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ON RELAXING THE POSITIVITY CONDITION OF
LINEAR OPERATORS IN STATISTICAL KOROVKIN-TYPE

APPROXIMATIONS

GEORGE A. ANASTASSIOU AND OKTAY DUMAN*

Abstract. In this paper, we relax the positivity condition of linear opera-
tors in the Korovkin-type approximation theory via the concept of statistical
convergence. Especially, we obtain various Korovkin-type approximation theo-
rems providing the statistical convergence to derivatives of functions by means
of a class of linear operators.

1. Introduction

Classical Korovkin-type theorems are mainly concerned with the approximation
of real-valued functions by means of positive linear operators (see, for instance,
[1, 2]). As usual, by positive linear operators we mean linear operators mapping all
non-negative functions into non-negative functions. In recent years, by relaxing this
positivity condition on linear operators, various approximation theorems have also
been obtained. For example, in [3], it was considered linear operators acting from
positive and convex functions into positive functions, and from positive and concave
functions into concave functions, and also from positive and increasing functions
into increasing functions. Some related results may also be found in the papers
[4, 5, 6]. However, almost all results in the classical theory are based on the validity
of the ordinary limit. In this study, by using the notion of statistical convergence,
we obtain various Korovkin-type theorems in statistical sense although the classical
limit fails. Actually, in classical convergence, almost all elements of the sequence
have to belong to arbitrarily small neighborhood of the limit while the main idea
of statistical convergence is to relax this condition and to demand validity of the
convergence condition only for a majority of elements. When proving our results, we
use not only classical techniques from approximation theory but also new methods
from summability theory.
We �rst recall some basic concepts used in the paper.
The (natural) density of a subset K of N, the set of all natural numbers, is

de�ned by

(1.1) �(K) := lim
j

#fn � j : n 2 Kg
j

when the limit exists, where #fBg denotes the cardinality of a set B: For example,
�(N) = 1; a set with �nite number of elements and a set of squares have density zero

Key words and phrases. Density, statistical convergence, linear operators, Korovkin theorem.
2000 Mathematics Subject Classi�cation. 41A25, 41A36.
*The second author was partially supported by the Scienti�c and Technological Research Coun-

cil of Turkey (TUBITAK); Project No: 108T229.
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2 GEORGE A. ANASTASSIOU AND OKTAY DUMAN

while even and odd numbers have density 1=2 (see [7]). In [8], using the density,
Fast introduced an alternative approach of the classical convergence, the so-called
statistical convergence, as follows: A sequence (xn) of real (or, complex) numbers
is statistically convergent to a number L if, for every " > 0;

(1.2) � (fn 2 N : jxn � Lj � "g) = 0:
Later, Freedman and Sember [9] generalized the concepts of density and statistical
convergence as A-density and A-statistical convergence by using a non-negative
regular summability matrix A = (ajn) in the following way. The A-density of a
subset K is given by

(1.3) �A(K) := lim
j

X
n2K

ajn:

A sequence (xn) is called A-statistically convergent to a number L if, for every
" > 0;

(1.4) �A (fn 2 N : jxn � Lj � "g) = 0:
It is easy to check that (1.4) is equivalent to

(1.5) lim
j

X
n:jxn�Lj�"

ajn = 0 for every " > 0:

Observe that every convergent sequence is both statistical convergent andA-statistical
convergent to the same value. But their converses do not hold true (see [10, 11]).
If one takes A = C1 = (cjn); the Cesáro matrix given by

cjn :=

8<:
1

j
; if 1 � n � j

0; otherwise,

then, (1.3) and (1.5) reduce to (1.1) and (1.2), respectively. Furthermore, if we
replace the matrix A by the identity matrix, then A-statistical convergence coincides
with ordinary convergence. In [12], Kolk proved that A-statistical convergence is
stronger than ordinary convergence provided that limj maxnfajng = 0:

2. Statistical Korovkin-Type Results

Let k be a non-negative integer. As usual, by Ck[0; 1] we denote the space of all
k-times continuously di¤erentiable functions on [0; 1] endowed with the sup-norm
k�k : Then, throughout the paper we consider the following function spaces:

A : =
�
f 2 C2[0; 1] : f � 0

	
;

B : =
�
f 2 C2[0; 1] : f 00 � 0

	
;

C : =
�
f 2 C2[0; 1] : f 00 � 0

	
;

D : =
�
f 2 C1[0; 1] : f � 0

	
;

E : =
�
f 2 C1[0; 1] : f 0 � 0

	
;

F : =
�
f 2 C1[0; 1] : f 0 � 0

	
:

G : = ff 2 C[0; 1] : f � 0g :
We also consider the test functions

ei(y) = yi; i = 0; 1; 2; :::

8



ON RELAXING THE POSITIVITY CONDITION OF LINEAR OPERATORS 3

Then we present the following results.

Theorem 2.1. Let A = (ajn) be a non-negative regular summability matrix, and
let fLng be a sequence of linear operators mapping C2[0; 1] onto itself. Assume that

(2.1) �A (fn 2 N : Ln (A \ B) � Ag) = 1:

Then

(2.2) stA � lim
n
kLn(ei)� eik = 0 for i = 0; 1; 2

if and only if

(2.3) stA � lim
n
kLn(f)� fk = 0 for all f 2 C2[0; 1]:

Proof. The implication (2:3) ) (2:2) is clear. Assume now that (2:2) holds. Let
x 2 [0; 1] be �xed, and let f 2 C2[0; 1]: By the boundedness and continuity of f;
for every " > 0; there exists a number � > 0 such that

(2.4) �"� 2M1�

�2
'x(y) � f(y)� f(x) � "+

2M1�

�2
'x(y)

holds for all y 2 [0; 1] and for any � � 1; where M1 = kfk and 'x(y) = (y � x)2:
Then, by (2.4), we obtain that

g�(y) :=
2M1�

�2
'x(y) + "+ f(y)� f(x) � 0

and

h�(y) :=
2M1�

�2
'x(y) + "� f(y) + f(x) � 0

hold for all y 2 [0; 1]: So, the functions g� and h� belong to A. On the other hand,
it is clear that, for all y 2 [0; 1];

g00�(y) =
4M1�

�2
+ f 00(y)

and

h00�(y) =
4M1�

�2
� f 00(y):

If we choose a number � such that

(2.5) � � max
�
1;
kf 00k �2

4M1

�
;

we observe that (2.4) holds for such ��s and also the functions g� and h� belong to
B because of g00�(y) � 0 and h00�(y) � 0 for all y 2 [0; 1]. So, we have g� ; h� 2 A\ B
under the condition (2.5). Let

K1 := fn 2 N : Ln (A \ B) � Ag:

By (2.1), it is clear that �A(K1) = 1; and so

(2.6) �A(NnK1) = 0:

Then, we may write that

Ln(g� ;x) � 0 and Ln(h� ;x) � 0 for every n 2 K1:

9



4 GEORGE A. ANASTASSIOU AND OKTAY DUMAN

Now using the fact that 'x 2 A\ B and considering the linearity of Ln; we obtain
that, for every n 2 K1;

2M1�

�2
Ln ('x;x) + "Ln(e0;x) + Ln (f ;x)� f(x)Ln(e0;x) � 0

and
2M1�

�2
Ln ('x;x) + "Ln(e0;x)� Ln (f ;x) + f(x)Ln(e0;x) � 0;

or equivalently

�2M1�

�2
Ln ('x;x)� "Ln(e0;x) + f(x) (Ln(e0;x)� e0)
� Ln(f ;x)� f(x)
� 2M1�

�2
Ln ('x;x) + "Ln(e0;x) + f(x) (Ln(e0;x)� e0) :

Then, we have

jLn(f ;x)� f(x)j � "+
2M1�

�2
Ln ('x;x) + ("+ jf(x)j) jLn(e0;x)� e0j

holds for every n 2 K1: The last inequality gives that, for every " > 0 and n 2 K1;

kLn(f)� fk � "+ ("+M1) kLn(e0)� e0k

+
2M1�

�2
kLn(e2)� e2k

+
4M1�

�2
kLn(e1)� e1k

+
2M1�

�2
kLn(e0)� e0k :

Hence, we get

(2.7) kLn(f)� fk � "+ C1

2X
k=0

kLn(ek)� ekk for every n 2 K1;

where C1 := max

�
"+M1 +

2M1�

�2
;
4M1�

�2

�
: Now, for a given r > 0; choose an

" > 0 such that " < r; and de�ne the following sets:

F : = fn 2 N : kLn(f)� fk � rg ;

Fk : =

�
n 2 N : kLn(ek)� ekk �

r � "
3C1

�
; k = 0; 1; 2:

Then, it follows from (2.7) that

F \K1 �
2[

k=0

(Fk \K1);

which yields, for every j 2 N, that

(2.8)
X

n2F\K1

ajn �
2X

k=0

 X
n2Fk\K1

ajn

!
�

2X
k=0

 X
n2Fk

ajn

!

10



ON RELAXING THE POSITIVITY CONDITION OF LINEAR OPERATORS 5

Now, taking limit as j !1 in the both-sides of (2.8) and using (2.2), we immedi-
ately see that

(2.9) lim
j

X
n2F\K1

ajn = 0:

Furthermore, since X
n2F

ajn =
X

n2F\K1

ajn +
X

n2F\(NnK1)

ajn

�
X

n2F\K1

ajn +
X

n2(NnK1)

ajn

holds for every j 2 N, letting again limit as j !1 in the last inequality and using
(2.6), (2.9) we obtain

lim
j

X
n2F

ajn = 0;

which means that
stA � lim

n
kLn(f)� fk = 0:

The theorem is proved. �

Theorem 2.2. Let A = (ajn) be a non-negative regular summability matrix, and
let fLng be a sequence of linear operators mapping C2[0; 1] onto itself. Assume that

(2.10) �A (fn 2 N : Ln (A \ C) � Cg) = 1:

Then

(2.11) stA � lim
n
k[Ln(ei)]00 � e00i k = 0 for i = 0; 1; 2; 3; 4

if and only if

(2.12) stA � lim
n
k[Ln(f)]00 � f 00k = 0 for all f 2 C2[0; 1]:

Proof. It is enough to prove the implication (2:11) ) (2:12). Let f 2 C2[0; 1] and
x 2 [0; 1] be �xed. As in the proof of Theorem 2.1, we can write that, for every
" > 0; there exists a � > 0 such that

(2.13) �"+ 2M2�

�2
�00x(y) � f 00(y)� f 00(x) � "� 2M2�

�2
�00x(y)

holds for all y 2 [0; 1] and for any � � 1; where �x(y) = � (y � x)
4

12
+ 1 and

M2 = kf 00k : Then, de�ne the following functions on [0; 1] :

u�(y) :=
2M2�

�2
�x(y) + f(y)�

"

2
y2 � f 00(x)

2
y2;

and

v�(y) :=
2M2�

�2
�x(y)� f(y)�

"

2
y2 +

f 00(x)

2
y2:

It follows from (2.13) that

u00�(y) � 0 and v00�(y) � 0 for all y 2 [0; 1];

11



6 GEORGE A. ANASTASSIOU AND OKTAY DUMAN

which implies that the functions u� and v� belong to C. Observe that �x(y) �
11

12
for all y 2 [0; 1]: Then�

�f(y) + "
2y
2 � f 00(x)

2 y2
�
�2

2M2�x(y)
� (M1 +M2 + ")�

2

M2

holds for all y 2 [0; 1]; where M1 = kfk and M2 = kf 00k as stated before. Now, if
we choose a number � such that

(2.14) � � max
�
1;
(M1 +M2 + ")�

2

M2

�
;

then inequality (2.13) holds for such ��s and

u�(y) � 0 and v�(y) � 0 for all y 2 [0; 1]:

Hence, we also get u� ; v� 2 A, which gives that the functions u� and v� belong to
A \ C under the condition (2.14). Now let

K2 := fn 2 N : Ln (A \ C) � Cg:

Then, by (2.10), we have

(2.15) �A(NnK2) = 0:

Also we get, for every n 2 K2;

[Ln(u�)]
00 � 0 and [Ln(v�)]

00 � 0:

Then, we obtain, for every n 2 K2; that

2M2�

�2
[Ln(�x)]

00 + [Ln(f)]
00 � "

2
[Ln(e2)]

00 � f 00(x)

2
[Ln(e2)]

00 � 0

and
2M2�

�2
[Ln(�x)]

00 � [Ln(f)]00 �
"

2
[Ln(e2)]

00 +
f 00(x)

2
[Ln(e2)]

00 � 0:

These inequalities yield that

2M2�

�2
[Ln(�x)]

00(x)� "

2
[Ln(e2)]

00(x) +
f 00(x)

2
[Ln(e2)]

00(x)� f 00(x)
� [Ln(f)]00(x)� f 00(x)

� �2M2�

�2
[Ln(�x)]

00(x) +
"

2
[Ln(e2)]

00(x) +
f 00(x)

2
[Ln(e2)]

00(x)� f 00(x):

Observe now that [Ln(�x)]00 � 0 on [0; 1] for every n 2 K2 because of �x 2 A \ C.
Using this, the last inequality gives, for every n 2 K2, that

j[Ln(f)]00(x)� f 00(x)j � �2M2�

�2
[Ln(�x)]

00(x) +
"

2
j[Ln(e2)]00(x)j

+
jf 00(x)j
2

j[Ln(e2)]00(x)� 2j ;

and hence

(2.16)
j[Ln(f)]00(x)� f 00(x)j � "+

"+ jf 00(x)j
2

j[Ln(e2)]00(x)� e002(x)j

+
2M2�

�2
[Ln(��x)]00(x):

12



ON RELAXING THE POSITIVITY CONDITION OF LINEAR OPERATORS 7

Now we compute the quantity [Ln(��x)]00 in inequality (2.16). Observe that

[Ln(��x)]00(x) =

�
Ln

�
(y � x)4
12

� 1
��00

(x)

=
1

12
[Ln(e4)]

00
(x)� x

3
[Ln(e3)]

00
(x) +

x2

2
[Ln(e2)]

00
(x)

�x
3

3
[Ln(e1)]

00
(x) +

�
x4

12
� 1
�
[Ln(e0)]

00
(x)

=
1

12

�
[Ln(e4)]

00
(x)� e004(x)

	
� x

3

�
[Ln(e3)]

00
(x)� e003(x)

	
+
x2

2

�
[Ln(e2)]

00
(x)� e002(x)

	
� x3

3

�
[Ln(e1)]

00
(x)� e001(x)

	
+

�
x4

12
� 1
��
[Ln(e0)]

00
(x)� e000(x)

	
:

Combining this with (2.16), for every " > 0 and n 2 K2; we have

j[Ln(f)]00(x)� f 00(x)j � "+

�
"+ jf 00(x)j

2
+
M2�x

2

�2

�
j[Ln(e2)]00(x)� e002(x)j

+
M2�

6�2
��[Ln(e4)]00 (x)� e004(x)��

+
2M2�x

3�2
��[Ln(e3)]00 (x)� e003(x)��

+
2M2�x

3

3�2
��[Ln(e1)]00 (x)� e001(x)��

+
2M2�

3�2

�
1� x4

12

� ��[Ln(e0)]00 (x)� e000(x)�� :
Therefore, we obtain, for every " > 0 and n 2 K2; that

(2.17)
[Ln(f)]00 � f 00 � "+ C2

4X
k=0

[Ln(ek)]00 � e00k ;
where C2 :=

"+M2

2
+
M2�

�2
and M2 = kf 00k as stated before. Now, for a given

r > 0; choose an " such that 0 < " < r; and consider the following sets:

G : =
�
n 2 N :

[Ln(f)]00 � f 00 � r
	
;

Gk : =

�
n 2 N :

[Ln(ek)]00 � e00k � r � "
5C2

�
; k = 0; 1; 2; 3; 4:

In this case, by (2.17),

G \K2 �
4[

k=0

(Gk \K2);

which yields, for every j 2 N, that

(2.18)
X

n2G\K2

ajn �
4X

k=0

 X
n2Gk\K2

ajn

!
�

4X
k=0

 X
n2Gk

ajn

!

13



8 GEORGE A. ANASTASSIOU AND OKTAY DUMAN

Letting j ! 1 in the both-sides of (2.18) and using (2.11), we immediately see
that

(2.19) lim
j

X
n2G\K2

ajn = 0:

Furthermore, if we use the inequalityX
n2G

ajn =
X

n2G\K2

ajn +
X

n2G\(NnK2)

ajn

�
X

n2G\K2

ajn +
X

n2(NnK2)

ajn

and if we take limit as j !1, then it follows from (2.15) and (2.19) that

lim
j

X
n2G

ajn = 0:

Thus, we get
stA � lim

n

[Ln(f)]00 � f 00 = 0:
The theorem is proved. �

Theorem 2.3. Let A = (ajn) be a non-negative regular summability matrix, and
let fLng be a sequence of linear operators mapping C1[0; 1] onto itself. Assume that

(2.20) �A (fn 2 N : Ln (D \ E) � Eg) = 1:

Then

(2.21) stA � lim
n
k[Ln(ei)]0 � e0ik = 0 for i = 0; 1; 2; 3

if and only if

(2.22) stA � lim
n
k[Ln(f)]0 � f 0k = 0 for all f 2 C1[0; 1]:

Proof. It is enough to prove the implication (2:21) ) (2:22). Let f 2 C1[0; 1] and
x 2 [0; 1] be �xed. Then, for every " > 0; there exists a positive number � such that

(2.23) �"� 2M3�

�2
w0x(y) � f 0(y)� f 0(x) � "+

2M3�

�2
w0x(y)

holds for all y 2 [0; 1] and for any � � 1; where wx(y) :=
(y � x)3

3
+ 1 and

M3 := kf 0k : Now considering the functions de�ned by

��(y) :=
2M3�

�2
wx(y)� f(y) + "y + yf 0(x)

and

��(y) :=
2M3�

�2
wx(y) + f(y) + "y � yf 0(x);

we can easily check that �� and �� belong to E for any � � 1; i.e. �0�(y) � 0;

�0�(y) � 0: Also, observe that wx(y) �
2

3
for all y 2 [0; 1]: Then

(�f(y)� "y � f 0(x)y) �2

2M3wx(y)
� (M1 +M3 + ")�

2

M3

14
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holds for all y 2 [0; 1]; where M1 = kfk. Now, if we choose a number � such that

(2.24) � � max
�
1;
(M1 +M3 + ")�

2

M3

�
;

then inequality (2.23) holds for such ��s and

��(y) � 0 and ��(y) � 0 for all y 2 [0; 1];

which yields that �� ; �� 2 D. Thus, we get �� ; �� 2 D \ E for any � satisfying
(2.24). Let

K3 := fn 2 N : Ln (D \ E) � Eg:
Then, by (2.20), we have

(2.25) �A(NnK3) = 0:

Also we get, for every n 2 K3;

[Ln(��)]
0 � 0 and [Ln(��)]

0 � 0:

Hence, we obtain, for every n 2 K3; that

2M3�

�2
[Ln(wx)]

0 � [Ln(f)]0 + "[Ln(e1)]0 + f 0(x)[Ln(e1)]0 � 0

and
2M3�

�2
[Ln(wx)]

0 + [Ln(f)]
0 + "[Ln(e1)]

0 � f 0(x)[Ln(e1)]0 � 0:

Then, we get, for any n 2 K3; that

�2M3�

�2
[Ln(wx)]

0(x)� "[Ln(e1)]0(x) + f 0(x)[Ln(e1)]0(x)� f 0(x)
� [Ln(f)]0(x)� f 0(x)
� 2M3�

�2
[Ln(wx)]

0(x) + "[Ln(e1)]
0(x) + f 0(x)[Ln(e1)]

0(x)� f 0(x);

and hence

(2.26)
j[Ln(f)]0(x)� f 0(x)j � "+ ("+ jf 0(x)j) j[Ln(e1)]0(x)� e01(x)j

+
2M3�

�2
[Ln(wx)]

0(x)

holds for every n 2 K3 because of the fact that the function wx belongs to D \ E .
Since

[Ln(wx)]
0(x) =

"
Ln

 
(y � x)3

3
+ 1

!#0
(x)

=
1

3
[Ln(e3)]

0
(x)� x [Ln(e2)]0 (x)

+x2 [Ln(e1)]
0
(x) +

�
1� x3

3

�
[Ln(e0)]

0
(x)

=
1

3

�
[Ln(e3)]

0
(x)� e03(x)

	
� x

�
[Ln(e2)]

0
(x)� e02(x)

	
+x2

�
[Ln(e1)]

0
(x)� e01(x)

	
+

�
1� x3

3

��
[Ln(e0)]

0
(x)� e00(x)

	
;

15



10 GEORGE A. ANASTASSIOU AND OKTAY DUMAN

it follows from (2.26) that

j[Ln(f)]0(x)� f 0(x)j � "+

�
"+ jf 0(x)j+ 2M3�x

2

�2

�
j[Ln(e1)]0(x)� e01(x)j

+
2M3�

3�2
��[Ln(e3)]0 (x)� e03(x)��

+
2M3�x

�2
��[Ln(e2)]0 (x)� e02(x)��

+
2M3�

�2

�
1� x3

3

� ��[Ln(e0)]0 (x)� e00(x)�� :
Thus, we deduce from the last inequality that

(2.27)
[Ln(f)]0 � f 0 � "+ C3

3X
k=0

[Ln(ek)]0 � e0k
holds for any n 2 K3; where C3 := "+M3+

2M3�

�2
. Now, for a given r > 0; choose

an " such that 0 < " < r; and consider the following sets:

H : =
�
n 2 N :

[Ln(f)]0 � f 0 � r
	
;

Hk : =

�
n 2 N :

[Ln(ek)]0 � e0k � r � "
4C3

�
; k = 0; 1; 2; 3:

In this case, by (2.27),

H \K3 �
3[

k=0

(Hk \K3);

which yields, for every j 2 N, that

(2.28)
X

n2H\K3

ajn �
3X

k=0

 X
n2Hk\K3

ajn

!
�

3X
k=0

 X
n2Hk

ajn

!
Letting j ! 1 in the both-sides of (2.28) and also using (2.21), we immediately
see that

(2.29) lim
j

X
n2H\K3

ajn = 0:

Now, using the fact thatX
n2H

ajn =
X

n2H\K3

ajn +
X

n2H\(NnK3)

ajn

�
X

n2H\K3

ajn +
X

n2(NnK3)

ajn

and taking limit as j !1, then it follows from (2.25) and (2.29) that

lim
j

X
n2H

ajn = 0:

Thus, we get
stA � lim

n

[Ln(f)]0 � f 0 = 0:
The theorem is proved. �

16



ON RELAXING THE POSITIVITY CONDITION OF LINEAR OPERATORS 11

Theorem 2.4. Let A = (ajn) be a non-negative regular summability matrix, and
let fLng be a sequence of linear operators mapping C[0; 1] onto itself. Assume that
(2.30) �A (fn 2 N : Ln (G) � Gg) = 1:
Then

(2.31) stA � lim
n
kLn(ei)� eik = 0 for i = 0; 1; 2

if and only if

(2.32) stA � lim
n
kLn(f)� fk = 0 for all f 2 C[0; 1]:

Proof. See the remarks in the next section. �

3. Concluding Remarks

In this section we summarize our results and give some applications in order to
show the importance of using the statistical approximation in this study.

1. In Theorem 2.4, if we take the condition

(3.1) fn 2 N : Ln (G) � Gg = N
instead of (2.30), then we observe that the linear operators Ln are positive for each
n 2 N. In this case, Theorem 2.4 is an A-statistical version of Theorem 1 of [13],
and the proof follows immediately. Actually, as in the previous proofs, we can show
that

(2:31), (2:32)

although the weaker condition (2.30) holds. Because of similarity, we omit the
proof of Theorem 2.4. Here, condition (2.30) enables us that Ln does not need
to be positive for each n 2 N; but it is enough to be positive for each n 2 K
with �A(K) = 1: Observe that condition (2.30), which is weaker than (3.1), can be
applied to many well-known results regarding statistical approximation of positive
linear operators, such as Theorem 3 of [14], Theorems 2.1 and 2.2 of [15], Theorem
2.1 of [16] and Theorem 1 of [17].

2. We can easily see that all of our theorems in this paper are also valid for any
compact subset of R instead of the unit interval [0; 1]:

3. In Theorems 2.1-2.3, if we replace the matrix A by the identity matrix and also
if we consider the conditions

fn 2 N : Ln (A \ B) � Ag = N;(3.2)

fn 2 N : Ln (A \ C) � Cg = N;(3.3)

fn 2 N : Ln (D \ E) � Eg = N(3.4)

instead of the conditions (2.1), (2.10) and (2.20), respectively, then we obtain Propo-
sitions 1-3 of [3]. Indeed, for example, assume that A is the identity matrix and
(3.2) holds. In this case, since A-statistical convergence coincides with the ordinary
convergence, the conditions (2.2) and (2.3) hold with respect to the classical limit
operator. Also, according to (3.2), for each n 2 N, the linear operators Ln in The-
orem 2.1 map positive and convex functions onto positive functions. Hence, we get
Proposition 1 of [3].

17



12 GEORGE A. ANASTASSIOU AND OKTAY DUMAN

4. Theorem 2.3 is valid if we replace the condition (2.20) by

�A (fn 2 N : Ln (D \ F) � Fg) = 1:

To prove this, it is enough to consider the function  x(y) = �
(y�x)3

3 +1 instead of
wx(y) de�ned in the proof of Theorem 2.3.

5. The following example clearly shows that our statistical approximation results
are stronger than the classical ones.

Example. Take A = C1 and de�ne the linear operators Ln on C2[0; 1] as follows:

(3.5) Ln(f ;x) =

�
�x2 if n = m2 (m 2 N)
Bn(f ;x); otherwise,

where the operators Bn(f ;x) denote the Bernstein polynomials. Then, observe that

�C1 (fn 2 N : Ln (A \ B) � Ag) = � (fn 2 N : Ln (A \ B) � Ag)
= �

��
n 6= m2 : m 2 N

	�
= 1:

Also we have, for each i = 0; 1; 2;

stC1 � limn kLn(ei)� eik = st� lim
n
kLn(ei)� eik = 0:

Then, it follows from Theorem 2.1 that, for all f 2 C2[0; 1];
stC1 � limn kLn(f)� fk = 0:

However, for the function e0 = 1; since

Ln(e0;x) :=

�
�x2 if n = m2 (m 2 N)
1 otherwise,

we get, for all x 2 [0; 1]; that the sequence fLn(e0;x)g is non-convergent. This
shows that Proposition 1 of [3] does not work while Theorem 2.1 still works for the
operators Ln de�ned by (3.5).

6. Finally, we would like to say that, for a future study, it must be interesting to
investigate all results of this paper for linear operators acting on various subclasses
of the space of all continuous and 2�-periodic functions on the whole real line.
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STATISTICAL WEIGHTED APPROXIMATION TO
DERIVATIVES OF FUNCTIONS BY LINEAR OPERATORS

GEORGE A. ANASTASSIOU AND OKTAY DUMAN

Abstract. In this paper, we obtain various Korovkin-type approximation the-
orems providing the statistical weighted convergence to derivatives of functions
by means of a class of linear operators acting on weighted spaces. We also dis-
cuss the contribution of our results to the approximation theory.

1. Introduction

Statistical convergence, while introduced over nearly �fty years ago (see [1]), has
only recently become an area of active research. Di¤erent mathematicians studied
properties of statistical convergence and applied this concept in various areas such
as measure theory [2], trigonometric series [3], approximation theory [4, 6, 5, 7],
locally convex spaces [8], summability theory and the limit points of sequences
[9, 10, 11, 12], densities of natural numbers [13], in the study of subsets of the
Stone-µChech compacti�cation of the set of natural numbers [14], and Banach spaces
[15]. This is because it is quite e¤ective, especially, when the classical limit of a
sequence fails. In classical convergence, almost all elements of the sequence have to
belong to arbitrarily small neighborhood of the limit; but the main idea of statisti-
cal convergence is to relax this condition and to demand validity of the convergence
condition only for a majority of elements. Statistical convergence which is a reg-
ular non-matrix summability method is also e¤ective in summing non-convergent
sequences. Recent studies demonstrate that the notion of statistical convergence
provides an important contribution to improvement of the classical analysis. In this
paper, by using statistical convergence, we study the statistical Korovkin theory,
which deals with the problem of approximating a function by means of a sequence
of linear operators acting on weighted spaces. We should note that the classical
Korovkin theory and its applications may be found in [16, 17].
This paper is organized as follows: The �rst section is devoted to basic de�nitions

and notations used in the paper. In the second section, we obtain some statistical
approximations to derivatives of functions by means of a class of linear operators
de�ned on various weighted spaces. Our primary motivation of this section is due to
[18]. In the �nal section, we demonstrate that our theorems generalize and improve
many well-known results in the approximation theory settings.

Key words and phrases. Statistical convergence, positive linear operators, weight function,
weighted spaces, Korovkin theorem.
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2 GEORGE A. ANASTASSIOU AND OKTAY DUMAN

Let (xn) be a sequence of numbers. Then, (xn) is called statistically convergent
to a number L if, for every " > 0;

lim
j

# fn � j : jxn � Lj � "g
j

= 0;

where #fBg denotes the cardinality of the subset B (see Fast [1]). We denote this
statistical limit by st� limn xn = L: Now, let A = (ajn) be an in�nite summability
matrix. Then, the A-transform of x, denoted Ax := ((Ax)j); is given by (Ax)j =P1
n=1 ajnxn; provided the series converges for each j: We say that A is regular if

limj(Ax)j = L whenever limj xj = L [19]. Assume now that A is a nonnegative
regular summability matrix. Then, a sequence (xn) is said to be A-statistically
convergent to L if, for every " > 0;

(1.1) lim
j

X
n: jxn�Lj�"

ajn = 0

holds (see [20]). It is denoted by stA � limn xn = L: It is not hard to see that if we
take A = C1; the Cesáro matrix de�ned by

cjn :=

8<:
1

j
; if 1 � n � j

0; otherwise,

then C1-statistical convergence coincides with statistical convergence. Also, if A is
replaced by the identity matrix, then we get the ordinary convergence of number
sequences. Observe that every convergent sequence is A-statistically convergent
to the same value for any non-negative regular matrix A: This follows from the
de�nition (1.1) and the well-known regularity conditions of A introduced by Sil-
verman and Toeplitz (see, for instance, Hardy [21, pp. 43-45]); but its converse
is not always true. Actually, if A = (ajn) is any nonnegative regular summability
matrix for which limj maxnfajng = 0; then A-statistical convergence is stronger
than convergence (see [11]).
Throughout the paper we use the following weighted spaces introduced by Efendiev

[18]. Let k be a non-negative integer. By C(k)(R) we denote the space of all func-
tions having k-th continuous derivatives on R. Now, let M (k)(R) denote the class
of linear operators mapping the set of functions f that are convex of order (k � 1)
on R; i.e., f (k)(x) � 0 holds for all x 2 R; into the set of all positive functions on
R. More precisely, for a �xed non-negative integer k and a linear operator L;
(1.2) L 2M (k)(R), L(f) � 0 for every function f satisfying f (k) � 0:
If k = 0; then M (0)(R) stands for the class of all positive linear operators. Assume
that � : R! R+ = (0;+1) is a function such that �(0) = 1; � is increasing on
R+ and decreasing on R�; and limx!�1 �(x) = +1: In this case, we consider the
following weighted spaces:

C(k)� (R) =
n
f 2 C(k)(R) : for some positive mf ;

���f (k)(x)��� � mf�(x); x 2 R
o
;

eC(k)� (R) =

�
f 2 C(k)� (R) : for some kf ; lim

x!�1

f (k)(x)

�(x)
= kf

�
;

bC(k)� (R) =

�
f 2 eC(k)� (R) : lim

x!�1

f (k)(x)

�(x)
= 0

�
;

B�(R) = fg : R! R : for some positive mg; jg(x)j � mg�(x); x 2 Rg :
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As usual, the weighted space B�(R) is endowed with the norm

kgk� := sup
x2R

jg(x)j
�(x)

for g 2 B�(R):

If k = 0; then we writeM(R); C�(R); eC�(R) and bC�(R) instead ofM (0)(R); C(0)� (R);eC(0)� (R) and bC(0)� (R); respectively.

2. Statistical Approximation Theorems

We �rst recall that the system of functions f0; f1; :::; fn continuous on an interval
[a; b] is called a Tschebyshev system of order n; or T�system, if any polynomial

P (x) = a0f0(x) + a1f1(x) + :::+ anfn(x)

has not more than n zeros in this interval with the condition that the numbers
a0; a1; :::; an are not all equal to zero.
Now, following Theorem 3.5 of Duman and Orhan [6] (see also [4, 7]), we obtain

the following statistical approximation result at once.

Theorem 2.1. Let A = (ajn) be a non-negative regular summability matrix, and
let ff0; f1; f2g be T�system on an interval [a; b]. Assume that fLng is a sequence
of positive linear operators from C[a; b] into itself. If

stA � lim
n
kLn(fi)� fikC[a;b] = 0; i = 0; 1; 2;

then, for all f 2 C[a; b]; we have
stA � lim

n
kLn(f)� fkC[a;b] = 0;

where the symbol k�kC[a;b] denotes the usual supremum norm on C[a; b]:

We �rst consider the case of k = 0:

Theorem 2.2. Let A = (ajn) be a non-negative regular summability matrix. As-
sume that the operators Ln : C�(R) ! B�(R) belong to the class M(R); i.e., they
are positive linear operators. Assume further that the following conditions hold:

(i) ff0; f1g and ff0; f1; f2g are T�systems on R,

(ii) lim
x!�1

fi(x)

1 + jf2(x)j
= 0 for each i = 0; 1;

(iii) lim
x!�1

f2(x)

�(x)
= mf2 > 0;

(iv) stA � limn kLn(fi)� fik� = 0 for each i = 0; 1; 2:

Then, for all f 2 eC�(R), we have
stA � lim kLn(f)� fk� = 0:

Proof. Let f 2 eC�(R) and de�ne a function g on R as follows
(2.1) g(y) = mf2 f(y)� kf f2(y);
where mf2 and kf are certain constants as in the de�nitions of the weighted spaces.
Then, we easily observe that g 2 bC�(R): Now we �rst prove that
(2.2) stA � lim

n
kLn(g)� gk� = 0:
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Since ff0; f1g is T�system on R, we know from Lemma 2 of [18] that, for each
a 2 R satisfying fi(a) 6= 0, i = 0; 1; there exists a function �a(y) such that

�a(a) = 0 and �a(y) > 0 for y < a;

and the function �a has the following form

(2.3) �a(y) = 0(a)f0(y) + 1(a)f1(y);

where j0(a)j =
����f1(a)f0(a)

����, and j1(a)j = 1: In fact here we de�ne
�a(y) =

�
F (y); if F (y) > 0 for y < a
�F (y); if F (y) < 0 for y < a;

where

F (y) =
f1(a)

f0(a)
f0(y)� f1(y):

Clearly here F (a) = 0; and F has no other root by ff0; f1g being a T�system. On
the other hand, by (ii) and (iii); we see, for each i = 0; 1; that

(2.4)
fi(y)

�(y)
=

fi(y)

1 + jf2(y)j

�
1

�(y)
+
jf2(y)j
�(y)

�
! 0 as y ! �1:

Now using the fact that g 2 bC�(R) and also considering (2.4) and (iii); for every
" > 0; there exists a positive number u0 such that the conditions

jg(y)j < "�(y);(2.5)

jfi(y)j < "�(y); i = 0; 1;(2.6)

�(y) < s0f2(y); (for a certain positive constant s0);(2.7)

hold for all y with jyj > u0. By (2.5)-(2.7), we can write that

(2.8) jg(y)j < s0"f2(y) whenever jyj > u0

and, for a �xed a > u0 such that fi(a) 6= 0; i = 0; 1;

(2.9) jg(y)j � M

ma
�a(y) whenever jyj � u0

where

(2.10) M := max
jyj�u0

jg(y)j and ma := min
jyj�u0

�a(y):

So, combining (2.8) with (2.9), we get

(2.11) jg(y)j < M

ma
�a(y) + s0"f2(y) for all y 2 R.
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Now, using linearity and monotonicity of the operators Ln; also considering (2.11)
and j1(a)j = 1, we obtain

jLn(g;x)j � Ln (jg(y)j ;x)

� M

ma
Ln (�a(y);x) + "s0Ln(f2(y);x)

=
M

ma
f0(a)Ln(f0(y);x) + 1(a)Ln(f1(y);x)g+ s0"Ln(f2(y);x)

� M

ma
fj0(a)j jLn(f0(y);x)� f0(x)j+ jLn(f1(y);x)� f1(x)jg

+
M

ma
f0(a)f0(x) + 1(a)f1(x)g+ "s0 jLn(f2(y);x)� f2(x)j

+"s0f2(x):

So we have

sup
jxj>u0

jLn(g(y);x)j
�(x)

� M

ma

(
j0(a)j sup

jxj>u0

jLn(f0(y);x)� f0(x)j
�(x)

+ sup
jxj>u0

jLn(f1(y);x)� f1(x)j
�(x)

)

+
M

ma

(
j0(a)j sup

jxj>u0

jf0(x)j
�(x)

+ sup
jxj>u0

jf1(x)j
�(x)

)

+"s0 sup
jxj>u0

jLn(f2(y);x)� f2(x)j
�(x)

+ "s0 sup
jxj>u0

jf2(x)j
�(x)

:

But by (2.4) and (iii), we get that

A(") :=
M

ma

(
j0(a)j sup

jxj>u0

jf0(x)j
�(x)

+ sup
jxj>u0

jf1(x)j
�(x)

)
+ "s0 sup

jxj>u0

jf2(x)j
�(x)

is �nite for every " > 0: Call now

B(") := max

�
M j0(a)j

ma
;
M

ma
; s0"

�
;

which is also �nite for every " > 0: Then we obtain

sup
jxj>u0

jLn(g(y);x)j
�(x)

� A(") +B(")
2X
i=0

sup
jxj>u0

jLn(fi(y);x)� fi(x)j
�(x)

;

which implies that

(2.12) sup
jxj>u0

jLn(g(y);x)j
�(x)

� A(") +B(")
2X
i=0

kLn(fi)� fik� :

On the other hand, since

kLn(g)� gk� � sup
jxj�u0

jLn(g(y);x)� g(x)j
�(x)

+ sup
jxj>u0

jLn(g(y);x)j
�(x)

+ sup
jxj>u0

jg(x)j
�(x)

;
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it follows from (2.5) and (2.12) that

(2.13)
kLn(g)� gk� � "+A(") +B1 kLn(g)� gkC[�u0;u0]

+B(")
2P
i=0

kLn(fi)� fik�

holds for every " > 0 and all n 2 N, where B1 = max
x2[�u0;u0]

1

�(x)
: By (iv); we write

immediately that

(2.14) stA � lim
n
kLn(fi)� fikC[�u0;u0] = 0; i = 0; 1; 2:

Since ff0; f1; f2g is T�system and g 2 C[�u0; u0], we get from (2.14) and Theorem
2.1 that

(2.15) stA � lim
n
kLn(g)� gkC[�u0;u0] = 0:

Now, for a given r > 0; choose " > 0 such that 0 < " + A(") < r: Then, consider
the following sets:

D : =
n
n 2 N : kLn(g)� gk� � r

o
;

D1 : =

�
n 2 N : kLn(g)� gkC[�u0;u0] �

r � "�A(")
4B1

�
;

D2 : =

�
n 2 N : kLn(f0)� f0k� �

r � "�A(")
4B(")

�
;

D3 : =

�
n 2 N : kLn(f1)� f1k� �

r � "�A(")
4B(")

�
;

D4 : =

�
n 2 N : kLn(f2)� f2k� �

r � "�A(")
4B(")

�
:

From (2.13), we easily observe that

D � D1 [D2 [D3 [D4;

which guarantees

(2.16)
X
n2D

ajn �
X
n2D1

ajn +
X
n2D2

ajn +
X
n2D3

ajn +
X
n2D4

ajn:

Letting j !1 in both sides of the inequality (2.16) and also considering (iv) and
(2.15) we get

lim
j

X
n2D

ajn = 0:

Therefore, we prove (2.2). Now, by (2.1), since f(y) =
1

mf2

g(y) +
kf
mf2

f2(y); we

may write, for all n 2 N, that

(2.17)
kLn(f)� fk� =

Ln� 1

mf2

g +
kf
mf2

f2

�
�
�
1

mf2

g +
kf
mf2

f2

�
�

� 1

mf2

kLn(g)� gk� +
kf
mf2

kLn(f2)� f2k� :
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Now for a given r0 > 0; de�ne the sets

E : =
n
n 2 N : kLn(f)� fk� � r0

o
;

E1 : =

�
n 2 N : kLn(g)� gk� �

mf2 r
0

2

�
;

E2 : =

�
n 2 N : kLn(f2)� f2k� �

mf2 r
0

2kf

�
:

Then, (2.17) implies that
E � E1 [ E2:

So, we get, for all j 2 N, that

(2.18)
X
n2E

ajn �
X
n2E1

ajn +
X
n2E2

ajn:

Taking limit as j ! 1 in the inequality (2.18), and applying (iv) and (2.2), we
immediately obtain

lim
j

X
n2E

ajn = 0;

which gives
stA � lim

n
kLn(f)� fk� = 0:

The theorem is proved. �

Now, we consider the case of k � 1:

Theorem 2.3. Let A = (ajn) be a non-negative regular summability matrix. As-
sume that the operators Ln : C

(k)
� (R) ! B�(R) belong to the class M (k)(R). Let

f0; f1; f2 be functions having k-th continuous derivatives on R. Assume further that
the following conditions hold:

(a) ff (k)0 ; f
(k)
1 g and ff (k)0 ; f

(k)
1 ; f

(k)
2 g are T�systems on R,

(b) lim
x!�1

f
(k)
i (x)

1 +
���f (k)2 (x)

��� = 0 for each i = 0; 1;

(c) lim
x!�1

f
(k)
2 (x)

�(x)
= m

(k)
f2

> 0;

(d) stA � limn
Ln(fi)� f (k)i


�
= 0 for each i = 0; 1; 2:

Then, for all f 2 eC(k)� (R), we have

stA � lim
n

Ln(f)� f (k)
�
= 0:

Proof. We say that f , g 2 eC(k)� (R) are equivalent provided that f (k)(x) = g(k)(x)

for all x 2 R. We denote the equivalent classes of f 2 eC(k)� (R) by [f ]: This means
that

[f ] = d�kdkf;

where dk denotes the k-th derivative operator, and d�k denotes the k-th inverse

derivative operator. Thus, by
h eC(k)� (R)

i
we denote the equivalent weighted spaces
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of eC(k)� (R). Then, for f 2 eC(k)� (R); consider

(2.19) Ln([f ]) = Ln
�
d�kdkf

�
=: L�n ( ) ;

where f (k) =  2 eC�(R); and L�n is an operator such that L�n = Lnd
�k: Then, we

can show that each L�n is a positive linear operator from eC�(R) into B�(R): Indeed,
if  � 0; i.e., f (k) � 0; then since each Ln belongs to the class M (k)(R); it follows
from (1.2) that Ln ([f ]) � 0; i.e., L�n ( ) � 0 (see also [18]). Now, for every x 2 R,
de�ning

 i(x) := f
(k)
i (x); i = 0; 1; 2;

it follows from (a)� (d) that

f 0;  1g and f 0;  1;  2g are T � systems on R;

lim
x!�1

 i(x)

1 + j 2(x)j
= 0 for each i = 0; 1;

lim
x!�1

 2(x)

�(x)
= m 2 > 0

stA � limn
Ln([fi])� f (k)i


�
= stA � limn kL�n( i)�  ik� = 0; i = 0; 1; 2:

So, all conditions of Theorem 2.2 are satis�ed for the functions  0;  1;  2 and the
positive linear operators L�n given by (2.19). Therefore, we immediately get

stA � lim
n
kL�n( )�  k� = 0;

or equivalently,

stA � lim
n

Ln(f)� f (k)
�
= 0:

The theorem is proved. �

Finally, we have the following result.

Theorem 2.4. Assume that conditions (a); (b) and (d) of Theorem 2:3 hold. Let
�1 : R! R+ = (0;+1) be a function such that �1(0) = 1; �1 is increasing on R+
and decreasing on R�; and lim

x!�1
�1(x) = +1:If

(2.20) lim
x!�1

�(x)

�1(x)
= 0;

and

(2.21) lim
x!�1

f
(k)
2 (x)

�1(x)
= m

(k)
f2

> 0

then, for all f 2 C(k)� (R); we have

stA � lim
n

Ln(f)� f (k)
�1

= 0:

Proof. Let f 2 C(k)� (R): Since
��f (k)(x)��
�(x)

� mf for every x 2 R, we get

lim
x!�1

��f (k)(x)��
�1(x)

� lim
x!�1

��f (k)(x)��
�(x)

�(x)

�1(x)
� mf lim

x!�1

�(x)

�1(x)
:
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Then, by (2.20), we easily obtain that

lim
x!�1

f (k)(x)

�1(x)
= 0;

which yields

f 2 bC(k)�1
(R) � eC(k)�1

(R):

Also observe that, by (2.20), condition (d) of Theorem 2.3 are satis�ed for the
weight function �1: So, the proof follows from Theorem 2.3 and condition (2.21) at
once. �

3. Concluding Remarks

If we replace the matrix A = (ajn) in Theorems 2.3 and 2.4 with the identity
matrix, then one can immediately get the following results in [18], respectively.

Corollary 3.1 ([18]). Let f0; f1; f2 be functions having k-th continuous derivatives
on R such that ff (k)0 ; f

(k)
1 g and ff (k)0 ; f

(k)
1 ; f

(k)
2 g are T�systems on R. Assume that

the operators Ln : C
(k)
� (R) ! B�(R) belong to the class M (k)(R). Assume further

that the following conditions hold:

(i) lim
t!�1

f
(k)
i (x)

1 +
���f (k)2 (x)

��� = 0 (i = 0; 1);

(ii) lim
t!�1

f
(k)
2 (x)

�(x)
= m

(k)
f2

> 0;

(iii) limn

Ln(fi)� f (k)i


�
= 0 (i = 0; 1; 2).

Then, for all f 2 eC(k)� (R); limn
Ln(f)� f (k)� = 0:

Corollary 3.2 ([18]). Assume that conditions (i) and (iii) of Corollary 3:1 are
satis�ed. If (2:20) and (2:21) hold, then, for all C(k)� (R);

lim
n

Ln(f)� f (k)
�1

= 0:

Assume now that fLng is a sequence of linear operators satisfying all condi-
tions of Corollary 3:1. Let A = (ank) be a non-negative regular matrix such that
limj maxnfajng = 0: In this case, we know [11] that A�statistical convergence is
stronger than the ordinary convergence. So, we can choose a sequence (un) that
is A�statistically null but non-convergent (in the usual sense). Without loss of
generality we may assume that (un) is a non-negative; otherwise we would replace
(un) by (junj): Now de�ne

(3.1) Tn(f ;x) := (1 + un)Ln(f ;x):

By Corollary 3:1; we get, for all f 2 eC(k)� (R); that

(3.2) lim
n

Ln(f)� f (k)
�
= 0:

Since stA � limun = 0; it follows from (3:1) and (3:2) that

stA � lim
n

Tn(f)� f (k)
�
= 0:
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However, since (un) is non-convergent, the sequence
nTn(f)� f (k)�o does not

converge to zero. So, Corollary 3:1 does not work for the operators Tn given by
(3:1) while Theorem 2.3 still works. It clearly shows that our results are non-trivial
generalizations of that of Efendiev [18]. Observe that if one takes A = C1; the
Cesàro matrix of order one, then Theorem 1 of [7] is an immediate consequence of
our Theorem 2.3.
Now, in Theorem 2.4, take k = 0 and choose

(3.3) fi(x) =
xi�(x)

1 + x2
; i = 0; 1; 2:

Then, it is easy to check that ff0; f1g and ff0; f1; f2g are T�systems on R. We also
observe that the test functions fi given by (3.3) satisfy the following conditions.

lim
x!�1

f0(x)

1 + jf2(x)j
= lim

x!�1

�(x)

1 + x2 + x2�(x)
= 0;

lim
x!�1

f1(x)

1 + jf2(x)j
= lim

x!�1

x�(x)

1 + x2 + x2�(x)
= 0;

lim
x!�1

f2(x)

�(x)
= lim

x!�1

x2

1 + x2
= 1:

Therefore, with these choices, Theorem 3 of [5] is an immediate consequence of
Theorem 2.4 for k = 0 as follows:

Corollary 3.3 ([5]). Let A = (ajn) be a non-negative regular summability matrix,
and let fLng be a sequence of positive linear operators from C�(R) into B�(R):
Assume that the weight functions � and �1 satisfy (2:20). If

stA � lim
n
kLn(fi)� fik� = 0 ; i = 0; 1; 2;

where the functions fi is given by (3:3); then, for all f 2 C�(R); we have
stA � lim

n
kLn(f)� fk�1 = 0:

Finally, if we replace the matrix A = (ajn) in Corollary 3.3 with the identity
matrix, then we obtain the following classical weighted approximation result for a
sequence of positive linear operators (see [22, 23]).

Corollary 3.4. Let fLng be a sequence of positive linear operators from C�(R)
into B�(R): Assume that the weight functions � and �1 satisfy (2:20). If

lim
n
kLn(fi)� fik� = 0 ; i = 0; 1; 2;

where the functions fi is given by (3:3); then, for all f 2 C�(R); we have
lim
n
kLn(f)� fk�1 = 0:
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GAMMA BETA PRODUCTS

by

Saralees Nadarajah1

ABSTRACT: The important problem of the product of gamma and beta distributed
random variables is considered. More than ten motivating applications are discussed from
diverse areas such as expected cost modeling, fading channels in wireless communication,
bioinformatics, income modeling, intracell interference, insurance, reliability, mortality,
video teleconferencing, production economics, industrial hygiene, time series modeling,
probability theory, hydrology and building energy consumption. Exact expressions are
derived for the probability density function, cumulative distribution function and moment
properties of the product. A program is provided for computing the associated percentage
points.

KEYWORDS AND PHRASES: Beta distribution; Gamma distribution; Products of
random variables.

1 INTRODUCTION

For given random variables X and Y , the distribution of the product Z = XY is of interest
in many areas of the sciences, engineering and medicine. In this paper, we study the
distribution of Z = XY when X and Y are independent random variables with X having
the gamma distribution given by the probability density function (pdf):

fX(x) =
λβxβ−1 exp (−λx)

Γ(β)
(1)

(for x > 0, β > 0 and λ > 0) and Y having the beta distribution given by the pdf:

fY (y) =
ya−1(1 − y)b−1

B(a, b)
(2)

(for 0 < y < 1, a > 0 and b > 0). The study of this particular product is of importance in
many applied areas. More than ten motivating examples are discussed in Section 2. The
exact expressions for both the pdf and the cumulative distribution function (cdf) of Z = XY
are derived in Section 3. The moment properties of Z = XY including characteristic
function, moments, factorial moments, skewness and kurtosis are considered in Section
4. The proofs are given for the main results but are omitted when particular cases are
considered. The detailed proofs of all the results can be obtained from the author. In
Section 5, the percentage points associated with Z = XY are considered and a computer
program provided.

1Author’s address: School of Mathematics, University of Manchester, Manchester M60 1QD, UK, E-mail:

saralees.nadarajah@manchester.ac.uk
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The calculations of this paper involve several special functions, including the Gauss
hypergeometric function defined by

2F1 (a, b; c;x) =
∞

∑

k=0

(a)k (b)k
(c)k

xk

k!
,

the 2F2 hypergeometric function defined by

2F2 (a, b; c, d;x) =

∞
∑

k=0

(a)k (b)k
(c)k (d)k

xk

k!
,

the incomplete gamma function defined by

γ(a, x) =

∫ x

0
exp(−t)ta−1dt,

the complementary incomplete gamma function defined by

Γ(a, x) =

∫

∞

x
exp(−t)ta−1dt

and, the Kummer function defined by

Ψ(a, b;x) =
1

Γ(a)

∫

∞

0
exp (−xt) ta−1(1 + t)b−a−1dt,

where (e)k = e(e + 1) · · · (e + k − 1) denotes the ascending factorial. The properties of the
above special functions can be found in Prudnikov et al. (1986) and Gradshteyn and Ryzhik
(2000).

2 MOTIVATING APPLICATIONS

2.1 UNDER REPORTED INCOME

In the economic literature, the under reported income is commonly expressed by the mul-
tiplicative relationship Z = XY , where Y is a multiplicative error and X denotes the true
income. It is well known that if Y has the power function distribution (a particular case of
the beta distribution) then X is Pareto distributed if and only if Z is also, see Krishnaji
(1970). In practice, the gamma distribution is often preferred as a model for income, see
e.g. Grandmont (1987), Milevsky (1997), Sarabia et al. (2002), and Silver et al. (2002).
This raises the important question: what is the distribution of the under reported income
Z = XY if X is gamma distributed?

2.2 HYDROLOGY

Let X and Y be independent random variables representing the rainfall intensity and the
duration of a storm, respectively. Then Z = XY will represent the amount of rainfall
produced by that storm. Since gamma distributions are popular models for rainfall intensity
and since Y will have a probable maximum it will be most reasonable to assume that X
and Y are distributed according to (1) and (2), respectively, after suitable scaling.

2
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Another example is the distribution of peak runoff considered by Gottschalk and Wein-
gartner (1998). Peak runoff is the product of the rainfall volume scaled with respect to
its duration, which is assumed to follow a gamma distribution, and the runoff coefficient,
which is assumed to follow a beta distribution.

2.3 INSURANCE MODELING

A recent paper by Frostig (2001) states that “. . . an individual risk is a product of two
random variables: (1) a Bernoulli random variable which is an indicator for the event that
claim has occurred; (2) the claim amount, which is a positive random variable . . ..” From a
statistical perspective, it will be reasonable to rephrase the definition of individual risk as
the product Z = XY , where X denotes the claim amount and Y denotes the probability
that the event that claim has occurred. Since gamma distributions are popular models for
claim amounts (see ter Berg (1980/81), Gerber (1992) and dos Reis (1993); to mention just
a few), it will be reasonable to assume that X is a gamma random variable. On the other
hand, since beta distributions are the only standard models for data on the unit interval,
it will be reasonable to assume that Y is a beta random variable.

2.4 MORTALITY

An example similar to the above arises with respect to mortality. In fact, mortality is
the product of two random variables: 1) a Bernoulli random variable equal to zero with
probability h and equal to one with probability 1 − h. It determines whether or not any
biomass is lost to mortality; 2) L, the amount of biomass lost given a mortality event.

2.5 BIOINFORMATICS

Products of gamma and beta random variables arise also in theoretical aspects of bioinfor-
matics. An example is the model for crossover process involving two non–sister chromatids,
i.e. chromatids originating from homologous chromosomes, see Zhao and Speed (2006).
Models for the crossover process are important to the understanding of crossing over mech-
anisms, to the construction of genetic maps, and to the strategy of finding disease genes.

2.6 FADING CHANNELS

Wireless communication systems are subject to fading arising out of multipath propagation.
This short–term fading leads to variation in signal strength which may result in the loss
of signal. The most commonly known model for the received signal envelope, Z say, is the
Nakagami distribution (Nakagami, 1960) given by the pdf:

fZ(z) =
2ααz2α−1 exp

(

−αz2/λ
)

Γ(α)λα ,

where α is the Nakagami parameter and λ is the average power given by < Z2 >. When
the wireless channel is also subject to shadowing, the local mean power becomes random
(Simon and Alouni, 2000). This can be taken into account by defining λ to be a random

3
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variable, say Λ. Thus, in the presence of shadowing, the pdf of the envelope in combined
fading and shadowing can be expressed as:

fZ(z) = 2αz

∫

∞

0

xα−1 exp(−x/λ)

Γ(α)λα g(λ)dλ, (3)

where x = αz2 and where g(·) denotes the pdf of Λ. If g(·) is a beta pdf then the integral
in (3) amounts to computing the product of gamma and beta random variables.

2.7 VIDEO TELECONFERENCING

A flexible model called the group-of-pictures gammabeta auto-regression (GOP GBAR)
model for video teleconferencing is based on products of independent gamma and beta
random variables, see Heyman (1997) and Frey and Nguyen–Quang (2000) for details.

2.8 EXPECTED COST

Suppose an event occurs with probability p and results in a cost c. The expected cost will
be c × p + 0 × (1 − p) = cp. In reality, both c and p will be subject to some random errors
and so will the expected cost. Assume that X and Y are independent random variables
representing the values of c and p, respectively. The most natural model for X will be the
gamma distribution (it being the most popular model for skewed data) given by (1). The
most natural model for Y will be the beta distribution (the only standard model for data on
the unit interval) given by (2). Thus, the expected cost can be represented by the random
variable Z = XY .

2.9 INTRACELL INTERFERENCE

In multi–cellular multiple input–multiple-output (MIMO) systems, there is co–channel in-
terference from users within the same cell as well as from other cell users. Consistent with
practical scenarios, the co–channel interference is categorized into two groups: intracell
interference from users within the same cell as the desired user and intercell interference
from outer cell users. Tokgoz and Rao (2006) have shown that the intracell interference
distribution can be approximated by that of a product of independent gamma and beta
random variables.

2.10 PRODUCTION ECONOMICS

In production economics, one is often interested in estimating the system failure rate in
various levels of criticality in order to incorporate failure data in one level into analyzing
failure rates in any other levels. A common model is that the gamma distribution is assumed
for the initial failure rate and the beta for the criticality probabilities, see e.g. Jun et al.
(1999). This naturally gives rise to products of gamma and beta random variables.
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2.11 INDUSTRIAL HYGIENE

It is well established in the industrial hygiene literature that the beta distribution is a
good descriptor of respirator penetration values experienced by an individual worker from
wearing to wearing, and of average respirator penetration values experienced by different
workers, see e.g. Nicas (1996). Also, the gamma distribution can reasonably describe
the time-varying Mycobacterium tuberculosis aerosol exposure levels experienced by health
care workers. Thus, the computation of such quantities as an individual worker’s cumulative
risk of infection, and the worker population mean cumulative risk of infection will involve
products of gamma and beta random variables.

2.12 RELIABILITY

Rekha and Sunder (1997) examined the survival of a component, prone to attacks by a
succession of random stresses, under the assumption that the strength of the component
is attenuated and these attenuated factors are random variables. Three scenarios were
considered: (i) when the stress strength follows exponential distribution and the random
attenuation factors follow rectangular distribution; (ii) when the stress strength follows
exponential distribution with the attenuation factors following beta distribution; (iii) when
the stress following exponential distribution, strength following gamma distribution and
the random attenuation factors following beta distribution. Each case clearly involves the
product of gamma and beta random variables.

Another reliability problem with products of the above kind has been studied by Sahinoglu
and Libby (2003). The Forced Outage Ratio of a hardware or a software component is de-
fined as the failure rate divided by the sum of the failure and the repair rates. The common
model for the FOR is a beta distribution. The common models for failure and repair rates
are the gamma distributions.

2.13 BEHRENS–FISHER PROBLEM

The generalized Behrens-Fisher distribution is defined as the convolution of two Student’s t
distributions and is related to the inverted–gamma distribution by means of a representation
theorem as a scale mixture of normals where the mixing distribution is a convolution of
two inverted–gamma distributions. Thus, results on the convolution of inverted–gamma
distributions may result on interesting properties of the Behrens–Fisher distribution (Giron
and del Castillo, 2001). If the two inverted–gamma random variables, say X and Y , have
the same scale parameter then their convolution is equivalent to the product of gamma
and beta random variables. This is easy to see because X + Y = 1/(1/X) + 1/(1/Y ) =
(1/X + 1/Y )/((1/X)(1/Y )).

2.14 BUILDING ENERGY CONSUMPTION

Meng et al. (2007) modeled monthly, daily and hourly rainfall patterns in Guangzhou area
of China in an effort to cut down on building energy consumption. Meng et al. (2007)
found that “distribution of daily rainfall month–by–month shows a gamma distribution
model agrees well with daily rainfall distribution” and that “distribution patterns of hourly

5

NADARAJAH:GAMMA BETA PRODUCTS 35



rainfall percentage, both in the rainy season and non–rainy season, coincide well with the
beta distribution”. Thus, we have a case of product of gamma and beta random variables.

2.15 TIME SERIES MODELING

Finally, we would like to mention that products of gamma and beta random variables arise
with respect to time series modeling of count data, see e.g. Kuk (1999).

3 EXACT DISTRIBUTION OF Z = XY

Theorem 1 expresses the pdf and the cdf of Z = XY in terms of the Kummer function and
the 2F2 hypergeometric function, respectively.

THEOREM 1 Suppose X and Y are distributed according to (1) and (2), respectively.
The cdf of Z = XY can be expressed as:

FZ(z) =
1

Γ(β)B(a, b)

[

(λz)β

β
B (b, a − β) 2F2 (1 − a − b + β, β;β + 1, 1 − a + β;−λz)

+
(λz)a

a
Γ (β − a) 2F2 (a, 1 − b; a − β + 1, 1 + a;−λz)

]

(4)

for z > 0. The corresponding pdf of Z = XY is

fZ(z) =
λβΓ(b)

Γ(β)B(a, b)
zβ−1 exp(−λz)Ψ (b, 1 + β − a;λz) (5)

for z > 0.

