this implies

∫ T

0

∫ 1

0

(
|∇v′εN (y, t)|2 − 1

)
|∇v′εN (y, t)|2 dydt < C9 (3.7)

for |∇v′εN (y, t)|2 > 1. For |∇v′εN (y, t)|2 ≤ 1 the duality is zero, because P (v′εN (y, t)) = 0.
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From (3.7) and by Schwarz’s inequality, we obtain an extra fundamental estimate

∫ T

0

|∇v′εN (t)| L4(Ω)
4
dt < C10 ,

for all N ∈ N, 0 < ε < 1, T an arbitrary positive number.

Thus we have the estimate

|v′εN (t)|2 + ||vεN (t)||2 +
∫ T

0

|∇v′εN (t)| L4(Ω)
4
dt < C11. (3.8)

Estimate (ii). Set w = −∆v′(t) in (3.1). We obtain

1
2

d

dt
||v′(t)||2 + µ(t)

1
2

d

dt
|∆v(t)|2 +

+ a(t, v(t),−∆v′(t)) + (b(t)∇v′(t),−∆v′(t))+

+ (c(t)∇v(t),−∆v′(t)) +
1
ε
〈P ((v′(t)),−∆v′(t)〉 = 0.

(3.9)

By definition of P (v′(t)), see (2.15), we obtain P (v′(t)) = 0 when |∇v′(y, t)|2 ≤ 1, that is

v′(t) ∈ K. It follows that

1
ε
〈P (v′(t)),−∆v′(t)〉 =

1
ε

∫
|∇v′(y,t)|>1

[
3(∇v′(y, t))2 − 1

]
[∆v′(y, t)]2 dy ≥ 0.

By a similar argument as we did to obtain Estimate (i), we transform (3.9) to the following
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inequality:

1
2

d

dt

{
||v′(t)||2 + µ(t)|∆v(t)|2 + a(t,∇v(t),∇v(t)

}
+

+
[
β′(t)
γ(t)

(∇v′(1, t))2 − α′(t)
γ(t)

(∇v′(0, t))2
]
≤

≤ 2
[
β′(t)γ′(t)

γ2(t)
∇v(1, t)∇v′(1, t)− α′(t)γ′(t)

γ2(t)
∇v(0, t)∇v′(0, t)

]
+

+
[
−β′′(t)

γ(t)
∇v(1, t)∇v′(1, t) +

α′′(t)
γ(t)

∇v(0, t)∇v′(0, t)
]

+

+
1
2

 â′(t)
γ2(t)

−
2
(
â(t)− m0

2

)
γ′(t)

γ3(t)

 |∆v(t)|2 +

+
1
2

[
b̂′(t)
γ3(t)

− 3b̂(t)γ′(t)
γ4(t)

]
||v(t)||2 |∆v(t)|2 +

+
b̂(t)
γ3(t)

(∇v(t),∇v′(t))|∆v(t)|2 − 2
[
γ′(t)
γ(t)

]2
(∇v(t),∇v′(t))−

− 2
[
α′(t) + yγ′(t)

γ(t)

]
γ′(t)
γ(t)

(∆v(t),∇v′(t)),+

+
1
2

∫ 1

0

a′(y, t)|∆v(y, t)|2 dy +
∫ 1

0

γ′(t)
γ(t)

|∇v′(y, t)|2 dy +

+
∫ 1

0

γ′′(t)
γ(t)

∇v(y, t)∇v′(y, t) dy +

+
∫ 1

0

[
α′′ + yγ′′(t)

γ(t)

]
∆v(y, t)∇v′(y, t) dy.

(3.10)

Now, by hypothesis (H1), (H2) and Estimate (i), we modify the right hand side of (3.10)

obtaining
1
2

d

dt

{
||v′(t)||2 + µ(t)|∆v(t)|2 + a(t,∇v(t),∇v(t))

}
+

+
[
β′(t)
γ(t)

(∇v′(1, t))2 − α′(t)
γ(t)

(∇v′(0, t))2
]
≤

≤ 2
[
β′(t)γ′(t)

γ2(t)
∇v(1, t)∇v′(1, t)− α′(t)γ′(t)

γ2(t)
∇v(0, t)∇v′(0, t)

]
+

+
[
−β′′(t)

γ(t)
∇v(1, t)∇v′(1, t) +

α′′(t)
γ(t)

∇v(0, t)∇v′(0, t)
]

+

+ K1 + K2

[
|∇v′(t)|2 + (1 + |∇v′(t)|L4(Ω))|∆v(t)|2

]
.

(3.11)
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By an argument similar to that employed in [17] Part Two, we transform (3.11) and obtain

d

dt

{
||v′(t)||2 + µ(t)|∆v(t)|2 + a(t,∇v(t),∇v(t))

}
≤

≤ 2K1 + K3

[
||v′(t)||2 + (1 + |∇v′(t)|L4(Ω))|∆v(t)|2

]
.

(3.12)

Here we are in the fundamental point in our proof. By Estimate (i) we have

∫ T

0

|∇v′εN (t)|4L4(0,1) dt < C11 .

We have, by Hölder’s inequality with p = 4, p′ =
4
3
, and the above estimate, that

∫ T

0

∫ 1

0

|∇v′εN (y, t)| dydt

is bounded. Note, also, by the Schwarz inequality and the above estimate, we obtain

∫ T

0

∫ 1

0

|∇v′εN (y, t)|2 dydt

is bounded. Thus, since a(t,∇v(t),∇v(t)) ≥ 0, µ(t) ≥ m0

2γ2(T )
, we obtain from (3.12)

|∆v(t)|2 ≤ K4 + K3

∫ t

0

(1 + |∇v′(s)|L4(0,1))|∆v(s)|2 ds

for all 0 < t < T . We are in the case of a Gronwall inequality of the type

ϕ(t) ≤ C +
∫ t

0

θ(s)ϕ(s) ds,

with θ ∈ L1(0, T ). It implies that |∆v(t)|2 is bounded in [0, T ] for all number T > 0.

Thus we obtain the estimate

||v′εN (t)||2 + |∆vεN (t)|2 < C12 , (3.13)
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for all N ∈ N, 0 < ε < 1, t ∈ [0, T ], T > 0 an arbitrary number.

Estimate (iii). We estimate v′′εN in the norm L2(Ω) for 0 < t < T . First we need estimate v′′εN

at t = 0. From (3.1), for t = 0 we obtain

(v′′εN (0), w) = µ(0)(∆v0N , w)− m0

2γ2
0

(∆v0N , w)− (c(0)∇v0N , w). (3.14)

If we set w = v′′εN (0) in (3.14), observing the convergences in (3.1), we obtain

|v′′εN (0)| < C12 , for all N ∈ N, 0 < ε < 1. (3.15)

To estimate v′′εN it is not simple because the penalty term in (3.1) is not derivable. However it

is monotone and this helps substantially to estimate v′′εN . We employ an argument of Lions [15],

Browder [5]. See also Brezis [3] and Vieira & Rabello [25], for the same difficulty.

We define the operator

δh v(y, t) =
1
h

[v(y, t + h)− v(y, t)],

for 0 < y < 1, h > 0 and 0 < t < T − h.

From the approximate equation (3.1) we obtain

(Lv(t + h)− Lv(t), w) +
1
ε
〈P (v′(t + h))− P (v′(t)), w〉 = 0.

Dividing both sides by h > 0, we obtain

(δh Lv(t), w) +
1
ε
〈δh P (v′(t)), w〉 = 0. (3.16)

For w = δh v′, we obtain, by monotonicity,

1
ε
〈δh P (v′(t)), δh v′(t)〉 ≥ 0.
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Thus we have

(δh Lv(t), δh v′(t)) ≤ 0, for all 0 < t < T − h. (3.17)

After computations similar to the one done in Estimate (i), if we set

ϕ(t) = |δh v′εN (t)|2 + ||δh vεN (t)||2, we obtain

ϕ(t) ≤ K5(1 + ϕ(0)) + K6

∫ t

0

ϕ(s) ds. (3.18)

We prove that as h → 0, we have

|δh v′εN (0)|2 → |v′′εN (0)|2 and ||δh vεN (0)||2 → ||v′εN (0)||2.

Since |v′′εN (0)|2 < C13 and ||v′εN (0)||2 = ||v1N ||2 is also bounded, see (3.1), we obtain, from (3.18)

|δh v′εN (t)|2 ≤ (K7 + K8 r(h))eK9T ,

with r(h) → 0 when h → 0, for 0 < ε < 1, T > 0 is an arbitrary number.

Taking the limit when h → 0 in the last inequality, we obtain

|v′′εN (t)|2 < C14 , for all N ∈ N, 0 < ε < 1, t ∈ [0, T ], T > 0 arbitrary. (3.19)

From the estimates, uniform in N and 0 < ε < 1, we obtain a subsequence (vεN )N∈N , for ε fixed,

such that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vεN ⇀ vε weak star in L∞(0, T ;H1
0 (Ω) ∩H2(Ω))

v′εN ⇀ v′ε weak star in L∞(0, T ;H1
0 (Ω))

v′εN ⇀ v′ε weakly in L4(0, T ;W 1,4
0 (Ω))

v′′εN ⇀ v′′ε weak star in L∞(0, T ;L∞(0, T ;L2(Ω))

P (v′εN ) ⇀ χε weakly in L4/3(0, T ;W−1, 4
3 (Ω)).

(3.20)

Note that the last convergence is because the penalty operator takes bounded sets of

L4(0, T ;W 1,4
0 (Ω)) into bounded sets of the dual L4/3(0, T ;W−1, 4

3 (Ω)). To pass to the limit in
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the approximate equation we have a problem in the nonlinear term µ(t)∆vεN . We have the first

convergence in (3.20) which gives ∆vεN ⇀ ∆vε weak star in L∞(0, T ;L2(Ω)) but we need some

strong convergence for µ(t). We have vεN bounded in L2(0, T ;H1
0 (Ω) ∩H2(Ω)) and v′εN bounded

in L2(0, T ;H1
0 (Ω)). Since H1

0 (Ω) ∩H2(Ω) ↪→ H1
0 (Ω) ↪→ L2(Ω) with the first embedding compact,

there exists a subsequence, still represented by (vεN ), such that

vεN → vε strongly in L2(0, T ;H1
0 (Ω)). (3.21)

This is an application of the compactness argument of Aubin-Lions, cf. [14], [23], [24].

By the estimates (ii), (iii) and the same argument of compactness, we obtain a subsequence

(vεN ) such that

v′εN → v′ε strongly in L2(0, T ;L2(Ω)). (3.22)

By means of the convergences (3.20) and (3.21) we can pass to the limit in (3.1) when N →∞

and obtain

(Lvε(t), w(t)) +
1
ε
〈χε(t), w(t)〉 = 0 (3.23)

for all w ∈ L4(0, T ;W 1,4
0 (Ω)).

Equation (3.23) says that

Lvε +
1
ε

χε = 0 in L4/3(0, T ;W−1, 4
3 (Ω)). (3.24)

The next step is to prove that χε(t) = P (v′ε(t)). This is a consequence of monotonicity of P

and (3.24). In fact, for z ∈ L4(0, T ;W 1,4
0 (Ω)), we have

∫ T

0

〈P (v′εN (t)− P (z(t)), v′εN (t)− z(t)〉 dt ≥ 0.

Then

lim
N→∞

∫ T

0

〈P (v′εN (t)), v′εN (t)〉 dt−
∫ T

0

〈χε(t), z(t)〉 dt−

−
∫ T

0

〈P (z(t), v′ε(t)− z(t)〉 dt ≥ 0.

(3.25)
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From the approximate equation (3.1) and since v′εN → v′ε strongly in L2(0, T ;L2(Ω)), we obtain

lim
N→∞

∫ T

0

〈P (v′εN (t), v′εN (t)〉 dt = − lim
N→∞

ε

∫ T

0

(LvεN (t), v′εN (t))dt =

= −ε

∫ T

0

(Lvε(t), v′ε(t))dt =
∫ T

0

〈χε(t), v′ε(t)〉 dt, by (3.24).

Substituting in (3.25) we get

∫ T

0

〈χε(t)− P (z(t)), v′ε(t)− z(t)〉 dt ≥ 0.

This implies χε(t) = P (v′ε(t)). It is sufficient to set z = v′ε − λw, λ > 0, w arbitrary in

L4(0, T ;W 1.4
0 (Ω)) and let λ → 0. Note that v′ε ∈ L4(0, T ;W 1,4

0 (Ω)).

Thus we have, in fact,

Lvε +
1
ε

P (v′ε) = 0 in L4/3(0, T ;W−1,4/3(Ω)),

that is ∫ T

0

(Lvε(t), w(t)) dt +
1
ε

∫ T

0

〈P (v′ε(t)), w(t)〉 dt = 0

for all w ∈ L4(0, T ;W 1,4
0 (Ω)).

The function vε satisfies all the conditions of theorem 2.3, which is now proved.

From the convergences (3.20) and Banach-Steinhaus theorem, it follows from (3.20), (3.21) and

(3.22) that there exists a subnet (vε)0<ε<1 , such that it converges to v as ε → 0, in the sense

of (3.20), (3.21) and (3.22). This function satisfies (2.11). Thus for z ∈ L4(0, T ;W 1,4
0 (Ω)) with

z(t) ∈ K a.e. in (0, T ), we obtain

∫ T

0

(Lvε(t), z(t)− v′ε(t))γ(t)dt ≥ 0.
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When ε → 0, we deduce that v is a solution of

∫ T

0

(Lv(t), z(t)− v(t))γ(t) dt ≥ 0.

We have uniqueness and v satisfies the initial conditions. To prove that v′(t) ∈ K a.e. in (0, T ),

observe that P (v′ε) → 0 in L4/3(0, T ;W−1,4/3
0 (Ω)) when ε → 0. This strong convergence happens

because, for all w ∈ L4(0, T ;W 1,4
0 (Ω)),

∣∣∣∣∣
∫ T

0

〈P (v′ε(t)), w(t)〉 dt

∣∣∣∣∣ =
∣∣∣∣∣−ε

∫ T

0

(L(vε(t)), w(t)) dt

∣∣∣∣∣ ≤ ε M ||w||
L4
(
0, T ;W 1,4

0 (Ω)
)

with M a constant not depending on ε.

Thus, since P is monotone, we have, for all w ∈ L4(0, T ;W 1,4
0 (Ω)),

∫ T

0

〈P (w(t)), w(t)− v′(t)〉 dt = lim
ε→0

∫ T

0

〈P (w(t))− P (v′ε(t)), w(t)− v′εN (t)〉dt ≥ 0 .

As P is hemicontinuous, we choose w = v′ + λξ, with λ > 0 and ξ arbitrary in L4(0, T ;W 1,4
0 (Ω)),

in the above inequality. So, it follows that

∫ T

0

〈P (v′(t)), ξ(t)〉 dt = 0,

for all ξ ∈ L4(0, T ;W 1,4
0 (Ω)), what implies that P (v′(t)) = 0 a.e. in (0, T ), that is, v′(t) ∈ K a.e.

in (0, T ).
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On Solution Sensitivity of Generalized Relaxed Cocoercive Implicit
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Abstract. In this paper, we introduce and study a new class of parametric general-
ized relaxed cocoercive implicit quasivariational inclusions with A-monotone mappings.
By using the parametric implicit resolvent operator technique for A-monotone, we an-
alyze solution sensitivity for this kind of generalized relaxed cocoercive inclusions in
Hilbert spaces. Our results generalize sensitivity analysis results on strongly monotone
quasivariational inclusions and nonlinear implicit quasivariational inclusions. Further-
more, relaxed cocoercivity is illustrated by some examples.

Key words and phrases: Sensitive analysis, relaxed cocoercive implicit quasivari-
ational inclusions, relaxed maximal monotone mapping, A-monotone mapping, implicit
resolvent operator.
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1 INTRODUCTION

In order to enable us to study the behavior and sensitivity analysis of solution sets
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technique, Ding and Luo [3], Ding et al. [5], Moudafi [14] dealt with the sensitiv-
ity analysis of solutions for variational inequalities and nonlinear project equations in
Hilbert spaces. By using the implicit function approach, Jittorntrum [10], Kyparisis
[11], Robinson [16] studied the sensitivity analysis of solutions for variational inequal-
ities under suitable second order and regularity assumptions. Recently, Agarwal et al.
[1], Dong et al. [6], analyzed solution sensitivity analysis for variational inequalities and
variational inclusions by using resolvent operator technique.

On the other hand, Verma [18, 19] introduced the concept of A-monotone mappings,
which generalizes the well-known general class of maximal monotone mappings, and
originates way back from an earlier work of the Verma [17]. The author also studied
some properties of A-monotone mappings and defined resolvent operators associated
with A-monotone mappings. Further, Verma [21] analyzed solution sensitivity for a
relaxed cocoercive quasivariational inclusions based on the generalized resolvent operator
technique, which generalizes the results on the sensitivity analysis for strongly monotone
quasivariational inclusions as well as for relaxed cocoercive quasivariational inclusions
[1, 3, 14, 20] and others since the class of relaxed cocoercive mappings is more general
than the existing classes of mapping in literature. Some examples of relaxed cocoercive
mappings are also included. For more details, we recommend [1-11, 13, 14, 16-22].

Inspired and motivated by the works of [1, 2, 4, 9, 21], in this paper, we introduce
and study a new class of parametric generalized relaxed cocoercive implicit quasivaria-
tional inclusions with A-monotone mappings. By using the parametric implicit resolvent
operator technique for A-monotone, we analyze solution sensitivity for this kind of gen-
eralized relaxed cocoercive inclusions in Hilbert spaces. Our results generalize sensitivity
analysis results on strongly monotone quasivariational inclusions and nonlinear implicit
quasivariational inclusions. Furthermore, relaxed cocoercivity is illustrated by some ex-
amples.

2 PRELIMINARIES

Throughout this paper, we suppose that H is a real Hilbert space with the norm ‖ · ‖
and inner product 〈·, ·〉, 2H denotes the family of all the nonempty subsets of H, C(H)
denotes the family of all the nonempty compact subsets of H and L is a nonempty open
subset of H in which the parameter λ take values.

The notion of the cocoercivity is applied in several directions, especially to solv-
ing variational inequality problems using the auxiliary problem principle and projection
methods [18, 20], while the notion of the relaxed cocoercivity is more general than the
strong monotonicity as well as cocoercivity. Several classes of relaxed cocoercive varia-
tional inequalities have been studied in [18-20].

Definition 2.1. A mapping T : H×H× L → H is said to be

(i) m-relaxed monotone in the first argument if there exists a positive constant m
such that

〈T (x, u, λ)− T (y, u, λ), x− y〉 ≥ −m‖x− y‖2
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for all (x, y, u, λ) ∈ H×H×H× L;

(ii) s-cocoercive in the first argument if there exists a constant s > 0 such that

〈T (x, u, λ)− T (y, u, λ), x− y〉 ≥ s‖T (x, u, λ)− T (y, u, λ)‖2

for all (x, y, u, λ) ∈ H×H×H× L;

(iii) γ-relaxed cocoercive with respect to A in the first argument if there exists a positive
constant γ such that

〈T (x, u, λ)− T (y, u, λ), A(x)− A(y)〉 ≥ −γ‖T (x, u, λ)− T (y, u, λ)‖2

for all (x, y, u, λ) ∈ H×H×H× L;

(iv) (ε, α)-relaxed cocoercive with respect to A in the first argument if there exist
positive constants ε and α such that

〈T (x, u, λ)− T (y, u, λ), A(x)− A(y)〉 ≥ −α‖T (x, u, λ)− T (y, u, λ)‖2 + ε‖x− y‖2

for all (x, y, u, λ) ∈ H×H×H× L.

In a similar way, we can define (relaxed) cocoercivity of the mapping T (·, ·, ·) in the
second argument.

Example 2.1. Consider a nonexpansive mapping T : H→ H. If we set F = I − T ,
where I is the identity mapping, then F is (1

2
)-cocoercive.

Proof. For any two elements x, y ∈ H, we have

‖F (x)− F (y)‖2 = ‖(I − T )(x)− (I − T )(y)‖2

= 〈(I − T )(x)− (I − T )(y), (I − T )(x)− (I − T )(y)〉
≤ 2[‖x− y‖2 − 〈x− y, T (x)− T (y)〉]
= 2〈x− y, F (x)− F (y)〉,

that is, F is (1
2
)-cocoercive.

Example 2.2. Consider a projection P : H → C, where C is a nonempty closed
convex subset of H. Then P is 1-cocoercive since P is nonexpansive.

Proof. For any x, y ∈ H, we have

‖P (x)− P (y)‖2 = 〈P (x)− P (y), P (x)− P (y)〉
≤ 〈x− y, P (x)− P (y)〉,

that is, P is 1-cocoercive.

Example 2.3. Consider an r-strongly monotone (and hence r-expanding) mapping
T : H→ H. Then T is (r + r2, 1)-relaxed cocoercive with respect to I.
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Proof. For any two elements x, y ∈ H, we have

‖T (x)− T (y)‖ ≥ r‖x− y‖,
〈T (x)− T (y), x− y〉 ≥ r‖x− y‖2,

and so
‖T (x)− T (y)‖2 + 〈T (x)− T (y), x− y〉 ≥ (r + r2)‖x− y‖2,

i.e., for all x, y ∈ H, we get

〈T (x)− T (y), x− y〉 ≥ (−1)‖T (x)− T (y)‖2 + (r + r2)‖x− y‖2.

Therefore, T is (r + r2, 1)-relaxed cocoercive with respect to I.

Remark 2.1. Clearly, every m-cocoercive mapping is m-relaxed cocoercive, while
each r-strongly monotone mapping is (r + r2, 1)-relaxed cocoercive with respect to I.

Definition 2.2. A mapping T : H×H×L → H is said to be µ-Lipschitz continuous
in the first argument if there exists a constant µ > 0 such that

‖T (x, u, λ)− T (y, u, λ)‖ ≤ µ‖x− y‖

for all (x, y, u, λ) ∈ H×H×H×L. In a similar way, we can define Lipschitz continuity
of the mapping T (·, ·, ·) in the second and third argument.

Definition 2.3. Let F : H×L → 2H be a multivalued mapping. Then F is said to
be τ -Ĥ-Lipschitz continuous in the first argument if there exists a constant τ > 0 such
that

Ĥ(F (x, λ), F (y, λ)) ≤ τ‖x− y‖

for all x, y ∈ H and λ ∈ L, where Ĥ : 2H × 2H → (−∞, +∞) ∪ {+∞} is the Hausdorff
metric, i.e.,

Ĥ(A,B) = max{sup
x∈A

inf
y∈B

‖x− y‖, sup
x∈B

inf
y∈A

‖x− y‖}

for all A,B ∈ 2H.
In a similar way, we can define Ĥ-Lipschitz continuity of the mapping F (·, ·) in the

second argument.

Lemma 2.1. ([12]) Let (X, d) be a complete metric space and T1, T2 : X → C(X)
be two set-valued contractive mappings with same contractive constant t ∈ (0, 1), i.e.,

Ĥ(Ti(x), Ti(y)) ≤ td(x, y)

for all x, y ∈ X and i = 1, 2. Then we have

Ĥ(F (T1), F (T2)) ≤ 1

1− t
sup
x∈X

Ĥ(T1(x), T2(x)),

where F (T1) and F (T2) are fixed-point sets of T1 and T2, respectively.
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3 A-MONOTONICITY

Recently, Verma [18, 19] introduced and studied a new class of mappings A-monotone
mappings, which have a wide range of applications. The class of A-monotone mappings
generalizes the well-known class of maximal monotone mappings. The notion of the
A-monotonicity is illustrated by some examples.

Definition 3.1. ([18]) Let A : H → H be a nonlinear mapping on a Hilbert space
H and let M : H → 2H be a multivalued mapping on H. The mapping M is said to be
A-monotone if M is m-relaxed monotone and R(A + ρM) = H holds for ρ > 0.

Note that this is equivalent to stating that M is A-monotone with constant m if

(i) M is m-relaxed monotone,

(ii) A + ρM is maximal monotone.

Remark 3.1. Obviously, if m = 0, that is, M is 0-relaxed monotone, then the A-
monotone mappings reduces to an H-monotone operators (see, for example, [2]). There-
fore, the class of A-monotone mappings provides a unifying frameworks for classes of
maximal monotone operators and H-monotone operators. For details about these oper-
ators, we refer the reader to [2, 22] and the references therein.

Example 3.1. ([19]) Let H be a reflexive Banach space with H∗ its dual space and
A : H → H∗ be r-strongly monotone. Let f : H → R be locally Lipschitz such that
∂f is m-relaxed monotone. Then ∂f is A-monotone, which is equivalent to stating that
A + ∂f is pseudomonotone (and in fact, maximal monotone).

Proposition 3.1. Let A : H→ H be an r-strongly monotone single-valued mapping
and M : H → 2H be an A-monotone mapping with constant m on a real Hilbert space
H. Then M is maximal monotone.

Proof. Given that M is m-relaxed monotone, it suffices to show:

〈u− v, x− y〉 ≥ −m‖x− y‖2

if (y, v) ∈ graph(M) implies u ∈ M(x). Assume that (x0, u0) 6∈ graph(M) such that

〈u0 − v, x0 − y〉 ≥ (−m)‖x0 − y‖2 (3.1)

for all (y, v) ∈ graph(M). Since M is A-monotone, R(A + ρM) = H for all ρ > 0. This
implies that there exists an element (x1, u1) ∈ graph(M) such that

A(x1) + ρu1 = A(x0) + ρu0. (3.2)

It follows from (3.1) and (3.2) that

ρ〈u0 − u1, x0 − x1〉 = −〈A(x0)− A(x1), x0 − x1〉 ≥ −mρ‖x0 − x1‖2.

Since A is r-strongly monotone, it implies x0 = x1 for ρ < r
m

. As a result, we have
u0 = u1, that is, (x0, u0) ∈ graph(M), a contradiction. Hence, M is maximal monotone.
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The next property is helpful in shaping up the generalized resolvent operator, which
is crucial to the main results on sensitivity analysis on hand.

Proposition 3.2. Let A : H→ H be an r-strongly monotone mapping and let M :
H→ 2H be an A-monotone mapping with constant m. Then the operator (A + ρM)−1

is single-valued.

Proof. If, for a given x ∈ H, u, v ∈ (A+ρM)−1(x), then we have −A(u)+x ∈ ρM(u)
and −A(v) + x ∈ ρM(v). Since M is m-relaxed monotone, it implies that

〈−A(u) + x− (−A(v) + x), u− v〉 = 〈A(v)− A(u), u− v〉
≥ −m‖u− v‖2.

Since A is r-strongly monotone, it implies u = v for m < r. Therefore, (A + ρM)−1 is
single-valued.

This leads to the generalized definition of the resolvent operator:

Definition 3.2. ([18]) Let A : H → H be an r-strongly monotone mapping and
M : H → 2H be an A-monotone mapping with constant m. Then the generalized
resolvent operator JM

ρ,A : H→ H is defined by

JM
ρ,A(u) = (A + ρM)−1(u).

Lemma 3.1. ([18, 19]) Let A : H→ H be r− strongly monotone and M : H→ 2H

be A-monotone with constant m. Then M is maximal monotone and the A-resolvent
operator JM

ρ,A : H→ H associated with M and defined by

JM
ρ,A(x) = (A + ρM)−1(x)

for all x ∈ H is 1
r−ρm

-Lipschitz continuous for 0 < ρ < r
m

, i.e.,

‖JM
ρ,A(x)− JM

ρ,A(y)‖ ≤ 1

r − ρm
‖x− y‖

for all x, y ∈ H.

4 THE MAIN RESULTS

Let N : H×H×L → H, T : H×L → 2H and g : H×L → H be three nonlinear mapping
and M : H×H×L → 2H be a nonlinear mapping such that for each given (y, λ) ∈ H×L,
M(·, y, λ) : H→ 2H be a A-monotone mapping with g(H, λ) ∩ domM(·, y, λ) 6= ∅.

We will consider the following parametric generalized relaxed cocoercive implicit
quasivariational inclusion problem:

For each fixed λ ∈ L, find x(λ) ∈ H such that u(λ) ∈ T (x(λ), λ) and

0 ∈ N(u(λ), x(λ), λ) + M(g(x(λ), λ), x(λ), λ). (4.1)
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Example 4.1. If g = I, the identity mapping and T : H×L → H is a single-valued
mapping, then a special case of the problem (4.1) is: determine element x(λ) ∈ H such
that

0 ∈ N(T (x(λ), λ), x(λ), λ) + M(x(λ), x(λ), λ). (4.2)

Further, if T = I, then the problem (4.2) is equivalent to finding x(λ) ∈ H such that

0 ∈ N(x(λ), x(λ), λ) + M(x(λ), x(λ), λ), (4.3)

which is studied by Verma [21] when x(λ) = x for all λ ∈ L in (4.3).

Remark 4.1. For appropriate and suitable choices of N, T, g and M , it is easy to see
that the problem (4.1) includes a number of (parametric) quasi-variational inclusions,
(parametric) generalized quasi-variational inclusions, (parametric) quasi-variational in-
qualities, (parametric) implicit quasi-variational inequalities studied by many authors
as special cases, see, for example, [1-11, 13, 17-22] and the references therein.

Now, for each fixed λ ∈ L, the solution set S(λ) of the problem (4.1) is denoted as

S(λ) = {x(λ) ∈ H : there exists u(λ) ∈ T (x(λ), λ) such that

0 ∈ N(u(λ), x(λ), λ) + M(g(x(λ), λ), x(λ), λ)}.

In this paper, our main aim is to study the behavior of the solution set S(λ), and the
the conditions on these mappings T,N, M, g under which the function S(λ) is continuous
or Lipschitz continuous with respect to the parameter λ ∈ L.

Next, we first transfer the problem (4.1) into a problem of finding the parametric
fixed point of the associated resolvent operator.

Lemma 4.1. For each fixed λ ∈ L, an element x(λ) ∈ S(λ) is a solution to (4.1) if
and only if there is x(λ) ∈ H and u(λ) ∈ T (x(λ), λ) such that

g(x(λ), λ) = J
M(·,x(λ),λ)
ρ,A (A(g(x(λ), λ))− ρN(u(λ), x(λ), λ)), (4.4)

where J
M(·,x(λ),λ)
ρ,A = (A + ρM(·, x(λ), λ))−1 is the corresponding resolvent operator in

first argument and of an A-monotone mapping M(·, ·, ·), A is an r-strongly monotone
mapping and ρ > 0.

Proof. For each fixed λ ∈ L, by the definition of the resolvent operator J
M(·,x(λ),λ)
ρ,A of

M(·, x(λ), λ), we know that there exist x(λ) ∈ H and u(λ) ∈ T (x(λ), λ) such that (4.4)
holds if and only if

A(g(x(λ), λ))− ρN(u(λ), x(λ), λ) ∈ A(g(x(λ), λ)) + ρM(g(x(λ), λ), x(λ), λ),

i.e.,
0 ∈ N(u(λ), x(λ), λ) + M(g(x(λ), λ), x(λ), λ).

It follows from the definition of S(λ), we obtain that x(λ) ∈ S(λ) is a solution of the
problem (4.1) if and only if there exist x(λ) ∈ H and u(λ) ∈ T (x(λ), λ) such that (4.4)
holds. This completes the proof.
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Remark 4.2. The equality (4.4) can be written as

x(λ) = x(λ)− g(x(λ), λ) + J
M(·,x(λ),λ)
ρ,A (A(g(x(λ), λ))− ρN(u(λ), x(λ), λ)). (4.5)

Theorem 4.1. Let A : H→ H be r-strongly monotone and s-Lipschitz continuous,
T : H×L → C(H) be τ -Ĥ-Lipschitz continuous in the first variable, g : H×L → H is δ-
strongly monotone and σ-Lipschitz continuous in the first variable, and M : H×H×L →
2H be A-monotone with constant m in the first variable. Let N : H × H × L → H be
(γ, α)-relaxed cocoercive with respect to g1 and µ-Lipschitz continuous in the second
variable, and let N be β-Lipschitz continuous in the first variable, respectively, where
g1 : H× L → H is defined by g1(x) = A ◦ g(x, λ) = A(g(x, λ)) for all (x, λ) ∈ H× L. If

‖JM(·,u,λ)
ρ,A (w)− J

M(·,v,λ)
ρ,A (w)‖ ≤ η‖u− v‖ (4.6)

for all (u, v, λ) ∈ H×H× L and there exists a constant ρ > 0 such that





k = η +
√

1− 2δ + σ2 < 1, sσ > r(1− k),
h = βτ + m(1− k) < µ,

ρ < min{ r
m

, r(1−k)
h
},

|ρ− γ−αµ2−rh(1−k)
µ2−h2 | <

√
[r(1−h+hk)−αµ2]2−(µ2−h2)[s2σ2−r2(1−k)2]

µ2−h2 ,

r(1− h + hk) > αµ2 +
√

(µ2 − h2)[s2σ2 − r2(1− k)2],

(4.7)

then, for each λ ∈ L, the following results hold:

(1) the solution set S(λ) of the problem (4.1) is nonempty;

(2) S(λ) is a closed subset in H.

Proof. In the sequel, from (4.5), we first define a multivalued mapping G : H×L →
2H by

G(x, λ) =
⋃

u∈T (x,λ)

[x− g(x, λ) + J
M(·,x,λ)
ρ,A (A(g(x, λ))− ρN(u, x, λ))]

for all (x, λ) ∈ H×L. For any (x, λ) ∈ H×L, since T (x, λ) ∈ C(H), g, A,N and J
M(·,x,λ)
ρ,A

are continuous, we have G(x, λ) ∈ C(H).
Now, for each fixed λ ∈ L, we prove that G(x, λ) is a multivalued contractive map-

ping. In fact, for any (x, λ), (x̂, λ) ∈ H×L and any a ∈ G(x, λ), there exists u ∈ T (x, λ)
such that

a = x− g(x, λ) + J
M(·,x,λ)
ρ,A (A(g(x, λ))− ρN(u, x, λ)).

Note that T (x̂, λ) ∈ C(H), it follows from Nadler’s result [15] that there exists û ∈
T (x̂, λ) such that

‖u− û‖ ≤ Ĥ(T (x, λ), T (x̂, λ)). (4.8)

Setting
b = x̂− g(x̂, λ) + J

M(·,x̂,λ)
ρ,A (A(g(x̂, λ))− ρN(û, x̂, λ)),
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then we have b ∈ G(x̂, λ). It follows (4.6) and Lemma 3.1 that

‖a− b‖
= ‖x− g(x, λ) + J

M(·,x,λ)
ρ,A (A(g(x, λ))− ρN(u, x, λ))

−{x̂− g(x̂, λ) + J
M(·,x̂,λ)
ρ,A (A(g(x̂, λ))− ρN(û, x̂, λ))}‖

≤ ‖x− x̂− [g(x, λ)− g(x̂, λ)]‖
+‖JM(·,x,λ)

ρ,A (A(g(x, λ))− ρN(u, x, λ))− J
M(·,x̂,λ)
ρ,A (A(g(x, λ))− ρN(u, x, λ))‖

+‖JM(·,x̂,λ)
ρ,A (A(g(x, λ))− ρN(u, x, λ))− J

M(·,x̂,λ)
ρ,A (A(g(x̂, λ))− ρN(û, x̂, λ))‖

≤ ‖x− x̂− [g(x, λ)− g(x̂, λ)]‖+ η‖x− x̂‖
+

1

r − ρm
‖A(g(x, λ))− ρN(u, x, λ)− (A(g(x̂, λ))− ρN(û, x̂, λ))‖

≤ ‖x− x̂− [g(x, λ)− g(x̂, λ)]‖+ η‖x− x̂‖+
ρ

r − ρm
‖N(u, x̂, λ)−N(û, x̂, λ))‖

+
1

r − ρm
‖A(g(x, λ))− A(g(x̂, λ))− ρ[N(u, x, λ)−N(u, x̂, λ)]‖

The δ-strongly monotonicity and σ-Lipschitz continuity of g in the first argument, the
τ -Ĥ-Lipschitz continuity of T in the first argument, the (γ, α)-relaxed cocoercivity with
respect to g1 and µ-Lipschitz continuity of N in the second argument, the β-Lipschitz
continuity of N in the first argument and the s-Lipschitz continuity of A, and the
inequality (4.8) imply that

‖x− x̂− [g(x, λ)− g(x̂, λ)]‖
≤
√

1− 2δ + σ2‖x− x̂‖,
‖N(u, x̂, λ)−N(û, x̂, λ))‖
≤ β‖u− û‖ ≤ βĤ(T (x, λ), T (x̂, λ)) ≤ βτ‖x− x̂‖,
‖A(g(x, λ))− A(g(x̂, λ))− ρ[N(u, x, λ)−N(u, x̂, λ)]‖2

≤ ‖A(g(x, λ))− A(g(x̂, λ))‖2 − 2ρ〈N(u, x, λ)−N(u, x̂, λ), A(g(x, λ))− A(g(x̂, λ))〉
+ρ2‖N(u, x, λ)−N(u, x̂, λ)‖2

≤ ‖A(g(x, λ))− A(g(x̂, λ))‖2 − 2ρ[−α‖N(u, x, λ)−N(u, x̂, λ)‖2 + γ‖x− x̂‖2]

+ρ2‖N(u, x, λ)−N(u, x̂, λ)‖2

≤ (s2σ2 − 2ργ + ρ2µ2 + 2ραµ2)‖x− x̂‖2.

In light of above arguments, we infer

‖a− b‖ ≤ θ‖x− x̂‖, (4.9)

where

θ = η +
√

1− 2δ + σ2 +
ρβτ +

√
s2σ2 − 2ργ + ρ2µ2 + 2ραµ2

r − ρm
.

It follows from condition (4.7) that θ < 1. Hence, from (4.9), we get

d(a,G(x̂, λ)) = inf
b∈G(x̂,λ)

‖a− b‖ ≤ θ‖x− x̂‖.
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Since a ∈ G(x, λ) is arbitrary, we obtain

sup
a∈G(x,λ)

d(a,G(x̂, λ)) ≤ θ‖x− x̂‖.

By using same argument, we can prove

sup
b∈G(x̂,λ)

d(G(x, λ), b) ≤ θ‖x− x̂‖.

It follows from the definition of the Hausdorff metric Ĥ on C(H) that

Ĥ(G(x, λ), G(x̂, λ)) ≤ θ‖x− x̂‖
for all (x, x̂, λ) ∈ H×H×L, i.e., G(x, λ) is a multivalued contractive mapping, which is
uniform with respect to λ ∈ L. By a fixed point theorem of Nadler [15], for each λ ∈ L,
G(x, λ) has a fixed point x(λ) ∈ H, i.e., x(λ) ∈ G(x(λ), λ). By the definition of G, we
know that there exists u(λ) ∈ T (x(λ), λ) such that (4.5) holds. Therefore, it follows
from Lemma 4.1 that x(λ) ∈ S(λ) is a solution of the problem (4.1) and so S(λ) 6= ∅ for
all λ ∈ L.

Next, we prove the conclusion (2). For each λ ∈ L, let {xn} ⊂ S(λ) and xn → x0 as
n → ∞. Then we have xn ∈ G(xn, λ) for all n = 1, 2, · · · . By the proof of conclusion
(1), we have

Ĥ(G(xn, λ), G(x0, λ)) ≤ θ‖xn − x0‖
for all λ ∈ L. It follows that

d(x0, G(x0, λ)) ≤ ‖x0 − xn‖+ d(xn, G(xn, λ)) + Ĥ(G(xn, λ), G(x0, λ))

≤ (1 + θ)‖xn − x0‖.
Hence we have x0 ∈ G(x0, λ) and x0 ∈ S(λ). Therefore, S(λ) is a nonempty closed
subset of H. This completes the proof.

Theorem 4.2. Under the hypotheses of Theorem 4.1, further, assume that

(i) for any x ∈ H, λ → T (x, λ) is lT -Ĥ-Lipschitz continuous (or continuous);

(ii) for any u, v, z, ω ∈ H, λ → N(u, v, λ), λ → g(u, λ) and λ → J
M(·,v,λ)
ρ,A (w) both

are Lipschitz continuous (or continuous) with Lipschitz constants lN , lg and lJ ,
respectively.

Then the solution set S(λ) of the problem (4.1) is a Lipschitz continuous (or continuous)
from L to H.

Proof. From the hypotheses of the theorem and Theorem 4.1, for any λ, λ̄ ∈ L,
we know that S(λ) and S(λ̄) are both nonempty closed subset. By the proof of Theo-
rem 4.1, G(x, λ) and G(x, λ̄) are both multivalued contractive mappings with the same
contraction constant θ ∈ (0, 1). It follows from Lemma 2.1 that

Ĥ(S(λ), S(λ̄)) ≤ 1

1− θ
sup
x∈H

Ĥ(G(x, λ), G(x, λ̄)). (4.10)
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Setting any a ∈ G(x, λ), there exists u(λ) ∈ T (x, λ) such that

a = x− g(x, λ) + J
M(·,x,λ)
ρ,A (A(g(x, λ))− ρN(u(λ), x, λ)).

Since T (x, λ), T (x, λ̄) ∈ C(H), it follows from Nadler’s result [15] that there exists
u(λ̄) ∈ T (x, λ̄) such that

‖u(λ)− u(λ̄))‖ ≤ Ĥ(T (x, λ), T (x, λ̄)).

Let
b = x− g(x, λ̄) + J

M(·,x,λ̄)
ρ,A (A(g(x, λ̄))− ρN(u(λ̄), x, λ̄)),

then b ∈ G(x, λ̄). It follows the assumptions of g, J
M(.,·,·)
ρ,A , N, A and T that

‖a− b‖
= ‖x− g(x, λ) + J

M(·,x,λ)
ρ,A (A(g(x, λ))− ρN(u(λ), x, λ))

−{x− g(x, λ̄) + J
M(·,x,λ̄)
ρ,A (A(g(x, λ̄))− ρN(u(λ̄), x, λ̄)}‖

≤ ‖g(x, λ)− g(x, λ̄)‖
+‖JM(·,x,λ)

ρ,A (A(g(x, λ))− ρN(u(λ), x, λ))− J
M(·,x,λ̄)
ρ,A (A(g(x, λ))− ρN(u(λ), x, λ))‖

+‖JM(·,x,λ̄)
ρ,A (A(g(x, λ))− ρN(u(λ), x, λ))− J

M(·,x,λ̄)
ρ,A (A(g(x, λ̄))− ρN(u(λ̄), x, λ̄))‖

≤ lg‖λ− λ̄‖+ lJ‖λ− λ̄‖
+

1

r − ρm
‖A(g(x, λ))− ρN(u(λ), x, λ)− (A(g(x, λ̄))− ρN(u(λ̄), x, λ̄))‖

≤ (lg + lJ)‖λ− λ̄‖+
ρ

r − ρm
‖N(u(λ), x, λ)−N(u(λ̄), x, λ)‖

+
ρ

r − ρm
‖N(u(λ̄), x, λ)−N(u(λ̄), x, λ̄)‖+

1

r − ρm
‖A(g(x, λ))− A(g(x, λ̄))‖

≤ (lg + lJ)‖λ− λ̄‖+
ρβ

r − ρm
‖u(λ)− u(λ̄)‖

+
ρlN

r − ρm
‖λ− λ̄‖+

s

r − ρm
‖g(x, λ)− g(x, λ̄)‖

≤ (lg + lJ +
ρlN

r − ρm
)‖λ− λ̄‖+

ρβ

r − ρm
Ĥ(T (x, λ), T (x, λ̄)) +

slg
r − ρm

‖λ− λ̄‖
≤ Γ‖λ− λ̄‖,

where

Γ = lg + lJ +
ρlN + ρβlT + slg

r − ρm
.

Hence we obtain
sup

a∈G(x,λ)

d(a,G(x, λ̄)) ≤ Γ‖λ− λ̄‖.

By using a similar argument as above, we get

sup
b∈G(x,λ̄)

d(G(x, λ), b) ≤ Γ‖λ− λ̄‖.
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It follows that
Ĥ(G(x, λ), G(x, λ̄)) ≤ Γ‖λ− λ̄‖

for all (x, λ, λ̄) ∈ H× L× L. Thus (4.10) implies

Ĥ(S(λ), S(λ̄)) ≤ Γ

1− θ
‖λ− λ̄‖.

This proves that S(λ) is Lipschitz continuous in λ ∈ L. If, each mapping in conditions
(i) and (ii) is assumed to be continuous in λ ∈ L, then, by similar argument as above,
we can show that S(λ) is continuous in λ ∈ L. This completes the proof.

Remark 4.3. In Theorems 4.1 and 4.2, if N : H×H×L → H is α-strongly monotone
in the second variable, i.e., when γ = 0 in (4.7), then we can obtain the corresponding
results. Theorems 4.1 and 4.2 improve and generale the known results in [1, 3, 7, 8, 14,
20, 21].
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Analysis of Support Vector Machine Classification

Qiang Wu and Ding-Xuan Zhou

Department of Mathematics, City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong, China
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Abstract. This paper studies support vector machine classification algorithms. We

analyze the 1-norm soft margin classifier. The consistency is considered in two forms.

When the regularization error decays to zero, the Bayes-risk consistency is proved

and learning rates are derived by means of techniques of uniform convergence. The

main difficulty we overcome here is to bound the offset. For the consistency with

hypothesis space, we present a counterexample.

Key words: Support vector machine classification, misclassification error, Bayes-

risk consistency, consistency with hypothesis space, Mercer kernel, regularization

error.

1 Introduction

Support vector machines (SVMs) form an important part of learning theory. They

are very efficient for many applications in science and engineering, especially for

classification problems (pattern recognition).

Motivated by classification algorithms for separating data of Fisher [11], Rosen-

blatt [18], and Vapnik [24], the support vector machines were introduced by

Boser, Guyon and Vapnik [4] with polynomials kernels, and by Cortes and Vapnik

[6] with general kernels. Since then there has been a rich study of SVM: applica-

tions to various practical problems; many variances of the original model; and some

theoretical investigation. Some convergence analysis has been done recently [23, 29].

In this paper we investigate the original model, SVM 1-norm soft margin classifier,

probably the most important SVM classification algorithm.

Let (X, d) be a compact metric space and Y = {1,−1}. A binary classifier

f : X → {1,−1} is a function from X to Y which divides the input space X into

two classes.
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Let ρ be a probability distribution on Z := X×Y and (X ,Y) be the correspond-

ing random variable. Then the misclassification error for a classifier f : X → Y

is defined to be the probability of the event f(X ) 6= Y :

R(f) = Prob
{
f(X ) 6= Y

}
=

∫
X

P (Y 6= f(x)|x)dρX(x). (1)

Here ρX is the marginal distribution of ρ on X and ρ(·|x) = P (·|x) is the conditional

probability measure given X = x.

If we define the regression function of ρ as

fρ(x) =

∫
Y

ydρ(y|x) = P (Y = 1|x)− P (Y = −1|x), x ∈ X, (2)

then one can see (e.g. [9]) that the best classifier, called the Bayes rule, is given by

fc := sgn(fρ), the sign of the regression function. Here for a function f : X → R, the

sign function is defined as sgn(f)(x) = 1 if f(x) ≥ 0, sgn(f)(x) = −1 if f(x) < 0.

That means,

fc(x) = sgn(fρ)(x) =

{
1, if P (Y = 1|x) ≥ P (Y = −1|x),

−1, if P (Y = 1|x) < P (Y = −1|x).
(3)

As ρ is unknown, the best classifier fc cannot be found directly. What we have

in hand is a set of random samples z = (zi)
m
i=1 = (xi, yi)

m
i=1. Throughout this paper,

as usual [25, 7], we assume that {zi}m
i=1 are independent and identically distributed

drawers according to a Borel probability distribution ρ. A classification algorithm

is a map from the set of samples to a set of classifiers H:

A :
∞⋃
i=1

Zm −→ H,

which produces for every z a classifier A(z). The set H is called the hypothesis

space.

Definition 1. A classification algorithm A is said to be Bayes-risk consistent

(with ρ) if R(A(z)) converges to R(fc) in probability, i.e., for every ε > 0,

lim
m→∞

Prob
{
z ∈ Zm : R(A(z))−R(fc) > ε

}
= 0.

It is said to be consistent with hypothesis space H (and ρ) if R(A(z)) converges

to inf
f∈H

R(f) in probability, i.e., for every ε > 0,

lim
m→∞

Prob
{
z ∈ Zm : R(A(z))− inf

f∈H
R(f) > ε

}
= 0.
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It is easy to see that these two concepts coincide if the Bayes rule can be well

approximated by the hypothesis space H in the sense that

inf
f∈H

R(f) = R(fc). (4)

When (4) does not hold, the Bayes-risk consistency cannot hold no matter which

algorithm is used, since A(z) ∈ H. But the consistency with hypothesis space may

still be true. So consistency with hypothesis space concerns the algorithm only,

but Bayes-risk consistency also concerns the approximation power of the hypothesis

space.

The 1-norm soft margin SVM is a classification algorithm depending on a re-

producing kernel Hilbert space associated with a Mercer kernel.

Let K : X × X → R be continuous, symmetric and positive semidefinite, i.e.,

for any finite set of distinct points {x1, · · · , x`} ⊂ X, the matrix (K(xi, xj))
`
i,j=1 is

positive semidefinite. Such a function is called a Mercer kernel.

The Reproducing Kernel Hilbert Space (RKHS) HK associated with the

kernel K is defined (see [1]) to be the completion of the linear span of the set of

functions {Kx := K(x, ·) : x ∈ X} with the inner product 〈·, ·〉HK
= 〈·, ·〉K satisfying∥∥∥∥ m∑

i=1

ciKxi

∥∥∥∥2

K

=

〈 m∑
i=1

ciKxi
,

m∑
i=1

ciKxi

〉
K

=
m∑

i,j=1

ciK(xi, xj)cj.

The reproducing property is given by

< Kx, g >K= g(x), ∀x ∈ X, g ∈ HK . (5)

Denote C(X) as the space of continuous functions on X with the norm ‖ · ‖∞. Then

(5) leads to

‖g‖∞ ≤ κ‖g‖K , ∀g ∈ HK , (6)

where κ = sup
x∈X

√
K(x, x). This means HK can be embedded into C(X).

Define HK = HK +R. For a function f(x) = f1(x)+ b with f1 ∈ HK and b ∈ R,

we denote f ∗ = f1 and bf = b ∈ R. The constant term b is called the offset.

The SVM 1-norm soft margin classifier associated with the kernel K is

defined as sgn (fz), where fz is a minimizer of the following optimization problem:

fz = arg min
f∈HK

{1

2
‖f ∗‖2

K +
C

m

m∑
i=1

ξi,
}

subject to yif(xi) ≥ 1− ξi, ξi ≥ 0, for i = 1, . . . ,m.

(7)
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Here C = Cm > 0 is a trade-off parameter which may depend on m. The original

model used the linear kernel K(x, y) = x · y for X ⊂ Rn.

The performance of the 1-norm SVM on strictly separable distributions has been

well understood in the literature. We say that the distribution ρ is strictly separable

by HK with margin γ > 0 if there is a function fγ ∈ HK such that yfγ(x) ≥ γ

almost surely. Margin-based analysis shows the learning rate R
(
sgn(fz)

)
− R(fc)

for separable distributions and C = ∞ is O( 1
m

), see [25, 19, 7].

For nonseparable distributions, some data dependent upper bounds have also

been given, mainly based on the VC (or Vγ) theory. These bounds are posteriori.

Even they cannot be used to verify the Bayes-risk consistency.

When K is a universal kernel in the sense that HK is dense in C(X), the Bayes-

risk consistency for all distributions was confirmed in [23, 29]. But this result on

the consistency does not cover the most important case of polynomial kernels.

Observe that in (7), ξi can be found:

ξi = max{0, 1− yif(xi)} = (1− yif(xi))+,

where (t)+ := max{0, t}. Thus, if we define the loss function V as V (y, f(x)) =

(1− yf(x))+, then the scheme (7) can be written as

fz = arg min
f∈HK

{
Ez(f) +

1

2C
‖f ∗‖2

K

}
, (8)

where

Ez(f) =
1

m

m∑
i=1

V (yi, f(xi))

is the empirical error associated with the loss V. This is a regularization scheme

[10].

Define the generalization error

E(f) =

∫
Z

V (y, f(x)) dρ(x, y) = E(V (y, f(x)).

Then fc is a minimizer of E(f) [27]. The empirical risk minimization (ERM) tech-

nique for the uniform convergence tells us that E(fz) → inff∈HK
E(f) as m,C →∞.

But we are interested in the excess misclassification error R(fz)− inff∈HK
R(f) for

classification algorithms. A bridge betweenR(f) and E(f) was established by Zhang

[29]: for any f : X → R,

R(f)−R(fc) ≤ E(f)− E(fc). (9)
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Thus, when inff∈HK
E(f) = E(fc), the consistency and error analysis for (7) can be

given, as done in [29] by a leave-one-out analysis. But no offset term is involved in

Zhang’s analysis.

In this paper, we shall further investigate the SVM 1-norm soft margin classifier.

First, we shall do the error analysis in the regularization framework in Section 2. It

is different from the known methods, and can handle the case when inff∈HK
E(f) 6=

E(fc). In our analysis, we will overcome the difficulty caused by the offset in Section

3, which will be essential to determine the hypothesis space for the ERM analysis in

Section 4. Also, our analysis will give a strategy to choose the trade-off parameter so

that the convergence in probability or the almost sure convergence holds. Secondly,

we study the consistency with hypothesis space which has not been studied in the

literature. A counterexample for the divergence will be presented in Section 5.

2 Error Analysis

In this section study the convergence in the regularization framework.

Let

fK,C = arg min
f∈HK

{
E(f) +

1

2C
‖f ∗‖2

K

}
. (10)

We have the following proposition.

Proposition 1. For every C > 0, there holds

R(fz)−R(fc) ≤ S(m, C) +D(C),

where

S(m, C) :=
{
E(fz)− Ez(fz)

}
+
{
Ez

(
fK,C

)
− E

(
fK,C

)}
. (11)

and

D(C) := inf
f∈HK

{
E(f)− E(fc) +

1

2C
‖f ∗‖2

K

}
.

Proof . Write

E(fz)− E(fc) =
{
E(fz)− Ez(fz)

}
+
{(
Ez(fz) +

1

2C
‖f ∗z‖2

K

)
−
(
Ez(fK,C) +

1

2C
‖f ∗K,C‖2

K

)}
+
{
Ez(fK,C)− E(fK,C)

}
+
{
E(fK,C)− E(fc) +

1

2C
‖f ∗K,C‖2

K

}
− 1

2C
‖f ∗z‖2

K .
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By the definition of fz, the second term is ≤ 0. By the definition of fK,C we see

the fourth term is justD(C). Hence E(fz)−E(fc) can be bounded by S(m,C)+D(C).

This together with (9) finishes the proof. �

The first term S(m,C) is called the sample error and the second term D(C)

is called the regularization error [21].

To bound the sample error, since fz runs over a set of functions as z changes,

we will use the concentration inequalities concerning the uniform convergence. This

technique has been well understood in learning theory, e.g. [24, 2, 9, 8]. To use this

technique, we need the concept of covering numbers to measure the capacity of the

hypothesis space.

Definition 2. For a compact set F in a metric space and ε > 0, the covering

number N (F , ε) is defined to be the minimal integer ` ∈ N such that there exist `

balls with radius ε covering F .

Note that various covering numbers measured by the empirical metric are also

used in the literature, see e.g. [2]. For their comparisons, see [2, 16].

Let BR = {f ∈ HK : ‖f‖K ≤ R} be the ball of HK with radius R > 0 centered

at 0. Denote

N (ε) = N (B1, ε), ε > 0.

The covering number N (ε) has been extensively studied, see e.g. [3, 28, 30, 31].

Proposition 2. For every C > 0 and ε > 0, there holds

Prob{S(m,C) > ε} ≤ exp

{
−3mε2

256B

}
+

(
32B

ε
+ 1

)
N
(

ε

32
√

2C

)
exp

{
−3mε2

214B

}
where B = BC := 1 + κ

√
2C.

The proof of Proposition 2 will be given in Section 4.

By Proposition 1 and Proposition 2 we immediately obtain that for 0 < ε < 1,

Prob
{
R(sgn(fz))−R(fc) > ε+D(C)

}
≤ 34B

ε
N
(

ε

32
√

2C

)
exp

{
−3mε2

214B

}
. (12)

If the regularization error D(C) decays to 0 as C →∞, then the consistency holds

by choosing the trade-off parameter properly.

WU,ZHOU104



Corollary 1. Assume lim
C→∞

D(C) = 0. Choose the parameter C = Cm to satisfy

Cm →∞ and

√
Cm

m
log

(
N
( 1√

Cm

))
→ 0 (13)

as m →∞, then

lim
m→∞

Prob
{
R(sgn(fz))−R(fc) > ε

}
= 0.

If, in addition, Cm ≤ mα for some α < 2, then the almost sure convergence holds.

Proof . The first assertion follows directly from (12).

To show the almost sure convergence, we apply the Borel-Cantelli Theorem

(see e.g. [25]), because the right hand side of (12) decays exponentially fast when

C ≤ mα with α < 2. �

Corollary 1 gives a strategy of choosing the trade-off parameter for the consis-

tency. To get better learning rates, the parameter needs to trade-off the sample

error and the regularization error.

Let us derive the error bound and see how to choose the constant C correspond-

ingly. For every 0 < δ < 1, set(
16
√

2B

ε
+ 1

)
N
(

ε

16
√

2R

)
exp

{
−mε2

2048

}
= δ. (14)

This equation has a unique solution ε(δ,m, C) since the left hand side is strictly

decreasing as a function of ε ∈ [0, +∞). Once the information of the covering number

is available (which can be obtained from the kernel K), the sample error bound

ε(δ,m, C) can be explicitly estimated. Thus, with confidence at least 1 − δ the

excess misclassification error can be bounded as

R(fz)−R(fc) ≤ ε(δ,m, C) +D(C). (15)

We need to bound the the regularization error. Since V is Lipschitz:

|V (y, f(x))− V (y, g(x))| ≤ |f(x)− g(x)|,

we have the following proposition.

Proposition 3. For every C > 0, there holds

D(C) ≤ inf
f∈HK

{
‖f − fc‖L1

ρX
+

1

2C
‖f ∗‖2

K

}
.
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Proposition 3 tells that the regularization error can be estimated by the approx-

imation in a weighted L1 space. A direct corollary is for those distributions ρ such

that fc lies in the closure of HK in L1
ρX

. For such a distribution, the K-functional

in Proposition 3, and hence the generalization error, tend to 0 as C → ∞. This

together with Corollary 1 gives the consistency of the 1-norm soft margin SVM for

these distributions. In particular, if K is a universal kernel, for any Borel probability

measure ρ, the consistency holds, since HK is dense in C(X) and hence also dense

in L1
ρX

.

Define

I1(g,R) = inf
f∈HK ,‖f∗‖K≤R

{
‖g − f‖L1

ρX

}
.

Then there holds

inf
f∈HK

{
‖f − fc‖L1

ρX
+

1

2C
‖f ∗‖2

K

}
≤ inf

R>0

{
I1(fc, R) +

R2

2C

}
. (16)

The functional I1(g,R) is closely related to the approximation error studied by

Smale and Zhou in [20] (see also [15] for related discussion):

I2(g,R) = inf
f∈HK ,‖f‖K≤R

{
‖g − f‖L2

ρX

}
.

In fact, as ‖f‖L1
ρX
≤ ‖f‖L2

ρX
, with the choice bf = 0 we obtain

I1(fc, R) ≤ I2(fc, R), ∀R > 0. (17)

The following example shows how to get learning rates from the above analysis.

Example 1. Let X = [0, 1]n, σ > 0, 0 < s, n/2 and K be the Gaussian kernel

K(x, y) = exp
{
−|x− y|2

σ2

}
.

Assume dρX(x)
dx

≤ C0 for almost every x ∈ X. If fc is the restriction of some function

f̃c ∈ Hs(Rn) onto X, then with probability at least 1− δ there holds

E(fz)− E(fc) ≤ O
(

C1/4 (log m)n+1

m1/2

)
+O

(
(log C)−s/4

)
.

This yields the learning rate O((log m)−s/4) by choosing C = mα with 0 < α < 2.

Proof. First we estimate the sample error. A result in [30] tells that the covering

number can be bounded as

logN (ε) ≤ c

(
log

1

ε

)n+1

. (18)
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By solving (14), with confidence at least 1− δ we have

S(m, C) ≤ ε(δ,m, C) = O
(

C1/2 (log m)n+1

m1/2

)
.

Second, we estimate D(C). By the approximation error estimate given for dρX =

dx in [20] (see also [32]) we see that

I2(fc, R) ≤ C0Cs

(
log R

)−s/4
, ∀R > Cs,

where Cs is a constant depending on s, σ, n and ‖f̃c‖Hs + ‖f̃c‖L2 . This in con-

nection with (17) implies that I1(fc, R) has the same order. Choose R to be√
C
(
log C

)−s/4−1
. Then by (16) and Proposition 3 we obtain

D(C) ≤ O
((

log C
)−s/4

)
.

Combing the estimates for the sample error and generalization error, our state-

ment follows. �

Further improvements of our analysis for the Bayes-risk consistency are possible.

Better bounds for the regularization error estimates may be obtained by refining the

approximation in L1
ρX

. The sample error bound can also be improved if some priori

knowledge is known, since we only consider the worst case in our analysis.

3 Bounding the Offset

Regularization schemes without offset are much easier to analyze, see [5, 29]. When

the offset is involved, the analysis becomes more difficult. This difficulty can be

seen from the stability analysis [5]. The 1-norm soft margin SVM without offset is

uniformly stable, as shown in [5]. However, the 1-norm soft margin SVM with offset

is not uniformly stable. To see this, we choose x0 ∈ X and samples z = {(x0, yi)}2n+1
i=1

with yi = 1 for i = 1, . . . , n + 1, and yi = −1 for i = n + 2, . . . , 2n + 1. Take z′ to be

the same as z except that (x0, yn+1) is replaced by (x0,−1). As xi’s are identical,

one can see from the definition (8) that f ∗z = 0 since Ez(fz) = Ez(fz(x0)). It follows

that fz = 1 while fz′ = −1. Thus, |fz − fz′| = 2 which does not converge to zero

as n tends to infinity. Thus we cannot use the stability analysis to illustrate the

statistical performance of the 1-norm soft margin SVM.