PROOF: The cdf corresponding to (1) is 1 − Γ(β, λx)/Γ(β). Thus, one can write the cdf
of Z = XY as

Pr (XY ≤ z) =

∫ 1

0
FX(z/y)fY (y)dy

= 1 −
1

Γ(β)B(a, b)

∫ 1

0
Γ

(

β,
λz

y

)

ya−1(1 − y)b−1dy

= 1 −
1

Γ(β)B(a, b)

∫

∞

1
Γ (β, λzw) w−(a+b)(w − 1)b−1dw

= 1 −
1

Γ(β)B(a, b)
I, (6)

which follows after setting w = 1/y. Application of equation (2.10.2.3) in Prudnikov et al.
(1986, volume 2) shows that the integral I can be calculated as

I = Γ(β)B(a, b) −
(λz)β

β
B (b, a − β) 2F2 (1 − a − b + β, β;β + 1, 1 − a + β;−λz)

−
(λz)a

a
Γ (β − a) 2F2 (a, 1 − b; a − β + 1, 1 + a;−λz) . (7)

The result in (4) follows by substituting (7) into (6). The pdf in (5) follows by differentiation
and using properties of the 2F2 hypergeometric function. �
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Springer and Thompson (1970) derived an exact expression involving the MeijerG func-
tion for the pdf of the product of m beta distributed random variables with parameters
(ak, bk) and n−m gamma distributed random variables with shape parameters ck and scale
parameters set to 1 (where all of the n random variables are assumed independent). The
result of Theorem 1 is a particular case of this result for m = 1 and n = 2. The advantage
of Theorem 1 over the result of Springer and Thompson (1970) is that the 2F2 hypergeo-
metric function is much simpler to compute than the MeijerG function. In fact, there are
not many numerical routines for computing the MeijerG function.

If a = q, b = p − q (for 0 < q < p) and β = p then it can be shown that (4) and (5)
reduce to a gamma distribution. This corresponds to a result given in Stuart (1962). One
can derive several other simpler forms of (4) when a, b and β take integer or half integer
values. This is illustrated in the corollaries below.

COROLLARY 1 If β ≥ 1 is an integer then (4) can be reduced to the simpler form

FZ(z) = 1 −
Γ(b) exp(−λz)

B(a, b)

β−1
∑

k=0

(λz)k

k!
Ψ (b, 1 + k − a;λz)

for z > 0.

COROLLARY 2 If β − 1/2 = n ≥ 1 is an integer then (4) can be reduced to the simpler
form

FZ(z) = −2

√

λz

π

B (b, a − 1/2)

B (a, b)
2F2

(

1

2
,
3

2
− a − b;

3

2
− a,

3

2
;−λz

)

−
(λz)a
√

πa

Γ (1/2 − a)

B (a, b)
2F2

(

a, 1 − b; 1 + a, a +
1

2
;−λz

)

+
(−1)nΓ(b)

√
λz exp(−λz)

Γ(β)B(a, b)

n−1
∑

k=0

(−λz)k
(

1

2
− n

)

n−k−1

Ψ

(

b, k +
3

2
− a;λz

)

for z > 0.

COROLLARY 3 If a ≥ 1 is an integer then (4) can be reduced to the simpler form

FZ(z) = 1 −
b(λz)β exp(−λz)

Γ(β)

a
∑

k=0

Γ(b + k − 1)

Γ(k)
Ψ (b + 1, β − k + 2;λz)

for z > 0.

COROLLARY 4 If b ≥ 1 is an integer then (4) can be reduced to the simpler form

FZ(z) =
γ(β, z)

Γ(z)
+

(λz)β exp(−λz)

Γ(a)Γ(β)

b
∑

k=0

Γ(a + k − 1)Ψ (k, β − a + 1;λz)

for z > 0.

COROLLARY 5 If a = 1/2 and b = 1/2 then (4) can be reduced to the simpler form

FZ(z) =
γ(β, z)

Γ(z)
−

2λβK

πΓ(β)

7
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for z > 0, where

K =

∫

∞

z
xβ−1 exp(−λx) arctan

(

z

x − z

)

dx. (8)

COROLLARY 6 If a + 1/2 = n ≥ 1 is an integer and b = 1/2 then (4) can be reduced to
the simpler form

FZ(z) =
γ(β, z)

Γ(z)
+

2λβK

πΓ(β)
−

(λz)β exp(−λz)

2Γ(β)

n−1
∑

k=1

Γ(k)

Γ (k + 1/2)
Ψ

(

3

2
, β − k +

3

2
;λz

)

for z > 0, where K is given by (8).

COROLLARY 7 If b + 1/2 = n ≥ 1 is an integer and a = 1/2 then (4) can be reduced to
the simpler form

FZ(z) =
γ(β, z)

Γ(z)
+

2λβK

πΓ(β)
+

(λz)β exp(−λz)
√

πΓ(β)

n−1
∑

k=1

Γ(k)Ψ

(

k +
1

2
, β +

1

2
;λz

)

for z > 0, where K is given by (8).

COROLLARY 8 If a + 1/2 = m ≥ 1 and b + 1/2 = n ≥ 1 are integers then (4) can be
reduced to the simpler form

FZ(z) =
γ(β, z)

Γ(z)
+

2λβK

πΓ(β)
−

(λz)β exp(−λz)

2Γ(β)

m−1
∑

k=1

Γ(k)

Γ (k + 1/2)
Ψ

(

3

2
, β − k +

3

2
;λz

)

+
(λz)β exp(−λz)

Γ(β)

n−1
∑

k=1

Γ (m + k − 1)

Γ (m − 1/2)
Ψ

(

k +
1

2
, β − m +

3

2
;λz

)

for z > 0, where K is given by (8).

The formulas for FZ(z) in the corollaries above can be used to save computational time
since the computation of the hypergeometric term in (4) can be more demanding. They
can be computed by using the KummerU (·, ·, ·) function in MAPLE.

[Figure 1 about here.]

Figure 1 illustrates possible shapes of the pdf (5) for selected values of a, b and β (the
pdf computed by using the KummerU (·, ·, ·) function in MAPLE). The four curves in each
plot correspond to selected values of β. As expected, the densities are unimodal and the
effect of the parameters is evident. The parameter β controls the skewness of the densities
while their general shape is determined by a and b.

4 MOMENT PROPERTIES OF Z = XY

The moment properties of Z = XY can be derived by knowing the same for X and Y . It
is well known (see, for example, Johnson et al. (1994)) that

E (Xn) =
Γ(β + n)

λnΓ(β)

8
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and

E (Y n) =
B(a + n, b)

B(a, b)
.

Thus, the nth moment of Z = XY is

E (Zn) =
Γ(β + n)B(a + n, b)

λnΓ(β)B(a, b)
.

In particular,

E (Z) =
βa

λ(a + b)
,

E
(

Z2
)

=
β(β + 1)a(a + 1)

λ2(a + b)(a + b + 1)
,

E
(

Z3
)

=
β(β + 1)(β + 2)a(a + 1)(a + 2)

λ3(a + b)(a + b + 1)(a + b + 2)

and

E
(

Z4
)

=
β(β + 1)(β + 2)(β + 3)a(a + 1)(a + 2)(a + 3)

λ4(a + b)(a + b + 1)(a + b + 2)(a + b + 3)
.

The factorial moments, skewness and the kurtosis can be calculated by using the relation-
ships that

E [(Z)n] = E [Z(Z − 1) · · · (Z − n + 1)] ,

Skewness(Z) =
E

(

Z3
)

− 3E(Z)E
(

Z2
)

+ 2E3(Z)
{

E
(

Z2
)

− E2 (Z)
}3/2

,

and

Kurtosis(Z) =
E

(

Z4
)

− 4E(Z)E
(

Z3
)

+ 6E
(

Z2
)

E2(Z) − 3E4(Z)
{

E
(

Z2
)

− E2 (Z)
}2 .

Using the fact that the characteristic function (chf) of X is:

E [exp (itX)] =

(

λ

λ − it

)β

,

the chf of Z = XY can be expressed as

E [exp (itXY )] =

∫ 1

0

(

λ

λ − ity

)β

fY (y)dy

=
λβ

B(a, b)

∫ 1

0

ya−1(1 − y)b−1

(λ − ity)β
dy

=
λβ

B(a, b)(−it)β
I. (9)

9
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Application of equation (2.2.6.15) in Prudnikov et al. (1986, volume 1) shows that the
integral I can be calculated as

I = B(a, b)

(

−
λ

it

)

−β

2F1

(

a, β; a + b;
it

λ

)

. (10)

Substituting (10) into (9), one obtains

E [exp (itXY )] = 2F1

(

a, β; a + b;
it

λ

)

. (11)

Using well-known transformation formulas for the Gauss hypergeometric function, one can
obtain the following alternative forms of (11):

E [exp (itXY )] =

(

1 −
it

λ

)

−a

2F1

(

a, a + b − β; a + b;
it

it − λ

)

,

E [exp (itXY )] =

(

1 −
it

λ

)

−β

2F1

(

β, b; a + b;
it

it − λ

)

and

E [exp (itXY )] =

(

1 −
it

λ

)b−β

2F1

(

b, a + b − β; a + b;
it

λ

)

.

If a, b and β take integer values then, using special properties of the Gauss hypergeometric
function, one can obtain the following elementary form of (11):

E [exp (itXY )] =
λa

taB(a, b)

b−1
∑

k=0

β
∑

l=0

(

b − 1

k

)(

β

l

)

(−1)k(−i)l(λ/t)kP (a + k + l − 1),

where P (m) satisfies the recurrence relation

P (m) =
1

1 + m − 2β

(t/λ)m−1

(1 + t/λ)β−1
+

m − 1

2β − m − 1
P (m − 2)

with the initial values

P (1) =



















1

2
log

(

1 +
t2

λ2

)

, if β = 1,

1

2(1 − β)

{

(

1 +
t2

λ2

)1−β

− 1

}

, if β > 1

and

P (0) =
t

(2β − 1)λ

β−1
∑

k=1

(2β − 1)(2β − 3) · · · (2β − 2k + 1)

2k(β − 1)(β − 2) · · · (β − k)

(

1 +
t2

λ2

)k−β

+
(2β − 3)!!

2β−1(β − 1)!
arctan

(

t

λ

)

.
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5 PERCENTILES OF Z = XY

In this section, we provide a program for computing the percentage points zp associated
with the cdf of Z = XY . The percentage points are obtained numerically by solving the
equation

1

Γ(β)B(a, b)

[

(λzp)
β

β
B (b, a − β) 2F2 (1 − a − b + β, β;β + 1, 1 − a + β;−λzp)

+
(λzp)

a

a
Γ (β − a) 2F2 (a, 1 − b; a − β + 1, 1 + a;−λzp)

]

= p. (12)

Evidently, this involves computation of the hypergeometric function and routines for this are
widely available. We used the function hypergeom ([·, ·],[·, ·], ·) in MAPLE. The following
6–line program in MAPLE solves (12) for given p, λ, β, a and b.

c1:=(1/beta)*((lambda*z)**beta)*Beta(b,a-beta):

c2:=(1/a)*((lambda*z)**a)*GAMMA(beta-a):

f1:=hypergeom([1-a-b+beta,beta],[beta+1,1-a+beta],-lambda*z):

f2:=hypergeom([a,1-b],[a-beta+1,1+a],-lambda*z):

ff:=(c1*f1+c2*f2)/(Beta(a,b)*GAMMA(beta)):

fsolve(ff=p,z=0..10000):

We expect that this program could be useful for applications of the type described in
Section 2. For instance, z1−p will be the under reported income that will be exceeded with
probability p, see Example 1 of Section 2. Similarly, in example 2 of Section 2, the extreme
percentile points of the amount of rainfall will be useful for purposes such as building of
dams.
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FIGURE 1. Plots of the pdf (5) for λ = 1, β = 1, 2, 5, 10 and (a): a = 0.5, b = 0.5; (b):
a = 0.5, b = 5; (c): a = 2, b = 5; and, (d): a = 5, b = 5. The four curves in each plot are:
the solid curve (β = 1), the curve of dots (β = 2), the curve of lines (β = 5), and the curve
of dots and lines (β = 10).
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A summability factor theorem by using an almost

increasing sequence
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Abstract

In this paper, by applying the concept of an almost increasing sequence, the author presents a

generalization of a known result on the | N̄, pn |k summability for the | A, pn |k summability factors.

1 Introduction.

A positive sequence (bn) is said to be almost increasing if there exists a positive increasing sequence

(cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). Obviously every

increasing sequence is almost increasing. However, the converse need not be true as can be seen

by taking the example, say bn = ne(−1)n

. Let
∑

an be a given infinite series with the partial sums

(sn) and let A = (anv) be a normal matrix, i.e., a lower triangular matrix of non-zero diagonal

entries. Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn)

to As = (An(s)), where

An(s) =
n∑

v=0

anvsv, n = 0, 1, ... (1)

The series
∑

an is said to be summable | A |k, k ≥ 1, if (see [8])
∞∑

n=1

nk−1 | ∆An(s) |k< ∞ (2)

Key Words: Absolute summability, summability factors, infinite series.
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where

∆An(s) = An(s)−An−1(s).

Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (3)

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv (4)

defines the sequence (tn) of the (N̄ , pn) mean of the sequence (sn), generated by the sequence of

coefficients (pn) (see [4]). The series
∑

an is said to be summable | N̄ , pn |k, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn

pn

)k−1

| tn − tn−1 |k< ∞, (5)

and it is said to be summable | A, pn |k, k ≥ 1, if (see [7])

∞∑
n=1

(
Pn

pn

)k−1

| ∆An(s) |k< ∞. (6)

In the special case when pn = 1 for all n, | A, pn |k summability is the same as | A |k summability.

Also if we take anv = pv

Pn
, then | A, pn |k summability is the same as | N̄ , pn |k summability.

2 Known results.

Bor [3] has proved the following theorem on | N̄ , pn |k summability factors of an infinite series.

Theorem A. Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n →∞. (7)

If (Xn) is a positive monotonic non-decreasing sequence such that

| λm | Xm = O(1) as m →∞ (8)

m∑
n=1

nXn | ∆2λn |= O(1) (9)

2
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m∑
n=1

pn

Pn
| tn |k= O(Xm) as m →∞, (10)

then the series
∑

anλn is summable | N̄ , pn |k, k ≥ 1.

If we take pn = 1 for all values of n, then we get a result of Mazhar [5] for | C, 1 |k summability

factors.

Later on, Mazhar [6] has proved Theorem A under weaker conditions for | N̄ , pn |k summability in

the following form by using an almost increasing sequence.

Theorem B. Let (Xn) be an almost increasing sequence such that conditions (8)-(10) of Theorem

A are satisfied. If
m∑

n=1

| tn |k
n

= O(Xm) as m →∞, (11)

m∑
n=1

Pn

n
= O(Pm) as m →∞, (12)

then the series
∑

anλn is summable | N̄ , pn |k, k ≥ 1.

It should be remarked that the condition (7) implies the condition (12), but the converse need not

be true (see [6] for details.)

3 The main result.

In the present paper, we make use of the concept of an almost increasing sequence in order to

generalize Theorem B for the | A, pn |k summability. Before stating the main theorem we must

first introduce some further notations.

Given a normal matrix A = (anv), we associate two lower semi-matrices A = (anv) and Â = (ânv)

as follows:

anv =
n∑

i=v

ani, n, v = 0, 1, ... (13)

and

â00 = a00 = a00, ânv = anv − an−1,v, n = 1, 2, ... (14)

It may be noted that A and Â are the well-known matrices of series-to-sequence and series-to-series

transformations, respectively. Then, we have

An(s) =
n∑

v=0

anvsv =
n∑

v=0

anv

v∑

i=0

ai

3
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=
n∑

i=0

ai

n∑

v=i

anv =
n∑

i=0

aniai

and

∆An(s) =
n∑

i=0

aniai −
n−1∑

i=0

an−1,iai

= annan +
n−1∑

i=0

(ani − an−1,i)ai

= ânnan +
n−1∑

i=0

âniai =
n∑

i=0

âniai. (15)

Now we shall prove the following theorem.

Theorem. Let A = (anv) be a positive normal matrix such that

ano = 1, n = 0, 1, ..., (16)

an−1,v ≥ anv, for n ≥ v + 1, (17)

ann = O

(
pn

Pn

)
, (18)

n−1∑
v=1

ân,v+1

v
= O(ann). (19)

If (Xn) is an almost increasing sequence such that conditions (8)-(11) are satisfied, then the series
∑

anλn is summable | A, pn |k, k ≥ 1.

It should be noted that if we take anv = pv

Pn
, then we get Theorem B. Indeed, in this case condition

(19) reduces to condition (12).

We need the following lemma for the proof of our theorem.

Lemma ([6]). If (Xn) is an almost increasing sequence, then under the conditions (8) and (9),

we have that
∞∑

n=1

Xn | ∆λn |< ∞, (20)

nXn | ∆λn |= O(1) as n →∞. (21)

3. Proof of the Theorem. Let (Tn) denotes A-transform of the series
∑

anλn. Then we have,

by (15),

∆Tn =
n∑

v=0

ânvavλv.

4
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Applying Abel’s transformation to this sum, we get that

∆Tn =
n∑

v=1

ânvλv

v
vav

=
n−1∑
v=1

∆v

(
ânvλv

v

)
(v + 1)tv +

n + 1
n

ânnλntn

=
n−1∑
v=1

v + 1
v

∆v(ânv)λvtv +
n−1∑
v=1

v + 1
v

ân,v+1∆λvtv

+
n−1∑
v=1

ân,v+1λv+1tv
v

+
n + 1

n
annλntn

= Tn(1) + Tn(2) + Tn(3) + Tn(4), say.

Since

| Tn(1) + Tn(2) + Tn(3) + Tn(4) |k≤ 4k
(| Tn(1) |k + | Tn(2) |k + | Tn(3) |k + | Tn(4) |k)

,

to complete the proof of the Theorem, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1

| Tn(r) |k< ∞, for r = 1, 2, 3, 4.

Firstly, since

∆v(ânv) = ânv − ân,v+1

= anv − an−1,v − an,v+1 + an−1,v+1

= anv − an−1,v, (22)

by using (16) and (17)

n−1∑
v=0

| ∆v(ânv) |=
n−1∑
v=0

(an−1,v − anv) = 1− 1 + ann = ann, (23)

and applying Hölder’s inequality, we have that

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(1) |k ≤
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

| ∆v(ânv) || λv || tv |
)k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

| ∆v(ânv) || λv |k| tv |k
)

×
(

n−1∑
v=1

| ∆v(ânv) |
)k−1

5

OGDUK:SUMMABILITY FACTOR THEOREM 49



= O(1)
m∑

v=1

| λv |k−1| λv || tv |k
m+1∑

n=v+1

(
Pn

pn

)k−1

ak−1
nn | ∆v(ânv) |

= O(1)
m∑

v=1

| λv || tv |k
m+1∑

n=v+1

| ∆vânv | .

By (22), we have

m+1∑
n=v+1

| ∆vânv |=
m+1∑

n=v+1

(an−1,v − anv) =
m∑

n=v

anv −
m+1∑

n=v+1

anv = avv − am+1,v ≤ avv.

Thus, we obtain

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(1) |k = O(1)
m∑

v=1

| λv || tv |k avv

= O(1)
m∑

v=1

pv

Pv
| λv || tv |k

= O(1)
m−1∑
v=1

∆(| λv |)
v∑

r=1

pr

Pr
| tr |k +O(1) | λm |

m∑
v=1

pv

Pv
| tv |k

= O(1)
m−1∑
v=1

| ∆λv | Xv + O(1) | λm | Xm

= O(1), as m →∞,

by virtue of the hypothesis of the Theorem and the Lemma.

Again applying Hölder’s inequality, we get

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(2) |k = O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

ân,v+1 | ∆λv || tv |
)k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

ân,v+1 | ∆λv || tv |k
)

×
(

n−1∑
v=1

ân,v+1 | ∆λv |
)k−1

Taking account of (20), we obtain

∞∑
n=1

| ∆λn |< ∞

and from the conditions due to A and Â matrices,

ân,v+1 = an,v+1 − an−1,v+1 =
n∑

i=v+1

ani −
n−1∑

i=v+1

an−1,i

6
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=
n∑

i=0

ani −
v∑

i=0

ani −
n−1∑

i=0

an−1,i +
v∑

i=0

an−1,i

=
v∑

i=0

(an−1,i − ani) ≤
n−1∑

i=0

(an−1,i − ani) = ann,

where

v∑

i=0

(an−1,i − ani) ≥ 0.

Thus,

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(2) |k = O(1)
m+1∑
n=2

(
Pn

pn

)k−1

ak−1
nn

(
n−1∑
v=1

ân,v+1 | ∆λv || tv |k
)

= O(1)
m∑

v=1

| ∆λv || tv |k
m+1∑

n=v+1

ân,v+1

In view of the definitions of the matrices A and Â, it is clear that,

m+1∑
n=v+1

ân,v+1 =
m+1∑

n=v+1

v∑

i=0

(an−1,i − ani) =
v∑

i=0

m+1∑
n=v+1

(an−1,i − ani)

=
v∑

i=0

(
m+1∑

n=v+1

an−1,i −
m+1∑

n=v+1

ani

)

=
v∑

i=0

(avi − am+1,i) ≤
v∑

i=0

avi = 1. (24)

Hence,

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(2) |k = O(1)
m∑

v=1

| ∆λv || tv |k

= O(1)
m−1∑
v=1

∆(v | ∆λv |)
v∑

r=1

| tr |k
r

+ O(1)m | ∆λm |
m∑

v=1

| tv |k
v

= O(1)
m−1∑
v=1

v | ∆2λv | Xv

+ O(1)
m−1∑
v=1

| ∆λv+1 | Xv+1 + O(1)m | ∆λm | Xm

= O(1) as m →∞,
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by virtue of the hypothesis of the Theorem and the Lemma.

Again, using Hölder’s inequality, as in Tn(1), we have that

m+1∑
n=2

(
Pn

pn

)k−1

| Tn(3) |k = O(1)
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

ân,v+1 | λv+1 || tv |
v

)k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1 n−1∑
v=1

ân,v+1

v
| λv+1 |k| tv |k

×
(

n−1∑
v=1

ân,v+1

v

)k−1

= O(1)
m∑

v=1

| λv+1 |k| tv |k
v

m+1∑
n=v+1

ân,v+1

= O(1)
m∑

v=1

| λv+1 |k | tv |
k

v

= O(1) as m →∞,

by virtue of the hypothesis of the Theorem and the Lemma.

Finally, again as in Tn(1), we get

m∑
n=1

(
Pn

pn

)k−1

| Tn(4) |k = O(1)
m∑

n=1

(
Pn

pn

)k−1

ak
nn | λn |k| tn |k

= O(1)
m∑

n=1

pn

Pn
| λn || tn |k= O(1) as m →∞,

by virtue of the hypothesis of the Theorem and the Lemma.

Therefore, we have that

m∑
n=1

(
Pn

pn

)k−1

| Tn(r) |k= O(1), as m →∞, for r = 1, 2, 3, 4.

This completes the proof of the Theorem.
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Abstract

In this paper, we have proposed an active set FSQP algorithm for nonlinear inequality
constraints optimization problems. At each iteration of the proposed algorithm, by solving a
reduced quadratic programming subproblem and a reduced system of linear equation without
involving multiplier estimate, a feasible direction of descent is generated through a suitable
combination of a descent direction and a feasible direction. To overcome the Maratos effect,
a higher-order correction direction is obtained by solving another reduced system of linear
equation whose coefficient matrix is the same as the previous one. The algorithm is proved
to be globally convergent and superlinearly convergent under some mild conditions without the
strict complementarity. Finally, some numerical results are reported.

Key words. Inequality constrained optimization, quadratic programming, feasible SQP
method, global convergence, convergence rate.

MR(2000)Subject Classification: 65K10,90C30

1. Introduction

Consider the following nonlinear inequality constrained optimization:

min f0(x)
(P ) s.t. fj(x) ≤ 0, j ∈ I = {1, 2, ..., m}, (1.1)

where m > 0 and the functions f0, fj(j ∈ I) : Rn →R are all continuously differentiable.
Up to now, there exist many methods for solving (P) such as gradient projection methods, trust

region methods, interior point methods and SQP methods. Among these methods, SQP method is
an important one. For an excellent recent survey of SQP algorithms, and the theory behind them,
see [2]. Many existing SQP algorithms for handling constrained optimization problems starting
with arbitrary initial point (may be infeasible) focus on using penalty functions, see [3]–[8], so the
iterative points may be infeasible for the original problem, while a feasible sequence of iterates is

∗Corresponding author. E-mail address: hqj0525@126.com.cn
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very important for many practical problems, such as engineering design, real-time applications and
that problems whose objective functions are not well defined outside the feasible set. To overcome
this shortcoming, in [10], variations on the standard SQP algorithms for solving (P) are proposed
which generate iterations lying within the feasible set of (P), which is called as feasible sequential
quadratic programming (FSQP) algorithm. It is proved to be globally convergent and superlinearly
convergent under some mild assumptions. However, at each iteration, these algorithms require to
solve two QP subproblems and a linear least squares problem. Clearly, their computational cost per
single iteration is relatively high. In [12], the FSQP is further improved, a feasible descent direction
is obtained by a suitable convex combination of a descent direction and a feasible direction, a
second-order direction is computed by solving another QP subproblem. In the end, this method is
proved to be local two-step superlinearly convergent. Recently, another type of FSQP algorithm
[9, 13] is proposed. In this algorithm, they can obtain a feasible descent direction by solving a QP
subproblem, then, compute a second-order correction direction by solving another QP subproblem,
and perform an arc search. In order to reduce computational cost per iteration, based on the method
in [12], Zhu [14] proposed a simple FSQP, a feasible direction of descent is generated through a
suitable combination of a descent direction which is generated by solving a quadratic programs
and a feasible direction which is obtained by solving a system of linear equation. To overcome the
Maratos effect, a higher-order correction direction is obtained by solving another system of linear
equation. The algorithm is proved to be globally convergent and superlinearly convergent under
some mild conditions. However, in Zhu’s method, the systems of linear equation involved multiplier
estimate, as [11] pointed out, the algorithm may meet instability problems. In particular, the
linear system may become very ill-conditioned if some multiplier corresponding to a nearly active
constraint becomes very small. On the other hand, for the above-mentioned algorithms, to obtain
locally superlinear convergence, the strict complementary condition is necessary.

In this paper, we have proposed an active set FSQP algorithm for nonlinear inequality con-
straints optimization problems. At each iteration of the proposed algorithm, by solving a reduced
quadratic programming subproblem and a reduced system of linear equation without involving
multiplier estimate, a feasible direction of descent is generated through a suitable combination of
a descent direction and a feasible direction. To overcome the Maratos effect, a higher-order cor-
rection direction is obtained by solving another reduced system of linear equation whose coefficient
matrix is the same as the previous one. The algorithm is proved to be globally convergent and
superlinearly convergent under some mild conditions without the strict complementarity.

The remainder of this paper is organized as follows. The proposed algorithm is stated in Section
2. In Section 3 and Section 4, under some mild assumptions, we show that this algorithm is globally
convergent and locally superlinear convergent, respectively. Some numerical results are reported in
section 5. Finally, we give concluding remarks about the proposed algorithm.

2. Description of algorithm

We denote the feasible set X of (P ) by

X = {x ∈ Rn : fi(x) ≤ 0, i ∈ I},

2

HU et al :FEASIBLE SQP ALGORITHM 55



and, for a feasible point x ∈ X, define the active set by

I(x) = {i ∈ I : fi(x) = 0}.

In this paper, we suppose that the feasible set X is not empty and the following basic hypothesis
holds.

Assumption A1. The gradient vectors {∇fj(x), j ∈ I(x)} are linearly independent for each
feasible point x ∈ X.

For x ∈ X, we now give an estimate of the active set I(x) ([19]):

A(x; ε) = {i : fi(x) + ερ(x, λ(x)) ≥ 0},

where ε is a nonnegative parameter and ρ(x, λ(x)) =
√
‖ Φ(x, λ) ‖ with

Φ(x, λ(x)) =
[ ∇xL(x, λ(x))

min{−f(x), λ(x)}
]

, f(x) =




f1(x)
f2(x)

...

fm(x)


 , L(x, λ(x)) = f0(x) + λ(x)T f(x),

λ(x) = −(∇f(x)T∇f(x) + diag(fi(x))2)−1∇f(x)T∇f0(x)(See[17]), ∇f(x) = (∇fi(x), i ∈ I).

It is obvious that (x∗, λ∗) is a KKT point of (P) if and only if Φ(x∗, λ∗) = 0 or ρ(x∗, λ∗) = 0.
Facchinei et al [19] showed that if the second order sufficient condition and the Mangassarian-
Fromovotz Constraint Qualification hold, then for any ε > 0, when x is sufficient close to x∗,
A(x; ε) is an exact identification of I(x∗).

The following algorithm is proposed for solving (P).
ALGORITHM
Parameters τ ∈ (2, 3), β ∈ (0, 1), α ∈ (0, 1

2), δ > 2, ρ > 0, γ > 0.
Data Choose an initial feasible point x1 ∈ X, a symmetric positive matrix H1 and ε0 > 0. Set

k = 1.
Step 1 Set ε = εk−1.
Step 2 Set Ak(ε) = A(xk, ε). If ∇fAk(ε)(xk) is not of full rank, then set ε := σε, go to step

2.(Where ∇fAk(ε)(xk) = (∇fj(xk), j ∈ Ak(ε)))
Step 3 Set εk = ε, Ak = Ak(ε).
Step 4 (Compute the search direction)
1.1 Computation of the descent direction dk

0:
For the current iteration point xk, solve

min ∇f0(xk)T d + 1
2dT Hkd

(QP ) s.t. fj(xk) +∇fj(xk)T d ≤ 0, j ∈ Ak,
(2.1)

to obtain an optimal solution dk
0, let uk

Ak be corresponding KKT multipliers. If dk = 0, then xk is
a KKT point for (P) and stop; otherwise go to 1.2.

1.2 Computation of the feasible direction dk
1:

Solve the following system of linear equation:
[

Hk ∇fAk(xk)
∇fAk(xk)T 0

] [
d

λ

]
=

[ −∇f0(xk)
−‖dk

0‖δeAk

]
, (2.2)

3
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where eAk = (1, ..., 1)T ∈ R|Ak|. Let dk
1 be the solution.

1.3 Computation of the feasible descent direction dk:
Establish a suitable combination of dk

0 and dk
1:

dk = dk
0 + ρkd

k
1, (2.3)

ρk =

{
ρ, if ∇f0(xk)T dk

1 ≤ 0;
−∇f0(xk)T dk

0

∇f0(xk)T dk
1+γ

, otherwise.
(2.4)

Step 5 Compute the higher-order correction direction d̃k by solving the following system of
linear equation:

[
Hk ∇fAk(xk)

∇fAk(xk)T 0

] [
d

λ

]
=

[
0

−‖dk‖τeAk − fAk(xk + dk) + fAk(xk) +∇fAk(xk)T dk

]
,

(2.5)
If ‖d̃k‖ > ‖dk‖, set d̃k = 0.
Step 6 (Do curve search) Compute the step size λk, which is the first number λ of the sequence

{1, β, β2, ...} satisfying

f0(xk + λdk + λ2d̃k) ≤ f0(xk) + αλ∇f0(xk)T dk, (2.6)

fj(xk + λdk + λ2d̃k) ≤ 0, ∀j ∈ I. (2.7)

Step 7 Set a new iteration point by xk+1 = xk + λkd
k + λ2

kd̃
k. Compute a new symmetric

positive definite matrix Hk+1, set k := k + 1, and go back to Step 1.

Remark 1 Unlike [14], the coefficient matrix for the system of linear equation (2.2) do not involve
multiplier estimate.

3. Global Convergence

In this section, firstly, we show that the proposed algorithm is well defined.

Lemma 3.1 Let xk ∈ X and suppose that Assumption A1 holds. Then Step 2 in the proposed
algorithm can be finished in a finite number of computations.

The proof is similar to the one of Lemma 1.1 and Lemma 2.8 in [20].

Lemma 3.2 Suppose that Hk is symmetric positive definite. Then the linear system (2.2) and
(2.5) always has a unique optimal solution under Assumption A1, respectively.

Proof. The symmetric positive definite property and Assumption A1 imply that the coefficients

matrix
[

Hk ∇fAk(xk)
∇fAk(xk)T 0

]
is nonsingular. So the claim holds.

Lemma 3.3 (1) If dk
0 = 0, then xk is a KKT point of the problem (P).

(2) If dk
0 6= 0, then

∇f0(xk)T dk
0 < 0, ∇f0(xk)T dk < 0, ∇fj(xk)T dk < 0, j ∈ I(xk).

4
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The proof is similar to the one of Theorem 3.2 in [14].

Lemma 3.4 The line search in Step 6 of the proposed algorithm yields a stepsize λk = βj for some
finite j = j(k).

It is not difficult to finish the proof of this lemma.
To analyze the global convergence of the proposed algorithm, the following assumptions are

necessary.
Assumption A2. The sequence {xk}, which is generated by the proposed algorithm, is bounded.
Assumption A3. There exist a, b > 0 such that a‖d‖2 ≤ dT Hkd ≤ b‖d‖2 for all k and all

d ∈ Rn.
We suppose that x∗ is a given accumulation point of {xk}. In view of Ak and Jk being a subset

of the finite and fixed set I, respectively, there exist an infinite index set K such that

lim
k∈K

xk = x∗, Ak ≡ A, Jk ≡ J, ∀k ∈ K, (3.1)

where
Jk = {j ∈ Ak : fj(xk) +∇fj(xk)T dk = 0}.

Lemma 3.5 Suppose that Assumptions A2 and A3 hold. Then the sequences {dk
0 : k ∈ K}, {dk

1 :
k ∈ K}, {d̃k : k ∈ K} and {uk

Ak : K ∈ K} are all bounded.

It is easy to finish the proof of this lemma.
Based on Lemma 3.5, we now can present the global convergence theorem of the proposed

algorithm as follows.

Theorem 3.1 Suppose that Assumptions A1, A2 and A3 hold, then the proposed algorithm either
stops at a KKT point xk for problem (P) in a finite number of steps or generates an infinite sequence
{xk} of points such that each accumulation point x∗ is a KKT point for problem (P).

Proof. The proof is similar to the one of Theorem 3.4 in [14].

4. Rate of convergence

In this section, we will analyze the convergent rate of the proposed algorithm, for this, the following
further hypothesis is necessary.

Assumption A4 (i) The functions fj(x)(j ∈ I) are all second-order continuously differentiable.
(ii) The sequence {xk} generated by the algorithm possesses an accumulation point x∗ such that

KKT pair (x∗, u∗) satisfies the strong second-order sufficiency conditions, i.e.,

dT∇2
xxL(x∗, u∗)d > 0, ∀d ∈ Ω

def
= {d ∈ Rn : d 6= 0,∇fI+(x∗)(x∗)T d = 0}, (4.1)

where
L(x, u) = f0(x) +

∑
j∈I

ujfj(x), I+(x∗) = {j ∈ I : u∗j > 0}. (4.2)

5
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Lemma 4.1 (i) Suppose that Assumptions A1, A2 hold. Then lim
k→∞

‖xk+1−xk‖ = 0 and lim
k→∞

xk =

x∗.
(ii) If Assumptions A1,A2 and A3 are satisfied, then lim

k→∞
dk

0 = 0, lim
k→∞

dk
1 = 0, lim

k→∞
d̃k = 0.

Proof. (i) Similar to the proof in [14]. One has

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

‖λkd
k + λ2

kd̃
k‖ ≤ lim

k→∞
2λk‖dk‖ = 0.

According to Assumption A4 (ii), one can conclude that the given limit point x∗ is an isolated
KKT point of (1.1)(See Theorem 1.2.5 in [16]), therefore x∗ is an isolated accumulation point of
{xk} from Theorem 3.1, and this together with lim

k→∞
‖xk+1 − xk‖ = 0 shows that lim

k→∞
xk = x∗.

(ii) Taking into account xk → x∗, k →∞, according to the proof of Theorem 3.1, it is clear to
see that lim

k→∞
dk

0 = 0, lim
k→∞

dk
1 = 0, lim

k→∞
d̃k = 0, The proof is finished. ¤

Lemma 4.2 Under all the above-mentioned assumptions, when k is sufficiently large, the matrix

Mk
def
=

[
Hk ∇fAk(xk)

∇fAk(xk)T 0

]
.

is nonsingular, furthermore, there exists a constant C > 0 such that ‖M−1
k ‖ ≤ C.

The proof of Lemma 4.2 is similar to that of Lemma 2.2 in [15] or Lemma 2.2.2 in [16], and is
omitted.

Lemma 4.3 Suppose that Assumptions A1, A2 and A3 hold. Then

‖dk
1‖ = o(‖dk

0‖2), ‖dk‖ = ‖dk
0‖+ o(‖dk

0‖2), ‖d̃k‖ = O(‖dk‖2), (4.3)

Jk ⊆ I(x∗) = Ak, (4.4)

lim
k→∞

uk
Ak

= u∗. (4.5)

Proof. Firstly, from (2.2), (2.3) and (2.4), we have

‖dk
1‖ = o(‖dk

0‖2), ‖dk‖ = ‖dk
0‖+ o(‖dk

0‖2).

Secondly, we shall show the third equation of (4.3). In view of (2.5) being equivalent to solve
the following system of linear equations:

[
Hk ∇fAk(xk)

∇fAk(xk)T 0

] [
d̃k

λ̃k

]
=

[
0

−‖dk‖τeAk − fAk(xk + dk) + fAk(xk) +∇fAk(xk)T dk

]
.

So, it is not difficult to verify that ‖d̃k‖ = o(‖dk‖2).
To show the relationship (4.4), one first gets Jk ⊆ I(x∗) from lim

k→∞
(xk, dk, zk, σk) = (0, 0, 0, 0).

From Theorem 2.3 and Theorem 3.7 in [19], we know that I(x∗) = Ak under Assumptions A1, A4(ii).
Similar to the proof in [14], we get lim

k→∞
uk

Ak
= u∗. The proof is complete. ¤
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To ensure the step size λk ≡ 1 for k large enough, an additional assumption as follows is
necessary.
Assumption A5 Suppose that ‖(∇2

xxL(xk, uk)−Hk)dk
0‖ = o(‖dk

0‖), where

L(x, uk) = f0(x) +
∑

j∈Jk

uk
j fj(x).

Remark 2 This assumption is similar to the well-known Dennis-More Assumption [1] that guar-
antees superlinear convergence for quasi-Newton methods.

Lemma 4.4 Suppose that Assumptions A1, A2, A3, A4 and A5 hold. Then the step size of the
proposed algorithm always equals one, i.e., λk ≡ 1, if k is sufficiently large.

Proof. We know that it is sufficient to verify that (2.6) and (2.7) hold for λ = 1, and the statement
“k large enough” will be omitted in the following discussion.

We first prove (2.7) holds for λ = 1. For j /∈ I(x∗), i.e., fj(x∗) < 0, in view of (xk, dk, d̃k) →
(x∗, 0, 0)(k →∞), we can conclude fj(xk + dk + d̃k) ≤ 0 holds.

For j ∈ I(x∗) = Ak(ε), from Taylor expansion and formula (4.3), we have

fj(xk + dk + d̃k) = fj(xk + dk) +∇fj(xk + dk)T d̃k + O(‖d̃k‖2)
= fj(xk + dk) +∇fj(xk)T d̃k + O(‖dk‖‖d̃k‖) + O(‖d̃k‖2)
= fj(xk + dk) +∇fj(xk)T d̃k + O(‖dk‖3).

(4.6)

Therefore we have from (2.5) and (4.6)

fj(xk + dk + d̃k) ≤ −‖dk‖τ + O(‖dk‖3) < 0.

This shows that (2.7) holds for λ = 1.
The next objective is to show (2.6) holds for λ = 1.
From Taylor expansion and taking into account relationship (4.3), we have

ωk
def
= f0(xk + dk + d̃k)− f0(xk)− α∇f0(xk)T dk

= ∇f0(xk)T (dk + d̃k) + 1
2(dk)T∇2

xxf0(xk)dk − α∇f0(xk)T dk + o(‖dk‖2).
(4.7)

On the other hand, from the KKT condition of (2.1) and formula (4.3), one has

∇f0(xk)T (dk + d̃k) = −(dk
0)

T Hkd
k
0 −

∑
j∈Jk

uk
j∇fj(xk)T (dk + d̃k) + o(‖dk

0‖2). (4.8)

∇f0(xk)T dk = −(dk
0)

T Hkd
k
0 −

∑
j∈Jk

uk
j∇fj(xk)T dk

0 + o(‖dk
0‖2)

= −(dk
0)

T Hkd
k
0 +

∑
j∈Jk

uk
j fj(xk) + o(‖dk

0‖2).

Again, from the third equation of (4.6), (2.1) and Taylor expansion, we have

fj(xk) +∇fj(xk)T (dk + d̃k) +
1
2
(dk)T∇2

xxfj(xk)dk = o(‖dk‖2), j ∈ Jk.
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Thus

− ∑
j∈Jk

uk
j∇fj(xk)T (dk + d̃k) =

∑
j∈Jk

uk
j fj(xk) + 1

2(dk
0)

T (
∑

j∈Jk

uk
j∇2

xxfj(xk))dk
0 + o(‖dk

0‖2). (4.9)

Substituting (4.9) into (4.8), one has

∇f0(xk)T (dk + d̃k) = −(dk
0)

T Hkd
k
0 +

∑
j∈Jk

uk
j fj(xk) + 1

2(dk
0)

T (
∑

j∈Jk

uk
j∇2

xxfj(xk))dk
0 + o(‖dk

0‖2).

(4.10)
Substituting (4.10) and the third equation of (4.8) into (4.7), we obtain

ωk = (α− 1)(dk
0)

T Hkd
k
0 + 1

2(dk
0)

T∇2
xxL(xk, uk)dk

0

+ (1− α)
∑

j∈Jk

uk
j fj(xk) + o(‖dk

0‖2)

≤ ((α− 1) + 1
2)a‖dk

0‖2 + 1
2(dk

0)
T (∇2

xxL(xk, uk)−Bk)dk
0

+ (1− α)
∑

j∈Jk

uk
j fj(xk) + o(‖dk

0‖2).

So, using Assumption A5 and the given conditions, one has

ωk ≤ ((α− 1) +
1
2
)a‖dk

0‖2 + o(‖dk
0‖2).

Therefore, according to α ∈ (0, 1
2). The whole proof is finished. ¤

Theorem 4.1 Under all above-mentioned assumptions, the algorithm is superlinearly convergent.
i.e., the sequence {xk} generated by the algorithm satisfies ‖xk+1 − x∗‖ = o(‖xk − x∗‖).

The proof is similar to the one of Theorem 5.2 in [18], and is omitted.

5. Numerical experiments

In this section, we test some practical problems based on the proposed algorithm. The numerical
experiments are implemented on MATLAB 6.5, under Windows XP and 1000MHZ CPU. The (2.1),
(2.2) and (2.3) are solved by the Optimization Toolbox. The BFGS formula, which is proposed in
[21], is adopted in the algorithm.

During the numerical experiments, we set

τ = 2.8, ρ = 2, β = 0.6, α = 0.2, γ = 1, δ = 3.

The test problem in Table 5.1 are selected from [22] and [23]. Besides the test problem hs001, the
initial points for the selected problems are as same as the ones in [22] and [23]. The columns of
Table 5.1 have the following meanings: The prob column lists the test problem taken from [22] and
[23] in order. The columns labelled Ni, Nf0, Ng0, Nf and Ng give the number of iterations re-
quired to solve the problem, objective function evaluations, objective function gradient evaluations,
constraint function evaluations(including linear and nonlinear constraints) and constraint function
gradient evaluations, respectively. The columns labelled objective, dnorm and eps denote the
final objective value, the norm of dk and the step criterion threshold ε, respectively.

The detailed information of the solutions to the test problems is listed in the following Table
5.1.
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Table 5.1 Numerical results

Prob Ni Nf0 Ng0 Nf Ng objective dnorm eps

hs001 6 27 6 62 11 -0.0100e+02 5.2373e-014 0.1e-05

hs12 11 44 11 51 8 -0.3000e+02 2.5691e-008 0.1e-05

hs29 16 77 16 87 11 -0.226274e+02 1.2937e-008 0.1e-05

hs31 9 55 9 434 14 -0.0600e+02 5.4155e-007 0.1e-05

hs34 18 106 18 984 53 -0.0008340e+03 7.2411e-007 0.1e-05

hs35 8 34 8 164 14 0.00011+03 1.0122e-007 0.1e-05

hs43 21 130 21 444 36 0.4400+02 1.2956e-007 0.1e-05

hs100 61 347 61 612 76 6.806301+02 4.6149e-007 0.1e-05

s225 8 20 8 125 14 0.2000+01 0.000e-007 0.1e-05

s264 20 128 20 435 27 -0.441134+02 2.8061e-007 0.1e-05

6. Concluding remarks

In this paper, a simple active set FSQP algorithm for nonlinear inequality constraints optimization
problems is presented. At each iteration of the proposed algorithm, through a suitable combi-
nation of a descent direction which is generated by solving a reduced quadratic programs and a
feasible direction which is obtained by solving a reduced system of linear equation without in-
volving multiplier estimate, a feasible direction of descent is generated. To overcome the Maratos
effect, a higher-order correction direction is obtained by solving another reduced system of linear
equation whose coefficient matrix is the same as the previous one. The algorithm is proved to
be globally convergent and superlinearly convergent under some mild conditions without the strict
complementarity.
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REMARK ON DOUBLE LACUNARY STATISTICAL
CONVERGENCE OF FUZZY NUMBERS

E. SAVAŞ

Abstract. Y. Altin proved the inclusion relations between the sets of the
double statistically convergent and double lacunary statistically convergent
sequences of fuzzy numbers. In this paper we show that Altin’s condition is
sufficient as well as necessary.

1. Introduction and Background

Before we enter the motivation for this paper and presentation of the main
results we give some preliminaries. A fuzzy number is a function X from Rn to
[0, 1], which is normal, fuzzy convex and upper- semi continuous and the closure of
{x ∈ Rn: X (x) > 0} is compact. These properties imply that for each 0 < α ≤ 1,
the α-level set

Xα = {x ∈ Rn : X (x) ≥ α }
is a nonempty compact convex, subset of Rn, as is the support X0. Let L (Rn)
denote the set of all fuzzy numbers.
Define for each 1 ≤ q < ∞

dq (X,Y ) =





1∫

0

δ∞ (Xα, Y α)q
dα





1
q

and d∞ = sup
0≤α≤1

δ∞ (Xα,Yα) where d∞ is Hausdorf metric. Clearly d∞ (X, Y ) =

lim
q→∞

dq (X, Y) with dq ≤ dr if q ≤ r. Moreover dq is a complete, separable and

locally compact metric space [2].
Throughout the paper, d will denote dq with 1 ≤ q ≤ ∞.
The concept of statistical convergence of fuzzy numbers was introduced by Kwon

[4] in 2000. A sequence X = (Xk) is said to be statistically convergent to the number
X0 if for every ε > 0

lim
n

1
n
|{k ≤ n : d(Xk, X0) ≥ ε}| = 0,

where by k ≤ n, we mean that k = 0, 1, 2, ..., n and the vertical bars indicate the
number of elements in the enclosed set.

By a lacunary θ = (kr); r = 0, 1, 2, ... where k0 = 0, we shall mean an increasing
sequence of non-negative integers with kr − kr−1 → ∞ as r → ∞. The intervals

Date: June 17, 2006.
1991 Mathematics Subject Classification. Primary 42B15; Secondary 40C05.
Key words and phrases. Double lacunary sequences, P-convergent, Fuzzy numbers.
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2 E. SAVAŞ

determined by θ will be denoted by Ir = (kr−1, kr] and hr = kr − kr−1. The ratio
kr

kr−1
will be denoted by qr.

The following concept is due to F. Nuray . Let θ be a lacunary sequence; the
sequence X is Sθ− convergent to X0 provided that for every ε > 0

lim
r

1
hr
|{k ∈ Ir : d(Xk, X0) ≥ ε}| = 0.

We will need the following definitions (see, [8]).

Definition 1.1. A double sequence X = (Xkl) of fuzzy numbers is said to be
convergent in the Pringsheim’s sense or P - convergent to a fuzzy number X0, if for
every ε > 0 there exists N ∈ N such that

d (Xkl, X0) < ε for k, l > N,

and we denote by P − limX = X0. The number X0is called the Pringsheim limit
of Xkl.

More exactly we say that a double sequence (Xkl) converges to a finite number
X0 if Xkl tend to X0 as both k and l tends to ∞ independently of one another.

Let c2(F ) denote the set of all double convergent sequences of fuzzy numbers.

Definition 1.2. A double sequence X = (Xkl) of fuzzy numbers is bounded if there
exists a positive number M such that d (Xkl, X0) < M for all k and l. We will
denote the set of all bounded double sequences by l2∞(F ).

Let K ⊆ N ×N be a two dimensional set of positive integers and let Km,n be
the numbers of (i, j) in K such that i ≤ n and j ≤ m. Then the lower asymptotic
density of K is defined as

P − lim inf
m,n

Km,n

mn
= δ2(K).

In the case when the sequence {Km,n

mn }∞,∞
m,n=1,1 has a limit then we say that K has

a natural density and is defined

P − lim
m,n

Km,n

mn
= δ2(K).

For example, Let K = {(i2, j2) : i, j ∈ N}, where N is the set of natural numbers.
Then

δ2(K) = P − lim
m,n

Km,n

mn
≤ P − lim

m,n

√
m
√

n

mn
= 0

(i.e. the set K has double natural density zero). Quite recently, Savas and Mur-
saleen [8], defined the statistical analogue for double sequences X = {Xk,l} as fol-
lows: A double sequences X = {Xk,l} of fuzzy numbers is said to be P-statistically
convergent to X0 provided that for every ε > 0

P − lim
m,n

1
mn

{number of (j, k) : j ≤ m and k ≤ n, d(Xj,k, X0) ≥ ε} = 0.

In this case we write st2 − limm,n Xm,n = X0 and we denote the set of all
statistically convergent double sequences by st2(F ).
In [1] Altin proved the following theorems:

Theorem 1.1. For any double lacunary sequence θr,s, st2 − limX = L implies
Sθr,s − limX = L if lim inf qr > 1 and lim inf q̄s > 1.
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Theorem 1.2. For any double lacunary sequence θr,s, Sθr,s lim X = X0 implies
st2 − lim X = X0 if supr qr < ∞ and sups q̄s < ∞.

Theorem 1.3. Let θr,s be a lacunary double sequence; Then st2(F ) = Sθr,s(F ) if

1 < P − liminfrqr ≤ P − limsuprqr < ∞
and

1 < P − liminfsq̄s ≤ P − limsupsq̄s < ∞.

In this paper we will prove that the converses of theorems 1.1, 1.2 and hence 1.3
are also valid.

2. Definitions and Results

We begin with some definitions.

Definition 2.1. The double sequence θr,s = {(kr, ls)} is called double lacunary
if there exist two increasing of integers such that

k0 = 0, hr = kr − kk−1 →∞ as r →∞
and

l0 = 0, h̄s = ls − ls−1 →∞ as s →∞.

Notations: kr,s = krls, hr,s = hrh̄s, θr,s is determine by Ir,s = {(k, l) : kr−1 <

k ≤ kr&ls−1 < l ≤ ls}, qr = kr

kr−1
, q̄s = ls

ls−1
, and qr,s = qr q̄s.

We now have the following definition,

Definition 2.2. Let θr,s be a double lacunary sequence; the double sequence X of
fuzzy numbers is Sθr,s-convergent to X0 provided that for every ε > 0,

P − lim
r,s

1
hr,s

|{(k, l) ∈ Ir,s : d(Xk,l, X0) ≥ ε}| = 0.

In this case we write Sθr,s − limX = X0 and we denote the set of all lacunary
statistically convergent double sequences by Sθr,s(F ).

Definition 2.3. Let θ be a double lacunary sequence; the double sequence X =
{Xkl} of fuzzy numbers is said to be an Sθr,s-Cauchy double sequence if there ex-
ists a double subsequence {Xk̄r,l̄s} of X such that (k̄r, l̄s) ∈ Ir,s for each (r, s)
P-limr,s Xkr,ls = X0 and for every ε > 0

P − lim
r,s

1
hr,s

∣∣{(k, l) ∈ Ir,s : d(Xr,s, Xk̄r,l̄s) ≥ ε
}∣∣ = 0.

Proof of the converse of theorem 1.1. For the contrapositive method we
suppose that lim infr qr = 1 and lim infs q̄s = 1. Then we will prove that there is a
bounded st2-convergent sequence that is not Sθr,s

. Since θr,s is lacunary sequence
there are subsequences

{
krj

, lsi

}
of θr,s satisfying

krj−1

krj−1

> j,
krj

krj−1
< 1 +

1
j

and
lsi−1

lsi−1

> i,
lsi

lsi−1
< 1 +

1
i

where rj ≥ rj−1 + 2 and si ≥ si−1 + 2. Let us define X as follows

Xk,l :=
{

1̄, if k, l ∈ Irjsi ,
0, if otherwise.

Then , for any fuzzy numbers F and for any ε > 0 with ε ≤ min{d(1̄, F ), (0̄, F )},
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P − limj,i
1

hrj ,si

|{(k, l) ∈ Irj ,si : d(Xk,l, F ) ≥ ε| =
{

1, if F 6= 1̄,
0, if F = 1̄,

and, for r 6= rj and s 6= si.

P − limr,s
1

hr,s
|{(k, l) ∈ Ir,s : d(Xk,l, F ) ≥ ε| =

{
0, if F = 0̄,
1, if F 6= 0̄.

Therefore X is not in Sθr,s(F ).
If m and n are any sufficiently large integers, we can find the unique j and i with

krj−1 < m ≤ krj and lsi−1 < n ≤ lsi .

Then, since m,n →∞, implies j, i →∞, we have

P−limm,n
1

m,n
|{k ≤ m and l ≤ n : d(Xk,l, 0̄) ≥ ε}| ≤ krj−1 lsi−1 + hrjsi

krj−1lsi−1
< limji

(
2
ji

)
= 0.

Hence X ∈ st2(F ).
Proof of the converse of theorem 1.2. We suppose that lim supr qr = ∞

or lim sups q̄s = ∞. Then we will prove that there is a bounded Sθr,s -convergent
sequence that is not st2. Now θr,s is lacunary and there is subsequences

{
krj , lsi

}
of θr,s satisfying qrj > j, q̄si > i. Define X = (Xkl) by

Xkl = 1̄, if krj−1 < k ≤ 2krj−1 and lsi−1 < l ≤ 2lsi−1; and Xkl = 0̄, otherwise.

Let ε > 0 be given,

1
hrj ,si

|{(k, l) ∈ Irj ,si : d(Xk,l, 0̄) ≥ ε| = krj−1lsi−1

hrj ,si

≤
(

1
j − 1

)(
1

i− 1

)
.

and if r 6= rj and s 6= si, then |{(k, l) ∈ Irj ,si : d(Xk,l, 0̄)| = 0.
Hence

1
hrj ,si

|{(k, l) ∈ Irj ,si : d(Xk,l, 0̄) ≥ ε| = 0,

from which we have {Xkl} ∈ Sθr,s(F ). On the other hand, for the sequence {Xkl}
above we will show that any fuzzy number F can not be a statistical limit of {Xkl}.
If F = 0̄ and ε > 0, then

1
2krj−12lsi−1

∣∣{k ≤ 2krj−1 and l ≤ 2lsi−1 : d(Xk,l, 0̄) ≥ ε
}∣∣ ≥

(
krj − 1
2krj−1

)(
lsi
− 1

2lsi − 1

)

=
1
4
.

If F = 1̄ and ε > 0, then

1
krj

lsi

∣∣{k ≤ krj−1 and l ≤ lsi−1 : d(Xk,l, 1̄) ≥ ε
}∣∣ ≥

(
krj

− 2krj−1

krj

)(
lsi − 2lsi−1

lsi

)

≥
(

1− 2
j

)(
1− 2

i

)
.

Finally, if F 6= 0̄, 1̄ and min{d(F, 0̄), d(F, 1̄)} > ε > 0, then
1

knm
|{k ≤ kn and l ≤ lm : d(Xk,l, F ) > ε}| = 1.
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Hence from the above three cases, we conclude that {Xkl} is not a double statisti-
cally convergent sequences.

Proof of the converse of theorem 1.3. It follows combining Theorems 1.1
and 1.2.

We conclude this paper with the following theorem.

Theorem 2.1. The double sequence X is Sθr,s - convergent if and only if X is an
Sθr,s- Cauchy double sequence.

Proof. Let Xk,l → X0(Sθr,s)(F ) and Ki,j = {(k, l) ∈ N ×N : d(Xk,l, X0) < 1
ij } for

each (i, j) ∈ N ×N we obtain the following Ki+1,j+1 ⊆ Ki,j and

|Ki,j ∩ Ir,s|
hrs

→ 1 as r, s →∞.

This implies that there exists m1 and n1 such that r ≥ m1 and s ≥ n1 and

|K1,1 ∩ Ir,s|
hrs

> 0

that is K1,1 ∩ Ir,s 6= ∅. We next choose m2 > m1 and n2 > n1 such that r > m2

and s > n2 implies that K2,2 ∩ Ir,s 6= ∅. Thus for each pairs (r, s) such that
m1 ≤ r < m2 and n1 ≤ s < n2 we choose (k̄r, l̄s) ∈ Ir,s such that (k̄r, l̄s) ∈
Kr,s∩Ir,s that is d(Xk̄r,l̄s , X0) < 1. In general we choose mi+1 > mi and nj+1 > nj

such that r > mi+1 and s > nj+1 this implies Ir,s ∩ Ki+1,j+1 6= ∅. Thus for all
(r, s) such that for mi ≤ r < mi+1 and nj ≤ s < nj+1 choose (k̄r, l̄s) ∈ Ir,s i.e.
d(Xk̄r,l̄s , X0) < 1

ij . Thus (k̄r, l̄s) ∈ Ir,s for each pair (r, s) and d(Xk̄r,l̄s , X0)) < 1
ij

implies P − limr,s Xk̄r,l̄s = X0). Also, for every ε > 0

1
hrs

∣∣{(k, l) ∈ Ir,s : d(Xk,l, Xk̄r,l̄s) ≥ ε
}∣∣

≤ 1
hrs

∣∣∣
{

(k, l) ∈ Ir,s : d(Xk,l, X0) ≥ ε

2

}∣∣∣

+
1

hrs

∣∣∣
{

(k, l) ∈ Ir,s : d(Xk̄r,l̄s , X0) ≥ ε

2

}∣∣∣ .

Since Xk,l → X0(Sθr,s
)(F ) and P − limr,s Xk̄r,l̄s = X0 it follows that X is an Sθr,s

-
Cauchy double sequence. Now suppose that X is an Sθr,s -Cauchy double sequence
then
1

hrs
|{(k, l) ∈ Ir,s : d(Xk,l, X0) ≥ ε}| ≤ 1

hrs

∣∣∣
{

(k, l) ∈ Ir,s : d(Xk,l, Xk̄r,l̄s) ≥
ε

2

}∣∣∣

+
1

hrs

∣∣∣
{

(k, l) ∈ Ir,s : d(Xk̄r,l̄s , X0) ≥ ε

2

}∣∣∣ .

Therefore Xk,l → X0(Sθr,s
)(F ). This completes the proof.

¤

Remark: This paper was completed in 2006 and accepted in 2008 for publi-
cation. In the previous version of this paper I proved theorems 1.1 ,1.2 and 1.3
with necessary and sufficient conditions. During the time this paper was waiting
for publication Atin [1] proved that the conditions of the Theorems 1.1. , 1.2 and
1.3. are sufficient but his paper does not discuss the necessity of the conditions.
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Abstract

Assume u is an analytic function on the open unit disk D in the com-
plex plane C and ϕ is an analytic self-map of D. Weighted composition
operators uCϕf = u · (f ◦ϕ) from mixed norm spaces into weighted Bloch
spaces and little weighted Bloch spaces are characterized by function the-
oretic properties of the functions u and ϕ.

1 Introduction

Let D be the open unit disk in the complex plane C and H(D) the class of
all functions analytic on D. Let u be a fixed analytic function on D and ϕ an
analytic self-map of D, then the linear operator uCϕf = u · (f ◦ ϕ) on H(D)
is called weighted composition operator. This operator is a generalization of
a multiplication operator and a composition operator ([3]). Function theoretic
characterizations of when ϕ induces a bounded or compact composition operator
on spaces of analytic functions are problems of some interest.

A positive continuous function φ on [0, 1) is called normal ([17]) if there is
δ ∈ [0, 1) and a and b, 0 < a < b such that

φ(r)
(1− r)a

is decreasing on [δ, 1) and lim
r→1

φ(r)
(1− r)a

= 0;

φ(r)
(1− r)b

is increasing on [δ, 1) and lim
r→1

φ(r)
(1− r)b

= ∞.

2000 Mathematics Subject Classification. Primary 47B33, 47B38, Secondary 30H05.
Key words and phrases. Weighted composition operator, mixed-norm space, weighted

Bloch space, boundedness, compactness.
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For p, q ∈ (0,∞) and a normal function φ, let H(p, q, φ) denote the mixed
norm space, that is, the space of all analytic functions f on D such that

‖f‖H(p,q,φ) =
(∫ 1

0

Mp
q (r, f)

φp(r)
1− r

rdr

)1/p

< ∞,

where the integral means Mq(f, r) are defined by

Mq(f, r) =
(

1
2π

∫ 2π

0

|f(reiθ)|qdθ

)1/q

, 0 ≤ r < 1.

For 1 ≤ p < ∞, H(p, q, φ), equipped with the norm ‖·‖H(p,q,φ) is a Banach space,
while for 0 < p < 1, ‖ · ‖H(p,q,φ) is a quasinorm on H(p, q, φ) and H(p, q, φ) is a
Frechet space. If p = q, then H(p, p, φ) becomes a Bergman-type space, which
for φ(r) = (1− r)1/p is equivalent with the Bergman space Ap = Ap(D).

Let w(z) = w(|z|), z ∈ D, and w is normal on the interval [0, 1). An analytic
function f on D is said to belong to the weighted Bloch space Bw = Bw(D) if

Bw(f) = sup
z∈D

w(z)|f ′(z)| < ∞.

The expression Bw(f) defines a seminorm on Bw, while the natural norm is
given by ‖f‖Bw = |f(0)| + Bw(f). With this norm Bw is a Banach space. Let
Bw

0 denote the subspace of Bw consisting of those f ∈ Bw for which

lim
|z|→1

w(z)|f ′(z)| = 0.

This space is called the little weighted Bloch space. If w(z) = (1−|z|2)α(ln(1−
|z|2)−1)β , where α > 0 and β ≥ 0 we obtain the logarithm-type Bloch space
Bα,β . If β = 0, Bα,β becomes so called α-Bloch space. For α = β = 1 the space
Bα,β appears in [1] where it is shown that f is a multiplier for B1(D) if and
only if f ∈ H∞(D) ∩ B1,1. For more information on Bloch-type spaces see, for
example, [2, 3, 5, 15, 18], and the references therein.

In this paper we study the weighted composition operators from the mixed
norm space H(p, q, φ) into the weighted Bloch space Bw and the little weighted
Bloch space Bw

0 . For some other closely related papers see, for example, [2],
[3], [6]-[14], [16], [19]-[25], and the related references therein. Our main results
are motivated by the results in [7]. Here we improve them, namely, we show
that the proofs in [7] can be modified so that the results appearing there are
naturally extended to the case of mixed norm spaces and weighted Bloch spaces.

Throughout this paper, positive constants are denoted by C and may differ
from one occurrence to the next. The notation a ¹ b means that there is a
positive constant C such that a ≤ Cb. If both a ¹ b and b ¹ a hold, then one
says that a ³ b.

2 Auxiliary results

In this section we formulate and prove several lemmas which are used in the
proofs of the main results of the paper.
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Lemma 1. Assume 0 < p, q < ∞, φ is normal and f ∈ H(p, q, φ). Then the
following statements are true.

(a) There is a positive constant C independent of f such that

|f(z)| ≤ C
‖f‖H(p,q,φ)

φ(|z|)(1− |z|2)1/q
, z ∈ D. (1)

(b) There is a positive constant C independent of f such that

|f ′(z)| ≤ C
‖f‖H(p,q,φ)

φ(|z|)(1− |z|2)1+1/q
. (2)

Proof. We prove only the statement in (b), the proof of (a) is simpler and is
omitted. By the monotonicity of the integral means, the asymptotic formula

∫ 1

0

Mp
q (f, r)

φ(r)p

1− r
rdr ³ |f(0)|p +

∫ 1

0

Mp
q (f ′, r)

φ(r)p

1− r
(1− r)pdr,

(which can be obtained by a slight modification of Theorem 2 in [4]), Theorem
7.2.5 in [15], and the assumption that φ is normal, we have

‖f‖p
H(p,q,φ) ≥ C

∫ (3+|z|)/4

(1+|z|)/2

Mp
q (f ′, r)

φ(r)p

1− r
(1− r)pdr

≥ CMp
q (f ′, (1 + |z|)/2)φ(|z|)p(1− |z|2)p

≥ Cφ(|z|)p(1− |z|2)p+ p
q |f ′(z)|p,

from which the result follows. ¤

Lemma 2. ([17]) For β > −1 and γ > 1 + β we have
∫ 1

0

(1− r)β

(1− ρr)γ
dr ≤ C(1− ρ)1+β−γ , 0 < ρ < 1.

The following criterion for compactness can be proved in a standard way.

Lemma 3. The operator uCϕ : H(p, q, φ) → Bw is compact if and only if
uCϕ : H(p, q, φ) → Bw is bounded and for any bounded sequence (fn)n∈N in
H(p, q, φ) which converges to zero uniformly on compact subsets of D, we have
‖uCϕfn‖Bw → 0 as n →∞.

The next lema can be proved similar to Lemma 1 in [11]. We omit its proof.

Lemma 4. Assume w is normal. A closed set K in Bw
0 is compact if and only

if it is bounded and satisfies

lim
|z|→1

sup
f∈K

w(z)|f ′(z)| = 0. (3)

STEVIC:WEIGHTED COMPOSITION OPERATORS 72



3 The boundedness and compactnes of the op-
erator uCϕ : H(p, q, φ) → Bw

The boundedness and compactness of the weighted composition operator uCϕ :
H(p, q, φ) → Bw are characterized in this section.

Theorem 1. Suppose ϕ is an analytic self-map of the unit disk, u ∈ H(D),
0 < p, q < ∞ and φ and w are normal on [0, 1). Then, uCϕ : H(p, q, φ) → Bw

is bounded if and only if the following conditions are satisfied:

sup
z∈D

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

< ∞, (4)

and

sup
z∈D

w(z)|u(z)ϕ′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/q

< ∞. (5)

Proof. First, suppose that uCϕ : H(p, q, φ) → Bw is bounded. Then, by
taking the functions given by f(z) = 1 and f(z) = z we obtain that u ∈ Bw and

sup
z∈D

w(z)|u(z)ϕ′(z) + u′(z)ϕ(z)| < ∞.

Using these facts and the boundedness of the function ϕ(z), we have

M := sup
z∈D

w(z)|u(z)ϕ′(z)| < ∞. (6)

For fixed w ∈ D and t > −1, set

fw(z) =
(1− |w|2)t+1

φ(|w|)(1− w̄z)1/q+t+1
. (7)

By [15, Lemma 1.4.10], it follows that

Mq(fw, r) ≤ C
(1− |w|2)t+1

φ(|w|)(1− r|w|)t+1
.

Employing Lemma 2 and the assumption that φ is normal, we obtain

‖fw‖p
H(p,q,φ) =

∫ 1

0

Mp
q (fw, r)

φp(r)
1− r

rdr ≤ C

∫ 1

0

(1− |w|2)p(t+1)

φp(|w|)(1− r|w|)p(t+1)

φp(r)
1− r

dr

≤ C

(∫ |w|

0

(1− |w|2)p(t+1)

φp(|w|)(1− r|w|)p(t+1)

φp(r)
1− r

dr +
∫ 1

|w|

(1− |w|2)p(t+1)

φp(|w|)(1− r|w|)p(t+1)

φp(r)
1− r

dr

)

≤ C
(1− |w|2)p(t+1)

φp(|w|)
φp(|w|)

(1− |w|2)pt

∫ |w|

0

(1− r)pt−1

(1− r|w|)p(t+1)
dr

+C
(1− |w|2)p(t+1)

φp(|w|)
φp(|w|)

(1− |w|2)ps

∫ 1

|w|

(1− r)ps−1

(1− r|w|)p(t+1)
d ≤ C,
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which implies supw∈D ‖fw‖H(p,q,φ) ≤ C. Hence

C‖uCϕ‖H(p,q,φ)→Bw ≥ ‖fϕ(λ)‖H(p,q,φ)‖uCϕ‖H(p,q,φ)→Bw ≥ ‖uCϕfϕ(λ)‖Bw

≥
∣∣∣∣∣(1/q + t + 1)

w(λ)|u(λ)ϕ(λ)ϕ′(λ)|
φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1+1/q

− w(λ)|u′(λ)|
φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1/q

∣∣∣∣∣ ,

for every λ ∈ D, and consequently

w(λ)|u′(λ)|
φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1/q

≤C‖uCϕ‖H(p,q,φ)→Bw+
Cw(λ)|u(λ)ϕ(λ)ϕ′(λ)|

φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1+1/q
. (8)

Now, for λ ∈ D, set

gλ(z) =
(1− |ϕ(λ)|2)t+2

φ(|ϕ(λ)|)(1− ϕ(λ)z)1/q+t+2
− (1− |ϕ(λ)|2)t+1

φ(|ϕ(λ)|)(1− ϕ(λ)z)1/q+t+1
. (9)

Similarly it is proved that supλ∈D ‖gλ‖H(p,q,φ) ≤ C, moreover gλ(ϕ(λ)) = 0 and
g′λ(ϕ(λ)) = ϕ(λ)/[φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1+1/q]. Therefore

C‖uCϕ‖H(p,q,φ)→Bw ≥ ‖uCϕgλ‖Bw ≥ w(λ)|u(λ)ϕ(λ)ϕ′(λ)|
φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1+1/q

, (10)

and consequently

sup
λ∈D

w(λ)|u(λ)ϕ(λ)ϕ′(λ)|
φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1+1/q

< ∞. (11)

From (11), for a fixed δ ∈ (0, 1) we obtain

sup
|ϕ(λ)|>δ

w(λ)|u(λ)||ϕ′(λ)|
φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1+1/q

< ∞. (12)

On the other hand, since φ is normal, for λ ∈ D such that |ϕ(λ)| ≤ δ, we have

w(λ)|u(λ)ϕ′(λ)|
φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1+1/q

≤ C
w(λ)|u(λ)ϕ′(λ)|
(1− δ2)1+1/qφ(δ)

. (13)

Hence, from (6) and (13), we obtain

sup
|ϕ(λ)|≤δ

w(λ)|u(λ)ϕ′(λ)|
φ(|ϕ(λ)|)(1− |ϕ(λ)|2)1+1/q

< ∞. (14)

From (12) and (14), (5) follows. Taking the supremum in (8) over λ ∈ D and
using (5), (4) follows, finishing the proof of the implication.

Now, suppose that conditions (4) and (5) hold. Then for each z ∈ D and
f ∈ H(p, q, φ), by Lemma 1 we have

w(z)|(uCϕf)′(z)| ≤ w(z)|u′(z)||f(ϕ(z))|+ w(z)|f ′(ϕ(z))||u(z)ϕ′(z)|

≤ Cw(z)|u′(z)| ‖f‖H(p,q,φ)

φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

+Cw(z)|u(z)ϕ′(z)| ‖f‖H(p,q,φ)

φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/q
. (15)
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Taking the supremum in (15) over D and then using conditions (4) and (5) we
obtain that the operator uCϕ : H(p, q, φ) → Bw is bounded. ¤
Theorem 2. Suppose ϕ is an analytic self-map of the unit disk, u ∈ H(D),
0 < p, q < ∞, φ and w are normal on [0, 1) and uCϕ : H(p, q, φ) → Bw is
bounded. Then, uCϕ : H(p, q, φ) → Bw is compact if and only if the following
conditions are satisfied:

lim
|ϕ(z)|→1

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

= 0, (16)

and

lim
|ϕ(z)|→1

w(z)|u(z)ϕ′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/q

= 0. (17)

Proof. First assume that conditions in (16) and (17) hold, and let (fn)n∈N
be a sequence in H(p, q, φ) such that supn∈N ‖fn‖H(p,q,φ) ≤ L and fn converges
to zero uniformly on compacts of D as n →∞.

By the assumptions of the theorem we have that for every ε > 0, there is a
δ ∈ (0, 1), such that δ < |ϕ(z)| < 1 implies

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

< ε/L

and
w(z)|u(z)ϕ′(z)|

φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/q
< ε/L.

Let δD = {w ∈ D : |w| ≤ δ}. From this, since φ is normal and using the
estimates from Lemma 1, it follows that

‖uCϕfn‖Bw ≤ sup
z∈D

w(λ)|u′(z)fn(ϕ(z))|

+sup
z∈D

w(λ)|u(z)f ′n(ϕ(z))ϕ′(z)|+ |u(0)fn(ϕ(0))|

≤ sup
{z∈D: ϕ(z)∈δD}

w(λ)|u′(z)fn(ϕ(z))|

+ sup
{z∈D: δ≤|ϕ(z)|<1}

w(λ)|u′(z)fn(ϕ(z))|

+ sup
{z∈D: ϕ(z)∈δD}

w(λ)|u(z)ϕ′(z)||f ′n(ϕ(z))|

+ sup
{z∈D: δ≤|ϕ(z)|<1}

w(λ)|u(z)ϕ′(z)||f ′n(ϕ(z))|+ |u(0)fn(ϕ(0))|

≤ ‖u‖Bw sup
w∈δD

|fn(w)|+ M sup
w∈δD

|f ′n(w)|+ |u(0)fn(ϕ(0))|

+C sup
{z∈D: δ≤|ϕ(z)|<1}

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

‖fn‖H(p,q,φ)

+C sup
{z∈D: δ≤|ϕ(z)|<1}

w(z)|u(z)ϕ′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/q

‖fn‖H(p,q,φ)

≤ ‖u‖Bw sup
w∈δD

|fn(w)|+ M sup
w∈δD

|f ′n(w)|+ |u(0)fn(ϕ(0))|+ 2Cε,
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where we have used the fact that u ∈ Bw and (6) (note that uCϕ : H(p, q, φ) →
Bw is bounded).

Since the sets δD and {ϕ(0)} are compact we have, limn→∞ supw∈δD |fn(w)| =
0 and limn→∞ |u(0)fn(ϕ(0))| = 0. By Cauchy’s estimate, if fn is a sequence
which converges on compacts of D to zero, then the sequence f ′n also converges
on compacts of D to zero as n →∞. Employing these facts and letting n →∞
in the last inequality, we obtain that

lim sup
n→∞

‖uCϕfn‖Bw ≤ 2Cε.

Since ε is an arbitrary positive number it follows that the last limit is equal to
zero, which implies the compactness of uCϕ : H(p, q, φ) → Bw.

Conversely, suppose uCϕ : H(p, q, φ) → Bw is compact. Let (zn)n∈N be a
sequence in D such that |ϕ(zn)| → 1 as n → ∞. If such a sequence does not
exist conditions (16) and (17) are vacously satisfied. Now choose the functions
(fϕ(zn))n∈N in (7) which we denote by simplicity by (fn)n∈N. Then, we know
that supn∈N ‖fn‖H(p,q,φ) ≤ C and fn converges to 0 uniformly on compacts of
D as n →∞. Since uCϕ is compact, we have ‖uCϕfn‖Bw → 0 as n →∞.

We also have

‖uCϕfn‖Bw ≥ sup
z∈D

w(z)|(uCϕfn)′(z)|

≥
∣∣∣∣∣(1/q + t + 1)

w(zn)|u(zn)ϕ(zn)ϕ′(zn)|
φ(|ϕ(zn)|)(1− |ϕ(zn)|2)1+1/q

− w(zn)|u′(zn)|
φ(|ϕ(zn)|)(1− |ϕ(zn)|2)1/q

∣∣∣∣∣ .

Hence

lim
|ϕ(zn)|→1

(1/q + t + 1)w(zn)|u(zn)ϕ(zn)ϕ′(zn)|
φ(|ϕ(zn)|)(1− |ϕ(zn)|2)1+1/q

= lim
|ϕ(zn)|→1

w(zn)|u′(zn)|
φ(|ϕ(zn)|)(1− |ϕ(zn)|2)1/q

, (18)

if one of these two limits exists.
Further, by using the functions (gϕ(zn))n∈N := (gn)n∈N defined in (9), we

have that (gn)n∈N is a bounded sequence in H(p, q, φ), gn → 0 uniformly on
compacts of D as n →∞, gn(ϕ(zn)) = 0 and

g′n(ϕ(zn)) =
ϕ(zn)

φ(|ϕ(zn)|)(1− |ϕ(zn)|2)1+1/q
.

Hence by the compactness of uCϕ : H(p, q, φ) → Bw we have ‖uCϕgn‖Bw → 0
as n →∞.

On the other hand by, (10) the following inequality holds

w(zn)|u(zn)ϕ(zn)ϕ′(zn)|
φ(|ϕ(zn)|)(1− |ϕ(zn)|2)1+1/q

≤ ‖uCϕgn‖Bw . (19)

Letting n → ∞ in (19), it follows that (17) holds. From this and (18), (16)
follows, as desired. ¤
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4 The boundedness and compactness of the op-
erator uCϕ : H(p, q, φ) → Bw

0

In this section we characterize the boundedness and compactness of the weighted
composition operator uCϕ : H(p, q, φ) → Bw

0 . Before we formulate and prove
the main results of this section we prove two lemmas.

Lemma 5. Suppose ϕ is an analytic self-map of the unit disk, u ∈ H(D),
0 < p, q < ∞ and φ and w are normal on [0, 1). Then,

lim
|z|→1

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

= 0 (20)

if and only if u ∈ Bw
0 and

lim
|ϕ(z)|→1

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

= 0. (21)

Proof. First, we assume that (20) holds. If ‖ϕ‖∞ < 1 then condition (21) is
vacuously satisfied. If |ϕ(z)| → 1, then |z| → 1, from which it follows that

lim
|ϕ(z)|→1

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/p

= 0,

hence (21) holds.
Now, assume to the contrary that u 6∈ Bw

0 . Then there is a sequence (zn)n∈N
such that |zn| ∈ [1/2, 1), |zn| → 1 and lim infn→∞ w(zn)|u′(zn)| > 0. From this
and since φ is normal, we have

lim inf
n→∞

w(zn)|u′(zn)|
φ(|ϕ(zn)|)(1− |ϕ(zn)|2)1/q

> 0,

which contradicts to (20). Hence u ∈ Bw
0 .

Conversely, suppose that u ∈ Bw
0 and (21) holds. From (21) it follows that

for every ε > 0, there exists r ∈ (0, 1) such that

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

< ε

when r < |ϕ(z)| < 1. Since u ∈ Bw
0 , there exists a σ ∈ (0, 1) such that

w(z)|u′(z)| ≤ ε(1− r2)1/qφ(r).

when σ < |z| < 1.
Therefore, when σ < |z| < 1 and r < |ϕ(z)| < 1, we have that

w(z)|u′(z)|
φ(|ϕ(z)|))(1− |ϕ(z)|2)1/q

< ε. (22)
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If |ϕ(z)| ≤ r and σ < |z| < 1, then since φ is normal, we obtain

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

<
(1− r)sw(z)|u′(z)|

φ(r)(1− |ϕ(z)|2)1/q+s
< ε. (23)

From (22) with (23), condition (20) follows. ¤

The next lemma can be proved similar to Lemma 5.

Lemma 6. Suppose ϕ is an analytic self-map of the unit disk, u ∈ H(D),
0 < p, q < ∞ and φ and w are normal on [0, 1). Then,

lim
|z|→1

w(z)|u(z)ϕ′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/q

= 0 (24)

if and only if

lim
|ϕ(z)|→1

w(z)|u(z)ϕ′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/q

= 0 (25)

and

lim
|z|→1

w(z)|u(z)ϕ′(z)| = 0. (26)

Theorem 3. Suppose ϕ is an analytic self-map of the unit disk, u ∈ H(D),
0 < p, q < ∞ and φ and w are normal on [0, 1). Then, uCϕ : H(p, q, φ) → Bw

0

is bounded if and only if uCϕ : H(p, q, φ) → Bw is bounded, u ∈ Bw
0 and

lim
|z|→1

w(z)|u(z)ϕ′(z)| = 0. (27)

Proof. First assume that uCϕ : H(p, q, φ) → Bw
0 is bounded. Then, it is

clear that uCϕ : H(p, q, φ) → Bw is bounded. Taking the functions f(z) = 1
and f(z) = z, we obtain that u ∈ Bw

0 and (27) holds.
Conversely, assume that uCϕ : H(p, q, φ) → Bw is bounded, u ∈ Bw

0 and
that (27) holds. Then, for each polynomial p, we have that

w(z)|(uCϕp)′(z)| ≤ w(z)|u′(z)||p(ϕ(z))|+ w(z)|u(z)ϕ′(z)p′(ϕ(z))|
≤ w(z)|u′(z)|‖p‖∞ + w(z)|u(z)ϕ′(z)|‖p′‖∞,

from which it follows that uCϕp ∈ Bw
0 . Since the set of all polynomials is

dense in H(p, q, φ), we have that for every f ∈ H(p, q, φ) there is a sequence of
polynomials (pn)n∈N such that ‖f − pn‖H(p,q,φ) → 0, as n →∞. From this and
since the operator uCϕ : H(p, q, φ) → B is bounded, we have

‖uCϕf − uCϕpn‖Bw ≤ ‖uCϕ‖H(p,q,φ)→Bw‖f − pn‖H(p,q,φ) → 0
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as n →∞. Since Bw
0 is a closed subset of Bw, we obtain uCϕ(H(p, q, φ)) ⊂ Bw

0 ,
which implies the boundedness of the operator uCϕ : H(p, q, φ) → Bw

0 . ¤

Theorem 4. Suppose ϕ is an analytic self-map of the unit disk, u ∈ H(D),
0 < p, q < ∞ and φ and w are normal on [0, 1). Then, uCϕ : H(p, q, φ) → Bw

0

is compact if and only if

lim
|z|→1

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

= 0 (28)

and

lim
|z|→1

w(z)|u(z)ϕ′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/q

= 0. (29)

Proof. First, we assume that uCϕ : H(p, q, φ) → Bw
0 is compact. Taking the

test function f(z) ≡ 1 we obtain that u ∈ Bw
0 . From this, taking f(z) = z, and

using the boundedness of uCϕ : H(p, q, φ) → Bw
0 it follows that

lim
|z|→1

w(z)|u(z)ϕ′(z)| = 0. (30)

Hence, if ‖ϕ‖∞ < 1, in view of u ∈ Bw
0 and (30), we obtain

lim
|z|→1

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/p

≤ C lim
|z|→1

w(z)|u′(z)|
φ(‖ϕ‖∞)(1− ‖ϕ‖2∞)1/p

= 0

and

lim
|z|→1

w(z)|u(z)ϕ′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/p

≤ C lim
|z|→1

w(z)|u(z)ϕ′(z)|
φ(‖ϕ‖∞)(1− ‖ϕ‖2∞)1+1/p

= 0.

from which the implication follows in this case.
Now assume ‖ϕ‖∞ = 1. Let (ϕ(zn))n∈N be a sequence such that limn→∞ |ϕ(zn)| =

1. By using the functions (fϕ(zn))n∈N and (gϕ(zn))n∈N as in the proof of Theorem
2 we obtain

lim
|ϕ(z)|→1

w(z)|u(z)ϕ′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1+1/q

= 0 (31)

and

lim
|ϕ(z)|→1

w(z)|u′(z)|
φ(|ϕ(z)|)(1− |ϕ(z)|2)1/q

= 0. (32)

From u ∈ Bw
0 and (30)-(32) and by employing Lemmas 5 and 6 the result follows.

Conversely, by taking the supremum in (15) over the unit ball in H(p, q, φ),
then letting |z| → 1, and using conditions (28) and (29) we obtain

lim
|z|→1

sup
‖f‖H(p,q,φ)≤1

w(z)|(uCϕ(f))′(z)| = 0,

which by Lemma 4 implies the compactness of uCϕ : H(p, q, φ) → Bw
0 . ¤
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A NOTE ON THE FOURIER TRANSFORM OF p-ADIC q-INTEGRALS ON Zp

Taekyun Kim
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Abstract. The p-adic q-integral (= Iq-integral) was defined by author in the previous paper [1, 3]. In this
paper, we consider Iq-Fourier transform and investigate some properties which are related to this transform.

By our results in this paper, we easily see that Iq-Fourier transform is exactly same I0-Fourier transform

when q = 1 due to Woodcock, see [15: p.105 ].

§1. Introduction

Let us denote N, Z, Q, C sets of positive integer, integer, rational and complex numbers respectively.
Let p be prime and x ∈ Q. Then x = pv(x) m

n , where m,n, v = v(x) ∈ Z, m and n are not divisible by
p. Let |x|p = p−v(x) and |0|p = 0. Then |x|p is valuation on Q satisfying

|x + y|p ≤ max{|x|p, |y|p}.

Completion of Q with respect to | · |p is denoted by Qp and called the field of p-adic rational numbers.
Cp is the completion of algebraic closure of Qp and Zp = {x ∈ Qp | |x|p ≤ 1} is called the ring of p-adic
rational integers(see [1, 2, 3, 4]). Let l be a fixed integer and let p be a fixed prime number. We set

Xl = lim←−
N

(Z/lpNZ), and X1 = Zp,

X∗ =
⋃

0<a<lp
(a,p)=1

(a + lpZp),

a + lpNZp = {x ∈ X | x ≡ a (mod lpN )},

where N ∈ N and a ∈ Z lies in 0 ≤ a < lpN , cf. [1-20].

When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex
number q ∈ C, or a p-adic number q ∈ Cp. In this paper, we assume that q ∈ Cp with |q− 1|p < p−

1
p−1 ,
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2 Iq-INTEGRAL TRANSFORMS ON Zp

so that qx = exp(x log q) for each x ∈ X. We use the notation as [x] = [x; q] = 1−qx

1−q for each x ∈ X.
Hence limq→1[x] = x, cf.[3]. For any positive integer N, we set

µq(a + lpNZp) =
qa

[lpN ]
, cf. [1-20],

and this can be extended to a distribution on X. This distribution yields an integral as follows (see
[3]):

Iq(f) =
∫

Zp

f(x) dµq(x) =
∫

X

f(x) dµq(x),

where f ∈ UD(Zp) = the space of uniformly differentiable function on Zp with values in Cp, cf. [3].
Let Cpn be the cyclic group consisting of all pn-th roots of unity in Cp for any n ≥ 0 and Tp be the
direct limit of Cpn with respect to the natural morphism, hence Tp ia the union of all Cpn with discrete
topology. Up denotes the group of all principal units in Cp. For any f ∈ UD(Zp, Cp), we have an integral
I0(f) with respect to the so called invariant measure µ0:

I0(f) =
∫

Zp

f(x)dµ0(x) = lim
n→∞

1
pn

pn−1∑
x=0

f(x), cf. [2, 4] ,

and the Fourier transform f̂w = I0(fφw), where φw denotes a uniformly differentiable function on
Zp belonging to w ∈ Tp defined by φw(x) = wx, cf. [4]. Now we introduce the convolution for any
f, g ∈ UD(Zp, Cp) due to Woodcock as follows:

f ∗ g(x) =
∑
w

f̂wĝwφw−1(x), see [2, 4].

As known results, f ∗ g ∈ UD(Zp, Cp), and ̂(f ∗ g)w = f̂wĝw, ( see [4]). In this paper, we consider
Iq-Fourier transform and investigate some properties which are related to this transform. By using our
results in this paper, we easily see that Iq-Fourier transform is exactly same I0-Fourier transform when
q = 1 due to Woodcock, see [15: p.105 ].

§2. Iq-Integral Transforms

For any f ∈ UD(X), the p-adic q-integral was defined by

Iq(f) =
∫

X

f(x) dµq(x) = lim
N→∞

1
[lpN ]

∑
0≤x<lpN

f(x)qx, cf. [3] .

Note that
I0(f) = lim

q→1
Iq(f) =

∫
Zp

f(x) dµ1(x) = lim
N→∞

1
lpN

∑
0≤x<lpN

f(x),

and that
I0(f1) = I0(f) + f ′(0), where f ′(0) =

d

dx
f(x)|x=0 and f1(x) = f(x + 1).
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T. KIM 3

Let Tp = ∪n≥1Cpn = limn→∞ Z/pnZ, where Cpn = {ξ ∈ X| ξpn

= 1} is the cyclic group of order pn,
see [1]. For ξ ∈ Tp, we denote by φξ : Zp → Cp the locally constant function x 7→ ξx. If we take
f(x) = φξ(x)etx, then we have that

∫
X

etxφξ(x)dµq(x) = t+log q
qξet−1 , cf. [2]. We now consider Iq-Fourier

transform as follows:

(f̂w)q = Iq(φwf) =
∫

Zp

φw(x)f(x)dµq(x), where f ∈ UD(Zp), w ∈ Tp ,

and its inverse transform is derived by

log q

q − 1
lim

n→∞

pn−1∑
x=0

w−xIq(φwf) =
log q

q − 1
lim

n→∞

pn−1∑
x=0

w−x 1
[pn]

pn−1∑
z=0

wzf(z)qz = f(x)φq(x).

Thus, we obtain the below proposition.

Proposition 1. Let f ∈ UD(Zp, Cp). Then we have the inverse formula of Iq-Fourier transform as
follows:

f(x)φq(x) =
log q

q − 1

∑
w

φw−1(f̂w)q, where
∑
w

= lim
n→∞

∑
w∈Cp

n

.

Remark. In [4], we note that if α ∈ Up, then φα is called locally analytic character and if α ∈ Tp,
then φα is called locally constant function. For f, g ∈ UD(Zp), we consider the convolution of f, g by

f ∗q g =
∑
w

(f̂wq−1)q(ĝwq−1)qφw−1 .

Thus, we note that

f ∗q g ∈ UD(Zp), and ( ̂(f ∗q g)wq−1)q = (f̂wq−1)q(ĝwq−1)q.

And we also see that

UD(Zp, Cp)/{f ∈ UD(Zp, Cp)|f ′ = 0} ∼= C(Zp, Cp),

where C(Zp, Cp) is the space of the continuous function from Zp to Cp. Another convolution ⊗q is
induced from the above convolution ∗q by (f ∗q g)′ = −f ′ ⊗q g′. Then, we also see that f ⊗q g ∈
UD(Zp, Cp). From these definitions, we can derive the below theorem.

Theorem 2. For f, g ∈ UD(Zp, Cp), we have

f ∗q g(z) =
(

q − 1
log q

)
I(x)
q (f(x)g(z − x)φq−1(x))−

(
q − 1
log q

)2

(f ⊗q g′(z)),

where I
(x)
q means the integration with respect to the variable x.

Since ( ̂(f ∗q g)wq−1)q = (f̂wq−1)q(ĝwq−1)q, for w ∈ Tp, we have∫
Zp

(f ∗q g(x))q−xdµq(x) =
∫

Zp

f(x)q−xdµq(x)
∫

Zp

g(x)q−xdµq(x).

From this, we can derive the below worthwhile and interesting formula:
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4 Iq-INTEGRAL TRANSFORMS ON Zp

Theorem 3. Let f, g ∈ UD(Zp, Cp). Then we have

I(z)
q (f ⊗q g′(z)q−z) =

(
log q

q − 1

)
I(z)
q (I(x)

q (f(x)g(z − x)q−x)q−z)−
(

log q

q − 1

)2

I(z)
q (f(z)q−z)I(z)

q (g(z)q−z).

Indeed Theorem 3 is a q-analogue result due to Woodcock ([15: p.105]), corresponding to the case
q = 1.
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TWO FIXED POINT THEOREMS ON THREE COMPLETE
UNIFORM SPACES

DURAN TURKOGLU

Abstract. In this paper we prove two new fixed point theorems for three
single valued mappings with functions on three complete uniform spaces.

1. Introduct¬on

Uniform spaces form a natural extension of metric spaces. An exact analogue
of the well-known Banach contraction principle in uniform spaces was obtained in-
dependently by Acharya [1] and Tarafdar [6]. Since then a number of fixed point
theorems for single-valued and multi-valued mappings using various contactive con-
ditions in this setting have been obtained ([2], [3], [4], [5], [6]).

Let (X,U1), (Y,U2) and (Z,U3) be uniform spaces. Families {di : i ∈ I}, {ρi :
i ∈ I} and {σi : i ∈ I} of pseudometrics on X, Y and Z respectively, are called on
associated families for uniformities U1, U2 and U3 respectively, if families

β1 = {V1(i, r) : i ∈: I, r > 0}

β2 = {V2(i, r) : i ∈: I, r > 0}

β3 = {V3(i, r) : i ∈: I, r > 0}
where

V1(i, r) = {(x, x0) : x, x0 ∈ X, di(x, x
0) < r}

V2(i, r) = {(y, y0) : y, y0 ∈ Y, ρi(y, y
0) < r}

V3(i, r) = {(z, z0) : z, z0 ∈ Z, σi(z, z
0) < r}

are subbases for the uniformities U1,U2 and U3 respectively. We may assume that
β1, β2 and β3 themselves are a base by adjoining finite intersections of members
of β1, β2 and β3 if necessary. The corresponding families of pseudometrics are
called an augmented associated families for U1,U2 and U3 . For details the reader
is referred to Tarafdar [6 ] and Thron [7].

Throughout this paper, <+ stands for the non-negative reals.

2000 Mathematics Subject Classification. Primary 54H25; Secondary, 47H10.
Key words and phrases. Fixed points, complete metric spaces.
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2 DURAN TURKOGLU

2. Main Results

We will also denote by =3 the set of all real functions f : <3+ → <+ such that:
(i) f is upper semi-continuous in each coordinate variable;
(ii) If either u ≤ f(v, u, 0) or u ≤ f(v, 0, u) for all u, v ≥ 0, then there exists a

real constant 0 ≤ c < 1 such that u ≤ cv.

Theorem 1. Let (X,U1), (Y,U2), (Z,U3) be complete Hausdorff uniform spaces
and suppose T is a mapping of X into Y , S is a mapping of Y into Z and R is a
mapping of Z into X satisfying the inequalities

(2.1) di(RSy,RSTx) ≤ f(σi(Sy, STx), di(x,RSTx), di(x,RSy))

(2.2) ρi(TRz, TRSy) ≤ g(di(Rz,RSy), ρi(y, TRSy), ρi(y, TRz))

(2.3) σi(STx, STRz) ≤ h(ρi(Tx, TRz), σi(z, STRz), σi(z, STx))

for all x in X, y in Y and z in Z, ∀i ∈ I , where f, g, h ∈ =3. If one of the
mappings R, S, T is continuous, then RST has a unique fixed point u in X, TRS
has a unique fixed point v in Y and STR has a unique fixed point w in Z. Further,
Tu = v, Sv = w, Rw = u.

Proof. Let x0 be an arbitrary point in X. Define the sequence {xn}, {yn} and
{zn} in X,Y and Z, respectively by xn = (RST )nx0, yn = Txn−1, zn = Syn for
n = 1, 2, ....
Let U1 ∈ U1 be arbitrary and let V (h, p) ∈ β, h ∈ I and p > 0 be such that

V (h, p) ⊆ U1. Applying inequality (2.1) for y = yn and x = xn we have

di(xn, xn+1) ≤ f(σi(zn, zn+1), di(xn, xn+1), 0)

which implies by (ii) that

(2.4) di(xn, xn+1) ≤ c1iσi(zn, zn+1)

where c1i ∈ [0, 1). Applying inequality (2.3) for x = xn−1 and z = zn we have

σi(zn, zn+1) ≤ h(ρi(yn, yn+1), σi(zn, zn+1), 0)

which implies by (ii) that

(2.5) σi(zn, zn+1) ≤ c3i ρi(yn, yn+1)

where c3i ∈ [0, 1). Applying inequality (2.2) for z = zn−1 and y = yn we have

ρi(yn, yn+1) ≤ g(di(xn−1, xn), ρi(yn, yn+1), 0)

which implies by (ii) that

(2.6) ρi(yn, yn+1) ≤ c2i di(xn−1, xn)

where c2i ∈ [0, 1). It follows from inequalities (2.4), (2.5) and (2.6) that

di(xn+1, xn) ≤ c1iσi(zn, zn+1) ≤ c1i c
3
i ρi(yn, yn+1) ≤ ... ≤ (c1i c2i c3i )ndi(x0, x1).

Since 0 ≤ c1i c
2
i c
3
i < 1, it follows that there exists p > 0 such that di(xn+1, xn) < p

and hence (xn+1, xn) ∈ V (h, p) ⊆ U1 . The sequence {xn} is therefore a Cauchy
sequence in the complete uniform space X, and so has a limit u in X. Similarly
the sequences {yn} and {zn} is a Cauchy sequence in the complete uniform spaces
Y and Z so has a limit v in Y and w in Z respectively.

TWO FIXED POINT THEOREMS 87



SHORT TITLE 3

Now suppose that S is continuous. Then lim
n→∞

Syn = lim
n→∞

zn and so

(2.7) Sv = w.

Let U2 ∈ U1 be arbitrary and let V (j, t) ∈ β, j ∈ I and t > 0 be such that
V (j, t) ⊆ U2. Applying inequality (2.1) we now have

di(RSv, xn−1) ≤ f(σi(Sv, zn), di(xn−1, xn), di(xn−1, RSv)).

Letting n tend to infinity and using (i), it follows

di(RSv, u) ≤ f(σi(Sv,w), 0, di(u,RSv))

using equation (2.7) we have

di(RSv, u) ≤ f(0, 0, di(u,RSv)).

By (ii) follows that d(u,RSv) ≤ c1i .0 < t. Hence (u,RSv) ∈ V (j, t) ⊆ U2. Since X
is Hausdorff, we have u = RSv which implies by (2.7) that

(2.8) u = RSv = Rw.

Let U3 ∈ U2 be arbitrary and let V (k, s) ∈ β, k ∈ I and s > 0 be such that
V (k, s) ⊆ U3. Applying inequality (2.2) we have

ρi(Tu, yn+1) ≤ g(di(u, xn), ρi(yn, yn+1), ρi(yn, TRw)).

Letting n tend to infinity and using (i), it follows that

ρi(Tu, v) ≤ g(0, 0, ρi(v, TRw))

which implies by (2.8) that

ρi(Tu, v) ≤ g(0, 0, ρi(v, Tu)).

By (ii) follows that ρi(Tu, v) ≤ 0 < s. Hence (v, Tu) ∈ V (k, s) ⊆ U3. Since X is
Hausdorff, we have

(2.9) Tu = v.

It now follows from equations (2.7), (2.8) and (2.9)

TRSv = TRw = Tu = v,

STRw = STu = Sv = w,

RSTu = RSv = Rw = u.

The same results of course will hold if R or T is continuous instead of S.
We now prove the uniqueness of the fixed point u. Supoose that RST has a

second fixed point u0 . Let U4 ∈ U1 be arbitrary and let V (l, r) ∈ β, l ∈ I and r > 0
be such that V (l, r) ⊆ U4. Using inequality (2.1), we have

di(RSTu,RSTu
0) ≤ f(σi(STu

0, STu), di(u,RSTu), di(u,RSTu
0))

and so
di(u, u

0) ≤ f(σi(STu, STu
0), 0, di(u, u

0)).

By (ii) we have

(2.10) di(u, u
0) ≤ c1iσi(STu, STu

0).

Further, using inequality (2.3), we have succesively

σi(STRSTu, STu
0) ≤ h(ρi(Tu

0, TRSTu), 0, σi(STu, STu
0))

TWO FIXED POINT THEOREMS88



4 DURAN TURKOGLU

and so
σi(STu, STu

0) ≤ h(ρi(Tu
0, Tu), 0, σi(STu, STu

0)).

By (ii) we have

(2.11) σi(STu, STu
0) ≤ c3i ρi(Tu, Tu

0).

Finally, using inequality (2.2), we have

(2.12) ρi(Tu, Tu
0) ≤ c2i di(u, u

0).

By (2.10), (2.11) and (2.12) we have

di(u, u
0) ≤ (c1i c2i c3i )di(u, u0)

which implies di(u, u0) = 0 and (u, u0) ∈ V (l, r) ⊆ U4 . Since X is Hausdorff, we
have u = u0. The fixed point u of RST is therefore unique. Similarly, it can be
proved that v is the unique fixed point of TRS and w is the unique fixed point of
STR. This completes the proof of the theorem. ¤

Corollary 1. [8] Let (X, d), (Y, ρ), (Z, σ) be complete metric spaces and suppose
T is a mapping of X into Y , S is a mapping of Y into Z and R is a mapping of Z
into X satisfying the inequalities

d(RSy,RSTx) ≤ f(σ(Sy, STx), d(x,RSTx), d(x,RSy))

ρ(TRz, TRSy) ≤ g(d(Rz,RSy), ρ(y, TRSy), ρ(y, TRz))

σ(STx, STRz) ≤ h(ρ(Tx, TRz), σ(z, STRz), σ(z, STx))

for all x in X, y in Y and z in Z, where f, g, h ∈ =3. If one of the mappings R,
S, T is continuous, then RST has a unique fixed point u in X, TRS has a unique
fixed point v in Y and STR has a unique fixed point w in Z. Further, Tu = v,
Sv = w, Rw = u.

Proof. When we replace the uniform spaces (X,U1), (Y,U2), (Z,U3) in Theorem1
by (X, d), (Y, ρ), (Z, σ) metric spaces, then proof can be obtained easily. ¤

We will also denote by =4 the set of all real functions f : <4+ → <+ such that:
(iii) f is upper semi-continuous in each coordinate variable;
(iv) If either u ≤ f(v, u, 0, w) or u ≤ f(v, 0, u, w) for all u, v ≥ 0, then there

exists a real constant 0 ≤ c < 1 such that u ≤ cmax{v, w}.
We now generalize Theorem 2 as follows:

Theorem 2. Let (X,U1), (Y,U2), (Z,U3) be complete Hausdorff uniform spaces
and suppose T is a mapping of X into Y , S is a mapping of Y into Z and R is a
mapping of Z into X satisfying the inequalities

(2.13) di(RSTx,RSy) ≤ f(ρi(y, Tx), di(x,RSTx), di(x,RSy), σi(Sy, STx))

(2.14) ρi(TRz, TRSy) ≤ g(σi(z, Sy), ρi(y, TRSy), ρi(y, TRz), di(Rz,RSy))

(2.15) σi(STRz, STx) ≤ h(di(x,Rz), σi(z, STRz), σi(z, STx), ρi(Tx, TRz))

for all x in X, y in Y and z in Z, i ∈ I , where f, g, h ∈ =4. If one of the mappings
R, S, T is continuous, then RST has a unique fixed point u in X, TRS has a unique
fixed point v in Y and STR has a unique fixed point w in Z. Further, Tu = v,
Sv = w, Rw = u.
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Proof. Let x0 be an arbitrary point in X. Define the sequence {xn}, {yn} and {zn}
in X,Y and Z, respectively, by

xn = (RST )
nx0 , yn = Txn−1, zn = Syn for n = 1, 2, 3, ....

Let U1 ∈ U1 be arbitrary and let V (h, p) ∈ β, h ∈ I and p > 0 be such that
V (h, p) ⊆ U1Applying inequality (2.14) and using property (iv) for z = zn−1 and
y = yn we have

ρi(yn, yn+1) = ρi(TRzn−1, TRSyn) ≤ g(σi(zn−1, zn), ρi(yn, yn+1), 0, di(xn−1, xn))

and it follows that

(2.16) ρi(yn, yn+1) ≤ cimax{di(xn−1, xn), σi(zn−1, zn)}
which implies by (iv) and inequality (2.16) that

(2.17) σi(zn, zn+1) ≤ cimax{di(xn−1, xn), ρi(yn, yn+1)}
≤ cimax{di(xn−1, xn), σi(zn−1, zn)}.

Applying inequality (2.13) for y = yn and x = xn we have

di(xn, xn+1) = di(RSTxn, RSyn) ≤ f(ρi(yn, yn+1), di(xn, xn+1), 0, σi(zn, zn+1))

which implies by (iv) and inequality (2.16) and (2.17) that

(2.18) di(xn, xn+1) ≤ cimax{ρi(yn, yn+1), σi(zn, zn+1)}
≤ cimax{di(xn−1, xn), σi(zn−1, zn)}.

It now follows easily by induction on using inequalities (2.16), (2.17) and (2.18)
that

di(xn, xn+1) ≤ cn−1i max{di(x1, x2), σi(z1, z2)},
ρi(yn, yn+1) ≤ cn−1i max{di(x1, x2), σi(z1, z2)}
σi(zn, zn+1) ≤ cn−1i max{di(x1, x2), σi(z1, z2)}.

Since 0 ≤ ci < 1, it follows that there exists p > 0 such that di(xn+1, xn) < p
and hence (xn+1, xn) ∈ V (h, p) ⊆ U1 . The sequence {xn} is therefore a Cauchy
sequence in the complete uniform space X, and so has a limit u in X. Similarly
the sequences {yn} and {zn} is a Cauchy sequence in the complete uniform spaces
Y and Z so has a limit v in Y and w in Z respectively.
Now suppose that S is continuous. Then limSyn = lim zn and so

(2.19) Sv = w.

Let U2 ∈ U1 be arbitrary and let V (j, t) ∈ β, j ∈ I and t > 0 be such that
V (j, t) ⊆ U2. Applying inequality (2.13) for y = v and x = xn we now have

di(RSv, xn+1) ≤ f(ρi(v, Txn), di(xn, xn+1), di(xn, RSv), σi(Sv, STxn)).

Letting n tend to infinity and using (iii) it follows

di(RSv, u) ≤ f(0, 0, di(RSv, u), 0)

which implies by (iv) that di(RSv, u) = 0 < t. Hence (RSv, u) ∈ V (j, t) ⊆ U2.
Since X is Hausdorff, we have

(2.20) RSv = u.

Using equation (2.19) this gives us

(2.21) Rw = u.
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Let U3 ∈ U2 be arbitrary and let V (k, s) ∈ β, k ∈ I and s > 0 be such that
V (k, s) ⊆ U3. Using equation (2.20) and inequality (2.14) for z = Sv and y = yn,
we have

ρi(Tu, yn+1) ≤ g(σi(Sv, Syn), ρi(yn, TRSyn), ρi(yn, TRSv), di(RSv,RSyn)).

Letting n tend to infinity and using (iii) it follows

ρi(Tu, v) ≤ g(0, 0, ρi(v, Tu), 0)

which implies (ii) that ρi(Tu, v) = 0 < s. Hence (Tu, v) ∈ V (k, s) ⊆ U3. Since X is
Hausdorff, we have

(2.22) Tu = v.

It follows from equations (2.19),(2.21) and (2.22) that

TRSv = TRw = Tu = v,

STRw = STu = Sv = w,

RSTu = RSv = Rw = u.

The same results of course hold if R or T is continuous instead of S.We now prove
the uniqueness of the fixed point u. Supoose that RST has a second fixed point
u
0
. Let U4 ∈ U1 be arbitrary and let V (l, r) ∈ β, l ∈ I and r > 0 be such that

V (l, r) ⊆ U4. Then using inequality (2.13) for y = Tu and x = u
0
we have

di(u, u
0
) = di(RSTu,RSTu

0) ≤ f(ρi(Tu, Tu
0), 0, di(u, u

0
), σi(STu, STu

0
))

which implies by (ii) that

(2.23) di(u, u
0
) ≤ cimax{ρi(Tu, Tu0), σi(STu, STu

0
)}.

Further, using inequality (2.14) for z = STu and y = Tu0 we have

ρi(Tu, Tu
0) ≤ g(σi(STu, STu

0
), 0, ρi(Tu, Tu

0), di(u, u
0))

which implies by (ii) that

(2.24) ρi(Tu, Tu
0) ≤ cimax{σi(STu, STu

0
), di(u, u

0)}.
inequalities (2.23) and (2.24) implies that

(2.25) di(u, u
0) ≤ ciσi(STu, STu

0).

Finally, using inequality (2.15) and property (ii), we have

σi(STu, STu
0) ≤ h(di(u, u

0), 0, σi(STu, STu
0), ρi(Tu, Tu

0))

which implies by (ii)

(2.26) σi(STu, STu
0) ≤ cimax{di(u, u0), ρi(Tu, Tu0)}.

It now follows from inequalities (2.24),(2.25) and (2.26) that

di(u, u
0) ≤ ciσi(STu, STu

0) ≤ c2iσi(STu, STu
0),

since 0 ≤ ci < 1, we have d(u, u0) ≤ 0 < r . Hence (u, u0) ∈ V (l, r) ⊆ U4. so u = u0,
since X is Hausdorff, we have u = u0. The fixed point u of RST is therefore unique.
Similarly, it can proved that v is the unique fixed point of TRS and w is the unique
fixed point of STR. This completes the proof of theorem. ¤
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Corollary 2. [8] Let (X,d), (Y, ρ), (Z, σ)be complete metric spaces and suppose T
is a mapping of X into Y , S is a mapping of Y into Z and R is a mapping of Z
into X satisfying the inequalities

d(RSTx,RSy) ≤ f(ρ(y, Tx), d(x,RSTx), d(x,RSy), σ(Sy, STx))

ρ(TRz, TRSy) ≤ g(σ(z, Sy), ρ(y, TRSy), ρ(y, TRz), d(Rz,RSy))

σ(STRz, STx) ≤ h(d(x,Rz), σ(z, STRz), σ(z, STx), ρ(Tx, TRz))

for all x in X, y in Y and z in Z, where f, g, h ∈ =4. If one of the mappings R,
S, T is continuous, then RST has a unique fixed point u in X, TRS has a unique
fixed point v in Y and STR has a unique fixed point w in Z. Further, Tu = v,
Sv = w, Rw = u.

Proof. When we replace the uniform spaces (X,U1), (Y,U2), (Z,U3) in Theorem2
by (X, d), (Y, ρ), (Z, σ) metric spaces, then proof can be obtained easily. ¤
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1 Problems and main results

The optimization problem of nonlinear functionals has been well studied
because of its wide applications (See [1 - 6]). A class of functional op-
timization problems can be summarized from shape designs and property
analysis of machine components, such as intake and exhaust cams of inter-
nal combustion engineers, microwave antennas, and ship bodies. Given a set
of discrete data points (xi, yi), i = 0, 1, 2, . . . , n. For convenience, assume
0 = x0 < x1 < x2 < · · · < xn = 1. Let f(x) be an approximation function
with some continuous derivative requirements imposed. According to the
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requirements of the real problems, seeking f(x) results in minimizing the
following functional

F (f(x)) =

∫ 1

0
[f (m)(x)]2dx, (1)

with
n

∑

i=0

[

f(xi) − yi

δi

]2

≤ S. (2)

Some other constraints and initial conditions may apply too. Here the in-
teger m ≥ 0 determines the smoothness of the approximation function,
the higher the value the better the smoothness, and the constants δi > 0,
i = 0, 1, 2, . . . , n, and S > 0 control the approximation of f(xi) to yi,
i = 0, 1, 2, . . . , n. In general, δi is given according to the individual accuracy
of the approximation of f(xi) to yi, the more accurate the approximation
the smaller the value of δi, and S is given according to the overall accuracy
of the approximation to all yi’s, i = 0, 1, 2, . . . , n, the more accurate the
approximation the smaller the value of S.

Different models can be obtained by adding some extra constraints and
initial conditions. Some specific models have been well applied on profile
modelling and property analysis of a certain class of machine components,
and the design and property analysis of intake and exhaust cams of internal
combustion engines. Others have been conveniently used in curve fitting
with different smoothness. In paper [2], concrete forms and computation
methods of the optimal solutions to these models are given, based on the
assumption that the optimal solutions exist. But the existences of the opti-
mal solutions have not been well studied. This problem is hard because the
function spaces considered in the models are of infinitely dimensional.

A motivation of this paper is to study the existences of the optimal
solutions of the models for the functional defined in (1). We study three
models with different constraints and initial conditions, and give the proofs
of the existences of the optimal solutions to these models by converting the
infinite dimensional problems into ones with finite dimensions.

For every model studied in the paper, we assume that the set of functions
restricted by the constraints and initial conditions is nonempty.

Let m be a positive integer and I be an interval, denote C2mI the set
of functions having the 2mth continuous derivative in I. Denote F the
functional defined in (1).

Model I

2

LUO,ZHANG: FUNCTIONAL OPTIMIZATION PROBLEMS94



Let m ≥ 3. Consider the minimization problem of F over C2m[0, 1]
with the constraints (2) and

B ≤ f ′′(x) ≤ A, x ∈ [0, 1], (3)

where A > 0, and B < 0. We have the following theorem.

Theorem 1. Denote M1 = {f ∈ C2m[0, 1] | f satisfies conditions (2)
and (3) }.

1) If f is a minimum point of F on M1, then f is a polynomial with
order no more than 2m.

2) F has an optimal solution on M1 if M1 is not empty.

The following model is more general than Model I, with a looser
continuous derivative requirement on f .

Model II

This model is similar to Model I except that f belongs to C2m−2[0, 1]
with m ≥ 3, and

f ∈ C2m(xi−1, xi), (xi−1, xi) ⊂ [0, 1], i = 1, 2, . . . , n. (4)

We state the result in the following theorem.

Theorem 2. Denote M2 = {f ∈ C2m−2[0, 1] | f satisfies the conditions
(2), (3), and (4)}.

1) If f is a minimum point of F on M2, then f is a piece-wise
function on [0, 1], with each piece over (xi−1, xi), i = 1, 2, . . . , n, being
a polynomial with order no more than 2m.

2) F has an optimal solution in M2 if M2 is not empty.

In the above two models, initial conditions are not required. The
model considered next takes some initial condition into consideration.

Model III

Let m ≥ 3. Consider the minimization problem of F defined in (1).
Suppose f(x) ∈ C2m−2[0, 1], and f(x) satisfies (4). For the constraints,
suppose that f(x) not only satisfies condition (2) but also that for the

3
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data points (xi, yi) and the controlling constants δi used in condition
(2),

f (2m−1)(xi−1 + 0) − f (2m−1)(xi−1 − 0) = (−1)m+1λ
f(xi−1 − yi−1)

δi−1
, (5)

i = 1, 2, . . . , n, where λ is some given real number. In addition, we
consider the following initial condition

f (k)(1) = f1,k, k = 0, 1, 2, . . . , 2m− 1, (6)

where f1,k > 0, k = 0, 1, 2, . . . , 2m− 1 are some given constants.

Theorem 3. 1) Suppose f ∈ C2m−2[0, 1] satisfies the conditions (4)
and (5), then there exists a piecewise function g such that g is a poly-
nomial with order no more than 2m in every subinterval (xi−1, xi),
i = 1, 2, . . . , n, and

F (g(x)) = F (f(x)),

g(k)(1) = f (k)(1), k = 0, 1, . . . , 2m− 1,

g(k)(xi−1) = f (k)(xi−1), i = 1, 2, . . . , n, k = 0, 1, . . . , 2m− 2,

g(2m−1)(xi + 0) − g(2m−1)(xi − 0) = (−1)n+1λ
f(xi) − yi

δi
,

i = 1, 2, . . . , n− 1, where λ is some given real number.
2) Denote M3 = {f ∈ C(2m−2)[0, 1] | f satisfies (2), (4), (5), and

(6) }. The minimization problem of F has an optimal solution in M3

if M3 is not empty.

The proofs of Theorem 1 and Theorem 2 are similar, and we show
them in Section 2. The proof of Theorem 3 is shown in Section 3.

2 Proof of Theorem 2

Let I be an open interval in [0, 1]. Denote lI the left end point of I,
and rI the right end point of I. Define Φ0(I) as the set of functions φ
in C∞[0, 1] satisfying the following conditions:

i) ∃α > 0, such that lI + α < rI − α, and for every x ∈ [0, lI + α] ∪
[rI − α, 1], φ(x) = 0, and φ(x) is not identical to 0 in (lI + α, rI − α).

ii)
∫ 1

0
φ(x)dx = 0.

We have the following lemmas.

4
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Lemma 1. Suppose g ∈ C[0, 1], and I is an open interval in [0, 1].
Also suppose the functional

Gg(φ) =

∫ 1

0

g(x)φ(x)dx

is non-negative (or non-positive) on Φ0(I), then g(x) is constant in I.

Proof. It is obvious that −φ ∈ Φ0(I) for every φ ∈ Φ0(I). Hence, the
condition that Gg(φ) is non-negative (or non-positive) on Φ0(I) implies
that Gg(φ) is zero on Φ0(I). This gives that for every φ ∈ Φ0(I),
∫ 1

0
g(x)φ(x)dx = 0. We only need to prove Lemma 1 when g(x) is not

constantly zero. Suppose there exists x0 ∈ I such that g(x0) > 0. (If
no such x0 exists, we can consider −g(x).)

If g(x) is not constant on I, then there exists x1, x2 ∈ I, such that
x1 6= x2, and 0 < g(x1) < g(x2). Let ε = 1

3
[g(x2) − g(x1)], then

there exists δ > 0 such that [x1 − δ, x1 + δ] ∩ [x2 − δ, x2 + δ] = ∅,
[xi − δ, xi + δ] ⊂ I, i = 1, 2, and for every x ∈ [xi − δ, xi + δ], g(x) > 0
and |g(x) − g(xi)| ≤ ε, i = 1, 2. For every 0 < η < δ, there exists
a φ ∈ C∞[0, 1], such that 0 ≤ φ(x) ≤ 1, {x ∈ [0, 1] |φ(x) 6= 0} ⊂
(x1 − δ, x1 + δ), and for every x ∈ [x1 − δ + η, x1 + δ − η], φ(x) = 1.

Define ψ as

ψ(x) =











φ(x), x ∈ [x1 − δ, x1 + δ];

−φ(x− x2 + x1), x ∈ [x2 − δ, x2 + δ];

0, x ∈ [0, 1] \ ([x1 − δ, x1 + δ] ∪ [x2 − δ, x2 + δ]).

It is easy to verify that ψ(x) ∈ Φ0(I) and

∫ 1

0

g(x)ψ(x)dx =

∫ x1+δ

x1−δ

g(x)ψ(x)dx+

∫ x2+δ

x2−δ

g(x)ψ(x)dx

≤2δ(g(x1) + ε) − 2(δ − η)(g(x2) − ε).

Let η → 0, get

∫ 1

0

g(x)ψ(x)dx ≤ 2δ(g(x1) + ε) − δ(g(x2) − ε)

=2δ(g(x1) − g(x2) + 2ε)

=2δ(−3ε+ 2ε) = −2δε < 0,

5
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which contradicts the requirement for g in the lemma. Therefore, the
assumption does not hold and g(x) is constant in I. This completes
the proof of the lemma.

Lemma 2. Suppose g ∈ C[0, 1], if the set g([0, 1]) is at most countable,
then g is constant on [0, 1].

Proof. If not, let α = minx∈[0,1] g(x) and β = maxx∈[0,1] g(x), then α <
β. But g is continuous on [0, 1], we have [α, β] ⊂ g([0, 1]), contradicting
the assumption that g([0, 1]) is at most countable.

Now we go to the proof of Theorem 1. We prove part 1) first.

Proof of part 1) of Theorem 1. Let f be a minimum point of F on M1,
and Z(A) = {x ∈ [0, 1] | f ′′(x) = A}, Z(B) = {x ∈ [0, 1] | f ′′(x) = B}.
Let Z = Z(A) ∪ Z(B), and Q = {x0, x1, . . . , xn}.

If f ′′(x) = 0, x ∈ [0, 1], then f is a polynomial with order no more
than 2. Suppose f ′′ is not identical to zero on [0, 1]. Denote

G = [0, 1] \ (Z ∪Q).

It is easy to see that G is a non-empty open set in the real line. Hence
G is the union of at most countable mutually disjoint open intervals.
Let G =

⋃

λ∈Λ Iλ, where Λ is an at most countable set, and the set
Γ = {Iλ|λ ∈ Λ} is a set of mutually disjoint open intervals.

For every I ∈ Γ and every φ ∈ Φ0(I), it is not hard to verify that
when a positive number t is sufficiently small, f + tφ ∈M1. Since f is
a minimum point of F , we have

F (f + tφ) ≥ F (f),

which gives

t

∫ 1

0

[φ(m)(x)]2dx+ 2

∫ 1

0

f (m)(x)φ(m)(x)dx ≥ 0.

Let t→ 0, get
∫ 1

0

f (m)(x)φ(m)(x)dx ≥ 0.

Integration by parts and the definition of Φ0(I) give

(−1)m

∫ 1

0

f (2m)(x)φ(x)dx ≥ 0.

6
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This means for every φ ∈ Φ0(I),
∫ 1

0
f (2m)(x)φ(x)dx does not change its

sign. By Lemma 1, f (2m) is constant in I. Thus the set g(2m)(G) is at
most countable.

For x ∈ [0, 1] \G, consider the following two cases.
Case 1. x is not a cumulation point of Z.
There exist I, J ∈ Γ such that I ∪ {x} ∪ J is a open interval. By

the continuity of f (2m), f (2m)(x) ∈ f (2m)(G).
Case 2. x is a cumulation point of Z.
In every neighborhood U of x, there are infinitely many points in Z.

Without loss of generality, suppose U contains infinitely many points in
Z(A), then there exists a non-repeated sequence u1, u2, . . . , such that
∀j = 1, 2, . . . , f (2m)(uj) = f (2m)(u1) and limj→∞ uj = x. Repeatedly
apply Roll’s Theorem, get a non-repeated sequence v1, v2, . . . in [0, 1]
converging to x, such that f (2m)(vj) = 0, j = 1, 2, . . . . Therefore,
f (2m)(x) = 0.