In order to bound the sample error (11), we use the uniform convergence. This

means we allow fz to run over a hypothesis space for which the capacity can be

ANALYSIS OF SUPPORT VECTOR MACHINE CLASSIFICATION 107



measured. To this end, we need bound the offset involved in fz and fK,C . The

difficulty of bounding the offset has been realized in the literature (e.g. [23]). We

shall overcome this difficulty by means of the special feature of the loss function V .

By x ∈ (X, ρX) we mean that x lies in the support of the measure ρX on X.

Lemma 1. For any C > 0, m ∈ N and z ∈ Zm, there is a minimizer of (8)

satisfying

min
1≤i≤m

|fz(xi)| ≤ 1 (19)

and a minimizer of (10) satisfying

inf
x∈(X,ρX)

∣∣fK,C(x)
∣∣ ≤ 1. (20)

Proof . Suppose a minimizer of (8) fz satisfies

r := min
1≤i≤m

|fz(xi)| = fz(xi0) > 1.

Then for each i, either yifz(xi) ≥ r > 1 or yifz(xi) ≤ −r < −1. For ε ∈ {1,−1}, set

Iε := {i ∈ {1, . . . ,m} : yi = ε, yifz(xi) ≤ −r}.

Denote #Iε the number of elements in the set Iε.

If #I1 = #I−1 (possibly zero), then the function f̃z := fz − d with d = (r −
1)sgnfz(xi0) satisfies |f̃z(xi0)| = 1 and |f̃z(xi)| ≥ 1 for each i. Hence

Ez(f̃z) =
∑

i∈I1∪I−1

(
1− yifz(xi) + yid

)
= Ez(fz) +

∑
i∈I1

d−
∑
i∈I−1

d = Ez(fz).

This means f̃z is a minimizer of (8) satisfying (19).

If for some ε ∈ {1,−1}, #Iε > #I−ε, then we see that yiε = 1 for i ∈ Iε and

yiε = −1 for i ∈ I−ε. Hence the function f̃z := fz + ε(r − 1) satisfies

Ez(f̃z) =
∑

i∈I1∪I−1

(
1− yifz(xi)− yiε(r − 1)

)
= Ez(fz)− (r − 1)#(Iε) + (r − 1)#(I−ε) < Ez(fz).

This is a contradiction to the definition of fz.

Therefore, (19) is always true for a minimizer of (8).
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In the same way, suppose r := inf
x∈(X,ρX)

|fK,C(x)| > 1 for a minimizer fK,C of

(10). Consider the sets

Iε := {x ∈ (X, ρX) : P (Y = ε|x) > 0, εfK,C(x) ≤ −r} , ε = 1,−1.

Then I1 ∩ I−1 = ∅ and for ε ∈ {1,−1},

E(fK,C + ε(r − 1)) =

∫
I1

(
1− fK,C(x)− ε(r − 1)

)
P (Y = 1|x)dρX

+

∫
I−1

(
1 + fK,C(x) + ε(r − 1)

)
P (Y = −1|x)dρX

= E(fK,C)− ε(r − 1)

{∫
I1

P (Y = 1|x)dρX −
∫

I−1

P (Y = −1|x)dρX

}
.

If ∫
I1

P (Y = 1|x)dρX =

∫
I−1

P (Y = −1|x)dρX ,

we can define

f̃K,C =

{
fK,C + r − 1, when sup{fK,C(x) : x ∈ (X, ρX), fK,C(x) < 0} = −r,

fK,C − r + 1, when inf{fK,C(x) : x ∈ (X, ρX), fK,C(x) > 0} = r.

Then E(f̃K,C) = E(fK,C) and hence f̃K,C is a minimizer of (10) satisfying (20).

If for some ε ∈ {1,−1},∫
Iε

P (Y = ε|x)dρX >

∫
I−ε

P (Y = −ε|x)dρX ,

then

ε

{∫
I1

P (Y = 1|x)dρX −
∫

I−1

P (Y = −1|x)dρX

}
> 0.

Set f̃K,C = fK,C + ε(r−1). We find that E(f̃K,C) < E(fK,C) which is a contradiction

to the definition of fK,C .

Thus, (20) can always be realized by a minimizer satisfying (10). �

In what follows we shall always choose fz and fK,C to satisfy (19) and (20),

respectively. Also, denote bfK,C
simply as bK,C .

Lemma 2. For any C > 0, m ∈ N and z ∈ Zm, there hold

(1) ‖f ∗z‖K ≤
√

2C, |bz| ≤ 1 + κ
√

2C, and Ez(fz) ≤ 1.
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(2) ‖fK,C‖∞ ≤ 1 + 2κ
√

2C and E(fK,C) ≤ 1.

Proof . By the definition (8) and the choice f = 0 + 0, we see that

Ez(fz) +
1

2C
‖f ∗z‖2

K ≤ 1

m

m∑
i=1

V (yi, 0) + 0 = 1.

This gives ‖f ∗z‖K ≤
√

2C and Ez(fz) ≤ 1. The former in connection with (6) and

(19) leads to

|bz| ≤ min
1≤i≤m

|fz(xi)|+ ‖f ∗z‖∞ ≤ 1 + κ
√

2C.

This proves Part (1).

By (10) and the choice f = 0 + 0, we see that

E(fK,C) +
1

2C
‖f ∗K,C‖2

K ≤
∫

Z

V (y, 0)dρ + 0 = 1.

This gives ‖f ∗K,C‖K ≤
√

2C and E(fK,C) ≤ 1. The former in connection with (6) and

(20) leads to

|bK,C | ≤ inf
x∈(X,ρX)

|fK,C(x)|+ ‖f ∗K,C‖∞ ≤ 1 + κ
√

2C.

Hence

‖fK,C‖∞ ≤ ‖f ∗K,C‖∞ + |bK,C | ≤ 1 + 2κ
√

2C

and Part (2) follows. �

4 Estimating the Sample Error

In this section we prove Proposition 2. For this purpose, we shall establish some

probability inequalities. These inequalities are modified versions of Bernstein in-

equality and motivated by sample error estimates for the square loss [3, 12, 8].

Recall the Bernstein inequality: Suppose a random variable ξ has mean µ = Eξ

and variance σ2 = σ2(ξ) and satisfies |ξ − µ| ≤ M. Let z = (zi)
m
i=1 be independent

samples. Then

Prob

{∣∣∣µ− 1

m

m∑
i=1

ξ(zi)
∣∣∣ > ε

}
≤ 2 exp

{
− mε2

2(σ2 + 1
3
Mε)

}
.

The one-sided Bernstein inequality has no leading factor 2.
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Lemma 3. Suppose a random variable ξ satisfies 0 ≤ ξ ≤ M and µ = Eξ.

Then for every ε > 0 and 0 < α ≤ 1, there holds

Prob

{
µ− 1

m

∑m
i=1 ξ(zi)

µ + ε
> α

}
≤ exp

{
−3mα2ε

8M

}
.

Proof . As ξ satisfies |ξ − µ| ≤ M , the one-sided Bernstein inequality tells that

Prob

{
µ− 1

m

∑m
i=1 ξ(zi)

µ + ε
> α

}
≤ exp

{
− mα2(µ + ε)2ε

2
(
σ2 + 1

3
Mα(µ + ε)

)} .

Here σ2 ≤ E(ξ2) ≤ ME(ξ) = Mµ since 0 ≤ ξ ≤ M . Then we find that

σ2 +
1

3
Mα(µ + ε) ≤ 4

3
M(µ + ε) ≤ 4M(µ + ε)2

3ε
.

This yields the desired inequality. �

In the same way, we have

Prob

{ 1
m

∑m
i=1 ξ(zi)− µ

µ + ε
> α

}
≤ exp

{
−3mα2ε

8M

}
. (21)

Lemma 4. Under the assumptions of Lemma 3, for every ε > 0 and 0 < α ≤ 1,

there holds

Prob

{
µ− 1

m

∑m
i=1 ξ(zi)

1
m

∑m
i=1 ξ(zi) + ε

> α

}
≤ exp

{
−3mα2ε

32M

}
.

Proof . By Lemma 3, it suffices to show that

µ− 1
m

∑m
i=1 ξ(zi)

µ + ε
≤ α

2
=⇒

µ− 1
m

∑m
i=1 ξ(zi)

1
m

∑m
i=1 ξ(zi) + ε

≤ α. (22)

The left hand side of (22) implies

µ− 1

m

m∑
i=1

ξ(zi) ≤
µ

2
+

1

2
ε.

This gives

µ ≤ 2

(
1

m

m∑
i=1

ξ(zi)

)
+ ε.

Then we get

µ− 1

m

m∑
i=1

ξ(zi) ≤
1

m

m∑
i=1

ξ(zi) + ε
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and
µ + ε

1
m

∑m
i=1 ξ(zi) + ε

=
µ− 1

m

∑m
i=1 ξ(zi)

1
m

∑m
i=1 ξ(zi) + ε

+ 1 ≤ 2.

Thus
µ− 1

m

∑m
i=1 ξ(zi)

1
m

∑m
i=1 ξ(zi) + ε

=
µ− 1

m

∑m
i=1 ξ(zi)

µ + ε
· µ + ε

1
m

∑m
i=1 ξ(zi) + ε

≤ α.

This proves (22) and hence finishes the proof. �

By the Lipschitz property of the loss function V, we find that

|Ez(f)− Ez(g)| ≤ ‖f − g‖∞, |E(f)− E(g)| ≤ ‖f − g‖∞. (23)

Now we can prove a result concerning the uniform convergence.

Lemma 5. Let F be a subset of C(X) such that ‖f‖∞ ≤ M for every f ∈ F .

Then for every ε > 0 and 0 < α ≤ 1, we have

Prob

{
sup
f∈F

E(f)− Ez(f)

Ez(f) + ε
≥ 4α

}
≤ N (F , αε) exp

{
− mα2ε

32(1 + M)

}
.

Proof . Let {fj}N
j=1 ⊂ F with N = N (F , αε) such that F is covered by balls

centered at fj with radius αε. Note that for every f ∈ F the random variable

ξ = V (y, f(x)) satisfies 0 ≤ ξ ≤ 1 + ‖f‖∞ ≤ 1 + M . Then for each j, Lemma 4 tells

Prob

{
E(fj)− Ez(fj)

Ez(fj) + ε
≥ α

}
≤ exp

{
− 3mα2ε

32(1 + M)

}
.

For each f ∈ F , there is some j such that ‖f − fj‖∞ ≤ αε. This in connection

with (23) tells us that |Ez(f)− Ez(fj)| and |E(f)− E(fj)| are both bounded by αε.

Hence
|Ez(f)− Ez(fj)|
Ez(f) + ε

≤ α and
|E(f)− E(fj)|
Ez(f) + ε

≤ α.

The former implies that Ez(fj) + ε ≤ 2
[
Ez(f) + ε

]
. Therefore,

Prob

{
sup
f∈F

E(f)− Ez(f)

Ez(f) + ε
≥ 4α

}
≤

N∑
j=1

Prob

{
E(fj)− Ez(fj)

Ez(fj) + ε
≥ α

}
which is bounded by N exp

{
− mα2ε

32(1+M)

}
. �

By Lemma 2 (1), fz always lies in the set

FR,B := {f : f = f ∗ + bf ∈ BR + [−B, B]} (24)

with R =
√

2C and B = 1+κ
√

2C. In order to apply Lemma 5, we need the covering

numbers of the function set FR,B.
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Lemma 6. Let FR,B be given by (24) with R > 0 and B > 0. For any ε > 0

there holds

N (FR,B, ε) ≤
(

2B

ε
+ 1

)
N
( ε

2R

)
.

Proof . It is easy to see that N (FR,B, ε) is bounded by (2B
ε

+ 1)N
(
BR, ε

2

)
since

‖(f ∗ + bf )− (g∗ + bg)‖∞ ≤ ‖f ∗ − g∗‖∞ + |bf − bg|.

But an ε
2R

-covering of B1 is the same as an ε
2
-covering of BR, our conclusion follows.

�

Proof of Proposition 2. Set R =
√

2C and B = 1 + κ
√

2C.

From Lemma 2 we know the random variable ξ = V (y, fK,C(x)) satisfies 0 ≤
ξ ≤ 2B. By the fact E(fK,C) ≤ 1 we obtain

Prob
{
Ez(fK,C)− E(fK,C) >

ε

2

}
≤ Prob

{
Ez(fK,C)− E(fK,C

E(fK,C) + 1
>

ε

4

}
.

Applying (21), we find that the right hand side above is bounded by exp
{
−3mε2

256B

}
.

Let FR,B be given by (24). Then fz ∈ FR,B. This together with the fact

Ez(fz) ≤ 1 leads to

Prob
{
E(fz)− Ez(fz) > ε

2

}
≤ Prob

{
E(fz)− Ez(fz)

Ez(fz) + 1
>

ε

4

}
≤ Prob

{
sup

f∈FR,B

E(f)− Ez(f)

Ez(f) + 1
>

ε

4

}
.

According to Lemma 5, it can be bounded by

N
(
FR,B,

ε

16

)
exp

{
−3mε2

214B

}
.

Bounding the covering number N
(
FR,B, ε

16

)
by Lemma 6 completes the proof . �

5 Consistency with Hypothesis Space may Fail

The above analysis shows that the Bayes-risk Consistency holds if D(C) → 0 as

C →∞.

In this section we consider the case when D(C) 6→ 0. In this case we would not

expect the Bayes-risk consistency in general. But the consistency with hypothesis
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space becomes a natural question. This kind of consistency is meaningful, since in

practice, one may not need a classifier to approximate the Bayes rule very well. All

we need is that the misclassification error is endurably small. Thus, we may face

the following question:

Suppose a priori knowledge ensures that HK contains a classifier with endurably

small misclassification error which does not approximate the Bayes rule. Does SVM

produce a sufficiently good classifier?

Unfortunately, this is not true in general, as shown by the following example.

Example 2. Let X = [−1, 1], K(x, y) = x · y, and ρ be the probability measure

supported at four points defined as

P (−1, 1) = P (1,−1) =
1

8
, P (− 1

24
,−1) = P (

1

24
, 1) =

3

8
.

Define fz by (7). Then for m ∈ N and C > 0, with confidence at least 1 −
8 exp{ −3m

64(1+45/(2m))
}, there holds

R
(
sgn(fz)

)
≥ inf

f∈HK

R(sgn(f)) +
1

8
.

Proof . Notice that HK = {ax : a ∈ R}, ‖ax‖K = |a|, and HK = {ax + b :

a, b ∈ R}. For j = 1, . . . , 4, denote z(j) = (x(j), y(j)) where z(1) = (−1, 1), z(2) =

(− 1
24

,−1), z(3) = ( 1
24

, 1), and z(4) = (1,−1).

The definition of the misclassification error R tells us that

R(f) =
4∑

j=1

ρX(x(j))χ{sgn(f(x(j))) 6=y(j)}.

If f ∈ HK satisfies sgn(f(x(j))) 6= y(j) for j = 2 or 3, then R(f) ≥ 3/8 > 1/4.

It follows that

inf
f∈HK

R(f) = inf
f∈HK

R(f) =
1

4

and a best classifier in HK can be taken as fK(x) = x.

Now we consider the misclassification error of fz.

Let z consist of mj copies of z(j), j = 1, . . . , 4. We claim that∣∣∣mj

m
− ρX(x(j))

∣∣∣ < 1

32
, ∀j =⇒ fz(x) = azx + bz with az ≤ 0 or − bz

az

6∈ [− 1

24
,

1

24
].
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Suppose to the contrary that fz(x) = ax + b with a > 0 and −b/a ∈ [− 1
24

, 1
24

].

Denote x0 := −b/a. Then fz(x) = a(x − x0). Set f−z (x) = −a(x − x0) ∈ HK .

Observe that ρX(x(j)) − 1/32 <
mj

m
< ρX(x(j)) + 1/32 for each j. Also, ‖f ∗z‖K =

‖(f−z )∗‖K = |a|.
If a > 5, then

Ez(fz) ≥
1

m

{
m1

(
1− y(1)fz(x

(1))
)
+

+ m4

(
1− y(4)fz(x

(4))
)
+

}
=

m1

m
(1 + a(1 + x0)) +

m4

m
(1 + a(1− x0)) ≥

3

16
(1 + a).

For j = 1, 4, we have y(j)f−z (x(j)) = −ay(j)(x(j) − x0) = a|x(j) + y(j)x0| > 1. Hence

Ez(f
−
z ) ≤ 1

m

{
m2

(
1− y(2)f−z (x(2))

)
+

+ m3

(
1− y(3)f−z (x(3))

)
+

}
=

m2

m
(1− a(− 1

24
− x0)) +

m3

m
(1 + a(

1

24
− x0)) ≤

13

16
(1 +

1

24
a).

Since a > 5, we have

Ez(fz) +
1

2C
‖f ∗z‖2

K > Ez(f
−
z ) +

1

2C
‖(f−z )∗‖2

K

which is a contradiction to the definition (7) of fz.

If a ≤ 5, then for j = 2, 3, we have |y(j)fz(x
(j))| = a|x(j) − x0| ≤ 5/12 < 1. For

j = 1, 4, we also have −y(j)fz(x
(j)) = −y(j)a(x(j) − x0) > 0. Hence

Ez(fz) =
m1

m
(1− a(x(1) − x0)) +

m2

m
(1 + a(x(2) − x0))

+
m3

m
(1− a(x(3) − x0)) +

m4

m
(1 + a(x(4) − x0))

≥ 1 +
3

16
a− 13

16

a

24
> 1 +

4

32
a.

For f−z we have

Ez(f
−
z ) ≤ m1

m
+

m2

m
(1− a(− 1

12
− x0)) +

m3

m
(1 + a(

1

12
− x0)) +

m4

m

≤ 1 +
13

32

a

6
< 1 +

3

32
a.

Therefore, we also have a contradiction to the definition (7) of fz:

Ez(fz) +
1

2C
‖f ∗z‖2

K > Ez(f
−
z ) +

1

2C
‖(f−z )∗‖2

K .
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Thus our claim has been verified, and we must have az ≤ 0 or −bz/az 6∈ [− 1
24

, 1
24

].

In this case, we see that sgn(fz(x
(j))) 6= y(j) for j = 2 or 3, hence R(fz) ≥ 3/8.

What we need to check finally is the probability of the event

4⋂
j=1

{∣∣∣mj

m
− ρX(x(j))

∣∣∣ < 1

32

}
.

For each fixed j, the random variable ξ = χz=z(j) is a binomial distribution with

mean µ = ρX(x(j)) and variance σ2 = ρX(x(j))(1 − ρX(x(j)))/m. By the Bernstein

inequality, we have

Prob

{∣∣∣mj

m
− µ

∣∣∣ ≥ 1

32

}
≤ 2 exp

{
−

m( 1
32

)2

2(µ(1− µ)/m + 1/(3 · 32))

}
≤ 2 exp

{
− 3m

64(1 + 45/(2m))

}
.

Thus, the desired confidence is at least

Prob

{∣∣∣mj

m
− µ

∣∣∣ < 1

32
∀j
}
≥ 1− 8 exp

{
− 3m

64(1 + 45/(2m))

}
.

The statements of Example 2 have been verified. �

In Example 2, the geometric structure of the underlying distribution is very

singular. There is a subset of X which, with respect to the optimal classifier over

the space, results in small misclassification error but large generalization error for

it is distributed far from the decision boundary. Generally speaking, when this

phenomenon happens, the sign function of the minimizer of E(f) over HK may not

coincide with the optimal classifier and the convergence R(fz) → inf
f∈HK

R(f) fails.

In practice, the SVM is still very efficient due to two reasons. Firstly, the

geometric structure of the underlying distribution is usually regular (i.e., those points

which are hard to classify are usually close to the decision boundary). Secondly, one

may vary the kernels (equivalent to using larger hypothesis spaces) to reduce the

gap between the misclassification error and the generalization error. For instance,

in Example 2, sgn(fz) will approximate the Bayes rule fc very well if one uses the

kernel K(x, y) = (1 + x · y)3.

The consistency with hypothesis space needs further study. It is interesting (in

mathematics) and useful (for applications) to have some positive results.
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Abstract

In a previous paper we constructed piecewise constant wavelets on spherical

triangulations, orthogonal with respect to a given inner product. In this paper

we generalize this construction to closed surfaces, finding conditions which have

to be satisfied by a closed surface to assure the Riesz stability of the wavelets.

Key words: spherical wavelets, Haar wavelets, triangulation.

MSC 2000: 42C40, 41A63, 41A15.

1 Introduction

Consider the unit sphere S2 of R3 with center O and the surface S ⊆ R3 defined by the

function σ : S2 → R3,

σ(η) = ρ(η)η, (1.1)

for all η ∈ S2, where ρ : S2 → R+ is a continuous function. We intend to use the piece-

wise constant locally supported wavelets defined on S2, presented in [3], constructing

piecewise constant locally supported wavelets defined on S. Actually, we try to find

conditions which have to be satisfied by the function ρ to ensure the Riesz stability of

these wavelets.

The paper is structured as follows. In Section 2 we recall the construction of wavelets

defined on S2, construction which was realized in [3]. In Section 3 we show how this
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construction can be extended to closed surfaces. In Section 4 we introduce some inner

products and prove some norm equivalencies in L2(S). They are used in Section 6 for

studying the properties of our wavelets (orthogonality, Riesz stability). We show that,

under some assumptions on the function ρ, our wavelets are Riesz stable in L2 (S).

Finally, we present some types of closed surfaces S where our wavelets are Riesz stable

in L2 (S) .

2 Piecewise constant wavelets defined on spherical

triangulations

The construction of locally supported piecewise constant wavelets defined on S2 was

realized in [3]. Let Π be a convex polyhedron having triangular faces1 and the vertices

situated on the sphere S2. Also we have to suppose that no face contains the origin O

and O is situated inside the polyhedron. We denote by T 0 = {T1, T2, . . . , Tn} the set

of the faces of Π and by Ω the surface (the “cover”) of Π. Then we consider the radial

projection onto S2, p : Ω → S2,

p (x, y, z) =
1√

x2 + y2 + z2
(x, y, z) , (x, y, z) ∈ Ω. (2.1)

Being given Ω, we can say that T = T 0 is a triangulation of Ω. Next we consider its

uniform refinement T 1. For a given triangle [M1M2M3] in T 0, let A1, A2, A3 denote the

midpoints of the edges M2M3,M3M1 and M1M2, respectively. Then we consider the

set

T 1 =
⋃

[M1M2M3]∈T 0

{[M1A2A3], [A1M2A3], [A1A2M3], [A1A2A3]} ,

which is also a triangulation of Ω. Continuing in the same manner the refinement

process we can obtain a triangulation T j of Ω, for j ∈ N. The projection of T j onto the

1The polyhedron could also have faces which are not triangles. In that case we triangulate each of

these faces and consider it as having triangular faces, with some of the faces coplanar.
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sphere will be U j = {p (T j) , T j ∈ T j} , which is a triangulation of S2. The number of

triangles in U j will be |U j| = n · 4j.

Let 〈·, ·〉Ω be the following inner product, based on the initial coarsest triangulation

T 0 :

〈f, g〉Ω =
∑

T∈T 0

1

a (T )

∫

T

f (x) g (x) dx, for f, g ∈ C (T ) ∀T ∈ T 0.

Here a (T ) denotes the area of the triangle T. Also, we consider the induced norm

‖f‖Ω = 〈f, f〉1/2
Ω .

For the L2−integrable functions F and G defined on S2, the following inner product

associated to the given polyhedron Π was defined in [4]:

〈F,G〉∗, S2 = 〈F ◦ p,G ◦ p〉Ω . (2.2)

There it was proved that, in the space L2 (S2) , the norm ‖·‖∗, S2 induced by this inner

product is equivalent to the usual norm ‖·‖L2(S2) of L2 (S2) . Denoting

dT =

∣∣∣∣∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣∣∣

for each triangle T having the vertices Bi (xi, yi, zi) , i = 1, 2, 3, we proved that

m ‖F‖2
L2(S2) ≤ ‖F‖2

∗, S2 ≤ M ‖F‖2
L2(S2) , (2.3)

with m = 1
4

min
T∈T 0

d2
T

a(T )3
, M = 2 max

T∈T 0

1
|dT | . If we use the relation

|dT | = 2a (T ) dist (O, T ) , with dist (O, T ) representing the distance from the origin to

the plane of the triangle T, then the values m and M become

m = min
T∈T 0

dist2 (O, T )

a (T )
,

M = max
T∈T 0

1

a (T ) dist (O, T )
.
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Figure 1: The triangle U j and its refined triangles U j+1
k , k = 1, 2, 3, 4.

Then we constructed a multiresolution on S2 consisting of piecewise constant functions

on the triangles of U j =
{
U j

1 , U
j
2 , . . . , U

j
n·4j

}
, j ∈ N.

By definition, a multiresolution of L2 (S2) is a sequence of subspaces {V j : j ≥ 0} of

L2 (S2) which satisfies the following properties:

1. V j ⊆ V j+1 for all j ∈ N,

2. closL2(S2)

∞⋃
j=0

V j = L2 (S2) ,

3. There are index sets Kj ⊆ Kj+1 such that for every level j there exists

a Riesz basis
{
ϕj

t , t ∈ Kj

}
of the space V j. This means that there exist constants

0 < c ≤ C < ∞, independent of the level j, such that

c2−j
∥∥∥
{
cj
t

}
t∈Kj

∥∥∥
l2(Kj)

≤
∥∥∥∥∥∥
∑
t∈Kj

cj
tϕ

j
t

∥∥∥∥∥∥
L2(S2)

≤ C2−j
∥∥∥
{
cj
t

}
t∈Kj

∥∥∥
l2(Kj)

,

where
∥∥∥
{
cj
t

}
t∈Kj

∥∥∥
l2(Kj)

=
(∑

t∈Kj
(cj

t)
2
)1/2

.

For a fixed j ∈ N, to each triangle U j
k ∈ U j, k = 1, 2, . . . , n ·4j, we associate the function

ϕUj
k

: S2 → R,

ϕUj
k
(η) =





1, inside the triangle U j
k ,

1/2, on the edges of U j
k ,

0, elsewhere.

Then we constructed the spaces of functions V j = span
{

ϕUj
k
, k = 1, 2, . . . , n · 4j

}
,

consisting of piecewise constant functions on the triangles of U j. If U j+1
k = p

(
T j+1

k

)
, k =
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1, 2, 3, 4 are the refined triangles obtained from U j as in Figure 1, we have

ϕUj = ϕUj+1
1

+ ϕUj+1
2

+ ϕUj+1
3

+ ϕUj+1
4

,

which holds2 in L2 (S2). Thus, V j ⊆ V j+1 for all j ∈ N. With respect to the scalar

product 〈·, ·〉∗, S2 , the spaces V j and V j+1 become Hilbert spaces, with the corresponding

norm ‖·‖∗, S2 = 〈·, ·〉1/2

∗, S2 .

Next we defined the space W j as the orthogonal complement, with respect to the

scalar product 〈·, ·〉∗, S2 , of the coarse space V j in the fine space V j+1 :

V j+1 = V j
⊕

W j.

The spaces W j are called the wavelet spaces. The dimension of W j is dim W j =

dim V j+1 − dim V j = 3n · 4j. In [3] we proved that we have two classes of orthonormal

3 wavelet bases. They include the “nearly orthogonal” wavelets obtained by Bonneau

in [1] and Nielson, Jung and also those constructed by Sung in [2]. With the notations

of Figure 1, the wavelets have the expressions

1ΨF 1
j+1,Uj = α1ϕUj+1

1
+ α2ϕUj+1

3
+

1

2
ϕUj+1

2
−

(
1

2
+ α1 + α2

)
ϕUj+1

4
,

1ΨF 2
j+1,Uj = α1ϕUj+1

4
+ α2ϕUj+1

1
+

1

2
ϕUj+1

2
−

(
1

2
+ α1 + α2

)
ϕUj+1

3
,

1ΨF 3
j+1,Uj = α1ϕUj+1

3
+ α2ϕUj+1

4
+

1

2
ϕUj+1

2
−

(
1

2
+ α1 + α2

)
ϕUj+1

1
,

with α1, α2 such that 4 (α2
1 + α1α2 + α2

2) + 2 (α1 + α2)− 1 = 0 and

2ΨF 1
j+1,Uj = α1ϕUj+1

1
+ α2ϕUj+1

3
− 1

2
ϕUj+1

2
+

(
1

2
− α1 − α2

)
ϕUj+1

4
,

2ΨF 2
j+1,Uj = α1ϕUj+1

4
+ α2ϕUj+1

1
− 1

2
ϕUj+1

2
+

(
1

2
− α1 − α2

)
ϕUj+1

3
,

2ΨF 3
j+1,Uj = α1ϕUj+1

3
+ α2ϕUj+1

4
− 1

2
ϕUj+1

2
+

(
1

2
− α1 − α2

)
ϕUj+1

1
,

2Actually the equality holds at all the points of the sphere, except the vertices of the triangles of

Uj+1.
3The orthogonality is with respect to the norm ‖ · ‖∗, S2
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with α1, α2 such that 4 (α2
1 + α1α2 + α2

2)− 2 (α1 + α2)− 1 = 0.

An application of these wavelets in data compression, together with numerical examples

can be found in [3]. A comparison of these classes of wavelets with respect to the

reconstruction error was realized in [5].

3 Piecewise constant wavelets defined on triangula-

tions of the closed surface S
We project the spherical triangulations U j onto the surface S, obtaining the triangu-

lations Zj = {σ (U j) , U j ∈ U j} of the closed surface S. For a fixed j, to each triangle

Zj
k ∈ Zj, k = 1, 2, . . . , n ·4j, the associated piecewise constant scaling functions defined

on S will be defined as

φZj
k
(η) =





1, inside the triangle Zj
k ,

1/2, on the edges of Zj
k ,

0, in rest.

and therefore the wavelets will have the following expressions.

1ΥF 1
j+1,Zj = α1φZj+1

1
+ α2φZj+1

3
+

1

2
φZj+1

2
−

(
1

2
+ α1 + α2

)
φZj+1

4
,

1ΥF 2
j+1,Zj = α1φZj+1

4
+ α2φZj+1

1
+

1

2
φZj+1

2
−

(
1

2
+ α1 + α2

)
φZj+1

3
, (3.1)

1ΥF 3
j+1,Zj = α1φZj+1

3
+ α2φZj+1

4
+

1

2
φZj+1

2
−

(
1

2
+ α1 + α2

)
φZj+1

1
,

with α1, α2 such that 4 (α2
1 + α1α2 + α2

2) + 2 (α1 + α2)− 1 = 0 and

2ΥF 1
j+1,Zj = α1φZj+1

1
+ α2φZj+1

3
− 1

2
φZj+1

2
+

(
1

2
− α1 − α2

)
φZj+1

4
,

2ΥF 2
j+1,Zj = α1φZj+1

4
+ α2φZj+1

1
− 1

2
φZj+1

2
+

(
1

2
− α1 − α2

)
φZj+1

3
, (3.2)

2ΥF 3
j+1,Zj = α1φZj+1

3
+ α2φZj+1

4
− 1

2
φZj+1

2
+

(
1

2
− α1 − α2

)
φZj+1

1
,
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with α1, α2 such that 4 (α2
1 + α1α2 + α2

2)− 2 (α1 + α2)− 1 = 0.

Before we establish the orthogonality of these wavelets defined on S and their Riesz

stability, we need to establish some equivalencies between norms. These equivalencies

will be presented and proved in the next section.

4 Inner products and norms in L2(S)

Consider the following parametrization of the sphere S2

η(x, y, z) ∈ S2 ⇔





x = x(u, v) = sin v cos u,

y = y(u, v) = sin v sin u,

z = z(u, v) = cos v,

(4.1)

(u, v) ∈ ∆ = [0, 2π]× [0, π]. Then we define the functions r : ∆ → (0,∞) and X, Y, Z :

∆ → R by

r(u, v) = ρ(sin v cos u, sin v sin u, cos v), (4.2)

X(u, v) = r(u, v)x(u, v),

Y (u, v) = r(u, v)y(u, v),

Z(u, v) = r(u, v)z(u, v).

The following proposition establishes the relation between the surface element of the

sphere and the surface element of S.

Proposition 4.1 Let dω be the surface element of S2 and dσ be the surface element of

S. Then, the relation between dω and dσ is

dσ2 = r2

(
r2 + r2

v +
r2
u

sin2 v

)
dω2, (4.3)

where r = r(u, v) is defined in (4.2) and ru, rv : ∆ = (0, 2π) × (0, π) → R denote its

partial derivatives.
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Proof. Let us denote

η(u, v) = (x(u, v), y(u, v), z(u, v)) ,

R(u, v) = (X(u, v), Y (u, v), Z(u, v)) .

An immediate calculation shows that

dω = ‖ηu × ηv‖ du dv = sin v du dv,

dσ = ‖Ru ×Rv‖ du dv = r sin v

(
r2 + r2

v +
r2
u

sin2 v

)1/2

du dv,

where ‖ · ‖ denotes the Euclidian norm and u × v stands for the cross product of the

vectors u and v in R3. Therefore

dσ = E(u, v)dω,

where E : (0, 2π)× (0, π) → R,

E(u, v) = r

(
r2 + r2

v +
r2
u

sin2 v

)1/2

. (4.4)

Definition 4.1 Let F,G : S → R be functions of L2(S). Then 〈·, ·〉σ : L2(S)×L2(S) →
R defined by

〈F,G〉σ = 〈F ◦ σ,G ◦ σ〉L2(S2) (4.5)

is an inner product in L2(S). We also consider the induced norm

‖·‖σ = 〈·, ·〉1/2
σ . (4.6)

Regarding this norm, the following norm-equivalency is true.

Proposition 4.2 If there exist the constants 0 < mσ ≤ Mσ < ∞ such that mσ ≤
E (u, v) ≤ Mσ for all (u, v) ∈ ∆, then in L2(S) the norm ‖·‖L2(S) is equivalent to the

norm ‖·‖σ.
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Proof. Let F ∈ L2 (S). We have

‖F‖2
L2(S) =

∫

S
F 2(ζ)dσ =

∫

S
F 2 (ρ(η)η) dσ

=

∫∫

∆

F 2 (X(u, v), Y (u, v), Z(u, v)) E(u, v) sin v du dv.

Taking into account the inequalities mσ ≤ E(u, v) ≤ Mσ for (u, v) ∈ ∆, we can write

mσ

∫∫

∆

F 2 (X(u, v), Y (u, v), Z(u, v)) sin v du dv ≤ ‖F‖2
L2(S) ≤

≤ Mσ

∫∫

∆

F 2 (X(u, v), Y (u, v), Z(u, v)) sin v du dv,

and therefore

mσ

∫

S2
F 2 (σ(η)) dω ≤ ‖F‖2

L2(S) ≤ Mσ

∫

S2
F 2 (σ(η)) dω,

mσ‖F ◦ σ‖2
L2(S2) ≤ ‖F‖2

L2(S) ≤ Mσ‖F ◦ σ‖2
L2(S2).

which means

√
mσ‖F‖σ ≤ ‖F‖L2(S) ≤

√
Mσ‖F‖σ. (4.7)

Definition 4.2 Let F, G : S → R. Then 〈·, ·〉∗, σ : L2(S)× L2(S) → R defined by

〈F,G〉∗, σ = 〈F ◦ σ,G ◦ σ〉∗, S2 (4.8)

is an inner product in L2(S). We also consider the induced norm

‖·‖∗, σ = 〈·, ·〉1/2
∗, σ . (4.9)

Proposition 4.3 In L2(S) the norm ‖·‖σ is equivalent to the norm ‖·‖∗, σ.

Proof. Let F ∈ L2(S). Then ‖F‖2
∗, σ = ‖F ◦ σ‖2

∗, S2 . Using now the inequalities (2.3)

we can write

m ‖F ◦ σ‖2
L2(S2) ≤ ‖F‖2

∗, σ ≤ M ‖F ◦ σ‖2
L2(S2)

and therefore, using the definition 4.1 we obtain

m ‖F‖2
σ ≤ ‖F‖2

∗, σ ≤ M ‖F‖2
σ ,

which completes the proof.
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5 Orthogonality and Riesz stability of the wavelets

The results established in the previous section allow us to establish the following results.

Proposition 5.1 The wavelets iΥ given in (3.1) and (3.2) are orthonormal with respect

to the inner product 〈·, ·〉∗, σ, meaning that

〈
2j ·i ΥF k

j+1, Zj , 2j ·i ΥF l
j+1, Zm

〉
∗, σ

= δlkδjm. (5.1)

Proof. The wavelets iΨ were orthonormal with respect to the scalar product 〈·, ·〉∗, S2 ,
meaning that

〈
2j ·i ΨF k

j+1, Uj , 2j ·i ΨF l
j+1, Um

〉
∗, S2

= δlkδjm. (5.2)

Using the definition 4.2 and the fact that Ψ = Υ◦σ, we immediately obtain the relations

(5.1).

Proposition 5.2 If the numbers mσ = min(u, v)∈∆ E(u, v) and Mσ = max(u, v)∈∆ E(u, v)

are such that mσ > 0 and Mσ < ∞, then the wavelets obtained in the previous section

satisfy the Riesz stability property, meaning that there exist the constants 0 < c ≤ C <

∞, independent of the level j, such that

c

3∑

l=1

∑

Zj∈Zj

d2
l,Zj ≤

∥∥∥∥∥
3∑

l=1

∑

Zj∈Zj

dl,Zj2j iΥF l
j+1,Zj

∥∥∥∥∥

2

L2(S)

≤ C

3∑

l=1

∑

Zj∈Zj

d2
l,Zj ,

for i = 1, 2 and arbitrary real numbers dl,Zj .

Proof. In [3] we proved the following inequalities

1

M

3∑

l=1

∑

Uj∈Uj

d2
l,Uj ≤

∥∥∥∥∥
3∑

l=1

∑

Uj∈Uj

dl,Uj2j iΨF l
j+1,Uj

∥∥∥∥∥

2

L2(S2)

≤ 1

m

3∑

l=1

∑

Uj∈Uj

d2
l,Uj ,

for i = 1, 2 and arbitrary real numbers dl,Uj , where the numbers m and M are given in

Section 2. Combining these inequalities with the inequalities given in (4.7) we obtain,

for i = 1, 2 and arbitrary real numbers dl,Zj ,

mσ

M

3∑

l=1

∑

Zj∈Zj

d2
l,Zj ≤

∥∥∥∥∥
3∑

l=1

∑

Zj∈Zj

dl,Zj2j iΥF l
j+1,Zj

∥∥∥∥∥

2

L2(S)

≤ Mσ

m

3∑

l=1

∑

Zj∈Zj

d2
l,Zj ,

inequalities which prove the Riesz stability of our wavelets.

ROSCA130



6 Some closed surfaces which assure the Riesz sta-

bility in L2(S)

The question is now: how should we choose the function ρ such that the hypotheses of

Proposition 5.2 are satisfied.

The supposition we have already made was that the function r defined in (4.2) is

continuous and has partial derivatives on ∆ = (0, 2π)× (0, π). We want to see how the

functions ρ or r should be taken to assure the boundness of the function E : ∆ → R,

E(u, v) = r

(
r2 + r2

v +
r2
u

sin2 v

)1/2

.

A natural choice is the following.

Proposition 6.1 Let Ω ⊆ R3 be a domain such that S2 ⊆ intΩ. If the function ρ :

Ω → (0,∞) is such that ρ ∈ C1 (Ω) , then the function E is bounded on ∆.

Proof. Let m0, M0, M1 be real positive numbers such that

m0 ≤ ρ (η) ≤ M0,

max {|ρx (η)| , |ρy (η)| , |ρz (η)|} ≤ M1,

for all η ∈ S2. Here ρx, ρy, ρz denote the partial derivatives of the function ρ. Evaluating

rv and ru we obtain

rv = ρx cos v cos u + ρy cos v sin u− ρz sin v,

ru

sin v
= −ρx sin u + ρy cos u

and further, using the Cauchy-Schwarz inequality we get

r2
v ≤ (

ρ2
x + ρ2

y + ρ2
z

) (
cos2 u cos2 v + cos2 v sin2 u + sin2 v

)
= ρ2

x + ρ2
y + ρ2

z,(
r2
u

sin v

)2

≤ (
ρ2

x + ρ2
y

) (
sin2 u + cos2 u

)
= ρ2

x + ρ2
y.
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With these inequalities we finally get

m2
0 ≤ E(u, v) ≤ M0

√
M2

0 + 5M2
1 ,

for all (u, v) ∈ ∆.
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Abstract. In this paper we consider linear differential operators
whose eigenfunctions are Legendre polynomials. We find necessary
and sufficient conditions imposed on eigenvalues for such an operator
to be representable as linear combination of some standard linear
differential operators.
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1. INTRODUCTION

We denote {Pm}∞m=0 the system of Legendre polynomials standardized by
the condition Pm(1) = 1 (m = 0, 1, . . .). We introduce linear differential op-
erator D2r(f ;x) =

(
(1 − x2)rf (r)(x)

)(r) (r ∈ N) of order 2r defined on the
set C2r =

{
f : f (2r) ∈ C[−1, 1]

}
. It is easy to prove (see Lemma 1 below) that

∀r ∈ N Legendre polynomials Pm (m+1 ∈ N) are eigenfunctions of the operator
D2r (for m < r it is obvious). It implies that for any differential operator

D2r = λ0I +
r∑

k=1

λkD2k, (1)

1
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where λi ∈ R (i = 0, 1, . . . , r) and I is the identity operator, Legendre polyno-
mials Pm (m + 1 ∈ N) are its eigenfunctions.

Suppose we have a linear differential operator

D2r(f ;x) =
2r∑

i=0

bi(x)f (i)(x), bi ∈ C[−1, 1] (i = 0, 2r),

defined on C2r. As we indicated before, for an operator D2r to be representable
in the form (1), it is necessary for the Legendre polynomials to be eigenfunctions
of D2r, i.e. it is necessary that ∀m (m + 1 ∈ N)

D2r(Pm) = µ(r)
m Pm, µ(r)

m ∈ R (m + 1 ∈ N). (2)

We assume now that a linear differential operator D2r satisfies the conditions
(2). In this note we find necessary and sufficient conditions imposed on the
eigenvalues µ

(r)
m (m + 1 ∈ N) for such an operator to be representable in the

form (1).

2. SOME AUXILIARY STATEMENTS

Lemma 1. For r, m ∈ N , m ≥ r we have

D2r(Pm) = (−1)r · (m + r)!
(m− r)!

Pm. (3)

Proof . We denote P
(α,β)
m (x) (m + 1 ∈ N) Jacobi polynomials orthogonal on

[−1, 1] with the weight (1 − x)α(1 + x)β (α, β > −1) and standardized by the
conditions

P (α,β)
m (1) =

Γ(α + m + 1)
m!Γ(α + 1)

(m + 1 ∈ N).

Making use of the formulas

P (r)
m =

1
2r

(m + 1)(m + 2) . . . (m + r)P (r,r)
m−r (m ≥ r)

and(
(1− x2)rP

(r,r)
m−r(x)

)(r) = (−1)r2rm(m− 1) . . . (m− r + 1)Pm(x) (m ≥ r).

[2], pp. 75 and 107 respectively, we obtain (3). Lemma 1 is proved.

Lemma 2. If m− 1 ∈ N , i ∈ N , 1 ≤ i < m, then
m∑

k=i

(−1)k · (m + k)!
(m− k)!(i + k + 1)!(k − i)!

= 0. (4)

Proof . We denote S the sum on the left side of (4). By introducing new index
of summation j = k − i we get

S = (−1)i
m−i∑
j=0

(−1)j (m + j + i)!
(m− i− j)!(2i + j + 1)!j!

. (5)

2
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If we denote n = m + i + 1, M = m + i, we obtain

S = (−1)i
m−i∑
j=0

(−1)j (M + j)!
j!(m− i− j)!(n−m + i + j)!

. (6)

The following formula holds true: if p, m, n ∈ N , p ≤ n, then

n!
m!

p∑
i=0

(−1)i (m + i)!
i!(p− i)!(n− p + i)!

=
(n−m− 1)(n−m− 2) . . . (n−m− p)

p!
,

(7)
[3], p. 18. If we put in (6) m− i = p and take into account (7) we get

S = (−1)i

p∑
j=0

(−1)j (M + j)!
j!(p− j)!(n− p + j)!

= 0.

Lemma 2 is proved.

Lemma 3. If m ∈ N then
m∑

k=1

(−1)k (m + k)!
(m− k)!(k + 1)!k!

= −1. (8)

Proof . If we put in formula (7) p = m,n = m + 1, we get

m∑
i=0

(−1)i (m + i)!
i!(m− i)!(i + 1)!

= 0,

whence
m∑

i=1

(−1)i (m + i)!
i!(m− i)!(i + 1)!

= −1.

Lemma 3 is proved.

3. THE MAIN THEOREM

Theorem. For a linear differential operator D2r, defined on C2r and satisfying
conditions (2), to be representable in the form (1), it is necessary and sufficient
that

µ(r)
m = µ

(r)
0 +

r∑
k=1

(
k∑

i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!

)
(−1)k

· (m + k)!
(m− k)!

, m ≥ r + 1. (9)

If the conditions (9) hold then

D2r = µ
(r)
0 I +

r∑
k=1

(
k∑

i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!

)
D2k. (10)

3
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Proof . We prove first that the differential operator

D̃2r = µ
(r)
0 I +

r∑
k=1

(
k∑

i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!

)
D2k (11)

satisfies the conditions

D̃2r(Pm) = µ(r)
m Pm, 0 ≤ m ≤ r. (12)

Taking into consideration (3) and obvious equalities D2k(Pm) = 0 (k > m),
we get

D̃2r(Pm) = µ
(r)
0 Pm +

m∑
k=1

(−1)k (m + k)!
(m− k)!

k∑
i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!
Pm.

(13)
If we change order of summation on the right side of (13), we derive

D̃2r(Pm) = µ
(r)
0 Pm + µ

(r)
0

m∑
k=1

(−1)k (m + k)!
(m− k)!(k + 1)!k!

Pm

+
m∑

i=1

µ
(r)
i (−1)i(2i + 1)

m∑
k=i

(−1)k (m + k)!
(m− k)!(i + k + 1)!(k − i)!

Pm.

By making use of (4) and (8) we obtain (12).
We will prove now that the conditions (9) are sufficient for the operator D2r

to be representable in the form (1). To this end, we find D̃2r(Pm), m > r.
Taking (3) and (9) into account, we obtain

D̃2r(Pm) = µ
(r)
0 Pm +

r∑
k=1

( k∑
i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!

)
D2k(Pm)

= µ
(r)
0 Pm +

r∑
k=1

( k∑
i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!

)
(−1)k (m + k)!

(m− k)!
Pm

=

[
µ

(r)
0 +

r∑
k=1

( k∑
i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!

)
(−1)k · (m + k)!

(m− k)!

]
Pm

= µ(r)
m Pm (m ∈ N, m > r). (14)

It follows from (12) and (14) that

D2r(Pm) = D̃2r(Pm), m = 0, 1, . . . ,

which, in turn, implies that for any algebraic polynomial f we have

D2r(f) = D̃2r(f). (15)

4
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Since ∀f ∈ C2r and ∀ε > 0 there is algebraic polynomial Q such that ‖f (k) −
Q(k)‖C[−1,1,] < ε (k = 0, 1, . . . , 2r), [1], we conclude that (15) holds ∀f ∈ C2r so
that D2r = D̃2r and equality (10) is valid. Sufficiency is proved.

We will now prove necessity, that is we assume that D2r can be represented
in the form (1) and we will deduce from this assumption that the relations (9)
hold true. We observe first that a linear operator

D2r = ν0I +
r∑

k=1

νkD2k (ν0, ν1, . . . , νr ∈ R)

such that D2r(Pm) = µ
(r)
m Pm (m = 0, r) is unique. This fact is obvious if we

take into account (3). It follows from this observation and from relations (11),
(12) that

D2r = µ
(r)
0 I +

r∑
k=1

(
k∑

i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!

)
D2k. (16)

We derive from (16) and (3) that ∀m ∈ N , m ≥ r + 1 we have

µ(r)
m Pm = D2r(Pm) = µ

(r)
0 Pm +

r∑
k=1

( k∑
i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!

)
D2k(Pm)

= µ
(r)
0 Pm +

r∑
k=1

( k∑
i=0

µ
(r)
i (−1)i 2i + 1

(i + k + 1)!(k − i)!

)
(−1)k · (m + k)!

(m− k)!
Pm,

which implies (9). This completes the proof of the theorem.

5
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Abstract. The purpose of this paper is to show that the convergence of the
three-step iterations suggested by Noor [10–13], Noor et al. [14] for solving non-
linear operator equations, general variational inequalities and multi-valued quasi-
variational inclusions in Hilbert spaces or uniformly smooth Banach spaces are
equivalent to the that of the Mann iteration.
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1. Introduction and Preliminaries

Recently, much attention has been given to solve the nonlinear operator equa-
tions, general variational inequalities, multi-valued variational inequalities and
multi-valued quasi varitional inclusions in uniformly smooth Banach spaces and
Hilbert spaces by using the three-step iterative processes. Glowinski and Le
Tallec [5] used the three-step iterative schemes for solving elastoviscoplasticity,
liquid crystal and eigenvalue problems. Haubruge et al [6] have also studied the
convergence analysis of the three-step iteration schemes of Glowwinski and Le
Tallec [5] and applied these three-step iterations to obtain new splitting type
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algorithms for solving variational inequalities, separable convex programming
and minimization of a sum of convex functions. For applications of the splitting
techniques to partial differential equations, see [1] and the referees therein.

In recent years Noor [10–13] and Noor et al. [14] have suggested and analyzed
three-step iterative methods for solving nonlinear operator equations, general
variational inequalities, multi-valued quasi-variational inclusions and for finding
the approximate solutions of the variational inclusions in Hilbert spaces or uni-
formly smooth Banach spaces.

The purpose of this paper is to prove that the convergence of the three-step it-
erations suggested by Noor [10–13] and Noor et al. [14] for solving nonlinear oper-
ator equations, general variational inequalities and multi-valued quasi-variational
inclusions in Hilbert spaces or uniformly smooth Banach spaces are equivalent
to the that of the one-step iteration.

For the purpose, we divide our paper into two parts. The first part is devoted
to study the equivalence between three-step iteration and one-step iteration for
nonlinear accretive operator equations in uniformly smooth Banach spaces. The
second part is devoted to study the equivalence between three-step iteration and
one-step iteration for general variational inequalities in Hilbert spaces.

2. Nonlinear operator equations in Banach spaces

Throughout this section we assume that E is a real uniformly smooth Banach
space, E∗ is the dual space of E, K is a nonempty closed convex subset of E,
F (T ) is the set of fixed points of mapping T and J : E → 2E∗ is the normalized
duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ‖x‖}, x ∈ E.

Definition 2.1. Let T : E → E be a mapping.
(i) T is said to be strongly accretive, if there exists a constant 0 < c < 1 such

that for any x, y ∈ E there exists a j(x− y) ∈ J(x− y) satisfying

〈Tx− Ty, j(x− y)〉 ≥ c‖x− y‖2. (2.1)

(ii) T is said to be strongly pseudo-contractive, if there exists a constant
0 < k < 1 such that for any x, y ∈ E, there exists j(x − y) ∈ J(x − y)
satisfying

〈Tx− Ty, j(x− y)〉 ≤ k‖x− y‖2. (2.2)

The concept of accretive mapping was at first introduced independently by
Browder [2] and Kato [7] in 1967. An early fundamental result in the theory of
accretive mapping due to Browder states that the initial value problem

du(t)
dt

+ Tu(t) = 0, u(0) = u0

is solvable, if T is locally Lipschitzian and accretive on E.
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Definition 2.2. [14] Let T : K → K be a mapping, x0 ∈ K be a given point,
{αn}, {βn} and {γn} be three real sequences in [0, 1] satisfying some certain
conditions. Then the sequence {xn} ∈ E defined by





xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn, ∀ n ≥ 0,

zn = (1− γn)xn + γnTxn;
(2.3)

is called the three-step iteration process, which was suggested and analyzed by
Noor et al. [14] for nonlinear equations in uniformly smooth Banach spaces.

Definition 2.3. [8] For given u0 ∈ K, the sequence {un} defined by

un+1 = (1− αn)un + αnTun, ∀ n ≥ 0 (2.4)

is called the one-step iteration process (or Mann iteration process [8]), where the
sequence {αn} appeared in (2.4) is the same as in (2.3).

Remark 2.1. It is easy to see that if u0 = x0, βn = 0 and γn = 0 for all n ≥ 0,
then the three-step iteration process (2.3) is reduced to the one-step iteration
process (2.4).

The following lemmas will be needed in proving our main results.

Lemma 2.1. [4] Let E be a real Banach space and let J : E → 2E∗ be the
normalized duality mapping. Then for any x, y ∈ E, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀ j(x + y) ∈ J(x + y). (2.5)

Lemma 2.2. [3] E is a uniformly smooth Banach space if and only if the normal-
ized duality mapping J is single-valued and uniformly continuous on any bounded
subset of E.

Lemma 2.3. [15] Let {an} and {bn} be two nonnegative real sequences satisfying
the following condition:

an+1 ≤ (1− λn)an + bn, ∀ n ≥ n0,

where n0 is some nonnegative integer and λn ∈ [0, 1] is a sequence with bn =
o(λn) and

∑∞
n=0 λn = ∞. Then limn→∞ an = 0.

Theorem 2.1. Let E be a real uniformly smooth Banach space, T : E → E be
a strongly pseudo-contractive mapping with a constant 0 < k < 1 and the range
R(T ) of T be bounded. Let {xn} and {un} be the three-step iteration scheme
and one-step iteration scheme defined by (2.3) and (2.4) respectively, p be a fixed
point of T and {αn}, {βn} and {γn} be three real sequences in [0, 1] satisfying
the following conditions:

lim
n→∞

αn = 0, lim
n→∞

βn = 0, lim
n→∞

γn = 0 and
∞∑

n=0

αn = ∞. (2.6)
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If x0 = u0, then {xn} converges strongly to p ∈ F (T ) if and only if {un} converges
strongly to p ∈ F (T ). Furthermore, p is the unique fixed point of T.

Proof. First we prove that p ∈ E is the unique fixed point of T . In fact, let
p, q ∈ E be two fixed points of T . Since T is strongly pseudo-contractive with
constant 0 < k < 1, we have

‖p− q‖2 = 〈p− q, J(p− q)〉 = 〈Tp− Tq, J(p− q)〉 ≤ k‖p− q‖2.

This implies that ‖p− q‖ = 0, i.e., p = q.
Next we prove the first statement.
Since E is uniformly smooth Banach space, by Lemma 2.2 we know that the

normalized duality mapping J is single-valued and uniformly continuous on any
bounded subset of E. Again since T : E → E is strongly pseudo-contractive with
0 < k < 1, from Lemma 2.1 we have

‖xn+1 − un+1‖2 = ‖(1− αn)(xn − un) + αn(Tyn − Tun)‖2
≤ (1− αn)2‖xn − un‖2 + 2αn〈Tyn − Tun, J(xn+1 − un+1)〉
≤ (1− αn)2‖xn − un‖2 + 2αn〈Tyn − Tun, J(yn − un)〉

+ 2αn〈Tyn − Tun, J(xn+1 − un+1)− J(yn − un)〉
≤ (1− αn)2‖xn − un‖2 + 2αnk‖yn − un‖2

+ 2αn〈Tyn − Tun, J(xn+1 − un+1)− J(yn − un)〉.
(2.7)

Now we consider the second term on the right side of (2.7). From (2.3) we
have

‖yn − un‖2 = ‖(1− βn)(xn − un) + βn(Tzn − un‖2
≤ (1− βn)2‖xn − un‖2 + 2βn〈Tzn − un, J(yn − un)〉
≤ (1− βn)2‖xn − un‖2 + 2βn‖Tzn − un‖‖yn − un‖
≤ (1− βn)2‖xn − un‖2 + βn{‖Tzn − un‖2 + ‖yn − un‖2}.

Simplifying, we have

(1− βn)‖yn − un‖2 ≤ (1− βn)2‖xn − un‖2 + βn‖Tzn − un‖2. (2.8)

Since βn → 0, there exists a nonnegative integer n0 such that for n ≥ n0, βn < 1
2 ,

and so 1− βn > 1
2 , for all n ≥ n0. Therefore from (2.8) we have

‖yn − un‖2 ≤ (1− βn)‖xn − un‖2 + 2βn‖Tzn − un‖2, ∀ n ≥ n0. (2.9)

Since the range R(T ) of T is bounded, there exists a constant M1 > 0 such that
sup
x∈E

‖Tx‖ ≤ M1. Since p = Tp, we have

sup
n≥0

{‖Txn‖, ‖Tyn‖, ‖Tzn‖, ‖Tun‖, ‖p‖} ≤ M1. (2.10)
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Putting
M = ‖x0‖+ M1,

we can prove that

sup
n≥0

{‖Txn‖, ‖Tyn‖, ‖Tzn‖, ‖Tun‖, ‖p‖, ‖xn‖, ‖yn‖, ‖zn‖, ‖un‖} ≤ M. (2.11)

In fact, for n = 0 we have

‖y0‖ = ‖(1− β0)x0 + β0Tz0‖ ≤ (1− β0)‖x0‖+ β0‖Tz0‖ ≤ M ;

‖z0‖ = ‖(1− γ0)x0 + γ0Tx0‖ ≤ (1− β0)‖x0‖+ γ0‖Tx0‖ ≤ M.

For n = 1, noting that x0 = u0 we have

‖x1‖ = ‖(1− α0)x0 + α0Ty0‖ ≤ M ;

‖y1‖ = ‖(1− β1)x1 + β1Tz1‖ ≤ M ;

‖z1‖ = ‖(1− γ1)x1 + γ1Tx1‖ ≤ M ;

‖u1‖ = ‖(1− α0)u0 + α0Tu0‖ ≤ M.

By induction, we can prove that (2.11) is true.
It follows from (2.11)and (2.9) that

‖yn − un‖2 ≤ (1− βn)‖xn − un‖2 + 2βn · 4M2

= (1− βn)‖xn − un‖2 + 8M2βn

≤ ‖xn − un‖2 + 8M2βn, ∀ n ≥ n0.

(2.12)

Now we consider the third term on the right side of (2.7). We have

2αn〈Tyn − Tun, J(xn+1 − un+1)− J(yn − un)〉
≤ 2αn‖Tyn − Tun‖‖J(xn+1 − un+1)− J(yn − un)‖
≤ 4Mαn‖J(xn+1 − un+1)− J(yn − un)‖.

(2.13)

Since αn → 0 and βn → 0, we have

‖xn+1 − un+1 − (yn − un)‖
= ‖(1− αn)(xn − un) + αn(Tyn − Tun)− (1− βn)(xn − un)− βn(Tzn − un)‖
≤ |αn − βn|‖xn − un‖+ αn‖Tyn − Tun‖+ βn‖Tzn − un‖
≤ 2M |αn − βn|+ 2M(αn + βn) → 0, (n →∞). (2.14)

By the uniform continuity of J, it follows from (2.14) that

en := ‖J(xn+1 − un+1)− J(yn − un)‖ → 0, as n →∞. (2.15)
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Therefore, it follows from (2.15), (2.13), (2.12) and (2.7) that

‖xn+1 − un+1‖2 ≤ (1− αn)2‖xn − un‖2
+ 2αnk{‖xn − un‖2 + 8M2βn}+ 4Mαnen

= (1− 2αn(1− k))‖xn − un‖2
+ αn{αn‖xn − un‖2 + 16M2kβn + 4Men}

≤ (1− 2αn(1− k))‖xn − un‖2
+ αn{4M2αn + 16M2kβn + 4Men}, ∀ n ≥ n0.

(2.16)

Taking an = ‖xn − un‖2, λn = 2αn(1 − k) and bn = αn{4M2αn + 16M2kβn +
4Men} in (2.16), we have

an+1 ≤ (1− λn)an + bn, ∀ n ≥ n0.

Since αn → 0, there exists a positive integer n1 ≥ n0 such that λn ∈ [0, 1], for all
n ≥ n1. Again since

∑∞
n=0 αn = ∞, we have

∑∞
n=0 λn = ∞. Moreover, we have

that bn = o(λn). Therefore by Lemma 2.3 we know that an → 0, as n →∞, and
so ‖xn − un‖ → 0, as n →∞. Therefore if xn → p, then we have

‖un − p‖ ≤ ‖un − xn‖+ ‖xn − p‖ → 0, as n →∞.

Conversely, if un → p, then we have

‖xn − p‖ ≤ ‖xn − un‖+ ‖un − p‖ → 0, as n →∞.

This completes the proof of Theorem 2.1. ¤

Remark 2.2. We also, can easily prove that the one-step sequence {un} con-
verges to p ∈ F (T ). In fact, from (2.4) and Lemma 2.1 we have

‖un+1 − p‖2 = ‖(1− αn)(un − p) + αn(Tun − Tp)‖2
≤ (1− αn)2‖un − p‖2 + 2αn〈Tun − Tp, J(un+1 − p)〉
≤ (1− αn)2‖un − p‖2 + 2αn〈Tun − Tp, J(un − p)〉

+ 2αn〈Tun − Tp, J(un+1 − p)− J(un − p)〉
≤ (1− αn)2‖un − p‖2 + 2αnk‖un − p‖

+ 2αn‖Tun − Tp‖ · ‖J(un+1 − p)− J(un − p)‖
≤ (1− 2αn(1− k)) ‖un − p‖2 + α2

n‖un − p‖2
+ 4Mαn‖J(un+1 − p)− J(un − p)‖

≤ (1− 2αn(1− k)) ‖un − p‖2 + 4Mα2
n + 4Mαncn

≤ (1− 2αn(1− k)) ‖un − p‖2 + 4Mαn{αn + cn},

(2.17)
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where cn := ‖J(un+1 − p)− J(un − p)‖. Since

‖un+1 − p− (un − p)‖ = ‖un+1 − un‖
= ‖αn(Tun − un)‖
≤ 2Mαn → 0, as n →∞,

from the uniform continuity of J we know that

cn → 0, as n →∞. (2.18)

Taking an = ‖un − p‖2, λn = 2αn(1 − k)) and bn = 4Mαn{αn + cn} in (2.17),
we have

an+1 ≤ (1− λn)an + bn.