From the above two cases, f (2m)([0, 1] \ G) ⊂ f (2m)(G) ∪ {0}, so
f (2m)([0, 1]) is at most countable. By Lemma 2, f (2m) is constant, and
hence f is a polynomial with order no more than 2m.

Proof of part 2) of Theorem 1. For a non-negative integer k, denote
Pk(x) the set of polynomials with order no more than k. Consider the
mapping

T :P2m(x) → R
2m+1

2m
∑

j=0

ajx
j → (a0, a1, . . . , a2m).

By part 1) of Theorem 1, the minimization problem of F on M1 is
equivalent to the minimization problem of the function

g(t0, t1, . . . , t2m) =

∫ 1

0

(pm
mtm + pm

m+1tm+1x+ · · · + p2m
2mt2mx

m)2dx,

where pm
j = j!

(j−m)!
, j = m,m+ 1, . . . , 2m, under the constraints

n
∑

i=0

(

t0 + t1xi + t2x
2
i + · · ·+ t2mx

2m
i − yi

δi

)2

≤ S, and

B ≤ (t0 + t1x+ t2x
2 + · · ·+ t2mx

2m)′′ ≤ A, x ∈ [0, 1].

7
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By computations, get

g(t0, t1, . . . , t2m) =
2m
∑

k,j=m

pm
k p

m
j

k + j + 1 − 2m
tktj , and

and the constraints become
n

∑

i=0

(

t0 + t1xi + t2x
2
i + · · · + t2mx

2m
i − yi

δi

)2

≤ S, (7)

B ≤ 2t2 + 3t3x+ · · · + 2m(2m− 1)t2mx
2m−2 ≤ A, x ∈ [0, 1]. (8)

Let M ′
1 = {(t0, t1, . . . , t2m) ∈ R

2m+1|(t0, t1, . . . , t2m) satisfies (7) and
(8)}.

It is easy to see that M ′
1 is closed. To see that M ′

1 is bounded, fix
a sequence of mutually unequal numbers, x̄2, x̄3, . . . , x̄2m, in (0, 1), and
make the following linear transformation in R

2m+1,






































z0 = t0
z1 = t0 + t1 + t2 + · · ·+ t2m

z2 = 2t2 + 3 · 2t3x̄2 + · · ·+ 2m(2m− 1)t2mx̄
2m−2
2

z3 = 2t2 + 3 · 2t3x̄3 + · · ·+ 2m(2m− 1)t2mx̄
2m−2
3

. . .

z2m = 2t2 + 3 · 2t3x̄2m + · · ·+ 2m(2m− 1)t2mx̄
2m−2
2m .

(9)

We get






















(

z0−y0

δ0

)2

+
(

z1−yn

δn

)2

≤ S

B ≤ z2 ≤ A

. . .

B ≤ z2m ≤ A

(10)

where the first inequality is obtained from (7) and the first two equa-
tions of (9), others are from (8) and the corresponding equations of
(9).

The set of points satisfying the requirements in (10) is bounded in
R

2m+1. Its inverse image contains the set M ′
1, so M ′

1 is also bounded.
Therefore, M ′

1 is a non-empty compact set. Since the continuous func-
tion g(t0, t1, . . . , t2m) can reach the smallest value on M ′

1, F also has
an optimal solution on M1.

8
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The proof of Theorem 1 is complete.

The proof the Theorem 2 is similar.
Proof of Theorem 2. Let f be a minimum point of F on M2. If f ′′(x) =
0, x ∈ [0, 1], then f is a polynomial with order no more than 2. Suppose
f ′′ is not identical to zero on [0, 1]. As in the proof of Theorem 1, denote

G = [0, 1] \ (Z ∪Q) =
⋃

λ∈Λ

Iλ.

For every I ∈ Γ ∩ [xi−1, xi], i = 1, 2, . . . , n, and every φ ∈ Φ0(I),
it is easy to verify that when a positive number t is small enough,
f + tφ ∈M2. Hence

F (f + tφ) ≥ F (f),

which gives

t

∫ 1

0

[φ(m)(x)]2dx+ 2

∫ 1

0

f (m)(x)φ(m)(x)dx ≥ 0.

Let t→ 0, get
∫ 1

0

f (m)(x)φ(m)(x)dx ≥ 0.

This is in fact
∫ xi

xi−1

f (m)(x)φ(m)(x)dx ≥ 0, i = 1, 2, . . . , n.

Integration by parts and the definition of Φ0(I) give

(−1)m

∫ xi

xi−1

f (2m)(x)φ(x)dx ≥ 0.

We can use a similar method to what is used in the proof of part 1)
of Theorem 1 to get that f is a polynomial with order no more than
2m in the interval (xi−1, xi), and hence f is a piecewise polynomial in
[0, 1]. This completes the proof of part 1) of Theorem 2. The proof of
part 2) of Theorem 2 is quite similar to that of part 2) of Theorem 1,
so we omit the details here. The proof of Theorem 2 is complete.
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3 Proof of Theorem 3

Proof. We prove part 1) first. Let f(x) = fi(x), x ∈ (xi, xi+1), i =
0, 1, . . . , n− 1, and

fi(x) = ti0 + ti1(x− xi) + ti2(x− xi)
2 + · · · + ti2m(x− xi)

2m,

where tik, k = 0, 1, 2, . . . , 2m, i = 0, 1, . . . , n− 1, are coefficients.
For f to satisfy the conditions in the lemma, we need, for every i,

i = 0, 1, . . . , n− 1,

n−1
∑

i=0

∫ xi+1

xi

[f (m)(x)]2 = F (f), (11)

f
(k)
n−1(1) = f (k)(1), k = 0, 1, . . . , 2m− 1, (12)

f
(k)
i+1(xi+1) = f (k)(xi+1), i = 0, 1, . . . , 2m−2, k = 0, 1, . . . , 2m−1, (13)

and

f (2m−1)(xi + 0) − f (2m−1)(xi − 0) = (−1)m+1λ
f(xi) − yi

δ2
i

. (14)

From (12), we obtain


























tn−1
0 + tn−1

1 (1 − xn−1) + · · · + tn−1
2m (1 − xn−1)

2m = f(1),

tn−1
1 + 2tn−1

2 (1 − xn−1) + · · · + 2mtn−1
2m (1 − xn−1)

2m−1 = f ′(1),

2tn−1
2 + · · ·+ 2m(2m− 1)tn−1

2m (1 − xn−1)
2m−2 = f ′′(1),

. . .

(2m− 1)!tn−1
2m−1 + (2m)!(1 − xn−1)t

n−1
2m = f (2m−1)(1).

Notice that tn−1
1 , tn−2

2 , . . . , tn−1
2m can be expressed in terms of tn−1

0 .
From (13) and (14), we have



























































ti0 + ti1(xi+1 − xi) + · · · + ti2m(xi+1 − xi)
2m = ti+1

0 ,

ti1 + 2ti2(xi+1 − xi) + · · · + 2mti2m(xi+1 − xi)
2m−1 = ti+1

1 ,

2ti2 + · · · + 2m(2m− 1)ti2m(xi+1 − xi)
2m−2 = 2ti+1

2 ,

. . .

(2m− 2)!ti2m−2 + (2m− 1)!ti2m−1(xi+1 − xi)

+(2m)!/2ti2m(xi+1 − xi)
2 = (2m− 2)ti+1

2m−2,

(2m− 1)!ti2m−2 + (2m)!ti2m(xi+1 − xi) − (2m− 1)!ti+1
2m−1

= (−1)m+1 ti+1

0
−yi+1

δ2
i

.
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Also notice that ti1, t
i
2, . . . , t

i
2m can be expressed in terms of ti0 and ti+1

0 .
Thus, all the ti1, t

i
2, . . . , t

i
2m, i = 0, 1, . . . , n−1 can be expressed in terms

of ti0, i = 0, 1, . . . , n−1. This also means there are (2m+1)×n variables
and 2mn equations, and n free variables t00, t

1
0, . . . , t

n−1
0 in (12), (13),

and (14). Since there exist t00, t
1
0, . . . , t

n−1
0 satisfying (11), there exists

a piecewise function g satisfying the requirements in part 1) of the
theorem.

Then we prove part 2) of Theorem 3. Denote Q2m(x) the set of
piecewise polynomials with order no more than 2m. Each f ∈ Q2m(x)
has the form

f(x) = ti0 + ti1(x− xi) + · · ·+ ti2m(x− xi)
2m,

x ∈ (xi, xi+1), i = 0, 1, . . . , n− 1.
Consider the following mapping

T : Q2m(x) → R
(2m+1)×n

f(x) → (t00, t
0
1, . . . , t

0
2m, t

1
0, t

1
1, . . . , t

1
2m, . . . , t

n−1
0 , tn−1

1 , . . . , tn−1
2m ).

By part 1) of Theorem 3, the minimization problem of F on M3 is
equivalent to that of

n−1
∑

i=0

∫ xi+1

xi

(pm
mt

i
m + pm

m+1t
i
m+1x+ · · ·+ pm

2mt
i
2mx

m)2dx

=G(t00, t
0
1, . . . , t

0
2m, t

1
0, t

1
1, . . . , t

1
2m, . . . , t

n−1
0 , tn−1

1 , . . . , tn−1
2m )

in R
(2m+1)×n, where pm

j = j!
(j−m)!

, j = m,m+1, . . . , 2m. The constraints

become
n−1
∑

i=0

(

ti0 − yi

δi

)2

+ (f1,0 − yi)
2 ≤ S, (15)



















tn−1
0 + tn−1

1 (1 − xn−1) + . . . tn−1
2m (1 − xn−1)

2m = f1,0,

tn−1
1 + 2tn−1

2 (1 − xn−1 + . . . 2mtn−1
2 (1 − xn−1)

2m−1 = f1,1,

. . .

(2m− 1)!tn−1
2m−1 + (2m)!tn−1

2m (1 − xn−1) = f1,2m−1,

(16)
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and














































tI0 + ti1(xi+1 − xi) + · · ·+ ti2m(xi+1 − xi)
2m = ti+1

0 ,

ti1 + ti2(xi+1 − xi) + · · · + 2mti2m(xi+1 − xi)
2m−1 = ti+1

1 ,

. . .

(2m− 2)!ti2m−2 + (2m− 1)!ti2m−1(xi+1 − xi)

+(2m)!/2ti2m(xi+1 − xi)
2 = (2m− 2)!ti+1

2m−2,

(2m− 1)!ti2m−2 + (2m)!(xi+1 − xi)

= (2m− 1)!ti2m−1 + (−1)mλ
ti+1

0
−yi

δi

,

(17)

i = 0, 1, . . . , n − 1. It is easy to check that there are 2mn equations
and (2m + 1) × n unknowns in (16) and (17), and hence there are n
free variables t00, t

1
0, . . . , t

n−1
0 . By this the minimization problem of F

on M3 is converted to a minimization problem in R
n. The set of points

(t00, g
1
0, . . . , t

n−1
0 ) satisfying (15) is bounded and closed, so it is compact.

Therefore F has an optimal solution on M3. The proof is done.
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1 Introduction

In recent years a number of authors have considered generalization of some

known and some new quadrature rules ([1], [2], [3], [4], [5], [6], [7], [8], [9]).

For example, P. Cerone and S.S. Dragomir in [4] give a generalization of the

midpoint quadrature rule:

∫ b

a

f(t)dt =
n−1∑

k=0

[1+(−1)k]
(b− a)k+1

2k+1(k + 1)!
f (k)

(
a + b

2

)
+(−1)n

∫ b

a

Kn(t)f (n)(t)dt

(1)

1
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where

Kn(t) =





(t− a)n

n!
, t ∈

[
a,

a + b

2

]

(t− b)n

n!
, t ∈ (

a + b

2
, b

]

and f ∈ Cn−1[a, b] and f (n−1) is absolutely continuous.

We observe that for n = 1 we get the mid-point rule

∫ b

a

f(t)dt = (b− a)f
(

a + b

2

)
−

∫ b

a

K1(t)f ′(t)dt .

In this paper, we will study the case of the quadrature formulae with the weight

function w(t) = (b− t)(t− a).

We denote

Wn
p [a, b] :=

{
f ∈ Cn−1[a, b] , f (n−1) absolutely continuous ,

∥∥∥f (n)
∥∥∥

p
< ∞

}

with

‖f‖p :=

{∫ b

a

|f(x)|p dx

} 1
p

for 1 ≤ p < ∞ ,

‖f‖∞ := supvraix∈[a,b] |f(x)| .

Definition 1 The function s(x) is called a spline function of degree n with

knots {xi}m−1
i=1 if a := x0 < x1 < · · · < xm−1 < xm := b and

i) for each i = 0, . . . , m − 1 , s(x) coincides on (xi, xi+1) with a polynomial

of degree not greater then n;

ii) s(x), s′(x), . . . , s(n−1)(x) are continuous functions on [a, b].

Definition 2 Functions of the form

Mn(t) = v(t) + sn−1(t) ,

where sn−1(t) is a spline of degree n − 1 and v is the nth integral of weight

function w : [a, b] → R, are called generalized monosplines.

2 Main results

Let m ∈ N , m ≥ 2 and (∆m)m∈N be a division of [a, b],

∆m : a = x0 < x1 < x2 < · · · < xm−1 < xm = b
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and (ξi)i=1,m a system of intermediate points,

ξ1 < ξ2 < · · · < ξm , ξi ∈ [xi−1, xi] for i = 1, m .

Let

Mn(t) =
(t− a)n+1

(n + 1)!
(b− a)− 2

(n + 2)!
(t− a)n+2 +

n−1∑

k=0

Ak,0
(t− a)n−k−1

(n− k − 1)!

+
m−1∑

i=1

n−1∑

k=0

Ak,i
(t− xi)n−k−1

+

(n− k − 1)!
, (2)

where

Ak,0 = (b−ξ1)(ξ1−a)
(a−ξ1)k+1

(k + 1)!
+(b−2ξ1+a)

(a−ξ1)k+2

(k + 2)!
− 2

(a− ξ1)k+3

(k + 3)!
,

Ak,i =
(b− ξi+1)(ξi+1 − a)(xi − ξi+1)k+1 − (b− ξi)(ξi − a)(xi − ξi)k+1

(k + 1)!

+
(b− 2ξi+1 + a)(xi − ξi+1)k+2 − (b− 2ξi + a)(xi − ξi)k+2

(k + 2)!

− 2
(xi − ξi+1)k+3 − (xi − ξi)k+3

(k + 3)!
,

k = 0, n− 1 , i = 1,m− 1 ,

be the generalized monospline of degree n.

Lemma 1 The generalized monospline, defined in (2),has the representation

Mn(t) =





(b− ξi)(ξi − a)
(t− ξi)n

n!
+ (b− 2ξi + a)

(t− ξi)n+1

(n + 1)!
− 2

(t− ξi)n+2

(n + 2)!
,

t ∈ [xi−1, xi) , i = 1,m− 1

(b−ξm)(ξm−a)
(t−ξm)n

n!
+(b−2ξm + a)

(t−ξm)n+1

(n + 1)!
− 2

(t−ξm)n+2

(n + 2)!
,

t ∈ [xm−1, xm]
(3)
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Proof. If t ∈ [x0, x1), then

M(t) =
(t− a)n+1

(n + 1)!
(b− a)− 2

(n + 2)!
(t− a)n+2

+ (b− ξ1)(ξ1 − a)
n−1∑

k=0

(a− ξ1)k+1

(k + 1)!
(t− a)n−k−1

(n− k − 1)!

+ (b− 2ξ1 + a)
n−1∑

k=0

(a− ξ1)k+2

(k + 2)!
(t− a)n−k−1

(n− k − 1)!

− 2
n−1∑

k=0

(a− ξ1)k+3

(k + 3)!
(t− a)n−k−1

(n− k − 1)!

=
(t− a)n+1

(n + 1)!
(b− a)− 2

(n + 2)!
(t− a)n+2

+
(b− ξ1)(ξ1 − a)

n!
· [(t− ξ1)n − (t− a)n]

+
b− 2ξ1 + a

(n + 1)!
· [(t− ξ1)n+1 − (t− a)n+1 − (n + 1)(a− ξ1)(t− a)n

]

− 2
(n + 2)!

[
(t− ξ1)n+2−(t− a)n+2−(n + 2)(a− ξ1)(t− a)n+1

− (n + 1)(n + 2)
2

· (a− ξ1)2(t− a)n

]

= (b− ξ1)(ξ1 − a)
(t− ξ1)n

n!
+ (b− 2ξ1 + a)

(t− ξ1)n+1

(n + 1)!
− 2

(t− ξ1)n+2

(n + 2)!
.

If t ∈ [xi−1 , xi) , i = 2,m− 1, then

Mn(t) =
(t− a)n+1

(n + 1)!
(b− a)− 2

(n + 2)!
(t− a)n+2

+
n−1∑

k=0

Ak,0
(t−a)n−k−1

(n−k−1)!
+

i−1∑

j=1

n−1∑

k=0

Ak,j
(t−xj)n−k−1

+

(n−k−1)!

= (b− ξ1)(ξ1 − a)
(t− ξ1)n

n!
+ (b− 2ξ1 + a)

(t− ξ1)n+1

(n + 1)!
− 2

(t− ξ1)n+2

(n + 2)!

+
i−1∑

j=1

n−1∑

k=0

Ak,j
(t− xj)n−k−1

(n− k − 1)!
.

If denote S =
i−1∑

j=1

n−1∑

k=0

Ak,j
(t− xj)n−k−1

(n− k − 1)!
, then we have
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S =
i−1∑

j=1

{
(b− ξj+1)(ξj+1 − a)

n−1∑

k=0

(xj − ξj+1)k+1

(k + 1)!
· (t− xj)n−k−1

(n− k − 1)!

− (b− ξj)(ξj − a) ·
n−1∑

k=0

(xj − ξj)k+1

(k + 1)!
· (t− xj)n−k−1

(n− k − 1)!

+ (b− 2ξj+1 + a)
n−1∑

k=0

(xj − ξj+1)k+2

(k + 2)!
· (t− xj)n−k−1

(n− k − 1)!

− (b− 2ξj + a)
n−1∑

k=0

(xj − ξj)k+2

(k + 2)!
· (t− xj)n−k−1

(n− k − 1)!

− 2
n−1∑

k=0

(xj − ξj+1)k+3

(k + 3)!
· (t− xj)n−k−1

(n− k − 1)!

+ 2
n−1∑

k=0

(xj − ξj)k+3

(k + 3)!
· (t− xj)n−k−1

(n− k − 1)!

}

=
i−1∑

j=1

{
(b− ξj+1)(ξj+1 − a)

n!
[(t− ξj+1)n − (t− xj)n]

− (b− ξj)(ξj − a)
n!

[(t− ξj)n − (t− xj)n]

+
(b−2ξj+1+a)

(n + 1)!
[
(t−ξj+1)n+1−(t−xj)n+1−(n + 1) · (xj−ξj+1)(t−xj)n

]

− (b− 2ξj + a)
(n + 1)!

[
(t− ξj)n+1 − (t− xj)n+1 − (n + 1) · (xj − ξj)(t− xj)n

]

− 2
(n + 2)!

[
(t− ξj+1)n+2 − (t− xj)n+2 − (n + 2)(xj − ξj+1)(t− xj)n+1

− (n + 1)(n + 2)
2

(xj−ξj+1)2(t−xj)n

]
+

2
(n + 2)!

[
(t−ξj)n+2−(t−xj)n+2

− (n + 2)(xj − ξj)(t− xj)n+1 − (n + 1)(n + 2)
2

(xj − ξj)2(t− xj)n

]

= S1 + S2 + S3 ,

where

S1 =
1
n!

i−1∑

j=1

[(b− ξj+1)(ξj+1 − a)(t− ξj+1)n − (b− ξj)(ξj − a)(t− ξj)n]

+
1

(n + 1)!

i−1∑

j=1

[
(b− 2ξj+1 + a)(t− ξj+1)n+1 − (b− 2ξj + a)(t− ξj)n+1

]

− 2
(n + 2)!

i−1∑

j=1

[
(t− ξj+1)n+2 − (t− ξj)n+2

]
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=
1
n!

(b− ξi)(ξi − a)(t− ξi)n +
1

(n + 1)!
(b− 2ξi + a)(t− ξi)n+1

− 2
(n + 2)!

(t− ξi)n+2 −
[

1
n!

(b− ξ1)(ξ1 − a)(t− ξ1)n

+
1

(n + 1)!
(b− 2ξ1 + a)(t− ξ1)n+1 − 2

(n + 2)!
(t− ξ1)n+2

]
.

S2 =
i−1∑

j=1

{
− 1

n!
(b− ξj+1)(ξj+1 − a)(t− xj)n +

b− 2ξj+1 + a

(n + 1)!
[−(t− xj)n+1

− (n + 1)(xj−ξj+1)(t−xj)n] +
2

(n + 2)!
[
(t− xj)n+2

+ (n + 2)(xj−ξj+1)(t−xj)n+1 +
(n + 1)(n + 2)

2
(xj−ξj+1)2(t− xj)n

]}

= −
i−1∑

j=1

[
1
n!

(b− xj)(xj − a)(t− xj)n

+
1

(n + 1)!
(a + b− 2xj)(t− xj)n+1 − 2

(n + 2)!
(t− xj)n+2

]
.

S3 =
i−1∑

j=1

{
1
n!

(b− ξj)(ξj − a)(t− xj)n +
b− 2ξj + a

(n + 1)!
[
(t− xj)n+1

+ (n + 1)(xj − ξj)(t− xj)n]− 2
(n + 2)!

[
(t− xj)n+2

+ (n + 2)(xj − ξj)(t− xj)n+1 +
(n + 1)(n + 2)

2
(xj − ξj)2(t− xj)n

]}

=
i−1∑

j=1

[
1
n!

(b− xj)(xj − a)(t− xj)n +
1

(n + 1)!
(a + b− 2xj)(t− xj)n+1

− 2
(n + 2)!

(t− xj)n+2

]
.

Therefore

Mn(t) = (b− ξi)(ξi − a)
(t− ξi)n

n!
+ (b− 2ξi + a)

(t− ξi)n+1

(n + 1)!
− 2

(t− ξi)n+2

(n + 2)!
.
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If t ∈ [xm−1, xm], then

Mn(t) =
(t− a)n+1

(n + 1)!
(b− a)− 2

(n + 2)!
(t− a)n+2

+
n−1∑

k=0

Ak,0
(t−a)n−k−1

(n−k−1)!
+

m−1∑

j=1

n−1∑

k=0

Ak,j
(t−xj)n−k−1

(n−k−1)!

= (b−ξm)(ξm−a)
(t−ξm)n

n!
+(b−2ξm+a)

(t−ξm)n+1

(n + 1)!
− 2

(t−ξm)n+2

(n + 2)!
.

Lemma 2 If f ∈ Wn
1 [a, b], then

∫ b

a

w(t)f(t)dt =
n−1∑

k=0

(−1)k+1Ak,0f
(k)(a) +

m−1∑

i=1

n−1∑

k=0

(−1)k+1Ak,if
(k)(xi)

+
n−1∑

k=0

(−1)kAk,mf (k)(b) +R[f ] , (4)

where

w(t) = (b− t)(t− a) ,

Ak,0 = (b−ξ1)(ξ1−a)
(a−ξ1)k+1

(k + 1)!
+(b−2ξ1+a)

(a−ξ1)k+2

(k + 2)!
−2

(a−ξ1)k+3

(k + 3)!
,

Ak,i =
(b− ξi+1)(ξi+1 − a)(xi − ξi+1)k+1 − (b− ξi)(ξi − a)(xi − ξi)k+1

(k + 1)!

+
(b− 2ξi+1 + a)(xi − ξi+1)k+2 − (b− 2ξi + a)(xi − ξi)k+2

(k + 2)!

− 2
(xi − ξi+1)k+3 − (xi − ξi)k+3

(k + 3)!

Ak,m =
[
(b−ξm)(ξm−a)

(b−ξm)k+1

(k + 1)!
+(b−2ξm+a)

(b−ξm)k+2

(k + 2)!
−2

(b−ξm)k+3

(k + 3)!

]
,

k = 0, n− 1 , i = 1,m− 1 ,

R[f ] = (−1)n

∫ b

a

Mn(t)f (n)(t)dt (5)

and

Mn(t) =





(b− ξi)(ξi − a)
(t− ξi)n

n!
+ (b− 2ξi + a)

(t− ξi)n+1

(n + 1)!
− 2

(t− ξi)n+2

(n + 2)!
,

t ∈ [xi−1, xi) , i = 1,m− 1

(b−ξm)(ξm−a)
(t−ξm)n

n!
+(b−2ξm + a)

(t−ξm)n+1

(n + 1)!
− 2

(t−ξm)n+2

(n + 2)!
,

t ∈ [xm−1, xm]
(6)
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Proof. Let

Mn(t) =
(t− a)n+1

(n + 1)!
(b− a)− 2

(n + 2)!
(t− a)n+2 +

n−1∑

k=0

Ak,0
(t− a)n−k−1

(n− k − 1)!

+
m−1∑

i=1

n−1∑

k=0

Ak,i
(t− xi)n−k−1

+

(n− k − 1)!
, (7)

be the generalized monospline of degree n and let
∫ b

a

w(t)f(t)dt =
n−1∑

k=0

(−1)k+1Ak,0f
(k)(a) +

m−1∑

i=1

n−1∑

k=0

(−1)k+1Ak,if
(k)(xi)

+
n−1∑

k=0

(−1)kAk,mf (k)(b) +R[f ] , (8)

be the quadrature formulae, where w(t) = (b− t)(t− a).

Between the generalized monospline (7) and the quadrature formulae (8)

there is a connection, namely, the coefficients {Ak,i}n−1 m−1
k=0 i=0 of the quadra-

ture formulae are the same with the coefficients of monospline (7), Ak,m =

M
(n−k−1)
n (b) , k = 0, n− 1 and the remainder term of quadrature formulae

have the representation

R[f ] = (−1)n

∫ b

a

Mn(t)f (n)(t)dt , f ∈ Wn
1 [a, b] .

If we choose the generalized monospline defined in (2) we find

Ak,m = M (n−k−1)
n (b) =

(b− a)k+3

(k + 2)!
− 2

(k + 3)!
(b− a)k+3

+
k∑

j=0

Aj,0
(b− a)k−j

(k − j)!
+

m−1∑

i=0

k∑

j=0

Aj,i
(b− xi)k−j

(k − j)!

= (b−ξm)(ξm−a)
(b−ξm)k+1

(k + 1)!
+(b−2ξm+a)

(b−ξm)k+2

(k + 2)!
−2

(b−ξm)k+3

(k + 3)!

and from Lemma 1 and the connection between quadrature formulae and monos-

pline, we obtain the quadrature formulae (4).

Remark 1 If we choose ξ1 = a and ξ2 = b, then the quadrature formulae (4)

is open type.

In case of equidistance nodes, namely

xi = a + 2ih , i = 0,m

ξi = a + (2i− 1)h , i = 1,m ,
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where h =
b− a

2m
we give some inequalities for the remainder term. In this case

we have the quadrature formulae

∫ b

a

w(t)f(t)dt =
n−1∑

k=0

(−1)k+1Ak,0f
(k)(a) +

m−1∑

i=1

n−1∑

k=0

(−1)k+1Ak,if
(k)(xi)

+
n−1∑

k=0

(−1)kAk,mf (k)(b) +R[f ], (9)

where

w(t) = (b− t)(t− a) ,

Ak,0 = (−1)k+1 hk+3

(k + 1)!

{
2m− 1− 2(m− 1)

k + 2
− 2

(k + 2)(k + 3)

}
,

Ak,i =
hk+3

(k + 1)!
{
(2m− 2i− 1)(2i + 1)(−1)k+1 − (2m− 2i + 1)(2i− 1)

}

+
hk+3

(k+2)!
{
(2m−4i−2)(−1)k−(2m−4i+2)

}− 2hk+3

(k+3)!
{
(−1)k+1−1

}
,

Ak,m =
hk+3

(k + 1)!

{
2m− 1− 2(m− 1)

k + 2
− 2

(k + 2)(k + 3)

}
,

k = 0, n− 1 , i = 1,m− 1 .

R[f ] = (−1)n

∫ b

a

Mn(t)f (n)(t)dt (10)

and

Mn(t) =

{
Pn,i(t) , t ∈ [a + (2i− 2)h, a + 2ih) , i = 0,m− 1 ,

Pn,m(t) , t ∈ [a + (2m− 2)h, a + 2mh] ,
(11)

where

Pn,i(t) = (2m− 2i + 1)(2i− 1)
h2

n!
[t− a− (2i− 1)h]n

+ (2m− 4i + 2)
h

(n + 1)!
· [t− a− (2i− 1)h]n+1

− 2
(n + 2)!

[t− a− (2i− 1)h]n+2
, i = 1, m .
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Theorem 1 The generalized monospline of degree n, Mn(t) , n > 1, defined in

(11) verifies:

∫ b

a

Mn(t)dt = 0 , if n is odd (12)

∫ b

a

|Mn(t)| dt =
2mhn+3

(n + 1)!
·
{

2m2 + 1
3

− 2
(n + 2)(n + 3)

}
(13)

max
t∈[a,b]

|Mn(t)| =





hn+2

n!

[
m2 − n

n + 2

]
, if m is even

hn+2

n!

[
m2 − 2

(n + 1)(n + 2)

]
, if m is odd

(14)

Proof. If n is odd number, we have

∫ b

a

Mn(t)dt =
m∑

i=1

∫ a+2ih

a+(2i−2)h

Pn,i(t)dt

=
m∑

i=1

{
(2m− 2i + 1)(2i− 1)

h2

(n + 1)!
[t− a− (2i− 1)h]n+1

+ (2m− 4i + 2)
h

(n + 2)!
· [t− a− (2i− 1)h]n+2

− 2
(n + 3)!

[t− a− (2i− 1)h]n+3
}∣∣∣∣

a+2ih

a+(2i−2)h

=
hn+3

(n + 1)!

m∑

i=1

[
(2m− 2i + 1)(2i− 1) +

2m− 4i + 2
n + 2

− 2
(n + 2)(n + 3)

]
+ (−1)n hn+3

(n + 1)!

m∑

i=1

[(2m− 2i + 1)(2i− 1)

− 2m−4i+2
n + 2

− 2
(n+2)(n+3)

]
=

4hn+3

(n + 2)!

m∑

i=1

(m−2i+1)=0 .

∫ b

a

|Mn(t)| dt =
m∑

i=1

∫ a+2ih

a+(2i−2)h

|Pn,i(t)| dt

=
2hn+3

(n + 1)!

m∑

i=1

[
(2m− 2i + 1)(2i− 1)− 2

(n + 2)(n + 3)

]

=
2mhn+3

(n + 1)!
·
{

2m2 + 1
3

− 2
(n + 2)(n + 3)

}
.
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max
t∈[a,b]

|Mn(t)| = max
i=1,m

{
max

t∈[a+(2i−2)h,a+2ih]
|Pn,i(t)|

}

= max
i=1,[m+1

2 ]

{
hn+2

n!

[
(2i−1)(2m−2i+1)+

2m−4i+2
n + 1

− 2
(n + 1)(n + 2)

]}
, where

[
m + 1

2

]
is the integer part of

m + 1
2

.

We denote g(i) =
hn+2

n!

[
(2i−1)(2m−2i+1)+

2m−4i+2
n + 1

− 2
(n+1)(n+2)

]
.

Because g(i) is increasing function, we have

max
i=1,[m+1

2 ]
g(i) = g

([
m + 1

2

])
=





hn+2

n!

[
m2 − n

n + 2

]
, if m is even

hn+2

n!

[
m2 − 2

(n + 1)(n + 2)

]
, if m is odd

Theorem 2 If f ∈ Wn
1 [a, b] , n > 1 and there exist numbers γn, Γn such that

γn ≤ f (n)(t) ≤ Γn , t ∈ [a, b], then

|R[f ]| ≤ mhn+3(Γn − γn)
(n + 1)!

{
2m2 + 1

3
− 2

(n + 2)(n + 3)

}
, if n is odd (15)

and

|R[f ]| ≤ 2mhn+3

(n + 1)!

{
2m2 + 1

3
− 2

(n + 2)(n + 3)

} ∥∥∥f (n)
∥∥∥
∞

, if n is even. (16)

Proof. Let n be odd. Using relations (10) and (12) we can written

R[f ] = (−1)n

∫ b

a

Mn(t)f (n)(t)dt = (−1)n

∫ b

a

Mn(t)
[
f (n)(t)− γn + Γn

2

]
dt ,

such that we have

|R[f ]| ≤ max
t∈[a,b]

∣∣∣∣f (n)(t)− γn + Γn

2

∣∣∣∣
∫ b

a

|Mn(t)| dt . (17)

We also have

max
t∈[a,b]

∣∣∣∣f (n)(t)− γn + Γn

2

∣∣∣∣ ≤
Γn − γn

2
. (18)

From (13), (17) and (18) we have

|R[f ]| ≤ mhn+3(Γn − γn)
(n + 1)!

{
2m2 + 1

3
− 2

(n + 2)(n + 3)

}
.

Let n be even. Then we have

|R[f ]| ≤
∥∥∥f (n)

∥∥∥
∞
·
∫ b

a

|Mn(t)| dt=
2mhn+3

(n + 1)!

{
2m2+1

3
− 2

(n+2)(n+3)

} ∥∥∥f (n)
∥∥∥
∞

.
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Theorem 3 Let f ∈ Wn
1 [a, b], n > 1 and let n,m be odd. If there exist a real

number γn such that γn ≤ f (n)(t), then

|R[f ]| ≤ 2mhn+3

n!

[
m2 − 2

(n + 1)(n + 2)

]
· (Tn − γn) , (19)

where

Tn =
f (n−1)(b)− f (n−1)(a)

b− a
.

If there exist a real number Γn such that f (n)(t) ≤ Γn, then

|R[f ]| ≤ 2mhn+3

n!

[
m2 − 2

(n + 1)(n + 2)

]
· (Γn − Tn) . (20)

Proof. Using relation (12) we can written

|R[f ]| =
∣∣∣∣∣
∫ b

a

(
f (n)(t)− γn

)
Mn(t)dt

∣∣∣∣∣ .

From (14) we have

|R[f ]| ≤ max
t∈[a,b]

|Mn(t)| ·
∫ b

a

(
f (n)(t)− γn

)
dt

=
hn+2

n!

[
m2 − 2

(n + 1)(n + 2)

] [
f (n−1)(b)−f (n−1)(a)−γn(b−a)

]

=
2mhn+3

n!

[
m2 − 2

(n + 1)(n + 2)

]
(Tn−γn) .

In a similar way we can prove that (20) holds.

Theorem 4 Let f ∈ Wn
1 [a, b], n > 1, n a odd number and let m be even. If

there exist a real number γn such that γn ≤ f (n)(t), then

|R[f ]| ≤ 2mhn+3

n!

[
m2 − n

n + 2

]
· (Tn − γn) , (21)

where

Tn =
f (n−1)(b)− f (n−1)(a)

b− a
.

If there exist a real number Γn such that f (n)(t) ≤ Γn, then

|R[f ]| ≤ 2mhn+3

n!

[
m2 − n

n + 2

]
· (Γn − Tn) . (22)
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1. Introduction and Preliminaries

Recently Verma [5-8], Kim and Kim [3-4] and Nie et al [2] introduced some
system of nonlinear strongly monotone variational inequalities and studied the
approximate solvability of this system based on a system of projection methods.
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Projection methods have been applied widely to problems arising especially from
complementarity, convex quadratic programming and variational problems.

The purpose of this paper is to consider, based on the resolvent method,
the existence of solutions and approximation solvability of a class of new sys-
tem of generalized nonlinear mixed variational inequalities and complementarity
problem in the setting of Hilbert spaces. The results presented in this paper
generalize, improve and unify the corresponding results of Verma [5-8], Kim and
Kim [3-4] and Nie et al [2].

Throughout this paper we always assume that H is a Hilbert space with
inner product 〈, ·, 〉 and norm || · ||, K is a nonempty closed convex subset of H,
T, S : H ×H → H are two given mappings and φ : H → R ∪ {∞} is a proper
convex lower semi-continuous function.

We consider the following problem: find x∗, y∗ ∈ H such that
{
〈ρT (y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ ρ(φ(x∗)− φ(x)),

〈ηS(x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ η(φ(y∗)− φ(x)),
(1.1)

for all x ∈ H, which is called the system of generalized nonlinear mixed variational
inequality, where ρ > 0 and η > 0 are two any constants.

Special cases of the Problem (1.1).
(I). If T (x, y) = Ay + By, S(x, y) = Cx + Dx, where A,B,C, D : H → H be

four single-valued mappings, then the problem (1.1) reduces to finding x∗, y∗ ∈ H
such that

{
〈ρ(Ay∗ + By∗) + x∗ − y∗, x− x∗〉 ≥ ρ(φ(x∗)− φ(x)),

〈η(Cx∗ + Dx∗) + y∗ − x∗, x− y∗〉 ≥ η(φ(y∗)− φ(x)),
(1.2)

for all x ∈ H, which was considered in Kim and Kim [3].

(II). If T (x, y) = S(x, y) and φ = δK (the indicator function of a nonempty
closed convex subset K in H), then the problem (1.1) is reduced to finding
x∗, y∗ ∈ K such that

{
〈ρT (y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ 0,

〈ηT (x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ 0,
(1.3)

for all x ∈ K, which was considered in Verma [8].

(III) If T (x, y) = S(x, y), then the problem (1.1) is reduced to finding x∗, y∗ ∈
H such that

{
〈ρT (y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ ρ(φ(x∗)− φ(x)),

〈ηT (x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ η(φ(y∗)− φ(x)),
(1.4)
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for all x ∈ H. This kind of system of generalized nonlinear mixed variational
inequalities is a generalization of problem (1.3), where ρ > 0 and η > 0 are two
any constants.

(IV). If η = 0, then the problem (1.1) is reduced to finding x∗ in H such that

〈T (x∗, x∗), x− x∗〉 ≥ φ(x∗)− φ(x), ∀ x ∈ K. (1.5)

(V). If K is a closed convex cone in H and φ = δK (the indicator function of K),
then the problem (1.1) is reduced to finding x∗, y∗ ∈ K such that T (y∗, x∗) ∈ K∗,
S(y∗, x∗) ∈ K∗ and

{
〈ρT (y∗, x∗) + x∗ − y∗, x∗〉 = 0,

〈ηS(x∗, y∗) + y∗ − x∗, y∗〉 = 0,
(1.6)

where K∗ is the polar cone to K defined by

K∗ = {f ∈ H : 〈f, x〉 ≥ 0, ∀x ∈ K}

(VI) In (1.2) if φ = δ (the indicator function of a nonempty closed convex
subset K of H), then the problem (1.2) reduces to finding x∗, y∗ ∈ K such that

{
〈ρ(Ay∗ + By∗) + x∗ − y∗, x− x∗〉 ≥ 0,

〈η(Cx∗ + Dx∗) + y∗ − x∗, x− y∗〉 ≥ 0,
(1.7)

for all x ∈ H, which is called the system of generalized nonlinear variational
inequality, and it has been considered in Kim and Kim [3].

(VII). In (1.2) if φ = δK (the indicator function of a nonempty closed convex
cone K of H), then the problem (1.2) reduces to finding x∗, y∗ ∈ K such that
Ay∗ + By∗ ∈ K∗, Cx∗ + Bx∗ ∈ K∗ and

{
〈ρ(Ay∗ + By∗) + x∗ − y∗, x∗〉 = 0,

〈η(Cx∗ + Dx∗) + y∗ − x∗, y∗〉 = 0.
(1.8)

This is a class of new system of generalized nonlinear complementarity problem.

For the sake of convenience, we first recall some definitions and Lemmas.

Definition 1.1. A mapping T : H → H is said to be k−strongly monotone if,
there exists an constant k > 0 such that

〈Tx− Ty, x− y〉 ≥ k||x− y||2, ∀x, y ∈ H
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Definition 1.2. A mapping T : H → H is said to be γ−Lipschitz continuous,
if there exists a constant γ > 0 such that

||Tx− Ty|| ≤ γ||x− y||, ∀x, y ∈ H.

Lemma 1.1 [1]. For a given u ∈ H, the point z ∈ H satisfies the following
inequality:

〈u− z, v − u〉 ≥ ρ(φ(u)− φ(v)), ∀v ∈ H

if and only if
u = Jρ

φ(z),

where Jρ
φ = (I + ρ∂φ)−1 and ∂φ denotes the subdifferential of a proper convex

lower semi-continuous function φ.

Lemma 1.2. Let {an}, {bn} and {cn} be three sequences of nonnegative real
numbers satisfying the following condition: there exists a nonnegative integer n0

such that
an+1 ≤ (1− tn)an + bn + cn, ∀n ≥ n0

where

tn ∈ [0, 1],
∞∑

n=1

tn = ∞, bn = 0(tn),
∞∑

n=1

cn < ∞.

Then an → 0 (n →∞).

From Lemma 1.1, we can obtain the following result:

Lemma 1.3. For given xx, y∗ ∈ H, (x∗, y∗) is a solution of the problem (1.1)
if and only if {

x∗ = Jρ
φ(y∗ − ρT (y∗, x∗)),

y∗ = Jη
φ(x∗ − ηS(x∗, y∗)).

(1.9)

Definition 1.3. Let T : H → H be a mapping, {αn} be a sequence in [0, 1]
with

∑∞
n=1 αn = ∞. For arbitrarily chosen initial points x0, y0 ∈ H compute

the sequences {xn} and {yn} such that

{
xn+1 = (1− αn)xn + αnJρ

φ[yn − ρT (yn, xn)],

yn = Jη
φ [xn − ηS(xn, yn)],

(1.10)

which is called the Mann type iterative sequence of T
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2. Main Results

In this section, we present the convergence analysis for resolvent methods in
the context of the approximate solvability of problem (1.1). We have the following
result.

Theorem 2.1. Let φ : H → R∪{+∞} be a proper convex lower semi-continuous
function and T, S : H ×H → H be two mappings satisfying the following condi-
tions:

(i) the mappings x 7→ T (x, y) and x 7→ S(x, y) are k1 and k2−strongly mono-
tone respectively;

(ii) the mappings x 7→ T (x, y) and y 7→ T (x, y) are r1 and r2 Lipschitz con-
tinuous respectively;

(iii) the mappings x 7→ S(x, y) and y 7→ S(x, y) are c1 and c2 Lipschitz con-
tinuous respectively.

(iv)





0 < ρ <
2(k1 − r2)
(r1 + r2)2

, and k1 > r2;

0 < η < min{2(k2 − c2)
(c1 + c2)2

,
−c2 +

√
c2
2 + 4(c2

2 + c1c2)
2(c2

2 + c1c2)
} and k2 > c2,

(2.1)

If (x∗, y∗) ∈ H is a solution, then the iterative sequence {xn}, {yn} defined by
(1.8) converge strongly to x∗ and y∗ respectively.

Proof. Since (x∗, y∗) ∈ H is a solution of problem (1.1), it follows from Lemma
1.3 that {

x∗ = Jρ
φ(y∗ − ρT (y∗, x∗)),

y∗ = Jη
φ(x∗ − ηS(x∗, y∗)).

(2.2)

In view of the nonexpansiveness of the mapping Jρ
φ, it follows from (1.8) that

||xn+1 − x∗||
= ||(1− αn)xn + αnJρ

φ[yn − ρT (yn, xn)]

− [(1− αn)x∗ + αnJρ
φ[y∗ − ρT (y∗, x∗)]||

≤ (1− αn)||xn − x∗||+ αn||yn − y∗ − ρ(T (yn, xn)− T (y∗, x∗))||.

(2.3)

Now we consider the second term on the right side of (2.3). we have

||yn − y∗ − ρ(T (yn, xn)− T (y∗, x∗))||2
= ||yn − y∗||2 + ρ2||T (yn, xn)− T (y∗, x∗)||2
− 2ρ〈T (yn, xn)− T (y∗, x∗), yn − y∗〉.

(2.4)
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By condition (ii), the mappings x 7→ T (x, y) and y 7→ T (x, y) are r1− and
r2−Lipschitz continuous respectively, hence we have

ρ2||T (yn, xn)− T (y∗, x∗))||2
≤ ρ2{||T (yn, xn)− T (y∗, xn)||+ ||T (y∗, xn)− T (y∗, x∗))||}2
≤ ρ2{r1||yn − y∗||+ r2||xn − x∗||}2
= ρ2{r2

1||yn − y∗||2 + r2
2||xn − x∗||2 + 2r1r2||yn − y∗||||xn − x∗||}

≤ ρ2{r2
1||yn − y∗||2 + r2

2||xn − x∗||2 + r1r2[||yn − y∗||2 + ||xn − x∗||2]}
= ρ2(r2

1 + r1r2)||yn − y∗||2 + ρ2(r2
2 + r1r2)||xn − x∗||2.

(2.5)

Again by condition (i), the mappings x 7→ T (x, y) is k1−strongly monotone ,
therefore we have

− 2ρ〈T (yn, xn)− T (y∗, x∗), yn − y∗〉
= −2ρ〈T (yn, xn)− T (y∗, xn) + T (y∗, xn)− T (y∗, x∗), yn − y∗〉
≤ −2ρk1||yn − y∗||2 + 2ρr2||xn − x∗||||yn − y∗||
≤ −2ρk1||yn − y∗||2 + ρr2{||xn − x∗||2 + ||yn − y∗||2}
= ρ(r2 − 2k1)||yn − y∗||2 + ρr2||xn − x∗||2.

(2.6)

Substituting (2.5) and (2.6) into (2.4) and simplifying the resulting result we
have

||yn − y∗ − ρ(T (yn, xn)− T (y∗, x∗))||2
≤ [1 + ρ2(r2

1 + r1r2) + ρ(r2 − 2k1)]||yn − y∗||2
+ [ρ2(r2

2 + r1r2) + ρr2]||xn − x∗||2
(2.7)

Substituting (2.7) into (2.3) and simplifying it we have

||xn+1 − x∗|| ≤ (1− αn)||xn − x∗||+ αn

√
δ||yn − y∗||2 + γ||xn − x∗||2, (2.8)

where {
δ = 1 + ρ2(r2

1 + r1r2) + ρ(r2 − 2k1)

γ = ρ2(r2
2 + r1r2) + ρr2.

(2.9)

By condition (iv), it is easy to see that 0 < δ + γ < 1.

Now we give an estimation for ||yn − y∗||. By condition (iii), the mappings
x 7→ S(x, y) and y 7→ S(x, y) are c1− and c2−Lipschitz continuous, respectively,
and by condition (i) the mapping x 7→ S(x, y) is k2−strongly monotone, and so
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we have

||yn − y∗||2
= ||Jη

φ [xn − ηS(xn, yn)]− Jη
φ [x∗ − ηS(x∗, y∗)]||2

≤ ||xn − x∗ − η[S(xn, yn)− S(x∗, y∗)]||2
= ||xn − x∗||2 + η2||S(xn, yn)− S(x∗, y∗)||2
− 2η〈S(xn, yn)− S(x∗, y∗), xn − x∗〉

= ||xn − x∗||2 + η2{||S(xn, yn)− S(x∗, yn) + S(x∗, yn)− S(x∗, y∗)||}2
− 2η〈S(xn, yn)− S(x∗, yn) + S(x∗, yn)− S(x∗, y∗), xn − x∗〉

≤ ||xn − x∗||2 + η2{c1||xn − x∗||+ c2||yn − y∗||}2
− 2ηk2||xn − x∗||2 + 2η||xn − x∗||c2||yn − y∗||

≤ ||xn − x∗||2 + η2{(c2
1 + c1c2)||xn − x∗||2 + (c2

2 + c1c2)||yn − y∗||2}
+ (c2 − 2k2)η||xn − x∗||2 + c2η||yn − y∗||2

= θ1||xn − x∗||2 + θ2||yn − y||2,

(2.10)

where
θ1 = 1 + η2(c2

1 + c1c2) + (c2 − 2k2)η

θ2 = η2(c2
2 + c1c2) + c2η.

This implies that

||yn − y∗||2 ≤ θ1

1− θ2
||xn − x∗||2.

By condition (iv) it is easy to prove that 0 < θ2 < 1 and 0 < θ1
1−θ2

< 1. This
implies that

||yn − y∗|| ≤ ||xn − x∗|| (2.11)

Substituting (2.11) into (2.8) we have

||xn+1 − x∗|| ≤ (1− αn(1− ω))||xn − x∗||, (2.12)

where ω2 = (δ + γ) < 1.
Let an = ||xn− x∗||, tn = αn(1−ω) ∈ [0, 1], bn = 0, cn = 0. Then

∑∞
n=0 tn =

∞ and the conditions in Lemma 1.2 are satisfied. Hence we have xn → x∗. This
completes the proof of Theorem 2.1. ¤

If T (x, y) = S(x, y), then the following result can be obtained from Theorem
2.1 immediately.

Theorem 2.2. Let φ : H → R∪{+∞} be a proper convex lower semi-continuous
function and T : H ×H → H be a mapping satisfying the following conditions:

(i) the mappings x 7→ T (x, y) is k1strongly monotone;
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(ii) the mappings x 7→ T (x, y) and y 7→ T (x, y) are r1 and r2 Lipschitz respec-
tively;

(iii)




0 < ρ <
2(k1 − r2)
(r1 + r2)2

, and k1 > r2

0 < η < min{2(k1 − r2)
(r1 + r2)2

,
−r2 +

√
r2
2 + 4(r2

2 + r1r2)
2(r2

2 + r1r2)
} and k1 > r2.

(2.13)

If (x∗, y∗) ∈ H is a solution of the problem (1.4), then for any given x0, y0 ∈ H
the iterative sequence {xn}, {yn} defined by

{
xn+1 = (1− αn)xn + αnJρ

φ[yn − ρT (yn, xn)],

yn = Jη
φ [xn − ηT (xn, yn)],

(2.14)

where {αn} is a real sequence in [0, 1] with
∑∞

n=0 αn = ∞, converges strongly to
x∗ and y∗ respectively.

Remark 1. Theorem 2.2 generalizes and improves the corresponding result in
Nie et al [2] and Verma [5-8].

If T (x, y) = Ay + By and S(x, y) = Cx + Dx, then from Theorem 2.1 we can
obtain the following result:

Theorem 2.3. Let φ : H → R∪{+∞} be a proper convex lower semi-continuous
function and A,B, C,D : H → H be four mappings satisfying the following
conditions:

(i) mapping A + B : H → H is k1− strongly monotone and C + D : H → H
is k2−strongly monotone;

(ii) mappings A,B, C, D : H → H are l1−, l2−, l3−, l4−Lipschitz continuous
respectively;

(iii) 



0 < ρ <
2k1

(l1 + l2)2
,

0 < η <
2k2

(l3 + l4)2
,

(2.15)

Then the problem (1.2) has a unique solutio (x∗, y∗) ∈ H, and for any given
x0 ∈ H, the iterative sequences {xn}, {yn} defined by

{
xn+1 = (1− αn)xn + αnJρ

φ[yn − ρ(A + B)(yn)],

yn = Jη
φ [xn − η(C + D)(xn)],

(2.16)

where {αn} a real sequence with
∑∞

n=0 αn = ∞ converge strongly to x∗ and y∗

respectively.

CHANG et al : NONLINEAR VARIATIONAL INEQUALITIES126



Proof. (I) First we prove the existence of solution for the problem (1.2).
Define a mapping F : H → H by

F (x) = Jρ
φ[Jη

φ(x− η(C + D)(x))− ρ(A + B)(Jη
φ(x− η(C + D)(x)))]. (2.17)

For any x, y ∈ H, let
X = Jη

φ(x− η(C + D)(x)),

Y = Jη
φ(y − η(C + D)(y)),

therefore we have

||F (x)− F (y)||2 = ||Jρ
φ[X − ρ(A + B)(X)]− Jρ

φ[Y − ρ(A + B)(Y )]||2
≤ ||X − Y − ρ[(A + B)(X)− (A + B)(Y )]||2
= ||X − Y ||2 − 2ρ〈(A + B)(X)− (A + B)(Y ), X − Y 〉

+ ρ2||(A + B)(X)− (A + B)(Y )||2
≤ ||X − Y ||2 − 2ρk1||X − Y ||2

+ ρ2{||AX −AY ||+ ||BX −BY ||}2
≤ ||X − Y ||2 − 2ρk1||X − Y ||2 + ρ2(l1 + l2)2||X − Y ||2
= [1− 2ρk1 + ρ2(l1 + l2)2]||X − Y ||2
= σ2

1 ||X − Y ||2,

(2.18)

where
σ1 =

√
1− 2ρk1 + ρ2(l1 + l2)2 < 1 (by condition (2.15).)

Next we give an estimate for ||X − Y ||. We have

||X − Y ||2 = ||Jη
φ(x− η(C + D)(x))− Jη

φ(y − η(C + D)(y))||
≤ ||x− y − η[(C + D)(x)− (C + D)(y)]||2
= ||x− y||2 − 2η〈(C + D)(x)− (C + D)(y), x− y〉

+ η2||(C + D)(x)− (C + D)(y)||2
≤ ||x− y||2 − 2ηk2||x− y||2 + η2(l3 + l4)2||x− y||2
= σ2

2 ||x− y||2,

(2.19)

where σ2 =
√

1− 2ηk2 + η2(l3 + l4)2 < 1 (by condition (2.15)).
Substituting (2.19) into (2.18) we have

||F (x)− F (y)|| ≤ σ1σ2||x− y||, ∀x, y ∈ H.

This implies that F : H → H is a Banach contraction mapping. Therefore there
exists a unique fixed point x∗ ∈ H of F such that

x∗ = F (x∗). (2.20)
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Letting
y∗ = Jη

φ(x∗ − η(C + D)(x∗))

hence we have
x∗ = Jρ

φ[y∗ − ρ(A + B)(y∗)].

By Lemma 1.3 (x∗, y∗) is the unique solution of the problem (1.2).

(II) Next we prove the iterative sequences {xn} and {yn} defined by (2.16)
converge strongly to x∗ and y∗ respectively. In fact,we have

||xn+1 − x∗||
= ||(1− αn)(xn − x∗) + αnJρ

φ[yn − ρ(A + B)(yn)]

− αnJρ
φ[y∗ − ρ(A + B)(y∗)]||

≤ (1− αn)||xn − x∗||+ αn||yn − y∗ − ρ[(A + B)(yn)− (A + B)(y∗)]||

(2.21)

Now we consider the second term on the right side of (2.21). We have

||yn − y∗ − ρ[(A + B)(yn)− (A + B)(y∗)]||2
= ||yn − y∗||2 − 2ρ〈(A + B)(yn)− (A + B)(y∗), yn − y∗〉

+ ρ2||(A + B)(yn)− (A + B)(y∗)||2
≤ ||yn − y∗||2 − 2ρk1||yn − y∗||2

+ ρ2{||A(yn)−A(y∗)||+ ||B(yn)−B(y∗)||}2
≤ ||yn − y∗||2 − 2ρk1||yn − y∗||2 + ρ2(l1 + l2)2||yn − y∗||2
= [1− 2ρk1 + ρ2(l1 + l2)2]||yn − y∗||2.

This implies that

||yn − y∗ − ρ[(A + B)(yn)− (A + B)(y∗)]|| ≤ σ1||yn − y∗|| (2.22)

where σ1 =
√

1− 2ρk1 + ρ2(l1 + l2)2 < 1 (by condition (2.15)). Substituting
(2.22) into (2.21) we have

||xn+1 − x∗|| ≤ (1− αn)||xn − x∗||+ αnσ1||yn − y∗|| (2.23)

Now we give an estimate for ||yn − y∗||. We have

||yn − y∗||
= ||Jη

φ [xn − η(C + D)(xn)]− Jη
φ [x∗ − η(C + D)(x∗)]||

≤ ||xn − x∗ − η[(C + D)(xn)− (C + D)(x∗)]||
(2.24)
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Since

||xn − x∗ − η[(C + D)(xn)− (C + D)(x∗)]||2
= ||xn − x∗||2 − 2η〈(C + D)(xn)− (C + D)(x∗)〉

+ η2||(C + D)(xn)− (C + D)(x∗)||2
≤ ||xn − x∗||2 − 2ηk2||xn − x∗||2 + η2(l3 + l4)2||xn − x∗||2
= [1− 2ηk2 + η2(l3 + l4)2]||xn − x∗||2

This implies that

||xn − x∗ − η[(C + D)(xn)− (C + D)(x∗)]|| ≤ σ2||xn − x∗||. (2.25)

where σ2 =
√

1− 2ηk2 + η2(l3 + l4)2 < 1 (by condition (2.15)).
Substituting (2.15) into (2.24) we have

||yn − y∗|| ≤ σ2||x−x∗|| (2.26)

Substituting (2.26) into (2.23) we have

||xn+1 − x∗|| ≤ (1− αn(1− σ1σ2))||xn − x∗||.

By Lemma 1.2, we know that ||xn − x∗|| → 0, i.e., xn → x∗ (as n → ∞) This
completes the proof of Theorem 2.3. ¤

Remark. Theorem 2.3 generalizes and improves the corresponding results in
Kim and Kim [3].

As a direct conclusion of Theorem 2.3, we have the following result.

Theorem 2.4. Let φ = δK be the indicator function of a nonempty closed convex
cone K ⊂ H. Let A,B, C, D : H → H be four mappings satisfying the following
conditions:

(i) the mapping A + B : H → H is k1− strongly monotone and the mapping
C + D : H → H is k2−strongly monotone;

(ii) mappings A,B, C, D : H → H are l1−, l2−, l3−, l4−Lipschitz continuous
respectively;

(iii) 



0 < ρ <
2k1

(l1 + l2)2
,

0 < η <
2k2

(l3 + l4)2
.

(2.27)
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Then the system of generalized nonlinear complementarity problem (1.8) has a
unique solution (x∗, y∗) ∈ H, and for any given x0 ∈ H, the iterative sequences
{xn}, {yn} defined by

{
xn+1 = (1− αn)xn + αnJρ

φ[yn − ρ(A + B)(yn)],

yn = Jη
φ [xn − η(C + D)(xn)],

(2.28)

where {αn} is a real sequence with
∑∞

n=0 αn = ∞, converge strongly to x∗ and
y∗ respectively.

Proof. It follows from Theorem 2.3 that there exist x∗, y∗ ∈ K such that
{
〈ρ(Ay∗ + By∗) + x∗ − y∗, x− x∗〉 ≥ 0,

〈η(Cx∗ + Dx∗) + y∗ − x∗, x− y∗〉 ≥ 0.
(2.29)

for all x ∈ K and the iterative sequences {xn} and {yn} defined by (2.28) converge
strongly to x∗ and y∗, respectively. Since K is a cone in H. Therefore (2.29) is
equivalent to Ay∗ + By∗, Cx∗ + Dx∗ ∈ K∗ and

{
〈ρ(Ay∗ + By∗) + x∗ − y∗, x∗〉 = 0,

〈η(Cx∗ + Dx∗) + y∗ − x∗, y∗〉 = 0.
(2.30)

This completes the proof of Theorem 2.4. ¤
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ON L-FUZZY NORMED SPACES

HAKAN EFE

Abstract. The purpose of this paper to introduce L-fuzzy normed spaces
due to Saadati and Vaezpour [14]. Also L-fuzzy Banach spaces are de�ned
and open mapping and closed graph theorems are proved. Furthermore the
concept of quotient of L-fuzzy Banach space is given.

1. Introduction

Since the introduction of the concept of fuzzy set by Zadeh [18] in 1965, many
authors have introduced the concept of fuzzy metric space in di¤erent ways [2,
9,11,12]. George and Veeramani [6,8] modi�ed the concept of fuzzy metric space
introduced by Kromosil and Michalek [12] and de�ned a Hausdor¤ topology on
this fuzzy metric space. Using to idea of L-fuzzy sets [7], Saadati et al. [16] intro-
duced the notion of L-fuzzy metric spaces with the help of continuous t-norms as
a generalization of fuzzy metric space due to George and Veeramani [6] and intu-
itionistic fuzzy metric space due to Park and Saadati [13,15]. Recently, Saadati [17]
proved some known results of metric spaces including Uniform continuity theorem
and Ascoli�Arzela theorem for L-fuzzy metric spaces. He also proved that every
L-fuzzy metric space has a countably locally �nite basis and used this result to
conclude that every L-fuzzy metric space is metrizable.
In this paper we de�ne L-fuzzy normed space due to Saadati and Vaezpour [14].

We also de�ne L-fuzzy Banach spaces, and prove some theorems especially open
mapping and closed graph theorems. In last section we give the concept of quotient
of L-fuzzy Banach space.

2. Preliminaries

De�nition 1 ([7]). Let L = (L;�L) be a complete lattice, and U a non-empty set
called universe. An L-fuzzy set A on U is de�ned as a mapping A : U ! L. For
each u in U , A(u) represents the degree (in L) to which u satis�es A.

Lemma 1 ([4]). Consider the set L� and operation �L� de�ned by L� = f(x1; x2) :
(x1; x2) 2 [0; 1]2 and x1 + x2 � 1g, (x1; x2) �L� (y1; y2)() x1 � y1 and x2 � y2,
for every (x1; x2), (y1; y2) 2 L�. Then (L�;�L�) is a complete lattice.

De�nition 2 ([1]). An intuitionistic fuzzy set A�;� on a universe U is an object
A�;� = f(�A(u); �A(u)) : u 2 Ug, where, for all u 2 U , �A(u) 2 [0; 1] and �A(u) 2
[0; 1] are called the membership degree and the non-membership degree, respectively,
of u in A�;�, and furthermore satisfy �A(u) + �A(u) � 1.

2000 Mathematics Subject Classi�cation. 46S40.
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2 HAKAN EFE

Classically, a triangular norm T on ([0; 1];�) is de�ned as an increasing, com-
mutative, associative mapping T : [0; 1]2 ! [0; 1] satisfying T (x; 1) = x, for all
x 2 [0; 1]. These de�nitions can be straightforwardly extended to any lattice
L = (L;�L). De�ne �rst 0L = inf L and 1L = supL.

De�nition 3. A triangular norm (t-norm) on L is a mapping T : L2 ! L satis-
fying the following conditions:

(i) (8x 2 L)(T (x; 1L) = x); (boundary condition)
(ii) (8(x; y) 2 L2)(T (x; y) = T (y; x); (commutativity)
(iii) (8(x; y; z) 2 L3)(T (x; T (y; z)) = T (T (x; y); z); (associativity)
(iv) (8(x; x0; y; y0) 2 L4)(x �L x0 and y �L y0 ) T (x; y) �L T (x0; y0)) (monotonic-

ity).

A t-norm T on L is said to be continuous if for any x; y 2 L and any sequences
fxng and fyng which converge to x and y we have limn T (xn; yn) = T (x; y).
For example, T (x; y) = min(x; y) and T (x; y) = xy are two continuous t-norms

on [0; 1].
A t-norm can also be de�ned recursively as an (n+ 1)-ary operation (n 2 N) by

T 1 = T and

T n(x1; :::; xn+1) = T (T n�1(x1; :::; xn); xn+1)

for n � 2 and xi 2 L.

De�nition 4 ([3]). A t-norm T on L� is called t-representable if and only if there
exist a t-norm T and a t-conorm S on [0; 1] such that, for all x = (x1; x2), y =
(y1; y2) 2 L�,

T (x; y) = (T (x1; y1); S(x2; y2)).

De�nition 5 ([16]). A negation on L is any decreasing mapping N : L ! L
satisfying N (0L) = 1L and N (1L) = 0L. If N (N (x)) = x, for x 2 L, then N is
called an involutive negation.

The negation Ns on ([0; 1];�) de�ned as, for all x 2 [0; 1], Ns(x) = 1 � x, is
called the standard negation on ([0; 1];�). We show (Ns(x); x) = Ns(x).

De�nition 6 ([16]). The 3-tuple (X;M; T ) is said to be an L-fuzzy metric space
if X is an arbitrary (non-empty) set, T is a continuous t-norm on L andM is an
L-fuzzy set on X2 � (0;+1) satisfying the following conditions for every x; y; z in
X and t; s in (0;+1):

(a) M(x; y; t) >L 0L;
(b) M(x; y; t) = 1L for all t > 0 if and only if x = y;
(c) M(x; y; t) =M(y; x; t);
(d) T (M(x; y; t);M(y; z; s)) �L M(x; z; t+ s);
(e) M(x; y; �) : (0;+1) �! L is continuous.

In this caseM is called an L-fuzzy metric.
Henceforth, we assume that T is a continuous t-norm on lattice L such that for

every � 2 Lnf0L; 1Lg, there is a � 2 Lnf0L; 1Lg such that

T n�1(N (�); :::;N (�)) >L N (�).
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L-FUZZY NORMED SPACES 3

3. L-fuzzy normed spaces

De�nition 7. The 3-tuple (X;�; T ) is said to be an L-fuzzy normed space if X is
an arbitrary (non-empty) set, T is a continuous t-norm on L and � is an L-fuzzy
set on X � (0;+1) satisfying the following conditions for every x; y in X and t; s
> 0:

(a) �(x; t) >L 0L;
(b) �(x; t) = 1L for all t > 0 if and only if x = 0;

(c) �(�x; t) = �
�
x; t

j�j

�
for all � 6= 0;

(d) T (�(x; t); �(y; s)) �L �(x; z; t+ s);
(e) �(x; �) : (0;+1) �! L is continuous;
(f) limt!1 �(x; t) = 1L.
In this case � is called an L-fuzzy norm. If � = ��;� is an intuitionistic fuzzy set

then the 3-tuple (X;��;� ; T ) is said to be an intuitionistic fuzzy normed space.
Let (X;�; T ) be an L-fuzzy normed space. For t > 0, we de�ne the open ball

B(x; r; t) with center x 2 X and radius r 2 Lnf0L; 1Lg, as
B(x; r; t) = fy 2 X : �(x� y; t) >L N (r)g.

A subsetA � X is called open if for each x 2 A, there exist t > 0 and r 2 Lnf0L; 1Lg
such that B(x; r; t) � A. Let �� denote the family of all open subsets of X. Then
�� is called the L-fuzzy topology induced by the L-fuzzy norm �.

Example 1. Let (X; jj � jj) be a normed space. De�ne T (a; b) = (a1b1;min(a2 +
b2; 1)) for all a = (a1; a2)and b = (b1; b2) in L� and let M and N be fuzzy sets on
X � (0;+1) de�ned as follows:

��;�(x; t) = (�(x; t); �(x; t)) =

�
ktn

ktn +mjjxjj ;
mjjxjj

ktn +mjjxjj

�
,

for all t; k;m; n 2 R+. Then (X;��;� ; T ) is an intuitionistic fuzzy normed space.
If h = m = n = 1 then (X;��;� ; T ) is a standard intuitionistic fuzzy normed space.
Also, if we de�ne

��;�(x; t) = (�(x; t); �(x; t)) =

�
t

t+mjjxjj ;
jjxjj

t+ jjxjj

�
,

where m > 1. Then (X;��;� ; T ) is an intuitionistic fuzzy normed space in which
��;�(0; t) = 1L� and ��;�(x; t) <L� 1L� for x 6= 0.

De�nition 8. A sequence fxng in an L-fuzzy normed space (X;�; T ) is called a
Cauchy sequence, if for each " 2 Lnf0Lg and t > 0, there exists n0 2 N such that
for all m � n � n0 (n � m � n0)

�(xm � xn; t) >L N (").
The sequence fxng is said to be convergent to x 2 X in the L-fuzzy normed space
(X;�; T ) (denoted by xn

��! x) if �(xn � x; t) �! 1L as n �! 1 for every
t > 0. An L-fuzzy normed space is said to be complete i¤ every Cauchy sequence is
convergent.

Lemma 2. Let (X;�; T ) be an L-fuzzy normed space and let x; y 2 X and t > 0.
Then

(i) �(x; t) is nondecreasing with respect to t for each x 2 X.
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(ii) �(x� y; t) = �(y � x; t).

Proof. (a) Let t < s. Then k = s� t > 0 and we have
�(x; t) = T (�(x; t); 1L) = T (�(x; t); �(0; k)) �L �(x; s).

Hence �(x; t) is nondecreasing.

(b) �(x� y; t) = �((�1)(y � x); t) = �
�
y � x; t

j�1j

�
= �(y � x; t). �

Lemma 3. Let (X;�; T ) be an L-fuzzy normed space. If we de�ne
M(x; y; t) = �(x� y; t),

then M is an L-fuzzy metric on X, which is called the L-fuzzy metric induced by
the L-fuzzy norm �.

De�nition 9. The L-fuzzy normed space (X;�; T ) is said to be an L-fuzzy Banach
space whenever X is complete with respect to the L-fuzzy metric induced by the
L-fuzzy norm.

Lemma 4. An L-fuzzy metric M which is induced by an L-fuzzy normed space
(X;�; T ) has the following properties for all x; y; z 2 X and every scalar � 6= 0:

(i) M(x+ z; y + z; t) =M(x; y; t),

(ii) M(�x; �y; t) =M
�
x; y; t

j�j

�
.

Proof. (i)M(x+ z; y + z; t) = �((x+ z)� (y + z); t) = �(x� y; t) =M(x; y; t).

(ii)M(�x; �y; t) = �(�x� �y; t) = �
�
x� y; t

j�j

�
=M

�
x; y; t

j�j

�
. �

Lemma 5. Let (X;�; T ) be an L-fuzzy normed space and let x; y 2 X and t > 0.
Then

(i) The function (x; y) �! x+ y is continuous,
(ii) The function (�; x) �! �x is continuous.

Proof. (i) Let fxng and fyng be two sequences in X with xn �! x and yn �! y.
Then n �!1

�((xn + yn)� (x+ y); t) �L T
�
�

�
xn � x;

t

2

�
; �

�
yn � y;

t

2

��
�! 1L

for all t > 0. This completes the proof.
(ii) Now if xn �! x and �n �! � where �n 6= 0 then
�(�nxn � �x; t) = �(�n(xn � x) + x(�n � �); t)

� LT
�
�

�
�n(xn � x);

t

2

�
; �

�
x(�n � �);

t

2

��
= T

�
�

�
xn � x;

t

2�n

�
; �

�
x;

t

2(�n � �)

��
�! 1L,

as n �!1 for all t > 0, which completes the proof. �

Theorem 1 (Open Mapping Theorem). If T is a continuous linear operator from
the L-fuzzy Banach space (X;�1; T ) onto the L-fuzzy Banach space (X;�2; T ), then
T is an open mapping.
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Proof. We will prove this theorem in several steps.
Step 1: Let E be a neigborhood of 0 in X. We show that 0 2 (T (E))o. Let

D be a balanced neigborhood of 0 such that D +D � E. Since T (X) = Y and D
absorbing, it follows that Y = \nT (nD). So by Theorem 3.17 in [6], there exists
a positive integer n0 2 N such that T (n0D) has nonempty interior. Therefore,
0 2 (T (D))o � (T (D))o. On the other hand,

(T (D))o � (T (D))o � (T (D))� (T (D))
= (T (D)� T (D))
� T (E).

So the set T (E) includes the neigborhood (T (D))o � (T (D))o of 0.
Step 2: It is shown 0 2 (T (E))o. Since 0 2 E and E is an open set, then

there exist � 2 Lnf0L; 1Lg and t0 2 (0;1) such that B(0; �; t0) � E. But for
� 2 Lnf0L; 1Lg, a sequence can be found such that "n �! 0L and

N (�) <L lim
n
T n�1(N ("1); :::;N ("n)).

On the other hand 0 2 T (B(0; "n; t0n)), where t0n = 1
2n t0, so by Step 1, there exist

�n 2 Lnf0L; 1Lg and tn > 0 such that B(0; �n; tn) � T (B(0; "n; t0n)). Since the set
fB(0; rn; 1n ) : n = 1; 2; :::g is a countable base at zero where rn �! 0L and t0n ! 0
as n!1, so tn and �n can be chosen such that tn ; �n �! 0L as n!1.
Now it is shown that B(0; �1; t1) � (T (E))o. Suppose y0 2 B(0; �1; t1). Then

y0 2 T (B(0; "1; t0)) and so for �2 >L 0L and t2 > 0 the ball B(y0; �2; t2) intersects
T (B(0; "1; t

0)). Therefore there exists x1 2 B(0; "1; t0) such that Tx1 2 B(y0; �2; t2),
i.e.,

�2(y0 � Tx1; t2) >L N (�2)

or equivalently y0�Tx1 2 B(0; �2; t2) � T (B(0; "1; t0)) and by the similar argument
there exist x2 in B(0; "2; t0) such that

�2(y0 � (Tx1 + Tx2); t3) = �2((y0 � Tx1)� Tx2; t3) >L N (�3).

If this process is continued, it leads to a sequence fxng such that xn 2 B(0; "n; t0n)
and

�2

0@y0 � n�1X
j=1

Txj ; tn

1A >L N (�n) .

Now if n 2 N and fpng is a positive and increasing sequence, then

�1

0@ nX
j=1

xj �
n+pnX
j=1

xj ; t

1A = �1

0@ n+pnX
j=n+1

xj ; t

1A �L T n�1(�1(xn+1; t1); :::; �1(xn+pn ; tpn))

where t1 + t2 + ::: + tpn = t. By putting t0 = minft1; t2; :::; tpng, since t0n ! 0 so
there exists n0 2 N such that 0 < t0n � t0 for n > n0. Therefore,

T n�1(�1(xn+1; t0); :::; �1(xn+pn ; tpn)) � LT n�1(�1(xn+1; t0n+1); :::; �1(xn+pn ; t0n+pn))
� LT n�1(N ("n+1); :::;N ("n+pn)).
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Hence,

lim
n!1

�1

0@ n+pnX
j=n+1

xj ; t

1A �L lim
n!1

T n�1(N ("n+1); :::;N ("n+pn)) = 1L,

that is,

lim
n!1

�1

0@ n+pnX
j=n+1

xj ; t

1A! 1L

for all t > 0.So the sequence
nPn

j=1 xj

o
is a Cauchy sequence and consequently the

series
nP1

j=1 xj

o
converges to some point x0 2 X, because X is complete space.

By �xing t > 0, there exists n0 2 N such that t > tn for n > n0, because tn ! 0.
So it follows:

�2

0@y0 � T
0@n�1X
j=1

xj

1A ; t
1A �L �2

0@y0 � T
0@n�1X
j=1

xj

1A ; tn
1A �L N (�n),

and thus

�2

0@y0 � T
0@n�1X
j=1

xj

1A ; t
1A! 1L .

Therefore,

y0 = lim
n
T

0@n�1X
j=1

xj

1A = Tx0.

But

�1(x0; t0) � L lim sup
n
�1

0@ nX
j=1

xj ; t0

1A �L lim sup
n
T n�1(�1(x1; t01); :::; �1(xn; t0n))

� L lim sup
n
T n�1(N ("1); :::;N ("n)) = N (�).

Hence x0 2 B(0; �; t0).
Step 3: Let G be an open subset of X and x 2 G. Then,

T (G) = Tx+ T (�x+G) � Tx+ (T (�x+G))o.

Hence T (G) would be open, because it includes a neigborhood of each of its point.
�

Theorem 2 (Closed Graph Theorem). Let T be a linear operator from the L-
fuzzy Banach space (X;�1; T ) into the L-fuzzy Banach space (Y; �2; T ). Suppose
for every sequence fxng in X such that xn ! x and Txn ! y for some elements
x 2 X and y 2 Y it follows Tx = y. Then T is continuous.

Proof. At �rst it is proved that the L-fuzzy norm � which is de�ned on X � Y by,

�((x; y); t) = T (�1(x; t); �2(y; t))
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is a complete L-fuzzy norm. For each x; z 2 X, y; u 2 Y and t; s > 0 it follows:

T [�((x; y); t); �((z; u); s)] = T [T (�1(x; t); �2(y; t)); T (�1(z; s); �2(u; s))]
= T [T (�1(x; t); �1(z; s)); T (�2(y; t); �2(u; s))]
� LT (�1(x+ z; t+ s); �2(y + u; t+ s))
= �((x+ z; y + u); t+ s).

Now if f(xn; yn)g is a Cauchy sequence in X � Y , then for every " 2 Lnf0L; 1Lg
and t > 0 there exists n0 2 N such that for m;n > n0,

�((xn; yn)� (xm; ym); t) >L N (").
So for m;n > n0,

T (�1(xn � xm; t); �2(yn � ym; t)) = �((xn � xm; yn � ym); t)
= �((xn; yn)� (xm; ym); t)
> LN (").

Therefore fxng and fyng are Cauchy sequences in X and Y respectively and there
exist x 2 V and y 2W such that xn ! x and yn ! y and consequently (xn; yn)!
(x; y). Hence (X � Y; �; T ) is a complete L-fuzzy normed space. �

4. Quotient spaces

De�nition 10. Let (X;�; T ) be an L-fuzzy normed space, K be a linear manifold
in X and let Q : X ! X= K be the natural map, Qx = x+K. We de�ne

� (x+K; t) = sup f�(x+ y; t) : y 2 Kg .

Theorem 3. If K is a closed subspace of L-fuzzy normed space X, � (x+K; t) is
de�ned as above then,

(i) � is an L-fuzzy norm on X= K.
(ii) �(Qx; t) �L �(x; t).
(iii) If (X;�; T ) is L-fuzzy Banach space, then so is (X=K;�; T ).

Proof. (i) Let (X;�; T ) be an L-fuzzy normed space and K is a closed subspace of
X. Let m;n 2 K and x; y 2 X.
(a) Since �(x + y; t) >L 0L, then � (x+K; t) >L 0L for all x 2 X, y 2 K and

t > 0.
(b) Let � (x+K; t) = 1L. By de�nition there exist a sequence fxng in K such

that � (x+ xn; t) converges to 1L. So x + xn converges to 0L or equivalently xn
converges to (�x) and since K is closed so x 2 K and x+K = K, the zero element
of X=K.
(c) Let � 6= 0. Then,
� (�(x+K); t) = � (�x+K; t) = sup f�(�x+ �y; t) : y 2 Kg

= sup

�
�

�
x+ y;

t

j�j

�
: y 2 K

�
= �

�
x+K;

t

j�j

�
.

(d) Let m;n 2 K and x; y 2 X. Then,
� ((x+K) + (y +K); t) = � ((x+ y) +K; t)

� L�((x+m) + (y + n); t)

� LT (�(x+m; t1); �(y + n; t2))
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for t1 + t2 = t. Taking sup on both sides, we have,

� ((x+K) + (y +K); t) �L T (� (x+K; t1) ; � (y +K; t2)).
(e) Clearly, � (x+K;_) : (0;1)! L is continuous.
(f) Also, limt!1 �(x; t) = 1L is holds.
Therefore (X=K;�; T ) is an L-fuzzy normed space.
(ii) �(Qx; t) = �(x+K; t) = sup f�(x+ y; t) : y 2 Kg �L �(x; t).
(iii) Let fxn + Kg be a cauchy sequence in X=K. then there exists "n 2

Lnf0L; 1Lg such that "n converges to 0L and,
� ((xn +K)� (xn+1 +K); t) �L N ("n).

Let y1 = 0. We choose y2 2 K such that,

�(x1 � (x2 � y2); t) �L T (� ((x1 � x2) +K; t) ;N ("1)).
But

� ((x1 � x2) +K; t) �L N ("1).
Therefore,

�(x1 � (x2 � y2); t) �L T (N ("1);N ("1)).
Now suppose yn�1 has been chosen, yn 2 K can be chosen such that

�((xn�1 + yn�1)� (xn + yn); t) �L T [� ((xn�1 � xn) +K; t) ;N ("n�1)],
and therefore,

�((xn�1 + yn�1)� (xn + yn); t) �L �T (N ("n�1);N ("n�1)).
Thus, fxn+ yng is a Cauchy sequence in X. Since X is complete, there is an x0 in
X such that xn + yn ! x0 in X. On the other hand,

xn +K = Q(xn + yn) �! Q(x0) = x0 +K.

Therefore every Cauchy sequence fxn +Kg is convergent in X=K and so X=K is
complete and (X=K;�; T ) is an L-fuzzy Banach space. �

Theorem 4. Let K be a closed subspace of L-fuzzy normed space (X;�; T ). If a
couple of the spaces X, K, X=K are complete, so is third one.

Proof. If X is an L-fuzzy Banach space, so are X=K and K. Therefore all that
needs to be checked is that X is complete whenever both K and X=K are complete.
Suppose K and X=K are L-fuzzy Banach spaces and let fxng be a Cauchy sequence
in X. Since

�((xn � xm) +K; t) �L �(xn � xm; t)
whenever m;n 2 N, the sequence fxn + Kg is Cauchy in X=K and so converges
to y +K for some y 2 X. So there exist a sequence f"ng in Lnf0L; 1Lg such that
"n ! 0L and

�((xn � y) +K; t) >L N ("n)
for each t > 0. Now by Theorem 3 there exists a sequence fyng in X such that
yn +K = (xn � y) +K and

�(yn; t) >L T [�((xn � y) +K; t);N ("n)] .
So limn �(yn; t) �L 1L and limn yn = 0. Therefore fxn � yn � yg is a Cauchy
sequence in K and thus is convergent to a point z 2 K and this implies that fxng
converges to z + y and X is complete. �
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LIMITS OF ZEROS OF POLYNOMIAL SEQUENCES

XINYUN ZHU AND GEORGE GROSSMAN

Abstract. In the present paper we consider Fk(x) = xk−
∑k−1

t=0 xt, the characteristic
polynomial of the k-th order Fibonacci sequence, the latter denoted G(k, l). We deter-
mine the limits of the real roots of certain odd and even degree polynomials related
to the derivatives and integrals of Fk(x), that form infinite sequences of polynomials,
of increasing degree. In particular, as k → ∞, the limiting values of the zeros are
determined, for both odd and even cases. It is also shown, in both cases, that the
convergence is monotone for sufficiently large degree. We give an upper bound for the
modulus of the complex zeros of the polynomials for each sequence. This gives a gen-
eral solution related to problems considered by Dubeau 1989, 1993, Miles 1960, Flores
1967, Miller 1971 and later by the second author in the present paper, and Narayan
1997.

Primary: 11B39, Fibonacci number

1. Introduction

The current work arose from consideration of sequences of polynomials [11] related to
the asymptotic behavior of their zeros. It is based on the following infinite sequence of
polynomials denoted as {Fk(x)}∞k=1 for convenience in the present paper which for k ≥ 2,
comprise the characteristic polynomials of the k-th order Fibonacci sequence, denoted
by G(k, l) where for l > k ≥ 2,

G(k, l) =
k∑
t=1

G(k, l − t),

and G(k, 1) = 1, G(k, t) = 2t−2, t = 2, 3, . . . , k. For k = 2 we obtain the well-known
Fibonacci sequence, {1, 1, 2, 3, 5, 8, . . . , Fn−1 + Fn−2 = Fn, . . .}.

It is also well-known that

lim
k→∞

G(k, l + 1)

G(k, l)
= φk, k ≥ 2,

where φk is the positive zero of Fk. Number theoretic results concerningG(k, l) are in [10].
A fractal described by A. Dias, in A. Posamentier and I. Lehman’s new book [14] was
first published in [10]. The significance of this fractal with respect to the present paper
is that the fractal dimension is ln(φ2)/ ln 2.

Miles 1960, [12] showed that the zeros of the sequence of polynomials {Fk(x)}, k ≥ 2
are distinct, all but one lies in the unit disk and the latter is real and lies in the interval
(1, 2). Miller [13], 1971 gave a different, shorter proof of this result. Flores 1967, [3],
showed that φk → 2 monotonically as k → +∞ as did Dubeau, [1], [2]. In [11] the

Date: July 31, 2008.
1
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sequences {F ′

k(x)} and {F ′′

k (x)} were studied and we reproduce the following table for
understanding and motivation:

Table 1. Does Interval Contain a Root, yes or no?

int/fn F2k F2k+1 F ′2k F ′2k+1 F ′′2k F ′′2k+1

(−1, 0) yes no no yes yes (k > 1) no
(0, 1] no no yes (k = 1) yes (k = 1) yes (k = 2) yes (k = 1, 2)
(1, 2) yes yes yes (k > 1) yes (k > 1) yes (k > 2) yes (k > 2)

For the particular particular cases we find that F3
′(1) = 0, F ′2(1/2) = 0, F ′′2 =

2, F3
′′(1/3) = 0, F5

′′(1) = 0, F4
′′((1 +

√
11/3)/4) = 0.

Note that in table 1, the number of negative roots is either 0 or 1 for odd and even
degree respectively, while there is always a positive root in (1, 2) (for sufficiently large
degree.) It was indicated in [11] as an open question as to whether this happens for
higher derivatives and conjectured in [4].

In [11] it was also shown that limk→∞ θk = −1 where θk is the negative zero of
each term in {F2k}, k ≥ 1. Similarly, by examining approximations to zeros, the same
asymptotic result was shown to hold for the sequences {F ′

k(x)} and {F ′′

k (x)}.
In [4] a conjecture was also made concerning the real zeros of the of l-th derivatives of

each member of the sequence {Fk}∞k=2. Namely, the zeros of {F (l)
k }∞k=2 exhibit the same

(monotonic) behavior. A conjecture that the complex zeros are all within the unit circle
was also made.

In this paper the question in [11] is answered, as are the first two questions of [4],
affirmatively. The cases of the complex zeros is still open, although we obtain an upper
bound. The present work also answers the same questions and yields similar results for
the l-th integral of {Fk}.

In the present paper then, we consider the following sets of infinite sequences of
polynomials given by,

U = {{F1, F2, . . . , }, {F ′1, F ′2, . . . , }, {F ′′1 , F ′′2 , . . . , }, . . . , },

and,

V =

{
{F1, F2, . . . , },

{∫
F1dx,

∫
F2dx, . . . ,

}
,

{∫ ∫
F1dxdx,

∫ ∫
F2dxdx, . . . ,

}
, . . . ,

}
where F1(x) = x− 1 and

Fk(x) = xk −
k−1∑
t=0

xt, k ≥ 2.

The sets U, V are related to certain recurrence relations [5], [6] having solutions that
lead to combinatorial identities. These recurrence relations result from a factorization
of Fk(x), with unknown coefficients. Several combinatorial identities are in [7], [8], [9],
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for example it is shown in [9] that for any c 6= −1, 0

1
c2(n+1) − 1

1 + c
=

1

cn+2

n+1∑
i=1

(
n+ i

2i− 1

)
(1− c)2i−1

ci−1

= −1

c
+

1

c2
+ · · ·+ 1

c2(n+1)
, n ≥ 0.(1.1)

If c→ −1 in (1.1) one obtains,

2(n+ 1) =
n+1∑
i=1

(
n+ i

2i− 1

)
22i−1(−1)n+i+1,

which is equivalent to a result in G. Pólya and G. Szegö, [15].
The outline of the paper is as follows: in the next sections, §2.1, §2.2, we give the

three main results with proofs supported in several lemmas. The first result deals with
the set of derivatives U. The first and second derivative cases were treated in [11]; the
second and third results deal with the set of integrals V. The second result deals with the
first integral for which the proof leads to the general case and so is included for interest
and clarity of exposition.

2. Results

2.1. U or derivative case. Now we consider the infinite sequence of polynomials

{F (l)
k (x)} of the l-th derivative of the sequence {Fk(x)}.

Definition 2.1. We specify the following degree j polynomial Dj(x) to correspond with
the l-th derivative of Fj+l(x).

(2.1) Dj(x) = F
(l)
j+l(x) = l!

((
j + l

l

)
xj −

j−1∑
t=0

(
t+ l

l

)
xt

)
, j ≥ 1,

with D0(x) = l!.

Lemma 2.1. The l-th derivative of Fk(x) is given by,

(2.2) Dk−l(x) =

∑l+1
t=0(−1)tatx

k+1−t + (−1)ll!

(x− 1)l+1
, x 6= 1,

where each ai is a degree l polynomial in k with positive leading coefficient.

Proof. We can write

Fk(x) =
xk+1 − 2xk + 1

x− 1
.

We obtain the first derivative of Fk(x) given by

F ′k(x) =
kxk+1 − (3k − 1)xk + 2kxk−1 − 1

(x− 1)2
, x 6= 1.
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4 XINYUN ZHU AND GEORGE GROSSMAN

Hence the statement is true for l = 1. Suppose the statement is true for 1 ≤ l ≤ j. We
have

(2.3) Dk−j(x) =

∑j+1
t=0(−1)tatx

k+1−t + (−1)jj!

(x− 1)j+1
,

where each ai is a degree j polynomial in k with positive leading coefficient.
We obtain the next derivative of (2.3):

Dk−j−1(x) =

(∑j+1
t=0(−1)tat(k + 1− t)xk−t

)
(x− 1)j+1

(x− 1)2j+2
(2.4)

−
(j + 1)(x− 1)j

(∑j+1
t=0(−1)tatx

k+1−t + (−1)jj!
)

(x− 1)2j+2

=

∑j+2
t=0(−1)tbtx

k+1−t + (−1)j+1(j + 1)!

(x− 1)j+2
,

where

b0 = a0(k + 1)− a0(j + 1) = a0(k − j).

For 1 ≤ t ≤ j + 1, we obtain by comparing the coefficients of like powers of x in (2.4)

bt = at(k + 1− t) + at−1(k + 2− t)− (j + 1)at

= at(k − j − t)− at−1(k + 2− t),

and

bj+2 = aj+1(k − j).
Hence the lemma follows. �

Lemma 2.2. If k − l is odd, then Dk−l has one positive root and no negative root. If
k − l is even, then Dk−l(x) has one positive root and one negative root.

Proof. Suppose k − l is odd; if k is even then l is odd. From (2.2), with −x ← x, the
numerator of Dk−l(x) can be written

(2.5)
l+1∑
t=0

(−1)tat(−x)k+1−t + (−1)ll! = −
l+1∑
t=0

atx
k+1−t − l!.

If k is odd, then l is even, and

(2.6)
l+1∑
t=0

(−1)tat(−x)k+1−t + (−1)ll! =
l+1∑
t=0

atx
k+1−t + l!.

By inspection of (2.5), (2.6) and employing Descartes’ rule, Dk−l(x) has no negative
roots. Suppose k − l is even; if k is even then l is even, and,

l+1∑
t=0

(−1)tat(−x)k+1−t + (−1)ll! = −
l+1∑
t=0

atx
k+1−t + l!.
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If k is odd then l is odd, and

l+1∑
t=0

(−1)tat(−x)k+1−t + (−1)ll! =
l+1∑
t=0

atx
k+1−t − l!.

By similar argument Dk−l(x) has one negative root. Taking the l-th derivative of (2.1),
it is easy to see by Descartes’ rule that Dk−l(x) has exactly one positive root. �

Denote by uk the positive root of Dk(x); for k even, denote by vk the negative root of
Dk(x).

Theorem 2.1. We have the following results for the set U and fixed l:

(1) Let j = k − l. Then

lim
j→∞

uj = 2.

All of the other complex roots of Dj(x) are inside of |z| < uj. For j even, we
have

lim
j→∞

vj = −1

(2) If j is odd, then Dj(x) has one positive root and no negative root. If j is even,
then Dj(x) has one positive root and one negative root.

(3) For j ≥ 2, we have uj+1 > uj.
(4) There exists a even number N0, such that for even n > N0, we have vn+2 < vn.

Proof. This theorem is proved by the following lemmas 2.2–2.5. �

Remark 2.1. The corresponding theorem has been proved in [11] for the first derivative
and second derivative cases, .

Lemma 2.3. Let j = k − l, fixed l. Then the positive roots uj satisfy

lim
j→∞

uj = 2.

All of the the other complex roots of Dj(x) are inside of open disk |z| < uj. For j even,
the negative roots vj satisfy,

lim
j→∞

vj = −1.

Proof. We have from (2.1)

(2.7) Dk−l(x)−Dk−1−l(x) = (k − 1) · · · (k − l + 1)xk−l−1 ((x− 2)k + 2l) .

It follows that for any a, 1 < a < 2,

lim
k→∞

Dk−l(a)−Dk−1−l(a) = −∞.

Hence for any a, 1 < a < 2, we have

lim
k→∞

Dk−l(a) = −∞.

It is easy to see from (2.7) that

lim
k→∞

Dk−l(2) =∞.
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Hence by the intermediate value theorem, 1 < uj < 2 for all j ≥ j0 for sufficiently large
j0.

lim
j→∞

uj = 2.

For j even, we have from (2.1)

(2.8) Dk−l(x)−Dk−l−2(x) = (k − 2) · · · (k − l + 1)xk−l−2hk(x),

where

(2.9) hk(x) = (x2 − x− 2)k2 + (−x2 + (l + 1)x+ 2(2l + 1))k − lx− 2l(l + 1).

Hence if a ≤ −1, we have from (2.8), (2.9),

lim
k→∞

(Dk−l(a)−Dk−l−2(a)) =∞.

For sufficiently large k, if −1 < a < 0, we have

Dk−l(a)−Dk−l−2(a) < 0.

Hence for j even, we have
lim
j→∞

vj = −1.

Notice for j = k − l > 0, we have

(2.10) Dj(x) = k(k − 1) · · · (k − l + 1)xk−l −
k−1∑
s=l

s(s− 1) · · · (s− l − 1)xs−l.

Let x0 = ρeiθ be a complex zero of Dj(x). By applying triangle inequality to (2.10), we
get Dj(ρ) ≤ 0. We know that Dj(x) < 0 if 0 ≤ x ≤ uj and Dj(x) > 0 if x > uj. Since
ρ > 0, we get 0 < ρ < uj. �

Lemma 2.4. For k ≥ 2, we have uk+1 > uk.

Proof. Solving

Dk(x)−Dk−1(x) = l!

(
k + l

l

)
xk − 2l!

(
k + l − 1

l

)
xk−1 = 0,

we get

xk =
2k

k + l
= 2− 2l

k + l
Hence xk converges monotonically to 2. We calculate

D2(x2) = l!

(
(l + 2)(l + 1)

2

42

(l + 2)2
− (l + 1)

4

l + 2)
− 1

)
(2.11)

= l!

(
4(l + 1

l + 2
− 1

)
= l!

3l + 2

l + 2
> 0.

Since x3 > x2, we obtain

(2.12) D3(x3) = D2(x3) > D2(x2) > 0.
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Hence u3 > u2. Inductively, we get uk+1 > uk. �

Lemma 2.5. There exists an even number N0, such that for even n > N0, we have
vn+2 < vn.

Proof. Solving

(2.13) Dk(x)−Dk−2(x) = (k + l − 2) · · · (k + 1)gk(x) = 0,

where
gk(x) = (k + l)(k + l − 1)x2 − k(k + l − 1)x− 2k(k − 1),

we get the negative root of (2.13)

(2.14) xk =
k

2(k + l)
− 1

2

√(
k

k + l

)2

+
8k(k − 1)

(k + l)(k + l − 1)

Consider the following function derived from (2.14)

(2.15) f(x) =
1

2
(1− lx)− 1

2

√
(1− lx)2 +

8(1− lx) (1− (l + 1)x)

(1− x)

we find that

f ′(0) =
5l

2
> 0.

Hence f(x) is increasing on a neighborhood V of 0.
Since

1

k + l
>

1

k + l + 2
,

we get
xk+2 = f (1/(k + l + 2)) < f (1/(k + l)) = xk.

First we claim that there exists a sufficiently large even number k0, such that vk0 < vk0−2.
Otherwise, suppose there exists a j0, such that for all even number j > j0, vj+2 ≥ vj.
Since Dk(−1) → ∞ as k → ∞, this contradicts the fact limj→∞ vj = −1. Hence there
exists an even number k0, such that vk0 < vk0−2. It follows that

Dk0(xk0) > 0.

Otherwise, we have vk0 > vk0−2, a contradiction. Since xk0+2 < xk0 , we getDk0+2(xk0+2) =
Dk0(xk0) > 0. It follows that vk0+2 < vk0 . Notice {xk} decreases to −1 also. Inductively,
we have that vk+2 < vk for k sufficiently large and even. �

2.2. V or integral case.

2.2.1. First Integral Case. Now we consider the infinite sequence of polynomials {
∫
Fk(x)}

of the first integral of the sequence {Fk(x)}.
Definition 2.2. We specify the following degree j + 1 polynomial Ij(x) to correspond
with the first integral of Fj(x).

(2.16) Ij(x) =

∫
Fj(x) =

xj+1

j + 1
− xj

j
− · · · − x− 1,

for all j ≥ 1.
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Theorem 2.2. The roots of Ik(x) satisfy the following properties,

(1) Ik(x) has a positive simple root φk satisfying 2 < φk < 3.
(2) For k ≥ 2, we have φk+1 < φk.
(3)

lim
j→∞

φk = 2.

(4) If k is odd, then
(a) Ik(x) has a negative simple root θk satisfying −2 < θk < −1.
(b)

lim
j→∞

θk = −1.

(c) θk > θk−2 for k ≥ 17.
(5) For k even, Ik(x) has no negative root.

Proof. We prove this theorem in the following lemmas 2.6–2.10. �

Lemma 2.6. Ik(x) has a positive simple root φk satisfying 2 < φk < 3. If k is odd, then
Ik(x) has a negative simple root θk satisfies −2 < θk < −1.

Proof. From Descartes’ Rule, we get that the number of possible positive roots for each
Ik(x) is 1. If a = 2,

I1(2) =
22

2
− 2− 1 = −1 < 0

We find that for k > 1,

Ik(2)− Ik−1(2) =
−2k+1

k(k + 1)
< 0

Then for all k ≥ 1, we have Ik(2) < 0. Hence the positive root φk > 2. If a = 3, then

I1(3) =
32

2
− 3− 1 =

1

2
> 0

We have that for k ≥ 2,

(2.17) Ik(3)− Ik−1(3) =
3k(k − 2)

k(k + 1)
≥ 0

Then for all k ≥ 1, we have Ik(3) > 0. Hence the positive root φk satisfies 2 < φk < 3.
If I ′k(φk) = 0, then by [13], 1 < φk < 2. Hence I ′k(φk) 6= 0. Therefore, φk is a simple
root of Ik(x). For k odd, we can get that the number of variation for signs Ik(−x) is
k. Then by Descartes’ Rule, we know the possible number of negative roots for Ik(x) is
k, k − 2, . . . , k − 2t, . . . , 1. By [13], we know I ′k(x) only has one real root bk for k odd.
It follows that Ik(x) is increasing if x > bk and decreasing if x < bk. Hence we get the
number of negative real roots for Ik(x) is 1.
If k = 1 then

I1(−1) = −1 + 1 +
1

2
=

1

2
> 0.

If k = 3 then

I3(−1) = −1 + 1− 1

2
+

1

3
+

1

4
> 0.
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If k = 5 then

(2.18) I5(−1) = −1 + 1− 1

2
+

1

3
− 1

4
+

1

5
+

1

6
= − 1

20
< 0.

If k > 5 and k is odd then

(2.19) Ik(−1) =
1

k + 1
+

k∑
l=1

(−1)l−1

l
− 1 ≤ −1 + ln(2) +

2

k + 1
< 0

For k odd, from [13], I ′k(x) < 0 for x < 0, so Ik(x) is decreasing for x < 0. Hence from
(2.18)and (2.19) for all k ≥ 5 and k odd, the negative real root θk of Ik(x). satisfying
θk < −1.
Next we show −2 < θk. From (2.16), we obtain

Ik(x)− Ik−2(x) =
xk+1

k + 1
− xk

k
− 2

xk−1

k − 1
.

Solving

(2.20)
x2

k + 1
− x

k
− 2

k − 1
= 0,

yields the negative root,

(2.21) xk1 =
1

k
−

√(
1

k

)2

+
8

(k + 1)(k − 1)

k + 1

2
,

It can be shown by direct calculation that for k odd and k ≥ 7, −1 > xk1 > −2.
That implies that for k odd and k ≥ 7,

(2.22) Ik(−2)− Ik−2(−2) > 0

We know

I5(−2) =
221

15
> 0.

Hence for all k ≥ 5 and k odd, we have Ik(−2) > 0. Therefore we get −2 < θk < −1.
If I ′k(θk) = 0, then by [13], −1 < θk < 0. Hence I ′k(θk) 6= 0. It follows that θk is a simple
root of Ik(x). �

Lemma 2.7. Let φk be the positive root of Ik(x). Then for k ≥ 2, we have φk+1 < φk.

Proof. Denoted by bk the positive real root of I ′k(x). By [13], we know 1 < bk < 2. Hence
Ii(x), i ≥ 2, is increasing if x > 2. It’s easy to see that Ii > Ii−1 if x > 2 + 2

i
and

Ii < Ii−1 if x < 2 + 2
i
. Notice 2 + 2

i
converges to 2 decreasingly. From I3(2 + 2/3) < 0,

we get φ3 < φ2. Suppose for all 2 < i ≤ k, we have Ii(2 + 2/i) < 0. Then since
Ik−1(2 + 2/k) = Ik(2 + 2/k) < 0 and Ik+1 is increasing if x > 2 + 2/(k + 1), we
get Ik+1(2 + 2/(k + 1)) < 0. We know Ik+1 > Ik if 2 + 2/(k + 1) < x < 3. We get
Ik(φk+1) < 0. Hence for k ≥ 2, φk+1 < φk. �

Lemma 2.8.

lim
k→∞

φk = 2.
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Proof. For any k,

Ik(x)− Ik−1(x) = xk
(

x

k + 1
− 2

k

)
(2.23)

=
xk[(x− 2)k − 2]

k(k + 1)
.

If a > 2, then for sufficiently large k,

(2.24) (a− 2)k − 2 > 1.

We know

(2.25) lim
k→∞

xk

k(k + 1)
=∞.

Hence employing (2.24), (2.25) in (2.23), for any a > 2, yields

(2.26) lim
k→∞

Ik(a)− Ik−1(a) =∞.

Notice for any k > 2,

(2.27) Ik(x) =
k∑
l=3

(Il(x)− Il−1(x)) + I2(x).

It follows from (2.26), (2.27) that for any a > 2,

lim
k→∞

Ik(a) =∞.

If a = 2, we have

Ik(2)− Ik−1(2) =
−2.2k

k(k + 1)
.

Then by a similar argument as above,

lim
k→∞

Ik(2) = −∞.

By the Mean Value Theorem, we obtain

lim
k→∞

φk = 2.

�

Lemma 2.9. Let k be a odd number and θk be the negative root of Ik(x). Then

(2.28) lim
k→∞

θk = −1.

Moreover, for k > 17 and k is odd, θk > θk−2.

Proof. For a < −1, we have from (2.16)

Ik(a)− Ik−2(a) = ak−1

(
a2

k + 1
− a

k
− 2

k − 1

)
(2.29)

= ak−1k
2(a2 − a− 2)− (a2 + 2)k + a

(k + 1)k(k − 1)
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For a < −1 and k sufficiently large, we have from (2.29)

k2(a2 − a− 2)− (a2 + 2)k + a > 1

Since for a < −1 and k odd, by similar argument as lemma 2.8,

lim
k→∞

ak−1

(k + 1)k(k − 1)
=∞,

we get

lim
k→∞

Ik(a)− Ik−2(a) =∞.

Then by writing Ik(x) as telescoping sum, a < −1, k odd, it follows that

(2.30) lim
k→∞

Ik(a) =∞.

Substituting a = −1 in (2.16) gives

Ik(−1) =
(−1)k+1

k + 1
+Hk(−1)− 1,

where Hk(x) is the standard alternating sum.
Hence

(2.31) lim
k→∞

Ik(−1) = ln(2)− 1 < 0.

It follows that from Mean Value Theorem, (2.30), (2.31),

lim
k→∞

θk = −1.

A calculator check with k = 17 in (2.21) yields

Ik(xk1) = −0.0337812682 < 0.

From (2.21) we write

f(x) = −
√

(1 + x)2 + 8
1 + x

1− x
+ (1 + x)

Taking the derivative of f(x) gives

f ′(x) = −1

2

2(1 + x) + 16/(1− x)2√
(1 + x)2 + 8(1 + x)/(1− x)

+ 1

It’s easy to check that for 0 < x < 1, f ′(x) < 0. f(x) is decreasing for 0 < x < 1. Since
1/(k + 2) < 1/k, we get for k ≥ 7,

(2.32) xk =

1
k
−
√(

1
k

)2
+ 8

(k+1)(k−1)

2
k+1

<

1
k+2
−
√(

1
k+2

)2
+ 8

(k+3)(k+1)

2
k+3

= xk+2.

Hence xk increases to −1. Denote by θk the negative real root of Ik(x). Since I17(x17) < 0,
we get θ17 < x17. It follows that I19(θ17) > 0 since I19(x) > I17(x) when x < x17. Hence
θ19 > θ17; it follows that θk > θk−2 for k ≥ 17. �
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It is noted that for 1 < a < 2, using similar methods, we can get

lim
k→∞

Ik(a) = −∞.

Lemma 2.10. For k even, the integral Ik(x), (2.16), has no negative root.

Proof. Let k = 2l, x = −a for 0 < a < 1. By rewriting (2.16) we get

(2.33) Ik(x) = − a2l+1

2l + 1
− a2l

2l
+

l∑
t=2

a2(t−1)

(
a

2t− 1
− 1

2t− 2

)
+ a− 1 < 0.

Hence, for k even, Ik(x) has no negative root on −1 < x < 0. It is easy to check that
Ik(−1) < 0.
By [13], for k even, I ′k(x) has a negative root rk satisfying −1 < rk < 0. Hence Ik(x) is
increasing on −∞ < x < −1 so that for k even Ik(x) < 0. Therefore, for k even, Ik(x)
has no negative root. �

Lemma 2.11. For any k ≥ 2, the complex zeros of Ik(z) satisfy the inequality |z| <
φk < 3.

Proof. Let z0 = reiθ be a complex root of Ik(z). Using the triangle inequality we obtain

(2.34) Ik(r) ≤ 0.

Note that equality holds only at θ = 0, i.e z0 = φk. Since Ik(x) < 0 for 0 < x < φk < 3
and x real, we get r < φk < 3. �

Lemma 2.12. If −1 < a < 1, then

|Ik(x)| ≤ 1

1− |x|
.

Moreover,

lim
k→∞

Ik(x) = −1 + ln(1− x).

Proof. If −1 < a < 1, then

|Ik(x)| ≤
k∑
l=0

∣∣∣∣ xl+1

l + 1

∣∣∣∣+ 1

≤
k∑
l=0

∣∣xl+1
∣∣+ 1

≤ 1

1− |x|
.

The Taylor series expansion for Ik(x) with −1 < x < 1, yields

lim
k→∞

Ik(x) = −1 + ln(1− x).

�
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2.2.2. General Case. Now we consider the infinite sequence of polynomials


l+2︷ ︸︸ ︷∫ ∫
· · ·
∫
Fk(x)


of the (l + 2)-th integral of the sequence {Fk(x)}.

Definition 2.3. For 0 < l < k, We specify the following degree k+ 1 polynomial Hk(x)
to correspond with the (l + 2)-th integral of Fk−l−1(x).

Hk(x) =

l+2︷ ︸︸ ︷∫ ∫
· · ·
∫
Fk−l−1(x)(2.35)

=
xk+1

(l + 2)!
(
k+1
l+2

) − k∑
t=l+2

xt

(l + 2)!
(
t
l+2

) − l+1∑
s=0

xs

s!

Let αk be the positive root of Hk(x). For k odd, denote by βk the negative real root of
Hk(x).

We have the following

Theorem 2.3. The roots of Hk(x) satisfy the following properties,

(1)

lim
k→∞

αk = 2.

Except αk, all the other complex roots are inside {z : |z| < αk}. For k odd, we
have

lim
k→∞

βk = −1.

(2) For sufficiently large even k, for any x < 0, Hk(x) < 0, i.e Hk(x) has no negative
real roots.

(3) For sufficiently large odd k, for any x < 0, Hk(x) has one negative root.
(4) αj+1 < αj, ∀j ≥ l + 3,
(5) there exists odd N0, such that for all odd n ≥ N0, we have βn+2 > βn.

Proof. The theorem is proved using lemmas 2.13–2.17. �

Lemma 2.13.

lim
k→∞

αk = 2.

Except αk, the other complex roots are inside {z : |z| < αk}. For k odd, we have

lim
k→∞

βk = −1.

Proof. The proof uses similar idea as the previous section with some differences, we
include for completeness.

(2.36) Hk(x)−Hk−1(x) =
xk

(l + 3)!
(
k+1
l+3

) ((x− 2)k − lx− x− 2)) .
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It follows that for a > 2,

lim
k→∞

(Hk(a)−Hk−1(a)) =∞.

Hence for a > 2,
lim
k→∞

Hk(a) =∞.

It’s easy to prove that
lim
k→∞

Hk(2) = −∞.

Hence,
lim
k→∞

αk = 2.

Let z = reiθ. Then by triangle inequality,

(2.37) Hk(r) ≤ 0

Equality in (2.37) holds only at θ = 0; it follows that r < αk. Since z = 0 is not the root
of Hk(z), we have 0 < r < αk.
If k is odd, then

(2.38) Hk(x)−Hk−2(x) =
xk−1

(l + 4)!
(
k+1
l+4

)hk(x),

where
(2.39)
hk(x) = (x2 − x− 2)k2 −

(
(2l + 3)x2 + (l + 1)x+ 2

)
k +

(
(l + 1)(l + 2)x2 + (l + 2)x

)
.

Hence, if a < −1 and k odd, employing (2.38), (2.39) we have

(2.40) lim
k→∞

(Hk(a)−Hk−2(a)) =∞.

It follows from (2.40) that

(2.41) lim
k→∞

Hk(a) =∞.

For k odd, it is easy to see from (2.35) that for sufficiently large k,

(2.42) Hk(−1) < 0

Denote by βk the negative real root of Hk(x). We have from (2.41), (2.42)

lim
k→∞

βk = −1.

�

Lemma 2.14. For sufficiently large even k, for any x < 0, Hk(x) < 0.

Proof. This result was shown for the first integral (l = −1 in (2.35)) in lemma 2.10.
Now we consider the case l ≥ 0 in (2.35).
For k and l both even, we obtain

H ′k(−1) = A+B + C − 1,

where

A =
1

(l + 1)!
(
k
l+1

) +
1

(l + 1)!
(
k−1
l+1

) ,
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B =
k−2∑
d=l+3

l + 1

(l + 2)!
(
d
l+2

) ,
C =

l/2∑
s=1

2s− 1

(2s)!
.

We note that H ′k(−1) < 0. SinceA > 0, B > 0, and C ≥ 1
2
, this implies for k sufficiently

large even k and l even,

(2.43) |H ′k(−1)| < 1

2
.

The same result (2.43) holds with a similar proof in the case of odd l and for sufficiently
large even k. Let θk be the negative root of H ′k(x) and let γk be the negative root of

H
(3)
k (x). We know from lemma 2.13,

(2.44) lim
k→∞

θk = −1, lim
k→∞

γk = −1.

Notice

Hk(θk) =

∫ θk

0

H ′k(x)dx− 1

and H ′k(x) is decreasing on x < 0 so |H ′k(x)| < 1 since H ′k(0) = −1. H ′k(x) is concave

down on γk < x < 0 since H
(3)
k (x) < 0 on γk < x < 0.

Hence for sufficiently large even k, if θk < γk, we obtain

Hk(θk) =

∫ θk

γk

H ′k(x)dx+

∫ γk

0

H ′k(x)dx− 1(2.45)

< |θk − γk|+
1

2
(|H ′k(γk)|+ 1)− 1.

For l = 0, we know that −2 < θk < −1 and −1 < γk < 0. Write γk = −ak and write
k = 2t. Then by taking the derivative of (2.35),

(2.46) H ′k(γk) = −1 +
t−1∑
s=1

ak
2s−1

(
1

2s− 1
− ak

2s

)
+

a2t−1
k

2t− 1
+
a2t
k

2t
.

Hence since −1 < H ′k(γk) < 0 and by inspection of (2.46)

(2.47) |H ′k(γk)| <
∣∣∣∣−1 + ak −

ak
2

2

∣∣∣∣ < 1.

It follows for sufficiently large k from (2.45),(2.47)

Hk(θk) < 0.

Therefore Hk(x) < 0 for all x < 0.
For l > 0, we have γk < −1. If θk < γk, then |H ′k(γk)| < |H ′k(−1)| < 1

2
in (2.43). Hence

for sufficiently large even k, we get

(2.48) Hk(x) < 0.
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16 XINYUN ZHU AND GEORGE GROSSMAN

If γk < θk, then

(2.49) Hk(θk) <
1

2
|θk| − 1 < 0.

It follows for sufficiently large even k, we get

Hk(x) < 0.

�

Lemma 2.15. For sufficiently large odd k, for any x < 0, Hk(x) has exactly one negative
root.

Proof. By Lemma 2.14, we know H ′k(x) < 0 for x < 0. Hence Hk(x) is decreasing on
(−∞, 0). Since Hk(0) = −1 and limx→−∞Hk(x) = ∞, we get that Hk(x) has only one
root on (−∞, 0). �

Now we study the monotonicity of the positive root αk of Hk(x) in the following

Lemma 2.16. For all j ≥ l + 3, where l ≥ −1 is a fixed integer, we have αj+1 < αj.

Proof. Solving for the zero of (2.36) for k = l+3 yields the intersection point x = l+4 =
k + 1. Next we show Hk(x) < 0 at the intersection point x = k + 1,

Hk(k + 1) =
(k + 1)k+1

(k − 1)!
(
k+1
k−1

) − k∑
t=1

(k + 1)t

t!
− 1(2.50)

=
(k + 1)k

k!
−

k−1∑
t=1

(k + 1)t

t!
− 1

=
(k + 1)k−1

(k − 1)!

(
k + 1

k
− 1

)
−

k−2∑
t=1

(k + 1)t

t!
− 1

=
(k + 1)k−1

k!
−

k−2∑
t=1

(k + 1)t

t!
− 1

=
(k + 1)k−2

(k − 2)!

(
−k2 + 2k + 1

k(k − 1)

)
−

k−3∑
t=1

(k + 1)t

t!
− 1

< 0.

The lemma follows the similar argument as lemma (2.4). �

We now consider the monotonicity of the negative root βk of Hk(x) in the following

Lemma 2.17. There exists odd N0, such that for all odd n ≥ N0, we have βn+2 > βn.

Proof. Solving the zero of (2.38) we get the negative real root

(2.51) xk =
1

2

(
k + 1

k − l − 1
−

√
(k + 1)2

(k − l − 1)2
+

8(k + 1)k

(k − l − 1)(k − l − 2)

)
.
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We consider the function derived from (2.51)

(2.52) f(x) = 1 + (l + 2)x−
√

(1 + (l + 2)x)2 + 8
(1 + (l + 2)x) (1 + (l + 1)x)

1− x
.

Taking the derivative of f(x) gives
(2.53)

f ′(x) = (l + 2)− A+B + C

2

(√
(1 + (l + 2)x)2 + 8

(1 + (l + 2)x) (1 + (l + 1)x)

1− x

)−1

,

where

A = 2 (1 + (l + 2)x) (l + 2),

B = 8(l + 2)
1 + (l + 1)x

1− x
,

C = 8 (1 + (l + 2)x)
(l + 1)(1− x) + (1 + (l + 1)x)

(1− x)2
.

Substituting x = 0 in (2.53) gives

(2.54) f ′(0) = −2(l + 2) < 0.

It follows from (2.54) that there exists a neighborhood V of 0, such that f(x) is decreasing
on V.
Since

(2.55)
1

k − l − 1
>

1

k + 2− l − 1
,

we have

(2.56) xk =
1

2
f (1/(k − l − 1)) <

1

2
f (1/(k + 2− l − 1)) = xk+2.

It’s easy to see that

(2.57) lim
k→∞

xk = −1.

We claim that there exists a sufficiently large odd number j0, such that βj0+2 > βj0 .
Otherwise, suppose there exists a k0, such that for all odd number n > k0, we always
have βn+2 ≤ βn. This contradicts the fact limk→∞ βk = −1. It follows that

(2.58) Hj0(xj0) < 0.

Otherwise suppose Hj0(xj0) > 0. Since Hj(x) is decreasing on x < 0, we get βj0 > xj0 .
Since Hj0+2(βj0) < 0, we get βj0+2 < βj0 , a contradiction. Then the lemma follows the
similar arguments as lemma 2.9. �
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Abstract

In this article, we investigate the functional inequalities concerned with
a linear derivation and a generalized derivation.

1 Introduction

In 1940, the following problem was raised by Ulam [12] during a his talk in the
Mathematics Colloquium at the University of Wisconsin:

Let G1 be a group and G2 a group with metric d. Then, for any ε > 0
and a mapping f : G1 → G2, is it possible to find a positive constant δ and
a homomorphism h : G1 → G2 such that d(f(x), h(x)) < ε for x ∈ G1, if
d(f(xy), f(x)f(y)) < δ for any x, y ∈ G1?.

In the following year, for Banach spaces, the problem was first solved by
Hyers [5] which states that if ε > 0 and f : X → Y is a mapping with X, Y
Banach spaces, such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε, x, y ∈ X

then there exists a unique additive mapping a : X → Y such that

‖f(x)− a(x)‖ ≤ ε.

∗Coresponding author.
2000 mathematics Subject Classification. 39B52, 39B72.
Key words and phrases. stability, superstability, linear derivation, generalized derivation
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for all x ∈ X.
A generalized version of the theorem of Hyers for approximately linear map-

pings was given by Rassias [10]. Since then, the stability problems of various
functional equations have been extensively investigated by a number of mathe-
maticians. Moreover, the problems concerned with the generalizations and the
applications of the stability to a number of functional equations and mappings
have been developed as well.

By regarding a large influence of Ulam, Hyers and Rassias on the investi-
gation of stability problems of functional equations the stability phenomenon
that was introduced and proved by Rassias [10] in the year 1978 is called the
Hyers-Ulam-Rassias stability.

Let A be an algebra. An additive (linear) mapping µ : A → A is called
a derivation (linear derivation) if µ(xy) = xµ(y) + µ(x)y for x, y ∈ A. An
additive (linear) mapping µ : A → A is said to be a generalized derivation
(generalized linear derivation) if there exists a derivation δ : A → A satisfying
µ(xy) = xµ(y) + δ(x)y for any x, y ∈ A.

The stability of linear derivation was investigated by Park in [7, 8]. The
present paper is devoted to the study of the stability of linear derivations and
generalized linear derivations.

The main purpose of this article is to establish the functional inequalities
associated with the linear derivation and the generalized derivation.

2 The Linear Derivation

Theorem 2.1 Let A be a Banach algebra. Suppose that f : A → A is a function
with f(0) = 0, and that holds the inequality

‖f(λx + λy − zw) + f(λx− λy) + 2λf(−x) + zf(w) + f(z)w‖ ≤ θ, (1)

for x, y, z and w ∈ A and for any λ ∈ T = {λ : |λ| = 1}. Then there exists a
unique linear derivation d : A → A such that

‖f(x)− d(x)‖ ≤ 2θ, x ∈ A

and

x(f(y)− d(y)) = 0, x, y ∈ A.

Proof. Let’s take λ = 1 and w = 0 in (1), then it becomes

‖f(x + y) + f(x− y) + 2f(−x)‖ ≤ θ. (2)

If x = 0 and y = −x in (2), it follows that

‖f(−x) + f(x)‖ ≤ θ. (3)

Substituting x and y with −x in (2), then we have

‖f(−2x) + 2f(x)‖ ≤ θ. (4)

2
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Combining (3) and (4), one can easily get that

‖2f(x)− f(2x)‖ ≤ ‖f(−2x) + 2f(x)‖+ ‖ − [f(−2x) + f(2x)]‖ ≤ 2θ,

and, therefore, we obtain the following inequality.
∥∥∥f(2x)

2
− f(x)

∥∥∥ ≤ θ.

An induction implies that
∥∥∥f(2nx)

2n
− f(x)

∥∥∥ ≤ 2
(
1− 1

2n

)
θ. (5)

For n > m, (5) can be rewritten as follows.

∥∥∥f(2nx)
2n

− f(2mx)
2m

∥∥∥ =
1

2m

∥∥∥f(2n−m · 2mx)
2n−m

− f(2mx)
∥∥∥

≤ 1
2m−1

(
1− 1

2n−m

)
θ.

As m →∞, it can be easily verified that { f(2nx)
2n } is a Cauchy sequence. Since

A is complete, the Cauchy sequence { f(2nx)
2n } converges. Thus if

d(x) = lim
n→∞

f(2nx)
2n

, x ∈ A,

we have ||f(x)− d(x)|| ≤ 2θ as n →∞ in (5).
Replacing x and y with 2nx and 2ny in (2), respectively, and then dividing

both sides by 2n. We get
∥∥∥f(2n(x + y))

2n
+

f(2n(x− y))
2n

+
2f(−2nx)

2n

∥∥∥ ≤ θ

2n
.

As n →∞ in the above inequality, we also get

d(x + y) + d(x− y) + 2d(−x) = 0. (6)

The equation (6) can be more simplified as d(x) + d(−x) = 0 if we take y = 0.
This implies that d is an odd function and so d(0) = 0.

Similarly, substituting y = x into (6), we obtain that

d(2x) = 2d(x). (7)

Let u = x + y and v = x− y in the equation (6), then we can rewrite (6) as

d(u) + d(v) + 2d
(
− u + v

2

)
= 0

and, therefore, we have

2d
(u + v

2

)
= d(u) + d(v). (8)

3
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Hence if we set u = 2x and v = 2y in (8) and use the equation (7), we finally
obtain

d(x + y) = d(x) + d(y),

and so we can conclude that d is additive.
We claim that d is unique: Suppose that there exists another additive

function D : X → Y satisfying the inequality ‖D(x) − d(x)‖ ≤ 2θ. Since
D(2nx) = 2nD(x) and d(2nx) = 2nd(x), we see that

‖D(x)− d(x)‖ =
1
4n
‖D(2nx)− d(2nx)‖

≤ 1
2n

[‖D(2nx)− f(2nx)‖+ ‖f(2nx)− d(2nx)‖]

≤ 1
2n−2

θ.