Since
∑∞

n=0 αn = ∞ and αn → 0, as n → ∞, there exists a positive integer n2

such that λn ∈ [0, 1], for all n ≥ n2 and
∑∞

n=0 λn = ∞. Again since bn = o(λn),
by Lemma 2.3 we know that an → 0, hence un → p ∈ F (T ), as n →∞.

Remark 2.3. Theorem 2.1 shows that for solving nonlinear accretive operator
equations in a uniformly smooth Banach space, we can use the simple one-step
iteration to replace the complicated three-step iteration suggested and analyzed
in Noor et al. [14].

3. General variational inequalities in Hilbert spaces

Throughout this section we assume that H is a real Hilbert space whose inner
product and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let K be a
nonempty closed convex subset of H.

For given nonlinear operator T, g : H → H consider the problem of finding
u ∈ H, g(u) ∈ K such that

〈Tu, g(v)− g(u)〉 ≥ 0, ∀ g(u) ∈ K. (3.1)

This kind of inequality is called a general variational inequality which was intro-
duced and studied by Noor [9] in 1988.

Definition 3.1. Let T : H → H be a mapping.

(i) T is said to be strongly monotone, if there exists a constant α > 0 such
that

〈Tx− Ty, x− y〉 ≥ α‖x− y‖2, ∀ x, y ∈ H;

(ii) T is said to be Lipschitz continuous, if there exists a constant β > 0 such
that

‖Tx− Ty‖ ≤ β‖x− y‖, ∀ x, y ∈ H.
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From (i) and (ii), we know that α ≤ β.

Recently, in [10] Noor suggested the following three-step iteration for solving
the general variational inequality (3.1):





xn+1 = (1− αn)xn + αn{wn − g(wn) + PK (g(wn)− ρTwn)},
wn = (1− βn)xn + βn{yn − g(yn) + PK (g(yn)− ρTyn)},
yn = (1− γn)xn + γn{xn − g(xn) + PK (g(xn)− ρTxn)};

(3.2)

where x0 ∈ H is a given point and PK : H → K is the projection operator, and
proved the following theorem:

Theorem 3.1. [10] Let the mappings T, g : H → H be both strongly monotone
with constants α > 0, σ > 0 and Lipschitz continuous with constants β > 0,
δ > 0, respectively.

(1) If

∣∣∣∣ρ−
α

β2

∣∣∣∣ <

√
α2 − β2k(2− k)

β2
, α > β

√
k(2− k), k < 1, (3.3)

where
k = 2

√
1− 2σ + δ2, (3.4)

then there exists a unique solution p ∈ H, g(u) ∈ K of the general varia-
tional inequality (3.1).

(2) If 0 ≤ αn, βn, γn ≤ 1, for all n ≥ 0 and
∑∞

n=0 αn = ∞, then the three-step
iteration {xn} defined by (3.2) converges strongly to the exact solution p
of the general variational inequality (3.1).

In the sequel, we shall prove that under the conditions given in Theorem
3.1, the convergence of the three-step iteration process {xn} defined by (3.2) is
equivalent to the that of the one-step iteration {un} defined by

un+1 = (1− αn)un + αn{un − g(un) + PK (g(un)− ρTun)}, (3.5)

where u0 ∈ H is a given point and {αn} is the same as given in (3.2).
In order to prove our result, we need the following lemma:

Lemma 3.1. [9] p ∈ H is a solution of the general variational inequality (3.1)
if and only if p ∈ H satisfies the condition:

g(p) = PK (g(p)− ρTp) ,

where ρ > 0 is a constant.
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Theorem 3.2. Let the mappings T, g : H → H satisfy all the assumptions
of Theorem 3.1. Let 0 ≤ αn, βn, γn ≤ 1, for all n ≥ 0 with

∑∞
n=0 αn = ∞.

If x0 = u0 and if the condition (3.3) is satisfied, then the convergence of the
three-step iteration {xn} defined by (3.2) is equivalent to the that of the one-step
iteration {un} defined by (3.5), i.e., xn → p (the solution of general variational
inequality (3.1)) if and only if un → p.

Proof. Necessity. If xn → p, as n →∞, then take βn = γn = 0, for all n ≥ 0 in
(3.2) and noting that x0 = u0, it is easy to see that un → p.

Sufficiency. Let un → p, next we prove that xn → p. In fact, since p is the
unique solution of general variational inequality (3.1), by Lemma 3.1, we have

p = (1− αn)p + αn{p− g(p) + PK (g(p)− ρTp)}
= (1− βn)p + βn{p− g(p) + PK (g(p)− ρTp)}
= (1− γn)p + γn{p− g(p) + PK (g(p)− ρTp)}.

(3.6)

From (3.2) and (3.5), we have

‖xn+1 − un+1‖ = ‖(1− αn)(xn − un) + αn {wn − un − (g(wn)− g(un))}
+ αn {PK (g(wn)− ρTwn)− PK (g(un)− ρTun)} ‖

≤ (1− αn)‖xn − un‖+ 2αn‖wn − un − (g(wn)− g(un)) ‖
+ αn‖wn − un − ρ(Twn − Tun)‖.

(3.7)
First we consider the third term on the right side of (3.7). Since the operator T

is strongly monotone with constant α > 0 and Lipschitz continuous with constant
β > 0, it follows that

‖wn − un − ρ(Twn − Tun)‖2 = ‖wn − un‖2 − 2ρ〈Twn − Tun, wn − un〉
+ ρ2‖Twn − Tun‖2

≤ (1− 2ρα + ρ2β2)‖wn − un‖2.

Therefore, we have

‖wn − un − ρ(Twn − Tun)‖ ≤ t(ρ)‖wn − un‖, (3.8)

where t(ρ) =
√

1− 2ρα + ρ2β2.
Now we consider the second term on the right side of (3.7). Since the oper-

ator g is strongly monotone with constant σ > 0 and Lipschitz continuous with
constant δ > 0, in a similar way we have,

‖wn − un − (g(wn)− g(un)) ‖2 ≤ (1− 2σ + δ2)‖wn − un‖2.

Therefore, we have

‖wn − un − (g(wn)− g(un)) ‖ ≤
√

1− 2σ + δ2‖wn − un‖. (3.9)
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Substituting (3.8) and (3.9) into (3.7) and simplifying, we have

‖xn+1 − un+1‖ ≤ (1− αn)‖xn − un‖+ αn (t(ρ) + k) ‖wn − un‖
= (1− αn)‖xn − un‖+ αnθ‖wn − un‖,

(3.10)

where k := 2
√

1− 2σ + δ2 and θ := k + t(ρ). By the condition (3.3), it is easy to
prove that

0 < θ < 1.

Finally we consider the last term on the right side of (3.10). We have

‖wn − un‖ ≤ ‖wn − p‖+ ‖un − p‖, ∀ n ≥ 0. (3.11)

In a similar way as given in the proof of (3.8), (3.9) and (3.10), it follows from
(3.2) and (3.6) that

‖wn − p‖ ≤ (1− βn)‖xn − p‖+ 2βn‖yn − p− (g(yn − g(p)) ‖
+ βn‖yn − p− ρ(Tyn − Tp)‖

≤ (1− βn)‖xn − p‖+ βn (k + t(ρ)) ‖yn − p‖
= (1− βn)‖xn − p‖+ βn · θ‖yn − p‖.

(3.12)

Similarly, it follows from (3.2) and (3.6) that

‖yn − p‖ ≤ (1− γn)‖xn − p‖+ γnθ‖xn − p‖
≤ (1− γn)‖xn − p‖+ γn‖xn − p‖
= ‖xn − p‖.

(3.13)

From (3.12) and (3.13) we have

‖wn − p‖ ≤ (1− βn)‖xn − p‖+ βn · θ‖xn − p‖
≤ ‖xn − p‖. (3.14)

Substituting (3.14) into (3.11), it gets that

‖wn − un‖ ≤ ‖xn − p‖+ ‖un − p‖
≤ ‖xn − un‖+ 2‖un − p‖. (3.15)

Substituting (3.15) into (3.10), we have

‖xn+1 − un+1‖ ≤ (1− αn)‖xn − un‖
+ αnθ {‖xn − un‖+ 2‖un − p‖}

= (1− αn(1− θ)) ‖xn − un‖+ 2αnθ‖un − p‖.
(3.16)

Let an = ‖xn − un‖, λn = αn(1 − θ) and bn = 2αnθ‖un − p‖. Therefore (3.16)
can be written as follows

an+1 ≤ (1− λn)an + bn, ∀ n ≥ 0.

Since 0 < θ < 1 and by the assumption,
∑∞

n=0 αn = ∞, hence λn ∈ [0, 1] and∑∞
n=0 λn = ∞. Again since ‖un − p‖ → 0, as n →∞, we know that bn = o(λn).

Therefore by Lemma 2.3, ‖xn − un‖ → 0, and so

‖xn − p‖ ≤ ‖xn − un‖+ ‖un − p‖ → 0, as n →∞.

That is, xn → p, as n →∞. This completes the proof of Theorem 3.2. ¤
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Remark 3.1.

(1) Theorem 3.2 shows that the convergence of the three-step iteration (3.2)
suggested and analyzed by Noor [10] is equivalent to the that of the one-
step iteration (3.5). Therefore in order to solve the general variational
inequality (3.1) in Hilbert spaces, we can use the simple one-step iteration
(3.5) to replace the complicated three-step iteration (3.2).

(2) At the end of this paper we would like to point out that the three-step it-
erations suggested and analyzed by Noor [11–13] for solving multi-valued
quasi-variational inclusions and multi-valued variational inequalities also
can be replaced by the corresponding one-step iterations. Owing to the
methods of proof are similar, the details are omitted.
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Abstract : In this paper, we study a numerical approach to find the solu-

tion of the boundary-value problems for singularly perturbed differential-difference

equations with small shifts. Similar boundary-value problems are associated with

expected first-exit time problems of the membrane potential in models for activity

of neuron [2-6] and in variational problems in control theory. Here we propose

an exponentially fitted method based on finite difference to solve boundary-value

problem for a singularly perturbed differential-difference equation with small shifts

of mixed type, i.e., which contains both type of terms having negative shift as well

as positive shift and consider the case in which the solution of the problem exhibits

layer behavior. We calculate the fitting parameter for the exponentially fitted finite

difference scheme corresponding to the problem and establish the error estimate

which shows that the method converges to the solution of the problem. The effect

of small shifts on the boundary layer solution is shown by considering the numeri-

cal experiments. The numerical results for several test examples demonstrate the

efficiency of the method.

Key Words: Singular perturbation, differential-difference equation, fitting pa-

rameter, exponentially fitted, negative shift, positive shift, boundary layer.
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1 Introduction

We continue the study of boundary-value problems for singularly-perturbed

differential-difference equations with small shifts. There are many biological and

physical models in which one can encounter such type of problems, e.g., in vari-

ational problem in control theory and first-exit time problem in modeling of de-

termination of expected time for generation of action potentials in nerve cell by

random synaptic inputs in the dendrites [2, 6].

On the theoretical side there have been many advanced models for activation

of nerve membrane potential in the presence of random synaptic inputs in the

dendrites. Reviews can be found in Segundo et. al [11], Fienberg and Holden [1].

Stein first gave a fairly realistic DDE model incorporating stochastic effects due

to neuronal excitation, in which after refractory period, excitatory and inhibitory

exponentially decaying inputs of constant size occur at random intervals and add

up until a threshold value is reached. In [14], Stein generalized his model to handle

a distribution of post-synaptic potential amplitudes and then approximating the

solution using Monte-Carlo technique. Other methods for obtaining approximate

solution have since been developed by Tuckwell and cope, Tuckwell and Richter

[9, 10] and Wilber and Rinzel [15].

In [2], Lange and Miura considered the problem of determining the expected

time for the generation of action potentials in nerve cells by random synaptic inputs

in the dendrites. The general boundary-value problem for the linear second-order

differential-difference equation that arises in the modeling of activation of neuron

is

(σ2/2)y′′(x) + (µ− x)y′(x) + λEy(x+ aE) + λIy(x− aI) − (λE + λI)y(x) = −1,

where σ and µ are the variance and drift parameters, respectively and y is the

expected first-exit time. The first order derivative term −xy ′(x) corresponds to

exponential decay between synaptic inputs. The undifferentiated terms correspond

to excitatory and inhibitory synaptic inputs modeled as Poisson process with mean

rates λE and λI , respectively, and produce jumps in the membrane potential of

amounts aE and aI , respectively, which are small quantities and could depend on

voltage. The boundary condition is

y(x) = 0, ∀ x /∈ (x1, x2),
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where the values x = x1 and x = x2 correspond to the inhibitory reversal potential

and to the threshold value of membrane potential for action potential generation,

respectively.

This biological problem motivates the investigation of boundary-value prob-

lems for differential-difference equations with small shifts. The singular pertur-

bation analysis of boundary-value problems for differential -difference equations

with delay has been given in a series of papers by Lange and Miura [2-6] and

they presented an asymptotic approach for solving such type of problems. In their

papers [2] and [6], the study of BVPs for the two classes of singularly perturbed

differential-difference equations with small shifts is given and the effect of small

shifts is shown on the boundary layer solution [2] and on the oscillatory solution

[6]. It is also pointed out that shifts affect oscillatory solution more than the

boundary layer solution and the term having shift can be expanded using Taylor

series, provided shift is of small order of parameter ε. In the above biological

model, the shifts are due to the jumps in the potential membrane which are very

small. There, the biologist Hutchinson [8] states “there is a tendency for the time

lag to be reduced as much as possible by natural selection”. Thus arguments

for small delay problems are found through out the literature on epidemics and

population [8]. Hence the small shift plays an important role in practical problems.

We make a numerical study for a class of BVPs for singularly-perturbed dif-

ferential difference equations with small shifts of mixed type(i.e., which contains

both the terms having negative as well as positive shifts) and present an expo-

nentially fitted finite difference numerical scheme to solve such types of boundary-

value problems. We show that the scheme is ε-uniform convergent of order h by

proving the error estimate. In this method, we first approximate the terms con-

taining shifts by Taylor series and then apply exponentially fitted finite difference

scheme, provided the shifts are of small order of ε. The effect of small shifts on the

boundary layer solution of the problem is shown by considering several numerical

experiments.

2 Statement of the Problem

Here, we consider the boundary-value problem for a singularly perturbed

differential-difference equation of mixed type (i.e. which contain both terms hav-
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ing positive shift and negative shift) with small shifts and with boundary layer

behavior given by

ε2y′′(x) + α(x)y(x− δ) + w(x)y(x) + β(x)y(x+ η) = f(x), (1)

on [0, 1],

under the boundary conditions

y(x) = φ(x), − δ ≤ x ≤ 0,

y(x) = ψ(x), 1 ≤ x ≤ 1 + η.
(2)

where ε is small parameter, 0 < ε � 1, δ and η are also small shift parameters,

0 < δ � 1 and 0 < η � 1; α(x), β(x), f(x), δ(ε), η(ε), φ(x) and ψ(x) are smooth

functions. For a function y(x) to be a smooth solution of the problem (1), it must

satisfy Eq. (1) with the given boundary conditions (2), be continuous on [0, 1] and

continuously differentiable on (0, 1). We present a numerical method to study the

above problem under the condition (α(x)+ β(x) +w(x)) < 0, x ∈ [0, 1], i.e., when

it exhibits a boundary layer solution.

2.1 Numerical Scheme

We have by Taylor series expansion

y(x− δ) ≈ y(x) − δy′(x),

y(x+ η) ≈ y(x) + ηy′(x).
(3)

From (1), (2) and (3), we obtain

ε2y′′(x) + (β(x)η − α(x)δ)y′(x) + (α(x) + β(x) + w(x))y(x) = f(x). (4)

on [0, 1],

under the boundary conditions

y(0) = φ0,

y(1) = ψ0.
(5)

For discretizing the problem BVP (4), (5), we place an uniform mesh ΩN
0

of size h =

1/N on the interval [0, 1]. After discretization of the problem using exponentially

fitted finite difference scheme, we obtain

ε2ρi(τ)D+D−yi + (ηβ(xi) − δα(xi))D−yi + (α(xi) + β(xi) + w(xi)) = f(xi), (6)

i = 1, . . . , N − 1.
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with the boundary conditions

y(0) = φ0,

y(1) = ψ0,
(7)

where

ρi(τ) =
(ηβ(xi) − δα(xi))τ [1 − exp(−τ(ηβ(xi) − δα(xi)))]

4(sinh(τ(ηβ(xi) − δα(xi))/2))2

is a fitting parameter with τ = h/ε2.

2.1.1 Calculation of Fitting Parameter

To compute the fitting parameter, we first prove the following Lemma.

Lemma. Let ŷ = yo +zo be the zeroth order asymptotic approximation to the

solution, where yo represents the zeroth order approximate outer solution(i.e., the

solution of the reduced problem) and zo represents the zeroth order approximate

solution in the boundary layer region. Also we assume that the scheme (6) is

uniformly convergent, then for a fixed positive integer n

lim
h→ 0

y(nh) = yo(0) + (φ0 − yo(0)) exp(−n(ηβ(0) − δα(0))τ). (8)

Proof

We have

|L(y(x) − ŷ(x))| ≤ |L(y(x)) − L(yo(x))| + |L(zo(x))|,
= |f(x) − ε2y′′o(x) − (ηβ(x) − δα(x))y′o(x)

−(α(x) + β(x) + w(x))yo(x)|

+ |d
2zo(ν)

dν2
+ (ηβ(x) − δα(x))

dzo(ν)

dν
+(α(x) + β(x) + w(x))zo(ν)|,

where ν = x/ε2.

Since yo and zo are the solutions of the reduced problem

(ηβ(xi) − δα(xi))y
′
o(x) + (α(x) + β(x) + w(x))yo(x) = f(x),

yo(1) = γ,

and of the boundary-value problem

d2zo(ν)

dν2
+ (ηβ(0) − δα(0))

dzo(ν)

dν
= 0,
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zo(0) = (φ0 − yo(0))

zo(∞) = 0,

respectively and using Taylor series for (ηβ(x) − δα(x)), we obtain

|L(y(x) − ŷ(x))| ≤ ε2|y′′o(x)| + |ν(ηβ ′(ξ) − δα′(ξ))(ξ)
dzo(ν)

dν
+(α(x) + β(x) + w(x))zo(ν)|,

where ξ ∈ (0, 1).

Since zo(ν) = (φ0 − yo(0)) exp(−ν(ηβ(0) − δα(0))), we get

|L(y(x) − ŷ(x))| ≤ ε2|y′′o(x)| + |[−(ηβ ′(ξ) − δα′(ξ))ν(ηβ(0)− δα(0)) + (α(x)

+β(x) + w(x))](φ0 − yo(0)) exp(−ν(ηβ(0) − δα(0)))|,

now if (ηβ(x) − δα(x)) is monotonically decreasing then (ηβ ′(ξ) − δα′(ξ)) < 0,

using this and the fact that t exp(−t) ≤ exp(−t/2), in the above inequality, we

obtain

|L(y(x) − ŷ(x))| ≤ ε2|y′′o(x)| + |(ηβ ′(ξ) − δα′(ξ))(φ0 − yo(0))|
. exp{(−x(ηβ(0) − δα(0)))/2ε2}.

Since y′′o (x) is bounded independently of ε for sufficiently smooth (ηβ(x)− δα(x)),

(α(x)+β(x)+w(x)) and f(x), so there exists a positive constant C1, s.t |y′′o(x)| ≤
C1 for x ∈ (0, 1) using this fact in the above inequality, we obtain

|L(y(x) − ŷ(x))| ≤ ε2C2[C
′ +

1

ε2
exp(−x(ηβ(0) − δα(0))/2ε2)], (9)

where C2 = |a′(ξ)(φ0 − yo(0))| and C ′ = C1/C2.

Now let us introduce a barrier function

ψ(x) = (1 − x/2)Aε2 +Bε2 exp{−Mx/ε2} ± (ŷ(x) − y(x)),

where A and B are positive constants. We have

L(ψ(x)) = ε2ψ′′(x) + (ηβ(x) − δα(x))ψ′(x) + (α(x) + β(x) + w(x))ψ(x)

= −AMε2/2 +BM [M − (ηβ(x) − δα(x))] exp{−Mx/ε2)}
+(α(x) + β(x) + w(x))[(1 − x/2)Aε2 +Bε2 exp{−Mx/ε2}]
±L(ŷ(x) − y(x)),
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using assumption on (ηβ(x)−δα(x))(i.e., (ηβ(x)−δα(x)) ≥M > 0) and inequality

(9), we obtain

L(ψ(x)) ≤ −AMε2/2 + (α(x) + β(x) + w(x))[(1 − x/2)Aε2 +Bε2

. exp{−Mx/ε2}] + ε2C2[C
′ + {exp(−x(ηβ(0) − δα(0))/2ε2)}/ε2].

Now since first and second terms are non-positive while third term is positive on

right side of the above inequality, so we choose the constants A and B such that

the total of the negative terms dominate the positive term. Thus we obtain

L(ψ(x)) ≤ 0, (10)

also one can easily show that ψ(x) ≥ 0 at the both ends of the interval [0, 1], then

by maximum principle, we obtain

ψ(x) ≥ 0,

after simplification, we obtain

|y(x) − yo(0) − (φ0 − yo(0)) exp{−x(ηβ(0) − δα(0))/ε2}| ≤ Cε2. (11)

Which gives the required result.

2

Now assume that the solution of (6), (7) converges ε uniformly to solution of

BVP (4), (5). This implies that f(xi) − (α(xi) + β(xi) + w(xi))yi is bounded.

From (6), we have

ε2ρi(τ)(yi−1 − 2yi + yi+1)/h
2 + (ηβ(xi) − δα(xi))(yi+1 − yi)/h

= f(xi) − (α(xi) + β(xi) + w(xi))yi, (12)

Now multiplying Eq. (12) by h for i = n and then taking limit as h → 0, we

obtain

lim
h→0

[(ρn(τ)/τ)(yn−1 − yn + yn+1) + (ηβ(xn) − δα(xn))(yn+1 − yn)] = 0.

We use the assumption that the scheme (6) is uniformly convergent, so we replace

yN−i by y((N − i)h) in the above equation, we obtain

lim
h→0

[(ρn(τ)/τ){y((n− 1)h) − y(nh) + y((n+ 1)h)}
+(ηβ(nh) − δα(nh)){y((n+ 1)h) − y(nh)}] = 0.
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Now using the above Lemma in the above equation, we obtain

lim
h→0

(ρn(τ)/τ)(φ0 − yo(0)) exp{−nτ(ηβ(0) − δα(0))}[exp{τ(ηβ(0) − δα(0))}
− 2 + exp{−τ(ηβ(0) − δα(0))}] + (ηβ(0) − δα(0))(φ0 − yo(0))

. exp{−nτ(ηβ(0) − δα(0))}[exp{−τ(ηβ(0) − δα(0))} − 1] = 0.

Which implies that

lim
h→0

ρn(τ)

τ
=

(ηβ(0) − δα(0))[1 − exp(−τ(ηβ(0) − δα(0)))]

4(sinh(τ(ηβ(0) − δα(0))/2))2
. (13)

On simplification, Eq. (6) reduces to following tridiagonal system of difference

equations

Eiyi−1 − Fiyi +Giyi+1 = Hi, (14)

where

Ei = ε2ρi(τ)/h
2,

Fi = ε2ρi(τ)/h
2 + (ηβ(xi) − δα(xi))/h− (α(xi) + β(xi) + w(xi)),

Gi = ε2ρi(τ)/h
2 + (ηβ(xi) − δα(xi))/h,

Hi = f(xi), i = 1, 2, . . . , N − 1.

The difference equations (14) form a tridiagonal system of N − 1 equations with

N + 1 unknowns y0, y1, . . . , yN . The N − 1 equations together with the given two

boundary conditions are sufficient to solve the system. The coefficient matrix of

such system of equations is non-singular, if it is either strictly diagonally domi-

nant or irreducible diagonally dominant [13]. To solve this system of difference

equations, we will use discrete invariant imbedding algorithm.

2.1.2 Discrete Invariant Imbedding Algorithm

Let us set a difference relation of the form

yi = Wiyi+1 + Ti, (15)

where

Wi = W (xi) and Ti = T (xi) are to be determined.

From Eq. (15), we have

yi−1 = Wi−1yi + Ti−1. (16)

Using Eq. (16) in (14), we obtain

yi =
Gi

(Fi − EiWi−1)
yi+1 +

EiTi−1 −Hi

(Fi − EiWi−1)
. (17)
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By comparing Eq. (15) and Eq. (17), we get recurrence relations for Wi and Ti

Wi = Gi/(Fi − EiWi−1),

Ti = (EiTi−1 −Hi)/(Fi − EiWi−1).

To solve these recurrence relations for i = 1, 2, . . . , N − 1., we need the initial

conditions for W0 and T0.

By the given boundary conditions, we have

y0 = φ0 = W0y1 + T0,

if we choose W0 = 0, then T0 = φ0. Now by using these initial conditions, we can

compute Wi and Ti for i = 1, 2, . . . , N − 1 and using these values of Wi and Ti in

Eq. (15), we obtain yi for i = 1, 2, . . . , N − 1.

Under the conditions

Ei > 0, Gi > 0, Fi ≥ Ei +Gi and |Ei| ≤ |Gi|, (18)

the discrete invariant imbedding algorithm is stable [12].

One can easily show that if the assumptions (ηβ(x)− δα(x)) > 0, (α(x) + β(x) +

w(x)) < 0 and (ε− δa(x)) > 0 hold, then the above conditions (18) hold and thus

the invariant imbedding algorithm is stable.

2.2 Error Estimate

Theorem 1. Suppose (ηβ(x)−δα(x)) ≥M > 0 and (α(x)+β(x)+w(x)) < 0,

∀x ∈ [0, 1], and if yi is the solution to the discretized problem (6), (7) and y(x) is

the solution of the corresponding continuous problem, then

|y(xi) − yi| ≤ Ch, (19)

where C is independent of i, h and ε.

Proof.

Let wi be any mesh function defined on the uniform mesh ΩN
0
.

Suppose

wi = yh
i − y

h/2

2i , 0 ≤ i ≤ N, (20)
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then

w0 = 0 = wN ,

and

|Lh(wi)| ≤ D1[h+ exp{−M(xi − h)/2ε2}], (21)

where D1 is independent of i, h and ε [7].

Then by discrete stability result [7], we obtain

|wi| ≤ D1{|wh
0
| + |wh

N | + max
1≤i≤N−1

|Lh(w
h
i )|},

i.e.,

|yh
i − y

h/2

2i | ≤ D1{h+ exp(−M(xi − h)/2ε2}, 0 ≤ i ≤ N. (22)

Now to establish the estimate, let us construct a barrier function

ψi = h[1 − xi + exp{−M(xi − h)/2ε2}]. (23)

We have

Lh(ψi) = Eiψi−1 − Fiψi +Giψi+1,

substituting for Ei, Fi and Gi from Eq. (14) and simplifying, we obtain

Lh(ψi) = 4ε2ρi(τ) sinh2(Mh/2ε2) exp(−M(xi − h)/2ε2)

−h(ηβ(xi) − δα(xi)) + (ηβ(xi) − δα(xi))[−1 + exp(−Mh/2ε2)]

. exp(−M(xi − h)/2ε2)

+(α(xi) + β(xi) + w(xi))h[1 − xi + exp(−M(xi − h)/2ε2)].

Now after omitting the positive terms on the right side of the above equation and

simplification, we obtain

Lh(ψi) ≥ −D2[h+ exp{−M(xi − h)/2ε2}], (24)

where

D2 = (‖(ηβ − δα− α− β − w‖h,∞).

From inequalities (22) and (24), we obtain

Lh{Dψi ± (yh
i − y

h/2

2i )} ≤ 0, (25)

where D = −D1/D2, independent of i, h and ε. also one can easily show that

ψi ≥ 0 at the both end points, therefore by discrete maximum principle, we have

Dψi ± (yh
i − y

h/2

2i ) ≥ 0,

|yh
i − y

h/2

2i | ≤ Dψi, 0 ≤ i ≤ N.
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Which give the estimate (19), since this result is trivially true for i=0.

2

3 Numerical Results and Discussion

To demonstrate the efficiency of the method, we consider some numerical

experiments. The exact solution of the BVP (1), (2) for constant coefficients

(i.e.,α(x) = α, β(x) = β and w(x) = w are constant), φ(x) = 1 = ψ(x),

with f(x) = 1 is

y(x) = (α+ β + w − 1)[(exp(m2) − 1) exp(m1x) − (exp(m1) − 1) exp(m2x)]

/[(α+ β + w)(exp(m2) − exp(m1))] + 1/(α+ β + w),

and if f(x) = 0 is

y(x) = [(1− exp(m2)) exp(m1x)− (1− exp(m1)) exp(m2x)]/(exp(m1)− exp(m2)),

where

m1 = [−(βη − αδ) +
√

(βη − αδ)2 − 4ε2(α + β + w)]/2ε2,

m2 = [−(βη − αδ) −
√

(βη − αδ)2 − 4ε2(α+ β + w)]/2ε2.
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3.1 Case : β(x) = 0 i.e., The case when there is no terms

containing positive shift in Eq.(1).

Example 1. ε2y′′(x) − y(x− δ) + 0.5y(x) = 0,

under the boundary conditions

y(x) = 1, − δ ≤ x ≤ 0,

y(1) = 1.

We solve the example using the method presented and compare the results

with exact solution and plot graphs of the computed and exact solution of the

problem, which are represented by dotted and solid lines respectively, for ε = 0.1

and ε = 0.01 for different values of δ as shown in Figures (1) (2), respectively. We

also compute the maximum error for ε = 0.1 and ε = 0.01 for different values of δ

and grid size h as shown in Table (1).

Table 1 : The maximum error for example 1

ε = 0.1

δ ↓ N → E + 01 E + 02 E + 03 E + 04

0.1ε 0.00780619 0.00008369 0.00000084 0.00000001

0.5ε 0.00979599 0.00010248 0.00000103 0.00000001

0.9ε 0.01105879 0.00011778 0.00000118 0.00000001

ε = 0.01

0.1ε 0.02896148 0.00755964 0.00008200 0.00000082

0.5ε 0.08468024 0.00976235 0.00010214 0.00000102

0.9ε 0.13193658 0.01104920 0.00011772 0.00000118

KADALBAJOO,SHARMA162



exact
 computed

 δ=0.01
 δ=0.05
 δ=0.09

   δ=0.09
   δ=0.05
   δ=0.01y(x)
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0.8
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0 0.2 0.4 0.6 0.8 1

Figure 1: Comparison of exact and numerical solution for example 1 (ε = 0.1).

exact
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Figure 2: Comparison of exact and numerical solution for example 1 (ε = 0.01).
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From the graphs of the solution of the above example, we observe that boundary

layer solution depend on the both parameters δ as well as ε. For fixed ε, as δ

increases thickness of boundary layer on the left side of the interval [0, 1] decreases

while on the right side of the interval [0, 1] increases.

3.2 Case : α(x) = 0 i.e., The case when there is no term

containing negative shifts.

Example 2. ε2y′′(x) + y(x) − 1.25y(x+ η) = 0,

under boundary conditions

y(0) = 1,

y(x) = 1, 1 ≤ x ≤ 1 + η.

In this case, we have considered an example in which there is no term containing

negative shifts and solve the example using numerical scheme presented here. We

plot the graphs for ε = 0.1, ε = 0.01 and for different values of η and compare the

computed result with exact solution as shown in the Figures (3) and (4). Table

(2) give the maximum error for ε = 0.1 and ε = 0.01 and for different η and grid

size h.

Table 2 : The maximum error for example 2

ε = 0.1

η ↓ N → E + 01 E + 02 E + 03 E + 04

0.1ε 0.00463982 0.00004756 0.00000048 0.00000000

0.5ε 0.00577129 0.00005937 0.00000059 0.00000001

0.9ε 0.00642460 0.00006711 0.00000067 0.00000001

ε = 0.01

0.1ε 0.05225074 0.00417902 0.00004306 0.00000043

0.5ε 0.13766296 0.00567762 0.00005861 0.00000059

0.9ε 0.16092712 0.00641204 0.00006693 0.00000067
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          η=0.09
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Figure 3: Comparison of exact and computed solution for example 2 (ε = 0.1).
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Figure 4: Comparison of exact and computed solution for example 2 (ε = 0.01).
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As in the case when only negative shift occurs we have shown the effect on the

boundary layer solution of negative small shift by considering numerical example.

Similarly in this case we have considered the example in which only positive shift

occur and observe from the graphs in figures (3) and (4), that for fixed, ε the

thickness of the boundary layer on the right side decreases while on the left side

increases of the solution as η increases.

3.3 Case : α(x) 6= 0 and β(x) 6= 0, i.e., The case of mixed

type (i.e., contains terms with both terms with nega-

tive as well as positive shifts).

Here, we consider the most general case where both type of shift i.e. positive as

well as negative shift occur. To demonstrate the efficiency of the method, the

following numerical experiments are carried out

Example 3. y′′(x) − y(x− δ) + y(x) − 1.25y(x+ η) = 1,

under the boundary conditions

y(x) = 1, − δ ≤ x ≤ 0, y(x) = 1, 1 ≤ x ≤ 1 + η.

In this case to demonstrate the method we have solved the more general exam-

ple in which both the negative as well as positive shifts occur using our method

and compare computed results with the exacts solution by plotting the graphs for

ε = 0.01 and for different values of δ and η as shown in Figures (5) and (6). The

maximum error between computed and exact solution are shown in table (3) for

ε = 0.01 and for different δ, η and grid size h.

Table 3 : The maximum error for example 3

ε = 0.01; η = 0.9ε

δ ↓ N → E + 02 E + 03 E + 04

0.1ε 0.04112737 0.00048798 0.00000489

0.5ε 0.03873699 0.00043715 0.00000438

0.8ε 0.03555902 0.00039383 0.00000394

η ↓ ε = 0.01; δ = 0.9ε

0.1ε 0.03988186 0.00045703 0.00000458

0.5ε 0.03492230 0.00038652 0.00000387

0.8ε 0.03248877 0.00035962 0.00000360

KADALBAJOO,SHARMA166



 δ=0.001
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Figure 5: Comparison of exact and numerical solution for example 3 (ε = 0.01 and

η = 0.9ε).
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Figure 6: Comparison of exact and numerical solution for example 3 (ε = 0.01 and

δ = 0.9ε).
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From the graphs of the solutions of the above example, we observe that the

variations in boundary layer solution of the problem with the parameters ε, δ and

η are similar to previous two cases i.e., when only one shift (negative or positive)

is present at a time.

Finally we consider the following numerical examples with variable coefficients

and solve these examples using the proposed numerical scheme.

Example 4. y′′(x) − exp(x)y(x− δ) + y(x) − (1 + x)y(x+ 1) = 0,

under boundary conditions

y(x) = 1, − δ ≤ x ≤ 0,

y(x) = 1, 1 ≤ x ≤ 1 + η.

Example 5. y′′(x) − exp(0.5)y(x− δ) + xy(x) − (1 + x2)y(x+ η) = 1,

under boundary conditions

y(x) = 1, − δ ≤ x ≤ 0,

y(x) = 1, 1 ≤ x ≤ 1 + η.

Since the exact solution for the examples 4 and 5 is not known, so we just compute

the numerical solution and plotted in Figures 7 and 8, respectivelly.
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Figure 7: Numerical solution for example 4 (ε = 0.01 and η = 0.5ε).
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Figure 8: Numerical solution for example 5 (ε = 0.01 and δ = 0.5ε).
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4 conclusion

In this paper, we propose an exponentially fitted finite difference numeri-

cal scheme to solve boundary-value problems for singularly perturbed differential-

difference equations with small shifts of mixed type (i.e., which contains both the

terms having negative as well as positive shift). We observed from the numerical

experiments discussed above that very small changes in shift affect the boundary

layer solution by a considerable amount and does not affect the smooth solu-

tion. We also observe that as negative shift increases the thickness of the left side

boundary layer decreases while of the right side boundary layer increases, whether

the term containing positive shift occurs or not and the positive shift affects the

boundary layer solution in the same form but reversely. This method works nicely

for small shifts and easy for implementation.
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Abstract. One considers the nonlinear viscoelastic evolution equation

utt + Au + F (x, t, u, ut)− g ∗A u = 0 on Γ× (0,∞)

where Γ is a compact manifold. When F 6= 0 and g = 0 we prove existence of global

solutions as well as uniform (exponential and algebraic) decay rates. Furthermore, if

F = 0 and g 6= 0 we prove that the dissipation introduced by the memory effect is

strong enough to allow us to derive an exponential( or polynomial) decay rate provided

the resolvent kernel of the relaxation function decays exponentially (or polynomially).

Key words:Asymptotic Stability, Viscoelastic Evolution Problem
2000 AMS Subject Classification 35G25, 37C75

1 Introduction

This manuscript is devoted to the study of the existence and uniform decay
rates of solutions u = u(x, t) of the evolution viscoelastic problem

(∗)
{
utt +Au+ F (x, t, u, ut)− g ∗Au = 0 on Γ× (0,∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Γ

where Γ is the boundary, assumed compact and smooth, of a domain Ω of Rn,
not necessarily bounded.

When g = 0, we will consider A : H1/2(Γ) → H−1/2(Γ) a linear and con-
tinuous operator, that is, A ∈ L(H1/2(Γ),H−1/2(Γ)), self-adjoint and such that
verifies the coercivity condition

〈Au, u〉H−1/2(Γ),H1/2(Γ) ≥ α ||u||2H1/2(Γ) for all u ∈ H1/2(Γ), (1.1)

for some α > 0. In this case we prove global existence results and also exponen-
tial and algebraic decay rates of the energy associated to problem (∗), following

1

173JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS,VOL.8,NO.2,173-193,2006,COPYRIGHT 2006 EUDOXUS PRESS,LLC



the perturbed energy method; see, for instance, A. Haraux and E. Zuazua [3].
We observe that when g = 0 and the operator A verifies the above conditions,
we have, as a particular example, that the existence of solutions of problem (∗)
is related to the existence of solutions of the following one

−∆y + ky = 0 in Ω× (0,∞), k > 0
∂νy + ytt + F (x, t, y, yt) = 0 on Γ× (0,∞)
y(x, 0) = u0(x); yt(x, 0) = u1(x), x ∈ Γ,

where ν is the outer unit vector normal to the boundary Γ; see J. L. Lions [[4] ,pp.
134-140] for details. In this situation the operator A : H1/2(Γ) → H−1/2(Γ) is
defined as follows: Given ϕ ∈ H1/2(Γ), it is well known that the elliptic problem{

−∆w + kw = 0 in Ω
w = ϕ on Γ

admits a unique solution w ∈ H(Ω,∆) =
{
u ∈ H1(Ω);∆u ∈ L2(Ω)

}
. Therefore,

the operator

A : H1/2(Γ) → H−1/2(Γ), ϕ 7→ Aϕ = ∂νw

is well defined and furthermore, A ∈ L(H1/2(Γ),H−1/2(Γ)). On the other hand,
making use of Green’s formula we deduce that

0 =
∫
Ω

(−∆w + kw)wdx =
∫
Ω
|∇w|2 dx+ k

∫
Ω
|w|2 dx− 〈Aϕ,ϕ〉H−1/2(Γ),H1/2(Γ)

and consequently, 〈Aϕ,ϕ〉H−1/2(Γ),H1/2(Γ) ≥ C ||ϕ||2H1/2(Γ) for some C > 0. In
this direction is important to mention the work from the authors M. M. Cav-
alcanti and V. N. Domingos Cavalcanti [2] who proved global existence and
asymptotic behaviour for degenerate equations on manifolds. On the other
hand, when F = 0 and g 6= 0, we will assume that A is the self-adjoint operator,
not necessarily bounded, defined by the triple {H1/2(Γ), L2(Γ),
((·, ·))H1/2(Γ)}. In this case, A is characterized by

D(A) = {u ∈ H1/2(Γ); there exists fu ∈ L2(Γ) such that (1.2)
(fu, v)L2(Γ) = ((u, v))H1/2(Γ) ; for all v ∈ H1/2(Γ)}, fu = Au

(Au, v)L2(Γ) = ((u, v))H1/2(Γ) ; for all u ∈ D(A) and for all v ∈ H1/2(Γ).

Since the embedding H1/2(Γ) ↪→ L2(Γ) is compact, we recall that the spec-
tral theorem for self-adjoint operators guarantees the existence of a complete
orthonormal system {ων}ν∈N of L2(Γ) given by eigen-functions of A. If {λν}ν∈N

are the corresponding eigenvalues of A, then λν → +∞ as ν → +∞. Besides,

D(A) = {u ∈ L2(Γ); Σ+∞
ν=1λ

2
ν | (u, ων)L2(Γ) |

2 < +∞},

Au = Σ+∞
ν=1λν (u, ων)L2(Γ) ων ; for all u ∈ D(A).

2
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Considering in D(A) the norm |Au|L2(Γ), it turns out that {ων} is a complete
system in D(A). In fact, it is known that {ων} is also a complete system in
H1/2(Γ). Now, since A is positive, given δ > 0 one has

D(Aδ) =
{
u ∈ L2(Γ); Σ+∞

ν=1λ
2δ
ν

∣∣∣(u, ων)L2(Γ)

∣∣∣2 < +∞
}
,

Aδu = Σ+∞
ν=1λ

δ
ν (u, ων)L2(Γ) ων ; for all u ∈ D(Aδ).

In D(Aδ) we consider the topology given by |Aδu|L2(Γ). We observe that
from the spectral theory, such operators are also self-adjoint, that is,

(Aδu, v)L2(Γ) = (u,Aδv)L2(Γ); for all u, v ∈ D(Aδ)

and, in particular,

D(A1/2) = H1/2(Γ). (1.3)

At this point it is convenient to observe that, according to J. L. Lions and
E. Magenes [[5], Remark 7.5] one has

H1/2(Γ) = D[(−∆Γ)1/2], (1.4)

where ∆Γ is the Laplace-Beltrami operator on Γ. Then, from (1.2), (1.3) and
(1.4) we deduce that

(Au, v)L2(Γ) = (−∆Γu, v)L2(Γ) ; for all u ∈ D(A), for all v ∈ H1/2(Γ), (1.5)

that is, Au = −∆Γu for all u ∈ D(A) which implies that A ≤ −∆Γ. This means
that when A is the operator defined by the above triple, problem (∗) can also
be viewed like the wave operator on the compact manifold Γ.

Now, if one considers the extension Ã : H1/2(Γ) → H−1/2(Γ) of A defined
by

< Ãu, v >H−1/2(Γ),H1/2(Γ)= ((u, v))H1/2(Γ) ; for all u, v ∈ H1/2(Γ) (1.6)

it is well known that Ã is bijective, self-adjoint, coercive and continuous (indeed
isometry). Then this extension satisfies the assumptions of the operator A
introduced in the beginning of this introduction, more precisely in (1.1).

When F 6= 0 and g = 0 we derive exponential and algebraic decay rates.
Finally when F = 0 and g 6= 0 we show that the energy associated to the related
problem decays exponentially (or algebraically) assuming that the kernel of the
memory also decays exponentially (or algebraically). In other words, the unique
dissipative mechanism is due to the memory term. For this end we follow ideas
introduced by J. Muñoz Rivera in [6].

Our paper is organized as follows: In section 2 we present some notations,
the assumptions on g and F and state our main result. In section 3 we prove
existence and uniqueness for regular and weak solutions and in section 4 we give
the proof of the uniform decay.
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2 Assumptions and Main Result

Define (u, v) =
∫
Γ
u(x)v(x) dx; |u|2 = (u, u) , ||u||pp =

∫
Γ
|u(x)|p dx. The

precise assumptions on the function F (x, t, u, ut) and on the memory term g of
(∗) are given in the sequel.
(A.1) Assumptions on F (x, t, u, ut)

We represent by (x, t, ξ, η) a point of Γ× [0,∞)×R2. Let

F : Γ× [0,∞)×R2 → R

satisfying the conditions

F ∈ C1
(
Γ× [0,∞)×R2

)
. (H.1)

There exist positive constants C,D and β > 0 such that

|F (x, t, ξ, η)| ≤ C
(
1 + |ξ|γ+1 + |η|ρ+1

)
, (H.2)

where 0 < ξ, ρ ≤ 1
n−2 if n ≥ 3 and ξ, ρ > 0 if n = 1, 2;

F (x, t, ξ, η)ζ ≥ |ξ|γ ξζ + β |η|ρ+1 |ζ| ; for all ζ ∈ R; (H.3)

|Ft(x, t, ξ, η)| ≤ C
(
1 + |η|ρ+1 + |ξ|γ+1

)
; (H.4)

|Fξ(x, t, ξ, η)| ≤ C (1 + |η|ρ + |ξ|γ) ; (H.5)

Fη(x, t, ξ, η) ≥ β |η|ρ ; (H.6)(
F (x, t, ξ, η)− F (x, t, ξ̂, η̂

)(
ζ − ζ̂

)
(H.7)

≥ −D
(
|ξ|γ +

∣∣∣ξ̂∣∣∣) ∣∣∣ξ − ξ̂
∣∣∣ ∣∣∣ζ − ζ̂

∣∣∣ for all ζ, ζ̂ ∈ R.

A simple variant of the above function is given by the following example
F (x, t, ξ, η) = β |η|ρ η + |ξ|γ ξ.
(A.2) Assumptions on the Kernel

We assume that g : R+ → R+ is a bounded C2 function satisfying

1−
∫ ∞

0

g(s) ds = l > 0 (H.8)

and such that there exist positive constants ξ1, ξ2 and ξ3 verifying

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t); for all t ≥ 0, (H.9)

0 ≤ g′′(t) ≤ ξ3g(t); for all t ≥ 0, (H.10)

0 ≥ g′′′(t) ≥ ξ4g
′(t); for all t ≥ 0. (H.11)
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Next, we present two technical lemmas that will play an essential role when
establishing the existence of weak solutions.

For this end let us consider V and H Hilbert spaces with V dense in H and
the imbedding V ↪→ H is continuous. Let A : V → V ′ be a linear operator such
that A ∈ L(V, V ′). Suppose that A is self-adjoint and verifies the coercivity
condition:

〈Av, v〉V ′,V ≥ α ||v||2V for all v ∈ V, (2.1)

for some α > 0.
Lemma 2.1. A is bijective.
Proof. The condition (2.1) implies immediately that A is injective. Then, it
remains to prove that A is onto. First, we are going to prove that

AV is closed in V ′. (2.2)

Indeed, let {vν} ⊂ V and w ∈ V ′ such that

Avν → w in V ′ as ν → +∞. (2.3)

From (2.1) we obtain, for all ν, µ ∈ N

〈Avν −Avµ, vν − vµ〉V ′,V ≥ α ||vν − vµ||2V

which implies that
||Avν −Avµ||V ′ ≥ α ||vν − vµ||V

and consequently, from (2.3) we deduce that {vν} is a sequence of Cauchy in V .
Therefore, there exists v ∈ V such that vν → v in V . Since A is continuous, it
results that

Avν → Av in V ′ as ν → +∞. (2.4)

Taking (2.3) and (2.4) into account, we conclude that Av = w and conse-
quently AV is closed in V ′ as we desired to prove in (2.2).

On the other hand, since V ′ is a Hilbert space, we can write, in view of (2.2),
that

V ′ = AV ⊕AV ⊥.

Next, we are going to prove that

AV ⊥ = {0}. (2.5)

In fact, since V is a Hilbert space, we can write

AV ⊥ = {f ∈ V ; 〈f, u〉V,V ′ = 0 for all u ∈ AV }

or, in other words

AV ⊥ = {f ∈ V ; 〈f,Av〉V ′,V = 0 for all v ∈ V }.
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We argue by contradiction. So let us suppose that there exists f0 ∈ V ;
f0 6= 0 such that

〈f0, Av〉V ′,V = 0; for all v ∈ V.

Then, the last identity and (2.1) yield

0 = 〈f0, Af0〉V ′,V ≥ α ||f0||2V implies f0 = 0.

But this is a contradiction and consequently (2.5) holds, which implies that
A is onto. ♦

Identifying H ≡ H ′ one has the following embedding

V ↪→ H ≡ H ′ ↪→ V ′

with H ′ dense in V ′, see H. Brézis [1].
Lemma 2.2. The space H = {u ∈ V ;Au ∈ H} is dense in V .
Proof. Let T ∈ V ′ such that

〈T,w〉V ′,V = 0 for all w ∈ H. (2.6)

We will prove that

〈T,w〉V ′,V = 0 for all w ∈ V. (2.7)

Indeed, let v ∈ V . Then Av ∈ V ′ and since H is dense in V ′, there exists
{yµ} ⊂ H such that

yµ → Av in V ′. (2.8)

But, for each µ ∈ N, according to lemma 2.1, yµ = Axµ with xµ ∈ V . Then,
from (2.1) and for all ν, µ ∈ N, we have

〈Axν −Axµ, xν − xµ〉V ′,V ≥ α ||xν − xµ||2V ,

that is,
||Axν −Axµ||V ′ ≥ α ||xν − xµ||V .

The last inequality and the convergence given in (2.8) yield that {xν} is a
sequence of Cauchy in V . Consequently, there exists x ∈ V such that xν → x
in V and therefore

yν = Axν → Ax in V ′. (2.9)

From (2.8) and (2.9) we deduce that

Av = Ax which implies that v = x and Axν → Av in V ′. (2.10)

However, from (2.6) we have

〈T, xν〉V ′,V = 0 since xν ∈ V and Axν = yν ∈ H. (2.11)
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Passing to the limit in (2.11) we obtain (2.7) as we desired to show. ♦
In the sequel we will consider V = H1/2(Γ), H = L2(Γ) and A : H1/2(Γ) →

H−1/2(Γ) the linear, continuous, self-adjoint and coercive operator above men-
tioned in this section.

We define

H = {u ∈ H1/2(Γ);Au ∈ L2(Γ)}. (2.12)

Then, H is a Hilbert space endowed with the natural inner product

(u, v)H = (u, v)H1/2(Γ) + (Au,Av) . (2.13)

Moreover, according to lemma 2.1, H is dense in L2(Γ).
Now we are in a position to state our main result.
Theorem 2.1. Let the initial data

{
u0, u1

}
belong to H × H1/2(Γ) and

assume that the assumptions in (A.1) hold and g = 0. Then, problem (∗)
possesses a unique regular solution u in the class

u ∈ L∞(0,∞;H), u′ ∈ L∞(0,∞;H1/2(Γ), u′′ ∈ L∞(0,∞;L2(Γ)). (2.14)

Moreover, the energy

E(t) =
1
2
{|u′(t)|2 + 〈Au(t), u(t)〉H−1/2(Γ),H1/2(Γ) +

2
γ + 2

||u(t)||γ+2
γ+2} (2.15)

has the following decay rate

E(t) ≤ (εθt+ [E(0)]−ρ/2)−2/ρ, for all t ≥ 0, for all ε ∈ (0, ε0], (2.16)

where θ and ε0 are positive constants.
When ρ = 0 and therefore we have a linear dissipation, exponential decay

rates are also obtained, namely

E(t) ≤ CE(0)e−εωt for all , t ≥ 0 for all ε ∈ (0, ε0], (2.17)

where C, ω and ε0 are positive constants.
Theorem 2.2. Let the initial data belong to H1/2(Γ) × L2(Γ) and assume

the same hypotheses of theorem 2.1 hold. Then, problem (∗) possesses a unique
weak solution u in the class

u ∈ C0([0,∞),H1/2(Γ)) ∩ C1([0,∞);L2(Γ)). (2.18)

Besides, the weak solution has the same decays given in (2.16) and (2.17).
Theorem 2.3. Suppose that the assumptions in (A.2) hold and F = 0.

Then, given
{
u0, u1

}
∈ D(A)×D(A1/2), problem (∗) possesses a unique solution

u in the class

u ∈ C0 ([0,∞;D(A)) ∩ C1
(
[0,∞;D(A1/2)

)
. (2.19)
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Moreover, the energy

E(t) := 1
2

{
|u′(t)|2 +

(
1−

∫ t

0
g(s) ds

)
|A1/2u(t)|2 + g �A1/2u(t)

}
(2.20)

decays exponentially, that is, there exist positive constants C and γ such that

E(t) ≤ Ce−γt, for all t ≥ 0. (2.21)

When, instead of hypothesis (H.9) we consider

−C0g
1+1/p(t) ≤ g′(t) ≤ −C1g

1+1/p(t) for all t ≥ 0, (H.12)

for some positive constants C0, C1 and p > 2, we have the following decay

E(t) ≤ CE(0) (1 + t)−p for all ≥ 0. (2.22)

3 Existence and Uniqueness of Solutions

In this section we first prove existence and uniqueness of regular solutions to
problem (∗) making use of Faedo-Galerkin method. Then, we extend the same
result to weak solutions using a density argument.
3.1 Regular Solutions: First of all we consider the case g = 0 and A :
H1/2(Γ) → H−1/2(Γ) is the linear, continuous, self-adjoint and coercive operator
mentioned before.

Let {ων} be a basis in H and let us consider Vm the space generated by
ω1, · · · , ωm. Let

um(t) = Σm
j=1δjm(t)ωj (3.1)

the solution of the approximate Cauchy problem

(u′′m(t), w) + (Aum(t), w) + (F (x, t, um(t), u′m(t)), w) = 0 for allw ∈ Vm, (3.2)
um(0) = u0m → u0 in H, u′m(0) = u1m → u1 in H1/2(Γ). (3.3)

We observe that, in view of assumptions (H.1)− (H.2) and noting that

H1/2(Γ) ↪→ L2(γ+1)(Γ) and H1/2(Γ) ↪→ L2(ρ+1)(Γ) (3.4)

the nonlinear term in (3.2) is well defined, that is, belong to L2(Γ). By standard
methods in differential equations, we prove the existence of solutions to the
approximate problem on some interval [0, tm) and this solution can be extended
to the closed interval [0,T] by using the first estimate below.
3.1.1 - A Priori Estimates. The First Estimate: Setting w = u′m(t) in (3.2),
observing that A is self adjoint and taking the assumption (H.3) into account,
we obtain

1
2

d
dt

{
|u′m(t)|2 + (Aum(t), um(t)) + 2

γ+2 ||um(t)||γ+2
γ+2

}
+ β ||u′m(t)||ρ+2

ρ+2 ≤ 0.(3.5)
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Integrating (3.5) over (0,t) taking (1.1) into account, we deduce

|u′m(t)|2 + α ||um(t)||2H1/2(Γ) + 1
γ+2 ||um(t)||γ+2

γ+2 + 2β
∫ t

0
||u′m(s)||ρ+2

ρ+2 ds

≤ |u1m|2 + ||Au0m||H−1/2(Γ) ||u0m||H1/2(Γ) + 1
γ+2 ||u0m||γ+2

γ+2 .

From the last inequality, from the convergence in (3.3), observing the em-
bedding in (3.4) and employing Gronwall’s lemma, we obtain the first estimate

|u′m(t)|2 + ||um(t)||2H1/2(Γ) + ||um(t)||γ+2
γ+2 +

∫ t

0
||u′m(s)||ρ+2

ρ+2 ds ≤ L1 (3.6)

where L1 is a positive constant independent of m ∈ N and t ∈ [0, T ].
The Second Estimate: First of all we are going to estimate u′′m(0) in L2(Γ)

norm. Considering w = u′′m(0) and t = 0 in (3.2) and considering the hypothesis
(H.2), it holds that

|u′′m(0)| ≤ [|Au0m|+ C(meas(Γ)1/2 + ||u0m||γ+1
2(γ+1) + ||u1m||ρ+1

2(ρ+1))]. (3.7)

Considering the convergence in (3.3) and the embedding in (3.4) we conclude
that

|u′′m(0)| ≤ L2 (3.8)

where L2 is a positive constant independent of m ∈ N.
Taking the derivative of (3.2) with respect to t, substituting w = u′′m(t) in

the obtained expression, and taking the assumptions (H.3)−(H.6) into account,
we obtain

1
2

d
dt

{
|u′′m(t)|2 + (Au′m(t), u′m(t))

}
+ β

∫
Γ
|u′m|

ρ (u′′m)2 dΓ (3.9)

≤ C
∫
Γ

(
1 + |u′m|

ρ+1 + |um|γ+1
)
|u′′m| dΓ

+C
∫
Γ

(
1 + |u′m|

ρ + |um|γ
)
|u′m| |u′′m| dΓ.

Next, we going to analyze the two terms on the right hand side of (3.9).

Estimate for I1 :=
∫
Γ

(
1 + |u′m|

ρ+1 + |um|γ+1
)
|u′′m| dΓ.

From Cauchy-Schwartz inequality and considering the inequality ab ≤ 1
4ηa

2+
ηb2, where η is an arbitrary positive number, we deduce

|I1| ≤ meas(Γ) + |u′′m(t)|2 + η
∫
Γ
|u′m|

ρ |u′′m|
2
dΓ + 1

4η ||u
′
m(t)||ρ+2

ρ+2

+ 1
2 ||um(t)||2(γ+1)

2(γ+1) + 1
2 |u

′′
m(t)|2 . (3.10)

Estimate for I2 :=
∫
Γ

(
1 + |u′m|

ρ + |um|γ
)
|u′m| |u′′m| dΓ.

From Cauchy-Schwarz inequality, making use of the inequality ab ≤ 1
4ηa

2 +
ηb2 above mentioned and the generalized Hölder inequality observing that γ

2(γ+1)+
1

2(γ+1) + 1
2 = 1, we have

|I2| ≤ 1
2 |u

′
m(t)|2 + 1

2 |u
′′
m(t)|2 + η

∫
Γ
|u′m|

ρ |u′′m|
2
dΓ + 1

4η ||u
′
m(t)||ρ+2

ρ+2

+ ||um(t)||γ2(γ+1) ||u′m(t)||2(γ+1) |u′′m(t)| . (3.11)
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Integrating (3.9) over (0,t), considering (1.1), (3.4), (3.10) and (3.11), we
deduce

1
2 |u

′′
m(t)|2 + α

2 ||u
′
m(t)||2H1/2(Γ) + (β − 2Cη)

∫ t

0

∫
Γ
|u′m|

ρ |u′′m|
2
dΓds

≤ 1
2 |u

′′
m(0)|2 + 1

2 ||Au1m||H−1/2(Γ) ||u1m||H1/2(Γ) + CT meas(Γ) (3.12)

+C1

∫ t

0

(
||um(s)||2(γ+1)

H1/2(Γ)
+ |u′m(s)|2

)
ds+ C

2η

∫ t

0
||u′m(s)||ρ+2

ρ+2 ds

+C
∫ t

0
|u′′m(s)|2 ds+ C2

∫ t

0
||um(s)||γ

H1/2(Γ)
||u′m(s)||H1/2(Γ) |u′′m(t)| ds,

where C1 and C2 are positive constants.
From (3.12), making use of the first estimate (3.6), considering the conver-

gence in (3.3), taking (3.8) into account, choosing η > 0 sufficiently small and
applying Gronwall’s lemma, we obtain the second estimate

|u′′m(t)|2 + ||u′m(t)||2H1/2(Γ) +
∫ t

0

∫
Γ
|u′m|

ρ |u′′m|
2
dΓds ≤ L3, (3.13)

where L3 is a positive constant independent of m ∈ N and t ∈ [0, T ].
3.1.2 - Passage to the Limit: From the estimates (3.6) and (3.13) we de-
duce that there exists {uµ}, subsequence of {um}, which from now on will be
represented by the same notation, and a function u, such that

u′µ ⇀ u′ weak-star in L∞loc(0,∞;L2(Γ)), (3.14)

uµ ⇀ u weak-star in L∞loc(0,∞;H1/2(Γ)), (3.15)
u′′µ ⇀ u′′ weak-star in L∞loc(0,∞;L2(Γ)), (3.16)

u′µ ⇀ u′ weak-star in L∞loc(0,∞;H1/2(Γ)). (3.17)

On the other hand, from the assumption (H.2) and having in mind the
embedding in (3.4), we infer∫ T

0

∫
Γ

∣∣F (x, t, uµ, u
′
µ

)∣∣2 dΓdt (3.18)

≤ 4C
{
meas(Γ)T +

∫ T

0
||uµ(t)||2(γ+1)

2(γ+1) dt+
∫ T

0

∣∣∣∣u′µ(t)
∣∣∣∣2(ρ+1)

2(ρ+1)
dt
}
≤ C ′

where C ′ is a positive constant independent of µ ∈ N and t ∈ [0, T ].
On the other hand, from the a priori estimates, we also deduce that

{uµ} is bounded in L2
loc(0,∞;H1/2(Γ)),{

u′µ
}

is bounded in L2
loc(0,∞;H1/2(Γ)),{

u′′µ
}

is bounded in L2
loc(0,∞;L2(Γ)).

Since the embedding H1/2(Γ) ↪→ L2(Γ) is compact, using the Aubin-Lions
theorem, see J. L. Lions [4], pp. 57-58, we conclude

uµ → u strongly in L2
loc(0,∞;L2(Γ)), (3.19)

u′µ → u′ strongly in L2
loc(0,∞;L2(Γ)). (3.20)
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Consequently,

F (x, t, uµ, u
′
µ) → F (x, t, u, u′) a.e. in Γ× (0, T ). (3.21)

Then, combining (3.18) and (3.21) we conclude, applying Lions’ lemma, see
J. L. Lions [[4], pp. 12-13], that

F (x, t, uµ, u
′
µ) ⇀ F (x, t, u, u′) weakly in L2

loc(0,∞;L2(Γ)). (3.22)

Finally, since A ∈ L(H1/2(Γ),H−1/2(Γ)), from (3.15) we infer

Auµ ⇀ Au weak-star in L∞loc(0,∞;H−1/2(Γ)). (3.23)

The above convergence are sufficient to pass to the limit in (3.2) to obtain

u′′ +Au+ F (x, t, u, u′) = 0 in L2
loc(0,∞;L2(Γ)). (3.24)

3.1.3 Uniqueness: Let u and û be two regular solutions of (∗) satisfying
theorem 2.1. Defining z = u− û, from assumption (H.7) we obtain

1
2

d
dt

{
|z′(t)|2 + (Az(t), z(t))

}
≤ D

∫
Γ

(|u|γ + |û|γ) |z| |z′| dΓ (3.25)

≤ C(γ)
(
||u(t)||γ2(γ+1) + ||û(t)||γ2(γ+1)

)
||z(t)||2(γ+1) |z′(t)|

where the last inequality comes from the generalized Hölder inequality.
Integrating (3.25) over (0,t), observing (1.1), (3.4), (3.6) and (3.15), we

deduce

1
2 |z

′(t)|2 + α
2 ||z(t)||

2
H1/2(Γ) (3.26)

≤ C1(γ)L
γ
1

∫ t

0

(
1
2 ||z(s)||

2
H1/2(Γ) + 1

2 |z
′(s)|2

)
ds.