By letting n →∞ in this inequality, we have D = d.
If y = z = 0 in (1), it can be obtained that

‖f(λx) + λf(−x)‖ ≤ θ

2
. (9)

If we also replace x with 2nx and divide both sides of (9) by 2n, then we have
∥∥∥f(λ2nx)

2n
+ λ

f(−2nx)
2n

∥∥∥ ≤ θ

2n+1
.

As n →∞, it is obtained that d(λx)+λd(−x) = 0 and, therefore, we have that
d(λx) = λd(x) for x ∈ A and λ ∈ T.

We now want to show that d(µx) = µd(x) for µ ∈ C : Let µ ∈ C be a nonzero
constant and M an integer greater than 4|µ|. Then we get |µ|

M < 1
4 < 1 − 2

3 .
There also exist elements λ1, λ2, λ3 ∈ T such that 3 µ

M = λ1 + λ2 + λ3. Observe
that d(x) = d(3x

3 ) = 3d(x
3 ). Hence we have d(x

3 ) = 1
3d(x) and

d(µx) = d
(M

3
· 3 µ

M
x
)

= Md
(1

3
· 3 µ

M
x
)

=
M

3
d
(
3

µ

M
x
)

=
M

3
d(λ1x + λ3x + λ3x) =

M

3
(d(λ1x) + d(λ2x) + d(λ3x))

=
M

3
(λ1 + λ2 + λ3)d(x) =

M

3
3

µ

M
d(x) = µd(x)

for x ∈ A. Thus, by additivity of d, we obtain that

d(αx + βy) = αd(x) + βd(y),

where αβ 6= 0 and α, β ∈ C. In particular, d(0x) = 0 = 0d(x), one can conclude
that d is a C-linear.

Let us now take λ = 1 and x = y = 0 in (1). Then it follows that

‖f(−zw) + zf(w) + f(z)w‖ ≤ θ. (10)

4
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Define C(z, w) = f(−zw) + zf(w) + f(z)w. Since C is bounded,

lim
n→∞

C(2nz, w)
2n

= 0. (11)

Note that

d(−zw) = lim
n→∞

f(−2nzw)
2n

= lim
n→∞

f(−2nz · w)
2n

= lim
n→∞

−2nzf(w)− f(2nz)w + C(2nz, w)
2n

= −zf(w)− d(z)w.

Based on the fact that d is a odd function, we have

d(zw) = zf(w) + d(z)w. (12)

The equation (12) now can be rewritten as

d(2nz · w) = 2nzf(w) + 2nd(z)w,

d(z · 2nw) = zf(2nw) + 2nd(z)w.

Hence zf(w) = z f(2nw)
2n , and then we obtain zf(w) = zd(w) as n → ∞. Thus

we have that

d(zw) = zd(w) + d(z)w,

and so the assertion follows. ///

Theorem 2.2 Let A be a Banach algebra. Suppose that f : A → A is a function
with f(0) = 0 and holds the following inequality

∥∥∥2f
(
− λ(x + y)

2
+ zw

)
+ λf(x) + λf(y)− 2zf(w)− 2f(z)w

∥∥∥ ≤ θ, (13)

for any x, y, z, w ∈ A and λ ∈ T = {λ : |λ| = 1}. Then there exists a unique
linear derivation d : A → A such that

‖f(x)− d(x)‖ ≤ 3
2
θ, x ∈ A,

and also

x(f(y)− d(y)) = 0 x, y ∈ A.

Proof. If λ = 1 and w = 0 in (13), then one can get
∥∥∥2f

(
− x + y

2

)
+ f(x) + f(y)

∥∥∥ ≤ θ, (14)

and also one can easily obtain that

‖f(−x) + f(x)‖ ≤ θ

2
(15)

5
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if y = x in (14), let’s take x = 0 and y = −2x in (14) to have

‖f(−2x) + 2f(x)‖ ≤ θ. (16)

Combining (15) and (16), we obtain

‖2f(x)− f(2x)‖ ≤ ‖f(−2x) + 2f(x)‖+ ‖ − [f(−2x) + f(2x)]‖ ≤ 3
2
θ,

and so we get the following.

∥∥∥f(2x)
2

− f(x)
∥∥∥ ≤ 3

4
θ.

An induction implies that

∥∥∥f(2nx)
2n

− f(x)
∥∥∥ ≤ 3

2

(
1− 1

2n

)
θ. (17)

For n > m, using the inequality in (17), one can see that

∥∥∥f(2nx)
2n

− f(2mx)
2m

∥∥∥ =
1

2m

∥∥∥f(2n−m · 2mx)
2n−m

− f(2mx)
∥∥∥

≤ 3
2m+1

(
1− 1

2n−m

)
θ.

Since the right-hand side of the inequality approaches 0 as m →∞, the sequence
{ f(2nx)

2n } is a Cauchy. Thus let

d(x) = lim
n→∞

f(2nx)
2n

, x ∈ A.

It is obtained that ||f(x)− d(x)|| ≤ 3
2θ for any x ∈ A by letting n →∞ in (17).

Let us replace x and y with 2nx and 2ny in (14), respectively, and then
divide both sides by 2n. We have then

∥∥∥2f(− 2n(x+y)
2 )

2n
+

f(2nx)
2n

+
f(2ny)

2n

∥∥∥ ≤ θ

2n
.

It is obtained that

2d(−x + y

2
) + d(x) + d(y) = 0 (18)

as n → ∞ in the above inequality. Thus if y = x in (18), we have that d is an
odd function with d(0) = 0.

If x := −2x and y = 0 in (18), one can get d(2x) = 2d(x).
Hence we have that

2d
(x + y

2

)
= d(x) + d(y). (19)
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We now set x := 2x, y := 2y in (19) and use the equation (19) to find

d(x + y) = d(x) + d(y),

which shows that d is additive.
As in the proof of Theorem 2.1, we can show that d is unique.
Taking y = x and w = 0 in (13), we have

‖f(−λx) + λf(x)‖ ≤ θ

2
. (20)

Let us replace x with 2nx and then divide both sides of (20) by 2n. Then we
have

∥∥∥f(−λ2nx)
2n

+ λ
f(2nx)

2n

∥∥∥ ≤ θ

2n+1
.

As n →∞, it yields that d(λx) = λd(x) for any x ∈ A and λ ∈ T. Hence, if we
utilize the same way as in the proof of Theorem 2.1, we can conclude that d is
a C-linear.

Let us now take λ = 1 and x = y = 0 in (13). Then we get

‖f(zw)− zf(w)− f(z)w‖ ≤ θ

2
. (21)

Define C(z, w) = f(zw)− zf(w)− f(z)w. Then, since C is bounded,

lim
n→∞

C(2nz, w)
2n

= 0. (22)

Note that

d(zw) = lim
n→∞

f(2nzw)
2n

= lim
n→∞

f(2nz · w)
2n

(23)

= lim
n→∞

2nzf(w) + f(2nz)w + C(2nz, w)
2n

= zf(w) + d(z)w.

It follows from (23) that

d(2nz · w) = 2nzf(w) + 2nd(z)w,

d(z · 2nw) = zf(2nw) + 2nd(z)w.

and so zf(w) = z f(2nw)
2n . As n → ∞, we obtain zf(w) = zd(w) and, therefore,

we have

d(zw) = zd(w) + d(z)w,

which shows that d is the linear derivation. ///

The following property can be derived along the argument.
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Corollary 2.3 Let A be a Banach algebra with the unit. Suppose that f : A →
A is a function with f(0) = 0 and holds the inequality (1) (or (13)). Then f is
a linear derivation

Proof. By Theorem 2.1(or, Theorem 2.2), x(f(y) − d(y)) = 0 for x, y ∈ A,
where d : A → A is a derivation. Considering x = e(unit) and f = d, we can
easily reach the conclusion. ///

Now in the algebra, the skew commutator < x, y > is defined as follows. <
x, y >= xy +yx. We state the following theorem [6] for the reading convenience
to get the immediate property of a function f.

Theorem 2.4 Let A be a semi-simple Banach algebra. If d : A → A is a linear
derivation satisfying < dx, x >2 = 0, then d = 0.

Corollary 2.5 Let A be a semi-simple Banach algebra with the unit. Suppose
that f : A → A is a function with f(0) = 0, and holds the inequality (1) (or
(13)). Suppose further that ‖< f(x), x >

2‖ ≤ ε. Then f = 0.

Proof. Since A has the unit, it follows directly from Theorem 2.1 (or Theorem
2.2) that

f(x) = d(x) = lim
n→∞

f(2nx)
2n

.

We now replace x by 2nx and divide both sides of the given inequality by 24n.
It follows then that < f(x), x >

2 = 0 as n → ∞. Hence f = 0 by the theorem
2.4. ///

3 The Generalized Derivation

Theorem 3.1 Let A be a Banach algebra with the unit. Suppose f : A → A is
a function with f(0) = 0 for which there exists a function g : A → A such that

‖f(x + y − zw) + f(x− y) + 2f(−x) + zf(w) + g(z)w‖ ≤ θ. (24)

for x, y, z and w ∈ A. Then f is a generalized derivation and g is a derivation.

Proof. Substituting w = 0 in (24), we get

‖f(x + y) + f(x− y) + 2f(−x)‖ ≤ θ.

Using the facts provided in the proof of Theorem 2.1, there is a uniquely de-
termined d : A → A, additive mapping, satisfying ‖f(x) − d(x)‖ ≤ 2θ, where
d(x) = limn→∞

f(2nx)
2n .

If we take x = y = 0 in (24), we also have

‖f(−zw) + zf(w) + g(z)w‖ ≤ θ. (25)
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Moreover, if we replace z and w with 2nz and 2nw, respectively in (25) and
then divide both sides by 22n, we get

∥∥∥f(−22nzw)
22n

+ z
f(2nw)

2n
+

g(2nz)
2n

w
∥∥∥ ≤ θ

22n
→ 0,

as n →∞. Hence it implies that

lim
n→∞

g(2nz)
2n

w = −d(−zw)− zd(w) = d(zw)− zd(w),

because d is the odd function. Suppose that w = e(unit) in the above equation,
then it follows that

lim
n→∞

g(2nz)
2n

= d(z)− zd(e).

Thus if δ(z) = d(z)− zd(e), we have

δ(x + y) = d(x) + d(y)− xd(e)− yd(e)
= (d(x)− xd(e)) + (d(y)− yd(e))
= δ(x) + δ(y).

Hence we showed that δ is additive.
Let C(z, w) = f(−zw)+zf(w)+g(z)w. Since f and g satisfies the inequality

given in (25),

lim
n→∞

C(2nz, w)
2n

= 0.

We note that

d(−zw) = lim
n→∞

f(−2nzw)
2n

= lim
n→∞

f(−2nz · w)
2n

= lim
n→∞

−2nzf(w)− g(2nz)w + C(2nz, w)
2n

= −zf(w)− δ(z)w.

Hence by the oddness of d, we obtain that

d(zw) = zf(w) + δ(z)w. (26)

Since δ is additive, we can rewrite the equation (26) as

d(2nz · w) = 2nzf(w) + 2nδ(z)w,

d(z · 2nw) = zf(2nw) + 2nδ(z)w.

Based on the above relations, one can have zf(w) = z f(2nw)
2n . Moreover, we can

obtain zf(w) = zd(w) as n → ∞. If z = e(unit), we also have that f = d.
Therefore we have

f(zw) = zf(w) + δ(z)w. (27)
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We want to show now that δ is derivation using the equations developed in
the previous. Indeed, using the facts that f satisfies the equation (27)

δ(xy) = f(xy)− xyf(e)
= xf(y) + δ(x)y − xyf(e)
= x(f(y)− yf(e)) + δ(x)y
= xδ(y) + δ(x)y,

which means that f is the generalized derivation.
We finally want to show that g is the derivation: Let us replace w by 2nw

in (25) and multiply by 1
2n . Then we have

∥∥∥f(−2nzw)
2n

+ z
f(2nw)

2n
+ g(z)w

∥∥∥ ≤ θ

2n
.

As n →∞, we get

d(−zw) + zd(w) + g(z)w = 0.

This implies that d(zw) = zd(w) + g(z)w, and thus if w = e(unit), we see that
g(z) + zd(e) = d(z). Hence we get g(z) = d(z) − zd(e) = δ(z). Since δ is the
derivation, we can conclude that g is the derivation as well. ///

Theorem 3.2 Let A be a Banach algebra with the unit. Suppose f : A → A is
a function with f(0) = 0 for which there exists a function g : A → A such that

∥∥∥2f
(
− x + y

2
+ zw

)
+ f(x) + f(y)− 2zf(w)− 2g(z)w

∥∥∥ ≤ θ. (28)

for x, y, z and w ∈ A. Then f is a generalized derivation and g is a derivation.

Proof. Set w = 0 in the inequality (28) to obtain
∥∥∥2f

(
− x + y

2

)
+ f(x) + f(y)

∥∥∥ ≤ θ.

Similar to the the proof of Theorem 2.2, there exists exactly one additive map-
ping d : A → A such that ‖f(x)− d(x)‖ ≤ 3

2θ, where d(x) = limn→∞
f(2nx)

2n .
If we take x = y = 0 in (28), then we have that

‖f(zw)− zf(w)− g(z)w‖ ≤ θ

2
. (29)

Replacing z and w by 2nz and 2nw in (29), respectively, and dividing both sides
by 22n, we get

∥∥∥f(22nzw)
22n

− z
f(2nw)

2n
− g(2nz)

2n
w

∥∥∥ ≤ θ

22n
→ 0,

as n →∞. This implies that

lim
n→∞

g(2nz)
2n

w = d(zw)− zd(w).
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Let w = e(unit) in the above equation. Then it follows that

lim
n→∞

g(2nz)
2n

= d(z)− zd(e).

We now define δ(z) = d(z)− zd(e). By same reasoning described in the proof of
Theorem 3.1, δ is additive.

Put C(z, w) = f(zw)− zf(w)− g(z)w and then use (29) to get

lim
n→∞

C(2nz, w)
2n

= 0.

Note that

d(zw) = lim
n→∞

f(2nzw)
2n

= lim
n→∞

f(2nz · w)
2n

(30)

= lim
n→∞

2nzf(w) + g(2nz)w + C(2nz, w)
2n

= zf(w) + δ(z)w.

If we use the similar argument employed in the proof of Theorem 3.1, then
we see that f is the generalized derivation.

It remains to prove that g is the derivation: Substituting w := 2nw in (29)
and multiplying by 1

2n , we have

∥∥∥f(2nzw)
2n

− z
f(2nw)

2n
− g(z)w

∥∥∥ ≤ θ

2n+1
.

Taking n →∞, we get

d(zw) = zd(w) + g(z)w.

Considering w = e(unit), we obtain g(z) = d(z) − zd(e) = δ(z). Since δ is the
derivation, so is g. ///
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Abstract

In this paper, we study the existence and uniqueness of fuzzy solutions
and controllability for the impulsive semilinear fuzzy integrodifferential
control system with nonlocal conditions and forcing term with memory
in EN by using the concept of fuzzy number whose values are normal,
convex, upper semicontinuous and compactly supported interval in EN .

1 Introduction

Many authors have studied several concepts of fuzzy systems. Kaleva [3] studied
the existence and uniqueness of solution for the fuzzy differential equation on En

where En is normal, convex, upper semicontinuous and compactly supported
∗Corresponding author
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fuzzy sets in Rn. Seikkala [7] proved the existence and uniqueness of fuzzy
solution for the following equation:

ẋ(t) = f(t, x(t)), x(0) = x0,

where f is a continuous mapping from R+×R into R and x0 is a fuzzy number in
E1. Diamond and Kloeden [2] proved the fuzzy optimal control for the following
system:

ẋ(t) = a(t)x(t) + u(t), x(0) = x0

where x(·), u(·) are nonempty compact interval-valued functions on E1. Kwun
and Park [4] proved the existence of fuzzy optimal control for the nonlinear
fuzzy differential system with nonlocal initial condition in E1

N using by Kuhn-
Tucker theorems. Balasubramaniam and Muralisankar [1] proved the existence
and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential
equation with nonlocal initial condition. Recently Park, Park and Kwun [6]
find the sufficient conditions of nonlocal controllability for the semilinear fuzzy
integrodifferential equations with nonlocal initial conditions.

In this paper we prove the existence and uniqueness of fuzzy solutions and
find the sufficient conditions of nonlocal controllability for the following impul-
sive semilinear fuzzy integrodifferential equations with nonlocal conditions and
forcing term with memory:

dx(t)
dt

= A

[

x(t) +
∫ t

0

G(t− s)x(s)ds
]

(1)

+f(t, x(t),
∫ t

0

q(t, s, x(s))ds) + u(t), t ∈ J = [0, T ],

x(0) + g(x) = x0 ∈ EN , (2)
�x(tk) = Ik(x(tk)), k = 1, 2, · · · , m, (3)

where A : J → EN is a fuzzy coefficient, EN is the set of all upper semi-
continuous convex normal fuzzy numbers with bounded α-level intervals, f :
J ×EN ×EN → EN and q : J × J ×EN → EN are nonlinear continuous func-
tions, g : EN → EN is a nonlinear continuous function, G(t) is n×n continuous
matrix such that dG(t)x

dt is continuous for x ∈ EN and t ∈ J with ‖G(t)‖ ≤ k,
k > 0, u : J → EN is control function and Ik ∈ C(EN , EN)(k = 1, 2, · · ·, m) are
bounded functions, �x(tk) = x(t+k ) − x(t−k ), where x(t+k ) and x(t−k ) represent
the left and right limits of x(t) at t = tk, respectively.

2 Existence and uniqueness of fuzzy solution

In this section we consider the existence and uniqueness of fuzzy solutions for the
impulsive semilinear fuzzy integrodifferential equation with nonlocal conditions
and forcing term with memory (1)-(3)(u ≡ 0).

We denote the suprimum metric d∞ on En and the suprimum metric H1 on
C(J : En).

2
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Definition 2.1 Let a, b ∈ En.

d∞(a, b) = sup{dH([a]α, [b]α) : α ∈ (0, 1]}
where dH is the Hausdorff distance.

Definition 2.2 Let x, y ∈ C(J : En)

H1(x, y) = sup{d∞(x(t), y(t)) : t ∈ J}.
Definition 2.3 The fuzzy process x : J → EN is a solution of equations (1)-(2)
without the inhomogeneous term if and only if

(ẋα
l )(t) = min

{

Aα
l (t)

[

xα
j (t) +

∫ t

0

G(t− s)xα
j (s)ds

]

, i, j = l, r
}

,

(ẋα
r )(t) = max

{

Aα
r (t)

[

xα
j (t) +

∫ t

0

G(t− s)xα
j (s)ds

]

, i, j = l, r
}

,

and
(xα

l )(0) = xα
0l − gα

l (x), (xα
r )(0) = xα

0r − gα
r (x).

Now we assume the following:
(H1) The nonlinear function f : J × EN × EN → EN satisfies a global

Lipschitz condition, there exists a finite constants k1, k2 > 0 such that

dH

(

[f(s, ξ1(s), η1(s))]α, [f(s, ξ2(s), η2(s))]α
)

≤ k1dH([ξ1(s)]α, [ξ2(s)]α) + k2 dH([η1(s)]α, [η2(s)]α)

for all ξ1(s), ξ2(s), η1(s), η2(s) ∈ EN .
(H2) The nonlinear function q : J×J×EN → EN satisfies a global Lipschitz

condition, there exists a finite constant M > 0 such that

dH

(

[q(t, s, ψ1(s)]α, [q(t, s, ψ2(s))]α) ≤MdH([ψ1(s)]α, [ψ2(s)]α)

for all ψ1(s), ψ2(s) ∈ EN .
(H3) The nonlinear function g : EN → EN is a continuous function and

satisfies a global Lipschitz condition

dH([g(x)]α, [g(y)]α) ≤ LdH([x(·)]α, [y(·)]α),

for all x(·), y(·) ∈ EN , and a finite positive constant L > 0.
(H4) S(t) is a fuzzy number satisfying for y ∈ EN , S′(t)y ∈ C1(J : EN)

⋂

C(J :
EN) the equation

d

dt
S(t)y = A

[

S(t)y +
∫ t

0

G(t− s)S(s)yds
]

= S(t)Ay +
∫ t

0

S(t − s)AG(s)yds, t ∈ J,

3
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such that
[S(t)]α = [Sα

l (t), Sα
r (t)], S(0) = I

and Sα
i (t) (i = l, r) is continuous. That is, there exists a constant c > 0 such

that |Sα
i (t)| ≤ c for all t ∈ J .

In order to define the solution of (1)-(3), we shall consider the space Ω =
{x : J → EN : xk ∈ C(Jk, EN), Jk = (tk, tk+1], k = 0, 1, · · · , m, and there exist
x(t−k ) and x(t+k )(k = 1, · · · , m), with x(t−k ) = x(tk)}.
Lemma 2.4 If x is an integral solution of (1)-(3)(u ≡ 0), then x is given by

x(t) = S(t)(x0 − g(x)) +
∫ t

0

S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds (4)

+
∑

0<tk<t

S(t − tk)Ik(x(t−k )), for t ∈ J.

Proof Let x be a solution of (1)-(3). Define ω(s) = S(t − s)x(s). Then we
have that

dω(s)
ds

= −S(t − s)
ds

x(s) + S(t − s)
x(s)
ds

= −A[S(t)x +
∫ t

0

G(t− s)S(s)x(s)ds] + S(t − s)
x(s)
ds

= S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ ).

Consider tk < t, k = 1, · · · , m. Then integrating the previous equation, we
have

∫ t

0

ω(s)
ds

ds =
∫ t

0

S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds.

For k = 1,

ω(t) − ω(0) =
∫ t

0

S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds

or

x(t) = S(t)(x0 − g(x)) +
∫ t

0

S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds.

Now for k = 2, · · · , m, we have that

∫ t1

0

ω(s)
ds

ds+
∫ t2

t1

ω(s)
ds

ds+ · · ·+
∫ t

tk

ω(s)
ds

ds

=
∫ t

0

S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds.

4
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Then

ω(t−1 ) − ω(0) + ω(t−2 ) − ω(t+1 ) + · · · − ω(t+k ) + ω(t)

=
∫ t

0

S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds

if and only if

ω(t) = ω(0) +
∫ t

0

S(t − s)f(s, x(s))ds +
∑

0<tk<t

[ω(t+k ) − ω(t−k )].

Hence

x(t) = S(t)(x0 − g(x)) +
∫ t

0

S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds

+
∑

0<tk<t

S(t − tk)Ik(x(t−k )),

which proves the lemma.

Assume the following:
(H5) There exists dk, k = 1, · · · , m, such that

dH([Ik(x(t−k ))]α, [Ik(y(t−k ))]α) ≤ dkdH([x(t)]α, [y(t)]α),

where
∑n

k=1 dk = d̄

(H6) c
(

L + d̄+ (k1 + k2M
T
2 )T

)

< 1

Theorem 2.5 Let T > 0, and hypotheses (H1)-(H6) hold. Then, for every
x0(∈ EN), problem (1)-(3)(u ≡ 0) has a unique solution x ∈ Ω.

Proof For each ξ(t) ∈ Ω, t ∈ J define

(Φξ)(t) = S(t)(x0 − g(ξ)) +
∫ t

0

S(t − s)f(s, ξ(s),
∫ s

0

q(s, τ, ξ(τ ))dτ )ds

+
∑

0<tk<t

S(t − tk)Ik(ξ(t−k )).

Thus,(Φξ)(t) : J → Ω is continuous, and Φ : Ω → Ω.
It is obvious that fixed points of Φ are solution for the problem (1)-(3)(u ≡ 0).

For ξ(t), η(t) ∈ Ω, we have

dH([(Φξ)(t)]α, [(Φη)(t)]α)
≤ dH([S(t)g(ξ)]α, [S(t)g(η)]α)

+dH

(

[
∫ t

0

S(t − s)f(s, ξ(s),
∫ s

0

q(s, τ, ξ(τ ))dτ )ds]α,

5
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[
∫ t

0

S(t − s)f(s, η(s),
∫ s

0

q(s, τ, η(τ ))dτ )ds]α
)

+dH([
∑

0<tk<t

S(t − tk)Ik(ξ(t−k ))]α, [
∑

0<tk<t

S(t − tk)Ikη(t−k ))]α)

≤ cLdH([ξ(·)]α, [η(·)]α) + c

∫ t

0

(

k1dH([ξ(s)]α, [η(s)]α)

+k2M

∫ s

0

dH([ξ(τ )]α, [η(τ )]α)dτ
)

ds+ cd̄ dH([ξ(t)]α, [η(t)]α).

Therefore,

d∞((Φξ)(t), (Φη)(t)) = sup
α∈(0,1]

dH([(Φξ)(t)]α, [(Φη)(t)]α)

≤ cL sup
α∈(0,1]

dH([ξ(·)]α, [η(·)]α) + c

∫ t

0

(

k1 sup
α∈(0,1]

dH([ξ(s)]α, [η(s)]α)

+k2M

∫ s

0

sup
α∈(0,1]

dH([ξ(τ )]α, [η(τ )]α)dτ
)

ds+ cd̄ sup
α∈(0,1]

dH([ξ(t)]α, [η(t)]α)

= cLd∞(ξ(·), η(·)) + c

∫ t

0

(

k1d∞([ξ(s)]α, [η(s)]α)

+k2M

∫ s

0

d∞([ξ(τ )]α, [η(τ )]α)dτ
)

ds+ cd̄ d∞([ξ(t)]α, [η(t)]α).

Hence

H1(Φξ,Φη) = sup
t∈J

d∞((Φξ)(t), (Φη)(t))

≤ c(L + d̄) sup
t∈J

d∞(ξ(t), η(t)) + c sup
t∈J

∫ t

0

(

k1d∞([ξ(s)]α, [η(s)]α)

+k2M

∫ s

0

d∞([ξ(τ )]α, [η(τ )]α)dτ
)

ds

= c
(

L+ d̄+ (k1 + k2M
T

2
)T

)

H1(ξ, η).

By hypotheses (H6), Φ is a contraction mapping. By the Banach fixed point
theorem, (4) has a unique fixed point x ∈ Ω.

3 Nonlocal controllability

In this section, we show the controllability for the control system (1)-(3).
The control system (1)-(3) is related to the following fuzzy integral system:

x(t) = S(t)(x0 − g(x)) +
∫ t

0

S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds (5)

+
∫ t

0

S(t − s)u(s)ds+
∑

0<tk<t

S(t − tk)Ik(x(t−k ))

6
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for t ∈ J, t �= tk(k = 1, 2, · · ·, m), where S(t) satisfies (H3).

Definition 3.1 The equation (5) is nonlocal controllable if, there exists u(t)
such that the fuzzy solution x(t) of (5) satisfies x(T ) = x1 − g(x), i.e.,
[x(T )]α = [x1 − g(x)]α, where x1 is target set.

We assume that the linear control system with respect to semilinear control
system (5) is nonlocal controllable. Then

x(T ) = S(T )(x0 − g(x)) +
∫ T

0

S(T − s)u(s)ds+
∑

0<tk<T

S(T − tk)Ik(x(t−k ))

= x1 − g(x)

and

[x(T )]α

= [S(T )(x0 − g(x)) +
∫ T

0

S(T − s)u(s)ds+
∑

0<tk<T

S(T − tk)Ik(x(t−k ))]α

=

[

Sα
l (T )(x0

α
l − gα

l (x)) +
∫ T

0

Sα
l (T − s)uα

l (s)ds

+
∑

0<tk<T

Sα
l (T − tk)Ikα

l (x(t−k )),

Sα
r (T )(x0

α
r − gα

r (x)) +
∫ T

0

Sα
r (T − s)uα

r (s)ds

+
∑

0<tk<T

Sα
r (T − tk)Ikα

r (x(t−k ))

]

= [(x1)α
l − gα

l (x), (x1)α
r − gα

r (x)].

Define the α-level set of fuzzy mapping G : P̃ (R) → EN by

Gα(v) =
{

∫ T

0 Sα(T − s)v(s)ds, v ⊂ Γu ,
0, otherwise.

(6)

where Γu is closure of support of u. Then there exists Gα
i (i = l, r) such that

Gα
l (vl) =

∫ T

0

Sα
l (T − s)vl(s)ds, vl(s) ∈ [uα

l (s), u1(s)],

Gα
r (vr) =

∫ T

0

Sα
r (T − s)vr(s)ds, vr(s) ∈ [u1(s), uα

r (s)].

We assume that Gα
l , G

α
r are bijective mapping. Hence α-level set of u(s) is

[u(s)]α = [uα
l (s), uα

r (s)]

7
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=

[

(G̃α
l )−1

(

(x1)α
l − gα

l (x) − Sα
l (T )(x0

α
l − gα

l (x))

−
∑

0<tk<T

Sα
l (T − tk)Ikα

l (x(t−k ))
)

,

(G̃α
r )−1

(

(x1)α
r − gα

r (x) − Sα
r (T )(x0

α
r − gα

r (x))

−
∑

0<tk<T

Sα
r (T − tk)Ikα

r (x(t−k ))
)

]

.

Thus we can introduce u(s) of semilinear system

[u(s)]α = [uα
l (s), uα

r (s)]

=

[

(G̃α
l )−1

(

(x1)α
l − gα

l (x) − Sα
l (T )(x0

α
l − gα

l (x)) −
∫ T

0

Sα
l (T − s)

×fα
l (s, x(s),

∫ s

0

q(s, τ, x(τ ))dτ )ds−
∑

0<tk<T

Sα
l (T − tk)Ikα

l (x(t−k ))
)

,

(G̃α
r )−1

(

(x1)α
r − gα

r (x) − Sα
r (T )(x0

α
r − gα

r (x)) −
∫ T

0

Sα
r (T − s)

×fα
r (s, x(s),

∫ s

0

q(s, τ, x(τ ))dτ )ds−
∑

0<tk<T

Sα
r (T − tk)Ikα

r (x(t−k ))
)

]

.

Then substituting this expression into the equation (5) yields α-level of x(T ).

[x(T )]α

=

[

Sα
l (T )(x0

α
l − gα

l (x)) +
∫ T

0

Sα
l (T − s)fα

l (s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds

+
∑

0<tk<T

Sα
l (T − tk)Ikα

l (x(t−k )) +Gα
l ( ˜Gα

l )−1
(

(x1)α
l − gα

l (x) − Sα
l (T )

×(x0
α
l − gα

l (x)) −
∫ T

0

Sα
l (T − s)fα

l (s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds

−
∑

0<tk<T

Sα
l (T − tk)Ikα

l (x(t−k ))
)

ds,

Sα
r (T )(x0

α
r − gα

r (x)) +
∫ T

0

Sα
r (T − s)fα

r (s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds

+
∑

0<tk<T

Sα
r (T − tk)Ikα

r (x(t−k )) +Gα
r (G̃α

r )−1
(

(x1)α
r − gα

r (x) − Sα
r (T )

×(x0
α
r − gα

r (x)) −
∫ T

0

Sα
r (T − s)fα

r (s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds

8
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−
∑

0<tk<T

Sα
r (T − tk)Ikα

r (x(t−k )))ds

]

= [(x1)α
l − gα

l (x), (x1)α
r − gα

r (x)] = [x1 − g(x)]α.

We now set

Φx(t) = S(t)(x0 − g(x)) +
∫ t

0

S(t − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds

+
∑

0<tk<t

S(t − tk)Ik(x(t−k )) +
∫ t

0

S(t − s)G̃−1
(

x1 − g(x) − S(T )(x0 − g(x))

−
∫ T

0

S(T − s)f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds−
∑

0<tk<T

S(T − tk)Ik(x(t−k ))
)

ds

where the fuzzy mappings G̃−1 satisfied above statements.
Notice that Φx(T ) = x1−g(x), which means that the control u(t) steers the

equation (5) from the origin to x1 − g(x) in time T provided we can obtain a
fixed point of nonlinear operator Φ.

Assume that the following hypotheses:
(H7) Linear system of equation (5) (f ≡ 0) is nonlocal controllable.

(H8) c

{

(L + d̄) + T
[

L(1 + c) + cT (k1 + k2M
T
2
) + cd̄

]

}

< 1.

Theorem 3.2 Suppose that (H1)-(H8) are satisfied. Then the equation (5) is
nonlocal controllable.

Proof We can easily check that Φ is continuous function from Ω to itself. For
x, y ∈ Ω,

dH([Φx(t)]α, [Φy(t)]α)

= dH([S(t)g(x)]α, [S(t)g(y)]α) + dH

(

[

∫ t

0

S(t − s)f(s, x(s),

∫ s

0

q(s, τ, x(τ ))dτ )ds
]α

,
[

∫ t

0

S(t − s)f(s, y(s),
∫ s

0

q(s, τ, y(τ ))dτ )ds
]α

)

+dH([
∑

0<tk<t

S(t − tk)Ik(x(t−k ))]α, [
∑

0<tk<t

S(t − tk)Ik(y(t−k ))]α)

+dH

(

[

∫ t

0

S(t − s) ˜G−1
(

x1 − g(x) + S(T )g(x) −
∫ T

0

S(T − s)

×f(s, x(s),
∫ s

0

q(s, τ, x(τ ))dτ )ds−
∑

0<tk<T

S(T − tk)Ik(x(t−k ))
)

ds
]α

,

[

∫ t

0

S(t − s) ˜G−1
(

x1 − g(y) + S(T )g(y) −
∫ T

0

S(T − s)

9
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×f(s, y(s),
∫ s

0

q(s, τ, y(τ ))dτ )ds−
∑

0<tk<T

S(T − tk)Ik(y(t−k ))
)

ds
]α

)

≤ cLdH([x(·)]α, [y(·)]α) + cd̄dH([x(t)]α, [y(t)]α)

+c
∫ t

0

{

L(1 + c)dH([x(·)]α, [y(·)]α) + c

∫ T

0

(

k1dH([x(s)]α, [y(s)]α)

+k2M

∫ s

0

dH([x(τ )]α, [y(τ )]α)dτ
)

ds+ cd̄dH([x(s)]α, [y(s)]α)

}

ds.

Therefore,

d∞(Φx(t),Φy(t)) = sup
α∈(0,1]

dH([Φx(t)]α, [Φy(t)]α)

≤ cLd∞(x(·), y(·)) + cd̄d∞(x(t), y(t))

+c
∫ t

0

{

L(1 + c)d∞(x(·), y(·)) + c

∫ T

0

(

k1d∞(x(s), y(s))

+k2M

∫ s

0

d∞(x(τ ), y(τ ))dτ
)

ds+ cd̄d∞(x(s), y(s))

}

ds.

Hence

H1(Φx,Φy) = sup
t∈J

d∞(Φx(t),Φy(t))

≤ c

{

(L + d̄) + T
[

L(1 + c) + cT (k1 + k2M
T

2
) + cd̄

]

}

H1(x, y).

By hypotheses (H8), Φ is a contraction mapping. By the Banach fixed point
theorem, (5) has a unique fixed point x ∈ Ω.

4 Example

Consider the semilinear one dimensional heat equation on a connected domain
(0,1) for a material with memory, boundary condition x(t, 0) = x(t, 1) = 0
and with initial condition x(0, z) +

∑p
k=1 ckx(tk, z) = x0(z), where x0(z) ∈

EN . Let x(t, z) be the internal energy and and f(t, x(t, z),
∫ t

0
q(t, s, x(t, z))ds) =

2̃tx(t, z)2 +
∫ t

0
(t − s)x(s)ds be the external heat with memory. ∆x(tk, z) =

x(t+k , z) − x(t−k , z) is impulsive effect at t = tk(k = 1, 2, · · ·, m).

Let A = 2̃
∂2

∂z2
,

∑p
k=1 ckx(tk, z) = g(x), ∆x(tk, z) = ∆x(tk), x(t+k , z) −

x(t−k , z) = Ik(x(tk)) and G(t− s) = e−(t−s), then the balance equation becomes

dx(t)
dt

= 2̃[x(t) −
∫ t

0

e−(t−s)x(s)ds] (7)

10
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+2̃tx(t)2 +
∫ t

0

(t − s)x(s)ds+ u(t), t ∈ J, t �= tk,

x(0) + g(x) = x0 ∈ EN , (8)
∆x(tk) = Ik(x(tk)), k = 1, 2, · · · , m. (9)

The α-level set of fuzzy number 2̃ is [2]α = [α + 1, 3 − α] for all α ∈ [0, 1].
Then α-level sets of f(t, x(t),

∫ t

0
q(t, s, x(s))ds) is

[f(t, x(t),
∫ t

0

q(t, s, x(s))ds)]α

= [t(α+ 1)(xα
l (t))2 +

∫ t

0

(t− s)xα
l (t), t(3− α)(xα

r (t))2 +
∫ t

0

(t − s)xα
r (t)].

Further, we have

dH([f(t, x(t),
∫ t

0

q(t, s, x(s))ds)]α, [f(t, y(t),
∫ t

0

q(t, s, y(s))ds)]α)

= dH

(

[t(α+ 1)(xα
l (t))2 +

∫ t

0

(t− s)xα
l (t), t(3 − α)(xα

r (t))2 +
∫ t

0

(t− s)xα
r (t)],

[t(α+ 1)(yα
l (t))2 +

∫ t

0

(t− s)yα
l (t), t(3 − α)(yα

r (t))2 +
∫ t

0

(t− s)yα
r (t)]

)

= tmax{(α+ 1)|(xα
l (t))2 − (yα

l (t))2|, (3− α)|(xα
r (t))2 − (yα

r (t))2|}

+
∫ t

0

(t− s)dH([xα
l (s), xα

r (s)], [yα
l (s), yα

r (s)])

≤ 3T |xα
r (t) + yα

r (t)|max{|xα
l (t) − yα

l (t)|, |xα
r (t) − yα

r (t)|}
+
T 2

2
max{|xα

l (t) − yα
l (t)|, |xα

r (t) − yα
r (t)|}

= k1dH([x(t)]α, [y(t)]α) + k2dH([x(t)]α, [y(t)]α),

where k1 and k2 are satisfies the inequality in hypotheses (H1)-(H2), and also
we have

dH ([g(x)]α, [g(y)]α) = dH

(

p
∑

k=1

ck[x(tk)]α,
p

∑

k=1

ck[y(tk)]α
)

≤ |
p

∑

k=1

ck|max
k
dH([x(tk)]α, [y(tk)]α) = LdH ([x(·)]α, [y(·)]α) ,

where L is satisfies the inequality in hypothesis (H3). Therefore f and g satisfy
the global Lipschitz condition. Then all the conditions stated in Theorem 1 are
satisfied, so the problem (7)-(9) has a unique fuzzy solution.

Let initial value x0 is 0̃. Target set is x1 = 2̃. The α-level set of fuzzy
number 0̃ is [0̃] = [α− 1, 1 − α], α ∈ (0, 1]. We introduce the α-level set of u(s)
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of equation (7)-(9).

[u(s)]α = [uα
l (s), uα

r (s)]

=

[

G̃−1
l

(

(α + 1) −
p

∑

k=1

ckx
α
l (tk) − Sα

l (T )
(

(α− 1) −
p

∑

k=1

ckx
α
l (tk)

)

−
∫ T

0

Sα
l (T − s)

(

s(α+ 1)(xα
l (s))2 +

∫ s

0

(s− τ )xα
l (τ )dτ

)

ds

−
∑

0<tk<T

Sα
l (T − tk)Ikα

l (x(t−k ))

)

,

G̃−1
r

(

(3 − α) −
p

∑

k=1

ckx
α
r (tk) − Sα

r (T )
(

(1 − α) −
p

∑

k=1

ckx
α
r (tk)

)

−
∫ T

0

Sα
r (T − s)

(

s(3 − α)(xα
r (s))2 +

∫ s

0

(s− τ )xα
r (τ )dτ

)

ds

−
∑

0<tk<T

Sα
r (T − tk)Ikα

r (x(t−k ))

)]

.

Then substituting this expression into the integral system with respect to
(7)-(9) yields α-level set of x(T ).

[x(T )]α

=

[

Sα
l (T )((α− 1) −

p
∑

k=1

ckx
α
l (tk)) +

∫ T

0

Sα
l (T − s)

(

s(α+ 1)(xα
l (s))2

+
∫ s

0

(s− τ )xα
l (τ )dτ

)

ds+
∑

0<tk<T

Sα
l (T − tk)Ikα

l (x(t−k ))

+
∫ T

0

Sα
l (T − s)(G̃α

l )−1
(

(α+ 1) −
p

∑

k=1

ckx
α
l (tk) − Sα

l (T )

×
(

(α− 1) −
p

∑

k=1

ckx
α
l (tk)

)

−
∑

0<tk<T

Sα
l (T − tk)Ikα

l (x(t−k ))

−
∫ T

0

Sα
l (T − s)

(

s(α+ 1)(xα
l (s))2 +

∫ s

0

(s− τ )xα
l (τ )dτ

)

ds
)

ds,

Sα
r (T )((1 − α) −

p
∑

k=1

ckx
α
r (tk)) +

∫ T

0

Sα
r (T − s)

(

s(3 − α)(xα
r (s))2

+
∫ s

0

(s− τ )xα
r (τ )dτ

)

ds+
∑

0<tk<T

Sα
r (T − tk)Ikα

r (x(t−k ))

+
∫ T

0

Sα
r (T − s)(G̃α

l )−1
(

(3 − α) −
p

∑

k=1

ckx
α
r (tk) − Sα

r (T )

12
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×
(

(1 − α) −
p

∑

k=1

ckx
α
r (tk)

)

−
∑

0<tk<T

Sα
r (T − tk)Ikα

r (x(t−k ))

−
∫ T

0

Sα
r (T − s)

(

s(3 − α)(xα
r (s))2 +

∫ s

0

(s− τ )xα
r (τ )dτ

)

ds
)

ds

]

= [(α+ 1) −
p

∑

k=1

ckx
α
l (tk), (3− α) −

p
∑

k=1

ckx
α
r (tk)] = [2̃ −

p
∑

k=1

ckx(tk)]α.

Then all the conditions stated in Theorem 3.2 are satisfied, so the system (7)-(9)
is nonlocal controllable on [0, T ].
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ITERATIVE APPROXIMATION TO COMMON

FIXED POINTS OF A SEQUENCE OF

NONEXPANSIVE MAPPINGS IN BANACH SPACES
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Abstract. Let E be a Banach space, C a nonempty closed convex subset of
E, f : C → C a contraction, and Tn : C → C a nonexpansive mapping with⋂∞

n=1 F (Tn) 6= ∅ where F (Tn) is the set of fixed points of Tn. It is proved that
the iterative algorithm xn+1 = λn+1f(xn)+(1−λn+1)Tn+1xn (n ≥ 0) converges
strongly to a solution of certain variational inequality provided E is reflexive and
has a uniformly Gâteaux differentiable norm together with the assumption that ev-
ery weakly compact convex subset of E has the fixed point property for nonexpan-
sive mappings and provided the sequence {λn} ⊂ (0, 1) satisfies limn→∞ λn = 0
and

∑∞
n=1 λn = ∞ and the sequence {Tn} is uniformly asymptotically regular.

AMS Mathematics Subject Classification : 47H09, 47H10, 47J20, 41A65.

Key words and phrases: Viscosity approximation methods; Nonexpansive map-
ping; Common fixed points; Sunny and nonexpansive retraction; Contraction;
Uniformly Gâteaux differentiable norm, Variational inequality.

1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset of E.
Recall that a mapping f : C → C is a contraction on C if there exists a constant
k ∈ (0, 1) such that‖f(x)−f(y)‖ ≤ k‖x−y‖, x, y ∈ C. We use ΣC to denote the
collection of all contractions on C. That is, ΣC = {f : f : C → C a contraction}.
Note that each f ∈ ΣC has a unique fixed point in C.

Now let T : C → C be a nonexpansive mapping (recall that a mapping
T : C → C is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ x, y ∈ C) and F (T ) denote
the set of fixed points of T ; that is, F (T ) = {x ∈ C : x = Tx}.

We consider the iteration scheme: for N > 1, T1, T2, · · · , TN nonexpansive
mappings, u, x0 ∈ C and λn ⊂ (0, 1),

xn+1 = λn+1u + (1− λn+1)Tn+1xn, n ≥ 0, (1.1)

This study was supported by research funds from Dong-A University.
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Jong Soo Jung 2

where Tn := Tn mod N . Since Halpern [8] firstly introduced the iteration scheme
(1.1) for u = 0, N = 1 (that is, he considered only one mapping) in 1967, this
iteration scheme is called a Halpern type iteration. Halpern also pointed out
that the control conditions
(C1) limn→∞ λn = 0;
(C2)

∑∞
n=1 λn = ∞ or, equivalently,

∏∞
n=1(1− λn) = 0

are necessary for the convergence of the iteration scheme (1.1) to a fixed point
of T . Strong convergence of this type iterative sequence has been widely studied
by many mathematicians: see, for example, Browder [4], Halpern [8], Lions [14],
Reich [20], Shioji and Takahashi [22], Wittmann [27], Xu [28] for N = 1 and
Bauschke [3], Jung [9], Jung et al. [11], Jung and Kim [12], O’Hara et al. [17,18],
Shimizu and Takataki [21], Song and Chen [23], and Zhou et al. [30] for N > 1,
respectively.

Very recently, Aoyama et al. [1] considered the iteration scheme with u = x0

for a sequence {Tn} of nonexpansive mappings:

xn+1 = λn+1u + (1− λn+1)Tn+1xn, n ≥ 0,

under the conditions
⋂∞

n=1 F (Tn) 6= ∅, ∑∞
n=1 sup{‖Tn+1z − Tnz‖ : z ∈ C} < ∞

and
∑∞

n=1 |λn+1 − λn| < ∞ or limn→∞ λn/λn+1 = 1.
On the other hand, for N = 1, the viscosity approximation method of select-

ing a particular fixed point of a given nonexpansive mapping was proposed by
Moudafi [16]. In 2004, Xu [29] proposed the iteration scheme: for T : C → C a
nonexpansive mapping with F (T ) 6= ∅, f ∈ ΣC and λn ∈ (0, 1),

xn+1 = λn+1f(xn) + (1− λn+1)Txn, n ≥ 0,

in order to extend Theorem 2.2 of Moudafi [16] to a uniformly smooth Banach
space. Jung [10] improved the results of Xu [29] to the case of a family of finite
nonexpansive mappings. Very recently, Song and Chen [24] and Song et al. [25]
considered the iteration scheme for a sequence {Tn} of nonexpansive mappings
with

⋂∞
n=1 F (Tn) 6= ∅:

xn+1 = λn+1f(xn) + (1− λn+1)Tn+1xn, n ≥ 0, (1.2)

with the conditions (C1) and (C2) and the uniform asymptotic regularity on the
mapping sequence {Tn} in a Banach space having a weakly sequentially contin-
uous duality mapping and in a strictly convex Banach space with a uniformly
Gâteau differentiable norm, respectively, and overcame a gap in the correspond-
ing results of [9, 17, 18].

In this paper, motivated by above-mentioned results, we consider the iteration
scheme (1.2) as the viscosity approximation method for the sequence {Tn} of
nonexpansive mappings. First, by using the uniform asymptotic regularity on
the sequence {Tn}, we establish a strong convergence theorem for the sequence
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{Tn} in a reflexive Banach space having a uniformly Gâteaux differentiable norm
together with the assumption that every weakly compact convex subset of E has
the fixed point property for nonexpansive mappings. Then we prove that the
sequence {xn} generated by (1.3) converges strongly to a common fixed point of
{Tn} under the conditions (C1) and (C2) and the uniform asymptotic regularity
on the sequence {Tn} in the same Banach space. Moreover, we show that the
strong limit is a solution of certain variational inequality. The main results extend
and improve the corresponding results of Aoyama et al. [1], Jung [9], O’Hara et
al. [17,18], and Shimizu and Takahashi [21].

2. Preliminaries and Lemmas

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. The
value of f ∈ E∗ at x ∈ E will be denoted by 〈x, f〉. When {xn} is a sequence in
E, then xn → x will denote strong convergence of the sequence {xn} to x.

The (normalized) duality mapping J from E into the family of nonempty (by
Hahn-Banach theorem) weak-star compact subsets of its dual E∗ is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}
for each x ∈ E.

The norm of E is said to be Gâteaux differentiable (and E is said to be smooth)
if

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to be
uniformly Gâteaux differentiable if for y ∈ U , the limit is attained uniformly for
x ∈ U . The space E is said to have a uniformly Fréchet differentiable norm (and
E is said to be uniformly smooth) if the limit in (2.1) is attained uniformly for
(x, y) ∈ U ×U . It is known that E is smooth if and only if each duality mapping
J is single-valued. It is also well-known that if E has a uniformly Gâteaux
differentiable norm, J is uniformly norm to weak∗ continuous on each bounded
subsets of E ([5]).

Let C be a nonempty closed convex subset of E. C is said to have the fixed
point property for nonexpansive mappings if every nonexpansive mapping of a
bounded closed convex subset D of C has a fixed point in D. Let D be a subset
of C. Then a mapping Q : C → D is said to be a retraction from C onto
D if Qx = x for all x ∈ D. A retraction Q : C → D is said to be sunny if
Q(Qx + t(x −Qx)) = Qx for all x ∈ C and t ≥ 0 with Qx + t(x −Qx) ∈ C. A
subset D of C is said to be a sunny nonexpansive retract of C if there exists a
sunny nonexpansive retraction of C onto D. In a smooth Banach space E , it is
well-known [6, p. 48]) that Q is a sunny nonexpansive retraction from C onto D
if and only if the following condition holds:

〈x−Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D. (2.2)
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Let LIM be a continuous linear functional on l∞. According to time and
circumstances, we LIM(an) instead of LIM(a) for a = {an} ∈ l∞. LIM is said to
be Banach limit if

LIM(an) = LIM(an+1)
for every a = {an} ∈ l∞. Using the Hahn-Banach theorem, or the Tychonoff
fixed point theorem, we can prove the existence of a Banach limit. We know that
if LIM is a Banach limit, then

lim inf
n→∞

an ≤ LIM(an) ≤ lim sup
n→∞

an

for all a = {an} ∈ l∞.
Let C be a nonempty subset of E and {Tn} a sequence of mappings from

C into C. Recall [24] that the mapping sequence {Tn} is said to be uniformly
asymptotically regular (for short, u.a.r.) on C if for all m ≥ 1 and any bounded
sunset K of C,

lim
n→∞

sup
x∈K

‖Tm(Tnx)− Tnx‖ = 0.

(For examples of u.a.r, see [24]).
Finally, We need the following lemmas for the proof of our main results.

(Lemma 2.1 was also given in [13]. Lemma 2.2 is essentially Lemma 2 in [15]
(also see [28]). Lemma 2.3 was given in [7, 26], which is essentially a variant of
Lemma 1.2 in [19].)

Lemma 2.1. Let X be a real Banach space and J be the duality mapping. Then,
for any given x, y ∈ X, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉
for all j(x + y) ∈ J(x + y).

Lemma 2.2. Let {sn} be a sequence of non-negative real numbers satisfying
sn+1 ≤ (1− λn)sn + λnβn + γn, n ≥ 0,

where {λn}, {βn} and {γn} satisfying the condition:
(i) {λn} ⊂ [0, 1] and

∑∞
n=0 λn = ∞ or, equivalently,

∏∞
n=0(1− λn) = 0,

(ii) lim supn→∞ βn ≤ 0 or
∑∞

n=1 λnβn < ∞,
(iii) γn ≥ 0 (n ≥ 0),

∑∞
n=0 γn < ∞.

Then limn→∞ sn = 0.

Lemma 2.3. Let C be a nonempty closed convex subset of a Banach space E
with a uniformly Gâteaux differentiable norm and {xn} be a bounded sequence in
E. Let LIM be a Banach limit on l∞ and q ∈ C. Then

LIM‖xn − q‖2 = min
y∈C

LIM‖xn − y‖2

if and only if
LIM〈x− q, J(xn − q)〉 ≤ 0

for all x ∈ C, where J be the duality mapping of E.

199



Iterative approximation to common fixed points 5

3. Main results

First, we study the existence of solutions of certain variational inequality.
For any m ≥ 1, Tm : C → C is nonexpansive and so, for any tm ∈ (0, 1) and

f ∈ ΣC , tmf + (1− tm)Tm : C → C defines a strict contraction mapping. Thus,
by Banach contraction mapping principle, there exists a unique fixed point xf

tm

satisfying
xf

tm
= tmf(xf

tm
) + (1− tm)Tmxf

tm
. (A)

For simplicity we will write xm for xf
tm

provided no confusion occurs.
Now we show that the sequence {xm} defined by (A) converges strongly some

common fixed point of {Tm} (m = 1, 2, · · · ).
Theorem 3.1. Let E be a reflexive Banach space with a uniformly Gâteaux
differentiable norm. Suppose that every weakly compact convex subset of E has
the fixed point property for nonexpansive mappings. Let C be a nonempty closed
convex subset of E and {Tm} (m = 1, 2, · · · ) a u.a.r. sequence of nonexpansive
mappings from C into itself with F :=

⋂∞
n=1 F (Tn) 6= ∅. Let {xm} be defined by

(A) and tm ∈ (0, 1) such that limm→∞ tm = 0. Then as m →∞, {xm} converges
strongly to a point in F . If we define Q : ΣC → F by

Q(f) := lim
m→∞

xm, f ∈ ΣC , (3.1)

then Q(f) is the unique solution in F of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

In particular, if f = u ∈ C is a constant, then (3.1) is reduced to the sunny
nonexpansive retraction from C onto F ,

〈Q(u)− u, J(Q(u)− p)〉 ≤ 0, u ∈ C, p ∈ F.

Proof. We first show that {xm} is bounded. In fact, for p ∈ F , we have

‖xm − p‖ ≤ (1− tm)‖Tmxm − p‖+ tm‖f(xm)− p‖
≤ (1− tm)‖xm − p‖+ tm‖f(xm)− p‖

and so
‖xm − p‖ ≤ ‖f(xm)− p‖ ≤ ‖f(xm)− f(p)‖+ ‖f(p)− p‖

≤ k‖xm − p‖+ t‖f(p)− p‖.
Hence

‖xm − p‖ ≤ 1
1− k

‖f(p)− p‖
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and {xm} is bounded, so are {Tmxm} and {f(xm)}. As a result, it also follows
that

‖xm − Tmxm‖ = tm‖Tmxm − f(xm)‖ → 0 (as tm → 0).

Moreover, since {Tm} (m = 1, 2, · · · ) is a u.a.r. sequence of nonexpansive map-
pings, we have for any n ≥ 1,

lim
m→∞

‖Tn(Tmxm)− Tmxm‖ ≤ lim
m→∞

sup
x∈K

‖Tn(Tmx)− Tmx‖ = 0,

where K is any bounded subset of C containing {xm}. Hence

‖xm − Tnxm‖ ≤ ‖xm − Tmxm‖+ ‖Tmxm − Tn(Tmxm)‖
+ ‖Tn(Tmxm)− Tnxm‖

≤ 2‖xm − Tmxm‖+ ‖Tmxm − Tn(Tmxm)‖ → 0 as m →∞.

That is, for any n ≥ 1,
lim

m→∞
‖xm − Tnxm‖ = 0. (3.2)

We now show that {xm} converges strongly as tm → 0 a point in F . To this end,
let tmk

→ 0 and {xmk
} := {xk} be subsequence of {xm}. Define φ : C → [0,∞)

by
φ(x) = LIM‖xk − x‖2, x ∈ C,

where LIM is a Banach limit on l∞. Since φ is continuous and convex, φ(z) →∞
as ‖z‖ → ∞, and E is reflexive, φ attains its infimum over C [2, p. 79]. Let

K = {z ∈ C : φ(z) = min
x∈C

LIM‖xk − x‖2}.

It is easily seen that K is a nonempty closed convex bounded subset of E. More-
over, K is invariant under Tn for any n ≥ 1. In fact, since ‖xk − Tnxk‖ → 0 by
(3.2), it follows that for each z ∈ K

φ(Tz) = LIM‖xk − Tnz‖2
= LIM‖Tnxk − Tnz‖2 ≤ LIM‖xk − z‖2 = φ(z).

So, by the hypothesis, there exists a fixed point q of Tn in K, that is, q = Tnq.
Since n is arbitrary, we have q ∈ F . By Lemma 2.3, we have for all x ∈ C

LIM〈x− q, J(xk − q)〉 ≤ 0. (3.3)

On the other hand, since

xm − q = tm(f(xm)− q) + (1− tm)(Tmxm − q),

‖xm − q‖2 = tm〈f(xm)− q, J(xm − q)〉+ (1− tm)〈Tmxm − q, J(xm − q)〉
≤ tm〈f(xm)− q, J(xm − q)〉+ (1− tm)‖xm − q‖2.
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Hence
‖xm − q‖2 ≤ 〈f(xm)− q, J(xm − q)〉

= 〈f(xm)− x, J(xm − q)〉+ 〈x− q, J(xm − q)〉. (3.4)

Hence by (3.3), for x ∈ C,

LIM‖xk − q‖2 ≤ LIM〈f(xk)− x, J(xk − q)〉+ LIM〈x− q, J(xk − q)〉
≤ LIM〈f(xk)− x, J(xk − q)〉 ≤ LIM‖f(xk)− x‖‖xk − q‖.

In particular,

LIM‖xk − q‖2 ≤ LIM‖f(xk)− f(q)‖‖xk − q‖ ≤ kLIM‖xk − q‖2.

Hence
LIM‖xk − q‖2 = 0

and there exists a subsequence, which is still denoted {xk}, such that xk → q.
Now suppose that there is another subsequence {xj} of {xm} such that xj → p.

Then p is a fixed point of Tn by (3.2) for any n ≥ 1, that is, p ∈ F . It follows
from (3.4) that

‖p− q‖2 ≤ 〈f(p)− q, J(p− q)〉, (3.5)

and
‖q − p‖2 ≤ 〈f(q)− p, J(q − p)〉. (3.6)

Adding (3.5) and (3.6) yields

2‖p− q‖2 ≤ ‖p− q‖2 + 〈f(p)− f(q), J(p− q)〉 ≤ (1 + k)‖p− q‖2.

Since k ∈ (0, 1), this implies that p = q. Hence xm → q as m →∞.
Define Q : ΣC → F by

Q(f) = lim
m→∞

xm.

Since xm = tmf(xm) + (1− tm)Tmxm, we have

(I − f)xm = −1− tm
tm

(I − Tm)xm.

Hence for p ∈ F ,

〈(I − f)xm, J(xm − p)〉
= −1− tm

tm
〈(I − Tm)xm − (I − Tm)p, J(xm − p)〉 ≤ 0.

Letting m →∞ yields

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0.
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This implies that Q(f) solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F. (3.7)

Since X is smooth, in F , there is the unique solution of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

In fact, suppose that p, q ∈ F satisfy (3.7), we know that

〈(I − f)q, J(q − p)〉 ≤ 0 (3.8)

and
〈(I − f)p, J(p− q)〉 ≤ 0. (3.9)

Adding (3.8) and (3,9) up, we have

(1− k)‖q − p‖2 ≤ 〈(I − f)q − (I − f)p, J(q − p)〉 ≤ 0,

and so q = p.
If f = u is a constant, then

〈Q(u)− u, J(Q(u)− p)〉 ≤ 0, u ∈ C, p ∈ F.

Hence by (2.2), Q reduces to the sunny nonexpansive retraction from C to F . ¤

Now we study the strong convergence of the iteration scheme for a sequence
of nonexpansive mappings.

Theorem 3.2. Let E be a reflexive Banach space with a uniformly Gâteaux
differentiable norm such that every weakly compact convex subset of E has the
fixed point property for nonexpansive mappings. Let C be a nonempty closed
convex subset of E and {Tm} (m = 1, 2, · · · ) a u.a.r. sequence of nonexpansive
mappings from C into itself with F :=

⋂∞
n=1 F (Tn) 6= ∅. Let {λn} be a sequence

in (0, 1) which satisfies the conditions:
(C1) limn→∞ λn = 0;
(C2)

∑∞
n=1 λn = ∞ or, equivalently,

∏∞
n=1(1− λn) = 0.

Let f ∈ ΣC and x0 ∈ C be chosen arbitrarily. Let {xn} be generated by

xn+1 = λn+1f(xn) + (1− λn+1)Tn+1xn, n ≥ 0. (3.10)

Then {xn} converges strongly to Q(f), where Q(f) ∈ F is the unique solution in
F of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0 f ∈ ΣC , p ∈ F.
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Proof. First, we note that by Theorem 3.1, there exists the unique solution Q(f)
of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F,

where Q : ΣC → F is defined by Q(f) = limm→∞ zm and zm = tmf(zm) + (1−
tm)Tmzm with limm→∞ tm = 0.

We proceed with the following steps:
Step 1. ‖xn− z‖ ≤ max{‖x0− z‖, 1

1−k‖f(z)− z‖} for all n ≥ 0 and all z ∈ F

and so {xn} is bounded.
We use an inductive argument. Indeed, let z ∈ F and

d = max{‖x0 − z‖, 1
1− k

‖f(z)− z‖}.