Employing Gronwall’s lemma, from (3.26) we obtain that |z′(t)|2 = ||z(t)||2H1/2(Γ)

= 0, which concludes the proof of uniqueness. ♦
Now, let us consider the existence of regular solutions for (∗) when F = 0

and g 6= 0 making use of the special basis {ωj} formed by eigen-functions

of the operator A defined by the triple
{
H1/2(Γ), L2(Γ), ((·, ·))H1/2(Γ)

}
whose

properties were mentioned in the introduction of this paper. So, put Vm =
[ω1, · · · , ωm] and um(t) =

∑m
j=1 δjm(t)ωj satisfying the Cauchy problem

(u′′m(t), w) + (Aum(t), w)−
∫ t

0
g(t− τ) (Aum(τ), w) dτ = 0, ∀w ∈ Vm, (3.27)

um(0) = u0m → u0 in D(A); u′m(0) = u1m → u1 in D(A1/2). (3.28)

3.1.7 - A Priori Estimates: Considering w = Au′m(t) in (3.27), it holds that

1
2

d
dt

{
|A1/2u′m(t)|2 + |Aum(t)|2

}
+ g(0)|Aum(t)|2 (3.29)

= −
∫ t

0
g′(t− τ) (Aum(τ), Aum(t)) dτ

+ d
dt

{∫ t

0
g(t− τ) (Aum(τ), Aum(t)) dτ

}
.
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But, from assumption (H.9) and making use of the inequality ab ≤ 1
4ηa

2 +
ηb2, η > 0, we have ∫ t

0
g′(t− τ) (Aum(τ), Aum(t)) dτ (3.30)

≤ ξ2
1

4η ||g||L1(0,∞)

∫ t

0
g(t− τ) |Aum(τ)|2 dτ + η |Aum(t)|2 .

Integrating (3.29) over (0,t) taking (3.30) into account, we deduce

1
2

∣∣A1/2u′m(t)
∣∣2 + 1

2 |Aum(t)|2 + (g(0)− η)
∫ t

0
|Aum(s)|2 ds (3.31)

≤ 1
2 |Au1m|2 + |Au0m|2 + ξ2

1
4η ||g||

2
L1(0,∞)

∫ t

0
|Aum(s)|2 ds

+
∫ t

0
g(t− τ) (Aum(τ), Aum(t)) dτ.

We notice that ∫ t

0
g(t− τ) (Aum(τ), Aum(t)) dτ (3.32)

≤ η |Aum(t)|2 + 1
4η ||g||L1(0,∞) ||g||L∞(0,∞)

∫ t

0
|Aum(τ)|2 dτ.

Combining (3.31)-(3.32), choosing η > 0 small enough, observing the con-
vergence in (3.28) and employing Gronwall’s lemma we conclude the estimate

|A1/2u′m(t)|2 + |Aum(t)|2 ≤ L7, (3.33)

where L7 is a positive constant independent of m ∈ N and t ∈ [0, T ].
3.1.8 - Passage to the Limit: From the estimate (3.33) we are able to pass
to the limit in (3.27) in order to obtain

u′′ +Au− g ∗Au = 0 in L2
loc(0,∞;L2(Γ)). (3.34)

The proof of the uniqueness is similar to the above case. Thus, it will be
omitted.

Let us consider, now, m2 and m1 positive natural numbers such that m2 >
m1 and let us define in um(t) =

∑m
j=1 δjm(t)ωj the following

δjm1 = 0 for m1 ≤ j ≤ m2.

Under this assumption we can conclude that both um2 and um1 are ap-
proximated solutions of system (3.27), since it is a linear one. Denoting zm =
um2 −um1 the Cauchy difference, we deduce, proceeding as we have done in the
uniqueness of solutions that

|A1/2z′m(t)|2 + |Azm(t)|2 ≤ C
{
|A1/2z′m(0)|2 + |Azm(0)|2

}
, (3.35)

where C is a positive constant independent of m ∈ N and t ∈ [0, T ].
We can write (3.35) as

∣∣∣∣u′m2
(t)− u′m1

(t)
∣∣∣∣2

H1/2(Γ)
+ ||um2(t)− um1(t)||

2
D(A)

≤ C
{
||u1m2 − u1m1 ||

2
H1/2(Γ) + ||u0m2 − u0m1 ||

2
D(A)

}
.
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The last inequality yields {um} is a sequence of Cauchy in C0([0, T ];D(A)),
{um} is a sequence of Cauchy in C0([0, T ];H1/2(Γ)). Therefore, there exists
a function u such that

um → u strongly in C0([0, T ];D(A)); for all T > 0, (3.36)
u′m → u′ strongly in C0([0, T ];H1/2(Γ)), for all T > 0. (3.37)

This concludes the proof of existence of regular solutions of Theorems 2.1 and
2.3.
3.2 Weak Solutions: We begin this section considering the case F 6= 0 and
g = 0 and A : H1/2(Γ) → H−1/2(Γ) is the linear, continuous, self-adjoint and
coercive operator mentioned in the introduction. So, let

{
u0, u1

}
∈ H1/2(Γ)×

L2(Γ). Then, according to lemma 2.2, H =
{
u ∈ H1/2(Γ);Au ∈ L2(Γ)

}
is dense

in H1/2(Γ) and since H1/2(Γ) is also dense in L2(Γ), there exists
{
u0

µ, u
1
µ

}
∈

H ×H1/2(Γ) such that

u0
µ → u0 in H1/2(Γ) and u1

µ → u1 in L2(Γ). (3.38)

For each µ ∈ N, let uµ be the regular solution of (∗) with g = 0, and initial
data

{
u0

µ, u
1
µ

}
, that is{
u′′µ +Auµ + F (x, t, uµ, u

′
µ) = 0 a.e. in Γ× (0,∞)

uµ(0) = u0
µ; u′µ(0) = u1

µ.

Repeating analogous arguments used in section 3.1.1, we deduce as in (3.6)
that

|u′µ(t)|2 + ||uµ(t)||2H1/2(Γ) + ||uµ(t)||γ+2
γ+2 +

∫ t

0

∣∣∣∣u′µ(s)
∣∣∣∣ρ+2

ρ+2
ds ≤ C1 (3.39)

for all t ≥ 0 and for all µ ∈ N, where C1 is a positive constant independent of
µ and t.

Now, defining zµ,σ = uµ − uσ; µ, σ ∈ N, taking (3.39) into account and
making use of the same arguments considered in the proof of the uniqueness,
section 3.1.3, we obtain

|u′µ(t)− u′σ(t)|2 + ||uµ(t)− uσ(t)||2H1/2(Γ) (3.40)

≤ C(γ, T )
(∣∣u1

µ − u1
σ

∣∣2 +
∣∣∣∣u0

µ − u0
σ

∣∣∣∣2
H1/2(Γ)

)
where C(γ, T ) is a positive constant independent of µ ∈ N.

From the last inequality and considering (3.38) we conclude that there exists
a function u such that , for all T > 0, we have

uµ → u strongly in C0([0, T ],H1/2(Γ)), (3.41)
u′µ → u′ strongly in C0([0, T ];L2(Γ)). (3.42)
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The strong convergence in (3.41)-(3.42) and the weak ones which came from
(3.39) are sufficient to pass to the limit using arguments of compactness in order
to obtain a weak solution to problem (∗) with g = 0. More precisely, one has{

u′′ + Ãu+ F (x, t, u, u′) = 0 in L2
loc(0,∞;H−1/2(Γ))

u(0) = u0, u′(0) = u1 (3.43)

The uniqueness of weak solutions requires a regularization procedure and
can be obtained using the standard method of Visik-Ladyzhenkaya, c.f. J. L.
Lions [[4], pp. 14-16]. The case F = 0 and g 6= 0 is similar. Then, its proof will
be omitted. So, the proof of existence of weak solutions of Theorem 2.2 and 2.3
is concluded.

4 Asymptotic Stability

In this section we obtain the uniform decay of the energy for regular solutions,
since the same occurs for weak solutions using standard density arguments.

Let us consider, initially, g = 0 and F 6= 0 according to theorem 2.1.
From (3.24) and taking the assumption (H.3) into account, we deduce that

E′(t) ≤ −β ||u′(t)||ρ+2
ρ+2 , (4.1)

where E(t) is defined in (2.15). Let us define the Liapunov functional

ψ(t) = [E(t)]ρ/2 (u′(t), u(t)) . (4.2)

Taking the derivative of ψ(t) with respect t and substituting u′′ = −Au −
F (x, t, u, u′) in the obtained expression, it follows that

ψ′(t) =
ρ

2
[E(t)]

ρ−2
2 E′(t) (u′(t), u(t)) (4.3)

+ [E(t)]ρ/2
{
− (Au(t), u(t))− (F (x, t, u(t), u′(t)), u(t)) + |u′(t)|2

}
.

On the other hand, from (1.1) and noting that H1/2(Γ) ↪→ L2(Γ) it holds
that

|(u′(t), u(t))| ≤ k1 |u′(t)| ||u(t)||H1/2(Γ) (4.4)

≤ k1α |u′(t)| (Au(t), u(t))1/2 ≤ CE(t),

where k1 and C are positive constants.
The inequality in (4.4) yields

−ρ
2

[E(t)]
ρ−2
2 (u′(t), u(t)) ≤ Cρ

2
[E(0)]ρ/2

, (4.5)

and since −E′(t) ≥ 0, we deduce

ρ

2
[E(t)]

ρ−2
2 (u′(t), u(t))E′(t) ≤ −C1E

′(t) (4.6)
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where C1 = Cρ
2 [E(0)]ρ/2. Combining (4.3), (4.6) and considering the hypothesis

(H.3), we infer

ψ′(t) ≤ −C1E
′(t) (4.7)

+ [E(t)]ρ/2
{
− (Au(t), u(t))− ||u(t)||γ+2

γ+2 − β
∫
Γ
|u′|ρ+1 |u| dΓ + |u′(t)|2

}
.

Estimate for J1 := β
∫
Γ
|u′|ρ+1 |u| dΓ. Noting that ρ+1

ρ+2 + 1
ρ+2 = 1, having in

mind that H1/2(Γ) ↪→ Lρ+2(Γ), taking (1.1) into account and applying Hölder
and Young inequalities, we obtain

|J1| ≤ β ||u′(t)||ρ+1
ρ+2 ||u(t)||ρ+2 ≤ k2 ||u′(t)||

ρ+1
ρ+2 ||u(t)||H1/2(Γ) (4.8)

≤ k2α ||u′(t)||
ρ+1
ρ+2 (Au(t), u(t))1/2

≤ k3(η) ||u′(t)||
ρ+2
ρ+2 + η (Au(t), u(t))

ρ+2
2

where η > 0 is arbitrary and k3(η) is a positive constant which depends on η.
But,

(Au(t), u(t))
ρ+2
2 ≤ 2ρ/2 [E(0)]ρ/2 (Au(t), u(t)) . (4.9)

Then, from (4.7), (4.8) and (4.9) we arrive at

ψ′(t) ≤ −C1E
′(t) (4.10)

+ [E(t)]ρ/2
{
−
(
1− η2ρ/2 [E(0)]ρ/2

)
(Au(t), u(t)) + k3(η) ||u′(t)||

ρ+2
ρ+2

− ||u(t)||γ+2
γ+2 − |u

′(t)|2
}
.

Choosing η > 0 such that 1− η2ρ/2 [E(0)]ρ/2 = 1
2 , from (4.10) we obtain

ψ′(t) ≤ −C1E
′(t) + k3 [E(0)]ρ/2 ||u′(t)||ρ+2

ρ+2 (4.11)

+ [E(t)]ρ/2

{
−1

2
(Au(t), u(t))− 1

γ + 2
||u(t)||γ+2

γ+2 + |u′(t)|2
}
.

From (4.1) and (4.11), we have

ψ′(t) ≤ −(C1 + C2)E′(t) (4.12)

+ [E(t)]ρ/2

{
−1

2
(Au(t), u(t))− 1

γ + 2
||u(t)||γ+2

γ+2

}
+ [E(t)]ρ/2 |u′(t)|2 ,

where C2 = β−1k3 [E(0)]ρ/2.
Defining the perturbed energy by

Eε(t) = (1 + ε (C1 + C2))E(t) + εψ(t) (4.13)
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then, there exists, in view of (4.4), L = L(E(0)) such that

|Eε(t)− E(t)| ≤ εLE(t); for all ε > 0. (4.14)

Considering ε ∈ (0, 1/2L], from (4.14) we deduce

1
2E(t) ≤ Eε(t) ≤ 2E(t) (4.15)

and consequently

2−
ρ+2
2 [E(t)]

ρ+2
2 ≤ [Eε(t)]

ρ+2
2 ≤ 2

ρ+2
2 [E(t)]

ρ+2
2 ; ε ∈ (0, 1/2L]. (4.16)

Getting the derivative of (4.13) with respect to t, taking (4.1) and (4.12)
into account, we infer

E′ε(t) ≤ −β ||u′(t)||ρ+2
ρ+2 (4.17)

+ε [E(t)]ρ/2
{
− 1

2 (Au(t), u(t))− 1
γ+2 ||u(t)||

γ+2
γ+2

}
+ ε [E(t)]ρ/2 |u′(t)|2 .

Having in mind that − 1
2 (Au(t), u(t)) = −E(t) + 1

2 |u
′(t)|2 + 1

γ+2 ||u(t)||
γ+2
γ+2

and since Lρ+2(Γ) ↪→ L2(Γ), from (4.17) it holds that

E′ε(t) ≤ −βC0 |u′(t)|
ρ+2 − ε [E(t)]

ρ+2
2 +

3
2
ε [E(t)]ρ/2 |u′(t)|2 (4.18)

where C0 comes from the imbedding Lρ+2(Γ) ↪→ L2(Γ).
Observing that ρ

ρ+2 + 2
ρ+2 = 1 the Hölder inequality yields

[E(t)]ρ/2 |u′(t)|2 ≤ ρ

ρ+ 2

(
µ [E(t)]ρ/2

) ρ+2
ρ

+
2

ρ+ 2

(
1
µ
|u′(t)|2

) ρ+2
2

(4.19)

≤ µ
ρ+2

ρ [E(t)]
ρ+2
2 +

1

µ
ρ+2
2

|u′(t)|2 ,

where µ > 0 is arbitrary.
Combining (4.18) and (4.19), we obtain

E′ε(t) ≤ −

(
βC0 −

3
2
ε

1

µ
ρ+2
2

)
|u′(t)|2 − ε

(
1− 3

2
µ

ρ+2
ρ

)
[E(t)]

ρ+2
2 . (4.20)

Choosing µ > 0 sufficiently small such that θ = 1− 3
2µ

ρ+2
ρ > 0 and ε small

enough in order to have βC0 − 3
2ε

1

µ
ρ+2
2

≥ 0 from (4.20) we conclude that

E′ε(t) ≤ −εθ [E(t)]
ρ+2
2 . (4.21)

Combining (4.16) and (4.21) we infer that E′ε(t) ≤ − N

2
ρ+2
2

[E(t)]
ρ+2
2 , where

N = εθ. Therefore

E′ε(t) [E(t)]−
ρ+2
2 ≤ − N

2
ρ+2
2

. (4.22)
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But since d
dt [Eε(t)]

−ρ/2 = −ρ
2 [E(t)]−

ρ+2
2 E′ε(t) from (4.22) it holds that

d
dt [Eε(t)]

−ρ/2 ≥ ρN

2
ρ+4
2
.

Integrating the above inequality over (0,t), it follows that

[Eε(t)]
−ρ/2 ≥ [Eε(0)]−ρ/2 +

ρN

2
ρ+4
2

t. (4.23)

Finally, from (4.23) and (4.16) we deduce that

Eε(t) ≤
{

[Eε(0)]−ρ/2 +
ρN

2
ρ+4
2

t

}−2/ρ

≤
{

2ρ/2 [E(0)]−ρ/2 +
ρN

2
ρ+4
2

t

}−2/ρ

which implies

E(t) ≤
{

[E(0)]−ρ/2 +
ρN

2ρ+2
t

}−2/ρ

. (4.24)

We observe that when ρ = 0 then, from (4.15) and (4.18) the exponential
decay holds easily. The proof of theorems 2.1 and (by density arguments) the-
orem 2.2 is completed. ♦ From now on, we will consider the last case, that is,
F = 0 and g 6= 0, according to Theorem 2.3. We will prove that the kernel
is strong enough to derive an exponential (or polynomial) decay provided the
kernel decays exponentially (or polynomially).

As F = 0, equation (∗) becomes

utt +Au−
∫ t

0
g(t− τ)Au(τ) dτ = 0 on Γ× (0,∞). (4.47)

Taking the duality product between equation (4.47) and u′(t) and using identity
(4.26) we obtain

E′(t) =
1
2
(g′ �A1/2u(t)− g(t)|A1/2u(t)|2). (4.48)

Now, let us introduce the following functional

R1(t) :=
{
−
(
u′, (g ∗ u)′

)
− 1

2
g′′ � u+

1
2
g′(t)|u|2 +

1
2
|g ∗A1/2u|2

}
.

The duality product between the equation (4.47) and (g ∗ u)′ together with
identity (4.26) imply that

R′1(t) = −g(0)|u′|2 − 1
2
g′′′ � u+

1
2
g′′(t)|u|2 + (A1/2u, (g ∗A1/2u)′).

Similarly, for the functional

R2(t) :=
(
u′, u

)
,
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we have, by considering the duality product between equation (4.47) and u, that

R′2(t) = |u′|2 − β(t)|A1/2u|2 −
(
A1/2u, g4A1/2u

)
,

where the function β and the binary operator 4 are given by

β(t) := 1−
∫ t

0
g(s) ds, (g4h)(t) :=

∫ t

0
g(t− s)

(
h(t)− h(s)

)
ds,

Note that, from definition and Hölder inequality, this binary operator has the
following properties

(g4h)(t) =
(∫ t

0

g(s) ds
)
h(t)− (g ∗ h)(t),

|g4h|2(t) ≤
(∫ t

0

g(s) ds
)

(g � h)(t). (4.49)

In these conditions, for the functional

R(t) := R1(t) +
g(0)
2
R2(t),

we have that, from the previous estimates

R′(t) = −g(0)
2
|u′|2 − g(0)

2
β(t)|A1/2u|2 − g(0)

2
(
A1/2u, g4A1/2u

)
−1

2
g′′′ � u+

1
2
g′′(t)|u|2 +

(
A1/2u, (g ∗A1/2u)′

)
. (4.50)

The term (g ∗A1/2u)′ of the above identity can be written as

(g ∗A1/2u)′ = g(t)A1/2u+ g4A1/2u.

Applying Young’s inequality to (4.50), using the above identity, hypothesis
(H.10)− (H.11), inequality (4.49) and adding the term g �A1/2u we get

R′(t) ≤ −g(0)
2
E(t) + C

{
g(t)|A1/2u(t)|2 − g′ �A1/2u(t) + g �A1/2u(t)

}
. (4.51)

In this point we will see that the rate of decay of the energy will depend of a
appropriate estimate of the last term of the above inequality.

Exponential Decay: We consider hypothesis (H.9) which implies that in-
equality (4.51) can be written as

R′(t) ≤ −g(0)
2
E(t) + C

{
g(t)|A1/2u(t)|2 − g′ �A1/2u(t)

}
.

Let us consider the perturbed energy Eδ(t) := E(t) + δR(t). It is easy to verify
using Young’s inequality that this functional satisfies, for δ > 0 small

1
2
E(t) ≤ Eδ(t) ≤ 2E(t). (4.52)
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The definition of Eδ and inequalities (4.48), (4.51) imply that, for δ small

E′δ(t) ≤ −δg(0)
2

E(t) ≤ −δg(0)
4

Eδ(t),

from where follows that Eδ(t) ≤ Eδ(0)e−
δg(0)

4 t. Therefore, in view of inequality
(4.52) we conclude that E(t) ≤ 4E(0)e−

δg(0)
4 t. This proves the first part of The-

orem 2.3.

Polynomial Decay: In this case we consider hypothesis (H.12). For to esti-
mate the last term of inequality (4.51) we will need some technical lemmas.
Lemma 4.1. Suppose that g ∈ C([0,∞[), w ∈ L1

loc(0,∞) and 0 ≤ θ ≤ 1, then
we have that∫ t

0
|g(τ)w(τ)| dτ ≤

{∫ t

0
|g(τ)|1−θ|w(τ)| dτ

} 1
σ+1

{∫ t

0
|g(τ)|1+ θ

σ |w(τ)| dτ
} σ

σ+1
.

Proof. For any fixed t we have∫ t

0
|g(τ)w(τ)| dτ =

∫ t

0
|g(τ)|

1−θ
σ+1 |w(τ)|

1
σ+1︸ ︷︷ ︸

:=w1

|g(τ)|1−
1−θ
σ+1 |w(τ)|

σ
σ+1︸ ︷︷ ︸

:=w2

dτ.

Note that w1 ∈ Ls
loc(0,∞), w2 ∈ Ls′

loc(0,∞), where s = σ + 1 and s′ = σ+1
σ .

Using Hölder’s inequality, we get∫ t

0
|g(τ)w(τ)| dτ ≤

{∫ t

0
|g(τ)|1−θ|w(τ)| dτ

} 1
σ+1

{∫ t

0
|g(τ)|1+ θ

σ |w(τ)| dτ
} σ

σ+1
.

This completes the proof. ♦
Lemma 4.2. Let us suppose that v ∈ L∞(0, T ;D(A1/2) and g is a continuous
function. Then, there exists C > 0 such that

g �A1/2v ≤ C
{∫ t

0
|A1/2v|2 dτ + t|A1/2v|2

} 1
p+1
{
g1+ 1

p �A1/2v
} p

p+1
.

Moreover, If there exists 0 < θ < 1 such that
∫ ∞

0

g1−θ(s) ds < ∞ , then we

have

g �A1/2v ≤ C
{(∫∞

0
g1−θ dτ

)
‖A1/2v‖2L∞(0,T ;L2)

} 1
θp+1

{
g1+ 1

p �A1/2v
} θp

θp+1
.

Proof. From the hypothesis on v and Lemma 4.1 we get

g �A1/2v =
∫ t

0
g(t− τ) |A1/2v(t)−A1/2v(τ)|2︸ ︷︷ ︸

=w(τ)

dτ

≤
{∫ t

0
g1−θ(t− τ)w(τ)dτ

} 1
θp+1

{∫ t

0
g1+ 1

p (t− τ)w(τ)dτ
} θp

θp+1

≤
{
g1−θ �A1/2v

} 1
θp+1

{
g1+ 1

p �A1/2v
} θp

θp+1
.(4.53)
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Now, for 0 < θ < 1 we have

g1−θ �A1/2v =
∫ t

0
g1−θ(t− τ)|A1/2v(t)−A1/2v(τ)|2dτ

≤ C
(∫ t

0
g1−θ(τ) dτ

)
‖A1/2v‖2L∞(0,T ;L2).

From where the second inequality of this Lemma follows. when θ = 1 we get

1 �A1/2v =
∫ t

0
|A1/2v(t)−A1/2v(τ)|2 dτ

≤ C
{
t|A1/2v(t)|2 +

∫ t

0
|A1/2v(τ)|2 dτ

}
.

Substitution of this inequality into (4.53) yields the first inequality. The proof
is now complete. ♦

Next, we will estimate the term g �A1/2u. From hypothesis (H.12) it’s easy
to verify that g(t) ≤ C(1 + t)−p for some C > 0. Let us fix θ = 1/2, then
(1− θ)p > 1, from where follows that∫∞

0
g1−θ(s) ds ≤ C

∫∞
0

1
(1+s)(1−θ)p ds <∞.

Using this estimate in the second part of Lemma 4.2 we get

g �A1/2u ≤ CE(0)
1

θp+1

(
g1+ 1

p �A1/2u
) θp

θp+1
. (4.54)

Substitution of this inequality into (4.51) we arrive at

R′(t) ≤ −g(0)
2
E(t) + C

{
g(t)|A1/2u|2 − g′ �A1/2u+

(
g1+ 1

p �A1/2u
) θp

θp+1

}
.

Since R(t) ≤ CE(t) for some C > 0, the above inequality implies that

[E
1

θpR]′(t) =
1
θp
R(t)E

1
θp−1(t)E′(t) + E

1
θp (t)R′(t)

≤ −CE
1

θp (t)E′(t) + E
1

θp (t)R′(t)

≤ −k1

(
E1+ 1

θp

)′
(t)− g(0)

2
E1+ 1

θp (t) + CE
1

θp (0)
{
g(t)|A1/2u|2 − g′ �A1/2u

}
+CE

1
θp (t)

(
g1+ 1

p �A1/2u
) θp

θp+1
, (4.55)

for some positive constant k1. Now, we will estimate the last term of the above
inequality. Applying Young’s inequality yields, for ε > 0

E
1

θp (t)
(
g1+ 1

p �A1/2u
) θp

θp+1 ≤ εE
θp+1

θp (t) + Cεg
1+ 1

p �A1/2u. (4.56)

Substitution of (4.56) into (4.55) and taking ε small we arrive at

[E
1

θp (R+ k1E)]′(t)≤−g(0)
4
E1+ 1

θp (t) + C
{
g(t)|A1/2u|2 − g′ �A1/2u

}
. (4.57)
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We consider a perturbed energy Eδ(t) := E(t)+ δE
1

θp (t)
(
R(t)+ k1E(t)

)
. Using

Young’s inequality we can verify that, for δ > 0 small
1
2
E(t) ≤ Eδ(t) ≤ 2E(t). (4.58)

From definition of the functional Eδ and inequalities (4.48), (4.57) we get, for δ
small E′δ(t) ≤ − δg(0)

4 E1+ 1
θp (t), from where follows, in view of (4.58), that

E′δ(t) ≤ −k2E
1+ 1

θp

δ (t), (4.59)

for some k2 > 0. Hence, we obtain

Eδ(t) ≤
C

(1 + t)θp
=⇒

(
by (4.58)

)
E(t) ≤ C

(1 + t)θp
.

Since p > 2 e θ = 1/2 we have that θp > 1. Therefore∫∞
0
|A1/2u(τ)|2 dτ + t|A1/2u(t)|2 ≤ C

{∫∞
0
E(τ) dτ + t E(t)

}
<∞.

From the first part of Lemma 4.2 we get the following estimate

g �A1/2u ≤ C
(
g1+ 1

p �A1/2u
) p

p+1
.

Using this inequality instead of (4.54) and repeating the same calculations and
changing θp by p, we conclude that

E(t) ≤ C

(1 + t)p
.

This completes the proof. ♦
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Abstract:

Even solutions, odd solutions, skew odd solutions, and periodic solutions to a per-

turbed Hamilton-Jacobi equation in N dimension are established via the theory of

invariant sets for semigroups of nonlinear operators. These solutions are related to

the Neumann, Dirichlet, and periodic initial-boundary value problems in the first

quadrant. Lipschitz regularity of the solutions are also explored.

2000 AMS Subject Classification: 35F30, 35D10, 47H20

Keywords and phrases: symmetry, boundary value problem, Hamilton-Jacobi, m-

dissipative operator, invariant set
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1. Introduction

Of concern is the study of solutions to some initial and boundary value problems

(IBVP) of the perturbed Hamilton-Jacobi equation

(1.1) ut + H(∇xu) + G(·, u) = 0, (x ∈ RN
+ , t ≥ 0),

on the first quadrant RN
+ = {x = (x1, x2, . . . , xN ) ∈ RN : xi ≥ 0} of RN . The

Hamiltonian H and the perturbation term G satisfy assumptions which will be

stated later. In particular, we consider the Dirichlet, Neumann, and periodic bound-

ary conditions for the perturbed problem (1.1). We will show that the corresponding

initial-boundary value problems are governed by nonexpansive semigroups on cer-

tain closed subsets of the space of bounded and uniformly continuous functions on

the first quadrant BUC(RN
+). The Crandall-Liggett theorem can be used to prove

that the above problem is governed by a non linear semigroup, hence well-posedness

of the problems follows.

The initial boundary value problems are related to the existence of solutions of

the corresponding Cauchy problem on the whole space RN having certain symme-

tries. The even solution on the whole space will solve the Neumann problem on the

first quadrant. The skew-odd solution on the whole space will solve the Dirichlet

problem on the first quadrant. Due to some sign counting problem this case in par-

ticular (i.e. skew-odd solutions) will only work in even spatial dimension. By the

same token, periodic solutions on the whole space will correspond to the periodic

problem on the first quadrant.

As a preparation, in Section 2, we will establish the notion of skew-odd and

even functions (solutions) in RN . In Section 3 we will apply the Crandall-Liggett
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theorem to the problems. More specifically, we apply the Crandall-Liggett theorem

to closed (invariant) subspaces of BUC(RN). The boundary conditions are already

built into the definition of the domain of the operator. In Section 4, we explore

Lipschitz regularity of the solutions in questions; here we employ some recent results

of Goldstein and Goldstein [9].

The Cauchy problem for a related perturbation of the Hamilton-Jacobi equa-

tion was addressed in Goldstein-Soeharyadi [10]. Interplay among even solutions,

periodic solutions, Dirichlet, Neumann, periodic, and mixed boundary value prob-

lems for the Hamilton-Jacobi equation in the positive ray was explored in Burch-

Goldstein [5]. Boundary value problems of the Hamilton-Jacobi equation are also

discussed, for example, in Ishii [11], Aizawa [3], Lions [12], and Tataru [13]. A semi-

group treatment of the Hamilton-Jacobi equation can be found in Crandall-Lions

[6], Crandall-Evans-Lions [7], Burch [4], Aizawa [1, 2]. For nonlinear semigroup

treatments of partial differential equations we refer to Goldstein [8].

2. Symmetries

Let ε be a function on RN defined by

ε(x) = (ε1x1, . . . , εNxN ),

where x = (x1, . . . , xN ) ∈ RN , and εi is either 1 or −1. Obviously, there are 2N

such functions. Let E be the collection of all such functions. A real valued function

f on RN is said to be E-invariant if

f(ε(x)) = f(x), for all x ∈ RN , and all ε ∈ E.

G.GOLDSTEIN ET AL208
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We can easily see that f is E-invariant if and only if it is even with respect to each

variable. We regard E-invariance as a higher dimensional notion of evenness. We

say f is skew E-invariant if

f(ε(x)) = (−1)σ(ε)f(x), for all x ∈ RN , and all ε ∈ E;

here σ(ε) is the number of the εi’s which have value −1.

In one dimension an odd function naturally satisfies the Dirichlet boundary con-

dition at the origin, while a differentiable, even function satisfies the Neumann

boundary condition at the origin. We have a similar situation in higher dimen-

sions, with the notions of E-invariance and skew E-invariance playing the role of

even and odd.

Lemma 2.1. If f is skew E-invariant on RN , then f = 0 on ∂RN
+ .

Proof. Let y be in ∂RN
+ . Then yi = 0 for some i, 1 ≤ i ≤ N . For

ε(x) = (x1, . . . ,−xi, . . . , xN ), x ∈ RN ,

we have y = ε(y), and thus

f(y) = f(ε(y)) = −f(y),

forcing f(y) = 0. �

If f is E-invariant, then the first partial derivative of f in each variable is odd

since f is even with respect to each of its variables. This is in fact the property

of the derivative of an even function being odd, in one dimension. However, the

derivatives (partial and hence the divergence) stop short of being skew E-invariant,
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as shown by this easy example in N = 2, f(x, y) = x2y2. It is E-invariant, but

none of its first derivatives is skew E-invariant.

Suppose f is E-invariant, and y is a point on ∂RN
+ , such that for exactly one

index i, yi = 0. The outer unit normal to the point y is (0, . . . , 0,−1, 0, . . . , 0),

where −1 sits in the i-th position. Then

∂f

∂n
(y) = ∇f(y) · n

= − ∂f

∂xi
(y1, . . . , yi−1, 0, yi+1, . . . , yN )

= 0,

since ∂f/∂xi is odd in the i-th variable. This shows the following:

Proposition 2.2. If f is E-invariant and differentiable on a neighborhood of ∂RN
+ ,

then f satisfies Neumann boundary condition on ∂RN
+ .

In this paper we will say that a continuous, E-invariant function u satisfies gen-

eralized Neumann boundary condition on ∂RN
+ . An E-invariant function is simply

called even, a skew E-invariant function is called skew-odd. Note that any skew-odd

function f satisfies f(0) = 0.

A spherically odd function f (or simply called odd), is a function which satisfies

f(−x) = −f(x), for all x ∈ RN .

There is an extensive literature which exploits this notion of oddness. However, the

notion of (spherically) odd and our notion of skew-odd are distinct. The example

f(x, y) = x + y shows an odd function which is not skew-odd. While another

example g(x, y) = xy exhibits a skew-odd function which is not odd. But a skew-

odd function needs to be odd in an odd dimensional space.
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In any dimension, there exists a unique decomposition of any real valued func-

tion, f = g + h, where g is an even function, and h is an odd function. This is

not true anymore with even, skew-odd functions decomposition, as shown by the

function f(x, y) = x + y. Suppose it is true, that is

x + y = g(x, y) + h(x, y),

where g and h are even and skew-odd functions, respectively. Then for all x ∈ RN

we have

2x = h(x, x) + g(x, x) = h(−x,−x) + g(−x,−x) = −2x,

which is a contradiction for all x 6= 0.

3. Invariant sets

Using the notion of E-invariance and skew E-invariance as above we construct

subsets of the Banach space X = BUC(RN ) which are invariant under the semi-

group action the Hamilton-Jacobi equation. Recall that Goldstein-Soeharyadi [10]

dealt with the Cauchy problem

(3.1)
ut + H(∇xu) + G(·, u) = 0, x ∈ RN , t > 0,

u(x, 0) = u0(x), u0 ∈ X,

where H ∈ C2(RN ), is weakly convex, (i.e.
∑N

i,j Hxixj
(x)ξiξj ≥ 0, for all x, ξ ∈

RN ), and satisfies H(0) = 0. The perturbation term G : RN ×R → R, assumes the
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following:

G ∈ C2(RN × R)(γ1)

| G(x, u) | ≤ K1 | u |, for all x ∈ RN , and u ∈ R(γ2)

| G(x, u)−G(y, v) | ≤ K2(| x− y | + | u− v |),(γ3)

for all x, y ∈ RN , and u, v ∈ R

‖Gij‖ ≤ K3,(γ4)

for any entry Gijof the matrix D2
x,uG.

Burch [4] (see also [1, 2]) showed that the operator A0 = H ◦ ∇x defined by

A0u = −H(∇xu) (on a suitable domain) is densely defined and m-dissipative on

X. Crandall and Lions [6], and later Crandall, Evans, and Lions [7] generalized

this substantially. Using their notion of viscosity solutions, they were able to reduce

the hypotheses on H to mere continuity, i.e. H ∈ C(RN ). Hence by the Crandall-

Liggett theorem, the problem (without perturbation) is governed by a strongly

continuous nonexpansive (or contractive) nonlinear semigroup T0 = {T0(t) : t ≥ 0}

on X. Again, this is under the assumption that H is a real continuous function

on RN . In particular u(t) = T0(t)u0 is the unique mild solution of the Cauchy

problem, for any initial data u0 ∈ X. Using perturbation theory, one can show

that the Cauchy problem of the perturbed Hamilton-Jacobi (3.1) is well-posed. Let

A1u = −G(·, u), A2u = A0u+A1u = −H(∇xu)−G(·, u), as mappings from X to X.

A1 is (globally) Lipschitzian with Lipschitz constant K2, assuming (γ3) holds. Thus

Ai generates a nonlinear semigroup Ti, i = 1, 2, satisfying ‖Ti(t)‖Lip ≤ exp(tK2),
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for each t ≥ 0. In addition Ai −K2I is m-dissipative, that is

Range(λI −Ai) = X, for 0 < λ < 1/K2,(3.2)

‖u1 − u2‖ ≤ (1− λK2)−1‖h1 − h2‖,(3.3)

for hj ∈ X, and uj − λAiuj = hj , (i, j = 1, 2), 0 < λ < 1/K2.

For i = 0, (3.2), (3.3) hold with K2 replaced by zero. The solution to the Cauchy

problem is given by the action of the semigroup on the initial data

u(t) = T2(t)u0 = lim
n→∞

(I − t

n
A2)−nu0.

This result is actually obtained assuming only (γ3). Goldstein-Soeharyadi [10]

assumed (γ1, γ2, γ4) for showing some regularity in the context of Burch’s result [4].

We shall return to the question of regularity in Section 5.

We now exhibit subsets of the Banach space X which are invariant under the

action of the semigroup. For p ∈ RN , let us define a function to be p-periodic if

f(x + p) = f(x), for all x ∈ RN . We also define the following.

Xe := {u ∈ X : u is even }

Xos := {u ∈ X : u is skew-odd }

Xp := {u ∈ X : u is p-periodic}

Recall that skew-odd means skew E-invariant. We can now state one of our main

results.

Theorem 3.1. Let H be real and continuous on RN and assume (γ3). Let 0 <

λ < 1/K2.
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(1) Assume H is even, and G is even with respect to its first N variables, then

(I − λA2)−1Xe ⊆ Xe.

(2) Assume the dimension N is even, the Hamiltonian H is skew-odd, G is

even with respect to its first N variables, and odd with respect to the last

variable, then

(I − λA2)−1Xos ⊆ Xos.

(3) Assuming G is p-periodic in the first N variables, we have

(I − λA2)−1Xp ⊆ Xp.

Proof. For (1), we let f ∈ Xe. We seek a unique u ∈ Xe solving the resolvent

equation, i.e., u satisfying (I − λA2)u = f . That means

(3.4) u(x) + λH(∇xu(x)) + G(x, u(x)) = f(x).

The existence of such a u in X is guaranteed by the quasi m-dissipativity of the

operator A2. We shall show that indeed u ∈ Xe. Let ε ∈ E and v(x) = u(ε(x)).

For simplicity, let y = ε(x). Then

v(x) + λH(∇xv(x)) + G(x, v(x))

= u(y) + λH(ε(∇yu(y)) + G(x, u(y))

= u(y) + λH(∇y(u(y)) + G(y, u(y))

= f(y)

= f(x),
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and therefore v solves the resolvent equation (3.4). By uniqueness, we have

u(x) = v(x) = u(ε(x)),

for x ∈ RN and ε ∈ E. Thus u ∈ Xe.

For (2), first we can find a unique u in X satisfying (3.4), given f ∈ Xos. We

shall show that u ∈ Xos. Let ε ∈ E and set v(x) = (−1)σu(ε(x)). Here σ = σ(ε).

Then

v(x) + λH(∇xv(x)) + G(x, v(x))

= (−1)σu(y) + λH((−1)σε(∇yu(y))) + G(x, (−1)σu(y)).

We now examine the case when σ is an even number. The last equality becomes

u(y) + λH(ε(∇yu(y))) + G(y, u(y))

= u(y) + λH(∇yu(y)) + G(y, u(y))

= f(y)

= f(x).

If σ is odd, we have

−u(y) + λH(−ε(∇yu(y)))−G(y, u(y))

= −u(y) + (−1)N−σλH(∇yu(y))−G(y, u(y))

= −u(y)− λH(∇yu(y))−G(y, u(y))

= −f(y)

= f(x)

since N − σ is odd. In both cases v satisfies the resolvent equation (3.4). Again,

by uniqueness, v(x) = u(x), and thus

u(x) = v(x) = (−1)σu(ε(x)),
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for x ∈ RN , ε ∈ E, and hence u is skew E-invariant. The proof of (3) follows from

a straightforward substitution of v(x) = u(x + p) into the resolvent equation. A

uniqueness argument as the above finishes the proof. �

The above theorem shows that the restriction

Sα(t) : Xα → Xα,

(α = e, os, p) of the semigroup T2(t) to the set Xα, is itself a quasicontractive

semigroup on Xα, generated by Aα = A2 |Xα
. In turn, this establishes well-

posedness of the Cauchy problem (3.1) in the spaces Xe, Xos, and Xp.

4. Boundary Value Problems

Symmetries and invariance give us the main result for initial-boundary value

problems for perturbed Hamilton - Jacobi equation, in the first quadrant RN
+ of

RN .

Theorem 4.1. Let H be a continuous real function on RN . Let G be jointly

Lipschitzian (i.e., (γ3)). Consider the initial value problem

ut + H(∇xu) + G(·, u) = 0, a.e. for x ∈ RN
+ , t > 0,(4.1)

u(x, 0) = u0(x), x ∈ RN
+ ;(4.2)

we consider the following boundary conditions

u(x, t) = 0, x ∈ ∂RN
+ , t > 0,(4.3)

∂u/∂n(x, t) = 0, x ∈ ∂RN
+ , t > 0,(4.4)

u(x + p, t) = u(x), x ∈ ∂RN
+ , t > 0.(4.5)
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Then the following conclusions hold.

(1) The generalized Neumann problem (4.1), (4.2), (4.4), is governed by a

strongly continuous quasicontractive semigroup {Se(t)} on BUC(RN
+ ).

(2) The Dirichlet problem (4.1)-(4.3) is governed by a strongly continuous

quasicontractive semigroup {Sos(t)} on Y = {u ∈ BUC(RN
+ ) : u(x) =

0, forx ∈ ∂RN
+}, if the spatial dimension N is even.

(3) If N is even, the periodic problem (4.1),(4.3),(4.5) is governed by a strongly

continuous quasi contractive semigroup {Sp(T )} on Z = {u ∈ BUC(RN
+ ) :

u(x + p) = u(x), forx ∈ RN}.

While (4.1) and (4.4) are satisfied in a certain generalized sense, (4.2), (4.3)

and (4.5) are satisfied in strong sense. We outline the proof of the theorem. For

problems in the first quadrant, we first extend the Hamiltonian H, the perturbation

term G, and the initial data according what is required (even, odd, or periodic)

to the whole space RN . We apply the invariance result of Theorem 3.1. The

boundary conditions are built into the domains of the corresponding operators,

and are thus automatically satisfied. The corresponding operators are quasi m-

dissipative (quasidissipativity being inherited from the unrestricted A2). We apply

the Crandall-Liggett theorem to obtain the associated semigroups.

Remark 4.2. Some mixed problems are possible, for example, the periodic problem

(4.1)-(4.3), (4.5) in even dimensions is governed by the semigroup {Sβ(t)}. Here,

Sβ is the restriction

Sβ(t) = Sos(t) |Xos∩Xp
: Xos ∩Xp → Xos ∩Xp.
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5. Regularity

Let Lip(Ω) denote the space of real-valued Lipschitz functions on Ω, with its

usual seminorm ‖ ·‖Lip. The metric space Ω = (Ω, ρ) is assumed to satisfy a certain

geometric property, namely, there is a K0 > 0 such that for all x, y ∈ Ω, there is

a uniformly continuous τ : Ω → Ω satisfying τ(x) = y and ρ(τ(z), z) ≤ K0ρ(x, y)

for all z ∈ Ω. This holds for any ellipsoid (or ball, or the whole space) in a Hilbert

space with structure constant K0 = 1. See Goldstein and Goldstein [9]. For k > 0,

let

Lipk = {f ∈ Lip(Ω) : ‖f‖Lip ≤ k}.

Goldstein and Goldstein [9] showed, for an operator (possibly multivalued) B with

Dom(B) ⊆ BUC(Ω), and which is quasi m-dissipative (so that the Crandall-

Liggett theorem holds), the following holds:

T (t)(Lipk) ⊆ Lips,

for all t > 0, k > 0, and a suitable s = s(t, k,K0). Here {T (t) : t ≥ 0} is the

semigroup generated by B. Further, they conjectured that this is the case with

perturbed Hamilton-Jacobi equation. In this section we shall show that this is

true. We shall compute a bound for the Lipschitz norm of a solution at any t > 0.

This result can be interpreted as a regularity result for the perturbed Hamilton-

Jacobi equation. While the analysis we carry out is for the whole space RN , the

result applies also to the boundary problems in the first quadrant RN
+ of RN .

In addition, let us assume that G ∈ C1(RN ×R). Recall also that from (γ3), K2

is a bound for Lipschitz constant of G; hence it is a bound for | ∇x,uG |.
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Lemma 5.1. Let u solve the resolvent equation with data h, i.e.,

u + λH(∇xu) = h− λG(·, u),

for some λ > 0. Let l ∈ RN and ‖h‖Lip = k. Then

| u(·+ l)− u(·) |≤ k + λK2

1− λK2
| l | .

Proof. We observe that ul(·) := u(·+ l) satisfies a translated resolvent equation

ul + λH(∇xul) = hl − λG(·+ l, ul).

By dissipativity of the unperturbed problem,

‖u− ul‖ ≤ ‖h− λG(·, u)− (hl − λG(·+ l, ul))‖

≤ ‖h− hl‖+ λ‖G(·, u)−G(·+ l, ul)‖.

However

‖G(·+ l, ul)−G(·, u)‖ ≤ K2(| l | +‖u− ul‖).

Combining the previous inequalities,

‖u− ul‖ ≤ ‖h− hl‖+ λK2(| l | +‖u− ul‖)

≤ k | l | +λK2(| l | +‖u− ul‖).

Thus

| u(x + l)− u(x) |≤ ‖u− ul‖ ≤
k + λK2

1− λK2
| l | .

�
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Lemma 5.2. For any positive integer n we have

‖(I − (t/n)A2)−nu0 − (I − (t/n)A2)−nu0l‖

≤ k + 1− (1− λK2)n

(1− λK2)n
| l | .

Proof. Assuming the initial data is u0, with ‖u0‖Lip ≤ k, Lemma 5.1 gives

(5.1) ‖(I − λA2)−1u0 − (I − λA2)−1u0l‖ ≤
k + λK2

1− λK2
| l | .

We now use (I − λA2)−1u0 as initial data, and repeating the process, iterate the

bound (5.1)

‖(I − λA2)−2u0 − (I − λA2)−2u0l‖

≤ k + λK2 + (1− λK2)λK2

(1− λK2)2
| l | .

After n iterations this yields

‖(I − λA2)−nu0 − (I − λA2)−nu0l‖

≤
k + λK2

∑n−1
s=0 (1− λK2)s

(1− λK2)n
| l |

=
k + 1− (1− λK2)n

(1− λK2)n
| l | .

Noting that
∑n−1

s=0 (1−λK2)s = (1− (1−λK2)n)/λK2, and λ = t/n, the conclusion

of the lemma is then confirmed. �

Thanks to the Crandall-Liggett theorem, as n → ∞, we have from the above

lemmas,

‖u(t)‖Lip ≤ (k + 1)etK2 − 1,

for any t > 0, and thus,

T (t)(Lipk) ⊆ Lips(t),

with s(t) = (k + 1)etK2 − 1.
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6. Remarks

In our analysis, the Dirichlet problem in one dimension is not covered by our semi-

group generation results. Burch and Goldstein [5] obtained a generation result for a

mixed Dirichlet and nonnegativity condition on the nonnegative ray in R. It seems

that nonnegativity is the significant condition there.

References

[1] S. Aizawa, A semigroup treatment of the Hamilton-Jacobi equation in one space variable,

Hiroshima Math J. 3 (1973), 367–386.

[2] S. Aizawa, A semigroup treatment of the Hamilton-Jacobi equation in several space variables,

Hiroshima Math J. 6 (1976), 15–30.

[3] S. Aizawa, A mixed initial and boundary-value problem for the Hamilton-Jacobi equation in

several space variables, Funkcial. Ekvac. 9 (1966), 139–150.

[4] B.C. Burch, A semigroup treatment of the Hamilton-Jacobi equation in one space variable,

J. Diff. Equations 23 (1977), 107–124.

[5] B.C. Burch, J.A. Goldstein, Some boundary value problems for the Hamilton-Jacobi equation,

Hiroshima Math. J. 8 (1978), 223–233.

[6] M.G. Crandall, P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer.

Math. Soc. 277 (1983), 1–42.

[7] M.G. Crandall, L.C. Evans, P.L. Lions, Some properties of viscosity solutions of Hamilton-

Jacobi equations, Trans. Amer. Math.Soc. 282 (1984), 487–502.

[8] J.A. Goldstein, Semigroups of Nonlinear Operators and Applications, (monograph in prepa-

ration).

[9] G.R. Goldstein, J.A. Goldstein, Invariant sets for nonlinear operators, in Stochastic Processes

and Functional Analysis( A. Krinik and R. Swift eds.), Marcel Dekker (2004), 141–147.

[10] J.A. Goldstein, Y. Soeharyadi, Regularity of perturbed Hamilton-Jacobi equations, Nonlin.

Anal. 51 (2002), 239–248.

SYMMETRIES,INVARIANCES,AND BOUNDARY... 221



18

[11] Ishii, H. A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann.

Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989), 105–135.

[12] P.-L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Math.

J. 52 (1985), 793—820

[13] D. Tataru, Boundary value problems for first order Hamilton-Jacobi equations, Nonlin. Anal.

19 (1992), 1091–1110.

G.GOLDSTEIN ET AL222



On the absolute summability factors of Fourier series
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1 Introduction

Let
∑

an be a given infinite series with partial sums (sn). Let (pn) be a sequence of

positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (1)

The sequence-to-sequence transformation

tn =
1
Pn

n∑

v=0

pvsv (2)

defines the sequence (tn) of the (N̄ , pn) means of the sequence (sn) generated

by the sequence of coefficients (pn) (see[3]).

The series
∑

an is said to be summable | N̄ , pn |k, k ≥ 1, if (see [1])
∞∑

n=1

(Pn/pn)k−1 | tn − tn−1 |k< ∞. (3)
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In the special case when pn = 1 for all values of n (resp. k = 1), | N̄ , pn |k summability is

the same as | C, 1 | (resp. | N̄ , pn |) summability. Also if we take k = 1 and pn = 1/n + 1

summability | N̄ , pn |k, is equivalent to the summability | R, logn, 1 |. A sequence (λn) is

said to be convex if ∆2λn ≥ 0 for every positive integer n, where ∆2λn = ∆λn −∆λn+1

and ∆λn = λn − λn+1.

Let f(t) be a periodic function with period 2π, and integrable (L) over (−π, π). Without

any loss of generality we may assume that the constant term in the Fourier series of f(t)

is zero, so that ∫ π

−π
f(t)dt = 0 (4)

and

f(t)∼
∞∑

n=1

(ancosnt + bnsinnt) =
∞∑

n=1

An(t). (5)

Bor [2] has proved the following theorem concerning the | N̄ , pn |k summability factors of

Fourier series.

Theorem A. If (λn) is a convex sequence such that
∑

pnλn < ∞, where (pn) is a sequence

of positive numbers such that Pn → ∞ as n→ ∞, and
∑n

v=1 PvAv(t) = O(Pn), then

the series
∑

An(t)Pnλn is summable | N̄ , pn |k, k ≥ 1.

2. The aim of this paper is to prove a more general theorem in the following form.

Theorem. If (λn) is a non-negative and non-increasing sequence such that
∑

pnλn < ∞,

where (pn) is a sequence of positive numbers such that Pn → ∞ as n→ ∞, and
∑n

v=1 PvAv(t) = O(Pn), then the series
∑

An(t)Pnλn is summable | N̄ , pn |k, k ≥ 1.

It should be noted that the conditions on the sequence (λn) in our theorem, are somewhat

more general than in Theorem A.

We need the following lemma for the proof of our theorem.

Lemma.If (λn) is a non-negative and non-increasing sequence such that
∑

pnλn is con-

vergent, where (pn) is a sequence of positive numbers such that Pn → ∞ as n→ ∞,

then Pnλn = O(1) as n →∞ and
∑

Pn∆λn < ∞.
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Proof. Since (λn) is non-increasing, we have that

Pmλm = λm

m∑

n=0

pn = O(1)
m∑

n=0

pnλn = O(1) as m →∞.

Applying the Abel transform to the sum
∑m

n=0 pnλn, we have that

m∑

n=0

pnλn =
m−1∑

n=0

Pn∆λn +Pmλm =
m∑

n=0

Pn∆λn−Pm∆λm +Pmλm =
m∑

n=0

Pn∆λn +Pmλm+1.

Hence
m∑

n=0

Pn∆λn =
m∑

n=0

pnλn − Pmλm+1.

Since λn ≥ λn+1, we obtain that
m∑

n=0

Pn∆λn ≤ Pmλm +
m∑

n=0

pnλn = O(1) + O(1) = O(1) as m →∞.

This completes the proof of the Lemma.

Proof of the Theorem. Let Tn(t) denotes the (N̄ , pn) means of the series
∑

An(t)Pnλn.Then,

by definition, we have

Tn =
1
Pn

n∑

v=0

pv

v∑

r=0

Ar(t)Prλr =
1
Pn

n∑

v=0

(Pn − Pv−1)Av(t)λvPv.

Then, for n ≥ 1, we have

Tn(t)− Tn−1(t) =
pn

PnPn−1

n∑

v=1

Pv−1PvAv(t)λv.

By Abel’s transformation, we have

Tn(t)− Tn−1(t) =
pn

PnPn−1

n−1∑

v=1

∆(Pv−1λv)
v∑

r=1

PrAr(t) +
pn

Pn
λn

n∑

v=1

PvAv(t)

= O(1){ pn

PnPn−1

n−1∑

v=1

(Pvλv − pvλv − Pvλv+1)Pv}+ O(1)pnλn

= O(1){ pn

PnPn−1

n−1∑

v=1

PvPv∆λv − pn

PnPn−1

n−1∑

v=1

Pvpvλv + pnλn}

= O(1){Tn,1(t) + Tn,2(t) + Tn,3(t)}, say.

Since

| Tn,1(t) + Tn,2(t) + Tn,3(t) |k≤ 3k{| Tn,1(t) |k + | Tn,2(t) |k + | Tn,3(t) |k},
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to complete the proof of the Theorem, it is sufficient to show that
∞∑

n=1

(Pn/pn)k−1 | Tn,r(t) |k< ∞, for r = 1, 2, 3. (6)

Now, when k > 1, applying Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1,

and since
n−1∑

v=1

PvPv∆λv ≤ Pn−1

n−1∑

v=1

Pv∆λv

it follows by the Lemma that

1
Pn−1

n−1∑

v=1

PvPv∆λv ≤
n−1∑

v=1

Pv∆λv = O(1) as m →∞, (7)

we get that

m+1∑

n=2

(
Pn

pn
)k−1 | Tn,1(t) |k ≤

m+1∑

n=2

pn

PnPn−1
{

n−1∑

v=1

PvPv∆λv} × { 1
Pn−1

n−1∑

v=1

PvPv∆λv}k−1.

= O(1)
m+1∑

n=2

pn

PnPn−1

n−1∑

v=1

PvPv∆λv

= O(1)
m∑

v=1

PvPv∆λv

m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

Pv∆λv = O(1) as m →∞,

by the Lemma. Again

m+1∑

n=2

(
Pn

pn
)k−1 | Tn,2(t) |k ≤

m+1∑

n=2

pn

PnPn−1
{

n−1∑

v=1

(Pvλv)kpv} × { 1
Pn−1

n−1∑

v=1

pv}k−1

= O(1)
m+1∑

v=2

pn

PnPn−1

n−1∑

v=1

(Pvλv)kpv

= O(1)
m∑

v=1

(Pvλv)kpv

m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

(Pvλv)k pv

Pv

= O(1)
m∑

v=1

(Pvλv)k−1pvλv

= O(1)
m∑

v=1

pvλv = O(1) as m →∞,

BOR226



by virtue of the hypotheses of the Theorem and the Lemma. Finally as in Tn,1(t), we have

that

m∑

n=1

(
Pn

pn
)k−1 | Tn,3(t) |k =

m∑

n=1

(Pnλn)k−1pnλn

= O(1)
m∑

n=1

pnλn = O(1) as m →∞.

Therefore, we get that

m∑

n=1

(
Pn

pn
)k−1 | Tn,r(t) |k= O(1) as m →∞, for r = 1, 2, 3.

This completes the proof of the Theorem.

As special cases of this Theorem, one can obtain the following results.

1. If we take pn = 1 for all values of n, then we get a result concerning the

| C, 1 |k summability factors of Fourier series.

2. If we take k = 1 and pn = 1/(n + 1), then we get another new result related

to | R, logn, 1 | summability factors of Fourier series.
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1. Introduction

The Hahn polynomials were introduced by Hahn [15] as limiting cases of
some general systems of orthogonal polynomials. They provide a useful tool
in some problems of genetics [16–18].

For α > −1, β > −1, N a non-negative integer, and n = 0, 1, . . . , N the
Hahn polynomials Qn are defined by [16]

(1.1) Qn(x; α, β, N) = 3F2

(−n, n + µ,−x

α + 1,−N

∣∣ 1

)
,
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where µ := α+β +1. These polynomials are orthogonal on {0, 1, . . . , N} with
the weights

ρ(x) =

(
x + α

x

)(
N − x + β

N − x

)/(
N + µ

N

)
.

Continuous dual Hahn polynomials are defined by

(1.2) Sn(x
2; a, b, c) = (a + b, n)(a + c, n) 3F2

(−n, a + ix, a − ix

a + b, a + c

∣∣ 1

)

(see [2, p. 47], [19, (5.2)], [26, p. 697]). Here we have used the Appell
symbol (z, n) which is defined by (z, 0) = 1, (z, n) = z(z + 1) · · · (z + n − 1),
n = 1, 2, . . . . The parameters a, b, c have positive real parts. Clearly Sn(x2; a, b, c)
is a polynomial of degree n in x2. These polynomials are orthogonal on [0,∞)
with the weight function

x →
∣∣∣∣Γ(a + ix)Γ(b + ix)Γ(c + ix)

Γ(2ix)

∣∣∣∣
2

.

The interest in this class of orthogonal polynomials also stems from the obser-
vation made by Koornwinder. He has shown that the Jacobi functions

ϕ
(α,β)
λ (t) = 2F1

(
(µ + λi)/2, (µ − λi)/2

α + 1

∣∣− sinh2 t

)

may be obtained as limiting forms of the continuous dual Hahn polynomials
by means of the relation

lim
n→∞

Sn(λ2/4; µ/2, n/ sinh2 t, (α − β + 1)/2)

((µ/2) + n/ sinh2 t, n)(α + 1, n)
= ϕ

(α,β)
λ (t)

(see [19, (5.14)]). The Jacobi functions constitute a complicated system of
orthogonal functions.

This paper is organized as follows. Notation and definitions are intro-
duced in Section 2. The contour integrals for polynomials under discussion
are derived in Section 3. The bilinear generating functions for the continu-
ous dual Hahn polynomials and generating functions for Qn and Sn are given
in Section 4. Some summation formulas are discussed in Section 5. In the
next section we demonstrate how some known results for the Jacobi poly-
nomials can be generalized easily to the case of Hahn polynomials. Examples
include Gasper’s projection formula [12, (1.4)] and a formula for the symmetric
Hahn polynomials [13, (3.6)]. In Section 7 we deal with the addition theorems
for the Krawtchouk polynomials, the Meixner-Pollaczek polynomials, and the
Poisson-Charlier polynomials.
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2. Notation and Definitions

Throughout the sequel we will employ the notation used in [8]. By C> we
will denote the open right half-plane in C, U will stand for the complex plane
punctured at the non-positive integers, i.e., U = {z ∈ C : z �= 0,−1, . . . }. The
symbol µ will stand for the sum α + β + 1 (α, β ∈ C) unless otherwise stated.
The key tool used in this paper is the Dirichlet average of a holomorphic
function of one variable (real or complex). For the reader’s convenience we
recall the definition of this average along with some basic properties. Let Ω
be a convex set in C and let f be holomorphic on Ω. For α, a′ ∈ C> and
(x, y) ∈ Ω2 the Dirichlet average of f is defined by [8, (5.1–1)]

(2.1) F (α, a′; x, y) =

∫ 1

0

f
[
ux + (1 − u)y

]
dµ(u),

where

(2.2) dµ(u) =
1

B(α, α′)
uα−1(1 − u)α′−1du

is the Dirichlet measure on (0, 1), and B stands for the beta function. Clearly,

F (α, a′; x, y) = F (α′, α; y, x).

Throughout the sequel the symbol Rn will stand for the Dirichlet average
of the monomial f(t) = tn, n ∈ N. If the parameters α, α′ are such that
α + α′ ∈ U and if Ω is a circular disk in C with center c, then the integral
average F (α, α′; x, y) has a holomorphic continuation to C

2 × Ω2, where it is
represented by

(2.3) F (α, α′; x, y) =

∞∑
n=0

f (n)(c)

n!
Rn(α, α′; x − c, y − c).

This is a special case of Theorem 6.3–1 in [8]. Also, we will use the generalized
Cauchy formula [8, (5.11–2)]

(2.4) F (α, α′; x, y) =
1

2πi

∫
ε

f(s)R−1(α, α′; s − x, s − y)ds,

where ε denotes the rectifiable Jordan curve encircling the convex hull of x
and y in the positive direction, f is holomorphic in the inner region of ε and
continuous on its closure, R−1 stands for the Dirichlet average of f(t) = t−1.
For the comprehensive discussion of Dirichlet averages the interested reader is
referred to [8].

Also, we will use the double Dirichlet average F of f . Let

X =

[
x y
z w

]
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and let f be a holomorphic function on a domain D in C containing the convex
hull of x, y, z, w. The double Dirichlet average may be defined by

F(α, α′; X; β, β ′)

=

∫ 1

0

F

(
α, α′; vx + (1 − v)y, vz + (1 − v)w

)
ϕ(β,β′)(v)dv

=

∫ 1

0

F

(
β, β ′; ux + (1 − u)z, uy + (1 − u)w

)
ϕ(α,α′)(u)du

(see [5, (2.8)]). Throughout the sequel the symbol Rn will stand for the double
Dirichlet average of tn, n ∈ N, while R−ν will denote the double average of
t−ν.

The double average F also has a generalized Cauchy formula [5, (6.11)]

(2.5) F(α, α′; X; β, β ′) =
1

2πi

∫
ε

f(s)R−1(α, α′; s − X; β, β ′)ds,

where

s − X =

[
s − x s − y
s − z s − w

]
.

All the matrix elements of X are required to lie in the inner region of the posi-
tively oriented rectifiable Jordan curve ε, and f is assumed to be holomorphic
on ε and its inner region.

3. New Formulas for the Hahn Polynomials
and Continuous Dual Hahn Polynomials

The purpose of this section is to derive new representations for the polyno-
mials in question. We shall show that they can be represented either by single
averages or by the double Dirichlet averages. Representations involving the
contour integrals are also discussed.

For later use let us record a useful formula for the hypergeometric polyno-
mials [8, Ex. 5.7–1]

(3.1) p+1Fq+1

(−n, b2, . . . , bp, b

c1, . . . , cq, c

∣∣ x

)
= F (b, c− b; x, 0),

where F denotes the single Dirichlet average of

(3.2) f(t) = pFq

(−n, b2, . . . , bp

c1, . . . , cq,

∣∣ t

)
,

p, q, n ∈ N. We assume that the denominator parameters of the pFq polynomial
are such that it is well defined.

It follows from (3.1) – (3.2) and (1.1) that

(3.3) Qn(x; α, β, N) = F (−x, x−N ; 1, 0),
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where

(3.4) f(t) = 2F1

(−n, n + µ

α + 1

∣∣ t

)
= P (α,β)

n (1 − 2t)
/
P (α,β)

n (1),

µ = α + β + 1, and P
(α,β)
n denotes the nth Jacobi polynomial. Similarly,

(3.5) Qn(x; α, β, N) = F (n + µ,−n − β; 1, 0),

where

(3.6) f(t) = 2F1

(−n,−x

−N

∣∣ t

)
.

For the continuous dual Hahn polynomials we have the following result

(3.7) Sn(x2; a, b, c) = (a + b, n)(a + c, n)F (a− ix, c + ix; 1, 0),

where

(3.8) f(t) = 2F1

(−n, a + ix

a + b

∣∣ t

)
.

To obtain the representations in terms of R-polynomials it suffices to use
[5, (3.2)]

3F2

(−n, β, β ′

γ, γ′
∣∣ 1

)
= Rn(β, γ − β; X; β ′, γ′ − β ′)(3.9)

X =

[
0 1
1 1

]
on (1.1) and (1.2). We have

(3.10) Qn(x; α, β, N) = Rn(n + µ,−n − β; X;−x, x− N)

and

(3.11) Sn(x2; a, b, c) = (a + b, n)(a + c, n)Rn(a + ix, b− ix; X; a− ix, c + ix).

More representations can be derived by use of the linear transformation

(3.12) (α + α′, n)Rn(α, α′; Y ; β, β ′) = (α, n)Rn(1 − α − α′ − n, α′; Z; β, β ′),

Y =

[
x y
z w

]
, Z =

[
x y

x − z y − w

]
(see [7, (3.4)]) on (3.10) and (3.11). For instance, use of (3.12) on (3.10) gives

Qn(x; α, β, N) =
(n + µ, n)

(α + 1, n)
Rn(−x, x− N ; Z ′;−n − α,−n − β),(3.13)

Z ′ =

[
0 −1
1 0

]
.
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Here we have used the transposition symmetry for double averages [5, p. 422].
A second application of (3.12) to (3.13) gives

Qn(x; α, β, N) = (−1)n (n + µ, n)(−x, n)

(α + 1, n)(−N, n)

×Rn(N − n + 1, x − N ; X;−n − α,−n − β)

= (−1)n (n + µ, n)(−x, n)

(α + 1, n)(−N, n)

× 3F2

(−n, N − n + 1,−n − α

x − n + 1,−2n − α − β

∣∣1
)

,

where in the last step we have used (3.9) and the fact that Rn is homogeneous
of order n in its matrix elements.

To obtain a similar representation for Sn we follow the lines introduced
above. The result is

Sn(x
2; a, b, c)

(a + ix, n)(a − ix, n)

= (−1)n
3F2

(−n, 1 − a − b − n, 1 − a − c − n

1 − a + ix − n, 1 − a − ix− n

∣∣ 1

)
.

The last two formulas are contained in Luke’s theorem [22, 5.2.1(5)]. I am
indebted to Professor Stanislaw Lewanowicz for calling my attention to some
formulas contained [21–22].

The contour integrals for the Hahn polynomials and the continuous dual
Hahn polynomials can be derived from the following formula for the 3F2(1)
functions

(3.14)

3F2

(−n, β, β ′

γ, γ′
∣∣1
)

=
1

2πi

∫
ε

2F1

(−n, β

γ

∣∣ s

)
2F1


1, β ′

γ′
∣∣ 1

s


 ds

s
,

where now ε is the rectifiable Jordan curve encircling the interval [0, 1] in the
positive direction. To prove (3.14) we put p = 2, q = 1, x = 1, b2 = β, b = β ′,
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c1 = γ, c = γ′ in (3.1) and (3.2). Combining this with (2.4) we obtain

3F2

(−n, β, β ′

γ, γ′
∣∣ 1

)
=

1

2πi

∫
ε

2F1

(−n, β

γ

∣∣ s

)

× R−1(β
′, γ′ − β ′; s − 1, s)ds

=
1

2πi

∫
ε

2F1

(−n, β

γ

∣∣s
)

× R−1(β
′, γ′ − β ′; 1 − 1

s
, 1)

ds

s
,

where in the last step we have used homogeneity of the R−1 function. To
complete the proof it suffices to apply a formula [8, (5.9 – 11)]

(3.15) R−ν(α, a′; z, w) = w−ν
2F1

(
ν, α,

α + α′
∣∣ 1 − z/w

)

on the right side of the last identity. The formula (3.15) is valid provided that
both z and w belong to the complex plane cut along the non-positive real axis.

Application of (3.14) to (3.3) – (3.4) gives

(3.16) Qn(x; α, β, N) =
1

2πi

∫
ε

2F1

(−n, n + µ

α + 1

∣∣s
)

2F1


1,−x

−N

∣∣ 1

s


 ds

s
.

Similarly, use of (3.14) on (3.7) – (3.8) provides

Sn(x2; a, b, c)

(a + b, n)(a + c, n)
(3.17)

=
1

2πi

∫
ε

2F1

(−n, a + ix

a + b

∣∣ s

)

× 2F1


1, a − ix

a + c

∣∣ 1

s


 ds

s

More contour integrals for the polynomials under discussion can be ob-
tained from the following representation for 3F2(1)

(3.18)

3F2

(−n, β, β ′

γ, γ′
∣∣1
)

=
1

2πi

∫
ε

sn(s − 1)−1
3F2


1, β, β ′

γ, γ′
∣∣ 1

1 − s


ds,

where the curve ε is the same as in (3.14). This can be established using (2.5),
with f(t) = tn, (3.9), and [5, (3.2)]. We omit further details. The desired
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representations for Qn and Sn now follow by use of (3.18) on (3.10) and (3.11).
We leave it to the reader to derive these formulas.

We close this section with a formula which connects the Hahn polynomials
with the Krawtchouk polynomials and the Jacobi polynomials. We have

(3.19)

Qn(x; α, β, N)

=

n∑
m=0

pm

(
n

m

)
(n + µ, m)

(α + 1, m)
Km(x; p, N)

× P
(α+m,β+m)
n−m (1 − 2p)

/
P

(α+m,β+m)
n−m (1)

(0 < p < 1), where Km stands for the mth Krawtchouk polynomial. The latter
polynomials may be obtained as limiting forms of the Hahn polynomials by
means of the relation

(3.20) Km(x; p, N) = lim
t→∞

Qm(x; pt, (1 − p)t, N) = 2F1

(−m,−x

−N

∣∣p−1

)

(see, e.g., [16, (1.22)]). Similarly, the Jacobi polynomials are the limiting cases
of the Hahn polynomials

(3.21)
P

(α,β)
n (1 − 2x)

P
(α,β)
n (1)

= lim
N→∞

Qn(Nx; α, β, N)

(cf. [16, (1.9)]. Letting β = n + µ, β ′ = −x, γ = α + 1, γ′ = −N , t = p in

(3.22)

3F2

(−n, β, β ′

γ, γ′
∣∣ 1

)

=
n∑

m=0

tm

(
n

m

)
(β, m)

(γ, m)
2F1

(−n + m, β + m

γ + m

∣∣t
)

× 2F1


−m, β ′

γ′
∣∣ 1

t




we obtain the desired result (3.19). Formula (3.22) follows from [21, 9.1(27)]
by letting p = 2, q = 1, r = s = 1, a2 = (−n, β), c1 = β ′, b1 = γ, d1 = γ′,
u = t = 0, z = t, ω = 1/t.
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4. Generating functions

Most of the results of this section can be derived from a generalization of
Meixner’s bilinear relation for the hypergeometric polynomials [23]

(4.1)

∞∑
n=0

wn

(
α

n

)
2F1

(−n, b

c

∣∣u
)

2F1

(−n, β

γ

∣∣ v

)

= (1 + w)α

∞∑
n=0

wn

(1 + w)2n

×
(

α

n

)
(b, n)(β, n)

(c, n)(γ, n)
un

2F1

(−α + n, b + n

c + n

∣∣ ξu

)

× vn
2F1

(−α + n, β + n

γ + n

∣∣ ξv

)
,

where ξ = w/(1 + w) (see also [10, 2.5(8)]). The last formula is valid provided
that u, v, ξu, ξv �= 1, ∞, and |w| is sufficiently small.

Another bilinear relation can be obtained from (4.1). Substituting w :=
w/α and then letting α → ∞, we obtain

(4.2)

∞∑
n=0

wn

n!
2F1

(−n, b

c

∣∣ u

)
2F1

(−n, β

γ

∣∣ v

)

= ew

∞∑
n=0

wn(b, n)(β, n)

n!(c, n)(γ, n)
un

1F1

(
b + n

c + n

∣∣−uw

)

× vn
1F1

(
β + n

γ + n

∣∣ −vw

)

Generalizations of (4.1) and (4.2) can be obtained by averaging both sides
of these formulas. Forming the Dirichlet average F (b′, c′−b′; 1, 0) (with respect
to the variable u) and repeating the process of averaging by use of F (β ′, γ′ −
β ′; 1, 0), we arrive at
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(4.3)

∞∑
n=0

wn

(
α

n

)
3F2

(−n, b, b′

c, c′
∣∣ 1

)
3F2

(−n, β, β ′

γ, γ′
∣∣ 1

)

= (1 + w)α

∞∑
n=0

wn

(1 + w)2n

(
α

n

)
(b, n)(b′, n)(β, n)(β ′, n)

(c, n)(c′, n)(γ, n)(γ′, n)

× 3F2

(−α + n, b + n, b′ + n

c + n, c′ + n

∣∣ ξ

)

× 3F2

(−α + n, β + n, β ′ + n

γ + n, γ′ + n

∣∣ ξ

)

and

(4.4)

∞∑
n=0

wn

n!
3F2

(−n, b, b′

c, c′
∣∣1
)

3F2

(−n, β, β ′

γ, γ′
∣∣ 1

)

= ew

∞∑
n=0

wn(b, n)(b′, n)(β, n)(β ′, n)

n!(c, n)(c′, n)(γ, n)(γ′, n)

× 2F2

(
b + n, b′ + n

c + n, c′ + n

∣∣−w

)

× 2F2

(
β + n, β ′ + n

γ + n, γ′ + n

∣∣ −w

)
,

respectively. Here we have used (3.1) and two formulas

(4.5) F (b′, c′ − b′; 1, 0) =
(b′, n)

(c′, n)
3F2

(−α + n, b + n, b′ + n

c + n, c′ + n

∣∣ ξ

)
,

where

(4.6) f(u) = un
2F1

(−α + n, b + n

c + n

∣∣ ξu

) (∣∣ξu∣∣ < 1
)

and

F (b′, c′ − b′; 1, 0) =
(b′, n)

(c′, n)
2F2

(
b + n, b′ + n

c + n, c′ + n

∣∣ −w

)
,

where

f(u) = un
1F1

(
b + n

c + n

∣∣ −uw

)
.
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We shall prove (4.5). The second formula can be established by the same
means. It follows from (4.6) that

f(u) =
∞∑

m=0

(−α + n, m)(b + n, m)

(c + n, m)m!
ξmun+m.

Hence,

(4.7)

F (b′, c′ − b′; 1, 0)

=
∞∑

m=0

(−α + n, m)(b + n, m)

(c + n, m)m!
ξmRn+m(b′, c′ − b′; 1, 0),

where Rn+m stands for the R-hypergeometric polynomial. Making use of [8,
(6.2 – 5)] we obtain

Rn+m(b′, c′ − b′; 1, 0) =
(b′, n + m)

(c′, n + m)
.

Since (z, n + m) = (z + n, m)(z, n),

Rn+m(b′, c′ − b′; 1, 0) =
(b′, n)(b′ + n, m)

(c′, n)(c′ + n, m)
.

This in conjunction with (4.7) gives the assertion.
Two generating functions for the 3F2(1) polynomials can be derived from

(4.1) and (4.2). Put u = 0 and take the Dirichlet average F (β ′, γ′ − β ′; 1, 0)
on both sides to obtain

(4.8) (1 + w)α
3F2

(−α, β, β ′

γ, γ′
∣∣ ξ

)
=

∞∑
n=0

wn

(
α

n

)
3F2

(−n, β, β ′

γ, γ′
∣∣1
)

and

(4.9) ew
2F2

(
β, β ′

γ, γ′
∣∣ −w

)
=

∞∑
n=0

wn

n!
3F2

(−n, β, β ′

γ, γ′
∣∣1
)

.

Two bilinear generating functions for the continuous dual Hahn polynomi-
als follow from (4.3), (4.4), and (1.2). We have

(4.10)

∞∑
n=0

wn

(
α

n

)
Sn(x

2; a, b, c)Sn(y
2; a′, b′, c′)

(a + b, n)(a + c, n)(a′ + b′, n)(a′ + c′, n)

= (1 + w)α
∞∑

n=0

wn

(1 + w)2n(n!)2

(
α

n

)−1

×
[
Dn

ξ 3F2

(−α, a + ix, a − ix

a + b, a + c

∣∣ ξ

)]

×
[
Dn

ξ 3F2

(−α, a′ + iy, a′ − iy

a′ + b′, a′ + c′
∣∣ξ
)]
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and

(4.11)

∞∑
n=0

wn

n!

Sn(x
2; a, b, c)Sn(y

2; a′, b′, c′)
(a + b, n)(a + c, n)(a′ + b′, n)(a′ + c′, n)

= ew

∞∑
n=0

wn

n!

[
Dn

ξ 2F2

(
a + ix, a− ix

a + b, a + c

∣∣ −w

)]

×
[
Dn

ξ 2F2

(
a′ + iy, a′ − iy

a′ + b′, a′ + c′
∣∣ −w

)]
,

where Dn
t = dn/dtn.

The generating functions for the continuous dual Hahn polynomials

(4.12)

(1 + w)α
3F2

(−α, a + ix, a − ix

a + b, a + c

∣∣ ξ

)

=
∞∑

n=0

wn

(
α

n

)
Sn(x

2; a, b, c)

(a + b, n)(a + c, n)

and

(4.13) ew
2F2

(
a + ix, a − ix

a + b, a + c

∣∣ −w

)
=

∞∑
n=0

wn

n!

Sn(x2; a, b, c)

(a + b, n)(a + c, n)

are contained in (4.8) and (4.9), respectively.
To obtain the generating functions for the Hahn polynomials we use (1.1)

on (4.8) (with α = M , M ∈ N) and (4.9). The result is

(4.14) (1 + w)M
3F2

(−n, n + µ,−M

α + 1,−N

∣∣ ξ

)
=

M∑
x=0

wx

(
M

x

)
Qn(x; α, β, N)

and

(4.15) ew
2F2

(−n, n + µ

α + 1,−N

∣∣−w

)
=

∞∑
x=0

wx

x!
Qn(x; α, β, N)

(n = 0, 1, . . . , N). The generating function of Karlin and McGregor [16, (1.11)]

(1 + w)NP (α,β)
n

(
1 − w

1 + w

)/
P (α,β)

n (1) =
N∑

x=0

wx

(
N

x

)
Qn(x; α, β, N)

is contained in (4.14). Put M = N and then use

2F1

(−n, n + µ

α + 1

∣∣ ξ

)
= P (α,β)

n

(
1 − w

1 + w

)/
P (α,β)

n (1).
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5. Summation formulas

This section deals with the summation of a finite series whose terms involve
either the Hahn polynomials or the continuous dual Hahn polynomials.

We need the following formula

(5.1)
m∑

k=0

(−1)k

(
m

k

)
3F2

(−k, β, β ′

γ, γ′
∣∣ 1

)
=

(β, m)(β ′, m)

(γ, m)(γ′, m)
.

This can be dreived easily from the generating function (4.9). Multiply both
sides by e−w and then form the Cauchy product on the right side. By equating
coefficients of wm we obtain the desired results.

Substituting β := n + µ, β ′ := −n, γ := α + 1, γ′ := −N into (5.1) we
obtain

(5.2)
m∑

k=0

(−1)k

(
m

k

)
Qn(k; α, β, N) =

(−n, m)(n + µ, m)

(α + 1, m)(−N, m)
,

n = 0, 1, . . . , N .
Similarly, letting β := a + ix, β ′ := a − ix, γ := a + b, γ′ := a + c in (5.1)

we obtain with the aid of (1.2)

(5.3)
m∑

k=0

(−1)k

(
m

k

)
Sk(x

2; a, b, c)

(a + b, k)(a + c, k)
=

(a + ix, m)(a− ix, m)

(a + b, m)(a + c, m)
.

More summation formulas can be derived from

(5.4)

p+1Fq+1

(−n, b2, . . . , bp, b

c1, . . . , cq, c

∣∣ x

)
=

k!

(c, k)

k∑
j=0

(b, j)(c− b, k − j)

j!(k − j)!

· p+1Fq+1

(−n, b2, . . . , bp, b + j

c1, . . . , cq, c + k

∣∣x
)

.

We shall prove (5.4) and then give applications to the Hahn polynomials. The
following result

(5.5) F (b, c− b; x, 0) =
k!

(c, k)

k∑
j=0

(b, j)(c− b, k − j)

j!(k − j)!
F (b+ j, c+k− b− j; x, 0)

is the special case of the Exercise 5.6–2 in [8]. This formula is valid provided f
is continuous on an open interval with endpoints at 0 and x. Let f be defined
by (3.2). Application of (3.1) to (5.5) gives the desired result (5.4).

Assume now that p = 2, q = 1, x = 1. Substituting b2 = −x, b = n + µ,
c1 = −N , c = α + 1 into (5.4) we obtain

(5.6)

k!

(α + 1, k)

k∑
j=0

(n + µ, j)(−n − β, k − j)

j!(k − j)!
Qn(x; α + k, β − k + j, N)

= Qn(x; α, β, N).
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Use of the limit relation (3.21) on (5.6) provides

(α+n + 1, k)P (α,β)
n (x)

=
k∑

j=0

(
k

j

)
(n + µ, j)(−n − β, k − j)P (α+k,β−k+j)

n (x),

k = 0, 1, . . . . Here we have used the formula P
(α,p)
n (1) = (α + 1, n)/n! (see,

e.g., [25, (4.1.1)]).
Similarly, letting p = 2, q = 1, x = 1, b2 = n + µ, b = −x, c1 = α + 1,

c = −N in (5.4) we obtain

(5.7)

(
N

k

)−1 k∑
j=0

(
x

j

)(
N − x

k − j

)
Qn(x − j; α, β, N − k) = Qn(x; α, β, N),

k = 0, 1, . . . N . A summation formula of Lee [20, (13)] is a special case of (5.7).
To obtain a summation formula for the continuous dual Hahn polynomials

we need a generalization of (5.4)

(5.8)

p+1Fq+1

(
b1, . . . , bp, b

c1, . . . , cq, c

∣∣ x

)
=

k!

(c, k)

k∑
j=0

(b, j)(c− b, k − j)

j!(k − j)!

· p+1Fq+1

(
b1, . . . , bp, b + j

c1, . . . , cq, c + k

∣∣ x

)
,

|x| < ρ, where ρ denotes the radius of convergence of the hypergeometric series

(5.9) pFq

(
b1, . . . , bp

c1, . . . , cq

∣∣x
)

.

Formula (5.8) is a special case of [8, Ex. 5.7–1]. When one of the numerator
parameters in (5.9) is a non-positive integer, then the latter restriction can be
dropped.

Letting p = 2, q = 1, x = 1, b1 = a + ix, b2 = a − ix, b = −n (n ∈ N),
c1 = a + c, c2 = a + b in (5.8), we obtain

(5.10)
k!

(a + b, k)

k∑
j=0

(−n, j)(a + b + n, k − j)

j!(k − j)!

Sn−j(x
2; a, b, c, )

(a + b + k, n − j)(a + c, n − j)

=
Sn(x

2; a, b, c)

(a + b, n)(a + c, n)
.

For more summation formulas for the Hahn polynomials the reader is re-
ferred to Bartko [4], Gasper [12–13], and Lee [20].
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6. Remarks

The method of Dirichlet averages can be employed to obtain some results
for the Hahn polynomials using known results for the Jacobi polynomials.
In this section we make some comments concerning the projections formulas
discussed in [12] and [13]. Also, we give some results for the continuous dual
Hahn polynomials.

A. Gasper’s projection formula [12, (1.4)]

(6.1) Qn(x; γ, δ, N) =
n∑

k=0

bk,nQk(x; α, β, N),

bk,n =

(
n

k

)
(α + 1, k)(n + ν, k)

(α + 1, k)(k + µ, k)

× 3F2

(−n + k, k + α + 1, n + k + ν

k + γ, 2k + µ + 1

∣∣1
)

(ν = γ + δ +1) can be obtained immediately from the formula which connects
the Jacobi polynomials of different orders

(6.2)
P

(γ,δ)
n (x)

P
(γ,δ)
n (1)

=
n∑

k=0

bk,n
P

(α,β)
k (x)

P
(α,β)
k (1)

(see [1, (7.3), (7.8)]). In (6.2) replace x by 1 − 2t and then average both sides
using (3.3) – (3.4).

B. The following summation formula

(6.3)

n∑
k=0

ck,nQk(x; α, β, N) =
(−x, n)

(−N, n)

(n = 0, 1, . . . , N), where

ck,n = (α + 1, k)(−1)k

(
n

k

)
µ + 2k

(µ + k, n + 1)
, 0 ≤ k ≤ n

plays a key role in Gasper’s proof of (6.1). To obtain (6.3) we average both
sides of

tn =
n∑

k=0

ck,n
P

(α,β)
k (1 − 2t)

P
(α,β)
k (1)

(cf. [24, 136(2)]) using (3.3) and (3.4). The result is

Rn(−x, x− N ; 1, 0) =
n∑

k=0

ck,nQk(x; α, β, N).

Since

Rn(−x, x− N ; 1, 0) =
(−x, n)

(−N, n)
,

the assertion follows. The last formula is a special case of [8, (6.2–5)].
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C. Formula (6.1) contains as a special case a projection formula for the
symmetric Hahn polynomials

(6.4) Qn(x; β, β, N) =

[n/2]∑
k=0

ak,nQn−2k(x; α, α, N),

where

ak,n =
n!Γ(α + 1/2)(n − 2k + α + 1/2)(2α + 1, n − 2k)Γ(k + β − α)Γ(n − k + β + 1/2)

k!(n − 2k)!(2β + 1, n)Γ(β − α)Γ(n − k + α + 3/2)
,

0 ≤ k ≤ [n/2]. This follows easily from Gegenbauer’s formula for the symmet-
ric Jacobi polynomials (ultraspherical polynomials)

(6.5)
P

(β,β)
n (x)

P
(β,β)
n (1)

=

[n/2]∑
k=0

ak,n

P
(α,α)
n−2k (x)

P
(α,α)
n−2k (1)

(see [14]). Replace x by 1 − 2t. Use of (3.3) – (3.4) yields the assertion.
D. It follows from (4.13) and the Maclaurin theorem that

(6.6)
Sn(x2; a, b, c)

(a + b, n)(a + c, n)
=

[
Dn

w 2F2

(
a + ix, a − ix

a + b, a + c

∣∣ w

)]
w = 0

.

Use of the Cauchy formula on the right side of (6.6) provides another contour
integral for Sn

Sn(x
2; a, b, c)

(a + b, n)(a + c, n)
=

n!

2πi

∫
ε

s−n−1es
2F2

(
a + ix, a − ix

a + b, a + c

∣∣−s

)
ds,

where the contour ε encircles the origin of the s-plane in the positive direction.
To obtain a real integral for the continuous dual Hahn polynomials one can
substitute s = eiϕ, 0 ≤ ϕ ≤ 2π. We omit further details.

E. Performing one differentiation in (6.6) we obtain the first order recurrence-
difference equation

(6.7)
Sn(x

2; a, b, c) = (a + b + n − 1)(a + c + n − 1)Sn−1(x
2; a, b, c)

− (a2 + x2)Sn−1(x
2; a + 1, b, c),

n = 1, 2, . . . , S0(x
2) = 1.

F. Assume now that a, b, c > 0. Application of [6, (2.8)] to (3.11) gives∣∣∣∣ Sn(x2; a, b, c)

(a + b, n)(a + c, n)

∣∣∣∣ ≤ B(a, b)B(a, c)

|B(a + ix, b− ix)B(a− ix, c + ix)| ,

−∞ < x < ∞, or in terms of the gamma function

(6.8)

∣∣∣∣ Sn(x2; a, b, c)

(a + b, n)(a + c, n)

∣∣∣∣ ≤ Γ2(a)Γ(b)Γ(c)

|Γ(a + ix)Γ(a − ix)Γ(b− ix)Γ(c + ix)| .
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If a, b, c ≥ 1
2

and x �= 0, then one can apply the inequality [8, (3.10–7)]

Γ(a)

|Γ(a ± ix)| ≤ (sechπx)−1/2

to the right side of (6.8) to obtain a weaker bound∣∣∣∣ Sn(x2; a, b, c)

(a + b, n)(a + c, n)

∣∣∣∣ ≤ (sechπx)−2.

7. The Addition Theorems for Krawtchouk Polynomials and
Meixner-Pollaczek Polynomials

In this section we shall establish addition theorems for the Krawtchouk
polynomials and the Meixner-Pollaczek polynomials. The former family is
the limiting case of the Hahn polynomials (see (3.20)) while the latter can be
obtained as the limiting case of the continuous dual Hahn polynomials (see
[26, p. 698] for more details). The Meixner-Pollaczek polynomials are defined
by [2, p. 48]

(7.1) P (a)
n (x; ϕ) = einϕ

2F1

(−n, a + ix

2a

∣∣ 1 − e−2iϕ

)

(a > 0, 0 < ϕ < π). They constitute an orthogonal system on R with the
weight function

x → e(2ϕ−π)x|Γ(a + ix)|2
(see, e.g., [26, p. 698]).

Application of (3.15) to the right side of (7.1) gives

P (a)
n (x; ϕ) = einϕRn(a + ix, a − ix; e−2iϕ, 1).

Since Rn is homogeneous of order n in its variables,

(7.2) P (a)
n (x; ϕ) = Rn(a + ix, a − ix; e−iϕ, eiϕ).

Similarly, application of (3.15) to the third member of (3.20) gives

(7.3) Kn(x; p, N) = Rn(−x, x−N ; 1 − 1/p, 1),

0 < p < 1, n = 0, 1, . . . , N .
We are now in a position to state and prove the addition theorems for the

polynomials discussed in this section. We have

(7.4)

Kn(x + y; p, M + N)

=

(
M + N

n

)−1 n∑
j=0

(
M

j

)(
N

n − j

)
Kj(x; p, M)Kn−j (y; p, N)
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(M, N ∈ N, n = 0, 1, . . . , min{M, N}) and

(7.5)

P (a+b)
n (x + y; ϕ)

=

n∑
j=0

(
n

j

)
(2a, j)(2b, n − j)

(2a + 2b, n)
P

(a)
j (x; ϕ)P

(b)
n−j(y; ϕ)

(a > 0, b > 0; 0 < ϕ < π). Both formulas follow easily from

(7.6)

(α + α′ + β + β ′, n)

n!
Rn(α + β, α′ + β ′; x, y)

=
n∑

j=0

(α + α′, j)(β + β ′, n − j)

j!(n − j)!
Rj(α, α′; x, y)Rn−j(β, β ′; x, y)

which is a special case of [8, Ex. 6.6–7].
In order to establish the addition theorem (7.4) we substitute α = −x,

α′ = x − M , β = −y, β ′ = y − N , x = 1 − 1/p, y = 1 into (7.6). This
in conjunction with (7.3) completes the proof. For the proof of (7.5) we let
α = a + ix, α′ = a− ix, β = b + iy, β ′ = b− iy, x = exp(−iϕ), y = exp(iϕ) in
(7.6). Use of (7.2) on the resulting formula gives the assertion.

Dunkl [9, §4.4] gave a different addition theorem for the Krawtchouk poly-
nomials.

The addition theorem for the Laguerre polynomials

Lα+β+1
n (x + y) =

n∑
j=0

Lα
j (x)Lβ

n−j(y)

(see, e.g., [8, Ex. 7.9–7]) can be obtained from (7.5) by use of the limit relation

lim
ϕ→0

P (a)
n

(
x

2ϕ
; ϕ

)
= L2a−1

n (x)

/
L2a−1

n (0).

The Poisson-Charlier polynomials cn may be obtained as limiting forms of
the Krawtchouk polynomials by means of the relation

(7.7) cn(x; a) = lim
N→∞

Kn(x; a/N, N) = 2F0

(−n, −x

−
∣∣ −a−1

)
,

a > 0, x = 0, 1, . . . .
Letting M = N in (7.4) and next using (7.7) we obtain with the aid of

lim
N→∞

(
2N

n

)−1(
N

j

)(
N

n − j

)
= 2−n

(
n

j

)

the addition theorem

(7.8) cn(x + y; 2a) = 2−n

n∑
j=0

(
n

j

)
cj(x; a)cn−j(y; a).
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Dunkl’s addition theorem for the Poisson-Charlier polynomials [9, (4.6)]

cn(x + y; a) =
n∑

j=0

(n − j)!

(
n

j

)(
y

n − j

)
(−a)j−ncj(x; a)

can be derived from the generating function

ew

(
1 − w

a

)x

=
∞∑

n=0

wn

n!
cn(x; a), |w| < a

(see, e.g., [25, (2.81.3)]).
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ON THE GENERALIZED PICARD AND GAUSS
WEIERSTRASS SINGULAR INTEGRALS

ALI ARAL

Abstract. In this paper, we give the generalizations of the Picard and
the Gauss Weierstrass singular integral operators which are based on
the q�numbers and depend on q�generalization of the Euler gamma
integral. Later on, some approximation properties of these two general-
ized operators are established in Lp (R) and weighted �Lp (R) spaces.
We also show that the rates of convergence of these generalized opera-
tors to approximating function f in the Lp�norm are at least so faster
than that of the classical Picard and Gauss Weierstrass singular integral
operators.

1. Introduction

Let f be a real valued function in R. For � > 0 and x 2 R , the well-
known Picard and Gauss Weierstrass singular integral operators are de�ned
as

P� (f ; x) :=
1

2�

1Z
�1

f (x+ t) e�
jtj
� dt

and

W� (f ; x) :=
1p
��

1Z
�1

f (x+ t) e�
t2

� dt;

respectively.
For many years scientists have been investigating to develop various as-

pects of approximation results of above operators. The recent book written
by Anastassiou and Gal [2] includes great number of results related to di¤er-
ent properties of these type of operators and also includes other references
on the subject. For example, in [2, Chapter 16], Jackson type generaliza-
tion of these operators is one among other generalizations, which satisfy
the Global Smoothness Preservation Property (GSPP). It has been shown
in [3] that this type of generalization has better rate of convergence and
provides better estimates with some modulus of smoothness. Beside, in
[4] and [5], Picard and Gauss Weierstrass singular integral operators mod-
i�ed by means of non-isotropic distance and their pointwise approximation

1991 Mathematics Subject Classi�cation. 41A17, 41A25, 41A35.
Key words and phrases. q�gamma integral, q�Picard and q�Gauss Weierstrass inte-

gral, weighted modulus of continuity.
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2 ALI ARAL

properties in di¤erent normed spaces are analyzed. Furthermore, in [11]
and [8], Picard and Gauss Weierstrass singular integrals were considered in
exponential weighted spaces for functions of one or two variables.
In this paper, we introduce a new generalization of Picard singular in-

tegral operator and Gauss Weierstrass singular integral operator which we
call the q�Picard singular integral operator and the q�Gauss Weierstrass
singular integral operator, respectively. As a result, a connection has been
constructed between q�analysis and approximation theory.
We now give a short background on q�analysis that we need throughout

the rest of the paper. We use standard notations of q�analysis as in [10]
and [12].
For q > 0; q�number is

[�]q =

(
1�q�
1�q ; q 6= 1
�; q = 1

for all nonnegative �: If � is an integer, i.e. � = n for some n; we write [n]q
and call it q�integer. Also, we de�ne a q�factorial as

[n]q! =

�
[n]q [n� 1]q � � � [1]q ; n = 1; 2; :::

1 n = 0:
:

For integers 0 � k � n; the q�binomial coe¢ cients are given by�
n
k

�
q

=
[n]q!

[k]q! [n� k]q!
:

Furthermore, the q�extension of exponential function ex is

Eq (x) :=
1X
n=0

q
n(n�1)

2

(q; q)n
xn = (�x; q)1 ;

where (a; q)n =
nQ
k=0

�
1� aqk

�
and (�x; q)1 =

1Q
k=0

�
1 + xqk

�
:

To be able to construct the generalized operators, we need the following
q�extension of Euler integral representation for the gamma function given
in [6] and [1] for 0 < q < 1

(1.1) cq (x) �q (x) =
1� q
ln q�1

q
x(x�1)

2

1Z
0

tx�1

Eq ((1� q) t)
dt ; Rx > 0

where �q (x) is the q�gamma function de�ned by

�q (x) =
(q; q)1
(qx; q)1

(1� q)1�x ; 0 < q < 1

and cq (x) satis�es the following conditions:

(1) cq (x+ 1) = cq (x)
(2) cq (n) = 1; n = 0; 1; 2; :::
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(3) lim
q!1�

cq (x) = 1:

When x = n+ 1 with n a nonnegative integer, we obtain

(1.2) �q (n+ 1) = [n]q!:

In [7], Berg evaluated the following integral

(1.3)

1Z
�1

t2k

Eq (t2)
dt = �

�
q1=2; q

�
1=2
q�

k2

2

�
q1=2; q

�
k
; k = 0; 1; 2:::

where

(a; q)� =
(a; q)1
(aq�; q)1

for any real number �:
These integrals (1.1) and (1.3) are the starting point of our work. Note

that, these de�nitions are kinds of q�deformation of usual ones and are
reduced to them in the limit q ! 1:

De�nition 1.1. Let f : R! R be a function. For � > 0 and 0 < q < 1,
the q�generalizations of Picard and Gauss-Weierstrass singular integrals of
f are

(1.4) P� (f ; q; x) � P� (f ; x) :=
(1� q)

2 [�]q ln q
�1

1Z
�1

f (x+ t)

Eq

�
(1�q)jtj
[�]q

�dt
and

(1.5) W� (f ; q; x) �W� (f ; x) :=
1

�
q
[�]q

�
q1=2; q

�
1=2

1Z
�1

f (x+ t)

Eq

�
t2

[�]q

�dt;
respectively.

Note that, this construction is sensitive to the rate of convergence to f:
That is, the proposed estimate in Section 2 with rates in terms of Lp�modulus
of continuity tells us that, depending on our selection of q; the rates of con-
vergence in Lp�norm of the q�Picard and the q�Gauss Weierstrass singular
integral operators are better than the classical ones.
In the section 3, we give a direct approximation result for these operators

using Korovkin type theorem in weighted Lp spaces described in [9]. We
give a new type modulus of continuity and in terms of this modulus of
continuity, we obtain an inequality for weighted error estimate in section 4.
Also we show in section 5 that they posses Global Smoothness Preservation
Property.
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2. Rate of Convergence in Lp (R)

For f 2 Lp (R) ; the modulus of continuity of f is de�ned by

!p (f ; �) = sup
jhj��

kf (�+ h)� f (�)kp ;

where kfkp =
 
1R
�1

jf (x)jp dx
!1=p

:

Here are some auxiliary lemmas.

Lemma 2.1. For every � > 0;

a)
1R
�1
P� (f ; x) dx = 1;

b)
1R
�1
W� (f ; x) dx = 1:

Proof. The proof is obvious from (1.1) and (1.3). �

By using Lemma 2.1, for every function f 2 Lp (R) with 1 � p < 1 ,
the operators de�ned by (1.4) and (1.5) are well de�ned as expressed in the
following lemma.

Lemma 2.2. Let f 2 Lp (R) for some 1 � p <1: Then we have

kP� (f ; �)kp � kfkp
and

kW� (f ; �)kp � kfkp :

Now we give convergence rates for these new operators. A similar ap-
proach for classical Picard and Gauss Weierstrass singular integral operators
can be found in [13, Th. 1.18]

Theorem 2.3. If f 2 Lp (R) for some 1 � p <1 then we have

kP� (f ; �)� f (�)kp � !p
�
f ; [�]q

��
1 +

1

q

�
and

kW� (f ; �)� f (�)kp � !p
�
f ;
q
[�]q

��
1 +

q
q�1=2

�
1� q1=2

��
:

Proof. From Lemma 2.1, we get

P� (f ; x)� f (x) =
(1� q)

2 [�]q ln q
�1

1Z
�1

(f (x+ t)� f (x))
Eq

�
(1�q)jtj
[�]q

� dt:
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Thus

kP� (f ; �)� f (�)kp � (1� q)
2 [�]q ln q

�1

0@ 1Z
�1

������
1Z
�1

f (x+ t)� f (x)
Eq

�
(1�q)jtj
[�]q

� dt

������
p

dx

1A1=p
(generalized Minkowski inequality, see [14, pp.271])

� (1� q)
2 [�]q ln q

�1

1Z
�1

!p (f ; jtj)
Eq

�
(1�q)jtj
[�]q

�dt
� !p

�
f ; [�]q

� (1� q)
2 [�]q ln q

�1

1Z
�1

 
1 +

jtj
[�]q

!
dt

Eq

�
(1�q)jtj
[�]q

�
= !p

�
f ; [�]q

��
1 +

1

q

�
;

where we use (1.1), (1.2) and the well known inequality

!p (f ; C�) � (1 + C)!p (f ; �)
for C > 0:
Similarly,

kW� (f ; �)� f (�)kp �
!p

�
f ;
q
[�]q

�
�
q
[�]q

�
q1=2; q

�
1=2

1Z
�1

0@1 + jtjq
[�]q

1A dt

Eq

�
t2

[�]q

�
� !p

�
f ;
q
[�]q

�0B@1 +
0@ 1

�
q
[�]q

�
q1=2; q

�
1=2

1Z
�1

t2

[�]q

dt

Eq

�
t2

[�]q

�
1A1=2

1CA
� !p

�
f ;
q
[�]q

��
1 +

q
q�1=2

�
1� q1=2

��
;

where we use (1.3). �
Since for a �xed value of q with 0 < q < 1;

lim
�!0

[�]q =
1

1� q ;

the above theorem does not give a rate of convergence for P� (f ; �) � f (�)
in Lp�norm. However, if we choose q� such that 0 < q� < 1 and q� ! 1 as
�! 0; then we obtain such a convergence rate.For example, we select q� as

1

2
� 1� � � q� < 1

for some � > 0: Then we have

[�]q� =
1� q��
1� q�

� 2 (1� q�) � 2�;

so that [�]q� ! 0 as �! 0: Thus we express Theorem 2.3 as follows.
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Theorem 2.3. Let be q� 2 (0; 1) such that q� ! 1 as �! 0: If f 2 Lp (R)
for some 1 � p <1 then we have

kP� (f ; q�; �)� f (�)kp � !p
�
f ; [�]q�

��
1 +

1

q�

�
and

kW� (f ; q�; �)� f (�)kp � !p
�
f ;
q
[�]q�

� 
1 +

r
q
�1=2
�

�
1� q1=2�

�!
:

This theorem tells us that depending on the selection of q�; the rate of
convergence of P� (f ; �) to f (�) in the Lp�norm is [�]q� that is at least so
faster than � which is the rate of convergence for the classical Picard singular
integrals. Similar situation arises when approximating by W� (f ; �) to f (�).

3. Convergence in Weighted Space

Now we recall the following Korovkin type theorem in weighted Lp space
given in [9].
Let ! be positive continuous function on real axis R = (�1; 1) ; satis-

fying the condition

(3.1)
Z
R

t2p! (t) dt <1:

We denote by Lp; ! (R) the linear space of p�absolutely integrable functions
on R with respect to the weight function !; i.e. for 1 � p <1

Lp; ! (R) =

8><>:f : R! R; kfkp; ! :=
f! 1

p


p
=

0@Z
R

jf (t)jp ! (t) dt

1A 1
p

<1

9>=>; :
Theorem A. Let (Ln)n2N be a uniformly bounded sequence of positive
linear operators from Lp; ! (R) into Lp; ! (R) ; satisfying the conditions

lim
n!1

Ln �ti; x�� xip; ! = 0; i = 0; 1; 2:

Then for every f 2 Lp; ! (R)
lim
n!1

kLnf � fkp; ! = 0:

By choosing ! (x) =
�

1
1+x6m

�p
; p � 1;and working on Lp; ! (R) space

that we denote it by Lp;m (R) ; we shall obtain direct approximation result
by using Theorem A. Note that this selection of ! (x) satis�es the condition
(3.1). Also note that for 1 � p <1

Lp;m (R) =
n
f : f : R! R;

�
1 + x6m

��1
f (x) 2 Lp (R)

o
;

where m is a positive integer.
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Lemma 3.1. If f 2 Lp;m (R) for some 1 � p < 1 and positive integer m;
then

kP� (f ; �)kp;m � 2
6m�1

 
1 +

[�]6mq [6m]q!

q3m(6m+1)

!
kfkp;m

and

kW� (f ; �)kp;m � 2
6m�1

�
1 + [�]3mq q�

9m2

2

�
q1=2; q

�
3m

�
kfkp;m

for 0 < q < 1:

Proof. Using
�
1 + (x+ t)6m

�
� 26m�1

�
1 + x6m

� �
1 + t6m

�
for all positive

integer m and x; t 2 R and (1.1), (1.2) and (1.3), the proof is obvious. �
Theorem 3.2. Let q� 2 (0; 1) such that q� ! 1 as � ! 0: Then for every
f 2 Lp;m (R)

lim
�!0

kP� (f ; q�; �)� fkp;m = 0:

Proof. Using Theorem A, it is su¢ cient to verify that the conditions

(3.2) lim
�!0

P� �ti; q�; ��� xip;m = 0; i = 0; 1; 2:

are satis�ed. Since P� (1; q�; �) = 1 and P� (t; q�; �) = x; the conditions of
(3.2) are ful�lled for i = 0 and i = 1:
Direct calculation shows that

P�
�
t2; q�; �

�
= x2 +

[2]q� [�]
2
q�

q3�

and then we obtainP� �t2; q�; ��� x2p;m = [2]q� [�]
2
q�

q3�
k1kp;m :

This means that the condition in (3.2) for i = 2 also holds and by Theorem
A the proof is completed. �
Theorem 3.3. Let be q� 2 (0; 1) such that q� ! 1 as � ! 0: For every
f 2 Lp;m (R)

lim
�!0

kW� (f ; q�; �)� fkp;m = 0:

For f 2 Lp;m (R) with some positive integer m, we de�ne the weighted
modulus of continuity !p;m (f ; �) as

!p;m (f ; �) = sup
jhj��

0@ 1Z
�1

���� f (x+ h)� f (x)(1 + h6m) (1 + x6m)

����p dx
1A1=p

= sup
jhj��

f (�+ h)� f (�)(1 + h6m)


p;m

:
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Now , we show that this modulus of continuity satis�es some classical prop-
erties of Lp�modulus. For f 2 Lp;m it is guaranteed that !p;m (f ; �) is
bounded as � tends to1 and also, !p;m (f ; �) � 26m kfkp;m for any integer
m:

4. approximation error

The next Lemma 4.1 and Lemma 4.2 will allow us to obtain the approxi-
mation error of generalized operators by means of the weighted modulus of
continuity !p;m (f ; �) and weighted norm k�kp;m :

Lemma 4.1. Given f 2 Lp;m (R) and C > 0;

(4.1) !p;m (f ; C�) � 26m�1 (1 + C)6m+1
�
1 + �6m

�
!p;m (f ; �)

for � > 0:

Proof. For positive integer n; we can write

!p;m (f ; n�) = sup
jhj��

f (�+ nh)� f (�)�
1 + (nh)6m

�

p;m

= sup
jhj��


nX
k=1

f (�+ kh)� f (�+ (k � 1)h)�
1 + (nh)6m

�

p;m

� 26m�1!p;m (f ; �)
nX
k=1

�
1 + ((k � 1) �)6m

�
� 26m�1n

�
1 + ((n� 1) �)6m

�
!p;m (f ; �)

� 26m�1n6m+1
�
1 + �6m

�
!p;m (f ; �) :

Using this estimation

!p;m (f ; C�) � 26m�1 (1 + [jCj])6m+1
�
1 + �6m

�
!p;m (f ; �)

� 26m�1 (1 + C)6m+1
�
1 + �6m

�
!p;m (f ; �) ;

where [jCj] is the greatest integer less than C. �

Lemma 4.2. If f 2 Lp;m (R) then lim
�!0

!p;m (f ; �) = 0:

Proof. For a positive real number a, let �a1 (t) be characteristics function of
the interval [a; 1),�a2 (t) = 1��a1 (t) and �a (t) = ��a1 (t)\�a2 (t). Since f 2
Lp;m; for each " > 0 there exists a 2 R large enough such that0@ �aZ

�1

���� f (x)1 + x6m

����p dx
1A

1
p

+

0@1Z
a

���� f (x)1 + x6m

����p dx
1A 1

p

<
"

4
:
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That is, f��a2 p;m + kf�a1kp;m < "

4
:

Similarly, for � > 0f��(a+�)2


p;m

+
f�a+�1


p;m

<
"

26m+1
�
1 + �6m

�
can be written. Hence for jhj � �f (�+ h)��(a+�)2 (�)


p;m

+
f (�+ h)�a+�1 (�)


p;m

<
"

4
:

Thus, we have

(4.2) !p;m (f ; �) � sup
jhj��

(f (�+ h)� f (�))�a+� (�)(1 + h6m)


p;m

+
"

2

for � > 0: By the well-known Weierstrass theorem, there exist sequences
'n (x) 2 C1 (the space of function having continuous derivatives of any
order in the interval [�a� 2�; a+ 2�]) such that

lim
n!1

(f (�)� 'n (�))�a+2� (�)
p;m

= 0:

That is, given " > 0 there exists n0 2 N such that

(4.3)
(f (�)� 'n (�))�a+2� (�)

p;m
<

"

26m+5

whenever n � n0 and � > 0: Thus we have(f (�+ h)� 'n (�+ h))�a+� (�)
p;m

� 26m�1
(f (�)� 'n (�))�a+2� (�)

p;m

� "

6
(4.4)

for n � n0:
Applying the Minkowsky inequality yields(f (�+ h)� f (�))�a+� (�)(1 + h6m)


p;m

�
(f (�+ h)� 'n (�+ h))�a+� (�)

p;m

+
('n (�+ h)� 'n (�))�a+� (�)

p;m

+
('n (�)� f (�))�a+� (�)

p;m
:

From (4.3) and (4.4) it follows that
(4.5)

sup
jhj��

(f (�+ h)� f (�))�a+� (�)(1 + h6m)


p;m

� "

3
+ sup
jhj��

('n (�+ h)� 'n (�))�a+� (�)
p;m

;

for � > 0: By the properties of 'n (x) ; for jhj � � and n � n0 we can write

j'n (x+ h)� 'n (x)j �
"

6 k�a+�kp;m
;
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where x 2 [�a� 2�; a+ 2�] :Thus, we obtain

(4.6) sup
jhj��

('n (�+ h)� 'n (�))�a+� (�)
p;m

<
"

6
:

By (4.5) and (4.6) we get

(4.7) sup
jhj��

(f (�+ h)� f (�))�a+� (�)(1 + h6m)


p;m

<
"

2
;

for � > 0: From (4.2) and (4.7), we get

!p;m (f ; �) < "

which shows that lim
�!0

!p;m (f ; �) = 0. �

Theorem 4.3. Let q� 2 (0; 1) such that q� ! 1 as � ! 0: For every
f 2 Lp;m (R)

kP� (f ; q�; �)� f (�)kp;m � A!p;m
�
f ; [�]q�

�
and

kW� (f ; q�; �)� f (�)kp;m � B!p;m
�
f ;
q
[�]q�

�
where
(4.8)

A = 212m�1
�
1 +

(6m)![�]6mq�

q
3m(6m+1)
�

+ (6m+1)!

q
(3m+1)(6m+1)
�

+
(12m+1)![�]6mq�

q
(12m+1)(6m+1)
�

��
1 + [�]6mq�

�
and

B = 212m�1
�
1 + [�]6mq�

�0@1 + [�]3mq� q� 9m2

2
�

�
q
1=2
� ; q�

�
3m
+

s
q
� (6m+1)2

2
�

�
q
1=2
� ; q�

�
6m+1

+ [�]6mq�

s
q
� (12m+1)2

2
�

�
q
1=2
� ; q�

�
12m+1

1A :
Proof. Part (a) of Lemma 2.1 implies that,

P� (f ; q�; x)� f (x) =
(1� q�)

2 [�]q� ln q
�1
�

1Z
�1

(f (x+ t)� f (x))

Eq�

�
(1�q�)jtj
[�]q�

� dt:
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Then we have

kP� (f ; q�; �)� f (�)kp; m �
(1�q�)

2[�]q�
ln q�1�

0BB@
1Z
�1

��������
1Z
�1

(f (x+ t)� f (x))

Eq

�
(1�q�)jtj
[�]q�

�
(1 + x6m)

dt

��������
p

dx

1CCA
1=p

� (1�q�)
2[�]q�

ln q�1�

1Z
�1

0@ 1Z
�1

����f (x+ t)� f (x)(1 + x6m)

���� dx
1A1=p dt

Eq

�
(1�q�)jtj
[�]q�

�

� (1�q�)
[�]q�

ln q�1�

1Z
0

!p;m (f ; t)

�
1 + t6m

�
Eq

�
(1�q�)t
[�]q�

�dt:
By using (4.1) and taking C = t

[�]q�
; we have

kP� (f ; q�; �)� f (�)kp; m � 26m�1 (1� q�)
[�]q� ln q

�1
�

�
1 + [�]6mq�

�
!p;m

�
f ; [�]q�

�
1Z
0

�
1 + t

[�]q�

�6m+1 �
1 + t6m

�
Eq

�
(1�q�)t
[�]q�

� dt

� 212m�1 (1� q�)
[�]q� ln q

�1
�

�
1 + [�]6mq�

�
!p;m

�
f ; [�]q�

�
1Z
0

1 + t6m + t6m+1

[�]6m+1q�

+ t12m+1

[�]6m+1q�

Eq

�
(1�q�)t
[�]q�

� dt:

From (1.1) and (1.2) it follows that

kP� (f ; q�; �)� f (�)kp; m � A!p;m
�
f ; [�]q�

�
;

where A de�ned as in (4.8).
For W� (f ; �) ; the proof is similar. �

5. Global Smoothness Preservation Property

Further information on G.S.P.P. for di¤erent linear positive operators and
also singular integral operators can be found in [2].

Theorem 5.1. Let q� 2 (0; 1) such that q� ! 1 as � ! 0: For every
f 2 Lp;m (R) and � > 0

!p;m (P� (f) ; �) � C!p;m (f ; �)
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and

!p;m (W� (f) ; �) � D!p;m (f ; �)
where

(5.1) C =

 
1 +

(6m)! [�]6mq�

q
3m(6m+1)
�

!
and D = q

� 9m2

2
�

�
q
1=2
� ; q�

�
3m
[�]3mq� :

Proof. Part (a) of Lemma 2.1 implies that,

P� (f ; q�; x+ h)�P� (f ; q�; x) =
(1� q�)

2 [�]q� ln q
�1
�

1Z
�1

(f (x+ t+ h)� f (x+ t))

Eq�

�
(1�q�)jtj
[�]q�

� dt:

By this equality, we get0@ 1Z
�1

����P� (f ; q�; x+ h)� P� (f ; q�; x)(1 + x6m) (1 + h6m)

����p dx
1A1=p

� (1� q�)
2 [�]q� ln q

�1
�

0BB@
1Z
�1

��������
1Z
�1

(f (x+ t+ h)� f (x+ t))

Eq

�
(1�q�)jtj
[�]q�

�
(1 + x6m) (1 + h6m)

dt

��������
p

dx

1CCA
1=p

� (1� q�)
2 [�]q� ln q

�1
�

1Z
�1

0@ 1Z
�1

����(f (x+ t+ h)� f (x+ t))(1 + x6m) (1 + h6m)

����p dx
1A1=p 1

Eq�

�
(1�q�)jtj
[�]q�

�dt
Using the inequality for x, t 2 R

1 + x6m � 26m�1
�
1 + (x� t)6m

� �
1 + t6m

�
we have 0@ 1Z

�1

����P� (f q�; x+ h)� P� (f ; q�; x)(1 + x6m) (1 + h6m)

����p dx
1A1=p

� 26m�1 (1� q�)
[�]q� ln q

�1
�

!p;m (f ; h)

1Z
0

�
1 + t6m

�
Eq

�
(1�q�)jtj
[�]q�

�dt
Besides, from (1.1) and (1.2) it follows that

!p;m (P� (f) ; h) � C!p;m (f ; h) ;

where C is de�ned as in (5.1).
For W� (f ; �) ; the proof is similar. �
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ABSTRACT

This article concerns the Principal Component Analysis (PCA) of a vector
process with higher-order B-spline functions. The approximated PCA of
this well-known process is compared with the classical PCA of the different
wavelengths simulated data.
Keywords : Principal components; vector process; B-splines.

1 INTRODUCTION

In many applications, observations are based on a continuous curve rather
than a scalar or vector variable. The most common such applications are
spectrophotometry, chromatography, absorbances of samples of filter mater-
ial at wavelengths in the visible spectrum, stochastic processes, kinetic model
building, and many others.

Castro et al.(1986) developed the principal components technique based
on the concept of a best linear model in the context of continuous sample
curves. Aguilera et al.(1996) developed the approximation of estimators in
the PCA of a stochastic process using cubic splines.

In the present paper, the PCA technique is used for the reduction of
sample curve data to a finite-dimension model, and the principal factors from
simulated data using third-degree and fifth-degree B-splines are estimated.

2 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is a well-known technique for the reduction
of vector data to a minimal dimension.Let Y = {y1(x), y2(x), ..., yp(x) : x ∈ [0, 1]}
be real valued on the random fields, where y1(x), y2(x), ..., yp(x)are scalar
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variates. The covariance function C(s,t) is defined on the Hilbert space
L2 [0, T ]. Consider the integral equation

T∫
0

C(s, t)φ(t)dt = λφ(s) , 0 ≤ s ≤ T (2.1)

and the result

T∫
0

φi(t)φj(t)dt =

{
1 if i = j
0 if i �= j

(2.2)

where φ is the orthonormal family of eigenfunctions and λ is the decreas-
ing sequence of non-null eigenvalues.Then, the spectral representation of C
provides the following orthogonal decomposition of the process, know as the
Karhunen-Loeve expansion Adler (1981)

Y (x) = µ(x) +
k∑

i=1
φi(x)αi . (2.3)

This model was considered by Rice and Silverman (1991). In (2.3), αi is the
family of uncorrelated zero-mean random variables defined by

αi =
T∫
0

φi(t)(Y (x) − µ(x))dt (2.4)

The random variable αi is called the ith principal component and has the
maximum variance of all the generalized linear combinations of Y(x) which
are uncorrelated with αj ( j =1,..., i-1 ). The variance E{α2

i }=λi, for all i =
1,2, ... , is called the ith principal value of the process.

3 PCA OF B-SPLINES

In this section, third-degree and fifth-degree B-splines are used to con-
struct the interpolated process. A detailed escription of B-spline functions
generated by subdivision can be found in Schumaker (1981).Suppose that
Y(x) is only observed at the knots 0, h, 2h, ... ,(n-1)h = 1. Each sample
function Y(x) will be interpolated at the points (xi , Y(xi)) using B-splines.
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3.1. Third-degree B-splines

The B-splines are defined as

B0(x) = 1
6h3




x3 0 ≤ x < h
−3x3 + 12hx2 − 12h2x + 4h3 h ≤ x < 2h
3x3 − 24hx2 + 60h2x − 44h3 2h ≤ x < 3h (3.1)
−x3 + 12hx2 − 48h2x + 64h3 3h ≤ x < 4h

Bi(x) = B0(x − (i − 1)h) , i = 2, 3, ... .

Let

YI(xi) =
n∑

i=1
CiBi(x) (3.2)

be approximate values of φi(t) in (2.1) , where the Ci are unknown real
coefficients and Bi(x) are cubic splines, I denoting interpolate. The following
equation can be written

YI(xi) =
n∑

i=1
CiBi((i − 1)h) = Y ((i − 1)h). (3.3)

This leads to a system of n linear equations in the n unknowns C1, C2, ... ,
Cn . This system can be written in matrix-vector form as

AC = Y , (3.4)

where A is the symmetric coefficient matrix given by

A =




4 1
1 4 1 0

. . .
. . .

. . .
0 1 4 1

1 4




,
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C = [C1, C2, ... , Cn ]T and Y = [ Y1, Y2, ... , Yn]T ,

T denoting tranpose. Then, the process YI(x) in (3.2) can be interpolated
upon the n random variables xi , i = 0, 1, ... , n , by the following matrix
expression

YI= BT C , (3.5)

where B(x) = [B1(x), B2(x), ... , Bn(x)]T and C can be written in (3.4) as
follows

C = A−1Y . (3.6)

Therefore,

YI = BT A−1Y . (3.7)

It can be proved that the function of the interpolated process is

E [YI ] = BT A−1M , (3.8)

where M is the random vector. Similarly, the covariance function C(s,t) can
be written as

CI(s,t) = BT (t)A−1C A−1B(s) . (3.9)

Thus, the principal factors of YI are approximated by the eigenfunctions of
the interpolated covariance Kernel CI(s,t) .
Given x1, ... , xp, and observations yj(x1), ... , yj(xp), j=1, ... , n , form the
usual unbiased, consistent estimates

m̂i = 1
n

n∑
j=1

yj(xi) (3.10)

and

ĉij = 1
n−1

n∑
q=1

[yq(xi) − m̂i][yq(xj) − m̂j ] , (3.11)

where Ĉ will be used to indicate quantites estimated from data. Using Ĉ in
equation (3.9), (2.1) can be rewritten as
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1∫
0

BT (t)A−1ĈA−1B(s)φ̂(s)ds = λ̂φ̂(t) (3.12)

where φ̂ is given by

φ̂(t) =
n∑

i=1
αiBi(t). (3.13)

That is,

φ̂(t) = BT (t)α, (3.14)

where α is the n-dimensional column vector of coordinates αi. Substituting
(3.14) in (3.12) gives

λ̂BT (t)α =
1∫
0

BT (t)A−1ĈA−1B(s)BT (s)αds. (3.15)

Then, estimated eigenvectors φ̂(t) are obtained by solving (3.15).

Let pij = 〈Bi, Bj〉 =
1∫
0

Bi(t)Bj(t)dt , i,j = 1, ... , n, then

P =




302/35 531/70 6/7 1/140
531/70 599/35 1191/140 6/7 1/140
6/7 1191/140 604/35 1191/140 6/7 1/140
1/140 6/7 1191/140 . . . .

1/140 6/7 . . . . .
1/140 . . . . . .

. . . 604/35 1191/140 6/7 1/140
. . 1191/140 604/35 1191/140 6/7

. 6/7 1191/140 599/35 531/70
1/140 6/7 531/70 302/35




.

Therefore, equation (3.15) can be rewritten as

λ̂BT (t)α = BT (t)A−1ĈA−1Pα , (3.16)

λ̂α = A−1ĈA−1Pα. (3.17)
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Thus, the problem is reduced to calculating the eigensystem of the nxn
matrix A−1ĈA−1P (in general non-symmetric). Since the matrix P is positive
definite, it has a unique square root P1/2 . Therefore, by defining β=P1/2α ,
(3.17) can be rewritten as

λ̂β = P
1/2A−1ĈA−1P

1/2β, (3.18)

where P
1/2A−1ĈA−1P

1/2 is a symmetric matrix. Once the eigenvectors β
have been computed, the coefficient vectors α of the approximated principal
factors φ̂ in the B-splines basis are obtained as

α =P1/2β . (3.19)

3.2. Fifth-degree B-splines

The following B-splines can be applied to all equations in subsection
3.1.The fifth-degree B-splines are defined as

B0 = 1
120h5




x5 0 ≤ x < h
−5x5 + 30hx4 − 60h2x3 + 60h3x2 − 30h4x + 6h5 h ≤ x < 2h
x5 − 120hx4 + 540h2x3 − 1140h3x2 + 1170h4x − 474h5 2h ≤ x < 3h
−10x5 + 180hx4 − 1260h2x3 + 4260h3x2 − 6930h4x + 4386h5 3h ≤ x < 4h
5x5 − 120hx4 + 1140h2x3 − 5340h3x2 + 12270h4x − 10974h5 4h ≤ x < 5h
−x5 + 30hx4 − 360h2x3 + 2160h3x2 − 6480h4x + 7776h55h 5h ≤ x < 6h

Bi(x) = B0(x − (i − 1)h) , i = 2, 3, ... .

Then, the coefficient matrix in (3.4) is given by
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A =




66 26 1
26 66 26 1
1 26 66 26 1

1 26 66 26 1
. . . . .

. . . . .
. . . . .