Then by the nonexpansivity of Tn and f ∈ ΣE ,

‖x1 − z‖ ≤ (1− λ1)‖T1x0 − z‖+ λ1‖f(x0)− z‖
≤ (1− λ1)‖x0 − z‖+ λ1(‖f(x0)− f(z)‖+ ‖f(z)− z‖)
≤ (1− λ1)‖x0 − z‖+ λ1(k‖x0 − z‖+ ‖f(z)− z‖)
≤ (1− (1− k)λ1)d + λ1(1− k)d
= d.

Using an induction, we obtain ‖xn+1 − z‖ ≤ d. Hence {xn} is bounded, and so
are {Tn+1xn} and {f(xn)}.

Step 2. limn →∞ ‖xn+1 − Tn+1xn‖ = 0. Indeed, since

‖xn+1 − Tn+1xn‖ ≤ λn+1‖Tn+1xn − f(xn)‖ ≤ Lλn+1

for some L, by (C1), we have limn →∞ ‖xn+1 − Tn+1xn‖ = 0.
Step 3. limn→∞ ‖xn − Tmxn‖ = 0 for any m ≥ 1. Since {Tn} (n = 1, 2, · · · )

is a u.a.r. sequence of nonexpansive mappings, we have for any m ≥ 1

lim
n→∞

‖Tm(Tnxn−1)− Tnxn−1‖ ≤ lim
n→∞

sup
x∈K

‖Tm(Tnx)− Tnx‖ = 0,

where K is any bounded subset of C containing {xn}. Hence

‖xn − Tmxn‖ ≤ ‖xn − Tnxn−1‖+ ‖Tnxn−1 − Tm(Tnxn−1)‖
+ ‖Tm(Tnxn−1)− Tmxn‖

≤ 2‖xn − Tnxn−1‖+ ‖Tnxn−1 − Tm(Tnxn−1)‖ → 0 as n →∞.

That is, for any m ≥ 1, limn→∞ ‖xn − Tmxn‖ = 0.
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Step 4. lim supn→∞〈(I − f)Q(f), J(Q(f) − xn)〉 ≤ 0. To prove this, let a
subsequence {xnj} of {xn} be such that

lim sup
n→∞

〈(I − f)Q(f), J(Q(f)− xn)〉 = lim
j→∞

〈(I − f)Q(f), J(Q(f)− xnj )〉

and xnj ⇀ p for some p ∈ E. Now let Q(f) = limm→∞ zm, where zm =
tmf(zm) + (1− tm)Tmzm. Then we can write

zm − xnj = tm(f(zm)− xnj ) + (1− tm)(Tmzm − xnj ).

Putting

aj(tm) =(1− tm)2‖Tmxnj − xnj‖
× (2‖zm − xnj‖+ ‖Tmxnj − xnj‖) → 0 (j →∞)

by Step 3 and using Lemma 2.1, we obtain

‖zm − xnj‖2 ≤ (1− tm)2‖Tmzm − xnj‖2 + 2tm〈f(zm)− xnj , J(zm − xnj )〉
≤ (1− tm)2(‖Tmzm − Tmxnj‖+ ‖Tmxnj − xnj‖)2

+ 2tm〈f(zm)− zm, J(zm − xnj )〉+ 2tm‖zm − xnj‖2
≤ (1− tm)2‖zm − xnj‖2 + aj(tm)

+ 2tm〈f(zm)− zm, J(zm − xnj )〉+ 2tm‖zm − xnj‖2.

The last inequality implies

〈zm − f(zm), J(zm − xnj
)〉 ≤ tm

2
‖zm − xnj‖2 +

1
2tm

aj(tm).

It follows that
lim

j→∞
〈zm − f(zm), J(zm − xnj )〉 ≤

tm
2

M, (3.11)

where M > 0 is a constant such that M ≥ ‖zm − xn‖2 for all n ≥ 0 and
tm ∈ (0, 1). Taking the lim sup as m → ∞ in (3.11) and noticing the fact that
the two limits are interchangeable due to the fact that J is uniformly continuous
on bounded subsets of E from the strong topology of E to the weak∗ topology
of E∗, we have

lim
j→∞

〈(I − f)Q(f), J(Q(f)− xnj )〉 ≤ 0.

Step 5. limn→∞ ‖xn −Q(f)‖ = 0. By using (3.10), we have

xn+1 −Q(f) = λn+1(f(xn)−Q(f)) + (1− λn+1)(Tn+1xn −Q(f)).
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Applying Lemma 2.1, we obtain

‖xn+1 −Q(f)‖2
≤ (1− λn+1)2‖Tn+1xn −Q(f)‖2 + 2λn+1〈f(xn)−Q(f), J(xn+1 −Q(f))〉
≤ (1− λn+1)2‖xn −Q(f)‖2 + 2λn+1〈f(xn)− f(Q(f)), J(xn+1 −Q(f))〉

+ 2λn+1〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉
≤ (1− λn+1)2‖xn −Q(f)‖2 + 2kλn+1‖xn −Q(f)‖‖xn+1 −Q(f)‖

+ 2λn+1〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉
≤ (1− λn+1)2‖xn −Q(f)‖2 + kλn+1(‖xn −Q(f)‖2 + ‖xn+1 −Q(f)‖2)

+ 2λn+1〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉.
It then follows that

‖xn+1 −Q(f)‖2 ≤ 1− (2− k)λn+1 + λ2
n+1

1− kλn+1
‖xn −Q(f)‖2

+
2λn+1

1− kλn+1
〈(I − f)Q(f), J(Q(f)− xn+1)〉

≤ 1− (2− k)λn+1

1− kλn+1
‖xn −Q(f)‖2 +

λ2
n+1

1− kλn+1
M2

+
2λn+1

1− kλn+1
〈(I − f)Q(f), J(Q(f)− xn+1)〉,

(3.12)

where M = supn≥0 ‖xn −Q(f)‖. Put

αn =
2(1− k)λn+1

1− kλn+1
, βn =

M2λn+1

2(1− k)
+

1
1− k

〈(I − f)Q(f), J(Q(f)− xn+1)〉.

From (C1), (C2) and Step 4, it follows that αn → 0,
∑∞

n=0 αn = ∞, and
lim supn→∞ βn ≤ 0. Since (3.12) reduces to

‖xn+1 −Q(f)‖2 ≤ (1− αn)‖xn −Q(f)‖2 + αnβn,

from Lemma 3.2 with γn = 0, we conclude that limn→∞ ‖xn −Q(f)‖ = 0. This
completes the proof. ¤

As a direct consequence, we have the following:

Corollary 3.1. Let E be a uniformly smooth Banach space, C a nonempty closed
convex subset of E and {Tm} (m = 1, 2, · · · ) a u.a.r. sequence of nonexpansive
mappings from C into itself with F :=

⋂∞
n=1 F (Tn) 6= ∅. Let {λn} be a sequence

in (0, 1) which satisfies the conditions (C1) and (C2) in Theorem 3.2. Let f ∈ ΣC

and x0 ∈ C be chosen arbitrarily. Let {xn} be generated by

xn+1 = λn+1f(xn) + (1− λn+1)Tn+1xn, n ≥ 0.
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Then {xn} converges strongly to Q(f), where Q(f) ∈ F is unique solution in F
of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0 f ∈ ΣC , p ∈ F.

As in [25, Corollary 3.3], by using Theorem 3.2 together with Lemma 3.1 and
Lemma 3.2 of [17] (Lemma 1 of [21]), we can also obtain the following result.

Corollary 3.2. Let E be a Banach space, C a nonempty closed convex subset
of E, and T, S : C → C nonexpansive mappings with fixed points. Let {λn} be a
sequence in (0, 1) which satisfies the conditions (C1) and (C2) in Theorem 3.2.

(a) Set Tn(x) = 1
n

∑n−1
j=0 T jx for n ≥ 1 and x ∈ C. For f ∈ ΣC and x0 ∈ C,

define
xn+1 = λn+1f(xn) + (1− λn+1)Tn+1xn, n ≥ 0.

If E is a uniformly convex Banach space with a uniformly Gâteaux differentiable
norm, then {xn} converges strongly to Q(f), where Q(f) ∈ F (T ) is the unique
solution of the following variational inequality:

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0 f ∈ ΣC , p ∈ F (T ).

(b) Set Tn(x) = 2
n(n+1)

∑n−1
k=0

∑
i+j=k SiT j(x) for n ≥ 1. For f ∈ ΣC and

x0 ∈ C, define

xn+1 = λn+1f(xn) + (1− λn+1)Tn+1xn, n ≥ 0.

Suppose that ST = TS and F (S) ∩ F (T ) 6= ∅. If E is a Hilbert space H, then
{xn} converges strongly to Q(f), where Q(f) ∈ F (ST ) is the unique solution of
the following variational inequality:

〈(I − f)Q(f), Q(f)− p〉 ≤ 0 f ∈ ΣC , p ∈ F (ST ),

where F (ST ) := F (S) ∩ F (T ).

Remark 3.1. (1) In [9,17,18], it was proved that the sequence {xn} generated
by (1.1) for the sequence {Tn} converges strongly to some point Q(u) (QF (V )a
or Py). But it is not clear whether or not Q(u) (QF (V )a or Py) is a point in
F :=

⋂∞
n=1 F (Tn). This was a gap. Theorem 3.2 (and Corollary 3.1) not only

overcomes the gaps in [9,17,18] but also improves the corresponding results in
[9,17,18] to the viscosity method.

(2) Theorem 3.2 generalizes Theorem 3.4 of [1] to the viscosity method in more
general Banach spaces with the uniform asymptotic regularity on the sequence
{Tn} in place of the condition

∑∞
n=1 sup{‖Tn+1z − Tnz‖ : z ∈ C} < ∞ without

the condition
∑∞

n=1 |λn+1 − λn| < ∞ or limn→∞ λn/λn+1 = 1.
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(3) Theorem 3.2 also appears to be independent of Theorem 3.2 in [25]. In
fact, it easy to find examples of spaces which satisfy the fixed point property for
nonexpansive mappings, which are not strictly convex. However, it appears to
be unknown whether a reflexive and strictly convex space satisfies the fixed point
property for nonexpansive mappings.

(4) As the viscosity method, Corollary 3.2 (a) extends Corollary 3.4 (a) in [17]
to a Banach space setting.

(5) In the case of f(x) = u, x ∈ C, a constant, Corollary 3.2 (b) is just
Theorem 1 of Shimizu and Takahashi [21].
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Abstract. In this note, we consider p-adic q-transfer operator. From this operator,

we derive that the eigenvalues of the p-adic q-transfer operator are q-Euler polynomials,

and are associated with the eigenvalues 1
[p]nq

.

§1. Introduction

Throughout this paper Zp, Qp and Cp will, respectively, denote the ring of p-
adic rational integers, the field of p-adic rational numbers and the completion of al-
gebraic closure of Qp. Let vp be the normalized exponential valuation of Cp with
|p|p = p−vp(p) = p−1. When one talks of q-extension, q is variously considered as an

Key words and phrases. p-adic q-integrals, Euler polynomials, p-adic q-transfer operator.
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2 L.C. JANG , T. KIM AND S.H. RIM

indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, one
normally assumes |q| < 1. If q ∈ Cp, then we assume |q − 1|p < 1.

Let d be a fixed positive odd integer and let p be a fixed odd prime number. We
now set

X = lim←−
N

Z/dpNZ,

X∗ =
⋃

0<a<dp
(a,p)=1

a + dpZp,

a + dpNZp = {x ∈ X|x ≡ a (mod pN )},

where a ∈ Z lies in 0 ≤ a < dpN . The basic q-numbers are defined by [x]q = 1−qx

1−q and

[x]−q = 1−(−q)x

1+q . We say that f is a uniformly differentiable function at a point a ∈ Zp

and denote this property by f ∈ UD(Zp), if the difference quotients

Ff (x, y) =
f(x)− f(y)

x− y
, cf.[2,3,6]

have a limit l = f ′(a) as (x, y) → (a, a). For f ∈ UD(Zp), let us start with the
expression

1
[pN ]−q

∑
0≤j<pN

(−1)jqjf(j) =
∑

0≤j<pN

f(j)µ−q(j + pNZp), see [3],

representing a q-analogue of Riemann sums for f . The integral of f on Zp will be
defined as the limit (n→∞) of those sums, when it exists. In [3], the fermionic p-adic
q-integral of a function f ∈ UD(Zp) is defined by

I−q(f) =
∫

X

f(x)dµ−q(x) =
∫

Zp

f(x)dµ−q(x) = lim
N→∞

1
[dpN ]−q

dpN−1∑
x=0

f(x)(−q)x.

In previous paper[3], we constructed the q-extension of Euler polynomials by using
p-adic q-integral on Zp as follows:

(1) En(x : q) =
∫

Zp

[t + x]nq dµ−q(t), x ∈ Z+, see [1,2,3].
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In mathematics, the transfer operator encodes information about an iterated map and
is frequently used to study the behavior of dynamical systems, statistical mechanics,
quantum chaos and fractals. The transfer operator is sometimes called the Ruelle op-
erator, after David Ruelle, or the Ruelle-Perron-Frobenius operator [4,5]. The iterated
function to be studied is a map f : X → X for an arbitrary set X. The transfer
operator is defined as an operator L acting on the space of function φ : X → C as

(Lφ)(x) =
∑

y∈f−1(x)

g(y)φ(y),

where g : X → C is an auxiliary valuation function ([4,5]). Consider a function
g : [0, 1] → [0, 1]. A shift in perspective may be gained not by considering how g acts
on points or open sets, but instead by considering how g acts on distributions on the
unit interval. Intuitively, one might consider a dusting of points on the unit interval,
with a local density given by ρ(x) at a point x ∈ [0, 1] and then consider how this
dusting or density involves upon iteration by g . This verbal description may given
from as

ρ′(y) =
∫ 1

0

δ(y − g(y))ρ(x)dx,

where ρ′(y) is the new density at point y = g(x) and δ is the direct delta function.

In this viewpoint, g becomes an operator that maps densities ρ to orther densities
ρ′ , or notationally Lg(ρ) = ρ′. The operator Lg is the transfer operator(or the Rueller-
Perron-Frobenius operator). In this note we consider the p-adic q-transfer operator.
Finally we prove that the eigenvalues of the p-adic q-transfer operators are the q-Euler
polynomials, and are associated with the eigenvalues 1

[p]nq
.

2. p-adic q-Transfer Operator

From (1), we derive

(2) Em(x : q) =
[2]q

(1− q)m

m∑
i=0

(
m

i

)
qxi(−1)i 1

1 + qi+1
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where Em(x : q) are q-Euler polynomials. By (1), we see that

(3)

Ek(x : q) =
∫

X

[x + t]kqdµ−q(t)

= lim
ρ→∞

1
[dpρ]−q

dpρ−1∑
n=0

[x + n]kq (−q)n

= lim
ρ→∞

1
[d]−q

1
[pρ]−qd

d−1∑
i=0

pρ−1∑
n=0

[x + i + dn]kq (−q)i+dn

=
[d]kq
[d]−q

d−1∑
i=0

(−q)i lim
ρ→∞

1
[pρ]−qd

pρ−1∑
n=0

[
x + i

d
+ n]kqd(−qd)n

=
[d]kq
[d]−q

d−1∑
i=0

(−q)i

∫
Zp

[
x + i

d
+ t

]k

qd

dµ−qd(t)

Now we define p-adic q-transfer operator as follows.

(4) (Lp,qf)(x : q) =
1

[p]−q

p−1∑
k=0

(−q)kf

(
x + i

p
: qp

)
.

If we take f(x : q) = En(x : q), then we have

(5)

(Lp,qEn)(x : q) =
1

[p]−q

p−1∑
k=0

(−q)kEn(
x + k

p
; qp)

=
1

[p]nq

(
[p]nq
[p]−q

p−1∑
k=0

(−q)kEn

(
x + k

p
: qp

))

=
1

[p]nq

(
[p]nq
[p]−q

p−1∑
k=0

(−q)k

∫
Zp

[
x + k

p
+ t

]n

qp

dµ−qp(t)

)
.

By (3) and (5), we have

(6) (Lp,qEn)(x : q) =
1

[p]nq
En(x : q).

Therefore we obtain the following theorem.
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Theorem. The eigenvalues of the p-adic q-transfer operator are the q-Euler polyno-
mials, and are associated with the eigenvalues 1

[p]nq
. That is,

(Lp,qEn)(x : q) =
1

[p]nq
En(x : q),

where En(x : q) are q-Euler polynomials.
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Abstract

In this paper, we establish some new nonlinear difference inequalities in two independent
variables, which can be used as handy tools in the study of qualitative properties of solutions
of certain classes of difference equations. Applications are given to illustrate the usefulness
of these inequalities.
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1 INTRODUCTION

The finite difference inequalities involving functions of one and more than one
independent variables which provide explicit bounds on unknown functions play
a fundamental role in the development of the theory of finite difference equations.
During past few years, many such that new inequalities have been established, which
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are motivated and inspired from the study of certain class of finite difference equa-
tions. For example, see [1-3, 5, 6, 10, 12, 17-23] and the reference therein. Our
main aim here is to establish some new and more general nonlinear discrete inequal-
ities involving functions of two independent variables, which can be used as ready
and powerful tools in the analysis of certain classes of partial finite difference and
sum-difference equations. Our results also generalize some recent results in [3].

2 MAIN RESULT

Throughout this paper, I := [m0,M) ∩ Z and J := [n0, N) ∩ Z are two fixed
lattices of integral points in R, where m0, n0 ∈ Z, M,N ∈ Z ∪ {∞}. Let Ω :=
I × J ⊂ Z2, R+ := [0,∞), R1 := [1,∞) and for any (s, t) ∈ Ω, the sub-lattice
[m0, s]× [n0, t] ∩ Ω of Ω will be denote as Ω(s,t).

If U is a lattice in Z(resp.Z2), the collection of all R-valued functions on U
is denoted by F(U), that of all R+-valued functions by F+(U), and that of all
R1-valued function by F1(U). For the sake of convenience, we extend the domain
of definition of each function in F(U) and F+(U) trivially to the ambient space
Z(resp.Z2). So for example, a function in F(U) is regards as a function defined on
Z(resp.Z2) with support in U . As usual, the collection of all continuous functions
and all i-times continuously differentiable functions of a topological space X into a
topological space Y will be denoted by C(X, Y ) and Ci(X, Y ), respectively.

If U is a lattice in Z2 , the partial difference operators 41 and 42 on u ∈ F(Z2)
or F+(Z2) are defined as

41u(m,n) = u(m + 1, n)− u(m,n), (m,n) ∈ U,

42u(m,n) = u(m,n + 1)− u(m,n), (m,n) ∈ U.

Theorem 2.1. Suppose that u, a, and b ∈ F+(Ω), p > q ≥ 0 and k ≥ 0 are
constants and w ∈ C(R+, R+) is nondecreasing with w(r) > 0 for r > 0. If u
satisfies

up(m,n) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)uq(s, t) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)uq(s, t)w(u(s, t)), (1)

for (m,n) ∈ Ω, then

u(m,n) ≤
{

G−1
[
G

(
k

p−q
p + A(m,n)

)
+ B(m,n)

]} 1
p−q

, (2)

for all (m,n) ∈ Ω(m1,n1), where

A(m,n) =
m−1∑
s=m0

n−1∑

t=n0

a(s, t), (3)

B(m,n) =
m−1∑
s=m0

n−1∑

t=n0

b(s, t), (4)

2

MA,PECARIC:NONLINEAR DISCRETE INEQUALITIES216



G(r) =
∫ r

r0

ds

w(s
1

p−q )
, r ≥ r0 > 0, (5)

G−1 is the inverse of G, and (m1, n1) ∈ Ω is chosen such that G(k
p−q

p + A(m,n)) +
B(m,n) ∈ DomG−1 for all (m,n) ∈ Ω(m1,n1).

Proof. It suffices to consider the case k > 0, for then the case k = 0 can be
arrived at by continuity argument. Denote by r1(m,n) the right hand side of (1),
then from (1) we have r1 > 0,

u(m,n) ≤ r
1
p

1 (m,n), (6)

on Ω, and r1 is nondecreasing in each variable.
Hence for any (x, y) ∈ Ω,

41r1(m,n) =
n−1∑

t=n0

a(m, t)uq(m, t) +
n−1∑

t=n0

b(m, t)uq(m, t)w(u(m, t))

≤
n−1∑

t=n0

a(m, t)r
q
p

1 (m, t) +
n−1∑

t=n0

b(m, t)r
q
p

1 (m, t)w(r
q
p

1 (m, t))

≤ r
q
p

1 (m,n)[
n−1∑

t=n0

a(m, t) +
n−1∑

t=n0

b(m, t)w(r
q
p

1 (m, t))]

or
41r1(m,n)

r
q
p

1 (m,n)
≤

n−1∑

t=n0

a(m, t) +
n−1∑

t=n0

b(m, t)w(r
q
p

1 (m, t))

Therefore, for any (m,n) ∈ Ω,

m−1∑
s=m0

41r1(s, n)

r
q
p

1 (s, n)
≤

m−1∑
s=m0

n−1∑

t=n0

a(s, t) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)w(r
q
p

1 (s, t))

= A(m,n) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)w(r
q
p

1 (s, t)).

On the other hand, by the non-decreasing property of r1 in each variable, we observe
that

m−1∑
s=m0

41r1(s, n)

r
q
p

1 (s, n)
=

m−1∑
s=m0

r1(s + 1, n)− r1(s, n)

r
q
p

1 (s, n)

=
r1(m,n)

r
q
p

1 (m− 1, n)
− r1(m− 1, n)

r
q
p

1 (m− 1, n)
+

r1(m− 1, n)

r
q
p

1 (m− 2, n)
− r1(m− 2, n)

r
q
p

1 (m− 2, n)

+ . . . +
r1(m0 + 1, n)

r
q
p

1 (m0, n)
− r1(m0, n)

r
q
p

1 (m0, n)

=
r1(m,n)

r
q
p

1 (m− 1, n)
+

m−m0−1∑

s=1

r1(m−s, n)

(
1

r
q
p

1 (m− s− 1, n)
− 1

r
q
p

1 (m− s, n)

)
− r1(m0, n)

r
q
p

1 (m0, n)

3
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≥ r1(m,n)

r
q
p

1 (m− 1, n)
− r1(m0, n)

r
q
p

1 (m0, n)
≥ r1(m,n)

r
q
p

1 (m,n)
− r1(m0, n)

r
q
p

1 (m0, n)
= r

p−q
p

1 (m,n)− k
p−q

p .

Hence we have

r
p−q

p

1 (m,n) ≤ k
p−q

p + A(m,n) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)w(r
q
p

1 (s, t)). (7)

Setting

v1(m,n) = r
p−q

p

1 (m,n), (8)

then (7) can be rewritten as

v1(m,n) ≤ k
p−q

p + A(m,n) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)w(v
1

p−q

1 (s, t))

for all (m,n) ∈ Ω. Since k
p−q

p + A(m,n) is nondecreasing in each variable, for any
fixed (m1, n1) ∈ Ω(m1,n1), from the last inequality we have

v1(m,n) ≤ k
p−q

p + A(m1, n1) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)w(v
1

p−q

1 (s, t)) (9)

for (m,n) ∈ Ω(m1,n1). Denote by r1(m,n) the right hand side of (9). Then from (9)
we observe that

v1(m,n) ≤ r1(m,n) (10)

for (m,n) ∈ Ω(m1,n1) and

41r1(m,n) =
n−1∑

t=n0

b(m, t)w(v
1

p−q

1 (m, t))

≤
n−1∑

t=n0

b(m, t)w(r
1

p−q

1 (m, t))

≤ w(r
1

p−q

1 (m,n− 1))
n−1∑

t=n0

b(m, t)

≤ w(r
1

p−q

1 (m,n))
n−1∑

t=n0

b(m, t),

i.e.,
41r1(m,n)

w(r
1

p−q

1 (m,n))
≤

n−1∑

t=n0

b(m, t) (11)

for (m,n) ∈ Ω(m1,n1).
By the Mean-value Theorem for integrals, for each (m,n) the exists ξ : r1(m,n) ≤

ξ ≤ r1(m + 1, n) such that

41G(r1(m,n)) = G(r1(m + 1, n))−G(r1(m,n))

4
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=
∫ r1(m+1,n)

r1(m,n)

ds

w(s
1

p−q )

=
41r1(m,n)

w(ξ
1

p−q )
≤ 41r1(m,n)

w(r
1

p−q

1 (m,n))
,

and so from (11) we have

41G(r1(m,n)) ≤
n−1∑

t=n0

b(m, t) (12)

Fixing n and setting m = s in (12), and then summing s from m0 to m− 1 we get

G(r1(m,n))−G(r1(m0, n)) ≤
m−1∑
s=m0

n−1∑

t=n0

b(s, t),

i.e.,

G(r1(m,n)) ≤ G(k
p−q

p + A(m1, n1)) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)

or

r1(m,n) ≤ G−1
[
G

(
k

p−q
p + A(m1, n1)

)
+

m−1∑
s=m0

n−1∑

t=n0

b(s, t)
]

(13)

for all (m,n) ∈ Ω(m1,n1).
Setting m = m1, n = n1 in (10) and (13), we have

v1(m1, n1) ≤ r1(m1, n1)

and
r1(m1, n1) ≤ G−1

[
G

(
k

p−q
p + A(m1, n1)

)
+ B(m1, n1)

]
,

respectively.
Since (m1, n1) ∈ Ω(m1,n1) is arbitrary, from the last inequalities we have

v1(m,n) ≤ r1(m,n) (14)

and
r1(m,n) ≤ G−1

[
G

(
k

p−q
p + A(m,n)

)
+ B(m,n)

]
, (15)

for all (m,n) ∈ Ω(m1,n1).
Hence from (6),(8),(14) and (15), we can arrive at the conclusion of the theorem.

2

Remark 1. (i) When a(m,n) ≡ 0, p = 1, q = 0 in Theorem 2.1, we have the
result of Cheung [3, Theorem 2.1]; (ii) When p = 2, q = 1, we have the other result
of Cheung [3, Theorem 2.2].

Remark 2. If ∫ ∞

r0

ds

w(s
1

p−q )
= ∞,

then G(∞) = ∞ and (2) is valid on Ω.

5
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Let q = p− 1 in Theorem 2.1, then we have the following corollaries.

Corollary 2.1. Let the functions u, a, b, and w, and the constants p and k be
defined as in Theorem 2.1. If u satisfies

up(m,n) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)up−1(s, t)+
m−1∑
s=m0

n−1∑

t=n0

b(s, t)up−1(s, t)w(u(s, t)), (16)

for (m,n) ∈ Ω, then

u(m,n) ≤ G
−1

[
G(k

1
p + A(m,n)) + B(m,n)

]
, (17)

for all (m,n) ∈ Ω(m2,n2), where A(m,n) and B(m,n) are defined as in (3) and (4)
respectively,

G(r) =
∫ r

r0

1
w(s)

ds, r ≥ r0 > 0, (18)

G
−1 denotes the inverse function of G, and (m2, n2) ∈ Ω is chosen such that G(k

1
p +

A(m,n)) + B(m,n) ∈ DomG
−1 for all (m,n) ∈ Ω(m2,n2).

Corollary 2.2. Let the functions u, a and b,and the constants p and k be defined
as in Theorem 2.1. If u satisfies

up(m,n) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)up−1(s, t) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)up(s, t), (19)

for (m,n) ∈ Ω, then

u(m,n) ≤
(

k
1
p + A(m,n)

)
expB(m,n) (20)

for all (m,n) ∈ Ω, where A(m,n) and B(m,n) are defined as in (3) and (4) respec-
tively.

Remark 3. (i) It is interesting to note here that if k = cp in (16) and (19), then
the bound which appeared in (17) and (20) on the unknown function u(m,n) has
no relation with the parameter p, respectively;(ii) When p = 2 in Corollary 2.1 and
2.2, we have Cheung’s results [3, Corollary 2.3 and 2.4].

Corollary 2.3. Let the functions u and a, and the constants p, q and k be
defined as in Theorem 2.1. If u satisfies

up(m,n) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)uq(s, t), (21)

for (m,n) ∈ Ω, then

u(m,n) ≤
(

k
1
p +

m−1∑
s=m0

n−1∑

t=n0

a(s, t)
) 1

p−q

(22)

6
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for all (m,n) ∈ Ω.

Theorem 2.2. Suppose that u, a, and b ∈ F+(Ω), p > q ≥ 0 and k ≥ 0 are
constants and w ∈ C(R+, R+) is nondecreasing with w(r) > 0 for r > 0. If u
satisfies

up(m,n) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)uq(s, t)w(u(s, t)) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)uq(s, t)w(u(s, t)),

(23)
for (m,n) ∈ Ω, then

u(m,n) ≤
{

G−1
[
G(k

p−q
p ) + A(m,n) + B(m,n)

]} 1
p−q

, (24)

for all (m,n) ∈ Ω(m3,n3), where A(m,n), B(m,n) and w(r) are defined as in (3),(4)

and (5), respectively;(m3, n3) ∈ Ω is chosen such that G(k
1
p + A(m,n)) + B(m,n) ∈

DomG−1 for all (m,n) ∈ Ω(m3,n3).
Proof. Let k > 0, define r2(m,n) to denote the right-hand side of (23) and

v2(m,n) = r
p−q

p

2 (m,n), then by the same steps from (6) to (8) in the proof of
Theorem 2.1, we have

v2(m,n) ≤ k
p−q

p +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)w(v
1

p−q

2 (s, t)) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)w(v
1

p−q

2 (s, t))

for (m,n) ∈ Ω.
Now using the same procedures form (9) to (15) in the proof of Theorem 2.1 to

the last inequality we will get the desired inequality (24).2

Let p = p− 1 in Theorem 2.2, then we have the following corollaries.
Corollary 2.4. Let the functions u, a, b and w, and the constants p and k be

defined as in Theorem 2.1. If u satisfies

up(m,n) ≤ k+
m−1∑
s=m0

n−1∑

t=n0

a(s, t)up−1(s, t)w(u(s, t))+
m−1∑
s=m0

n−1∑

t=n0

b(s, t)up−1(s, t)w(u(s, t)),

(25)
for (m,n) ∈ Ω, then

u(m,n) ≤ G
−1

[
G(k

1
p ) + A(m,n) + B(m,n)

]
, (26)

for all (m,n) ∈ Ω(m4,n4), where A(m,n), B(m,n) and G are defined as in (3),(4) and

(18) respectively, G
−1 denotes the inverse function of G and (m4, n4) ∈ Ω is chosen

such that G(k
1
p + A(m,n)) + B(m,n) ∈ DomG

−1 for all (m,n) ∈ Ω(m4,n4).

Corollary 2.5. Let the functions u, a and b, and the constants p and k be
defined as in Theorem 2.1. If u satisfies

up(m,n) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)up(s, t) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)up(s, t), (27)

7
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for (m,n) ∈ Ω, then

u(m,n) ≤ k
1
p exp

(
A(m,n) + B(m,n)

)
, (28)

for all (m,n) ∈ Ω, where A(m,n) and B(m,n) are defined as in (3) and (4), respec-
tively.

Remark 6. It is interesting to note here that if k = cp in (25) and (27), then the
bound appeared in (26) and (28) on the unknown function u(m,n) has no relation
with the parameter p, respectively.

Theorem 2.3. Suppose that u, a, and b ∈ F+(Ω), p > q ≥ 0 and k ≥ 0 are
constants and wi ∈ C(R+, R+) is nondecreasing with wi(r) > 0 for r > 0(i = 1, 2).
If u satisfies

up(m,n) ≤ k+
m−1∑
s=m0

n−1∑

t=n0

a(s, t)uq(s, t)w1(u(s, t))+
m−1∑
s=m0

n−1∑

t=n0

b(s, t)uq(s, t)w2(u(s, t)),

(29)
for (m,n) ∈ Ω, then

u(m,n) ≤
{

G̃−1
[
G̃(k

p−q
p ) + A(m,n) + B(m,n)

]} 1
p−q

, (30)

for all (m,n) ∈ Ω(m5,n5), where A(m,n) and B(m,n) are defined as in (3) and (4)
respectively,

G̃(r) =
∫ r

r0

1

w1(s
1

p−q ) + w2(s
1

p−q )
ds, r ≥ r0 > 0,

G̃−1 is the inverse function of G̃ and real numbers (m5, n5) ∈ Ω are chosen so that
the quantity in the square brackets of (38) is in the range of G̃.

Proof. Let k > 0, define r3(m,n) to denote the right-hand side of (29) and

v3(m,n) = r
p−q

p

3 (m,n), then by the same steps from (6) to (8) in the proof of
Theorem 2.1, we have

u(m,n) ≤ v
1

p−q

3 (m,n) (31)

v3(m,n) ≤ k
p−q

p +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)w1(v
1

p−q

3 (s, t)) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)w2(v
1

p−q

3 (s, t))

(32)
for (m,n) ∈ Ω.

Setting r3(m,n) as the right-hand side of (32), then we have r3(m,n) = k
p−q

p ,

v3(m,n) ≤ r3(m,n), (33)

and 41r3(m,n)

w1(r
1

p−q

3 (m,n)) + w2(r
1

p−q

3 (m,n))

8
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=

n−1∑

t=n0

a(m, t)w1(v
1

p−q

3 (m, t))

w1(r
1

p−q

3 (m,n)) + w2(r
1

p−q

3 (m,n))
+

n−1∑

t=n0

b(m, t)w2(v
1

p−q

3 (m, t))

w1(r
1

p−q

3 (m,n)) + w2(r
1

p−q

3 (m,n))

≤
w1(v

1
p−q

3 (m,n))
n−1∑

t=n0

a(m, t)

w1(r
1

p−q

3 (m,n)) + w2(r
1

p−q

3 (m,n))
+

w2(v
1

p−q

3 (m,n))
n−1∑

t=n0

b(m, t)

w1(r
1

p−q

3 (m,n)) + w2(r
1

p−q

3 (m,n))

≤
w1(r

1
p−q

3 (m,n))
n−1∑

t=n0

a(m, t)

w1(r
1

p−q

3 (m,n)) + w2(r
1

p−q

3 (m,n))
+

w2(r
1

p−q

3 (m,n))
n−1∑

t=n0

b(m, t)

w1(r
1

p−q

3 (m,n)) + w2(r
1

p−q

3 (m,n))

≤
n−1∑

t=n0

a(m, t) +
n−1∑

t=n0

b(m, t)

i.e.,
41r3(m,n)

w1(r
1

p−q

3 (m,n)) + w2(r
1

p−q

3 (m,n))
≤

n−1∑

t=n0

a(m, t) +
n−1∑

t=n0

b(m, t)

By the definition of G̃ and the same steps from (11) to (15) in the proof of
Theorem 2.1, we can derive from the last inequality that

r3(m,n) ≤ G̃−1
[
G̃(k

p−q
p ) + A(m,n) + B(m,n)

]
(34)

for all (m,n) ∈ Ω(m5,n5), where A(m,n) and B(m,n) are defined as in (3) and (4)
respectively.

By (31),(33) and (34), we get the desired inequality (30). By continuity,(30) also
holds for any k ≥ 0. 2

Corollary 2.6. Let the functions u, a and b and the constants p, q and k be
defined as in Theorem 2.3. If If u satisfies

up(m,n) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)up(s, t) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)u
p+q
2 (s, t), (35)

for (m,n) ∈ Ω, then

u(m,n) ≤
[
(1 + k

p−q
2p exp

(
A(m,n) + B(m,n)

)
− 1

]2

(36)

for (m,n) ∈ Ω.
Proof. Let w1(u) = up−q, w2(u) = u

p−q
2 , then we have

G̃(r) =
∫ r

r0

ds

s + s
1
2

= 2 ln
1 + r

1
2

1 + r
1
2
0

and

G̃−1(r) =
[
(1 + r

1
2
0 ) exp(

r

2
)− 1

]2

.

9
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Now by Theorem 2.3, we have the desired inequality (36). 2

Theorem 2.4. Suppose that u, a, and b ∈ F+(Ω), k ≥ 0 is constant and
w ∈ C(R+, R+) is nondecreasing with w(r) > 0 for r > 0. Let ϕ(u) ∈ C1(R+, R+)
with ϕ′(u) > 0 for u > 0, here ϕ′(u) denotes the derivative of ϕ. If u satisfies

ϕ(u(m,n)) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)ϕ′(u(s, t)) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)ϕ′(u(s, t))w(u(s, t)),

(37)
for (m,n) ∈ Ω, then

u(m,n) ≤ G
−1

[
G

(
ϕ−1(k) + A(m,n)

)
+ B(m,n)

]
, (38)

for all (m,n) ∈ Ω(m6,n6), where A(m,n), B(m,n) and G are defined as in (3),(4) and

(18) respectively,G−1 is the inverse function of G and real numbers (m6, n6) ∈ Ω are
chosen so that the quantity in the square brackets of (38) is in the range of G.

Proof. Let k > 0, define r4(m,n) to denote the right-hand side of (37), then we
have

u(m,n) ≤ ϕ−1(r4(m,n)) (39)

and

41r4(m,n) =
n−1∑

t=n0

a(m, t)ϕ′(u(m, t)) +
n−1∑

t=n0

b(m, t)ϕ′(u(m, t))w(u(m, t))

≤ ϕ′[ϕ−1(r4(m,n))]
( n−1∑

t=n0

a(m, t) +
n−1∑

t=n0

b(m, t)w(ϕ−1(r4(m, t)))
)

i.e.,
41r4(m,n)

ϕ′[ϕ−1(r4(m,n))]
≤

n−1∑

t=n0

a(m, t) +
n−1∑

t=n0

b(m, t)w(ϕ−1(r4(m, t))).

Using the differential mean-value theorem and the last inequality we have

41[ϕ−1(r4(m,n))] = ϕ−1(r4(m + 1, n))− ϕ−1(r4(m,n))

=
1

ϕ′(ϕ−1(θ))
41r4(m,n) ≤ 41r4(m,n)

ϕ′[ϕ−1(r4(m,n))]

≤
n−1∑

t=n0

a(m, t) +
n−1∑

t=n0

b(m, t)w(ϕ−1(r4(m, t))) (40)

Keeping n fixed in (40) and setting m = s and then summing over s = m0,m0 +
1, · · · ,m− 1, we get

ϕ−1(r4(m,n)) ≤ ϕ−1(r4(m0, n)) +
m−1∑
s=m0

n−1∑

t=n0

a(s, t) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)w(ϕ−1(r4(s, t)))

i.e.,

ϕ−1(r4(m,n)) ≤ ϕ−1(k) +
m−1∑
s=m0

n−1∑

t=n0

a(s, t) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)w(ϕ−1(r4(s, t)))

10
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for all (m,n) ∈ Ω. Now by applying Theorem 2.1 (the case when p = 1, q = 0) to
the function ϕ−1(r4(m,n)) in the last inequality, we have

ϕ−1(r4(m,n)) ≤ G
−1

[
G

(
ϕ−1(k) + A(m,n)

)
+ B(m,n)

]
, (41)

for all (m,n) ∈ Ω(m6,n6).
By (39) and (41), we get the desired inequality (38). 2

Remark 7. When ϕ(u) = up(p ≥ 1), conclusion of Corollary 2.1 can be derived
form Theorem 2.4. The other interesting new discrete Haraux [9] -Engler [7] type
inequalities of two-variable is easily obtained by Theorem 2.4 as following.

Corollary 2.7. Let a(m,n), b(m,n), ϕ(u) and w(u) be as defined in Theorem
2.4. Let u(m,n) ∈ F1(Ω) and p > 0, k > 1 be real numbers. If u(m,n) satisfies

up(m,n) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)up(s, t) +
m−1∑
s=m0

n−1∑

t=n0

b(s, t)up(s, t)w(log u(s, t)), (42)

for (m,n) ∈ Ω, then

u(m,n) ≤ exp
{

G
−1

[
G

(
1
p

log k +
1
p
A(m,n)

)
+

1
p
B(m,n)

]}
, (43)

for all (m,n) ∈ Ω(m7,n7), where A(m,n) and B(m,n) are defined as in (3) and (4)

respectively,G−1 is the inverse function of G and real numbers (m7, n7) ∈ Ω are
chosen so that the quantity in the square brackets of (43) is in the range of G.

Proof. Using the change of variable v(m,n) = log u(m,n), inequality (42)
reduces to

exp(pv(m,n)) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t) exp(pv(s, t))

+
m−1∑
s=m0

n−1∑

t=n0

b(s, t) exp(pv(s, t))w(v(s, t))

which is a special case of inequality (37) when ϕ(v) = exp(pv). By Theorem 2.4,
the desired inequality (43) follows. 2

Remark 8. It is interesting to note here that if k = ϕ(c1)(c1 ≥ 0 is a constant)
in (37), k = cp

2(c2 > 1 is a constant), a(s, t) = pā(s, t) and b(s, t) = pb̄(s, t) in (42),
then the bound appeared in (38) and (43) on the unknown function u(m,n) has no
relation with the function ϕ and parameter p, respectively.

3 APPLICATIONS

(a) Consider partial difference equation

4241u
4(m,n) = f1(m,n, u(m,n)), (3.1)
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with the given initial boundary conditions

u(m,n0) = σ(m), u(m0, n) = τ(n), σ(m0) = τ(n0) = 0, (3.2)

where f1 ∈ F(Ω×R), σ ∈ F(I), and τ ∈ F(J).

Theorem 3.1.Suppose that

|f1(m,n, u)| ≤ a(m,n)|u|+ b(m,n)|u|2 (3.3)

and
σ4(m) + τ4(n) ≤ k (3.4)

for some k ≥ 0, where a, b ∈ F(Ω), then all solutions of (3.1)-(3.2) satisfy

u(m,n) ≤
[(

k
3
4 + A(m,n)

) 2
3

+
2
3
B(m,n)

] 1
2

(3.5)

for all (m,n) ∈ Ω, where A(m,n) and B(m,n) are defined as in Theorem 2.1.
Proof. If u(m,n) is a solution of (3.1) with condition (3.2), then it can be

written as

u4(m,n) = σ4(m) + τ4(n) +
m−1∑
s=m0

n−1∑

t=n0

f1(s, t, u(s, t)) (3.5)

Hence by (3.3) and (3.6) we have

u4(m,n) ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)|u(s, t)|+
m−1∑
s=m0

n−1∑

t=n0

a(s, t)|u(s, t)|2

for all (m,n) ∈ Ω. The last inequality is the special case when p = 4, q = 1 and
w(u) = u) in Theorem 2.1, so

G(r) =
∫ r

r0

ds

s
1
3

=
3
2
(r

2
3 − r

2
3
0 )

and
G−1(r) = (r

2
3
0 +

2
3
u)

3
2 .

Now an application of Theorem 2.1 to the function |u(m,n)| gives the assertion
immediately. 2

(b)Consider sum-difference equation

u(m,n) = k +
m−1∑
s=m0

n−1∑

t=n0

f2(s, t, u(s, t), log |u(s, t)|), (3.7)

for for all (m,n) ∈ Ω, where k > 1 is a constant.

Theorem 3.2. Assume that

|f2(m,n, u, log |u|)| ≤ a(m,n)|u|+ b(m,n)|u| log |u|, (3.8)

12
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for for all (m,n) ∈ Ω, then all solutions of (3.1)-(3.2) satisfy

|u(m,n)| ≤ exp
{

[ log k + A(m,n)] exp B(m,n)
}
− 1 (3.9)

for for all (m,n) ∈ Ω, where A(m,n) and B(m,n) are defined as in Theorem 2.1.
Proof. Form (3.7) and (3.8) we observe that

|u(m,n)|+ 1 ≤ k +
m−1∑
s=m0

n−1∑

t=n0

a(s, t)(|u(s, t)|+ 1)

+
m−1∑
s=m0

n−1∑

t=n0

b(s, t)(|u(s, t)|+ 1) log(|u(s, t)|+ 1)

for for all (m,n) ∈ Ω.
Now an suitable application of Corollary 2.7 (in case p = 1, w(u) = u) to the last

inequality yields (3.9) immediately. 2

Remark 8. The boundedness to the solutions of (3.1)-(3.2) and (3.7)-(3.8) can’t
be derived by the conclusions of [3]; Under some suitable conditions, the uniqueness
and continuous dependence of the solutions of (3.1)-(3.2) and (3.7)-(3.8) also can be
discussed by our results, for space-saving, the details are omitted here.

In conclusion, we note that the inequalities and applications here can be extended
easily to functions involving many independent variables.
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Existence and uniqueness results for nonlinear Cauchy problems
of the second order
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Abstract. We use here contraction principle to establish existence and uniqueness
result for the Cauchy problem½

y00 = f(x, y, y0)
y(x0) = y0 , y0(x0) = z0

. (PC)

To do this, we transform first in an original way the Cauchy problem (PC) into an
equivalent integral equation. Finally, a new method of succesive approximations for
finding the unique solution is establish.

Keywords: contraction principle, Cauchy problem, Lipschitz condition, successive approxi-
mations sequence
MSC 2000: 34A12, 34L30

1 Introduction

Let D = {(x, y) ∈ R×Rn| |x− x0| ≤ a, ||y − y0|| ≤ b} be a rectangle and f : D ⊆ R×Rn →
Rn a continuous function satisfying the Lipschitz condition ||f(x, y)− f(x, z)|| ≤ L ||y − z|| ,
for all (x, y), (x, z) ∈ D and for some L > 0. Under these assumptions, according to the well
known Picard theorem (e.g. [1], [2], [5]), the Cauchy problem½

y0 = f(x, y)
y(x0) = y0

(1.1)

has (locally) unique solution on I = (x0−ε, x0+ε), where ε = min
½
a,

b

M

¾
, M = sup

(x,y)∈D
||f(x, y)|| .

Moreover, the Picard theorem gives us a method to approximate the solution, usually called the
successive approximations method.
In this sense, let us define T : C(I) → C(I) by (Ty)(x) = y0 +

R x
x0
f(t, y(t)) d t. Then the

solution of problem (1.1) is the limit of the successive approximations sequence y0 = y(x0),

yn = Tyn−1, that is yn(x) = y0 +

Z x

x0

f(t, yn−1(t)) d t, n ∈ N. We will give here results similar

to the Picard theorem for local existence and uniqueness of the solution of the Cauchy problems

1
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of the second order. The results are obtained by an original way, so these considerations lead
us to a new type of approximation sequences for the solution.

2 The Results

First we give the following
Lemma The Cauchy problem (PC) is equivalent with the integral equation

z(x) = z0 +

Z x

x0

f

µ
t, y0 +

Z t

x0

z(s) d s, z(t)

¶
d t (INT)

in the sense that z = z(x) is solution for the equation (INT) on (x0 − ε, x0 + ε) if and only if

y(x) = y0 +

Z x

x0

z(s) d s is solution for the Cauchy problem (PC) on (x0 − ε, x0 + ε) .

Proof. First let us assume that y = y(x) is solution for the Cauchy problem (PC),½
y00(x) = f(x, y(x), y0(x))
y(x0) = y0 , y0(x0) = z0

.

Let us consider z(x) = y0(x). We have y(x0) = y0, so

y(x) = y0 +

Z x

x0

z(s) d s. (1)

By integration the equation from (PC), we obtainZ x

x0

y00(t) d t =

Z x

x0

f(t, y(t), y0(t)) d t or y0(x)− y0(x0) =

Z x

x0

f(t, y(t), y0(t)) d t.

But y0(x0) = z0 and by replacing in the right hand y(t) from (1), we obtain

y0(x) = z0+

Z x

x0

f

µ
t, y0 +

Z t

x0

z(s) d s, z(t)

¶
d t or z(x) = z0+

Z x

x0

f

µ
t, y0 +

Z t

x0

z(s) d s, z(t)

¶
d t,

which is (INT). Reciprocally, let us assume that z = z(x) is solution for (INT) and let us define

y(x) = y0 +

Z x

x0

z(s) d s,

we obtain from (INT),

z(x) = z0 +

Z x

x0

f (t, y(t), z(t)) d t (2)

The initial conditions are satisfied, y(x0) = y0 +

Z x0

x0

z(s) d s = y0 and because y0(x) = z(x),

we also have y0(x0) = z(x0) = z0, from (2). Now, by deriving (2), we obtain z0(x) =
f(x, y(x), z(x))⇔ z0(x) = f(x, y(x), y0(x)), so we are done.
Theorem Let there be given a continuous function f : D ⊆ R3 → R for which exist positive

constants λ, µ such that

|f(x, y1, z1)− f(x, y2, z2)| ≤ λ |y1 − y2|+ µ |y2 − z2| , (3)

2
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for all (x, y1, z1) , (x, y2, z2) ∈ D. Then for every real numbers y0 and z0, the Cauchy problem½
y00 = f(x, y, y0)
y(x0) = y0 , y0(x0) = z0

(PC)

has locally an unique solution on (x0 − ε, x0 + ε) , where ε = 2

µ+
√
µ2+2λ

.

Proof. According to the Lemma, we have to prove that the integral equation (INT) is
uniquely solvable on I = (x0 − ε, x0 + ε). The equation (INT) can be written as a fixed point
problem. To do this let us consider the Banach space C(I) of continuous functions defined on
I, endowed with the uniform convergence norm ||w|| = sup

x∈I
|w(x)| . Let us consider the operator

T : C(I)→ C(I) given by the formula

Tz(x) = z0 +

Z x

x0

f

µ
t, y0 +

Z t

x0

z(s) d s, z(t)

¶
d t , z ∈ C(I).

Now the integral equation (INT), can be equivalently written as z = Tz, z ∈ C(I), which is a
fixed point problem. The theorem is proved if we show that T is a contraction. In this sense,
for every z1, z2 ∈ C(I) and for all x ∈ (x0, x0 + ε), we have |Tz1(x)− Tz2(x)| =

=

¯̄̄̄Z x

x0

f

µ
t, y0 +

Z t

x0

z1(s) d s, z1(t)

¶
d t−

Z x

x0

f

µ
t, y0 +

Z t

x0

z2(s) d s, z2(t)

¶
d t

¯̄̄̄
=

=

¯̄̄̄Z x

x0

∙
f

µ
t, y0 +

Z t

x0

z1(s) d s, z1(t)

¶
− f

µ
t, y0 +

Z t

x0

z2(s) d s, z2(t)

¶¸
d t

¯̄̄̄
≤

≤
Z x

x0

¯̄̄̄
f

µ
t, y0 +

Z t

x0

z1(s) d s, z1(t)

¶
− f

µ
t, y0 +

Z t

x0

z2(s) d s, z2(t)

¶¯̄̄̄
d t ≤

≤
Z x

x0

µ
λ

¯̄̄̄Z t

x0

z1(s) d s−
Z t

x0

z2(s) d s

¯̄̄̄
+ µ |z1(t)− z2(t)|

¶
d t =

=

Z x

x0

µ
λ

¯̄̄̄Z t

x0

[z1(s)− z2(s)] d s

¯̄̄̄
+ µ |z1(t)− z2(t)|

¶
d t ≤

≤
Z x

x0

µ
λ

Z t

x0

|z1(s)− z2(s)|d s+ µ |z1(t)− z2(t)|
¶
d t ≤

≤
Z x

x0

µ
λ

Z t

x0

||z1 − z2||d s+ µ ||z1 − z2||
¶
d t =

=

Z x

x0

[λ ||z1 − z2|| (t− x0) + µ ||z1 − z2||] d t =

=

∙
λ · (x− x0)

2

2
+ µ(x− x0)

¸
· ||z1 − z2|| ≤

µ
λε2

2
+ µε

¶
· ||z1 − z2|| ,

so |Tz1(x)− Tz2(x)| ≤
³
λε2

2 + µε
´
· ||z1 − z2|| , for all x ∈ (x0 − ε, x0 + ε) (case x ∈ (x0 − ε, x0)

is similar). By taking the supremum with respect to x ∈ (x0 − ε, x0 + ε) in the last inequality,

it follows that ||Tz1 − Tz2|| ≤
³
λε2

2 + µε
´
· ||z1 − z2|| , for all z1, z2 ∈ C(I). Finally, T is a

3
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q-contraction, where q = λε2

2 +µε < 1. Indeed, the last inequality is equivalent with a quadratic

inequation, λε
2

2 + µε− 1 < 0⇔ 0 < ε <
−µ+
√
µ2+2λ

λ = 2

µ+
√
µ2+2λ

, true. ¤

3. Applications

We give existence and uniqueness results under some hypoteses which are approximative
lipschitzianity conditions. We use the following theorem of Lagrange type:
Lemma Let D ⊆ Rn be a connected set and let φ = φ(x1, ..., xn) : D→ R be a function with

partial derivatives
∂φ

∂xk
, 1 ≤ k ≤ n. Then for every a, x ∈ D, a = (a1, ..., an), x = (x1, ..., xn)

there exist ξk between ak and xk, 1 ≤ k ≤ n, such that

φ(x)− φ(a) =
nX

k=1

∂φ

∂xk
(a1, ..., ak−1, ξk, xk+1, ..., xn) (xk − ak).

For proof and other comments, see [4].
Theorem Let there be given a continuous function f = f(x, y, z) : D ⊆ R3 → R with

bounded partial derivatives
∂f

∂y
and

∂f

∂z
, i.e.

¯̄̄
∂f
∂y (x, y, z)

¯̄̄
≤ λ,

¯̄̄
∂f
∂z (x, y, z)

¯̄̄
≤ µ, for all points

(x, y, z) ∈ D and for some λ, µ > 0 Then for every y0 and z0, the Cauchy problem½
y00 = f(x, y, y0)
y(x0) = y0 , y0(x0) = z0

(PC)

has locally an unique solution, defined at least on (x0 − ε, x0 + ε) , where ε = 2

µ+
√
µ2+2λ

.

Proof. We are in the hypoteses of the theorem. Indeed, under the assumptions of our theorem
the function f satisfies the inequality (3). In this sense, let us define for arbitrary fixed x, the
application φ(y, z) = f(x, y, z). From Lemma, for all (y1, z1) and (y2, z2) , there exists ξ between
y1 and y2 and η between z1 and z2 such that

φ(y1, z1)− φ(y2, z2) =
∂φ

∂y
(ξ, z1)(y1 − y2) +

∂φ

∂z
(y1, η)(z1 − z2).

Therefore, |f(x, y1, z1)− f(x, y2, z2)| =
¯̄̄
∂φ
∂y (ξ, z1)(y1 − y2) +

∂φ
∂z (y1, η)(z1 − z2)

¯̄̄
≤

≤
¯̄̄̄
∂φ

∂y
(ξ, z1)

¯̄̄̄
· |y1 − y2|+

¯̄̄̄
∂φ

∂z
(y1, η)

¯̄̄̄
· |z1 − z2| ≤ λ |y1 − y2|+ µ |z1 − z2| .¤

Let us consider the particular case when f is linear in y and z, in sense that f(x, y, z) =
a(x) + b(x)y + c(x)z, where a, b, c : J ⊆ R→ R are continuous. Obviously, ∂f

∂y (x, y, z) = b(x),
∂f
∂z (x, y, z) = c(x), so we can state the following results regarding linear Cauchy problems:
Theorem Let there be given continuous functions a, b, c : J ⊆ R→ R, b, c bounded, with

|b(x)| ≤ λ, |c(x)| ≤ µ, for all x ∈ J and some positive reals λ, µ. Then for every real numbers

x0, y0, z0, the linear Cauchy problem
½

y00 = a(x) + b(x)y + c(x)y00

y(x0) = y0 , y0(x0) = z0
has an unique solution,

defined at least on (x0 − ε, x0 + ε) , where ε = 2

µ+
√
µ2+2λ

.

4
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4. Numerical Examples

The contraction principle allows us to develop a method for finding numerical approximations
of the solution. The approximation sequence (zn)n∈N associated to the problem

z = Tz , z ∈ C(I)

is given by the recurrence
zn+1 = Tzn , n ∈ N,

where z0 is arbitrary chosen in C(I). We can establish the following method of succesive ap-
proximations:
Theorem Assume that the hypoteses of the theorem are fulled. Then the sequence (zn)n∈N

given by the recurrence

zn+1(x) = z0 +

Z x

x0

f

µ
t, y0 +

Z t

x0

zn(s) d s, zn(t)

¶
d t , n ∈ N,

with z0(x) = z0, converges uniformly to the solution z = z(x) of the integral equation (INT).
In particular case when

f(x, y, z) = a(x) + b(x)y + c(x)z,

with a, b, c : J ⊆ R→ R are given continuous function, the approximation sequence acquires a
nice form, given by the following corollary, as a method of succesive approximations for linear
Cauchy problem of the second order.
Corollary Let there be given a, b, c : J ⊆ R→ R be continuous, b, c bounded, with

|b(x)| ≤ λ , |c(x)| ≤ µ,

for all x ∈ J and some positive reals λ, µ. Denote by A, B the antiderivatives of the functions
a, respective b with A(x0) = B(x0) = 0. Then the sequence (zn)n∈N given by the recurrence

zn+1(x) = z0 +A(x) +B(x)y0 +

Z x

x0

µZ t

x0

zn(s) d s

¶
dt+

Z x

x0

c(t)zn(t) d t,

with z0(x) = z0 converges uniformly on I = (x0 − ε, x0 + ε) to a function z = z(x) so that the

function y(x) = y0 +

Z x

x0

z(s) d s is the unique solution of the linear Cauchy problem

½
y00 = a(x) + b(x)y + c(x)y00

y(x0) = y0 , y0(x0) = z0
.
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manian)
[5] - S. Sburlan, L. Barbu, C. Mortici, Ecuatii Diferentiale, Integrale si Sisteme Dinamice,

Ex Ponto, Constanta, 1999 (in romanian)

5

MORTICI:NONLINEAR CAUCHY PROBLEMS 233



A Kind of Steffensen Method and Its Third-order Variant ∗

Quan Zheng†, Chongchong Wang, Guoqing Sun

College of Sciences, North China University of Technology, Beijing 100144, P. R. of China

Abstract: For solving nonlinear equations, we suggest a kind of Steffensen method which still only uses two

evaluations of the function and maintains second-order convergence. We also suggest a variant of the kind

of Steffensen method which is still derivative free and uses four evaluations of the function to achieve cubic

convergence. Their error equations and asymptotic convergence constants are deduced. The numerical examples

support the suggested methods.

Key words: Nonlinear equations; Newton’s method; Steffensen method; Convergence.

1 Introduction

It is well known that Newton’s method has second-order convergence for solving the simple root

of a nonlinear equation f(x) = 0 with the iteration (See [2]):

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, 2, . . . , (1.1)

where x0 is an initial guess of the root. Recently, a variant of Newton’s method has been

suggested in [4] as follows:

xn+1 = xn − 2f(xn)
f ′(xn) + f ′(x∗n+1)

, n = 0, 1, 2, . . . , (1.2)

where x∗n+1 is the intermediate result by using a Newton’s iteration (1.1). This method only uses

one evaluation of the function and two evaluations of the first derivatives, and obtains accel-

erated third-order convergence. Newton-type methods with cubic convergence in [1] have been

generalized from iteration (1.2). A lot of cubically convergent methods which need evaluations

of the function and its first derivatives have been compiled in §12.5 in [3].

It’s also well known that Steffensen method as the following (see §7.2.8 in [2]):

xn+1 = xn − f2(xn)
f(xn + f(xn))− f(xn)

, n = 0, 1, 2, . . . , (1.3)

∗Supported in part by Natural Science Foundation of Beijing (No. 1072009).
†E-mail: zhengq@ncut.edu.cn(Quan Zheng).
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is a noticeable improvement of Newton’s method, since it is derivative free and maintains

quadratic convergence. The variant of Steffensen method in [5] is as follows:




xn+1 = xn − 2f2(xn)
[f(xn + f(xn))− f(xn)]− [f(x∗n+1 − f(xn))− f(x∗n+1)]

,

x∗n+1 = xn − f2(xn)
f(xn + f(xn))− f(xn)

, n = 0, 1, 2, . . . ,

(1.4)

In this paper, we suggest a kind of Steffensen method as follows:

xn+1 = xn − f2(xn)
f(xn)− f(xn − f(xn))

, n = 0, 1, 2, . . . . (1.5)

where x0 is an initial guess of the root. The method still uses two evaluations of the function

and maintains second-order convergence. We also suggest a variant of the kind of Steffensen

method as follows:



xn+1 = xn − 2f2(xn)
[f(x∗n+1 + f(xn))− f(x∗n+1)]− [f(xn − f(xn))− f(xn)] ,

x∗n+1 = xn − f2(xn)
f(xn)− f(xn − f(xn))

, n = 0, 1, 2, . . . ,

(1.6)

Iteration (1.4), as well as iteration (1.6), only uses four evaluations of the function, but achieves

cubic convergence. Other variants of Steffensen method (1.3) can be found in [5].

We deduce error equations and asymptotic convergence constants of (??) and (??), and

present numerical examples in the following sections.

2 Convergence of the Kind of Steffensen Method

Theorem 2.1. Let f : D → R be a twice differentiable function with a simple root a ∈ D,

D ⊂ R be an open set, x0 be close enough to a, then the kind of Steffensen method (1.5) is at

least quadratically convergent, and satisfies the following error equation

en+1 =
(1− f ′(a))f ′′(a)

2f ′(a)
e2
n + o(e2

n), (2.1)

where en = xn − a, n = 0, 1, 2, . . ..