1 26 66 26 1
1 26 66 26

1 26 66




and P in (3.16) is given by

P =




A1 B1 C1 D1 E1 F1

B1 A2 B2 C2 D1 E1 F1

C1 B2 A3 B3 C2 D1 E1 F1

D1 C2 B3 A4 B3 C2 D1 E1 F1

E1 D1 C2 B3 A4 B3 C2 D1 E1 F1

F1 E1 D1 C2 B3 A4 B3 C2 D1 E1 F1

F1 E1 D1 C2 B3 A4 B3 C2 D1 E1

F1 E1 D1 C2 B3 A4 B3 C2 D1

F1 E1 D1 C2 B3 A3 B2 C1

F1 E1 D1 C2 B2 A2 B1

F1 E1 D1 C1 B1 A1




,

with the parameters given in Table 3.1. Then, the principal factors φ̂ are
obtained from (3.19).
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Table 3.1. Parameters of matrix P

Parameter Value Parameter Value
A1 655177/231 B3 9738114/2772
A2 1277215/231 C1 1086965/1386
A3 1310333/231 C2 1101744/1386
A4 1310354/231 D1 152637/2772
B1 8170295/2772 E1 509/63
B2 9729001/2772 F1 1/2772

4 NUMERICAL RESULTS AND CONCLUSIONS

In this section, the methods discussed in section 3 were tested on sim-
ulated data from the literature Castro et al. (1986).To examine the effec-
tiveness of the approach on simulated data, sample functions were generated
using various observations by means of the formula

y(x) = N(m1, s1) exp
[−(x−500)2

502

]
+ N(m2, s2) exp

[−(x−600)2

252

]
, (4.1)

where N(mi,si) is the Gaussian distribution with m1=7, s1=0.5, m2=3, s2=0.5
.Several typical absorbance curves y(x), for wavelengths of light x between
350 nm and 700 nm are shown in Figure 4.1.

Figure 4.1. Simulated sample curves of filter absorbance
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Several typical curves, for p=30 and various values of n, were obtained by
using the methods developed in section 3. The results are depicted in Figure
4.2 and Figure 4.3 for third-degree and fifth-degree B-splines. The obtained
eigenvalues associated with Kernel C(s,t) are displayed in Table 4.1, based on
the method in section 3. Included in these tables are the associated results
due to Castro et al.(1986).It is observed from Table 4.1 that, the method of
present paper gives better results than the method of Castro et al.(1986).

Table 4.1. Eigenvalues and process variability
Computed results
Knot Observed Spline Eigenvalues Process
number number order λ1, λ2 variability

12 30 3 0.3558 0.00188 99%
12 30 5 0.3588 0.00191 99%
20 30 3 0.9369 0.0024 99%
20 30 5 0.9377 0.0024 99%

Castro et al. (1986)
Knot Observed Eigenvalues Process
number number λ1, λ2 variability

17 50 0.365 0.244 60%
20 50 0.929 0.096 90%

Figure 4.2. First eigenfunction (solid curve) and second eigenfunction (dot-
ted curve) by third-degree B-splines.
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Figure 4.3. First eigenfunction (solid curve) and second eigenfunction (dot-
ted curve) by fifth-degree B-splines.

Refering to Table 4.1, it is seen that, in each case for a one-dimensional
model, about 99% of the process variability is explained. The method gave
the best results for knot number greater than 12. It shown that the PCA
technique using B-spline functions in the continuous sample curves gives the
best results. The compute the PCA of high B-spline interpolation of a process
a computational algorithm coded in Qbasic has been developed.
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1. Introduction and Preliminaries

Just recently, the author [8] announced a new class of mappings - A-monotone map-
pings - which have a wide range of applications limited not only to variational inclusion
problems, but also extend to applications to hemivariational inclusion problems, espe-
cially from the fields of engineering science and mechanics On one hand, the class of A-
monotone mappings generalizes the well-known class of maximal monotone mappings.
Here we first consider the approximation solvability of nonlinear variational inclusion
problems involving A- monotone mappings and relaxed cocoercive mappings - a more
general notion than the cocoercivity and strong monotonicity - in a Hilbert space setting,
and then we consider convergence analysis based on the generalized resolvent operator
technique for the solutions. We note that the A−monotonicity is defined in terms
of relaxed monotone mappings - a more general notion than the monotonicity/strong
monotonicity. For additional details on inclusion problems and related topics, we rec-
ommend [1- 10].

Let X be a real reflexive Banach space and X∗ be its dual. Let T : X → 2X∗
be

a nonlinear mapping from X into the power set 2X∗
of X∗ and let [u∗, u] denote the

duality pairing between the elements of X∗ and X. Next, let the effective domain D(T )
of T be defined by

D(T ) = {u ∈ X : T (u) 6= Ø},

and the range R(T ) of T be defined by

R(T ) =
⋃

u∈X

T (u).

The mapping T is maximal monotone if
(i) T is monotone.
(ii) For each u ∈ X and u∗ ∈ X∗,

[u∗ − v∗, u− v] ≥ 0∀ v ∈ D(T ), v∗ ∈ T (v),
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implies u∗ ∈ T (u). The mapping T is said to be pseudomonotone if {un} is a sequence
of X such that {un} ⇀ u and if {u∗n} ∈ T (un) with

lim
n→∞

sup[u∗n, un − u] ≤ 0,

imply that for each element v ∈ X there exists an u∗(v) ∈ T (u) such that

lim
n→∞

inf [u∗n, un − v] ≥ [u∗(v), u− v]∀v ∈ X.

On the top of that, the mapping T is said to be generalized pseudomonotone if {un} is
a sequence of X such that {un} ⇀ u and if {u∗n} ∈ T (un) with

lim
n→∞

sup[u∗n, un − u] ≤ 0,

imply that the element u∗ ∈ T (u) and

[u∗n, un] → [u∗, u].

Following Rockafellar [5], a monotone mapping M : X → 2X∗
from a real reflexive

strictly convex Banach space X into its strictly convex dual X∗ is maximal monotone iff

R(M + J) = X∗,

where J : X → X∗ is the duality mapping on X. This is equivalent to stating that M is
J −monotone iff M is monotone and

R(M + J) = X∗.

This motivated us to extend the notion of the A− monotonicity [8] to a reflexive Banach
space setting as follows: a mapping M : X → 2X∗

is A−monotone if M is relaxed
monotone and R(M + λA) = X∗, where λ > 0, and A : X → X∗ is any nonlinear
mapping on X. Also, a variant form of this definition is applied to nonlinear variational
inclusion problems in Hilbert space as well as in reflexive Banach space settings.

Definition 1. Let A : X → X∗ and M : X → 2X∗
be any mappings on X. The map

M is said to be A−monotone if
(i)M is (m)− relaxed monotone.
(ii)(A + ρM) is maximal monotone, where A :X → X∗, and ρ > 0.

Example 1. [4] Let A : X → X∗ be (m) − strongly monotone and f : X → R
be locally Lipschitz such that ∂f is (α)− relaxed monotone. Then ∂f is A−monotone,
that is, A + ∂f is maximal monotone for m− α > 0, where m,α > 0. Clearly, A + ∂f is
(m− α)− strongly monotone for m− α > 0, that is,

[u∗ − v∗, u− v] ≥ (m− α)‖u− v]‖2 ∀u, v ∈ X,

where u∗ ∈ A(u)+ ∂f(u), v∗ ∈ A(v)+ ∂f(v) and m−α > 0. As a matter of fact, A+ ∂f
is pseudomonotone and hence under the assumptions it is maximal monotone. If {un}
is a sequence of X such that {un} ⇀ u and if {u∗n} ∈ A(un) + ∂f(un) such that

lim
n→∞

sup[u∗n, un − u] ≤ 0,
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then for each element v ∈ X there exists an u∗(v) ∈ A(u) + ∂f(u) such that

lim
n→∞

inf [u∗n, un − v] ≥ [u∗(v), u− v]∀v ∈ X.

It follows from above inequalities that {un} → u. Furthermore, the other conditions are
fulfilled from the upper semicontinuity of ∂f.

In what follows, H shall denote a real Hilbert space with the norm ‖x‖ and inner
product 〈x, y〉 for all x, y ∈ H. Let K be a closed convex subset of H.

Lemma 1. Let A :H → H be (r) − strongly monotone on a real Hilbert space H
and M : H → 2H be A-monotone. Then the resolvent operator Jρ

A,M := (A + ρM )−1 :
H → H is ( 1

r−ρm )− Lipschitz continuous for 0 < ρ < r
m .

Definition 2. A mapping T : H → H is said to be (m)− relaxed monotone if there
exists a positive constant m such that

〈T (x)− T (y), x− y〉 ≥ −m‖x− y‖2∀x, y ∈ H.

Definition 3. A mapping T : H → H is said to be (s)− cocoercive if there exists a
positive constant s such that

〈T (x)− T (y), x− y〉 ≥ s‖T (x)− T (y)‖2 ∀x, y ∈ H.

Definition 4. A mapping T : H → H is said to be (m)− relaxed cocoercive if there
exists a positive constant m such that

〈T (x)− T (y), x− y〉 ≥ −m‖T (x)− T (y)‖2 ∀x, y ∈ H.

Definition 5. A mapping T : H → H is said to be (γ, m) − relaxed cocoercive if
there exist positive constants γ, m such that

〈T (x)− T (y), x− y〉 ≥ −m‖T (x)− T (y)‖2 + γ‖x− y‖2 ∀x, y ∈ H.

Example 2. Consider a mapping T : H → H, which is nonexpansive. If we set
A = I − T, then A is ( 1

2 )− cocoercive. For all u, v ∈ H, we have

1
2
‖A(u)−A(v)‖2 =

1
2
‖u− v‖2 +

1
2
‖T (u)− T (v)‖2

− 〈u− v, T (u)− T (v)〉
≤ ‖u− v‖2 − 〈u− v, T (u)− T (v)〉
= 〈u− v,A(u)−A(v)〉.

Clearly, the cocoercivity implies the relaxed cocoercivity, while the converse may not
hold in general.

Definition 6. A Hausdorff pseudometric H∧ : 2H×2H → [0,+∞)∪{+∞} is defined
by

H∧(A,B) = max{supu∈Ainfv∈B‖u− v‖, supu∈Binfv∈A‖u− v‖}∀ ∈ A,B ∈ 2H .
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We note that if the domain of H∧ is closed bounded subsets, then H∧ is the Hausdorff
metric.

Definition 7. A mapping U : H → 2H is H∧ − (λ)− Lipschitz continuous if there
exists a constant λ > 0 such that

H∧(U(u), U(v)) ≤ λ‖u− v‖ ∀u, v ∈ H.

Lemma 2. Let A :H → H be (r) − strongly monotone on a real Hilbert space H
and M : H → 2H be A-monotone. Then the resolvent operator Jρ

A,M := (A + ρM )−1 :
H → H is (r − ρm)− cocoercive for 0 < ρ < r

m .
Proof. For any u, v ∈ H, it follows from the definition of the resolvent operator that

Jρ
A,M (u) = (A + ρM)−1(u),

Jρ
A,M (v) = (A + ρM)−1(v).

This further implies that

1
ρ
[u−A(Jρ

A,M (u))] ∈ M(Jρ
A,M (u)),

1
ρ
[v −A(Jρ

A,M (v))] ∈ M(Jρ
A,M (v)).

Since M is A−monotone (and hence , it is (m)− relaxed monotone), we have

1
ρ
〈u− v − [A(Jρ

A,M (u)−A(Jρ
A,M (v)], Jρ

A,M (u)− Jρ
A,M (v)〉

≥ −m‖Jρ
A,M (u)− Jρ

A,M (v)‖2.

Therefore, we have

〈u− v, Jρ
A,M (u)− Jρ

A,M (v)〉
≥ 〈Jρ

A,M (u)− Jρ
A,M (v),A(Jρ

A,M (u))−A(Jρ
A,M (v))〉

− ρm‖Jρ
A,M (u)− Jρ

A,M (v)‖2

≥ r‖Jρ
A,M (u)− Jρ

A,M (v)‖2 − ρm‖Jρ
A,M (u)− Jρ

A,M (v)‖2

= (r − ρm)‖Jρ
A,M (u)− Jρ

A,M (v)‖2.

This completes the proof.

2. Algorithms and Variational Inclusions

Let H be a real Hilbert space and K be a nonempty closed convex subset of H. Let
A : H → H and M : H → 2H be two nonlinear mappings. Let S : H × H → H and
U : H → 2H be any mappings. Then the problem of finding an element a ∈ H, u ∈ U(a)
such that

0 ∈ S(a, u) + M(a) (1)
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is called a class of nonlinear variational inclusion (abbreviated CNVI) problems.
Next, a special case of the CNV I (1) problem is: determine an element a ∈ H such that

0 ∈ S(a, a) + M(a). (2)

When M(x) = ∂K(x) for all x ∈ K, where K is a nonempty closed convex subset
of H and ∂K denotes the indicator function of K, the CNV I(1) problem reduces to:
determine an element a ∈ K such that

〈S(a, a), x− a〉 ≥ 0 for all x ∈ K, (3)

Lemma 3. Let H be a Hilbert space. Let A : H → H be strictly monotone,
M : H → 2H be A−monotone. Let S : H × H → H be any mapping. Then a given
element a ∈ H such that u ∈ U(a) is a solution to the CNV I(1) problem iff a and u
satisfy

a = Jρ
A,M (A(a)− ρS(a, u)), (4)

where U : H → 2H is a multivalued mapping on H.

Algorithm 1.
Step 1. Choose a0 ∈ H and u0 ∈ U(a0) such that

ak+1 = Jρ
A,M [A(ak)− ρS(ak, uk)].

Step 2. For an ak+1 ∈ H, choose an uk+1 ∈ U(ak+) such that

‖uk+1 − uk‖ ≤ (1 +
1

1 + k
)H ∧(U(ak+1), U(ak)),

where H ∧(., .) denotes the Hausdorff pseudometric on 2H . Step 3. If the sequences {ak}
and {uk} satisfy to a sufficient degree of accuracy

ak+1 = Jρ
A,M [A(ak)− ρS(ak, uk)],

stop. Otherwise, set k = k + 1 and return to Step 1.

Algorithm 2.
Step 1. Choose a0 ∈ H such that

ak+1 = Jρ
A,M [A(ak)− ρS(ak, ak)].

Step 2. If the sequence {ak} satisfies to a sufficient degree of accuracy

ak+1 = Jρ
A,M [A(ak)− ρS(ak, ak)],

stop. Otherwise, set k = k + 1 and return to Step 1.
Theorem 1. Let H be a real Hilbert space. Let A : H → H be (r) − strongly

monotone and (α) − Lipschitz continuous, and let M : H → 2H be A−monotone. Let
S : H ×H → H be such that S(., y) is (λ, s) − relaxed cocoercive and (β) − Lipschitz
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continuous in the first variable and let S(x, .) be (τ)−Lipschitz continuous in the second
variable for all (x, y) ∈ H × H. Suppose that U : H → C(H) is (p,H ∧) − Lipschitz
continuous, where C(H) denotes the collection of all closed subsets of H. If, in addition,
the CNV I(1) admits a solution (a,u), if sequences {ak} and {uk} are generated by
Algorithm 1 and if there exists a positive constant ρ such that√

α2 − 2ρs + ρ2β2 + 2ρλβ2 + ρτp < (r − ρm),

then sequences {ak} and {uk} converge to a and u, respectively.

Corollary 1. Let H be a real Hilbert space. Let A : H → H be (r) − strongly
monotone and (α) − Lipschitz continuous, and let M : H → 2H be A−monotone. Let
S : H × H → H be such that S(., y) is (s) − strongly monotone and (β) − Lipschitz
continuous in the first variable and let S(x, .) be (τ)−Lipschitz continuous in the second
variable for all (x, y) ∈ H ×H. Let a, u ∈ H form a solution to the CNV I(1) problem.
Suppose that U : H → C(H) is (p,H ∧) − Lipschitz continuous, where C(H) denotes
the collection of all closed subsets of H. If, in addition, sequences {ak} and {uk} are
generated by Algorithm 1 and if there exists a positive constant ρ such that√

α2 − 2ρs + ρ2µ2 + ρτp < r − ρm,

then sequences {ak} and {uk} converge, respectively, to a and u,
which form a solution to the CNV I (1) problem.
Proof of Theorem 1. Using Algorithm 1 and Lemma 1, we obtain

‖ak+1 − ak‖ = ‖JA
M,ρ[A(ak)− ρS(ak, uk)]

− JA
M,ρ[A(ak−1)− ρS(ak−1, uk−1)]‖

≤ 1
r − ρm

[‖A(ak)−A(ak−1)− ρ(S(ak, uk)− S(ak−1, uk−1))‖]

≤ 1
r − ρm

[‖A(ak)−A(ak−1)− ρ(S(ak, uk]− S(ak−1, uk))‖

+ ‖ρ(S(ak−1, uk)− S(ak−1, uk−1))‖]

≤ 1
r − ρm

[‖A(ak)−A(ak−1)− ρ(S(ak, uk)− S(ak−1, uk))‖

+ ρτ‖uk − uk−1‖]

≤ 1
r − ρm

[‖A(ak)−A(ak−1)− ρ(S(ak, uk)− S(ak−1, uk))‖

+ ρτp(1 +
1
k

)‖ak − ak−1‖]
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Since

‖[A(ak)−A(ak−1)− ρ(S(ak, uk]− S(ak−1, uk))‖2

= ‖A(ak)−A(ak−1)‖2 − 2ρ〈A(ak)−A(ak−1), S(ak, uk)− S(ak−1, uk)〉
+ ρ2‖S(ak, uk)− S(ak−1, uk)‖2

≤ (α2 + 2ρλβ2 − 2ρs + ρ2β2)‖ak − ak−1‖2

= (α2 − 2ρs + ρ2β2 + 2ρλβ2)‖ak − ak−1‖2,

we have

‖ak+1 − ak−1‖

≤ 1
r − ρm

[θ‖ak − ak−1‖+ ρτp(1 +
1
k

)‖ak − ak−1‖]

= [
1

r − ρm
(θ + ρτp(1 +

1
k

))]‖ak − ak−1‖,

where
θ =

√
α2 − 2ρs + ρ2β2 + 2ρλβ2

and θ + ρτp < r − ρm, that is,√
α2 − 2ρs + ρ2β2 + 2ρλβ2 + ρτp < r − ρm.

Under the assumptions of the theorem, it follows from the above inequality that {ak}
is a Cauchy sequence. As a result, there exists an a ∈ H such that the sequence {ak}
converges to a as k →∞.

To conclude the proof, we show that the sequence {uk} converges to u ∈ U(a). Since

‖S(ak−1, uk)− S(ak−1, uk−1)‖ ≤ τ‖uk − uk−1‖

≤ τp(1 +
1
k

))‖ak − ak−1‖,

it follows that {uk} is a Cauchy sequence. Thus, there exists an u ∈ H such that
{uk} → u as k →∞.
Next, we show u ∈ U(a). Since U(a) is closed and

d(u, U(a)) = inf{‖u− v‖ : v ∈ U(a)}
≤ ‖u− uk‖+ d(uk, U(a))
≤ ‖u− uk‖+ H∧(U(ak), U(a))
≤ ‖u− uk‖+ p‖ak − a‖ → 0,
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it implies that u ∈ U(a). As a matter of fact, the continuity ensures that a and u satisfy

a = Jρ
A,M (A(a)− ρS(a, u)).

Finally, it follows from Lemma 3 that (a, u) is a solution to the CNV I (1) problem. This
concludes the proof.

Theorem 2. Let H be a real Hilbert space. Let A : H → H be (r) − strongly
monotone and (α) − Lipschitz continuous, and let M : H → 2H be A−monotone. Let
S : H ×H → H be such that S(., y) is (λ, s) − relaxed cocoercive and (β) − Lipschitz
continuous in the first variable and let S(x, .) be (τ)−Lipschitz continuous in the second
variable for all (x, y) ∈ H ×H. If, in addition, the CNV I(2) admits a solution a ∈ H, if
the sequence {ak} is generated by Algorithm 2 and if there exists a positive constant ρ
such that √

α2 − 2ρs + ρ2β2 + 2ρλβ2 + ρτp < (r − ρm),

then the sequence {ak} converge to a.

Proof. Using Algorithm 1 and Lemma 1, we obtain

‖ak+1 − ak‖ = ‖JA
M,ρ[A(ak)− ρS(ak, ak)]

− JA
M,ρ[A(ak−1)− ρS(ak−1, ak−1)]‖

≤ 1
r − ρm

[‖A(ak)−A(ak−1)− ρ(S(ak, ak)− S(ak−1, ak−1))‖]

≤ 1
r − ρm

[‖A(ak)−A(ak−1)− ρ(S(ak, ak]− S(ak−1, ak))‖

+ ‖ρ(S(ak−1, ak)− S(ak−1, ak−1))‖]

≤ 1
r − ρm

[‖A(ak)−A(ak−1)− ρ(S(ak, ak)− S(ak−1, ak))‖

+ ρτ‖ak − ak−1‖]

≤ 1
r − ρm

[‖A(ak)−A(ak−1)− ρ(S(ak, ak)− S(ak−1, ak))‖

+ ρτp(1 +
1
k

)‖ak − ak−1‖]

Since

‖[A(ak)−A(ak−1)− ρ(S(ak, ak]− S(ak−1, ak))‖2

= ‖A(ak)−A(ak−1)‖2

− 2ρ〈A(ak)−A(ak−1), S(ak, ak)− S(ak−1, ak)〉
+ ρ2‖S(ak, ak)− S(ak−1, ak)‖2

≤ (α2 + 2ρλβ2 − 2ρs + ρ2β2)‖ak − ak−1‖2

= (α2 − 2ρs + ρ2β2 + 2ρλβ2)‖ak − ak−1‖2,
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we have

‖ak+1 − ak−1‖ ≤ 1
r − ρm

[θ‖ak − ak−1‖+ ρτp(1 +
1
k

)‖ak − ak−1‖]

= [
1

r − ρm
(θ + ρτp(1 +

1
k

))]‖ak − ak−1‖,

where
θ =

√
α2 − 2ρs + ρ2β2 + 2ρλβ2

and θ + ρτp < r − ρm, that is,√
α2 − 2ρs + ρ2β2 + 2ρλβ2 + ρτp < r − ρm.

Under the assumptions of the theorem, it follows from the above inequality that {ak}
is a Cauchy sequence. As a result, there exists an a ∈ H such that the sequence {ak}
converges to a as k →∞.

We remark that the obtained results can be extended to the case of a system of
nonlinear variational inclusion problems on two Hilbert spaces. Let H1 and H2 be two
real Hilbert spaces and K1 and K2, respectively, be nonempty closed convex subsets of
H1 and H2. Let A : H1 → H1, B : H2 → H2, M : H1 → 2H1 and N : H2 → 2H2

be nonlinear mappings. Let S : H1 × H2 → H1 and T : H1 × H2 → H2 be any two
multivalued mappings. Then the problem of finding (a, b) ∈ H1 ×H2 such that

0 ∈ S(a, b) + M(a), (5)

0 ∈ T (a, b) + N(b), (6)

is called the system of nonlinear variational inclusion (abbreviated SNVI) problems.
When M(x) = ∂K1(x) and N(y) = ∂K2(y) for all x ∈ K1 and y ∈ K2, where K1 and

K2, respectively, are nonempty closed convex subsets of H1 and H2, and ∂K1 and ∂K2

denote indicator functions of K1 and K2, respectively, the SNV I(1) − (2) reduces to:
determine an element (a, b) ∈ K1 ×K2 such that

〈S(a, b), x− a〉 ≥ 0 for all x ∈ K1, (7)

〈T (a, b), y − b〉 ≥ 0 for all y ∈ K2. (8)

Lemma 4. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H1 and
B : H2 → H2 be strictly monotone, M : H1 → 2H1 be A−monotone and N : H2 → 2H2

be B−monotone. Let S : H1×H2 → H1 and T : H1×H2 → H2 be any two multivalued
mappings. Then a given element (a, b) ∈ H1 × H2 is a solution to the SNV I(1) − (2)
problem iff (a, b) satisfies

a = Jρ
A,M (A(a)− ρS(a, b)), (9)

b = Jη
B,N (B(b)− ηT (a, b)). (10)

Algorithm 3. Choose (a0, b0) ∈ H1 ×H2, such that

ak+1 = Jρ
A,M [A(ak)− ρS(ak, bk)]
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bk+1 = Jη
B,N [B(ak)− ρT (ak, bk)].

Theorem 3. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H1 be
(r1)− strongly monotone and (α1)−Lipschitz continuous, and B : H2 → H2 be (r2)−
strongly monotone and (α2)−Lipschitz continuous. Let M : H1 → 2H1 be A−monotone
and N : H2 → 2H2 be B−monotone. Let S : H1 × H2 → H1 be such that S(., y)
is (γ, r) − relaxed cocoercive and (µ) − Lipschitz continuous in the first variable and
S(x, .) is (ν)− Lipschitz continuous in the second variable for all (x, y) ∈ H1 ×H2. Let
T : H1×H2 → H2 be such that T (u, .) is (λ, s)− relaxed cocoercive and (β)−Lipschitz
continuous in the second variable and T (., v) is (τ) − Lipschitz continuous in the first
variable for all (u, v) ∈ H1×H2. Let (a, b) ∈ H1×H2 form a solution to the SNV I (4)−(5)
problem. If, in addition, there exist positive constants ρ, η and sequence {(ak, bk)} is
generated by Algorithm 3 such that

(r2 − ηp)
√

α2
1 − 2ρr + 2ργµ2 + ρ2µ2 + ητ(r1 − ρm) < (r1 − ρm)(r2 − ηp)

(r1 − ρm)
√

α2
2 − 2ηs + 2ηλβ2 + η2β2 + ρν(r2 − ηp) < (r1 − ρm)(r2 − ηp),

then the SNV I(4)−(5) problem has a solution (a, b), where M is (m)−relaxed monotone
and N is (p)− relaxed monotone
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81531-990 Curitiba - PR, Brazil.

Abstract. The present paper makes a further study on the existence and stabilization
in a earlier article (J. Concr. Appl. Math). One considers the nonlinear viscoelastic
evolution equation

utt + Au + F (x, t, u, ut)− g ∗A u = 0 on Γ× (0,∞)

where Γ is a compact manifold. When F 6= 0 and g 6= 0 we prove existence of global so-

lutions as well as uniform (exponential and algebraic) decay rates, provided the kernel

of the memory decays exponentially and F satisfies suitable growth assumptions.

Key words:Asymptotic Stability, Viscoelastic Evolution Problem
2000 AMS Subject Classification 35G25,37C75

1 Introduction

This manuscript is devoted to the study of the existence and uniform decay
rates of solutions u = u(x, t) of the evolution viscoelastic problem

(∗)

 utt +Au+ F (x, t, u, ut)−
∫ t

0

g(t− τ)Au(τ) dτ = 0 on Γ× (0,∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Γ

where Γ is the boundary, assumed compact and smooth, of a domain Ω of Rn,
not necessarily bounded.

We will assume that A is the self-adjoint operator, not necessarily bounded,
defined by the triple

{
H1/2(Γ), L2(Γ), ((·, ·))H1/2(Γ)

}
. In this case, A is charac-

terized by

D(A) =
{
u ∈ H1/2(Γ); there exists fu ∈ L2(Γ) such that

(fu, v)L2(Γ) = ((u, v))H1/2(Γ) ; for all v ∈ H1/2(Γ)
}
, fu = Au

1
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(Au, v)L2(Γ) = ((u, v))H1/2(Γ) ; for all u ∈ D(A) and for all v ∈ H1/2(Γ). (1.1)

Since the embedding H1/2(Γ) ↪→ L2(Γ) is compact, we recall that the spec-
tral theorem for self-adjoint operators guarantees the existence of a complete
orthonormal system {ων}ν∈N of L2(Γ) given by eigen-functions of A. If {λν}ν∈N

are the corresponding eigenvalues of A, then λν → +∞ as ν → +∞. Besides,

D(A) = {u ∈ L2(Γ);
+∞∑
ν=1

λ2
ν | (u, ων)L2(Γ) |

2 < +∞},

Au =
+∞∑
ν=1

λν (u, ων)L2(Γ) ων ; for all u ∈ D(A).

Considering in D(A) the norm |Au|L2(Γ), it turns out that {ων} is a complete
system in D(A). In fact, it is known that {ων} is also a complete system in
H1/2(Γ). Now, since A is positive, given δ > 0 one has

D(Aδ) = {u ∈ L2(Γ);
+∞∑
ν=1

λ2δ
ν | (u, ων)L2(Γ) |

2 < +∞},

Aδu =
+∞∑
ν=1

λδ
ν (u, ων)L2(Γ) ων ; for all u ∈ D(Aδ).

In D(Aδ) we consider the topology given by
∣∣Aδu

∣∣
L2(Γ)

. We observe that
from the spectral theory, such operators are also self-adjoint, that is,

(Aδu, v)L2(Γ) = (u,Aδv)L2(Γ); for all u, v ∈ D(Aδ)

and, in particular,

D(A1/2) = H1/2(Γ). (1.2)

At this point it is convenient to observe that, according to J. L. Lions and
E. Magenes [[11], Remark 7.5] one has

H1/2(Γ) = D[(−∆Γ)1/2], (1.3)

where ∆Γ is the Laplace-Beltrami operator on Γ. Then, from (1.1), (1.2) and
(1.3) we deduce that

(Au, v)L2(Γ) = (−∆Γu, v)L2(Γ) ; for all u ∈ D(A), for all v ∈ H1/2(Γ), (1.4)

that is, Au = −∆Γu for all u ∈ D(A) which implies that A ≤ −∆Γ. This means
that when A is the operator defined by the above triple, problem (∗) can also
be viewed like the wave operator on the compact manifold Γ.

Now, if one considers the extension Ã : H1/2(Γ) → H−1/2(Γ) of A defined
by

< Ãu, v >H−1/2(Γ),H1/2(Γ)= ((u, v))H1/2(Γ) ; for all u, v ∈ H1/2(Γ) (1.5)

2
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it is well known that Ã is bijective, self-adjoint, coercive and continuous (indeed
isometry).

In the present manuscript we derive exponential and algebraic decay rates
(as in the earlier article) assuming that the kernel decays exponentially, and,
moreover, that

∫∞
0
g(s) ds is sufficiently small. For this purpose we make use of

the perturbed energy method due to A. Haraux and E. Zuazua [7].
It is worth mentioning the papers in connection with viscoelastic effects on

the boundary Γ of a domain Ω of Rn. This was considered by M. Aassila, M. M.
Cavalcanti and J. Soriano [4] whom considered the linear wave equation in Ω sub-
ject to nonlinear feedback and viscoelastic effects on the boundary and proved
uniform (exponential and algebraic) decay rates. Also, we can cite the article of
D. Andrade and J. E. Muñoz Rivera [2] whom considered a one-dimension non-
linear wave equation in Ω = (0, 1) subject to nonlocal and nonlinear boundary
memory effect. They showed that the dissipation introduced by the memory
term is strong enough to secure global estimates, which allow them to prove
existence of global smooth solution for small data and to derive exponential (or
polynomial) decay provided the kernel decays exponentially (or polynomially).

A natural question in this context is about the non-existence results for the
nonlinear wave equation in Ω when we have viscoelastic effects on the boundary.
In this context we can mention the work of M. Kirane and N. Tatar [9] who
derive non-existence results.

Our paper is organized as follows: In section 2 we present some notations,
the assumptions on g and F and state our main result. In section 3 we prove
existence and uniqueness for regular and weak solutions and in section 4 we give
the proof of the uniform decay.

2 Assumptions and Main Result

Define

(u, v) =
∫
Γ
u(x)v(x) dx; |u|2 = (u, u) , ||u||pp =

∫
Γ
|u(x)|p dx.

The precise assumptions on the function F (x, t, u, ut) and on the memory
term g of (∗) are given in the sequel.
(A.1) Assumptions on F (x, t, u, ut)

We represent by (x, t, ξ, η) a point of Γ× [0,∞)×R2. Let

F : Γ× [0,∞)×R2 → R

satisfying the conditions

F ∈ C1
(
Γ× [0,∞)×R2

)
. (H.1)

There exist positive constants C,D and β > 0 such that

|F (x, t, ξ, η)| ≤ C
(
1 + |ξ|γ+1 + |η|ρ+1

)
, (H.2)

3
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where 0 < ξ, ρ ≤ 1
n−2 if n ≥ 3 and ξ, ρ > 0 if n = 1, 2;

F (x, t, ξ, η)ζ ≥ |ξ|γ ξζ + β |η|ρ+1 |ζ| ; for all ζ ∈ R; (H.3)

|Ft(x, t, ξ, η)| ≤ C
(
1 + |η|ρ+1 + |ξ|γ+1

)
; (H.4)

|Fξ(x, t, ξ, η)| ≤ C (1 + |η|ρ + |ξ|γ) ; (H.5)

Fη(x, t, ξ, η) ≥ β |η|ρ ; (H.6)(
F (x, t, ξ, η)− F (x, t, ξ̂, η̂

)(
ζ − ζ̂

)
(H.7)

≥ −D
(
|ξ|γ +

∣∣∣ξ̂∣∣∣) ∣∣∣ξ − ξ̂
∣∣∣ ∣∣∣ζ − ζ̂

∣∣∣ for all ζ, ζ̂ ∈ R.

A simple variant of the above function is given by the following example

F (x, t, ξ, η) = β |η|ρ η + |ξ|γ ξ.

(A.2) Assumptions on the Kernel

We assume that g : R+ → R+ is a bounded C2 function satisfying

1−
∫ ∞

0

g(s) ds = l > 0 (H.8)

and such that there exist positive constants ξ1, ξ2 and ξ3 verifying

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t); for all t ≥ 0, (H.9)

0 ≤ g′′(t) ≤ ξ3g(t); for all t ≥ 0, (H.10)

0 ≥ g′′′(t) ≥ ξ4g
′(t); for all t ≥ 0. (H.11)

Now we are in a position to state our main result.
Theorem 2.4. Let the initial data

{
u0, u1

}
belong to D(A) × H1/2(Γ)

and assume that the assumptions in (A.1) and (A.2) hold. Then, problem (∗)
possesses a unique regular solution u in the class

u ∈ L∞(0,∞;H1/2(Γ)), u′ ∈ L∞(0,∞;H1/2(Γ), u′′ ∈ L∞(0,∞;L2(Γ)). (2.6)

Moreover, assuming that the kernel ||g||L1(0,∞) is sufficient small, the energy

E(t) =
1
2

{
|u′(t)|2 + |A1/2u(t)|2 +

2
γ + 2

||u(t)||γ+2
γ+2

}
, (2.7)

has the following decay rates

E(t) ≤ (εθt+ [E(0)]−ρ/2)−2/ρ, for all t ≥ 0, for all ε ∈ (0, ε0], ( if ρ > 0) (2.8)

4
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where θ and ε0 are positive constants, and

E(t) ≤ CE(0)e−εωt for all , t ≥ 0 for all ε ∈ (0, ε0], ( if ρ = 0), (2.9)

where C, ω and ε0 are positive constants.
Theorem 2.5. Let the initial data belong to H1/2(Γ) × L2(Γ) and assume

the same hypotheses of theorem 2.4 hold. Then, problem (∗) possesses a unique
weak solution u in the class

u ∈ C0([0,∞),H1/2(Γ)) ∩ C1([0,∞);L2(Γ)). (2.10)

Besides, the weak solution has the same decay rates given in (2.8) and (2.9).

3 Existence and Uniqueness of Solutions

In this section we first prove existence and uniqueness of regular solutions to
problem (∗) making use of Faedo-Galerkin method. Then, we extend the same
result to weak solutions using a density argument.
3.1 Regular Solutions

Now, let us consider the existence of regular solutions. For this end, let
us consider the operator A : D(A) ⊂ L2(Γ) → L2(Γ) defined by the triple{
H1/2(Γ), L2(Γ), ((·, ·))H1/2(Γ)

}
. Let {ων} be a basis in D(A), consider Vm =

[ω1, · · · , ωm] and um =
∑m

j=1 δjm(t)ωj verifying

(u′′m(t), w) + (Aum(t), w) + (F (x, t, um(t), u′m(t)), w) (3.1)

−
∫ t

0

g(t− τ) (Aum(τ), w) dτ = 0; for all w ∈ Vm,

um(0) = u0m → u0 in D(A); u′m(0) = u1m → u1 in H1/2(Γ). (3.2)

3.1.4 - A Priori Estimates

The First Estimate: Considering w = u′m(t) in (3.1), we deduce that

1
2
d

dt

{
|u′m(t)|2 + |A1/2um(t)|2 +

2
γ + 2

||um(t)||γ+2
γ+2

}
(3.3)

+β||u′m(t)||ρ+2
ρ+2 + g(0)|A1/2um(t)|2

=
d

dt

{∫ t

0

g(t− τ)(A1/2um(τ), A1/2um(t)) dτ
}

−
∫ t

0

g′(t− τ)(A1/2um(τ), A1/2um(t)) dτ.
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We observe that in view of assumption (H.9), making use of Cauchy-Schwarz
and ab ≤ 1

4ηa
2 + ηb2 inequalities, we have∫ t

0

g′(t− τ)(A1/2um(τ), A1/2um(t)) dτ (3.4)

≤ ξ21
4η

(∫ t

0

g(t− τ)|A1/2um(τ)|dτ
)2

+ η|A1/2um(t)|2

≤ ξ21
4η
||g||L1(0,∞)

∫ t

0

g(t− τ)|A1/2um(τ)|2dτ + η|A1/2um(t)|2.

Combining (3.3) and (3.4) we arrive at

1
2
d

dt

{
|u′m(t)|2 + |A1/2um(t)|2 +

2
γ + 2

||um(t)||γ+2
γ+2

}
(3.5)

+β ||u′m(t)||ρ+2
ρ+2 + (g(0)− η)|A1/2um(t)|2

≤ d

dt

{∫ t

0

g(t− τ)(A1/2um(τ), A1/2um(t))dτ
}

+
ξ21
4η
||g||L1(0,∞)

∫ t

0

g(t− τ)|A1/2um(τ)|2dτ.

Integrating (3.5) over (0,t), we obtain

1
2

{
|u′m(t)|2 + |A1/2um(t)|2 +

2
γ + 2

||um(t)||γ+2
γ+2

}
(3.6)

+β
∫ t

0

||u′m(s)||ρ+2
ρ+2 ds+ (g(0)− η)

∫ t

0

|A1/2um(s)|2ds

≤ 1
2

{
|u1m|2 + |A1/2u0m|2 +

2
γ + 2

||u0m||γ+2
γ+2

}
+
∫ t

0

g(t− τ)(A1/2um(τ), A1/2um(t))dτ

+
ξ21
4η
||g||2L1(0,∞)

∫ t

0

|A1/2um(s)|2 ds.

Finally, we observe that for an arbitrary η > 0, we infer∫ t

0

g(t− τ)(A1/2um(τ), A1/2um(t))dτ (3.7)

≤ η|A1/2um(t)|2 +
1
4η
||g||L1(0,∞) ||g||L∞(0,∞)

∫ t

0

|A1/2um(s)|2 ds.
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From (3.6) and (3.7) we have

1
2
|u′m(t)|2 + (

1
2
− η)|A1/2um(t)|2 +

1
γ + 2

||um(t)||γ+2
γ+2 (3.8)

+β
∫ t

0

||u′m(s)||ρ+2
ρ+2 ds+ (g(0)− η)

∫ t

0

|A1/2um(s)|2ds

≤ 1
2

{
|u1m|2 + |A1/2u0m|2 +

2
γ + 2

||u0m||γ+2
γ+2

}
+
(
ξ21
4η
||g||2L1(0,∞) +

1
4η
||g||L1(0,∞) ||g||L∞(0,∞)

)∫ t

0

|A1/2um(s)|2 ds.

From (3.2), (3.8), choosing η > 0 sufficiently small and employing Gronwall’s
lemma, we obtain the first estimate

|u′m(t)|2 + |A1/2um(t)|2 + ||um(t)||γ+2
γ+2 +

∫ t

0

||u′m(s)||ρ+2
ρ+2 ds ≤ L4 (3.9)

where L4 is a positive constant independent of m ∈ N and t ∈ [0, T ].
The Second Estimate: Considering w = u′′m(0) and t = 0 in (3.1),

|u′′m(0)|2 ≤ [|Au0m|+ |F (x, t, um(t), u′m(t)|] |u′′m(0)| .

From the last inequality and making use of the assumption (H.2) on F , we
obtain

|u′′m(0)| ≤ L5 (3.10)

where L5 is a positive constant independent of m ∈ N.
Now, getting the derivative of (3.1) with respect to t and substituting w =

u′′m(t) in the obtained expression, it results that

1
2
d

dt

{
|u′′m(t)|2 +

∣∣∣A1/2u′m(t)
∣∣∣2}+ β

∫
Γ

|u′m|
ρ |u′′m|

2
dΓ + g(0)|A1/2u′m(t)|2

≤ C

∫
Γ

(
1 + |u′m|

ρ+1 + |um|γ+1
)
|u′′m| dΓ

+C
∫

Γ

(
1 + |u′m|

ρ + |um|γ
)
|u′m| |u′′m| dΓ

−g′(0)(A1/2um(t), A1/2u′m(t))−
∫ t

0

g′′(t− τ)(A1/2um(τ), A1/2u′m(t))dτ

+g(0)
d

dt
(A1/2um(t), A1/2u′m(t)) (3.11)

+
d

dt

{∫ t

0

g′(t− τ)(A1/2um(τ), A1/2u′m(t))dτ
}
.
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We observe that from (H.10) it holds, from an arbitrary η > 0, that∫ t

0

g′′(t− τ)(A1/2um(τ), A1/2u′m(t))dτ (3.12)

≤ ξ23
4η
||g||L1(0,∞)

∫ t

0

g(t− τ)|A1/2um(τ)|2dτ + η|A1/2u′m(t)|2.

We also have

g′(0)
(
A1/2um(t), A1/2u′m(t)

)
≤ (g′(0))2

4η

∣∣∣A1/2um(t)
∣∣∣2 + η

∣∣∣A1/2u′m(t)
∣∣∣2 .(3.13)

Integrating (3.11) over (0,t) taking the generalized Hölder inequality and
(3.12) and (3.13) into account, it holds that

1
2
|u′′m(t)|2 +

1
2

∣∣∣A1/2u′m(t)
∣∣∣2 (3.14)

+(β − 2Cη)
∫ t

0

∫
Γ

|u′m|
ρ |u′′m|

2
dΓds+ (g(0)− 2η)

∫ t

0

∣∣∣A1/2u′m(s)
∣∣∣2 ds

≤ 1
2
|u′′m(0)|2 +

1
2

∣∣∣A1/2u1m

∣∣∣2 + CT meas(Γ)

+C1

∫ t

0

(
||um(s)||2(γ+1)

H1/2(Γ)
+ |u′m(s)|2

)
ds+

C

2η

∫ t

0

||u′m(s)||ρ+2
ρ+2 ds

+C
∫ t

0

|u′′m(s)|2 ds+ C2

∫ t

0

||um(s)||γ
H1/2(Γ)

||u′m(s)||H1/2(Γ) |u
′′
m(t)| ds

+
(g′(0))2

4η

∫ t

0

∣∣∣A1/2um(s)
∣∣∣2 ds+

ξ23
4η
||g||L1(0,∞)

∫ t

0

g(t− τ)
∣∣∣A1/2um(τ)

∣∣∣2 dτ
+g(0)

(
A1/2um(t), A1/2u′m(t)

)
+
∫ t

0

g′(t− τ)
(
A1/2um(τ), A1/2u′m(t)

)
dτ.

But, as in (3.7) taking the assumption (H.9) into account, we have∫ t

0

g′(t− τ)
(
A1/2um(τ), A1/2u′m(t)

)
dτ (3.15)

≤ η
∣∣∣A1/2u′m(t)

∣∣∣2 +
ξ21
4η
||g||L1(0,∞) ||g||L∞(0,∞)

∫ t

0

∣∣∣A1/2um(s)
∣∣∣2 ds.

We also infer

g(0)
(
A1/2um(t), A1/2u′m(t)

)
≤ (g(0)2

4η

∣∣∣A1/2um(t)
∣∣∣2 + η

∣∣∣A1/2u′m(t)
∣∣∣2 .(3.16)

Combining (3.14)-(3.16), choosing η > 0 sufficiently small, making use of
the first estimate (3.9), considering (3.10) and employing Gronwall’s lemma, we
obtain the second estimate

|u′′m(t)|2 +
1
2

∣∣∣A1/2u′m(t)
∣∣∣2 +

∫ t

0

∫
Γ

|u′m|
ρ |u′′m|

2
dΓds ≤ L6 (3.17)
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where L6 is a positive constant independent of m ∈ N and t ∈ [0, T ].
3.1.5 - Passage to the Limit.

Having in mind that
∣∣A1/2u

∣∣ = ||u||H1/2(Γ); for all u ∈ H1/2(Γ), and using
compactness arguments then we can pass to the limit in (3.1) to obtain

u′′ + Ãu+ F (x, t, u, u′)− g ∗ Ãu = 0 in D′(0, T ;H−1/2(Γ)) (3.18)

where Ã : H1/2(Γ) → H−1/2(Γ) is the isometric and self-adjoint extension of A
defined as in (1.5). Since, u′′, F (x, t, u, u′) ∈ L2(Γ), from (3.18) it follows that

Ã(u− g ∗ u) ∈ L2
loc(0,∞;L2(Γ)). (3.19)

Therefore,

u− g ∗ u ∈ L2
loc(0,∞;D(A)), (3.20)

u′′ +A (u− g ∗ u) + F (x, t, u, u′) = 0 in L2
loc(0,∞;L2(Γ)). (3.21)

3.1.6 - Uniqueness.
Let u and û be two regular solutions of (∗∗) satisfying theorem 2.4. Defining

z = u− û, from (3.21) we deduce

1
2
d

dt

{
|z′(t)|2 +

∣∣∣A1/2z(t)
∣∣∣2}+ g(0)

∣∣∣A1/2z(t)
∣∣∣ (3.22)

≤ C(γ)
(
||u(t)||γ2(γ+1) + ||û||γ2(γ+1)

)
||z(t)||2(γ+1) |z

′(t)|

−
∫ t

0

g′(t− τ)
(
A1/2z(τ), A1/2z(t)

)
dτ

+
d

dt

{∫ t

0

g(t− τ)
(
A1/2z(τ), A1/2z(t)

)
dτ

}
.

Note that∫ t

0

g′(t− τ)
(
A1/2z(τ), A1/2z(t)

)
dτ (3.23)

≤ ξ21
4η
||g||L1(0,∞)

∫ t

0

g(t− τ)
∣∣∣A1/2z(τ)

∣∣∣2 dτ + η
∣∣∣A1/2z(t)

∣∣∣2 .
Integrating (3.22) over (0,t) taking (3.23) into account, and having in mind

that
∣∣A1/2z(t)

∣∣ = ||z(t)||H1/2(Γ), we infer

1
2
|z′(t)|2 +

1
2

∣∣∣A1/2z(t)
∣∣∣2 + (g(0)− η)

∫ t

0

∣∣∣A1/2z(s)
∣∣∣2 ds (3.24)

≤ C(γ)
∫ t

0

{
1
2

∣∣∣A1/2z(s)
∣∣∣2 +

1
2
|z′(s)|2

}
ds

+
ξ21
4η
||g||2L1(0,∞)

∫ t

0

∣∣∣A1/2z(s)
∣∣∣2 ds+

∫ t

0

g(t− τ)
(
A1/2z(τ), A1/2z(t)

)
dτ.
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Finally, observing that∫ t

0

g(t− τ)
(
A1/2z(τ), A1/2z(t)

)
dτ (3.25)

≤ η
∣∣∣A1/2z(t)

∣∣∣2 +
1
4η
||g||L1(0,∞) ||g||L∞(0,∞)

∫ t

0

∣∣∣A1/2z(s)
∣∣∣2 ds,

then, from (3.24), (3.25), choosing η sufficiently small and employing Gronwall’s
lemma we conclude that |z′(t)|= ||z(t)||H1/2(Γ)= 0, which finishes the proof of
uniqueness for regular solutions of (∗) . ♦
3.2 Weak Solutions

Given
{
u0, u1

}
∈ H1/2(Γ)×L2(Γ), sinceD(A)×H1/2(Γ) is dense inH1/2(Γ)×

L2(Γ) the procedure used in the earlier article is similar. Since g 6= 0, the
unique difference is due to the memory term which we have already handled,
see (3.3)-(3.9) and the section 3.1.6. For this reason the proof will be omitted.
Analogously we deduce there exists a unique function u verifying{

u′′ + Ã(u− g ∗ u) + F (x, t, u, u′) = 0 in L2
loc(0,∞;H−1/2(Γ))

u(0) = u0, u′(0) = u1.
(3.26)

4 Asymptotic Stability

In this section we obtain the uniform decay of the energy for regular solutions,
since the same occurs for weak solutions using standard density arguments.

Let us consider, now, the case F 6= 0 and g 6= 0. From assumption (H.3)
and taking (3.21) into account, we deduce

E′(t) ≤ −β ||u′(t)||ρ+2
ρ+2 +

∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u′(t)

)
dτ, (4.1)

where E(t) is defined in (2.7).
A direct computation shows that∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u′(t)

)
dτ (4.2)

=
1
2

(
g′ �A1/2u

)
(t)− 1

2

(
g �A1/2u

)′
(t)

+
d

dt

{
1
2

(∫ t

0

g(s) ds
) ∣∣∣A1/2u(t)

∣∣∣2}− 1
2
g(t)

∣∣∣A1/2u(t)
∣∣∣2 ,

where

(g � y) (t) =
∫ t

0

g(t− τ) |y(t)− y(s)|2 ds.

Defining the modified energy by

e(t) =
1
2
|u′(t)|2 +

1
2

(
1−

∫ t

0

g(s) ds
) ∣∣∣A1/2u(t)

∣∣∣2 (4.3)

+
1

γ + 2
||u(t)||γ+2

γ+2 +
1
2

(
g �A1/2u

)
(t)
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we obtain from (4.1) and (4.2) that

e′(t) = −β ||u′(t)||ρ+2
ρ+2 +

1
2

(
g′ �A1/2u

)
(t)− 1

2
g(t)

∣∣∣A1/2u(t)
∣∣∣2 . (4.4)

We observe that taking the assumption (H.8) into account, we deduce that
e(t) ≥ 0. Now, from (4.4) and considering the hypothesis (H.9) on the kernel
g, we have e′(t) ≤ 0. Furthermore, since

E(t) ≤
(
l−1 + 1

)
e(t) (4.5)

the decay of E(t) is a consequence of the e(t) decay.
Let us define, as in the previous case

ψ(t) = [e(t)]ρ/2 (u′(t), u(t)) . (4.6)

Taking the derivative of ψ(t) with respect to t, substituting

u′′ = −A(u− g ∗ u)− F (x, t, u, u′)

in the obtained expression, it holds that

ψ′(t) =
ρ

2
[e(t)]

ρ−2
2 e′(t) (u′(t), u(t)) (4.7)

+ [e(t)]ρ/2

{
−
∣∣∣A1/2u(t)

∣∣∣2 +
∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u(t)

)
dτ

− (F (x, t, u, u′), u(t)) + |u′(t)|2
}
.

Since −e′(t) > 0, we deduce, from (4.5) and (4.7) that

ψ′(t) ≤ −C1e
′(t) (4.8)

+ [e(t)]ρ/2

{
−
∣∣∣A1/2u(t)

∣∣∣2 − ||u(t)||γ+2
γ+2 − β

∫
Γ

|u′|ρ+1 |u| dΓ

+
∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u(t)

)
dτ + |u′(t)|2

}
,

where C1 = C1

(
l−1, e(0)

)
.

Repeating the same procedure we have done in the previous paper, we de-
duce, from (4.8) that

ψ′(t) ≤ −C1e
′(t) (4.9)

+ [e(t)]ρ/2

{
−
(
1− η2ρ/2

(
l−1 + 1

)ρ/2
[e(0)]ρ/2

) ∣∣∣A1/2u(t)
∣∣∣2 + k(η) ||u′(t)||ρ+2

ρ+2

− ||u(t)||γ+2
γ+2 +

∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u(t)

)
dτ + |u′(t)|2

}
,

where η is an arbitrary positive number and k = k(η) is a positive constant
which depends on η.
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Choosing η > 0 such that 1− η2ρ/2
(
l−1 + 1

)ρ/2 [e(0)]ρ/2 = 1
2 , from (4.9) we

have

ψ′(t) ≤ −C1e
′(t) + k [e(0)]ρ/2 ||u′(t)||ρ+2

ρ+2 (4.10)

+ [e(t)]ρ/2

{
−1

2

∣∣∣A1/2u(t)
∣∣∣2 − 1

γ + 2
||u(t)||γ+2

γ+2

}
+ [e(t)]ρ/2

{∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u(t)

)
dτ + |u′(t)|2

}
.

From (4.4) and (4.10) we deduce

ψ′(t) ≤ −(C1 + C2)e′(t) (4.11)

+ [e(t)]ρ/2

{
−1

2

∣∣∣A1/2u(t)
∣∣∣2 − 1

γ + 2
||u(t)||γ+2

γ+2

}
+ [e(t)]ρ/2

{∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u(t)

)
dτ + |u′(t)|2

}
,

where C2 = βk [e(0)]ρ/2.
Defining the perturbed energy by

eε(t) = (1 + ε (C1 + C2)) e(t) + εψ(t) (4.12)

we also deduce that there exists L = L
(
l−1, e(0)

)
such that

|eε(t)− e(t)| ≤ εL e(t), for all ε > 0. (4.13)

Considering ε ∈ (0, 1/2L], from (4.13) we obtain

1
2
e(t) ≤ eε(t) ≤ 2e(t) (4.14)

and

2−
ρ+2
2 [e(t)]

ρ+2
2 ≤ [eε(t)]

ρ+2
2 ≤ 2

ρ+2
2 [e(t)]

ρ+2
2 ; ε ∈ (0, 1/2L]. (4.15)

Taking the derivative of (4.12) with respect to t, taking (4.28), (H.9) and
(4.11) into account, we conclude

e′ε(t) ≤ −β ||u′(t)||ρ+2
ρ+2 −

ξ2
2

(
g �A1/2u

)
(t)− 1

2
g(t)

∣∣∣A1/2u(t)
∣∣∣2 (4.16)

+ ε [e(t)]ρ/2

{
−1

2

∣∣∣A1/2u(t)
∣∣∣2 − 1

γ + 2
||u(t)||γ+2

γ+2

}
+ ε [e(t)]ρ/2

{∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u(t)

)
dτ + |u′(t)|2

}
.

Having in mind that

−1
2

∣∣∣A1/2u(t)
∣∣∣2 − 1

γ + 2
||u(t)||γ+2

γ+2 = −e(t) +
1
2
|u′(t)|2 (4.17)

−1
2

(∫ t

0

g(s) ds
) ∣∣∣A1/2u(t)

∣∣∣2 +
1
2

(
g �A1/2u

)
(t),
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and since Lρ+2(Γ) ↪→ L2(Γ), from (4.16) it holds that

e′ε(t) ≤ −βC0 |u′(t)|
ρ+2 − ξ2

2

(
g �A1/2u

)
(t) (4.18)

+
3
2
ε [e(t)]ρ/2 |u′(t)|2 − ε [e(t)]

ρ+2
2

+
ε

2
[e(t)]ρ/2

(
g �A1/2u

)
(t) + ε [e(t)]ρ/2

∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u(t)

)
dτ.

But, since ρ
ρ+2 + 2

ρ+2 = 1 the Hölder inequality yields

[e(t)]ρ/2 |u′(t)|2 ≤ ρ

ρ+ 2

(
µ [e(t)]ρ/2

) ρ+2
ρ

+
2

ρ+ 2

(
1
µ
|u′(t)|2

) ρ+2
2

(4.19)

≤ µ
ρ+2

ρ [e(t)]
ρ+2
2 +

1

µ
ρ+2
2

|u′(t)|ρ+2
,

where µ is an arbitrary positive constant. Then, combining (4.18)-(4.19) we
deduce

e′ε(t) ≤ −

(
βC0 −

3
2
ε

1

µ
ρ+2
2

)
|u′(t)|ρ+2 − ε

(
1− 3

2
µ

ρ+2
ρ

)
[e(t)]

ρ+2
2 (4.20)

−
(
ξ2
2
− ε

2
[e(0)]ρ/2

)(
g �A1/2u

)
(t)

+ ε [e(t)]ρ/2
∫ t

0

g(t− τ)
(
A1/2u(τ), A1/2u(t)

)
dτ.

Estimate for J2 :=
∫ t

0
g(t− τ)

(
A1/2u(τ), A1/2u(t)

)
dτ.

We have

|J2| ≤
∫ t

0

g(t− τ)
∣∣∣A1/2u(t)

∣∣∣ {∣∣∣A1/2u(τ)−A1/2u(t)
∣∣∣+ ∣∣∣A1/2u(t)

∣∣∣} dτ
≤ η

∣∣∣A1/2u(t)
∣∣∣2 +

1
4η

(∫ t

0

g(t− τ)
∣∣∣A1/2u(τ)−A1/2u(t)

∣∣∣ dτ)2

+
(∫ t

0

g(s) ds
) ∣∣∣A1/2u(t)

∣∣∣2 (4.21)

≤ 2ηl−1e(t) +
1
4η
||g||L1(0,∞)

(
g �A1/2u

)
(t) + 2 ||g||L1(0,∞) l

−1e(t).

From (4.20) and (4.21) we infer

e′ε(t) ≤ −

(
βC0 −

3
2
ε

1

µ
ρ+2
2

)
|u′(t)|ρ+2 (4.22)

−
[
1−

(
3
2
µ

ρ+2
ρ + 2ηl−1 + 2l−1 ||g||L1(0,∞)

)]
ε [e(t)]

ρ+2
2

−
{
ξ2
2
− ε [e(0)]ρ/2

(
1
2

+
1
4η
||g||L1(0,∞)

)}(
g �A1/2u

)
(t).
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Choosing µ, η and ||g||L1(0,∞) sufficiently small so that

θ = 1−
(

3
2
µ

ρ+2
ρ + 2ηl−1 + 2l−1 ||g||L1(0,∞)

)
> 0

and choosing ε small enough in order to have

βC0 −
3
2
ε

1

µ
ρ+2
2

≥ 0 and
ξ2
2
− ε [e(0)]ρ/2

(
1
2

+
1
4η
||g||L1(0,∞)

)
≥ 0

from (4.22) we conclude
e′ε(t) ≤ −εθ [e(t)]

ρ+2
2

as we obtained earlier. From this inequality we conclude the desired estimate
as in the previous case.

We observe that when ρ = 0, then, combining (4.14) and (4.22) the expo-
nential decay holds and, in this case, we are able to deduce directly from the
proof that is not necessary to consider

∫∞
0
g(s) ds sufficiently small. So, the

proof of theorem 2.4 and (by density) theorem 2.5 is completed. ♦
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[3] H. Brézis, Analyse Fonctionnelle, Masson, Paris, 1983.

[4] M. M. Cavalcanti and V. N. Domingos Cavalcanti, On solvability of solutions of
degenerate nonlinear equations on Manifolds, Differential and Integral Equations
13(10-12), (2000), 1445-1458.

[6] C. M. Dafermos and J. A. Nohel, A nonlinear hyperbolic Volterra equation in
viscoelasticity, Amer. J. Math. Supplement (1981), 87-116.

[7] A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyper-
bolic problem, Arch. Rational Mech. Anal. 100 (1988) 191-206.

[8] D. Jerison, C. D. Sogge and Z. Zhou, Sobolev estimates for the wave operator
on compact manifolds, Commun. Partial Differ. Equations 17(11/12), (1992),
1867-1887.

[9] M. Kirane and N. Tatar, Non-existence results for a semilinear hyperbolic problem
with boundary condition of memory type, Z. Anal. Anwendungen 19(2), (2000),
453-468.

14

ANDRADE ET AL300



[10] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non
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Basic Convergence with Rates of Smooth Picard

Singular Integral Operators
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Abstract. In this article we introduce and study the smooth Pi-
card singular integral operators on the line of very general kind. We
establish their convergence to the unit operator with rates. The es-
timates are mostly sharp and they are pointwise or uniform. The
established inequalities involve the higher order modulus of smooth-
ness. To prove optimality we use mainly the geometric moment
theory method.

1 Introduction

The rate of convergence of singular integrals has been studied earlier in [8],
[9], [11], [3], [5], [6] and these motivate this work. Here we consider some very
general operators, the smooth Picard singular integral operators over R and we
study the degree of approximation to the unit operator with rates over smooth
functions. We establish related inequalities involving the higher modulus of
smoothness with respect to ‖ · ‖∞. The estimates are pointwise or uniform.
Most of the times these are optimal in sense that the inequalities are attained
by basic functions. We use the geometric moment theory method to give best
upper bounds in the main theorems and also we give handy estimates there.
The discussed operators are not in general positive.

Other motivation comes from [1], [2].
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2 Results

In the next we deal with the following smooth Picard singular integral operators
Pr,ξ(f ;x) defined as follows.

For r ∈ N and n ∈ Z+ we set

αj =





(−1)r−j
(
r

j

)
j−n, j = 1, . . . , r,

1−
r∑

j=1

(−1)r−j
(
r

j

)
j−n, j = 0,

(1)

that is
r∑
j=0

αj = 1. Let f :R→ R be Lebesgue measurable, we define for x ∈ R,

ξ > 0 the Lebesgue integral

Pr,ξ(f ;x) :=
1
2ξ

∫ ∞
−∞




r∑

j=0

αjf(x+ jt)


 e−|t|/ξdt. (2)

We assume that Pr,ξ(f ;x) ∈ R for all x ∈ R. We will use also that

Pr,ξ(f ;x) =
1
2ξ

r∑

j=0

αj

(∫ ∞
−∞

f(x+ jt)e−|t|/ξdt
)
. (3)

We notice by 1
2ξ

∫∞
−∞ e−|t|/ξdt = 1 that Pr,ξ(c, x) = c, c constant and

Pr,ξ(f ;x)− f(x) =
1
2ξ




r∑

j=0

αj

∫ ∞
−∞

(f(x+ jt)− f(x)


 e−|t|/ξdt. (4)

Since ∫ ∞
−∞

xke−|x|dx =
{

0, k odd,
2k!, k even, (5)

we get the useful here formula
∫ ∞
−∞

tke−|t|/ξdt =
{

0, k odd,
2k!ξk+1, k even. (6)

Let f ∈ Cn(R), n ∈ Z+ with the rth modulus of smoothness finite, i.e.

ωr(f (n), h) := sup
|t|≤h

‖∆r
tf

(n)(x)‖∞,x <∞, h > 0, (7)

where

∆r
tf

(n)(x) :=
r∑

j=0

(−1)r−j
(
r

j

)
f (n)(x+ jt), (8)
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see [7], p. 44.
We need to introduce

δk :=
r∑

j=1

αjj
k, k = 1, . . . , n ∈ N, (9)

and the even function

Gn(t) :=
∫ |t|

0

(|t| − w)n−1

(n− 1)!
ωr(f (n), w)dw, n ∈ N (10)

with
G0(t) := ωr(f, |t|), t ∈ R. (11)

Denote by b·c the integral part.
We present our first result

Theorem 1. It holds that
∣∣∣∣∣∣
Pr,ξ(f ;x)− f(x)−

bn2 c∑
m=1

f (2m)(x)δ2mξ2m

∣∣∣∣∣∣

≤ 1
ξ

∫ ∞
0

Gn(t)e−t/ξdt, n ∈ N. (12)

In L.H.S.(12) the sum collapses when n = 1.

Proof. By Taylor’s formula we obtain

f(x+ jt) =
n−1∑

k=0

f (k)(x)
k!

(jt)k +
∫ jt

0

(jt− z)n−1

(n− 1)!
f (n)(x+ z)dz

=
n−1∑

k=0

f (k)(x)
k!

(jt)k + jn
∫ t

0

(t− w)n−1

(n− 1)!
f (n)(x+ jw)dw. (13)

Multiplying both sides of (13) by αj and summing up we get

r∑

j=0

αj(f(x+ jt)− f(x)) =
n∑

k=1

f (k)(x)
k!

δkt
k +Rn(0, t), (14)

where

Rn(0, t) :=
∫ t

0

(t− w)n−1

(n− 1)!
τ(w)dw, (15)

with

τ(w) :=
r∑

j=0

αjj
nf (n)(x+ jw)− δnf (n)(x).

3
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Notice also that

−
r∑

j=1

(−1)r−j
(
r

j

)
= (−1)r

(
r

0

)
. (16)

According to [3], p. 306, [1], we get

τ(w) = ∆r
wf

(n)(x). (17)

Therefore
|τ(w)| ≤ ωr(f (n), |w|), (18)

all w ∈ R independently of x. We do have after integration, see also (4), that

Pr,ξ(f ;x)− f(x) =
1
2ξ

∫ ∞
−∞




r∑

j=0

αj(f(x+ jt)− f(x))


 e−|t|/ξdt

=
1
2ξ

∫ ∞
−∞

(
n∑

k=1

f (k)(x)
k!

δkt
k +Rn(0, t)

)
e−|t|/ξdt

=
n∑

k=1

f (k)(x)
k!

δk
1
2ξ

(∫ ∞
−∞

tke−|t|/ξdt
)

+R∗n, (19)

where
R∗n :=

1
2ξ

∫ ∞
−∞
Rn(0, t)e−|t|/ξdt. (20)

Here by (10) and (15) we get

|Rn(0, t)| ≤
∫ |t|

0

(|t| − w)n−1

(n− 1)!
|τ(w)|dw ≤ Gn(t). (21)

Hence by (20) we have

|R∗n| ≤
1
2ξ

∫ ∞
−∞

Gn(t)e−|t|/ξdt

=
1
ξ

∫ ∞
0

Gn(t)e−t/ξdt. (22)

Using (6) we obtain

Pr,ξ(f ;x)− f(x)−
bn2 c∑
m=1

f (2m)(x)δ2mξ2m = R∗n. (23)

Inequality (12) is now clear via (23) and (22).

4
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Finally we would like to prove (21) with the use of (18). We have that for
t > 0 it is obvious. Let t < 0, then

|Rn(0, t)| =
∣∣∣∣
∫ 0

t

(t− w)n−1

(n− 1)!
τ(w)dw

∣∣∣∣

≤
∫ 0

t

(w − t)n−1

(n− 1)!
|τ(w)|dw ≤

∫ 0

t

(−t− (−w))n−1

(n− 1)!
ωr(f (n), |w|)dw

= −
(∫ 0

t

(−t− (−w))n−1

(n− 1)!
ωr(f (n), | − w|)d(−w)

)

= −
(∫ 0

−t

(−t− θ)n−1

(n− 1)!
ωr(f (n), |θ|)dθ

)

=
∫ −t

0

(−t− θ)n−1

(n− 1)!
ωr(f (n), |θ|)dθ

=
∫ |t|

0

(|t| − θ)n−1

(n− 1)!
ωr(f (n), θ)dθ = Gn(t).

The last completes the proof of Theorem 1.

Corollary 1. Assume ωr(f, ξ) <∞, ξ > 0. Then it holds for n = 0 that

|Pr,ξ(f ;x)− f(x)| ≤ 1
ξ

∫ ∞
0

ωr(f, t)e−t/ξdt. (24)

Proof. We notice that

Pr,ξ(f ;x)− f(x) =
1
2ξ

(∫ ∞
−∞

( r∑

j=1

αj(f(x+ jt)− f(x))
)
e−|t|/ξdt

)

=
1
2ξ

(∫ ∞
−∞

( r∑

j=1

(−1)r−j
(
r

j

)
(f(x+ jt)− f(x))

)
e−|t|/ξdt

=
1
2ξ

(∫ ∞
−∞

( r∑

j=1

(−1)r−j
(
r

j

)
f(x+ jt)

−
( r∑

j=1

(−1)r−j
(
r

j

))
f(x)

)
e−|t|/ξdt

)

(16)
=

1
2ξ

(∫ ∞
−∞

( r∑

j=1

(−1)r−j
(
r

j

)
f(x+ jt)

+ (−1)r
(
r

0

)
f(x)

)
e−|t|/ξdt

=
1
2ξ

(∫ ∞
−∞

( r∑

j=0

(−1)r−j
(
r

j

)
f(x+ jt)

)
e−|t|/ξdt

(8)
=

1
2ξ

(∫ ∞
−∞

((∆r
tf)(x)

)
e−|t|/ξdt.

5
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I.e. we have proved

Pr,ξ(f ;x)− f(x) =
1
2ξ

(∫ ∞
−∞

(∆r
tf(x))e−|t|/ξdt

)
. (25)

Hence by (25) we find

|Pr,ξ(f ;x)− f(x)| ≤ 1
2ξ

∫ ∞
−∞
|∆r

tf(x)|e−|t|/ξdt

≤ 1
2ξ

∫ ∞
−∞

ωr(f, |t|)e−|t|/ξdt

=
1
ξ

∫ ∞
0

ωr(f, t)e−|t|/ξdt.

That is proving (24).
Inequality (12) is sharp.

Theorem 2. Inequality (12) at x = 0 is attained by f(x) = xr+n, r, n ∈ N with
r + n even.

Proof. As in [3], p. 307, [1], [12], p. 54 and (7), (8) we get

ωr(f (n), t) = (r + n)(r + n− 1) · · · (r + 1)r!tr,

t > 0. And
Gn(t) = r!|t|r+n, t ∈ R.

Also we have f (k)(0) = 0, k = 0, 1, . . . , n. Thus the right hand side of (12)
equals

r!
ξ

∫ ∞
0

tr+ne−t/ξdt = r!(r + n)!ξr+n. (26)

The left hand side of (12) equals

|Pr,ξ(f ; 0)| =
1
2ξ

∣∣∣∣∣∣

∫ ∞
−∞




r∑

j=0

αjf(jt)


 e−|t|/ξdt

∣∣∣∣∣∣

=
1
2ξ

∣∣∣∣∣∣

∫ ∞
−∞




r∑

j=1

αjf(jt)


 e−|t|/ξdt

∣∣∣∣∣∣

=
1
2ξ

∣∣∣∣∣∣

∫ ∞
−∞




r∑

j=1

(−1)r−j
(
r

j

)
j−n(jt)r+n


 e−|t|/ξdt

∣∣∣∣∣∣

=
1
2ξ

∣∣∣∣∣∣




r∑

j=0

(−1)r−j
(
r

j

)
jr



(∫ ∞
−∞

tr+ne−|t|/ξdt
)∣∣∣∣∣∣

=
1
2ξ

∣∣∣∣(∆r
1x
r)(0)

∫ ∞
−∞

tr+ne−|t|/ξdt
∣∣∣∣

6
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=
1
2ξ

∣∣∣∣r!
∫ ∞
−∞

tr+ne−|t|/ξdt
∣∣∣∣

(6)
=

1
2ξ

∣∣r!2(r + n)!ξr+n+1
∣∣ = r!(r + n)!ξr+n.

I.e. we have proved
|Pr,ξ(f ; 0)| = r!(r + n)!ξr+n. (27)

Thus by (26) and (27) we have established the claim of the theorem.
Inequality (24) is sharp.

Corollary 2. Inequality (24) is attained at x = 0 by f(x) = xr, r even.

Proof. Notice that ∆r
tx
r = r!tr and ωr(f (n), t) = r!tr, t > 0. Thus

R.H.S.(24) =
r!
ξ

∫ ∞
0

tre−t/ξdt = (r!)2ξr.

Also f(0) = 0. Therefore

L.H.S.(24) = |Pr,ξ(f ; 0)| = 1
2ξ

∣∣∣∣∣∣

∫ ∞
−∞




r∑

j=1

αjj
rtr


 e−|t|/ξdt

∣∣∣∣∣∣

=
1
2ξ

∣∣∣∣∣∣

∫ ∞
−∞




r∑

j=0

(−1)r−j
(
r

j

)
jr


 tre−|t|/ξdt

∣∣∣∣∣∣

=
1
2ξ

∣∣∣∣(∆r
1x
r)(0)

∫ ∞
−∞

tre−|t|/ξdt
∣∣∣∣

=
1
2ξ

∣∣∣∣r!
∫ ∞
−∞

tre−|t|/ξdt
∣∣∣∣

(6)
=

1
2ξ
|r!2r!ξr+1| = (r!)2ξr.

That is (24) is attained.

Remark 1. On inequalities (12) and (24). We have the uniform estimates
∥∥∥∥∥∥
Pr,ξ(f ;x)− f(x)−

bn2 c∑
m=1

f (2m)(x)δ2mξ2m

∥∥∥∥∥∥
∞,x

≤ 1
ξ

∫ ∞
0

Gn(t)e−t/ξdt, n ∈ N,

(28)
and

‖Pr,ξ(f)− f‖∞ ≤ 1
ξ

∫ ∞
0

ωr(f, t)e−t/ξdt, n = 0. (29)

Remark 2. The next regards the convergence of operators Pr,ξ. From (10) we
have

Gn(t) ≤ ωr(f (n), |t|)
∫ |t|

0

(|t| − w)n−1

(n− 1)!
dw,

7
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i.e.

Gn(t) ≤ |t|
n

n!
ωr(f (n), |t|). (30)

Furthermore from (28) and (30) we get

1
ξ

∫ ∞
0

Gn(t)e−t/ξdt ≤ 1
ξn!

∫ ∞
0

tnωr(f (n), t)e−t/ξdt. (31)

That is from (28) we get

K1 :=

∥∥∥∥∥∥
Pr,ξ(f ;x)− f(x)−

bn2 c∑
m=1

f (2m)(x)δ2mξ2m

∥∥∥∥∥∥
∞,x

≤ 1
ξn!

∫ ∞
0

tnωr(f (n), t)e−t/ξdt, n ∈ N. (32)

Using ωr(f (n), t) ≤ tr‖f (r+n)‖∞, t > 0 we get

1
ξn!

∫ ∞
0

tnωr(f (n), t)e−t/ξdt ≤ ‖f
(r+n)‖∞
ξn!

∫ ∞
0

tn+re−t/ξdt

=
‖f (r+n)‖∞

n!
ξn+r(n+ r)! =

(
r∏

i=1

(n+ i)

)
‖f (r+n)‖∞ξn+r.

I.e.
1
ξn!

∫ ∞
0

tnωr(f (n), t)e−t/ξdt ≤
(

r∏

i=1

(n+ i)

)
‖f (r+n)‖∞ξn+r. (33)

That is for f ∈ Cn+r(R) we have

K1 ≤
r∏

i=1

(n+ i)‖f (r+n)‖∞ξn+r, n ∈ N. (34)

Here is assumed that ‖f (r+n)‖∞ is finite.
One may use also that

ωr(f (n), t) ≤ 2r‖f (n)‖∞.
Then

1
ξn!

∫ ∞
0

tnωr(f (n), t)e−t/ξdt ≤ 2r‖f (n)‖∞
ξn!

∫ ∞
0

tne−t/ξdt

= 2r‖f (n)‖∞ξn. (35)

I.e.
K1 ≤ 2r‖f (n)‖∞ξn, n ∈ N. (36)

Here is assumed that ‖f (n)‖∞ < ∞. Clearly from (34) or (36) as ξ → 0 we
obtain that Pr,ξ → unit operator I pointwise as ξ → 0 with rates, n ∈ N.
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Next using ωr(f, λt) ≤ (λ+ 1)rωr(f, t), λ, t > 0, we get from (29) that

1
ξ

∫ ∞
0

ωr(f, t)e−t/ξdt =
1
ξ

∫ ∞
0

ωr

(
f, ξ

(
t

ξ

))
e−t/ξdt

≤ ωr(f, ξ)
∫ ∞

0

(
1 +

t

ξ

)r
e−t/ξdt/ξ

= ωr(f, ξ)
∫ ∞

0

(1 + u)re−udu

= ωr(f, ξ)

(
r∑

k=0

(
r

k

)
k!

)
.

I.e. we find for the case n = 0, see (29), that

‖Pr,ξ(f)− f‖∞ ≤
(

r∑

k=0

(
r

k

)
k!

)
ωr(f, ξ). (37)

Here is assumed that ωr(f, ξ) <∞. Now as ξ → 0 we obtain

Pr,ξ
u−→ I with rates, n = 0.

Note 1. The operators Pr,ξ are not in general positive and they are of convo-
lution type.

Let r = 2, n = 3. Then α0 = 23
8 , α1 = −2, α2 = 1

8 . Consider f(t) = t2 ≥ 0
and x = 0. Then

Pr,ξ(t2; 0) = −3ξ2 < 0.

Next using Geometric Moment theory methods [10], [3] we find best upper
bounds for the right hand side of (12) and (24).

Theorem 3. Let ψ be a continuous and strictly increasing function on R+ such
that ψ(0) = 0, and let

ψ−1

(
1
ξ

∫

R+

ψ(t)e−t/ξdt

)
=: dξ > 0, ξ > 0. (38)

Assume Hn := Gn ◦ ψ−1 is concave on R+, n ∈ Z+. Then we obtain the best
upper bound

1
ξ

∫

R+

Gn(t)e−t/ξdt ≤ Gn(dξ). (39)

Corollary 3. Consider the upper concave envelope H∗n(u) of Hn(u). We find
the best upper bound

1
ξ

∫

R+

Gn(t)e−t/ξdt ≤ H∗n(ψ(dξ)), n ∈ Z+. (40)

9
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Note 2. When Hn, n ∈ Z+ is concave, then H∗n(ψ(dξ)) = Gn(dξ).

Proof of Theorem 3. Here Hn is concave by assumption. It follows from the
moment method of optimal distance [10], [3] that

sup
µ∈{probability measures as in (38)}

∫

R+

Gn(t)µ(dt) = Gn(dξ).

Here is assumed that the last integrals are finite. Since by concavity of Hn the
set

Γ1 := {(u,Hn(u)): 0 ≤ u <∞}
describes the upper boundary of the convex hull conv Γ0 of the curve

Γ0 := {(ψ(t), Gn(t)): 0 ≤ t <∞}.
Notice here that 1

ξ e
−t/ξdt is a probability measure on R+.

The fact that Hn can be a concave function is not strange at all, see [3],
p. 310, Lemma 9.2.1(i) which we adjust here. Let g be a general modulus of
smoothness function and consider

G̃n(y) :=
∫ |y|

0

(|y| − t)n−1

(n− 1)!
g(t)dt, (41)

all y ∈ R, n ∈ N.
Then we have

Lemma 1. Let ψ ∈ Cn((0,∞)) such that ψ(k)(0) ≤ 0, for k = 1, . . . , n− 1 and
g(y)/ψ(n)(y) is non-increasing, whenever ψ(n)(y) > 0. Then H̃n := G̃n ◦ψ−1 is
a concave function, n ∈ N.

For the right hand side of inequality (12) we find the following simple upper
bound without any special assumptions.

Theorem 4. Call

τξ := ξ((n+ 1)!)1/n+1, n ∈ N, ξ > 0, (42)

which the same as
(

1
ξ

∫

R+

yn+1e−y/ξdy

)1/n+1

= τξ. (43)

Let

G∗n(y) :=
∫ |y|

0

(|y| − t)n−1

(n− 1)!
ω1(f (n), t)dt, (44)

all y ∈ R, where ω1(f (n), t) is the first modulus of continuity of f (n) and is
finite, f ∈ Cn(R). Assume also that

∫

R+

G∗n(y)e−y/ξdy <∞.

10
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Then
1
ξ

∫

R+

Gn(y)e−y/ξdy ≤ 2rG∗n(τξ), r ∈ N. (45)

Proof. We have ωr(f (n), |y|) ≤ 2r−1ω1(f (n), |y|), for all y ∈ R, see [7], p. 45.
Furthermore by [7], p. 43 we get

ω1(f (n), |y|) ≤ ω1(|y|) ≤ 2ω1(f (n), |y|),

for all y ∈ R, where ω1 is the least concave majorant of ω1.
Thus

ωr(f (n), |y|) ≤ 2r−1ω1(|y|) ≤ 2rω1(f (n), |y|),
for all y ∈ R. Set

Gn(y) :=
∫ |y|

0

(|y| − t)n−1

(n− 1)!
ω1(t)dt,

for all y ∈ R. Hence

Gn(y) =
∫ |y|

0

(|y| − t)n−1

(n− 1)!
ωr(f (n), t)dt ≤ 2r−1G∗n(y)

≤ 2r−1Gn(y) ≤ 2rG∗n(y), for all y ∈ R.

The function ψ(y) = yn+1 on R+ is continuous, strictly increasing and ψ(0) = 0.
And ψ(n)(y) = (n + 1)!y > 0, for all y ∈ R+ − {0}, along with ψ(k)(0) = 0,
k = 1, . . . , n−1. Since ω1(y) is concave on R+, this implies ω1(y)/y is decreasing
in y > 0, so that ω1(y)/ψ(n)(y) is decreasing on (0,∞).

Thus by Lemma 1 we get that Hn := Gn ◦ψ−1 is a concave function on R+;
and by Theorem 3 we obtain

1
ξ

∫ ∞
0

Gn(y)e−y/ξdy ≤ Gn(τξ)

giving us

1
ξ

∫

R+

Gn(y)e−y/ξdy ≤ 2r−1 1
ξ

∫

R+

Gn(y)e−y/ξdy

≤ 2r−1Gn(τξ) ≤ 2rG∗n(τξ).

The proof of the claim is now finished.
A related convergence theorem follows.

Theorem 5. Let f ∈ C(R) with ω1(f, y) finite, y > 0. Then

‖Pr,ξ(f)− f‖∞ ≤ 2rω1(f, ξ). (46)

I.e. as ξ → 0 we get again Pr,ξ
u−→ I, n = 0.

11
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Proof. Notice
1
ξ

∫

R+

ye−y/ξdy = ξ. (47)

We have again
ωr(f, |y|) ≤ 2r−1ω1(f, |y|), ∀y ∈ R,

see [7], p. 45. Furthermore

ω1(f, |y|) ≤ ω1(|y|) ≤ 2ω1(f, |y|) ∀y ∈ R,

where ω1 is the least concave majorant of ω1, see [7], p. 43. Thus

ωr(f, |y|) ≤ 2r−1ω1(|y|) ≤ 2rω1(f, |y|), ∀y ∈ R.

Notice that for n = 0 we get

|Pr,ξ(f ;x)− f(x)| =
1
2ξ

∣∣∣∣∣∣

∫

R

( r∑

j=0

αj(f(x+ jt)− f(x))
)
e−|t|/ξdt

∣∣∣∣∣∣
(24)

≤ 1
ξ

∫ ∞
0

ωr(f, y)e−y/ξdy

≤ 2r−1

ξ

∫ ∞
0

ω1(y)e−y/ξdy.

The probability measure 1
ξ e
−y/ξdy fulfills (47). By moment theory [10], [3] we

get

sup
µ∈{probability measures as in (47)}

∫

R+

ω1(y)µ(dy) = ω1(ξ) ≤ 2ω1(f, ξ).

Hence
|Pr,ξ(f ;x)− f(y)| ≤ 2r−1 · 2ω1(f, ξ) = 2rω1(f, ξ).

In the next we consider f ∈ Cn(R), n ≥ 2 even and the simple smooth
singular operator of symmetric convolution type

Pξ(f, x0) :=
1
2ξ

∫ ∞
−∞

f(x0 + y)e−|y|/ξdy, for all x0 ∈ R, ξ > 0. (48)

That is

Pξ(f ;x0) =
1
2ξ

∫ ∞
0

(
f(x0+y)+f(x0−y)

)
e−y/ξdy, for all x0 ∈ R, ξ > 0. (48)∗

We assume that f is such that

Pξ(f ;x0) ∈ R, ∀x0 ∈ R, ξ > 0 and ω2(f (n), h) <∞, h > 0.
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Note that P1,ξ = Pξ and if Pξ(f ;x0) ∈ R then Pr,ξ(f ;x0) ∈ R. Let the central
second order difference

(∆̃2
yf)(x0) := f(x0 + y) + f(x0 − y)− 2f(x0). (49)

Notice that
(∆̃2
−yf)(x0) = (∆̃2

yf)(x0).

Using Taylor’s formula with Cauchy remainder we eventually obtain

(∆̃2
yf)(x0) = 2

n/2∑
ρ=1

f (2ρ)(x0)
(2ρ)!

y2ρ +R1, (50)

where

R1 :=
∫ y

0

(∆̃2
tf

(n))(x0)
(y − t)n−1

(n− 1)!
dt. (51)

Notice that
Pξ(f ;x0)− f(x0) =

1
2ξ

∫ ∞
0

(∆̃2
yf(x0))e−y/ξdy. (52)

So immediately we get

Proposition 1. Assume ω2(f, h) <∞, h > 0. Then it holds

|Pξ(f ;x0)− f(x0)| ≤ 1
2ξ

∫ ∞
0

w2(f, y)e−y/ξdy. (53)

Hence
‖Pξ(f)− f‖∞ ≤ 1

2ξ

∫ ∞
0

w2(f, y)e−y/ξdy. (54)

Furthermore we observe by (50) and (52) that

Pξ(f ;x0)− f(x0) =
1
2ξ

∫ ∞
0

(
2
n/2∑
ρ=1

f (2ρ)(x0)
(2ρ)!

y2ρ

+
∫ y

0

(∆̃2
tf

(n))(x0)
(y − t)n−1

(n− 1)!
dt

)
e−y/ξdy

=
n/2∑
ρ=1

f (2ρ)(x0)ξ2ρ

+
1
2ξ

∫ ∞
0

(∫ y

0

(∆̃2
tf

(n))(x0)
(y − t)n−1

(n− 1)!
dt

)
e−y/ξdy.

Clearly we got the representation

K2(x0) = Pξ(f ;x0)− f(x0)−
n/2∑
ρ=1

f (2ρ)(x0)ξ2ρ

=
1
2ξ

∫ ∞
0

(∫ y

0

(∆̃2
tf

(n))(x0)
(y − t)n−1

(n− 1)!
dt

)
e−y/ξdy. (55)

13

...SMOOTH PICARD SINGULAR INTEGRAL OPERATORS 325



Therefore

|K2(x0)| ≤ 1
2ξ

∫ ∞
0

(∫ y

0

|∆̃2
tf

(n)(x0)| (y − t)
n−1

(n− 1)!
dt

)
e−y/ξdy

≤ 1
2ξ

∫ ∞
0

(∫ y

0

ω2(f (n), t)
(y − t)n−1

(n− 1)!
dt

)
e−y/ξdy.

We have proved that

Theorem 6. Let f ∈ Cn(R), n even, Pξ(f) real valued. Then

|K2(x0)| ≤ 1
2ξ

∫ ∞
0

(∫ y

0

w2(f (n), t)
(y − t)n−1

(n− 1)!
dt

)
e−y/ξdy

≤ 1
2ξn!

∫ ∞
0

ω2(f (n), y)yne−y/ξdy. (56)

Remark 3. The operators Pξ are positive operators. From (54) we obtain

1
2ξ

∫ ∞
0

ω2(f, y)e−y/ξdy =
1
2ξ

∫ ∞
0

ω2

(
f, ξ

(
y

ξ

))
e−y/ξdy

≤ 1
2ξ
ω2(f, ξ)

∫ ∞
0

(
1 +

y

ξ

)2

e−y/ξdy =
5
2
ω2(f, ξ).

I.e.
‖Pξ(f)− f‖∞ ≤ 5

2
ω2(f, ξ), ξ > 0. (57)

Acting similarly on the last part of inequality (56) it leads us to obtain

‖K2‖∞ ≤
(
n2 + 5n+ 5

2

)
ω2(f (n), ξ)ξn, ξ > 0. (58)

Then from the inequality (57) as ξ → 0 we obtain Pξ
u−→ I with rates. And we

get the pointwise convergence of Pξ → I with rates from inequality (58). Call
here for n ≥ 2 even

Tn(y) :=
∫ y

0

ω2(f (n), t)
(y − t)n−1

(n− 1)!
dt, y ∈ R+. (59)

Then by (56) and (59) we have

|K2(x0)| ≤ 1
2ξ

∫ ∞
0

Tn(y)e−y/ξdy, (60)

and
‖K2‖∞ ≤ 1

2ξ

∫ ∞
0

Tn(y)e−y/ξdy. (61)

We set also
T0(y) := ω2(y), y > 0.

14
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Optimality of Theorem 6 follows.

Proposition 2. The first inequality of (56) is sharp, namely attained at x0 = 0
by

f∗(y) :=
|y|α+n

n∏
i=1

(α+ i)
, 0 < α ≤ 2, y ∈ R, n even. (62)

Proof. See that f (n)
∗ (y) = |y|α and by Proposition 9.1.1, p. 298 of [3], [2] we

get ω2(f (n)
∗ , |y|) = 2|y|α. Also f (k)

∗ (0) = 0, k = 0, . . . , n. Then

K2(0) = Pξ(f∗; 0) =
1
ξ

∫ ∞
0

yα+n

n∏
i=1

(α+ i)
e−y/ξdy

=
ξα+n

n∏
i=1

(α+ i)

∫ ∞
0

xα+ne−xdx =
ξα+n

n∏
i=1

(α+ i)
Γ(α+ n+ 1)

=
ξα+n

n∏
i=1

(α+ i)

(
n∏

i=1

(α+ i)

)
Γ(α+ 1) = Γ(α+ 1)ξα+n.

I.e.
K2(0) = Γ(α+ 1)ξα+n > 0.

On the other hand we see that

1
2ξ

∫ ∞
0

(∫ y

0

ω2(f (n)
∗ , t)

(y − t)n−1

(n− 1)!
dt

)
e−y/ξdy

=
1

2ξ(n− 1)!

∫ ∞
0

(∫ y

0

(y − t)n−12tαdt
)
e−y/ξdy

=
1

ξ(n− 1)!

∫ ∞
0

(∫ y

0

(y − t)n−1(t− 0)(α+1)−1dt

)
e−y/ξdy

=
ξn+α

(n− 1)!

∫ ∞
0

(
Γ(n)Γ(α+ 1)
(Γ(n+ α+ 1)

(
y

ξ

)n+α
)
e−y/ξ

dy

ξ

=
ξn+αΓ(α+ 1)
Γ(n+ α+ 1)

∫ ∞
0

xn+αe−xdx = ξn+αΓ(α+ 1).

That is proving equality in the first part of inequality (56).
It follows the optimality of inequality (53).

Proposition 3. Inequality (53) is attained by f∗(y) = |y|α, y ∈ R, 0 < α ≤ 2
at x0 = 0.

Proof. We notice that

Pξ(f∗; 0) =
1
ξ

∫ ∞
0

yαe−y/ξdy = ξαΓ(α+ 1) > 0.

15
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Also we see again by Proposition 9.1.1, p. 298, [3], [2] that

1
2ξ

∫ ∞
0

ω2(f∗, y)e−y/ξdy =
1
ξ

∫ ∞
0

yαe−y/ξdy.

That is proving equality to (53).
Next we present a Lipschitz type of related optimal result.

Theorem 7. Let n ≥ 2 even and f ∈ Cn(R) such that

ω2(f (n), |y|) ≤ 2A|y|α, 0 < α ≤ 2, A > 0.

Then for x0 ∈ R we have
∣∣∣∣∣∣
Pξ(f ;x0)− f(x0)−

n/2∑
ρ=1

f (2ρ)(x0)ξ2ρ

∣∣∣∣∣∣
≤ Γ(α+ 1)Aξn+α. (63)

Inequality (63) is sharp, namely it is attained at x0 = 0 by

f∗(y) =
A|y|α+n

n∏
i=1

(α+ i)
.

Proof. For y > 0 we see that

Tn(y) =
∫ y

0

ω2(f (n), t)
(y − t)n−1

(n− 1)!
dt

≤
∫ y

0

2Atα
(y − t)n−1

(n− 1)!
dt =

2Ayn+α

n∏
i=1

(α+ i)
.

Hence

1
2ξ

∫ ∞
0

Tn(y)e−y/ξdy ≤ A

ξ
n∏
i=1

(α+ i)

∫ ∞
0

yn+αe−y/ξdy

=
Aξn+α

n∏
i=1

(α+ i)
Γ(n+ α+ 1) = Γ(α+ 1)Aξn+α.

Using (60) we have proved (63).
Notice that f (n)

∗ (y) = A|y|α, and by Proposition 9.1.1, p. 298, [3], [2] we get
that

ω2(f (n)
∗ , |y|) = 2A|y|α.

Also f
(k)
∗ (0) = 0, k = 0, . . . , n. Then K2(0) = Γ(α + 1)Aξα+n > 0. That is

proving equality to (63).
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Let f ∈ Cn(R) be such that ω2(f (n), |t|) ≤ g(t), where g is given arbitrary,
bounded, even, positive function and Borel measurable. We consider the even
function

T̂n(y) :=
∫ y

0

g(t)
(y − t)n−1

(n− 1)!
dt, y ∈ R. (64)

Theorem 8. Let ψ be a function on R+ such that ψ(0) = 0, which is continuous
and strictly increasing. Assume that

ψ−1

(
1
ξ

∫ ∞
0

ψ(y)e−y/ξdy
)

= dξ > 0. (65)

Suppose (n ≥ 2 even) that Mn(u) := T̂n(ψ−1(u)) is concave on R+. Then for
any x0 ∈ R we get

|K2(x0)| ≤ 1
2
T̂n(dξ). (66)

Proof. Here we are applying geometric moment theory, see [10], [3]. Notice
that

sup
µ∈(µ be probability measures as in (65))

∫ ∞
0

T̂n(y)µ(dy) = T̂n(dξ).

Since by the concavity of Mn, the set

Γ1 := {(u,Mn(u)): 0 ≤ u <∞}

is the upper boundary of the convex hull of the curve

Γ0 := {(ψ(y), T̂n(y)): 0 ≤ y <∞}.

Now theorem follows from (59) and (60).
A more general result follows.

Theorem 9. All here as in Theorem 8, but we consider now M∗n, the upper
concave envelope of the not necessarily concave Mn. Then

|K2(x0)| ≤ 1
2
M∗n(ψ(dξ)), ∀x0 ∈ R. (67)

If Mn is concave then

R.H.S.(67) =
1
2
T̂n(dξ).

Let g be an arbitrary, continuous, even, positive function on R such that
g(0) = 0. Let ψ be continuous, strictly increasing function on R+ with ψ(0) = 0
and T̂n be as above, see (64).

Next we give sufficient conditions for Mn = T̂n ◦ ψ−1 to be concave on R+,
n ≥ 2 even. The result is similar to Theorem 9.1.3(ii), p. 302, [3], [2].

17
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Theorem 10. Assume ψ ∈ Cn((0,∞)), n ≥ 2 even, that satisfies

ψ(k)(0) ≤ 0, for k = 0, . . . , n− 1.

Suppose, further that g(y)/ψ(n)(y) is non-increasing on each interval where ψ(n)

is positive. Then Mn = T̂n ◦ ψ−1 is concave. In particular T̂n(y)/ψ(y) is non-
increasing.

Finally we give to both operators Pr,ξ, Pξ some alternative kind of estimates.

Theorem 11. Assuming f ∈ Cn(R) and ωr(f (n), ξ) < ∞, ξ > 0, n ∈ N and
Gn as in (10). Then

1
ξ

∫ ∞
0

Gn(t)e−t/ξdt ≤ δ(ξ), (68)

where

δ(ξ) := ωr(f (n), ξ)ξn
{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(r + k + 1)
[be(n+r)!c−be(n−k−1)!c]

}
.

(69)
I.e. from (32) we have

K1 ≤ δ(ξ). (70)

That is as ξ → 0 we get again Pr,ξ → I, pointwise with rates.

Proof. We observe that for ξ > 0

ωr(f (n), |w|) = ωr

(
f (n), ξ

( |w|
ξ

))
≤
(

1 +
|w|
ξ

)r
ωr(f (n), ξ), (71)

see [7], p. 45. Hence by (10) and (71) we see

Gn(t) ≤ ωr(f (n), ξ)
(n− 1)!

∫ |t|
0

(|t| − w)n−1

(
1 +

w

ξ

)r
dw

=
ωr(f (n), ξ)
ξr(n− 1)!

∫ |t|
0

(|t| − w)n−1(w + ξ)rdw

=
ωr(f (n), ξ)
ξr(n− 1)!

∫ (ξ+|t|)

ξ

(
(ξ + |t|)− z)n−1

zrdz

=
ωr(f (n), ξ)
ξr(n− 1)!

{
n−1∑

k=0

(−1)k
(
n− 1
k

)
(ξ + |t|)n−k−1

∫ ξ+|t|

ξ

zk+rdz

}

=
ωr(f (n), ξ)

ξr

{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(k + r + 1)
[
(ξ + |t|)n+r

− ξr+k+1(ξ + |t|)n−k−1
]
}
. (72)
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I.e. we get

Gn(t) ≤ ωr(f (n), ξ)
ξr

{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(k + r + 1)

[
(ξ + |t|)n+r − ξr+k+1(ξ + |t|)n−k−1

]
}
. (73)

Hence

1
ξ

∫ ∞
0

Gn(t)e−t/ξdt ≤ ωr(f (n), ξ)
ξr

·
{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(r + k + 1)

∫ ∞
0

(
(ξ + t)n+r

− ξr+k+1(ξ + t)n−k−1
)
e−t/ξd(t/ξ)

}

=
ωr(f (n), ξ)

ξr

{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(r + k + 1)

·
[
ξn+r

∫ ∞
0

(1 + x)n+re−xdx− ξr+n
∫ ∞

0

(1 + x)n−k−1e−xdx
]
}

= ωr(f (n), ξ)ξn
{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(r + k + 1)

·
[∫ ∞

0

(1 + x)n+re−xdx−
∫ ∞

0

(1 + x)n−k−1e−xdx
]}

= ωr(f (n), ξ)ξn
{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(r + k + 1)

[n+r∑

j=0

(
n+ r

j

)∫ ∞
0

xje−xdx

−
n−k−1∑

j=0

(
n− k − 1

j

)∫ ∞
0

xje−xdx
]

= ωr(f (n), ξ)ξn
{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(r + k + 1)

·


n+r∑

j=0

(
n+ r

j

)
j!−

n−k−1∑

j=0

(
n− k − 1

j

)
j!




= ωr(f (n), ξ)ξn
{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(r + k + 1)
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·


n+r∑

j=0

(n+ r)!
(n+ r − j)! −

n−k−1∑

j=0

(n− k − 1)!
(n− k − 1− j)!




= ωr(f (n), ξ)ξn
{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(r + k + 1)

·

(n+ r)!

n+r∑

j=0

1
j!
− (n− k − 1)!

n−k−1∑

j=0

1
j!



}

= δ(ξ). (74)

Use now

m!
m∑

j=0

1
j!

= bem!c, m ∈ N. (75)

That is proving (68).
The counterpart of the last theorem follows.

Theorem 12. Assuming f ∈ Cn(R), n even and ω2(f (n), ξ) < ∞, ξ > 0, and
Tn as in (59). Then

1
2ξ

∫ ∞
0

Tn(y)e−y/ξdy ≤ τ(ξ), (76)

where

τ(ξ) :=
1
2
ω2(f (n), ξ)ξn

{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(k + 3)

[be(n+ 2)!c − be(n− k − 1)!c]
}
. (77)

I.e. from (61) we find
‖K2‖∞ ≤ τ(ξ). (78)

That is as ξ → 0 we obtain again Pξ → I, pointwise with rates.

Proof. We observe for ξ > 0 that

ω2(f (n), t) ≤
(

1 +
t

ξ

)2

ω2(f (n), ξ), t > 0, (79)

see [7], p. 45. And by (59) and (79), we have, y > 0, that

Tn(y) ≤ ω2(f (n), ξ)
ξ2(n− 1)!

∫ y

0

(y − t)n−1(t+ ξ)2dt. (80)

That is for y > 0 we obtain

Tn(y) ≤ ω2(f (n), ξ)
ξ2

{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(k + 3)
[
(ξ + y)n+2 − ξk+3(ξ + y)n−k−1

]
}
.

(81)
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Hence

1
2ξ

∫ ∞
0

Tn(y)e−y/ξdy ≤ 1
2
ω2(f (n), ξ)ξn

{
n−1∑

k=0

(−1)k

k!(n− k − 1)!(k + 3)

·

(n+ 2)!

n+2∑

j=0

1
j!
− (n− k − 1)!

n−k−1∑

j=0

1
j!



}

= τ(ξ). (82)

Use at last (75). That is proving (76).
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lar integrals for Hölder continuous functions, Math. Nachr., 149 (1990),
117–124.

[12] L. Schumaker, Spline Functions. Basic Theory, J. Wiley & Sons, New
York, 1981.

22

ANASTASSIOU334
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Abstract

We extend the Lévy-Khintchine representation for an infinitely divisible distri-
bution to define a driving process in the context of the bond price framework
developed earlier. We describe a methodology using subordination to construct
such processes and we develop some examples in detail.

Keywords semimartingales, finance, processes with independent increments
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1 Introduction

In our previous work [9] we have described the bond price process in terms of
semimartingales where we used the characterization in terms of its set of charac-
teristics. One advantage of this approach is that we can impose conditions needed
for our results explicitly on the drift, diffusion, or jump components of the model.
When the price dynamics is described by a diffusion with jumps driven by a Lévy
process then the price itself is represented by a Lévy process. In this case the
representation in terms of characteristics (for a fixed t) coincides with its Lévy-
Khintchine representation.
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In this paper, we first define a Lévy process to be used as driver for our finan-
cial model. To this end, we first construct an infinitely divisible distribution to
describe the behavior of the increments. We then use a result that allows us to
extend its Lévy-Khintchine representation to define the distribution of a Lévy
process at each point in time. This extension is a special case of the set of char-
acteristics which describes the process in terms of a semimartingale. Once this
set is obtained then it may be used in our financial model since the price process
(specified by its characteristics) was defined in terms of the characteristics of the
driving process.

2 Summary of the General Model

This section is a summary of the framework for bond price dynamics in the context
of a diffusion with jumps described in [9].

2.1 Introduction

We assume the canonical setting. Let P(t, T ) be the price at time t of a bond
which matures at time T . It is assumed that for each T > 0, ({P(t, T )}0≤t≤T is
an optional, {Ft}-adapted process, and for each t, P(t, T ) is P -a.s. continuously
differentiable in the T variable. Let f(t, T ) denote the T -forward rate at time t,
defined by f(t, T ) = − ∂

∂T
P(t, T ). The short rate r is defined by rt = f(t, t), and

the money account process B is defined by

Bt = exp

(∫ t

0

rsds

)
.

In order to model the bond price dynamics we could start with a description of
the forward rate or short rate dynamics. Alternatively, we could follow a direct
approach, obtaining P(t, T ) as the solution of a stochastic differential equation.
Therefore, we are interested in studying dynamics of the following forms:

drt = atdt + btdWt +

∫
E

q(t, x)µ(dt, dx), (1)

dP(t, T ) = P(t−, T )

{
m(t, T )dt + v(t, T )dWt +

∫
E

n(t, x, T )µ(dt, dx)

}
, (2)

df(t, T ) = α(t, T )dt + σ(t, T )dWt +

∫
E

δ(t, x, T )µ(dt, dx). (3)

The coefficients b(t, T ), v(t, T ), and σ(t, T ) are assumed to be m-dimensional row
vector processes. The following technical assumptions will be needed:
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Assumption

1. For any fixed T > 0, n(t, x, T ) and δ(t, x, T ) are uniformly bounded. Fur-
thermore, for each t,

∫ t

0

∫
E

h′(n(s, x, T ))F (dx)ds < ∞,

where h′(z) = |z|2 ∧ |z| for z ∈ R.

2. For each fixed ω, t, and (where appropriate) x, all the objects m(t, T ),
v(t, T ), n(t, x, T ), α(t, T ), σ(t, T ) and δ(t, x, T ) are assumed to be continu-
ously differentiable in the T -variable.

3. All processes are assumed to be regular enough to allow us to differentiate
under the integral sign as well as to interchange the order of integration.

4. For any t the price curves P(ω, t, T ) are bounded functions for almost every
ω.

Proposition 1. If f(t, T ) satisfies (3), then P(t, T ) satisfies

dP(t, T ) = P(t−, T )

[(
rt + A(t, T ) +

1

2
‖S(t, T )‖2

)
dt + S(t, T )dWt

+

∫
E

(
eD(t,x,T ) − 1

)
µ(dt, dx)

]
,

where

A(t, T )=−
∫ T

t

α(t, s)ds,

S(t, T )=−
∫ T

t

σ(t, s)ds, (4)

D(t, x, T )=−
∫ T

t

δ(t, x, s)ds.

2.2 Bond Markets, Arbitrage

We now present the framework (Björk, Kabanov and Runggaldier [4]) in which we
will state results concerning the absence of arbitrage in a model of bond prices. It
will be assumed throughout that the filtration F is the natural filtration generated
by W and µ.

A portfolio in the bond market is a pair (g, h), where
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1. g is a predictable process.

2. For each ω, t, ht(ω, ·) is a signed finite Borel measure on [t,∞).

3. For each Borel set A the process ht(A) is predictable.

The discounted bond prices P(t, T ) are defined by

P(t, T ) =
P(t, T )

Bt
.

A portfolio (g, h) is said to be feasible if the following conditions hold for every
t: ∫ t

0

|gs|ds < ∞,

∫ t

0

∫ ∞

s

|m(s, T )||hs(dT )|ds < ∞,

∫ t

0

∫ ∞

s

∫
E

|n(s, x, T )||hs(dT )|ν(ds, dx) < ∞,

and

∫ t

0

{∫ ∞

s

|v(s, T )||hs(dT )|
}2

ds <∞.

The value process corresponding to a feasible portfolio π = (g, h) is defined by

V π
t = gtBt +

∫ ∞

t

P(t, T )ht(dT ).

The discounted value process is

V
π

t = B
−1
t V π

t .

A feasible portfolio is said to be admissible if there is a number a ≥ 0 such that
V π

t ≥ −a P -a.s. for all t.

A feasible portfolio is said to be self-financing if the corresponding value process
satisfies

V π
t = V π

0 +

∫ t

0

gsdBs +

∫ t

0

∫ ∞

s

m(s, t)P(s, t)hs(dT )ds

+

∫ t

0

∫ ∞

s

v(s, t)P(s, t)hs(dT )dWs

+

∫ t

0

∫ ∞

s

∫
E

n(s, x, T )P(s−, t)hs(dT )µ(ds, dx).
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The preceding relation can be interpreted formally as follows:

dV π
t = gtdBt +

∫ ∞

t

ht(dT )dP(t, T ).

A contingent T-claim is a random variable X ∈ L0
+(FT , P ). An arbitrage portfolio

is an admissible self-financing portfolio π = (g, h) such that the corresponding
value process satisfies

1. V π
0 = 0

2. V π
T ∈ L0

+(FT , P ) with P (V π
T > 0) > 0.

If no arbitrage portfolios exist for any T > 0 we say that the model is arbitrage-
free.

Take the measure P as given. We say that a positive martingale M = {Mt}t≥0

with EP (Mt) = 1 for each t is a martingale density if for every T > 0 the process
{P(t, T )Mt}0≤t≤T ia a P -local martingale. If, moreover, Mt > 0 for all t > 0 we
say that M is a strict martingale density .

We say that that a probability measure Q on (Ω, F ) is a martingale measure if
Qt ∼ Pt and the process {P(t, T )}0≤t≤T is a Q-local martingale for every T > 0.
Here Qt, Pt are the restrictions Q|Ft

and P|Ft
, respectively.

Proposition 2. Suppose that there exists a strict martingale density. Then the
bond market model is arbitrage-free.

We will make the following simplifying assumption:

Assumption For any positive martingale N = {Nt} with EP (Nt) = 1 there
exists a probability measure Q on

⋃
t≥0 Ft such that Nt = dQt/dPt.

The following results relate the coefficients in (2) and (3) with a model free of
arbitrage.

Theorem 1. Let the bond price dynamics be given by (2). There exists a
martingale measure if and only if the following conditions hold:

(i) There exists a predictable process φ and a P̃-measurable function Y (ω, t, x)
with Y > 0 satisfying

∫ t

0

‖φs‖2ds < ∞,

∫ t

0

∫
E

|Y (s, x) − 1|F (dx)ds < ∞.

and such that EP (E (L)t) = 1 for all finite t, where the process L is defined
by

L = φ · W + (Y − 1) ∗ (µ − ν).
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(ii) For all T > 0, and t ∈ [0, T ] we have

m(t, T ) + φtv(t, T )T +

∫
E

Y (t, x)n(t, x, T )F (dx) = rt. (5)

The following theorem gives a similar result when we consider the forward rate
dynamics.

Theorem 2. Let the forward rate dynamics be given by (3). There exists a
martingale measure if and only if the following conditions hold:

(i) There exists a predictable process φ and a P̃-measurable function Y (ω, t, x)
with Y > 0 satisfying

∫ t

0

‖φs‖2ds < ∞,

∫ t

0

∫
E

|Y (s, x) − 1|F (dx)ds < ∞.

and such that EP (E (L)t) = 1 for all finite t, where the process L is defined
by

L = φ · W + (Y − 1) ∗ (µ − ν).

(ii) For all T > 0, and t ∈ [0, T ] we have

A(t, T ) +
1

2
‖S(t, T )‖2 + φtS(t, T )T +

∫
E

Y (t, x)

(
eD(t,x,T ) − 1

)
F (dx) = 0,

where A, S and D are defined in (4).

3 Semimartingales with Independent Increments

In this short section we state a characterization of semimartingales with indepen-
dent increments. These results will be used in the following section to establish
the connection with Lévy processes.

Theorem 3. Let X be a d-dimensional process with independent increments.
Then X is also a semimartingale if and only if, for each u ∈ R

d, the function
t 7→ g(u)t := E(exp iu · Xt) has finite variation over finite intervals.
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Theorem 4. Let X be a d-dimensional semimartingale with X0 = 0. Then it
is a process with independent increments if and only if there is a version (B, C, ν)
of its characteristics that is deterministic. Furthermore, in this case, with J =
{t : ν({t} × Rd) > 0} and for all s ≤ t, u ∈ Rd we have:

E(eiu·(Xt−Xs)) = exp

[
iu · (Bt − Bs) −

1

2
u · (Ct − Cs) · u

+

∫ t

s

∫
Rd

(eiu·x − 1 − iu · h(x))1Jc(r)ν(dr, dx)

]

×
∏

s<r≤t

{
e−iu·∆Br

[
1 +

∫
(eiu·x − 1)ν({r} × dx)

]}
.

(6)

Corollary 1. A d-dimensional semimartingale X is a process with stationary
independent increments if and only if it is a semimartingale admitting a version
(B, C, ν) of its characteristics that has the form

Bt(ω) = bt, Ct(ω) = ct, ν(ω; dt, dx) = dt K(dx)

where b ∈ Rd, c is a symmetric nonnegative d× d matrix, K is a positive measure
on R

d that integrates (|x|2 ∧ 1) and satisfies K({0}) = 0.

4 Construction of a Driving Process

In this section we develop a description of the type of processes we propose for fi-
nancial applications. The approach is from specific to general. Infinitely divisible
distributions extend quite naturally to additive and Lévy processes in law. Once
a cádlág modification is chosen, this is seen to be a special case of our general
approach in terms of semimartingales. We adopt the results and notation of K.
Sato’s beautiful book [18].

4.1 Infinitely Divisible Distributions

The class of infinitely divisible distributions arise naturally in a financial context.
Below we define the class membership. Roughly speaking, a random variable
follows an infinitely divisible distributions if it can be considered to be the sum
of independent innovations. Asset returns, for example, are the accumulation
of the returns accrued in non-overlapping time intervals. This class generalizes
the Gaussian distribution to allow heavy tails and skewness (Shiryaev [21], Nolan
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[15]), and is the only class that contains the limit distributions of sums of iid
random variables.

A probability measure µ on Rd is infinitely divisible if for any positive integer n,
there is a probability measure µn on R

d such that µ = µn∗
n , where µn∗ denotes the

n-fold convolution of µ with itself.

We begin our discussion with the Lévy-Khintchine representation of the charac-
teristic function µ̂(z) =

∫
ei〈z,x〉µ(dx), z ∈ R

d of µ.

Theorem 5. (i) Let D = {x ∈ Rd : |x| ≤ 1}. If µ is an infinitely divisible
distribution on Rd then

µ̂(z) = exp

[
−1

2
〈z, Az〉 + i〈γ, z〉

+

∫
Rd

(ei〈z,x〉 − 1 − i〈z, x〉1D(x))ν(dx)

]
, z ∈ R

d

(7)

where A is a symmetric nonnegative-definite d× d matrix, γ ∈ Rd, and ν is
a measure on Rd satisfying

ν({0}) = 0 and

∫
Rd

(|x|2 ∧ 1)ν(dx) < ∞. (8)

(ii) The representation of µ̂(z) in (i) by γ ∈ Rd, A and ν is unique.

(iii) Conversely, if γ ∈ Rd, A is a symmetric nonnegative-definite d × d ma-
trix, and ν is a measure satisfying (8), then there is an infinitely divisible
distribution µ whose characteristic function is given by (7).

As stated earlier, the motivation for describing a semimartingale in terms of char-
acteristics was to generalize the generating triplet (γ, A, ν) for the infinitely di-
visible distribution µ. Here we start with an infinitely divisible distribution and
develop a process and its characteristics in parallel, in order to adapt it to our
general framework as a driving process.

The representation (7) can be rewritten in terms of another truncation function
c(x) in place of 1D(x). Given a particular Lévy measure, we may be able to
simplify the integrand in (7) by choosing an appropriate c(x) while still ensuring
that the integral is finite. In fact, if c : Rd → R is a measurable function such
that ∫

Rd

(ei〈z,x〉 − 1 − i〈z, x〉c(x))ν(dx) < ∞ (9)
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for every z ∈ R
d then rearranging terms in (7) we obtain

µ̂(z) = exp

[
−1

2
〈z, Az〉 + i〈γc, z〉

+

∫
Rd

(ei〈z,x〉 − 1 − i〈z, x〉c(x))ν(dx)

]
,

(10)

with γc ∈ Rd defined by

γc = γ +

∫
Rd

x(c(x) − 1D(x))ν(dx).

The representation (γc, A, ν) implied by (10) will also be called the generating
triplet for µ. Note that the components A and ν are independent of the choice of
c.

If
∫
|x|≤1

|x|ν(dx) < ∞ then (9) is satisfied with c ≡ 0 and we obtain the represen-

tation (γ0, A, ν):

µ̂(z) = exp

[
−1

2
〈z, Az〉 + i〈γ0, z〉 +

∫
Rd

(ei〈z,x〉 − 1)ν(dx)

]
, (11)

Likewise, if
∫
|x|>1

|x|ν(dx) < ∞ we obtain the representation (γ1, A, ν) from (10)

with c ≡ 1.

4.2 Lévy Processes

An R
d-valued stochastic process {Xt}t≥0 defined on a probability space (Ω, F , P )

is said to be an additive process in law if each of the following conditions hold.

1. X has the independent increments property.

2. X0 = 0 a.s.

3. X is stochastically continuous.

An additive process in law with the stationary increments property is said to be
a Lévy process in law. An additive (Lévy) process in law which is cádlág is called
an additive (Lévy) process. An R-valued increasing Lévy process is said to be a
subordinator.

The following two results establish the correspondence between a family of in-
finitely divisible distributions and additive processes in law. Then the associated
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family of generating triplets offers a natural representation for the corresponding
process. Later this will be seen to be a special case of the characteristics described
in the context of semimartingales. However, we will need a restriction to ensure
that an additive process is a semimartingale. In the case of a Lévy process, no
restriction is needed.

Theorem 6. (i) Let {Xt}t≥0 be an R
d-valued additive process in law and,

for 0 ≤ s ≤ t < ∞, let µs,t be the distribution of Xt − Xs. Then µs,t is
infinitely divisible and

µs,t ∗ µt,u = µs,u for 0 ≤ s ≤ t ≤ u < ∞,

µs,s = δ0 for 0 ≤ s < ∞,

µs,t → δ0 as s ↑ t,

µs,t → δ0 as t ↓ s.

(ii) Conversely, if {µs,t}0≤s≤t<∞ is a system of probability measures on Rd sat-
isfying the properties in (i), then there is an additive process in law {Xt}t≥0

such that for 0 ≤ s ≤ t < ∞, Xt − Xs has the distribution µs,t.

(iii) If {Xt} and {X ′
t} are Rd-valued additive processes in law such that Xt

d
= X ′

t

for any t ≥ 0, then {Xt} and {X ′
t} are identical in law.

Theorem 7. (i) Suppose that {Xt}t≥0 is an Rd-valued additive process in
law. Let (γ(t), At, νt) be the generating triplet of the infinitely divisible dis-
tribution µt = PXt

for t ≥ 0. Then the following conditions are satisfied.

(a) γ(0) = 0, A0 = 0, ν0 = 0.

(b) If 0 ≤ s ≤ t < ∞, then 〈z, Asz〉 ≤ 〈z, Atz〉 for z ∈ Rd and νs(B) ≤
νt(B) for B ∈ B(Rd).

(c) As s → t in [0,∞), γ(s) → γ(t), 〈z, Asz〉 → 〈z, Atz〉 for z ∈ Rd, and
νs(B) → νt(B) for B ∈ B(Rd) with B ⊂ {x : |x| > ǫ}, ǫ > 0.

(ii) Let {µt}t≥0 be a system of infinitely divisible probability measures on Rd with
generating triplets (γ(t), At, νt) satisfying (1)-(3) Then there exists, uniquely
up to identity in law, an Rd-valued additive process in law such that PXt

= µt

for t ≥ 0.

Let {Xt} be an Rd-valued additive process in law. Let (γt, At, νt) be its system of
generating triplets. Construct the measure ν̃ on [0,∞) × Rd such that

ν̃([0, t] × B) = νt(B), for t ≥ 0 and B ∈ B(Rd) (12)
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by defining a set function as in (12) on the field of sets [0, t] × B with t ≥ 0 and
B ∈ B(Rd), and then extending to the σ-field which is equivalent to the Borel
σ-field of [0,∞) × Rd. By Theorem 7(i) and (12) it follows that the following
statements hold.

ν̃({t} × R
d) = 0 for t ≥ 0, (13)∫

[0,t]×Rd

(1 ∧ |x|2)ν̃(ds, dx)<∞ for t ≥ 0. (14)

Conversely, if a measure ν̃ satisfies (13) and (14) then for each t ≥ 0, the Lévy
measure νt defined by (12) satisfies the conditions in Theorem 7(i).

The following result implies that we can choose a modification {X ′
t} of {Xt} that

is an additive process.

Theorem 8. Let {Xt} be an an Rd-valued additive or Lévy process in law.
Then it has a cádlág modification.

Since our interest is in semimartingales, by virtue of Theorem 3 we require {X ′
t}

to be such that the function t 7→ P̂Xt
has finite variation over finite intervals.

Hence by Theorems 3 and 4 with ν̃ in (6), we identify {X ′
t} to be the semimartin-

gale with characteristics (γt, At, ν̃(ds, dx)). Since we have defined processes in this
section to be stochastically continuous, then the last term in (6) is equal to 1 and
the set J = ∅. The same conclusion also follows from (13).

If the additive process {X ′
t} has the stationary increments property (i.e. a Lévy

process), then the condition in Theorem 3 is satisfied and it follows from Corollary
1 that its set of characteristics is (tγ, tA, tν1(dx)). Conversely, given an infinitely
divisible distribution µ on Rd with generating triplet (γ, A, ν), define the system
of measures {µs,t}0≤s≤t<∞ by the system of generating triplets
((s − t)γ, (s − t)A, (s − t)ν). It follows easily from the representation

µ̂s,t(z) = exp

[
(t − s)

(
−1

2
〈z, Az〉 + i〈γ, z〉

+

∫
Rd

(ei〈z,x〉 − 1 − i〈z, x〉1D(x))ν(dx)

)] (15)

for 0 ≤ s ≤ t < ∞ and z ∈ Rd, that the conditions listed in Theorem 6 are
satisfied. Then there is an additive process Y such that Yt − Ys has distribution
µs,t and which, in this case, has the stationary increments property. In the sequel
we will construct Lévy processes by stipulating that its increments are described
by a given infinitely divisible distribution.
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4.3 Subordination of Lévy Processes

Now we shall construct a driving process by the method of subordination. This
can be seen as a generalisation of our model by substituting the physical time,
indexed by t, with an increasing non-negative Lévy process. The resulting process
XT is said to be subordinated to the noise process X by the subordinator T . In
what follows we will specify a subordinator to be the Lévy process whose incre-
ments follow a given non-negative infinitely divisible distribution. Subordination
can be interpreted as a transformation of the physical time to the “intrinsic time”
of the underlying market. In other words, T will rescale the time axis to model
periods of high or low business activity. T (t) is interpreted as a measure of the
cumulative trading volume up to the physical time t (Hurst, Platen, Rachev [10]).

Our goal is to construct the set of characteristics of the subordinated process in
terms of the characteristics of the two component processes. Madan and Seneta
[13] developed the Variance Gamma (VG) process by subordinating a Brownian
motion with a gamma process for stock prices. Hurst, Platen and Rachev [10] used
an α/2-stable subordinator with a Brownian motion. These will be presented as
examples of our methodology.

Rachev, Mittnik [16] studied the USD-CHF exchange rate using a subordinated
model Zt = S(Tt). They gathered a data sample of N = 128400 spanning the
period of 499 business days from 20 May 1985 to 20 May 1987. The average
time between observations is 2 minutes, 6 seconds. Denote by pbid(t) and pask(t),
respectively, the bid and ask quote at time t for the exchange rate. For each
i = 1, . . . , N the ith observation x(ti) is the logarithmic price at time ti, defined
by

x(ti) =
log pbid(ti) + log pask(ti)

2
.

Note that the set {x(t) : t ∈ {ti : 1 ≤ i ≤ N}} can be regarded as a sample path of
the price process in physical time {(Zt)}. On the other hand, {x(ti) : 1 ≤ i ≤ N}
can be regarded as a sample path of the price process in intrinsic time {S(t)}.
Define the return r(ti; ∆t) at time ti over the period ∆t by

r(ti; ∆t) = x(ti) − x(ti − ∆t).

Note that the quantities x(ti)−x(ti−k), i.e. the returns at k-quote frequency, can be
interpreted as price change in physical time or as price change in intrinsic (quote)
time. The probabilistic structure of the process S(t) was studied by estimating the
pdf of the returns in intrinsic time. A stable model with an estimated α = 1.716
provided an excellent fit for the returns at the 4-quote frequency. Given the
average time elapsed between quotes, the relationship ti − tk ≈ 2(i − k) for i > k
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was used to study the processes T and Z at the corresponding physical time scale.
Define the market time process T̂ by

T̂ (t) =
N∑

i=1

1[ti,∞)(t), t ≥ 0.

Then T̂ (t) is the number of transactions up to time t, and T̂ (ti) = i. The estimated
pdf for the 8-minute time increments T̂ (t) − T̂ (t − 8) was studied to determine
a model for the process T . The Weibull distribution provided the best fit. The
Gamma distribution, which is infinitely divisible, also offered a good fit. In both
cases the process {S(Tt)} subordinated to the α-stable process S can be described
in terms of stable distributions. On the other hand, the price process in physical
time Z was similarly studied for 8-minute increments and obtained a stable fit
with α = 1.3745.

For any Lévy process X in this section it will be assumed that for every ω, X(ω)
is cádlág and X0(ω) = 0. Let X and T be independent Lévy process defined on
a stochastic basis (Ω, F ,F, P ). We begin by specifying the characteristics of a
subordinator (see Sato [18]).

Theorem 9. Let {Tt}t≥0 be a subordinator with Lévy measure ρ, drift β0, and
let λ = PZ1. Its second characteristic is zero and its Laplace transform is given
by

E[e−uZt ] =

∫
[0,∞)

e−usλt(ds) = etΨ(−u), u ≥ 0,

where for any complex w with Re w ≤ 0,

Ψ(w) = β0w +

∫
(0,∞)

(ews − 1)ρ(ds)

with

β0 ≥ 0 and

∫
(0,∞)

(1 ∧ s)ρ(ds) < ∞.

Note that the theorem implies that a subordinator can only display jumps in the
positive direction. This is obviously necessary, since we cannot go backwards in
time. Moreover, the diffusion component has to be zero since otherwise there will
be a negative change over any interval with positive probability.

The following result gives the characteristics of the subordinated process.
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Theorem 10. Let {Tt}t≥0 be a subordinator with Lévy measure ρ, drift β0, and
PT1 = λ. Let {Xt} be an Rd-valued Lévy process with generating triplet (γ, A, ν)
and let µ = PX1. Suppose that {Xt} and {Tt} are independent. Define

Y (ω) = XTt(ω)(ω), t ≥ 0.

Then {Yt} is a Lévy process and

P [Yt ∈ B] =

∫
[0,∞)

µs(B)λt(ds), B ∈ B(Rd).

The generating triplet (γ′, A′, ν ′) of {Yt} is as follows:

γ′ =β0γ +

∫
(0,∞)

ρ(ds)

∫
|x|≤1

xµs(dx),

A′ =β0A,

ν ′(B) =β0ν(B) +

∫
(0,∞)

µs(B)ρ(ds), B ∈ B(Rd\{0}). (16)

4.3.1 Example: Variance-Gamma Process

We will now apply the previous result to obtain the characteristics for the Variance
Gamma (VG) process (Madan, Seneta [13]). To this end, we first introduce the
subordinator T which we define as the Lévy process such that

Tt+s − Tt ∼ Γ

(
s

µ
,
1

µ

)
(17)

where Γ(c, α) is the gamma-distribution with density

αc

Γ(c)
xc−1e−αx, x > 0 for c > 0, α > 0. (18)

Lemma 1. The generating triplet for the Γ(c, α) distribution is (0, 0, ρ), where
the Lévy measure ρ is given by

ρ(dx) = cx−1e−αxdx, x > 0. (19)

It follows that the Γ-subordinator {Tt} has characteristics (0, 0, tρ), with c = 1/µ
and α = 1/µ.
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Proof. Let µ be the probability measure with density (18). Denote its Laplace
transform by Lµ(u). Then

Lµ(u) =
(
1 +

u

α

)−c

, u ≥ 0. (20)

We will now see that

Lµ(u) = exp

[
c

∫ ∞

0

(eux − 1)
e−αx

x
dx

]
. (21)

In fact,

log(1 + α−1u)=

∫ u

0

dy

α + y
=

∫ u

0

dy

∫ ∞

0

e−αx−yxdx

=

∫ ∞

0

e−αx

(
e−ux − 1

−x

)
dx,

so that (21) now follows from (20).

For w ∈ C, define Φ(w) =
∫∞

0
ewxµ(dx). Observe that Φ is analytic on {Re w < 0},

continuous on {Re w ≤ 0} and equal to Lµ(u) for w = −u < 0. Then Φ can be
extended such that

Φ(w) = exp

[
c

∫ ∞

0

(ewx − 1)
e−αx

x
dx

]
, Re w ≤ 0.

For z ∈ R, it follows that

µ̂(z) = Φ(iz) = exp

[
c

∫ ∞

0

(eizx − 1)
e−αx

x
dx

]
,

and that the generating triplet of µ is (0, 0, ρ) with ρ(dx) given by (19). �

We state the following result for future reference. Let Kν denote the modified
Bessel function of the third kind with index ν (see, e.g., Watson [22]).

Lemma 2. (Watson [22], p.80, 183)

Kp(x) =
1

2

(x

2

)p
∫ ∞

0

e−t−x2/(4t)t−p−1dt, x > 0, p ∈ R, (22)

Kn+ 1
2
(x) =

√
π/2x−1/2e−x

(
1 +

n∑
i=1

(n + i)!

(n − i)!i!
(2x)−i

)
, x > 0, n ∈ N. (23)
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Let X be the process defined by Xt = σWt + θt where W is a standard Brownian
motion and σ > 0, θ ∈ R are volatility and drift parameters, respectively. The
Variance Gamma process (VG) is defined as the process Y subordinated to X by
the Γ-subordinator T . Equivalently,

Yt := XT (t) = σWT (t) + θT (t).

By Theorem 10 the VG process has characteristics (tβ, 0, tν) for some β ∈ R and
ν given by (16), which we compute as follows:

ν(dx) =

∫ ∞

0

P s
σW1+θ(dx)cs−1e−αsds

=
c√
2πσ

dx

∫ ∞

0

e−
(s−θs)2

2σ2s s−3/2e−αsds

=
c√
2πσ

exθ/σ2

dx

∫ ∞

0

s−3/2 exp

[
−
(

α +
θ2

2σ2

)
s −

(
x2

2σ2

)
1

s

]
ds.

Using (22) and the change of variable s′=βs with β =
(
α + θ2

2σ2

)
, the last integral

is equal to

K 1
2

(√
2x2β/σ2

)1

2

(√
2x2β/σ2

2

)1/2


−1

.

Now using (23) with n = 0, it follows that

ν(dx) =
c

|x|e
xθ/σ2

e−
|x|

σ

√
2βdx,

and substituting c = 1/µ, α = 1/µ, we conclude that

ν(dx) =
1

|x|µ exp

(
xθ

σ2
− |x|

σ

√
2

µ
+

θ2

σ2

)
dx, −∞ < x < ∞.

4.3.2 Example: Subordination of Brownian Motion by α/2-Stable

Using the same procedure, we now compute the characterization of the process
subordinated to Brownian motion by the stable subordinator (Hurst, Platen,
Rachev [10]). Define the subordinator T to be the Lévy process such that

Tt+s − Tt ∼ Sα/2(cs
α/2, 1, 0), c > 0, s, t ≥ 0.
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where Sα/2(cs
α/2, 1, 0) is the α/2-stable distribution (Samorodnitsky, Taqqu [17])

with characteristic function

exp
{
−scα/2|z|α/2

(
1 − i tan

(πα

4

)
sgn z

)}
, z ∈ R. (24)

In order to obtain the set of characteristics for T , we will use the following results
(Sato [18]).

Lemma 3. Let µ be an infinite divisible distribution on Rd with characteristics
(β, A, ν). Then µ is α-stable if and only if A = 0 and there is a finite measure λ
on S = {x ∈ Rd : |x| = 1} such that

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)
dr

r1+α
, B ∈ B(Rd). (25)

Lemma 4. Let µ be a non-trivial α-stable distribution on Rd with 0 < α < 2
and Lévy measure ν. Then

∫
{|x|≤1} |x|ν(dx) is finite if and only if α < 1. Also,∫

{|x|>1} |x|ν(dx) is finite if and only if α > 1. The mass of ν is always infinite.

Lemma 5. The generating triplet of the α/2-stable distribution defined in (24)
is (0, 0, ρ), where

ρ(dr) =
λ dr

r1+α/2
, r > 0 (26)

with

λ =
−cα/2

Γ
(
−α

2

)
cos(απ

4
)
. (27)

It follows that the α/2-stable subordinator {Tt} has characteristics (0, 0, tρ).

Proof. In what follows, the Γ-function is extended from (0,∞) to any s ∈ R with
s 6= 0,−1,−2, · · · by Γ(s + 1) = sΓ(s). The following auxiliary result will be
used: ∫ ∞

0

(ewr − 1)
dr

r1+α′
= Γ(−α′)(−w)α′

for α′ ∈ (0, 1), (28)

which is valid for w 6= 0 complex such that Re w ≤ 0. Indeed, both sides of (28)
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are analytic on {w : Re w < 0} and continuous on {w : Rew ≤ 0, w 6= 0}. Since∫ ∞

0

(e−ur − 1)
dr

r1+α′
= −

∫ ∞

0

∫ r

0

u e−uydy
dr

r1+α′

= − u

α′

∫ ∞

0

e−uyy−α′

dy

=
Γ(1 − α′)

−α′ uα′

= Γ(−α′)uα′

for u > 0,

then (28) holds for real w = −u < 0. Hence it also holds on {w : Rew ≤ 0, w 6=
0}. Since d = 1, observe that if 1B(rξ) > 0 in (25) then ξ ∈ {−1, 1}. Then (25)
reduces to

ρ(B) = λ−1

∫ ∞

0

1B(−r)
dr

r1+α/2

+λ1

∫ ∞

0

1B(r)
dr

r1+α/2
for B ∈ B(R),

(29)

where λj := λ({j}) ≥ 0 and j ∈ {−1, 1} such that λ−1 + λ1 > 0. It follows from
Lemma 3, Lemma 4, and (11) that the characteristic function of µ is of the form

log µ̂(z) =

∫
R

(
eizx − 1

)
ρ(dx) + iγ0z, z ∈ R. (30)

We shall now compute the integral in (30) with ρ defined by (29). Let α′ = α/2.
Choose the branch (−w)α′

= |w|α′

eiα′arg(−w) with arg(−w) ∈ (−π, π] in (28),
implying that∫ ∞

0

(
eizr − 1

) dr

r1+α′
= Γ(−α′)|z|α′

exp

(
−i

πα′

2
sgn(z)

)

= Γ(−α′)|z|α′

cos

(
πα′

2

)[
1 − i tan

(
πα′

2

)
sgn(z)

]
.
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Hence the integral in (30) with (29) is equal to

Γ(−α′)|z|α′

cos

(
πα′

2

)

×
{

λ−1

[
1 − i tan

(
πα′

2

)
sgn(−z)

]
+ λ1

[
1 − i tan

(
πα′

2

)
sgn(z)

]}

= Γ(−α′)|z|α′

cos

(
πα′

2

)

× (λ1 + λ−1)

{
1 − i

(
λ1 − λ−1

λ1 + λ−1

)
tan

(
πα′

2

)
sgn(z)

}
.

From the uniqueness in the Lévy-Khintchine representation it now follows from
(24) and (30) that λ−1 = 0, λ1 = λ as defined in (27), and γ0 = 0. Therefore (30)
simplifies to

log µ̂(z) = λ

∫ ∞

0

(
eizr − 1

) dr

r1+α/2
, z ∈ R,

from which (26) immediately follows. �

From Theorem 10 the process {WT (t)} subordinated to Brownian motion has char-
acteristics (0, 0, tν) with ν given by (16). Therefore we conclude that

ν(dx) =

∫ ∞

0

P s
W1

(dx)
λ ds

s1+α/2

=
λ√
2π

∫ ∞

0

s−
3+α

2 e−x2/2sds dx

=
λ 2α/2

√
π

Γ

(
α + 1

2

)
dx

|x|1+α
, −∞ < x < ∞.

4.3.3 Example: Subordination of α-Stable by Gamma

Motivated by the results in Hurst, Platen, Rachev [10] cited in Section 4.3, we
provide an expression for the characteristics of the subordination of the α-stable
Lévy process with 1 < α < 2 by the Γ subordinator. Although the stable dis-
tribution is absolutely continuous with respect to Lebesgue measure, there is no
known closed-form expression for the pdf valid for a range of values of α. We
will then leave the Lévy measure expressed in terms of the series representation
of the pdf (see [6]). To this end, we begin with the following representation for
the characteristic function of the α-stable distribution on R.
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Theorem 11. Let 0 < α ≤ 2. If µ is an α-stable distribution on R, then

µ̂(z) = exp(−c1|z|αe−i(π/2)θα sgn z), (31)

where c1 > 0 and θ ∈ R with |θ| ≤ (2−α
α

∧1). The parameters c1 and θ are uniquely
determined by µ. Conversely, for any c1 and θ, there is an α-stable distribution
µ satisfying (31).

Denote the parameters in (31) by (α, θ, c1)Z and denote the density of µ by
p(x; (α, θ, c1)Z).

Theorem 12. The density for the distribution µ on R defined in (31) with
1 < α < 2 is given by

p(x; (α, θ, c1)Z)= c
−1/α
1 p(c

−1/α
1 x; (α, θ, 1)Z) for x > 0

and p(x; (α, θ, c1)Z)= p(−x; (α,−θ, c1)Z) for x < 0,

where

p(x; (α, θ, 1)Z) =
1

πx

∞∑
k=1

Γ(1 + k/α)

k!
(−x)k sin

(
kπ

2
(θ − 1)

)
, x > 0.

Let T be the Γ(γ, β)-subordinator (19). Let X be the Lévy process such that
X1 is α-stable with parameters c1, θ in the representation (31). Then the Lévy
measure ν of the subordinated process XT is

ν(dx) =

∫ ∞

0

P s
X1

(dx)γs−1e−βsds

= γc
−1/α
1 dx

∫ ∞

0

p′(s, x)e−βs ds

s1+1/α
,

where

p′(s, x) =

[
p
(
− (sc1)

−1/αx;(α,−θ, 1)Z

)
1(−∞,0)(x)

+ p
(
(sc1)

−1/αx; (α, θ, 1)Z

)
1(0,∞)(x)

]
.
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5 Concluding Remarks

We have presented a summary of our earlier work regarding term structure mod-
els, where we expressed the results in terms of the characteristics of the driving
process. Here we have described a methodology for constructing Lévy processes
as potential drivers for our model. To illustrate, we derived the characteristics of
some processes from the literature with infinite Lévy measure.
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Abstract. The purpose of this paper is to obtain Jackson-type esti-
mates in approximation by some complex rotation-invariant integral
operators in the unit disk. In addition, these operators preserve
some sufficient conditions for starlikeness and univalence of analytic
functions.
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1 Introduction

Let us consider the open unit disk D = {z ∈ C; |z| < 1} and A(D) = {f :D → C;
f is analytic on D, continuous on D, f(0) = 0, f ′(0) = 1}. Therefore, if
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Visiting Professor at the Department of Mathematical Sciences, The University of Memphis,
TN, U.S.A.
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f ∈ A(D) then we have f(z) = z +
∞∑

k=2

akzk, for all z ∈ D.

In a series of very recent papers [8], [2]–[4], geometric and approximation
properties of some complex convolution polynomials and singular integrals at-
tached to f ∈ A(D) were proved.

Now, for f ∈ A(D), z ∈ D, let us consider the complex rotation-invariant
integral operators given by

Bk(f)(z) = 2k

∫ +∞

−∞
f(zeiv)ϕ(−2kv) dv,

and generalized complex rotation-invariant integral operators given by

Lk,j(f)(z) =
2k

j

∫ +∞

−∞
`k(f)(2kzeiv)ϕ

(
−2k

j
v

)
dv, k ∈ Z, j ∈ N.

Here i2 = −1, ϕ is a real-valued function of compact support ⊆ [−a, a],
a > 0, ϕ(x) ≥ 0,

∫ +∞
−∞ ϕ(x − u) du = 1, ∀x ∈ R, and {`k}k∈Z is a sequence of

linear operators from A1(D) = {f :D → C; f is analytic on D and continuous
on D} into A1(D), defined by recurrence as `k(f)(z) = `0(fk)(z), z ∈ D, where
fk(z) = f

(
z
2k

)
, z ∈ D and `0:A1(D) → A1(D) is a linear operator.

Also, let us consider the Jackson-type generalization of Lk,j(f)(z) given by

Ik,q(f)(z) = −
q∑

j=1

(−1)j

(
q

j

)
Lk,j(f)(z), ∀k ∈ Z, q ∈ N

and its slightly modified variant

Jk,q(f)(z) =
q∑

j=0

αjLk,j(f)(z), k ∈ Z, q ∈ N,

where αj = (−1)r−j
(
r
j

)
, j = 1, q, α0 = 1−

q∑
j=1

αj (these last coefficients appear

in the case of real smooth Picard operators in [1]).
Note that the real variants (for real-valued functions of a real variable) of

these operators were studied in [7], [5]–[6].
The aim of this paper is to prove approximation and shape preserving prop-

erties (in geometric function theory) for the above complex rotation-invariant
integral operators.

2 Approximation Properties

In this section we obtain Jackson-type rates in approximation by the complex
operators Bk(f)(z) and Lk,j(f)(z) and global smoothness preservation proper-
ties of them.

2
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We present

Theorem 2.1. (i) For all f ∈ A1(D), z ∈ D and k ∈ Z, we have

|f(z)−Bk(f)(z)| ≤ 3ω1

(
f ;

a

2k

)
D

;

(ii) For f ∈ A1(D), z ∈ D, k ∈ Z, j ∈ N, we have

|f(z)− Lk,j(f)(z)| ≤ ω1

(
f ;

mja + n

2k+r

)
D

,

where for fixed a > 0 it is assumed that

sup
z,y∈D
|z−y|≤a

|`0(f)(z)− f(y)| ≤ ω1

(
f ;

ma + n

2r

)
D

;

(iii) For the hypothesis in (ii) and q ∈ N, we have

|f(z)− Ik,q(f)(z)| ≤ (2q − 1)ω1

(
f ;

mqa + n

2k+r

)
D

;

(iv)

ω1(Bk(f); δ)D ≤ ω1(f ; δ)D, δ > 0, f ∈ A1(D), k ∈ Z,

ω1(Lk,j(f); δ)D ≤ ω1(f ; δ)D, δ > 0, k ∈ Z, j ∈ N,

ω1(Ik,q(f); δ)D ≤ (2q − 1)ω1(f ; δ)D, δ > 0, k ∈ Z, q ∈ N,

in the hypothesis

|`0(f)(x− u + h)− `0(f)(x− u)| ≤ ω1(f ;h)D, ∀h > 0,

∀x, u ∈ D with x− u, x− u + h ∈ D.

Proof. (i) Since

2k

∫ +∞

−∞
ϕ(−2kv) dv =

∫ +∞

−∞
ϕ(u) du = 1

we obtain

|f(z)−Bk(f)(z)| =
∣∣∣∣2k

∫ +∞

−∞
[f(z)− f(zeiv)]ϕ(−2kv) dv

∣∣∣∣
≤ 2k

∫ +∞

−∞
|f(z)− f(zeiv)|ϕ(−2kv) dv

≤ 2k

∫ +∞

−∞
ω1(f ; |z| · |1− eiv|)Dϕ(−2kv) dv

3
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≤ 2k

∫ +∞

−∞
ω1

(
f ; 2

∣∣∣∣sin v

2

∣∣∣∣)
D

ϕ(−2kv) dv

≤ 2k

∫ +∞

−∞
ω1(f ; |v|)Dϕ(−2kv) dv

≤ ω1

(
f ;

a

2k

)
D
· 2k

∫ +∞

−∞

[
2k

a
|v|+ 1

]
ϕ(−2kv) dv

= ω1

(
f ;

a

2k

)
D
·
[
1 +

2k · 2k

a

∫ +∞

−∞
|v|ϕ(−2kv) dv

]
.

But

2k · 2k

a

∫ +∞

−∞
|v|ϕ(−2kv) dv = (by u = −2kv)

=
2k · 2k

a
·
∫ +∞

−∞

|u|
2k

· ϕ(u) · du

2k
=

1
a

∫ +∞

−∞
|u|ϕ(u) du

=
1
a

∫ a

−a

|u|ϕ(u) du ≤ 1
a

∫ a

−a

|u| du =
2
a
· a = 2,

which immediately proves (i).
(ii) By

2k

j

∫ +∞

−∞
ϕ

(
−2k

j
v

)
dv =

∫ +∞

−∞
ϕ(u) du = 1,

we get

Lk,j(f)(z)− f(z) =
2k

j

∫ +∞

−∞

[
`k(f)(2kzeiv)− f(z)

]
ϕ

(
−2k

j
v

)
dv

=
2k

j

∫ +∞

−∞

[
`0(fk)(2kzeiv)− fk(2kz)

]
ϕ

(
−2k

j
v

)
dv(

by − 2k

j
v = u

)
≤

∫ +∞

−∞

∣∣`0(fk)
(
2kzei

(
− j

2k u
))
− fk(2kz)

∣∣ϕ(u) du

=
∫ a

−a

∣∣`0(fk)
(
2kzei

(
− j

2k u
))
− fk(2kz)

∣∣ϕ(u) du.

But ∣∣2kzei
(
− j

2k u
)
− 2kz

∣∣ ≤ 2k · 2 sin
∣∣∣∣ j

2 · 2k
u

∣∣∣∣ ≤ 2k · j|u|
2k

= j|u| ≤ ja,

for all |z| ≤ 1, k ∈ Z, j ∈ N, which implies (reasoning as in [5, p. 9])∫ a

−a

∣∣`0(fk)
(
2kzei

(
− j

2k u
))
− fk(2kz)

∣∣ϕ(u) du

≤
∫ a

−a

sup{|`0(fk)(w)− fk(y)|; |w − y| ≤ ja}ϕ(u) du ≤ ω1

(
f ;

mja + n

2k+r

)
D

,

4
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which proves (ii).

(iii) By the relation −
q∑

j=1

(−1)j
(
q
j

)
= 1, we get

|Ik,q(f)(z)− f(z)| =

∣∣∣∣∣∣−
q∑

j=1

(−1)j

(
q

j

)
Lk,j(f)(z)−

−
q∑

j=1

(−1)j

(
q

j

) f(z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
q∑

j=1

(−1)j

(
q

j

)
[Lk,j(f)(z)− f(z)]

∣∣∣∣∣∣
≤

q∑
j=1

(
q

j

)
· |Lk,j(f)(z)− f(z)|

≤
q∑

j=1

(
q

j

)
ω1

(
f ;

mja + n

2k+r

)
D

≤ (2q − 1)ω1

(
f ;

mqa + n

2k+r

)
D

,

which proves (iii) too.
(iv) Let |z1 − z2| ≤ δ, z1, z2 ∈ D. We get

|Bk(f)(z1)−Bk(f)(z2)| ≤ 2k

∫ +∞

−∞
|f(z1e

iv)− f(z2e
iv)|ϕ(−2kv) dv

≤ ω1(f ; |z1 − z2|)D ≤ ω1(f ; δ)D,

where from passing to supremum with |z1 − z2| ≤ δ, we obtain

ω1(Bk(f) : δ)D ≤ ω(f ; δ)D, ∀δ > 0, k ∈ Z.

Then,

|Lk,j(f)(z1)− Lk,j(f)(z2)|

≤ 2k

j

∫ +∞

−∞
|`k(f)(2kz1e

iv)− `k(f)(2kz2e
iv)|ϕ

(
−2k

j
v

)
dv(

by − 2k

j
v = u

)
≤

∫ +∞

−∞

∣∣`0(fk)
(
2kz1e

i
(
− j

2k u
))
− `0(fk)

(
2kz2e

i
(
− j

2k u
))∣∣ϕ(u) du

≤ ω1(f ; |z1 − z2|)D ≤ ω1(f ; δ)D,

where from passing to supremum with |z1 − z2| ≤ δ, we obtain

ω1(Lk,j(f); δ)D ≤ ω1(f ; δ)D.

5
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The inequality

ω1(Ik,q(f); δ)D ≤ (2q − 1)ω1(f ; δ)D

follows immediately from the above inequality for Lk,j and from the relation

q∑
j=1

(
q

j

)
= 2q − 1,

which proves the theorem.

Remark. Reasoning exactly as for Ik,q(f), we get

|Jk,q(f)(z)− f(z)| ≤ (2q − 1)ω1

(
f ;

mqa + n

2k+r

)
D

, ∀z ∈ D

and
ω1(Jk,q(f); δ)D ≤ (2q − 1)ω1(f ; δ)D, ∀δ > 0.

3 Geometric Properties

In this section we will prove some geometric properties of Bk(f), Lk,j(f) and
Ik,q(f) with respect to geometric function theory.

First, let us consider the following classes of functions:

S3 = {f ∈ A(D); |f ′′(z)| ≤ 1, ∀z ∈ D},
P = {f :D → C; f is analytic on D, f(0) = 1 and Re[f(z)] > 0, ∀z ∈ D},
SM = {f ∈ A(D); |f ′(z)| < M , ∀z ∈ D}, M > 1.

According to [10], if f ∈ S3 then f is starlike (and univalent) in D and
by e.g. [9, p. 111, Exercise 5.4.1] if f ∈ SM then f is univalent in

{
z ∈ C;

|z| < 1
M

}
⊂ D.

We present

Theorem 3.1. (i) If f(z) =
∞∑

p=0
apz

p is analytic in D and continuous in D,

then Bk(f)(z), Lk,j(f)(z) and Ik,q(f)(z) are analytic in D and continuous in
D. The analyticity of Lk,j(f)(z) and Ik,q(f)(z) is proved only for `0(f) ≡ f .

Also we can write

Bk(f)(z) =
∞∑

p=0

apbp,kzp, z ∈ D,

where

bp,k =
∫ +∞

−∞
cos

(pu

2k

)
ϕ(u) du, p = 0, 1, . . . , k ∈ Z.

6
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If `0(f) ≡ f then

Lk,j(f)(z) =
∞∑

p=0

apbp,k,jz
p, z ∈ D, k ∈ Z, j ∈ N

with

bp,k,j =
∫ ∞

−∞
cos

(
pju

2k

)
ϕ(u) du,

and

Ik,q(f)(z) =
∞∑

p=0

apcp,k,qz
p, z ∈ D, k ∈ Z, q ∈ N

with

cp,k,q =
q∑

j=1

(−1)j+1

(
q

j

)
bp,k,j .

If ϕ(x) = 1 − x, x ∈ [0, 1], ϕ(x) = 1 + x, x ∈ [−1, 0], ϕ(x) = 0, x ∈ R \ (0, 1),
then

b1,k = 22k+1

(
1− cos

1
2k

)
> 0, ∀k ∈ Z,

b1,k,j =
22k+1

j2

(
1− cos

j

2k

)
> 0, ∀k ∈ Z, j ∈ N,

c1,k,q =
q∑

j=1

(−1)j+1

(
q

j

)
22k+1

j2

(
1− cos

j

2k

)
, ∀k ∈ Z, q ∈ N.

(ii) It also holds that Bk(P) ⊂ P, ∀k ∈ N,

1
b1,k

Bk

(
S3,b1,k

)
⊂ S3,

1
b1,k

Bk(SM ) ⊂ SM/|b1,k| ∀k ∈ Z.

If `0(f) ≡ f then

Lk,j(P) ⊂ P,
1

b1,k,j
Lk,j

(
S3,b1,k,j

)
⊂ S3,

1
b1,k,j

Lk,j(SM ) ⊂ SM/|b1,k,j |, ∀k ∈ Z, j ∈ N.

Here in all the cases we take ϕ(x) = 1− x, x ∈ [0, 1], ϕ(x) = 1 + x, x ∈ [−1, 0],
ϕ(x) = 0, x ∈ R \ (0, 1) and we denote by S3,a = {f ∈ S3; |f ′′(z)| ≤ |a|} and
SB = {f ∈ A(D); |f ′(z)| < B, z ∈ D}.
Proof. (i) Let z0, zn ∈ D be with lim

n→∞
zn = z0. We get (as in the proof of

Theorem 2.1, (iv))

|Bk(f)(zn)−Bk(f)(z0)| ≤ ω1(f ; |zn − z0|)D,

|Lk,j(f)(zn)− Lk,j(f)(z0)| ≤ ω1(f ; |zn − z0|)D,

|Ik,q(f)(zn)− Ik,q(f)(z0)| ≤ ω1(f ; |zn − z0|)D,

7
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which proves the continuity of these operators in D.
It remains to prove that Bk(f)(z), Lk,j(f)(z) and Ik,q(f)(z) are analytic in

D.
By hypothesis we have f(z) =

∞∑
p=0

apz
p, z ∈ D. Let z ∈ D be fixed. We get

f(zeiv) =
∞∑

p=0

ape
ipvzp

and since |ape
ipv| = |ap| for all v ∈ R and the series

∞∑
p=0

apz
k is convergent,

it follows that the series
∞∑

p=0
ape

ipvzp is uniformly convergent with respect to

v ∈ R. This immediately implies that the series can be integrated term by
term, i.e.

Bk(f)(z) =
∫ +∞

−∞
f

(
zei

(
− u

2k

))
ϕ(u) du

=
∞∑

p=0

ap

[∫ +∞

−∞
ei

(
− pu

2k

)
ϕ(u) du

]
zp

=
∞∑

p=0

ap

[∫ +∞

−∞
cos

(
−pu

2k

)
ϕ(u) du

]
zp =

∞∑
p=0

apbp,kzk,

since cos is even function.
If `0(f) ≡ f then `k(f)(2kzeiv) = f(zeiv) and we obtain

Lk,j(f)(z) =
2k

j

∫ +∞

−∞
f(zeiv)ϕ

(
−2kv

j

)
dv

and reasoning as for Bk(f)(z) we immediately obtain

Lk,j(f)(z) =
∞∑

p=0

apbp,k,jz
p, z ∈ D,

with

bk,p,j =
∫ +∞

−∞
cos

(
pju

2k

)
ϕ(u) du.

The development for Ik,q(f)(z) follows easily from above, which proves (i).
For the particular choice of ϕ(x), we have:

b1,k,j =
∫ 0

−1

cos
(

ju

2k

)
· (1 + u) du +

∫ 1

0

cos
(

ju

2k

)
· (1− u) du

= 2
∫ 1

0

(1− u) cos
ju

2k
du = 2

[
sin

(
ju

2k

)
· 2k

j

]∣∣∣∣1
0

− 2
∫ 1

0

u cos
ju

2k
du

8
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=
2k+1

j
sin

j

2k
− 2

[
22k

j2
cos

ju

2k
+

2k

j
u sin

ju

2k

]∣∣∣∣1
0

=
22k+1

j2

(
1− cos

j

2k

)
> 0, ∀k ∈ Z, j ∈ N.

For j = 1 we get b1,k,1 := b1,k = 22k+1
(
1− cos 1

2k

)
> 0. Therefore,

c1,k,q =
q∑

j=1

(−1)j+1

(
q

j

)
b1,k,j = 22k+1

q∑
j=1

(−1)j+1

(
q

j

)
1
j2

(
1− cos

j

2k

)
.

(ii) Since from (i) we have

b0,k = b0,k,j =
∫ +∞

−∞
ϕ(u) du = 1, ∀k ∈ Z, j ∈ N,

it follows Bk(f)(0) = Lk,j(f)(0) = a0, i.e. if f ∈ P, f = U + iV then a0 = 1
and U > 0 on D, which implies Bk(f)(0) = Lk,j(f)(0) = 1,

Re[Bk(f)(z)] = 2k

∫ +∞

−∞
U(r cos(x + v), r sin(x + v))ϕ(−2kv) dv > 0

, ∀z = reix ∈ D, and for `0(f) ≡ f ,

Re[Lk,j(f)(z)] =
2k

j

∫ +∞

−∞
U(r cos(x + v), r sin(x + v))ϕ

(
−2kv

j

)
dv > 0,

for all z = reix ∈ D, i.e. Bk(P), Lk,j(P) ⊂ P.
Let f(0) = f ′(0)− 1 = 0. From (i) we get

1
b1,k

·Bk(f)(0) =
1

b1,k
B′

k(f)(0)− 1 = 0

and if `0(f) ≡ f then

1
b1,k,j

Lk,j(f)(0) =
1

b1,k,j
· L′k,j(f)(0)− 1 = 0.

Also, for f ∈ S3,b1,k we get∣∣∣∣ 1
b1,k

B′′
k (f)(z)

∣∣∣∣ ≤ 1
|b1,k|

2k

∫ +∞

−∞
|f ′′(zeiv)e2iv|ϕ(−2kv) dv

≤ 2k

∫ +∞

−∞
ϕ(−2kv) dv = 1,

i.e. 1
b1,k

Bk(f) ∈ S3, then for f ∈ SM it follows∣∣∣∣ 1
b1,k

B′
k(f)(z)

∣∣∣∣ ≤ 1
|b1,k|

2k

∫ +∞

−∞
|f ′(zeiv)eiv|ϕ(−2kv) dv <

M

|b1,k|
, z ∈ D,

9
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i.e. 1
b1,k

Bk(f) ∈ SM/|b1,k|.
The proof in the case of Lk,j is similar. The above proves the theorem.

Remarks. 1) From the proof of Theorem 3.1 we obtain the following geometric
properties: if f ∈ S3,b1,k

then Bk(f) is starlike (and univalent) on D, if f ∈ SM

then Bk(f) is univalent in{
z ∈ C; |z| < |b1,k|

M

}
⊂

{
z ∈ C; |z| < 1

M

}
,

and by (i)

|b1,k| ≤
∫ +∞

−∞

∣∣∣∣cos
(

u

2k

)∣∣∣∣ ϕ(u) du ≤
∫ +∞

−∞
ϕ(u) du = 1;

if `0(f) ≡ f then f ∈ S3,b1,k,j
implies that Lk,j(f) is starlike (and univalent) on

D and f ∈ SM implies that Lk,j(f) is univalent in{
z ∈ C; |z| < |b1,k,j |

M

}
⊂

{
z ∈ C; |z| < 1

M

}
,

since by (i)

|b1,k,j | ≤
∫ +∞

−∞

∣∣∣∣cos
(

pju

2k

)∣∣∣∣ ϕ(u) du ≤
∫ +∞

−∞
ϕ(u) du = 1.

2) Let `0(f) ≡ f . If c1,k,q 6= 0 then similarly we get

1
c1,k,q

Ik,q(SM ) ⊂ SM(2q−1)/|c1,k,q|,

that if f ∈ SM implies Ik,q(f) is univalent in{
z ∈ C; |z| < |c1,k,q|

M(2q − 1)

}
⊂

{
z ∈ C; |z| < 1

M

}
,

since by (i)

|c1,k,q| =

∣∣∣∣∣∣
q∑

j=1

(−1)j+1

(
q

j

)
b1,k,j

∣∣∣∣∣∣
≤

q∑
j=1

(
q

j

)
|b1,k,j | ≤

q∑
j=1

(
q

j

)
= 2q − 1.

3) For ϕ(x) = 1 − x, ∀x ∈ [0, 1], ϕ(x) = 1 + x, ∀x ∈ [−1, 0], ϕ(x) = 0,
x ∈ R \ (0, 1), let us consider

b1 = inf{|b1,k|; k ∈ N} = inf
{

22k+1

(
1− cos

1
2k

)
; k ∈ N

}
,

b∗1 = inf{|b1,k,j |; k, j ∈ N, j ≤ 2k+1} and c1,q = inf{|c1,k,q|; k ∈ N}.

10
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We have:

|b1,k| = 22k+1

(
1− cos

1
2k

)
= 22k+2 sin2 1

2k+1
=

(
2k+1 sin

1
2k+1

)2

,

|b1,k,j | =
22k+1

j2

(
1− cos

j

2k

)
=

22k+2

j2
sin2 j

2k+1
=

(
2k+1

j
· sin j

2k+1

)2

,

which by the fact that f(t) = t sin 1
t is increasing for t ≥ 1, f(1) = sin 1, implies

0 < b1 =
(

4 sin
1
4

)2

= 16 sin2 1
4

.

Also, since 1 ≤ 2k+1

j , j = 1, 2k+1, we get b∗1 = sin2 1. Therefore, it is immediate
the following.

Corollary 3.2. (i) If f ∈ A(D), |f ′′(z)| ≤ 16 sin2 1
4 , ∀z ∈ D then Bk(f) ∈ S3,

for all k ∈ N and if f ∈ SM , M > 1, then Bk(f) is univalent in
{
z ∈ C;

|z| < 16 sin2 1
4

M

}
, for all k ∈ N;

(ii) If f ∈ A(D), |f ′′(z)| ≤ sin2 1, ∀z ∈ D, then Lk,j(f) ∈ S3 and if f ∈ SM ,
M > 1, then Lk,j(f) is univalent in

{
z ∈ C; |z| < sin2 1

M

}
, for all k, j ∈ N,

j ≤ 2k+1.

Remarks. 1) Let `0(f) ≡ f . Reasoning as in the case of Ik,q(f)(z) (see Remark
2 after the proof of Theorem 3.1), we get that f ∈ SM implies Jk,q(f)(z) is
univalent in {

z ∈ Z; |z| <
|c∗1,k,q|

M(2q − 1)

}
,

where c∗1,k,q is the coefficient of z in the development in series of Jk,q(f)(z).
2) It would be of interest to find other geometric properties of the operators

Bk, Lk,j , Ik,q and Jk,q.
3) Let f ∈ A(D) we define fα(z) := f(αz) for all α, z ∈ D. The operator Φ

is called rotation invariant iff Φ(fα) = (Φ(f))α. We assume that

`0(f(2−k•))(az) = `0(f(2−kα•))(z), k ∈ Z,

a condition fulfilled trivially by Bk operators, case of `0(f) = f . Then easily
one proves that `k(fα) = (`k(f))α and Bk(fα) = (Bkf)α,

(Lk,j(fα)) = (Lk,j(f))α, Ik,q(fα) = (Ik,q(f))α, Jk,q(fα) = (Jk,qf)α.

So all operators we are dealing with here are rotation invariant.
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2

3 INTRODUCTION

In this note we combine a well known identity from the theory of approximation with

Bernstein polynomials 1 with other, of operational nature, involving classical

orthogonal polynomials 2.

We remind that the function 1

� 

Fn(x,α) = 1− x( ) + xeα / n[ ]n (1)

in the limit of large n, for x∈(0,1) and |α|≤1 converges to the exponential function,

namely

� 

lim
n→∞

Fn(x,α) = eαx    . (2)

After this remark, we remind that a set of operational identities (O.I.), which will be

given in the following, have been proved to play a useful role within the context of the

theory of classical and generalized orthogonal polynomials 3.

a) O.I. and Hermite Polynomials

For variables x and y∈C and n∈N, the following identity holds 2,

� 

e
y ∂2

∂x2 xn =Hn(x,y),

Hn(x,y) = n!
s=0

n/2[ ]
∑ xn−2sys

(n − 2s)!s!

(3)

with Hn(x,y) satisfying the properties
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3

� 

Hn(x,y) = −i 2y( )nHen ix
2y

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

Hn(2x,−1) =Hn(x)

Hn(x,−
1
2
) =Hen(x)

αnHn(x,y) =Hn(αx,α
2y)

(4)

b) O.I. and Laguerre Polynomials

Analogous formulae hold for Laguerre like polynomials too, in this case we have

  

� 

e−y
∂
∂x x

∂
∂x (−1)

nxn

n!

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ = Ln(x,y)

Ln(x,y) = n!
s=0

n
∑ (−x)s yn−s

(n − s)!(s!)2

(5)

where the Ln(x,y) are linked to the ordinary Laguerre by

  

� 

Ln(x,y) = ynLn
x
y

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟    . (6)

It is also worth noting that

� 

e
−y ∂

∂x x
∂
∂x ex =

e
x
1+y

1+ y
   . (7)

Still within the context of Laguerre polynomials we must underline that the use of

operators involving the negative derivative 2

  

� 

ˆ D x
−n (1) =

xn

n!
(8)

yields the further O.I. 2
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4

  

� 

y − ˆ D x
−1( )n

(1) = Ln(x,y)

e
(y − ˆ D x

−1)
(1) = eyJ0(2 x)

(9)

where J0(x) denotes the 0th order cylindrical Bessel Function.

In the following section we will exploit the previous identities to derive further

relations relevant to the families of polynomials we have dealt with. The possibility of

extending the results to Legendre and Jacobi-like polynomials will be discussed in the

concluding section.

4 OPERATIONAL IDENTITIES AND BERNSTEIN POLYNOMIALS

It is convenient, for the purposes of the present paper to recast Eq. (1) in the

polynomial form

� 

Fn(x,α) =
s=0

n
∑ n!

(n − s)!s!
xs Φn(α)[ ]s

Φn(α) = eα / n −1        .

(10)

According to the identities relevant to Hermite-like polynomials we find (see Eq. (3))

� 

e
y ∂2

∂x2 Fn(x,α) =
s=0

n
∑ n!

(n − s)!s!
Φn(α)[ ]sHs(x,y) (11)

which, on account of the last of Eqs. (4) and of the Hermite polynomials addition

theorem, yields

� 

e
y ∂2

∂x2 Fn(x,α) =
s=0

n
∑

n!Hs xΦn(α), y Φn(α)[ ]2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

(n − s)!s!
=Hs xΦn(α) +1,y Φn(α)[ ]2⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟   . (12)
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5

Now since

� 

e
y ∂2

∂x2 eαx = eαx+α2y (13)

we end up with the following asymptotic property of Hermite-like polynomials

� 

lim
n→∞

Hn xΦn(α) +1,y Φn(α)[ ]2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = eαx+α2y

|αx + α2y |<1

(14)

Further relations involving generalized forms of Hermite polynomials will be discussed

in the following.

Let us now apply the developed technique to the case of Laguerre type polynomials.

The identities (5-7) yield

  

� 

e−y
∂
∂x x

∂
∂x Fn(x,α) = n!

s=0

n
∑

(−1)s Φn(α)[ ]s Ls(x,y)
(n − s)!

= n!
s=0

n
∑

(−1)s Ls xΦn(α),yΦn(α)( )
(n − s)!

(15)

and since

� 

e
−y ∂

∂x x
∂
∂x eαx =

e
αx
1+αy

1+ αy
(16)

we end up with the asymptotic relation

  

� 

lim
n→∞

n!
(−1)s Ls xΦn(α), yΦn(α)( )

(n − s)!s=0

n
∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
e

αx
1+αy

1+ αy
,  | x |< 1,  | y |< 1

α
   . (17)
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The use of the first of the identities in Eq. (9), allows the derivation of the further

relations

  

� 

Fn(y − ˆ D x
−1,α)(1) = n!

s=0

n
∑

Ls(x,y) Φn(α)[ ]s

(n − s)!s!
= Ln xΦn(α),yΦn(α) + 1( )   . (18)

Therefore according to the second of Eqs. (9), we obtain the aymptotic relation

  

� 

lim
n→∞

Ln xΦn(α), yΦn(α) +1( ) = eαyJ0(2 αx) (19)

in the case of y=0 Eq. (19) reduces to

� 

lim
n→∞

Ln x(e
α
n −1)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = J0 2 αx( )    . (20)

By recalling that 4

� 

dm

dxm
Ln(x) = (−1)mLn−m

(m) (x)

dm

dxm
J0(2 x) = (−1)mx−

m
2 Jm(2 x)

(21)

we find from Eq. (20))

� 

lim
n→∞

Φn(α)[ ]mLn−m(m) (xΦn(α)) = (αx)
−m2 αmJm(2 αx)    . (22)

In the forthcoming section we will see how the so far obtained results can be

extended to other families of polynomials.
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5 CONCLUDING REMARKS

In the previous section we have used the O.I. of Hermite and Laguerre-like

polynomials to obtain asymptotic relations in the polynomial index. In this section we

will see that the method can be extended to other families of polynomials.

Legendre type polynomials

  

� 

2Ln(x,y) = n!
r=0

n
2[ ]
∑ yn−2r xr

(n − 2r)!(r!)2
(23)

have been shown in ref. (5) to be derivable from the O.I.

  

� 

y + 2 ˆ D x
−1 ∂

∂x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

n
(1) = 2 Ln(x,y)( ) (24)

and to satisfy the generating function

  

� 

n=0

∞
∑ t n

n! 2Ln(x,y)( ) = eyt I0 2t x( ) (25)

where I0(x) is the 0th order modified Bessel function. The use of the method described

before yields

  

� 

lim
n→∞ 2Ln x Φn,α)[ ]2,yΦn(α) +1

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = eyαI0 2α x( )     . (26)

By noting that the polynomials (23) reduce to the ordinary Legendre for 5

  

� 

2Ln −
1
4
(1− y2),y

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = Pn(y) (27)

we also find
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� 

lim
n→∞

n! Φn(α)[ ]s
(n − s)!s!

Ps cos(φ)( )
s=0

n
∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= eα cos(φ)J0 α sin(φ)( )    . (28)

The results of the present investigation will be extended, in a forthcoming note, to many

index special polynomials.
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Abstract. Some integral inequalities similar to the Ostrowski’s result for

Čebyšev’s difference and applications for perturbed generalized Taylor’s for-
mula are given.

Key Words: Ostrowski’s inequality, Čebyšev’s difference, Taylor’s formula.
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1. Introduction

In [5], A. Ostrowski proved the following inequality of Grüss type for the dif-
ference between the integral mean of the product and the product of the integral
means, or Čebyšev’s difference, for short:

(1.1)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ 1

8
(b− a) (M −m) ‖f ′‖[a,b],∞

provided g is measurable and satisfies the condition

−∞ < m ≤ g (x) ≤M <∞ for a.e. x ∈ [a, b] ;(1.2)

and f is absolutely continuous on [a, b] with f ′ ∈ L∞ [a, b] .
The constant 1

8 is best possible in (1.1) in the sense that it cannot be replaced
by a smaller constant.

In this paper we establish some similar results. Applications for perturbed gen-
eralized Taylor’s formulae are also provided.

2. Integral Inequalities

The following result holds.
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Theorem 1. Let f : [a, b] → K (K = R,C) be an absolutely continuous function
with f ′ ∈ L∞ [a, b] and g ∈ L1 [a, b] . Then one has the inequality

(2.1)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ ‖f ′‖[a,b],∞ ·

1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx.
The inequality (2.1) is sharp in the sense that the constant c = 1 in the left hand
side cannot be replaced by a smaller one.

Proof. We observe, by simple computation, that one has the identity

T (f, g) :=
1

b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx(2.2)

=
1

b− a

∫ b

a

[
f (x)− f

(
a+ b

2

)][
g (x)− 1

b− a

∫ b

a

g (y) dy

]
dx.

Since f is absolutely continuous, we have∫ x

a+b
2

f ′ (t) dt = f (x)− f
(
a+ b

2

)
and thus, the following identity that is in itself of interest,

T (f, g) =
1

b− a

∫ b

a

(∫ x

a+b
2

f ′ (t) dt

)[
g (x)− 1

b− a

∫ b

a

g (y) dy

]
dx(2.3)

holds.
Since∣∣∣∣∣
∫ x

a+b
2

f ′ (t) dt

∣∣∣∣∣ ≤
∣∣∣∣x− a+ b

2

∣∣∣∣ ess sup
t∈[x, a+b

2 ]
(t∈[ a+b

2 ,x])

|f ′ (t)| =
∣∣∣∣x− a+ b

2

∣∣∣∣ ‖f ′‖[x, a+b
2 ],∞

for any x ∈ [a, b] , then taking the modulus in (2.3), we deduce

|T (f, g)| ≤ 1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣ ‖f ′‖[x, a+b
2 ],∞

∣∣∣∣∣g (x)− 1
b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx
≤ sup
x∈[a,b]

{
‖f ′‖[x, a+b

2 ],∞
} 1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx
= max

{
‖f ′‖[a, a+b

2 ],∞ , ‖f ′‖[ a+b
2 ,b],∞

}
× 1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx
= ‖f ′‖[a,b],∞ ·

1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx
and the inequality (2.1) is proved.
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To prove the sharpness of the constant c = 1, assume that (2.1) holds with a
positive constant D > 0, i.e.,

(2.4)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ D ‖f ′‖[a,b],∞ ·

1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx.
If we choose K = R, f (x) = x− a+b

2 , x ∈ [a, b] and g : [a, b]→ R,

g (x) =

 −1 if x ∈
[
a, a+b

2

]
1 if x ∈

(
a+b

2 , b
]
,

then

1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

=
1

b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣ dx =
b− a

4
,

1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx =
b− a

4
,

‖f ′‖[a,b],∞ = 1

and by (2.4) we deduce

b− a
4
≤ D · b− a

4
,

giving D ≥ 1, and the sharpness of the constant is proved.

The following corollary may be useful in practice.

Corollary 1. Let f : [a, b]→ K be an absolutely continuous function on [a, b] with
f ′ ∈ L∞ [a, b] . If g ∈ L∞ [a, b] , then one has the inequality:

(2.5)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ 1

4
(b− a) ‖f ′‖[a,b],∞

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],∞

.

The constant 1
4 is sharp in the sense that it cannot be replaced by a smaller constant.
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Proof. Obviously,

1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx(2.6)

≤

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],∞

· 1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣ dx
=
b− a

4

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],∞

.

Using (2.1) and (2.6) we deduce (2.5).
Assume that (2.5) holds with a constant E > 0 instead of 1

4 , i.e.,

(2.7)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ E (b− a) ‖f ′‖[a,b],∞

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],∞

.

If we choose the same functions as in Theorem 1, then we get from (2.7)
b− a

4
≤ E (b− a) ,

giving E ≥ 1
4 .

Corollary 2. Let f be as in Theorem 1. If g ∈ Lp [a, b] where 1
p + 1

q = 1, p > 1,
then one has the inequality:∣∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣(2.8)

≤ (b− a)
1
q

2 (q + 1)
1
q

‖f ′‖[a,b],∞

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],p

.

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. By Hölder’s inequality for p > 1, 1
p + 1

q = 1, one has

1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx(2.9)

≤ 1
b− a

(∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣q dx
) 1
q
(∫ b

a

∣∣∣∣∣g (x)− 1
b− a

∫ b

a

g (y) dy

∣∣∣∣∣
p

dx

) 1
p

=
1

b− a

[
(b− a)q+1

2q (q + 1)

] 1
q
(∫ b

a

∣∣∣∣∣g (x)− 1
b− a

∫ b

a

g (y) dy

∣∣∣∣∣
p

dx

) 1
p

=
(b− a)

1
q

2 (q + 1)
1
q

(∫ b

a

∣∣∣∣∣g (x)− 1
b− a

∫ b

a

g (y) dy

∣∣∣∣∣
p

dx

) 1
p

.

Using (2.1) and (2.9), we deduce (2.8).
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Now, if we assume that the inequality (2.8) holds with a constant F > 0 instead
of 1

2 and choose the same functions f and g as in Theorem 1, we deduce

b− a
4
≤ F

(q + 1)
1
q

(b− a) , q > 1

giving F ≥ (q+1)
1
q

4 for any q > 1. Letting q → 1+, we deduce F ≥ 1
2 , and the

corollary is proved.

Finally, we also have

Corollary 3. Let f be as in Theorem 1. If g ∈ L1 [a, b] , then one has the inequality

(2.10)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣
≤ 1

2
‖f ′‖[a,b],∞

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],1

.

Proof. Since

1
b− a

∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣
∣∣∣∣∣g (x)− 1

b− a

∫ b

a

g (y) dy

∣∣∣∣∣ dx
≤ sup

x∈[a,b]

∣∣∣∣x− a+ b

2

∣∣∣∣
∥∥∥∥∥g − 1

b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],1

=
b− a

2

∥∥∥∥∥g − 1
b− a

∫ b

a

g (y) dy

∥∥∥∥∥
[a,b],1

the inequality (2.10) follows by (2.1).

Remark 1. Similar inequalities may be stated for weighted integrals. These in-
equalities and their applications in connection to Schwartz’s inequality will be con-
sidered in [3].

3. Applications to Taylor’s Formula

In the recent paper [4], M. Matić, J. E. Pečarić and N. Ujević proved the following
generalized Taylor formula.

Theorem 2. Let {Pn}n∈N be a harmonic sequence of polynomials, that is, P ′n (t) =
Pn−1 (t) for n ≥ 1, n ∈ N, P0 (t) = 1, t ∈ R. Further, let I ⊂ R be a closed interval
and a ∈ I. If f : I → R is a function such that for some n ∈ N, f (n) is absolutely
continuous, then

f (x) = T̃n (f ; a, x) + R̃n (f ; a, x) , x ∈ I,(3.1)

where

T̃n (f ; a, x) = f (a) +
n∑
k=1

(−1)k+1
[
Pk (x) f (k) (x)− Pk (a) f (k) (a)

]
(3.2)

and

R̃n (f ; a, x) = (−1)n
∫ x

a

Pn (t) f (n+1) (t) dt.(3.3)
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For some particular instances of harmonic sequences, they obtained the following
Taylor-like expansions:

f (x) = T (M)
n (f ; a, x) +R(M)

n (f ; a, x) , x ∈ I,(3.4)

where

T (M)
n (f ; a, x) = f (a) +

n∑
k=1

(x− a)k

2kk!

[
f (k) (a) + (−1)k+1

f (k) (x)
]
,(3.5)

R(M)
n (f ; a, x) =

(−1)n

n!

∫ x

a

(
t− a+ x

2

)n
f (n+1) (t) dt;(3.6)

and

f (x) = T (B)
n (f ; a, x) +R(B)

n (f ; a, x) , x ∈ I,(3.7)

where

T (B)
n (f ; a, x) = f (a) +

x− a
2

[f ′ (x) + f ′ (a)](3.8)

−
[n2 ]∑
k=1

(x− a)2k

(2k)!
B2k

[
f (2k) (x)− f (2k) (a)

]
,

and [r] is the integer part of r. Here, B2k are the Bernoulli numbers, and

R(B)
n (f ; a, x) = (−1)n

(x− a)n

n!

∫ x

a

Bn

(
t− a
x− a

)
f (n+1) (t) dt,(3.9)

where Bn (·) are the Bernoulli polynomials, respectively.
In addition, they proved that

f (x) = T (E)
n (f ; a, x) +R(E)

n (f ; a, x) , x ∈ I,(3.10)

where

T (E)
n (f ; a, x)(3.11)

= f (a) + 2
[n+1

2 ]∑
k=1

(x− a)2k−1 (4k − 1
)

(2k)!
B2k

[
f (2k−1) (x) + f (2k−1) (a)

]
and

R(E)
n (f ; a, x) = (−1)n

(x− a)n

n!

∫ x

a

En

(
t− a
x− a

)
f (n+1) (t) dt,(3.12)

where En (·) are the Euler polynomials.
In [1], S.S. Dragomir was the first author to introduce the perturbed Taylor

formula

f (x) = Tn (f ; a, x) +
(x− a)n+1

(n+ 1)!

[
f (n); a, x

]
+Gn (f ; a, x) ,(3.13)

where

Tn (f ; a, x) =
n∑
k=0

(x− a)k

k!
f (k) (a)(3.14)

and [
f (n); a, x

]
:=

f (k) (x)− f (k) (a)
x− a

;
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and had the idea to estimate the remainder Gn (f ; a, x) by using Grüss and Čebyšev
type inequalities.

In [4], the authors generalized and improved the results from [1]. We mention
here the following result obtained via a pre-Grüss inequality (see [4, Theorem 3]).

Theorem 3. Let {Pn}n∈N be a harmonic sequence of polynomials. Let I ⊂ R be
a closed interval and a ∈ I. Suppose f : I → R is as in Theorem 2. Then for all
x ∈ I we have the perturbed generalized Taylor formula:

f (x) = T̃n (f ; a, x) + (−1)n [Pn+1 (x)− Pn+1 (a)]
[
f (n); a, x

]
(3.15)

+G̃n (f ; a, x) .

For x ≥ a, the remainder G̃ (f ; a, x) satisfies the estimate∣∣∣G̃n (f ; a, x)
∣∣∣ ≤ x− a

2

√
T (Pn, Pn) [Γ (x)− γ (x)] ,(3.16)

provided that f (n+1) is bounded and

Γ (x) := sup
t∈[a,x]

f (n+1) (t) <∞, γ (x) := inf
t∈[a,x]

f (n+1) (t) > −∞,(3.17)

where T (·, ·) is the Čebyšev functional on the interval [a, x], that is, we recall

T (g, h) :=
1

x− a

∫ x

a

g (t)h (t) dt− 1
x− a

∫ x

a

g (t) dt · 1
x− a

∫ x

a

h (t) dt.(3.18)

In [2], the author has proved the following result improving the estimate (3.16).

Theorem 4. Assume that {Pn}n∈N is a sequence of harmonic polynomials and
f : I → R is such that f (n) is absolutely continuous and f (n+1) ∈ L2 (I). If x ≥ a,
then we have the inequality∣∣∣G̃n (f ; a, x)

∣∣∣(3.19)

≤ (x− a) [T (Pn, Pn)]
1
2

[
1

x− a

∥∥∥f (n+1)
∥∥∥2

2
−
([
f (n); a, x

])2
] 1

2

(
≤ x− a

2
[T (Pn, Pn)]

1
2 [Γ (x)− γ (x)] , if f (n+1) ∈ L∞ [a, x]

)
,

where ‖·‖2 is the usual Euclidean norm on [a, x], i.e.,∥∥∥f (n+1)
∥∥∥

2
=
(∫ x

a

∣∣∣f (n+1) (t)
∣∣∣2 dt) 1

2

.

Remark 2. If f (n+1) is unbounded on (a, x) but f (n+1) ∈ L2 (a, x), then the first
inequality in (3.19) can still be applied, but not the Matić-Pečarić-Ujević result
(3.16) which requires the boundedness of the derivative f (n+1).

The following corollary [2] improves Corollary 3 of [4], which deals with the
estimation of the remainder for the particular perturbed Taylor-like formulae (3.4),
(3.7) and (3.10).
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Corollary 4. With the assumptions in Theorem 4, we have the following inequal-
ities ∣∣∣G̃(M)

n (f ; a, x)
∣∣∣ ≤ (x− a)n+1

n!2n
√

2n+ 1
× σ

(
f (n+1); a, x

)
,(3.20)

∣∣∣G̃(B)
n (f ; a, x)

∣∣∣ ≤ (x− a)n+1

[
|B2n|
(2n)!

] 1
2

× σ
(
f (n+1); a, x

)
,(3.21) ∣∣∣G̃(E)

n (f ; a, x)
∣∣∣(3.22)

≤ 2 (x− a)n+1

(4n+1 − 1
)
|B2n+2|

(2n+ 2)!
−

[
2
(
2n+2 − 1

)
Bn+2

(n+ 1)!

]2
 1

2

×σ
(
f (n+1); a, x

)
,

and

|Gn (f ; a, x)| ≤ n (x− a)n+1

(n+ 1)!
√

2n+ 1
× σ

(
f (n+1); a, x

)
,(3.23)

where, as in [4],

G̃(M)
n (f ; a, x) = f (x)− TMn (f ; a, x)− (x− a)n+1 [1 + (−1)n]

(n+ 1)!2n+1

[
f (n); a, x

]
;

G̃(B)
n (f ; a, x) = f (x)− TBn (f ; a, x) ;

G̃(E)
n (f ; a, x) = f (x)−

4 (−1)n (x− a)n+1 (2n+2 − 1
)
Bn+2

(n+ 2)!

[
f (n); a, x

]
,

Gn (f ; a, x) is as defined by (3.13),

σ
(
f (n+1); a, x

)
:=
[

1
x− a

∥∥∥f (n+1)
∥∥∥2

2
−
([
f (n+1); a, x

])2
] 1

2

,(3.24)

and x ≥ a, f (n+1) ∈ L2 [a, x].

Note that for all the examples considered in [1] and [4] for f , the quantity
σ
(
f (n+1); a, x

)
can be completely computed and then those particular inequalities

may be improved accordingly. We omit the details.
Now, observe that (for x > a)

G̃n (f ; a, x) = (−1)n (x− a)Tn
(
Pn, f

(n+1); a, x
)
,

where Tn (·, ·; a, x) is the Čebyšev’s functional on [a, x] , i.e.,

Tn

(
Pn, f

(n+1); a, x
)

=
1

x− a

∫ x

a

Pn (t) f (n+1) (t) dt

− 1
x− a

∫ x

a

Pn (t) dt · 1
x− a

∫ x

a

f (n+1) (t) dt

=
1

x− a

∫ x

a

Pn (t) f (n+1) (t) dt− [Pn+1; a, x]
[
f (n); a, x

]
.

In what follows we will use the following lemma that summarizes some integral
inequalities obtained in the previous section.
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Lemma 1. Let h : [x, b] → R be an absolutely continuous function on [a, b] with
h′ ∈ L∞ [a, b] . Then

(3.25) |Tn (h, g; a, b)|

≤



1
4 (b− a) ‖h′‖[a,b],∞

∥∥∥g − 1
b−a

∫ b
a
g (y) dy

∥∥∥
[a,b],∞

if g ∈ L∞ [a, b] ;

(b−a)
1
q

2(q+1)
1
q
‖h′‖[a,b],∞

∥∥∥g − 1
b−a

∫ b
a
g (y) dy

∥∥∥
[a,b],p

if p > 1, 1
p + 1

q = 1

and g ∈ Lp [a, b] ;
1
2 ‖h

′‖[a,b],∞
∥∥∥g − 1

b−a
∫ b
a
g (y) dy

∥∥∥
[a,b],1

if g ∈ L1 [a, b] ;

where

Tn (h, g; a, b) :=
1

b− a

∫ b

a

h (x) g (x) dx− 1
b− a

∫ b

a

h (x) dx · 1
b− a

∫ b

a

g (x) dx.

Using the above lemma, we may obtain the following new bounds for the re-
mainder G̃n (f ; a, x) in the Taylor’s perturbed formula (3.15).

Theorem 5. Assume that {Pn}n∈N is a sequence of harmonic polynomials and
f : I → R is such that f (n) is absolutely continuous on any compact subinterval of
I. Then, for x, a ∈ I, x > a, we have that

(3.26)
∣∣∣G̃n (f ; a, x)

∣∣∣

≤



1
4 (x− a)2 ‖Pn−1‖[a,x],∞

∥∥f (n+1) −
[
f (n); a, x

]∥∥
[a,x],∞ if f (n+1) ∈ L∞ [a, x] ;

(x−a)
1
q

+1

2(q+1)
1
q
‖Pn−1‖[a,x],∞

∥∥f (n+1) −
[
f (n); a, x

]∥∥
[a,x],p

if p > 1, 1
p + 1

q = 1

and f (n+1) ∈ Lp [a, x] ;
1
2 (x− a) ‖Pn−1‖[a,x],∞

∥∥f (n+1) −
[
f (n); a, x

]∥∥
[a,x],1

.

The proof follows by Lemma 1 on choosing h = Pn, g = f (n+1), b = x.
The dual result is incorporated in the following theorem.

Theorem 6. Assume that {Pn}n∈N is a sequence of harmonic polynomials and
f : I → R is such that f (n+1) is absolutely continuous on any compact subinterval
of I. Then, for x, a ∈ I, x > a, we have that∣∣∣G̃n (f ; a, x)

∣∣∣(3.27)

≤



1
4 (x− a)2 ∥∥f (n+2)

∥∥
[a,x],∞ ‖Pn − [Pn+1; a, x]‖[a,x],∞

(x−a)
1
q

+1

2(q+1)
1
q

∥∥f (n+2)
∥∥

[a,x],∞ ‖Pn − [Pn+1; a, x]‖[a,x],p

if p > 1, 1
p + 1

q = 1

1
2 (x− a)

∥∥f (n+2)
∥∥

[a,x],∞ ‖Pn − [Pn+1; a, x]‖[a,x],1 .

(3.28)
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The proof follows by Lemma 1.
The interested reader may obtain different particular instances of integral in-

equalities on choosing the harmonic polynomials mentioned at the beginning of
this section. We omit the details.
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