Proof. By Taylor’s expansion, we have

f(xn) = f ′(a)en + f ′′(a)e2
n/2 + o(e2

n),

f(xn − f(xn)) = f ′(a)[en − f ′(a)en − f ′′(a)e2
n/2] + f ′′(a)(1− f ′(a))2e2

n/2 + o(e2
n),

f(xn)− f(xn − f(xn)) = f ′(a)2en + 3f ′(a)f ′′(a)e2
n/2− f ′(a)2f ′′(a)e2

n/2 + o(e2
n),

2
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f2(xn) = f ′(a)2e2
n + f ′(a)f ′′(a)e3

n + o(e3
n),

f2(xn)
f(xn)− f(xn − f(xn))

=
f ′(a)en + f ′′(a)e2

n + o(e2
n)

f ′(a) + 3f ′′(a)en/2− f ′(a)f ′′(a)en/2 + o(en)
,

en+1 = en − f ′(a)en + f ′′(a)e2
n + o(e2

n)
f ′(a) + 3f ′′(a)en/2− f ′(a)f ′′(a)en/2 + o(en)

=
f ′′(a)e2

n/2− f ′(a)f ′′(a)e2
n/2 + o(e2

n)
f ′(a) + 3f ′′(a)en/2− f ′(a)f ′′(a)en/2 + o(en)

=
(1− f ′(a))f ′′(a)

2f ′(a)
e2
n + o(e2

n). ¤

Remark 2.1. The asymptotic convergence constants of Newton’s method (1.1), Stef-

fensen method (1.3) and the kind of Steffensen method (1.5) are C = f ′′(a)
2f ′(a) ,

(1+f ′(a))f ′′(a)
2f ′(a) and

(1−f ′(a))f ′′(a)
2f ′(a) respectively.

3 Convergence of the Variant of the Kind of Steffensen Method

Theorem 3.1. Let f : D → R be a triple differentiable function with a simple root a ∈ D,

D ⊂ R be an open set, x0 be close enough to a, then the variant of the kind of Steffensen method

(1.6) is at least cubically convergent, and satisfies the following error equation

en+1 =
(1− f ′(a))(f ′(a)f ′′′(a)− 2f ′(a)2f ′′′(a) + 3f ′′(a)2)

12f ′(a)2
e3
n + o(e3

n), (3.1)

where en = xn − a, n = 1, 2, . . ..

Proof. By Taylor’s expansion and Theorem 2.1, we have

f(xn) = f ′(a)en + 1
2!f

′′(a)e2
n + 1

3!f
′′′(a)e3

n + o(e3
n),

x∗n+1 − a =
(1− f ′(a))f ′′(a)

2f ′(a)
e2
n + o(e2

n),

f(x∗n+1) = f ′(a)(x∗n+1 − a) + 1
2!f

′′(a)(x∗n+1 − a)2 + o(e3
n),

f(x∗n+1 + f(xn)) = f ′(a)((x∗n+1 − a) + f(xn)) + 1
2!f

′′(a)((x∗n+1 − a) + f(xn))2

+ 1
3!f

′′′(a)((x∗n+1 − a) + f(xn))3 + o(e3
n),

f(x∗n+1+f(xn))−f(x∗n+1)

f(xn) = f ′(a) + 1
2!f

′′(a)(2(x∗n+1 − a) + f(xn)) + 1
3!f

′′′(a)f ′(a)2e2
n + o(e2

n).

Similarly,

f(xn − f(xn))− f(xn)
−f(xn)

= f ′(a)+
f ′′(a)

2!
(2(xn−a)−f(xn))+

f ′′′(a)
3!

[f ′(a)2−3f ′(a)+3]e2
n+o(e2

n).

3
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Thus, iteration (1.6) satisfies

en+1 = en −
f ′(a)en + 1

2!f
′′(a)e2

n + 1
3!f

′′′(a)e3
n + o(e3

n)
f ′(a) + 1

2!f
′′(a)[en + (x∗n+1 − a)] + 1

3!f
′′′(a)[f ′(a)2 − 3

2f ′(a) + 3
2 ]e2

n + o(e2
n)

=
[ (1−f ′(a))f ′′(a)2

4f ′(a) + 1
3!f

′′′(a)(f ′(a)2 − 3
2f ′(a) + 1

2)]e3
n + o(e3

n)

f ′(a) + f ′′(a)
2! en + (1−f ′(a))f ′′(a)2

4f ′(a) e2
n + 1

3!f
′′′(a)[f ′(a)2 − 3

2f ′(a) + 3
2 ]e2

n + o(e2
n)

=
(1− f ′(a))(f ′(a)f ′′′(a)− 2f ′(a)2f ′′′(a) + 3f ′′(a)2)

12f ′(a)2
e3
n + o(e3

n). ¤

Remark 3.1. The asymptotic cubic convergence constants of Weerakoon and Fernando’s

variant of Newton’s method (1.2) and the variant of the kind of Steffensen method (1.6) are

C = 3f ′′(a)2+f ′(a)f ′′′(a)
12f ′(a)2

and (1−f ′(a))(f ′(a)f ′′′(a)−2f ′(a)2f ′′′(a)+3f ′′(a)2)
12f ′(a)2

respectively.

Remark 3.2. The asymptotic cubic convergence constant of the variant of Steffensen

method (1.4) should be corrected as (1+f ′(a))(f ′(a)f ′′′(a)+2f ′(a)2f ′′′(a)+3f ′′(a)2)
12f ′(a)2

in [5].

4 Numerical Examples

We show the numerical examples for the related methods as follows, where NM—Newton’s

method (1.1); WFM—Weerakoon and Fernando’s variant of Newton’s method (1.2); SM—

Steffensen Method (1.3); VSM—the kind of Steffensen method (1.4); KSM—the kind of Stef-

fensen method (1.5); VKSM—the variant of the kind of Steffensen method (1.6).

Table 1. f(x) = 1
3(x3 − 8), a = 2, x0 = 2.6

Method n C 1 2 3 4 5 6

NM |en| 1.4881e-01 1.0543e-02 5.5383e-05 1.5336e-09

en/e2
n−1 0.5 4.1337e-01 4.7609e-01 4.9825e-01 4.9999e-01

WFM |en| 3.4423e-02 1.1466e-05 4.4409e-16

en/e3
n−1 0.2917 1.5936e-01 2.8112e-01 2.9457e-01

SM |en| 4.2704e-01 2.5850e-01 1.1558e-01 2.8021e-02 1.8780e-03 8.7904e-06

en/e2
n−1 2.5 1.1862e+00 1.4175e+00 1.7296e+00 2.0978e+00 2.3918e+00 2.4925e+00

VSM |en| 2.8072e-01 4.7540e-02 3.1862e-04 1.0105e-10

en/e3
n−1 3.125 1.2996e+00 2.1489e+00 2.9655e+00 3.1240e+00

KSM |en| 1.1188e+00 6.2191e-01 2.9238e-01 8.9923e-02 1.0795e-02 1.7232e-04

en/e2
n−1 -1.5 -3.1078e+00 -4.9683e-01 -7.5594e-01 -1.0519e+00 -1.3350e+00 -1.4786e+00

VKSM |en| 1.2196e-01 3.5687e-04 5.6930e-12

en/e3
n−1 0.125 -5.6464e-01 1.9672e-01 1.2526e-01

4
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Table 2. f(x) = 3ex−2 − 3, a = 2, x0 = 2.5
Method n C 1 2 3 4 5 6

NM |en| 1.0653e-01 5.4781e-03 1.4978e-05 1.1216e-10

en/e2
n−1 0.5 4.2612e-01 4.8271e-01 4.9909e-01 5.0000e-01

WFM |en| 3.0105e-02 8.9246e-06 4.4409e-16

en/e3
n−1 0.3333 2.4084e-01 3.2709e-01 6.2474e-01

SM |en| 3.7241e-01 2.2584e-01 9.0878e-02 1.5815e-02 4.9658e-04 4.9307e-07

en/e2
n−1 2 1.4896e+00 1.6284e+00 1.7817e+00 1.9149e+00 1.9855e+00 1.9995e+00

VSM |en| 2.7332e-01 5.8169e-02 6.4596e-04 8.9836e-10

en/e3
n−1 3.3333 2.1866e+00 2.8489e+00 3.2819e+00 3.3330e+00

KSM |en| 3.9334e-01 1.0887e-01 1.0733e-02 1.1407e-04 1.3010e-08 2.2204e-16

en/e2
n−1 -1 -1.5734e+00 -7.0366e-01 -9.0551e-01 -9.9021e-01 -9.9990e-01 -1.3119e+00

VKSM |en| 3.7812e-02 1.8333e-05 2.2204e-15

en/e3
n−1 0.3333 3.0250e-01 3.3911e-01 3.6034e-01

Table 3. f(x) = ex2
+ sinx + x− 1, a = 0, x0 = 0.5

Method n C 1 2 3 4 5 6

NM |en| 1.0038e-01 4.5009e-03 1.0069e-05 5.0691e-11

en/e2
n−1 0.5 4.0151e-01 4.4672e-01 4.9703e-01 4.9999e-01

WFM |en| 2.8507e-02 4.7171e-06 3.0322e-17

en/e3
n−1 0.2083 2.2806e-01 2.0362e-01 2.8889e-01

SM |en| 4.3028e-01 3.1274e-01 1.4391e-01 2.6263e-02 9.7885e-04 1.4339e-06

en/e2
n−1 1.5 1.7211e+00 1.6892e+00 1.4713e+00 1.2682e+00 1.4191e+00 1.4966e+00

VSM |en| 3.6979e-01 1.2397e-01 1.0302e-03 1.3876e-10

en/e3
n−1 0.125 2.9583e+00 2.4517e+00 5.4064e-01 1.2692e-01

KSM |en| 3.2832e-01 3.9190e-02 7.3903e-04 2.7288e-07 3.7152e-14

en/e2
n−1 -0.5 -1.3133e+00 -3.6358e-01 -4.8117e-01 -4.9963e-01 -4.9893e-01

VKSM |en| 6.9952e-02 1.4344e-04 1.1065e-12

en/e3
n−1 -0.375 -5.5962e-01 -4.1906e-01 -3.7490e-01

The examples confirm that NM, SM, KSM are second-order methods, WFM and VKSM are

third-order methods, illustrate the asymptotic convergence, and suggest KSM and VKSM for

their derivative-free property and good numerical results corresponding to well-known SM and

VSM.
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Abstract
The paper continues the investigation of holomorphic mixed norm

spaces Ap,q
~ω in the unit polydisc of Cn. We prove that a mixed norm

is equivalent to a “derivative norm” for all 0 < p ≤ ∞, 0 < q < ∞ and a
large class of weights ~ω. As an application, we prove that pluriharmonic
conjugation is bounded in these mixed norm spaces.
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1 Introduction

Let U1 = U be the unit disc in the complex plane, Un the unit polydisc in Cn,
and H(Un) the set of all holomorphic functions on Un.

For the integral means of a function f given in Un, we write

Mp(f, r) =

(
1

(2π)n

∫

[0,2π)n

|f(r1e
iθ1 , . . . , rneiθn)|pdθ

)1/p

,

r = (r1, . . . , rn), 0 ≤ rj < 1, j ∈ {1, . . . , n}, 0 < p < ∞, θ = (θ1, . . . , θn),
dθ = dθ1 · · · dθn and

M∞(f, r) = sup
θ∈[0,2π)n

|f(r1e
iθ1 , . . . , rneiθn)|.

Let ω(x), 0 ≤ x < 1, be a weight function which is positive and integrable
on (0,1). We extend ω on U by setting ω(z) = ω(|z|), and also on Un by
~ω = (ω1, . . . , ωn).
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Let Lp,q
~ω = Lp,q

~ω (Un), 0 < p ≤ ∞, 0 < q < ∞, denote the mixed norm space,
the class of all measurable functions defined on Un such that

‖f‖q
p,q,~ω =

∫

(0,1)n

Mq
p (f, r)

n∏

j=1

ωj(rj)drj < ∞,

and Ap,q
~ω = Ap,q

~ω (Un) be the intersection of Lp,q
~ω and H(Un). When p = q we

come to weighted Bergman spaces Ap,p
~ω = Ap

~ω with general weights ~ω. Mixed
norm, weighted Bergman and closely related spaces have been studied, for ex-
ample, in [1, 2, 3, 4, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

Following [12], for a given weight ω on U , define the distortion function of
ω by

ψ(r) = ψω(r) =
1

ω(r)

∫ 1

r

ω(t)dt, 0 ≤ r < 1.

We put ψ(z) = ψ(|z|) for z ∈ U . Also, a class of admissible weights, a large class
of weight functions ω in U is defined in [12]. For a list of examples of admissible
weights, see [12, pp. 660-663].

In [20, Theorem 1] the second author, among others, proved the following
result.

Theorem A. Let f ∈ H(Un) and ωj(zj), j = 1, . . . , n are admissible weights
on the unit disc U , with distortion functions ψj(zj). If 0 < p, q < ∞, and
f ∈ Ap,q

~ω , then for all j = 1, . . . , n, ψj(zj) ∂f
∂zj

(z) ∈ Lp,q
~ω , and there is a positive

constant C = C(p, q, ~ω, n) such that

‖f‖p,q,~ω ≥ C|f(0)|+ C
n∑

j=1

∥∥∥∥ψj
∂f

∂zj

∥∥∥∥
p,q,~ω

. (1.1)

For 1 ≤ p, q < ∞ the reverse inequality holds as well.

Remark 1. For all 0 < p, q < ∞ the equivalence between the left-hand and
right-hand sides of (1.1) is established in [15, 20] for standard weights ωj(zj) =
(1− |zj |)αj , αj > −1. See also [13] and [14].

In [9] the authors solved an open problem posed by S. Stević ([13, 14])
regarding the reverse inequality in (1.1) for the case of the unit disk, by proving
the following result:

Theorem B. Assume 0 < p ≤ ∞, 0 < q < ∞, and that ω is a differentiable
weight function on U satisfying the following condition

ω′(r)
ω2(r)

∫ 1

r

ω(s)ds ≤ L < ∞, r ∈ (0, 1), (1.2)

for a positive constant L. Then
∫ 1

0

Mq
p (f, r)ω(r)dr ³ |f(0)|q +

∫ 1

0

Mq
p (f ′, r)(ψω(r))qω(r)dr (1.3)

for all f ∈ H(U).
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We write a ³ b if the ratio a/b is bounded from above and below by two
positive constants when the variable varies, and say that a and b are comparable.
Note that condition (1.2) is weaker than that of admissible weights, see [9].

An interesting problem is to extend Theorem B to the polydisc case. This
will be done by proving the next theorem.

Theorem 1. Let f ∈ H(Un), 0 < p ≤ ∞, 0 < q < ∞, and the weights
ωj(zj), j = 1, . . . , n, satisfy condition (1.2), with distortion functions ψj(zj), j =
1, . . . , n. Then f ∈ Ap,q

~ω if and only if ψj(zj) ∂f
∂zj

(z) ∈ Lp,q
~ω for all j = 1, . . . , n.

Moreover,

‖f‖p,q,~ω ³ |f(0)|+
n∑

j=1

∥∥∥∥ψj
∂f

∂zj

∥∥∥∥
p,q,~ω

. (1.4)

Theorem 1 generalizes both Theorems A and B. In Section 2 we present
several auxiliary results which will be used in the proofs of the main results of
this paper. A proof of Theorem 1 is given in Section 3. In Section 4 we turn to
pluriharmonic functions in Un, that is, the real parts of holomorphic functions.
As an application of Theorem 1, we prove that the operator of pluriharmonic
conjugation is bounded in mixed norm spaces Lp,q

~ω (Un) for all 0 < p ≤ ∞, 0 <
q < ∞.

2 Auxiliary results

In this section we collect and prove several auxiliary lemmas which we use in the
proof of the main result. Throughout the paper, the letters C(p, q, α, β, . . . ), Cα

etc. stand for positive constants depending only on the parameters indicated
and which may vary from line to line.

Lemma 1. ([9]) Let {Ak}∞k=0 be a sequence of complex numbers, α, γ > 0.
Then the quantities

Q1 =
∞∑

k=0

e−kα|Ak|γ , Q2 = |A0|γ +
∞∑

k=0

e−kα|Ak+1 −Ak|γ

are comparable.

Lemma 2. ([9]) Given a function ϕ on [0, 1) define the sequence {rk}∞k=0 ⊂
[0, 1) by ϕ(rk) = ek, k ≥ 0.
(a) If the function ϕ satisfies ϕ(0) = 1 and

sup
0<r<1

ϕ′′(r)ϕ(r)
ϕ′(r)2

≤ M < ∞, (2.1)

then for every k ≥ 0,

ϕ′(y)
ϕ′(x)

≤ e2M , rk < x < y < rk+2.
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(b) If the function ϕ satisfies

sup
0<r<1

|ϕ′′(r)|ϕ(r)
ϕ′(r)2

≤ M < ∞, (2.2)

then for every k ≥ 0,

e−2M ≤ ϕ′(y)
ϕ′(x)

≤ e2M , x, y ∈ [rk, rk+2].

Lemma 3. Let f ∈ H(Un), 0 < p ≤ ∞, ` = min{1, p}. Then for any rj , ρj,
0 < rj < ρj < 1, j = 1, . . . , n,

M `
p(f, ρ1, . . . , ρn)−M `

p(f, r1, . . . , rn) ≤ C
n∑

j=1

(ρj − rj)`M `
p

(
∂f

∂zj
, ρ1, . . . , ρn

)
,

where the positive constant C depends only on p and n.

Proof. First assume that n = 2. Then by [20, Lemma 3] and the monotonicity
of the integral means, we have that

M `
p(f, ρ1,ρ2)−M `

p(f, r1, r2)

=
(
M `

p(f, ρ1, ρ2)−M `
p(f, r1, ρ2)

)
+

(
M `

p(f, r1, ρ2)−M `
p(f, r1, r2)

)

≤ C(ρ1 − r1)`M `
p

(
∂f

∂z1
, ρ1, ρ2

)
+ C(ρ2 − r2)`M `

p

(
∂f

∂z2
, r1, ρ2

)

≤ C(ρ1 − r1)`M `
p

(
∂f

∂z1
, ρ1, ρ2

)
+ C(ρ2 − r2)`M `

p

(
∂f

∂z2
, ρ1, ρ2

)
.

For n > 2 the proof is similar and will be omitted.

Lemma 4. Let f ∈ H(Un) and 0 < p ≤ ∞.
(a) Then for any 0 < rj < ρj < 1, j, k ∈ {1, . . . , n}

Mp

(
∂f

∂zk
, r1, . . . , rn

)
≤ C

Mp(f, ρ1, . . . , ρn)
ρk − rk

,

where the positive constant C depends only on p and n.
(b) If u = Re f in Un and 1 ≤ p ≤ ∞, then for any 0 < rj < ρj < 1,
j, k ∈ {1, . . . , n}

Mp

(
∂f

∂zk
, r1, . . . , rn

)
≤ C

Mp(u, ρ1, . . . , ρn)
ρk − rk

,

where the positive constant C depends only on p and n.

Proof. (a) We may assume that k = 1. Applying the corresponding inequality
for the case n = 1 (with fixed r2, . . . , rn), which holds for 0 < p ≤ ∞, then the
monotonicity of the integral means in arguments r2, . . . , rn, we obtain

Mp

(
∂f

∂z1
, r1, r2, . . . , rn

)
≤ C

Mp(f, ρ1, r2 . . . , rn)
ρ1 − r1

≤ C
Mp(f, ρ1, ρ2 . . . , ρn)

ρ1 − r1
.
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(b) The proof of this statement is similar to the proof of (a), with the differ-
ence that the corresponding one-dimensional inequality holds true for 1 ≤ p ≤
∞.

Lemma 5. Let 0 < p, q < ∞. Then for any rj ∈ (0, 1), j, k ∈ {1, . . . , n},

Mq
p

(
∂f

∂zk
, r1, . . . , rn

)
≤ C(p, q)

R1+q

∫ rk+R

rk−R

Mq
p (u, r1, . . . , rk−1, t, rk+1, . . . , rn)dt,

for all f ∈ H(Un), u = Re f , and rk ∈ (0, 1) such that 0 < R < rk < R+rk < 1.

Proof. It suffices to apply the corresponding one variable inequality, see [9,
Lemma 7].

Let Ph(Un) denote the set of all (real-valued) pluriharmonic functions on
Un. For the subspace of Lp,q

~ω (Un) consisting of pluriharmonic functions let
Php,q

~ω (Un) = Ph(Un) ∩ Lp,q
~ω (Un).

Lemma 6. For any a ∈ Un, the point evaluation u 7→ u(a) is a bounded linear
functional on Php,q

~ω (Un) for all 0 < p, q < ∞.

Proof. The result follows from the Hardy–Littlewood inequality (HL-property)
on |u|p analogously to [20, Lemma 2] or [14, Lemma 3].

3 Proof of Theorem 1

In order to prove the main theorem, we need some more auxiliary functions.
Suppose that the weights ωj(rj) are differentiable on (0, 1) and satisfy

ω′j(rj)
ω2

j (rj)

∫ 1

rj

ωj(t) dt ≤ C, 0 < rj < 1, j = 1, . . . , n. (3.1)

Their distortion functions are defined by

ψj(rj) = ψωj (rj) =
1

ωj(rj)

∫ 1

rj

ωj(t) dt, 0 < rj < 1, j = 1, . . . , n.

Given a weight ωj , and 0 < q < ∞, define the function ϕj on (0, 1) by

ϕj(rj) ≡ ϕq,ωj (rj) =

(
q

∫ 1

rj

ωj(t) dt

)−1/q

, 0 < rj < 1, j = 1, . . . , n. (3.2)

Note that each of the functions ϕj is strictly increasing on (0, 1). Let ψω(r) =∏n
j=1 ψj(rj) and ϕω(r) =

∏n
j=1 ϕj(rj). It is easy to check that

ϕj(rj)
ϕ′j(rj)

= q ψj(rj), ωj(rj) =
ϕ′j(rj)

ϕj(rj)1+q
, j = 1, . . . , n, (3.3)
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and that condition (3.1) is equivalent to (2.1) with ϕ = ϕj .
Define also the measures on (0, 1) by

dmϕj (rj) =
ϕ′j(rj)
ϕj(rj)

drj , j = 1, . . . , n, dmϕ(r) =
n∏

j=1

dmϕj (rj).

We may assume that n = 2. The proof for the case n > 2 is only technically
complicated. We have to prove the inequality∫

(0,1)2
Mq

p (f, r1, r2)ω1(r1)ω2(r2)dr1dr2 ≤ C|f(0, 0)|q

+ C

∫

(0,1)2
Mq

p

(
∂f

∂z1
, r1, r2

)
ψq

1(r1)ω1(r1)ω2(r2)dr1dr2

+ C

∫

(0,1)2
Mq

p

(
∂f

∂z2
, r1, r2

)
ψq

2(r2)ω1(r1)ω2(r2)dr1dr2. (3.4)

Denoting

F0(r1, r2) =
Mp(f, r1, r2)
ϕ1(r1)ϕ2(r2)

,

F1(r1, r2) =
Mp

(
∂f
∂z1

, r1, r2

)

ϕ′1(r1)ϕ2(r2)
, F2(r1, r2) =

Mp

(
∂f
∂z2

, r1, r2

)

ϕ1(r1)ϕ′2(r2)
, (3.5)

and taking into account (3.3) and (3.5), we can rewrite (3.4) in the form

‖F0‖q
Lq(dmϕ) ≤ C|f(0, 0)|q + C‖F1‖q

Lq(dmϕ) + C‖F2‖q
Lq(dmϕ). (3.6)

Without loss of generality we may assume that ϕj(0) = 1, j = 1, 2.
We prove (3.6) only for 0 < p < 1. The proof for the case 1 ≤ p ≤ ∞

is similar and is omitted. Assuming that F1, F2 ∈ Lq(dmϕ) and choosing two
sequences {rk}∞k=0, {ρk}∞k=0 as in Lemma 2, ϕ1(rk) = ek, ϕ2(ρk) = ek, we obtain
by Lemmas 1 and 3

‖F0‖q
Lq(dmϕ) =

∫ 1

0

∫ 1

0

Mq
p (f, r, ρ)

ϕ′1(r)ϕ′2(ρ)
ϕ1(r)1+q ϕ2(ρ)1+q

drdρ

≤ C
∞∑

k=0

Mq
p (f, rk+1, ρk+1)

∫ rk+1

rk

∫ ρk+1

ρk

ϕ′1(r) ϕ′2(ρ)
ϕ1(r)1+q ϕ2(ρ)1+q

drdρ

= C
∞∑

k=0

Mq
p (f, rk+1, ρk+1)

(
e−qk − e−q(k+1)

)2 1
q2

≤ C
∞∑

k=0

e−2qk
(
Mp

p (f, rk, ρk)
)q/p

≤ C(Mp
p (f, 0, 0))q/p

+ C
∞∑

k=0

e−2qk
(
Mp

p (f, rk+1, ρk+1)−Mp
p (f, rk, ρk)

)q/p
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≤ C|f(0, 0)|q + C
∞∑

k=0

e−2qk

[
(rk+1 − rk)pMp

p

(
∂f

∂z1
, rk+1, ρk+1

)

+ (ρk+1 − ρk)pMp
p

(
∂f

∂z2
, rk+1, ρk+1

)]q/p

≤ C|f(0, 0)|q + C
∞∑

k=0

e−2qk(rk+1 − rk)qMq
p

(
∂f

∂z1
, rk+1, ρk+1

)

+ C
∞∑

k=0

e−2qk(ρk+1 − ρk)qMq
p

(
∂f

∂z2
, rk+1, ρk+1

)
,

where the involved constants C = C(p, q, ϕ1, ϕ2) > 0 depend only on p, q and
the functions ϕ1, ϕ2. By Lagrange’s theorem

rk+1 − rk = (e− 1)ek
(
ϕ′1(xk)

)−1
, where rk < xk < rk+1,

ρk+1 − ρk = (e− 1)ek
(
ϕ′2(yk)

)−1
, where ρk < yk < ρk+1.

Hence

‖F0‖q
Lq(dmϕ) ≤ C|f(0, 0)|q + C

∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (
ϕ′1(xk)

)−q
e−qk

+ C
∞∑

k=0

Mq
p

(
∂f

∂z2
, rk+1, ρk+1

) (
ϕ′2(yk)

)−q
e−qk.

(3.7)

On the other hand,

‖F1‖q
Lq(dmϕ) =

∫ 1

0

∫ 1

0

Mq
p

(
∂f

∂z1
, r, ρ

) (
ϕ′1(r)

)1−q
ϕ′2(ρ)

ϕ1(r)
(
ϕ2(ρ)

)1+q drdρ

≥
∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (∫ rk+2

rk+1

(
ϕ′1(r)

)1−q

ϕ1(r)
dr

) (∫ ρk+2

ρk+1

ϕ′2(ρ)(
ϕ2(ρ)

)1+q dρ

)
.

Since the function ϕ2(ρ) is increasing, and
∫ rk+2

rk+1

ϕ′1(r)
ϕ1(r)

dr = 1,

∫ ρk+2

ρk+1

ϕ′2(ρ)
ϕ2(ρ)

dρ = 1,

by the mean value theorem for integrals, there exist numbers ξk, rk+1 < ξk <
rk+2, such that

‖F1‖q
Lq(dmϕ) ≥

∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (
ϕ′1(ξk)

)−q(
ϕ2(ρk+2)

)−q

≥ C
∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (
ϕ′1(ξk)

)−q
e−qk. (3.8)

AVETISYAN,STEVIC:HOLOMORPHIC FUNCTIONS 245



Similarly, there exist numbers ηk, ρk+1 < ηk < ρk+2, such that

‖F2‖q
Lq(dmϕ) ≥ C

∞∑

k=0

Mq
p

(
∂f

∂z2
, rk+1, ρk+1

) (
ϕ′2(ηk)

)−q
e−qk. (3.9)

Combining inequalities (3.7)-(3.9), and using Lemma 2(a), we get

‖F0‖q
Lq(dmϕ) ≤ C|f(0, 0)|q + C

∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (
ϕ′1(xk)

)−q
e−qk

+ C
∞∑

k=0

Mq
p

(
∂f

∂z2
, rk+1, ρk+1

) (
ϕ′2(yk)

)−q
e−qk

≤ C|f(0, 0)|q + C
∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (
ϕ′1(ξk)

)−q
e−qk

+ C
∞∑

k=0

Mq
p

(
∂f

∂z2
, rk+1, ρk+1

) (
ϕ′2(ηk)

)−q
e−qk

≤ C|f(0, 0)|q + C‖F1‖q
Lq(dmϕ) + C‖F2‖q

Lq(dmϕ). (3.10)

In order to obtain the reverse inequality first note that

‖F0‖q
Lq(dmϕ) =

∫ 1

0

∫ 1

0

Mq
p (f, r, ρ)

ϕ′1(r)ϕ′2(ρ)
ϕ1(r)1+q ϕ2(ρ)1+q

drdρ

≥
∞∑

k=0

Mq
p (f, rk, ρk)

∫ rk+1

rk

∫ ρk+1

ρk

ϕ′1(r) ϕ′2(ρ)
ϕ1(r)1+q ϕ2(ρ)1+q

drdρ

=
1
q2

∞∑

k=0

Mq
p (f, rk, ρk)

(
e−qk − e−q(k+1)

)2

≥ Cq

∞∑

k=0

e−2qkMq
p (f, rk, ρk). (3.11)

On the other hand, employing Lemma 4, we have that

‖F1‖q
Lq(dmϕ) =

∫ 1

0

∫ 1

0

Mq
p

(
∂f

∂z1
, r, ρ

) (
ϕ′1(r)

)1−q
ϕ′2(ρ)

ϕ1(r)
(
ϕ2(ρ)

)1+q drdρ

≤ C
∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (∫ rk+1

rk

(
ϕ′1(r)

)1−q

ϕ1(r)
dr

)(∫ ρk+1

ρk

ϕ′2(ρ)(
ϕ2(ρ)

)1+q dρ

)

≤ C
∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (
ϕ′1(xk)

)−q(
ϕ2(ρk)

)−q

= C
∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (
ϕ′1(xk)

)−q
e−kq

≤ C
∞∑

k=0

Mq
p (f, rk+2, ρk+2) (rk+2 − rk+1)−q

(
ϕ′1(xk)

)−q
e−kq
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for some xk ∈ (rk, rk+1). By Lagrange’s theorem we have that

ek+2(1− e−1) = ϕ1(rk+2)− ϕ1(rk+1) = ϕ′1(zk)(rk+2 − rk+1),

for some zk ∈ (rk+1, rk+2). Hence by Lemma 2(a)

|f(0, 0)|q+‖F1‖q
Lq(dmϕ)

≤ |f(0, 0)|q + C
∞∑

k=0

Mq
p (f, rk+2, ρk+2)

(
ϕ′1(zk)
ϕ′1(xk)

)q

e−q(k+2)e−qk

≤ |f(0, 0)|q + C
∞∑

k=0

Mq
p (f, rk+2, ρk+2) e2Mqe−2q(k+1)

≤ C
∞∑

k=0

Mq
p (f, rk, ρk) e−2qk (3.12)

Similarly it can be proved that

|f(0, 0)|q + ‖F2‖q
Lq(dmϕ) ≤ C

∞∑

k=0

Mq
p (f, rk, ρk) e−2qk. (3.13)

From (3.11)-(3.13) the inequality follows.

4 Pluriharmonic conjugates

In this section we discuss pluriharmonic functions in mixed norm spaces Php,q
~ω (Un).

The problem of harmonic conjugation in mixed norm and Bergman spaces is
classical and goes back to Hardy and Littlewood [5]. For pluriharmonic con-
jugation on the unit ball, unit polydisc and more general bounded symmetric
domains in Cn, see [8, 10, 11, 21], where standard weight functions were con-
sidered. For harmonic conjugation in mixed norm spaces on the unit disc, with
general weights see [9, 14].

Theorem 2. Let 1 ≤ p ≤ ∞, 0 < q < ∞, and each of the weight functions
ωj(zj), j = 1, . . . , n, satisfies (3.1). Then Php,q

~ω (Un) is a self-conjugate space.
Moreover, if f ∈ H(Un), f = u+ iv, u ∈ Php,q

~ω (Un), and v is the pluriharmonic
conjugate of u normalized so that v(0) = 0, then

‖f‖p,q,~ω ≤ C(p, q, ~ω, n)‖u‖p,q,~ω. (4.1)

Proof. Denoting

F0(r1, r2) =
Mp(f, r1, r2)
ϕ1(r1)ϕ2(r2)

and F3(r1, r2) =
Mp(u, r1, r2)
ϕ1(r1)ϕ2(r2)

, (4.2)
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we can easily see that (4.1) is equivalent to

‖F0‖Lq(dmϕ) ≤ C(p, q, ~ω, n)‖F3‖Lq(dmϕ). (4.3)

Since 1 ≤ p ≤ ∞, the method of the proof of Theorem 1 works for this case as
well. Indeed, similar to (3.11), we obtain

‖F3‖q
Lq(dmϕ) ≥ Cq

∞∑

k=0

e−2qkMq
p (u, rk, ρk). (4.4)

On the other hand, employing Lemma 4(b), we have that

‖F1‖q
Lq(dmϕ) ≤ C

∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρk+1

) (
ϕ′1(xk)

)−q(
ϕ2(ρk)

)−q

≤ C
∞∑

k=0

Mq
p (u, rk+2, ρk+2) (rk+2 − rk+1)−q

(
ϕ′1(xk)

)−q
e−kq

for some xk ∈ (rk, rk+1). By Lagrange’s theorem and Lemma 2(a) we obtain

|f(0, 0)|q + ‖F1‖q
Lq(dmϕ) ≤ C

∞∑

k=0

Mq
p (u, rk, ρk) e−2qk (4.5)

Similarly, (4.5) can be stated for F2 instead of F1. Thus,

‖F0‖Lq(dmϕ) ≤ C|f(0, 0)|+ C‖F1‖Lq(dmϕ) + C‖F2‖Lq(dmϕ) ≤ C‖F3‖Lq(dmϕ),

as desired.

An interesting question is whether Theorem 2 holds true for 0 < p < 1. In
this case we are able to prove a slightly weaker result.

Theorem 3. Let 0 < p ≤ ∞, 0 < q < ∞, and the weight functions ωj(zj),
j = 1, . . . , n, together with their corresponding functions ϕj = ϕωj

defined by
(3.2), satisfy (2.2). Then Php,q

~ω (Un) is a self-conjugate space. Moreover, if
f ∈ H(Un), f = u + iv, u ∈ Php,q

~ω (Un), and v is the pluriharmonic conjugate
of u normalized so that v(0) = 0, then

‖f‖p,q,~ω ≤ C(p, q, ~ω, n)‖u‖p,q,~ω. (4.6)

Proof. Again we have to prove the inequality (4.3). The proof is now based
on Lemmas 2(b), 5 and 6. Note that in view of (3.10) it suffices to prove the
inequality

|f(0, 0)|+ ‖F1‖Lq(dmϕ) + ‖F2‖Lq(dmϕ) ≤ C‖F3‖Lq(dmϕ).
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By the monotonicity of the integral means and the mean value theorem for
integrals, we deduce that

‖F1‖q
Lq(dmϕ) =

∫ 1

0

[∫ 1

0

Mq
p

(
∂f

∂z1
, r, ρ

) (
ϕ′1(r)

)1−q

ϕ1(r)
dr

]
ϕ′2(ρ)(

ϕ2(ρ)
)1+q dρ

≤ C

∫ 1

0

[ ∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρ

) ∫ rk+1

rk

(
ϕ′1(r)

)1−q

ϕ1(r)
dr

]
ϕ′2(ρ)(

ϕ2(ρ)
)1+q dρ

= C

∫ 1

0

[ ∞∑

k=0

Mq
p

(
∂f

∂z1
, rk+1, ρ

) (
ϕ′1(xk)

)−q

]
ϕ′2(ρ)(

ϕ2(ρ)
)1+q dρ

≤ C

∫ 1

0

[ ∞∑

k=0

Mq
p

(
∂f

∂z1
,
rk+1 + rk+2

2
, ρ

) (
ϕ′1(xk)

)−q

]
ϕ′2(ρ)(

ϕ2(ρ)
)1+q dρ

for some xk ∈ (rk, rk+1). An application of Lemma 5 with R = 1
2 (rk+2 − rk+1)

and r1 7→ 1
2 (rk+1 + rk+2), k ≥ 0, yields

‖F1‖q
Lq(dmϕ) ≤ C

∫ 1

0

[ ∞∑

k=0

(
ϕ′1(xk)

)−q

(rk+2 − rk+1)1+q

∫ rk+2

rk+1

Mq
p (u, t, ρ)dt

]
ϕ′2(ρ)(

ϕ2(ρ)
)1+q dρ.

Next, we apply Lagrange’s theorem and Lemma 2(b) to obtain

‖F1‖q
Lq(dmϕ)

≤ C

∫ 1

0

[ ∞∑

k=0

(
ϕ′1(xk)

)−q(
ϕ′1(yk)

)q

(rk+2 − rk+1) eq(k+2)

∫ rk+2

rk+1

Mq
p (u, t, ρ)dt

]
ϕ′2(ρ)(

ϕ2(ρ)
)1+q dρ

≤ C

∫ 1

0

[ ∞∑

k=0

e−q(k+2)

rk+2 − rk+1

∫ rk+2

rk+1

Mq
p (u, t, ρ)dt

]
ϕ′2(ρ)(

ϕ2(ρ)
)1+q dρ

≤ C

∫ 1

0

[ ∞∑

k=0

(rk+2 − rk+1)−1

∫ rk+2

rk+1

Mq
p (u, t, ρ)

(
ϕ1(t)

)−q
dt

]
ϕ′2(ρ)(

ϕ2(ρ)
)1+q dρ

≤ C

∫ 1

0

[ ∞∑

k=0

ϕ′1(yk)
ϕ1(rk+2)− ϕ1(rk+1)

∫ rk+2

rk+1

Mq
p (u, t, ρ)

(
ϕ1(t)

)−q
dt

]
ϕ′2(ρ) dρ(
ϕ2(ρ)

)1+q ,

where rk+1 < yk < rk+2, ϕ1(rk) = ek. Since the function ϕ1(t) is increasing,
we get by Lemma 2(b)

‖F1‖q
Lq(dmϕ) ≤ C

∫ 1

0

[ ∞∑

k=0

ϕ′1(yk)
∫ rk+2

rk+1

Mq
p (u, t, ρ)

(
ϕ1(t)

)−1−q
dt

]
ϕ′2(ρ) dρ(
ϕ2(ρ)

)1+q

≤ C

∫ 1

0

[ ∞∑

k=0

∫ rk+2

rk+1

Mq
p (u, t, ρ)

ϕ′1(t)(
ϕ1(t)

)1+q dt

]
ϕ′2(ρ)(

ϕ2(ρ)
)1+q dρ

≤ C‖F3‖q
Lq(dmϕ).
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Similarly it can be proved that

‖F2‖Lq(dmϕ) ≤ C‖F3‖Lq(dmϕ).

Finally, by Lemma 6,

|f(0, 0)| = |u(0, 0)| ≤ C‖F3‖Lq(dmϕ).

This completes the proof of Theorem 3.

Note that although condition (2.2) is stronger than (2.1), the class of weight
functions ω(z) satisfying (2.2) is still rather wide. For example,

ω(r) =
(

log
1

1− r

)γ

(1− r)β exp
( −c

(1− r)α

)
, α > 0, c > 0, β ∈ R, γ ∈ R,

is a typical weight function satisfying (2.2), see [9].

Pluriharmonic conjugation makes it possible to extend Theorem 1 to pluri-
harmonic functions. The partial differential operators ∂

∂zj
and ∂

∂zj
are defined

by

∂

∂zj
=

1
2

(
∂

∂xj
− i

∂

∂yj

)
,

∂

∂zj
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
, zj = xj + iyj .

Theorem 4. Let u ∈ Ph(Un) and one of the following two conditions holds:
(a) 1 ≤ p ≤ ∞, 0 < q < ∞, and the weights ωj(zj), j = 1, . . . , n, satisfy

condition (3.1), with distortion functions ψj(zj), j = 1, . . . , n.
(b) 0 < p ≤ ∞, 0 < q < ∞, and the weight functions ωj(zj), j = 1, . . . , n,

together with their corresponding functions ϕj = ϕωj defined by (3.2), satisfy
(2.2). Then

‖u‖p,q,~ω ³ |u(0)|+
n∑

j=1

∥∥∥∥ψj
∂u

∂zj

∥∥∥∥
p,q,~ω

³ |u(0)|+
n∑

j=1

∥∥∥∥ψj
∂u

∂zj

∥∥∥∥
p,q,~ω

. (4.7)

Proof. Since the function u is real–valued, the second equivalence in (4.7) is
obvious. Let now f ∈ H(Un), f = u+ iv, and v be the pluriharmonic conjugate
of u normalized so that v(0) = 0. Then by Theorems 1-3 and Cauchy-Riemann
equations

|u(0)|+
n∑

j=1

∥∥∥∥ψj
∂u

∂zj

∥∥∥∥
p,q,~ω

= |f(0)|+ C
n∑

j=1

∥∥∥∥ψj
∂f

∂zj

∥∥∥∥
p,q,~ω

³ ‖f‖p,q,~ω ³ ‖u‖p,q,~ω,

as desired.

Remark 2. It is not difficult to see that Theorem B holds for the case of
holomorphic functions on the unit ball B ⊂ Cn, where ∇f appears instead of f ′

in (1.3). Note that by the maximal theorem the inequality in Lemma 3 becomes

M `
p(f, ρ)−M `

p(f, r) ≤ C(ρ− r)`M `
p(∇f, ρ),

0 < r < ρ < 1, f ∈ H(B), where ` = min{1, p}, p ∈ (0,∞].
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[2] K. Avetisyan and S. Stević, Equivalent conditions for Bergman space and Littlewood-
Paley type inequalities, J. Comput. Anal. Appl. 9 (1) (2007), 15-28.

[3] G. Benke and D. C. Chang, A note on weighted Bergman spaces and the Cesàro operator,
Nagoya Math. J. 159 (2000), 25-43.

[4] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related in-
equalities, J. Math. Anal. Appl. 38 (1972), 746-765.

[5] G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine
Angew. Math. 167 (1932), 405–423.

[6] S. Li, Derivative free characterization of Bloch spaces, J. Comput. Anal. Appl. 10 (2)
(2008), 253-258.
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[13] S. Stević, A note on weighted integrals of analytic functions, Bull. Greek Math. Soc. 46
(2002), 3-9.
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Criteria for functions to be weighted
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Abstract

In this paper we give the definition of (α, β)-Bloch space of analytic
functions, then we investigate the relation between this (α, β)-Bloch space
and the Dirichlet space in the unit disc. Besides, we obtain characteri-
zations for this (α, β)-Bloch space by Qp spaces of analytic functions.
Moreover, we extend the result due to Yamashita [27] by our (α, β)-Bloch
functions. Finally, we characterize our (α, β)-Bloch space by Qp spaces of
harmonic functions.

1 Introduction

In this section we define all function spaces and classes which will be studied
later, as well as certain concepts, and fix the notation.
Let ∆ = {z : |z| < 1} be the open unit disk in the complex plane C. Recall that
the well known Bloch space (see e.g. [3] , [9], [16] and [23]) is defined as follows:

B = {f : f analytic in ∆ and sup
z∈∆

(1− |z|2)|f ′(z)| < ∞}. (1)

So, Bloch functions on the unit disc may be defined as those analytic functions
f on ∆ for which the radii of the schlicht disks in the range of f are bounded
above. The Bloch functions are somewhat analogous to functions in the disc
algebra and Bloch functions can be characterized as those analytic functions
which are uniformly continuous when ∆ is given the hyperbolic metric.
The little Bloch space B0 is a subspace of B0 consisting of all f ∈ B such that

B0 = {f : f analytic in ∆ and lim
|z|→1−

(1− |z|2)|f ′(z)| = 0}.

2000 AMS: 30D45, 46E15.
Key words and phrases: (α, β)-Bloch spaces, Dirichlet space and Qp spaces.
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There are some interesting studies of Bloch space in several complex variables
(see e.g. [4, 17, 18, 19, 20, 22, 21, 28] and others).
The Dirichlet space (see e.g. [2] and [29]) is defined by

D =
{

f : f analytic in ∆ and
∫ ∫

∆

∣∣f ′(z)
∣∣2dσz < ∞

}
, (2)

where dσz is the Euclidean area element dxdy.
In 1994, Aulaskari and Lappan [6] introduced a class of holomorphic functions,
the so called Qp-spaces as follows:

Qp =
{

f : f analytic in ∆ and sup
a∈∆

∫ ∫

∆

∣∣f ′(z)
∣∣2gp(z, a)dσz < ∞

}
, (3)

where the weight function g(z, a) = ln
∣∣ 1−āz

a−z

∣∣ is defined as the composition of
the Möbius transformation ϕa(z) = a−z

1−āz since a, z ∈ ∆ and the fundamental
solution of the two-dimensional real Laplacian. One idea of this work was to
”close” the gap between the Dirichlet space and the Bloch space. Main results
are :

• D ⊂ Qp ⊂ Qq ⊂ BMOA, 0 < p < q < 1 (see [8]) where, BMOA is the
space of analytic functions of bounded mean oscillation,

• Q1 = BMOA (see [6]), Qp = B, for p > 1 (see [6]).

For more information about the study of Qp spaces of analytic functions we
refer to [5], [6], [7], [11], [26] and others. It should be mentioned here also that
several authors (see e.g. [10], [12] and [22]) tried to generalize the idea of these
spaces to higher dimensions using several real or complex variables. Also, there
are some generalizations in Clifford analysis (see [1], [13], [14] and [15]).

Now, we will give the following definitions:

Definition 1.1 Let α, β be real numbers ≥ 0. For an analytic function in ∆,
we define the (α, β)-Bloch space Bα,β as follows:

Bα,β =
{

f : f analytic in ∆ and sup
a,z∈∆

(1− |z|2)β+α

(1− |ϕa(z)|2)β
|f ′(z)| < ∞

}
. (4)

Also, we set

Bα,β(f) = sup
a,z∈∆

(1− |z|2)β+α

(1− |ϕa(z)|2)β
|f ′(z)| .

Our new definition in this paper gives us the ability to close the gap between
the Dirichlet space and the Bloch space.
If β = 0, then we will get the well known α-Bloch space. If α = 1 and β = 0,
then we will get the Bloch space as given by (1).
Also, the little (α, β)-Bloch space Bα,β,0, is a subspace of Bα,β consisting of all
f ∈ Bα,β such that

lim
|z|→1−

lim
|a|→1−

(1− |z|2)α

(1− |ϕa(z)|2)β
|f ′(z)| = 0

2
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Remark 1.1 The expression Bα,β(f) defines a seminorm while the natural
norm is given by

‖f‖Bα,β
= |f(0)|+ Bα,β(f).

With this norm the space Bα,β is a Banach space.

We will need the following lemma in the sequel:

Lemma 1.1 [29] Let 0 < q < ∞, |a| < 1. Then
∫

Γz

1
|1− āz|2q dΓz ≤ λ(

1− |a|)q ,

where λ is a constant not depending on a and Γz is the boundary of the unit
disk ∆.

Remark 1.2 Two quantities Af and Bf , both depending on an analytic func-
tion f on ∆, are said to be equivalent, written as Af ≈ Bf , if there exists a finite
positive constant C not depending on f such that for every analytic function f
on ∆ we have:

1
C

Bf ≤ Af ≤ CBf .

If the quantities Af and Bf , are equivalent, then in particular we have Af < ∞
if and only if Bf < ∞.

2 (α, β)-Bloch space and Dirichlet space

In this section we will give characterizations between the Dirichlet space and
(α, β)-Bloch space.

Proposition 2.1 Let f be an analytic function in ∆; |a| < 1 and α, β ≥ 0 with
α + β ≥ 1. Then we have that

(1− |a|2)2(β+α)|f ′(a)|2 ≤ 1
πR2

∫ ∫

∆

∣∣f ′(z)
∣∣2dσz, (5)

where 0 < R < 1.

Proof: Let U(a,R) = {z : ρ(z, a) = |ϕa(z)| =
∣∣ z−a
1−āz

∣∣ < R} be a pseudohyper-
trophic disc with center a and radius R. Then,

∫ ∫

∆

∣∣f ′(z)
∣∣2dσz ≥

∫ ∫

U(a,R)

∣∣f ′(z)
∣∣2dσz

= πR2(1− |a|2)2∣∣f ′(a)
∣∣2 ≥ πR2(1− |a|2)2(β+α)

∣∣f ′(a)
∣∣2

Since, ϕa(a) = 0, then
∫ ∫

∆

∣∣f ′(z)
∣∣2dσz ≥ πR2 (1− |a|2)2(β+α)

(1− |ϕa(a)|2)2β

∣∣f ′(a)
∣∣2.

Our proposition is therefore established.
Inequality (5) yields the following result.

3
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Corollary 2.1 From proposition 2.1, for α, β ≥ 0, with α + β ≥ 1 and |a| < 1
we obtain that

D ⊂ Bα,β .

This corollary means, that the Dirichlet space is a subspace of the Bloch spaces
Bα,β for α, β ≥ 0, with α + β ≥ 1

Remark 2.1 It is not strange to obtain our results in Proposition 2.1 and hence
in Corollary 2.1 by the term (1−|a|2)2(β+α)

(1−|ϕa(a)|2)2β

∣∣f ′(a)
∣∣2 not the term (1−|z|2)2(β+α)

(1−|ϕa(z)|2)2β

∣∣f ′(z)
∣∣2,

since we have used the same technique as in [6, 24] in both articles the authors
replaces z by a to obtain characterizations. The same will be done in Proposition
3.1 and Corollary 3.1 in this paper.

Proposition 2.2 Let f be an analytic function in ∆, and f ∈ Bα,β . Then for
0 < β < ∞, and 0 ≤ α < 1

2 we have that

sup
z∈∆

∫ ∫

∆

∣∣f ′(z)
∣∣2dσz ≤ (2)2βπλJ(α) B2

α,β(f), (6)

where J(α) =
∫ 1

0
(1− r2)−2α r dr and λ is a constant not depending on a.

Proof: Since,
(1− |z|2)β+α

(1− |ϕa(z)|2)β
|f ′(z)| ≤ B2

α,β(f).

Then,
∫ ∫

∆

∣∣f ′(z)
∣∣2dσz ≤ B2

α,β(f)
∫ ∫

∆

(1− |ϕa(z)|2)2β

(1− |z|2)2(β+α)
dσz

Since,
(
1− |ϕa(z)|2) =

(
1− |a|2)(1− |z|2)

|1− āz|2 (7)

Then,
∫ ∫

∆

∣∣f ′(z)
∣∣2dσz ≤ B2

α,β(f)
∫ ∫

∆

(1− |a|2)2β(1− |z|2)−2α

|1− āz|4β
dσz

= π B2
α,β(f)

∫ 1

0

(1− r2)−2α(1− |a|2)2β

∫

Γz

1

|1− āz|4β
dΓz rdr.

Using lemma 1.1, we obtain that
∫ ∫

∆

∣∣f ′(z)
∣∣2dσz ≤ (2)2βπλJ(α)B2

α,β(f).

Our proposition is therefore proved.

4
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Theorem 2.1 Let f be an analytic function in ∆. Then, for 0 < R < 1, the
following statements are equivalent:

1. f ∈ Bα,β for all 0 ≤ β < ∞ and 0 ≤ α < 1
2 .

2. f ∈ D < ∞.

Proof: The implication (1 ⇒ 2) follows from proposition 2.2. From 2.1, we
have that (2 ⇒ 1).
The importance of the above theorem is to give us a characterization for the
(α, β)-Bloch spaces by the help of integral norms of the Dirichlet space D.

3 Analytic Bα,β and Qp spaces

Proposition 3.1 Let f be an analytic function in ∆; |a| < 1. Then we have
that

(1− |a|2)2(β+α)

(1− |ϕa(a)|2)2β
|f ′(a)|2 ≤ 16

R2(1−R2)p

∫ ∫

∆

∣∣f ′(z)
∣∣2(1− |ϕa(z)|2)p dσz (8)

where 0 < R < 1 and p > 0.

Proof: By subharmonicity, we have for an analytic function g on U(a,R) that

|g(0)|2 ≤ 1
R2

∫ ∫

U(0,R)

|g(w)|2dσw. (9)

Let f be an analytic function on U(a,R) and applying inequality (9) to the
function g = f ′ ◦ ϕa, and using change of variables, we get that

|f ′(a)|2 ≤ 1
R2

∫ ∫

U(0,R)

|f ′(ϕa(w)|2dσw

=
1

R2

∫ ∫

U(a,R)

|f ′(z)|2
(

1− |ϕa(z)|2
1− |z|2

)2

dσz.

Since, (
1− |ϕa(z)|2

1− |z|2
)2

≤ 16
(1− |a|2)2 (see [24]).

Therefore,

|f ′(a)|2 ≤ 16
R2(1− |a|2)2

∫ ∫

U(a,R)

|f ′(z)|2dσz

Since,
(1− |ϕa(z)|2)p ≥ (1−R2)p and ϕa(a) = 0.

Then,
∫ ∫

U(a,R)

∣∣f ′(z)
∣∣2(1− |ϕa(z)|2)pdxdy ≥ R2(1−R2)p

16
(1− |a|2)2|f ′(a)|2

≥ R2(1−R2)p

16
(1− |a|2)2(β+α)

(1− |ϕa(a)|2)2β
|f ′(a)|2.

5
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Consider the inequality∫ ∫

∆

∣∣f ′(z)
∣∣2(1− |ϕa(z)|2)pdσz ≥

∫ ∫

U(a,R)

∣∣f ′(z)
∣∣2(1− |ϕa(z)|2)pdσz.

We obtain that
(1− |a|2)2(β+α)

(1− |ϕa(a)|2)2β
|f ′(a)|2 ≤ 16

R2(1−R2)p

∫ ∫

∆

∣∣f ′(z)
∣∣2(1− |ϕa(z)|2)pdσz

Our proposition is therefore established.
Last inequality yields the following result.

Corollary 3.1 From proposition 2.1, we get for p > 0, 0 < α < ∞, 0 < β < ∞;
α + β ≥ 1 and |a| < 1 that

B2
α,β(f) ≤ 16

R2(1−R2)p
Qp(f) ,

where ,

Qp(f) = sup
a∈∆

∫ ∫

∆

∣∣f ′(z)
∣∣2(1−|ϕa(z)|2)pdσz ≈ sup

a∈∆

∫ ∫

∆

∣∣f ′(z)
∣∣2(g(z, a))p dσz < ∞.

Proposition 3.2 Let f be an analytic function in ∆, 0 ≤ α < ∞ and 0 ≤ β <
∞ with α + β ≥ 1 and 2(α + β)− 1 < p < ∞. Then we have that

∫ ∫

∆

∣∣f ′(z)
∣∣2(g(z, a))p dσz ≤ J(p, α, β) B2

α,β(f), (10)

where J(p, α, β) = 2π
∫ 1

0

(log 1
r )p

(1−r2)2(α+β) r d r.

Proof: Since,
(1− |z|2)β+α

(1− |ϕa(z)|2)β
|f ′(z)| < Bα,β(f),

then we obtain
∫ ∫

∆

∣∣f ′(z)|2g(z, a))p dσz ≤ B2
α,β(f)

∫ ∫

∆

(log 1
|z| )

p

(1− |z|2)2(α+β)
dσz

= 2πB2
α,β(f)

∫ 1

0

(log 1
r )p

(1− r2)2(α+β)
r d r = J(p, α, β)B2

α,β(f).

Combining Corollary 3.1 and Proposition 3.2, we have the following theorem:

Theorem 3.1 Let f be an analytic function in ∆, 0 ≤ α < ∞ and 0 ≤ β < ∞
with α + β ≥ 1 and 2(α + β) − 1 < p < ∞. Then the following statements are
equivalent:

1. f ∈ Bα,β for all 0 ≤ β < ∞ and 0 ≤ α < ∞,

2. f ∈ Qp for all 2(α + β)− 1 < p < ∞.

3. f ∈ Qp for some 2(α + β)− 1 < p < ∞.

Proof: The implication (1 ⇒ 2) follows from Proposition 3.2. (2 ⇒ 3) is very
clear. (3 ⇒ 1) this follows from Corollary 3.1 .

6
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4 Yamashita’s theorem for (α, β)-Bloch functions

In [27], Yamashita obtained a criteria for holomorphic Bloch functions in terms
of the area and the length of the images of non-Euclidean disks and non-
Euclidean circles, respectively. In this section we will extend the results of
Yamashita [27] for (α, β)-Bloch functions.
Now, we let

σ(a, z) =
1
2

log
|1− āz|+ |a− z|
|1− āz| − |a− z| (see [27])

be the non-Euclidean hyperbolic distance between a and z in ∆. for 0 < ρ < ∞
and a ∈ ∆, we set

H(z, ρ) = {a ∈ ∆ ; σ(a, z) < ρ}
and

Γ(z, ρ) = {a ∈ ∆ ; σ(a, z) = ρ}.
Let f be non-constant and holomorphic in ∆ and let Af (z, ρ) be the area of the
Riemannian image F (z, ρ) of H(z, ρ) by f, and let Af (z, ρ) be the area of the
image F (z, ρ) of H(z, ρ) by f, we note that F (z, ρ) is the projection of F (z, ρ) to
C. Suppose that Lf (z, ρ) be the length of the Riemannian image of Γ(z, ρ) by f,
and let Lf (z, ρ) be the length of the outer boundary of F (z, ρ). Here, the outer
boundary of a bounded domain G in C means the boundary of C\E, where E
is the unbounded component of the complement C\G of G. It is easy to observe
that

Af (z, ρ) ≥ Af (z, ρ) and Lf (z, ρ) ≥ Lf (z, ρ)

for each 0 < ρ < ∞ and each z ∈ ∆.

Proposition 4.1 Let f be non-constant and holomorphic in ∆. Then for each
0 < ρ < ∞, α, β ≥ 0 , where 1 ≤ α + β < ∞ and for each z ∈ ∆, we have that

(1− |z|2)β+α

(1− |ϕa(z)|2)β
|f ′(z)| ≤

( Af (z, ρ)
(1−R2)βπt2

) 1
2

,

and
(1− |z|2)β+α

(1− |ϕa(z)|2)β
|f ′(z)| ≤ Lf (z, ρ)

2(1−R2)βπt
,

where t = e2ρ−1
e2ρ+1 and R is a constant.

Proof: For the proof of this proposition we may assume that f ′(z) 6= 0. Now
set

g(a) = f(
a + z

1 + z̄a
) = c0 + c1a + c2a

2 + . . .

for |a| < 1, where

(1− |z|2)α+βf ′(z) ≤ c1 = (1− |z|2) f ′(z) 6= 0, α, β ≥ 0 and 1 ≤ α + β < ∞.

7
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So, it follows from theorems 1 and 2 in [25] that

πt2|c1|2 ≤ Af (z, ρ) and 2π t |c1| ≤ Lf (z, ρ).

Since, |ϕa(z)| < R, it follows that

(1− |z|2)β+α

(1− |ϕa(z)|2)β
|f ′(z)| ≤

( Af (z, ρ)
(1−R2)βπt2

) 1
2

and
(1− |z|2)β+α

(1− |ϕa(z)|2)β
|f ′(z)| ≤ Lf (z, ρ)

2(1−R2)βπt

Theorem 4.1 Let f be non-constant and holomorphic function in ∆ and let
1 ≤ α + β < ∞. Then the following are mutually equivalent:
(i) f is (α, β)-Bloch,
(ii) there exists 0 < ρ < ∞ such that

sup
a,z∈∆

Af (z, ρ) < ∞,

(iii) there exists 0 < ρ < ∞ such that

sup
a,z∈∆

Af (z, ρ) < ∞,

(iv) there exists 0 < ρ < ∞ such that

sup
a,z∈∆

Lf (z, ρ) < ∞,

(v) there exists 0 < ρ < ∞ such that

sup
a,z∈∆

Lf (z, ρ) < ∞.

Proof: (ii) ⇒ (iii) and (iv) ⇒ (v) are obvious. The implications (i) ⇒ (ii)
and (i) ⇒ (iv) are not difficult to prove. Now, we assume (i) with

sup
a,z∈∆

(1− |z|2)β+α

(1− |ϕa(z)|2)β
|f ′(z)| = k < ∞, a ∈ [0, 1) .

For each fixed 0 < ρ < ∞, we set

t =
e2ρ − 1
e2ρ + 1

.

Then

Af (z, ρ) =
∫ ∫

H(z,ρ)

∣∣f ′(a)|2 dσa ≤ k2

∫ ∫

|a|<t

(1− |a|2)−2(α+β) dσa

8
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Similarly, we obtain

= π
k2t2

(1− t2)2(α+β)
.Lf (z, ρ) =

∫ ∫

Γ(z,ρ)

∣∣f ′(a)| dσa

≤ k

∫ ∫

Γ(z,ρ)

(1− |a|2)−(α+β) dσa

= 2π
kt

(1− t2)(α+β)
.

Also, (iii) ⇒ (i) and (v) ⇒ (i) are immediate consequences of Proposition 4.1.

5 Harmonic (α, β)-Bloch spaces

Now, we consider a similar criterion for the normality of harmonic functions.
Let h be a real harmonic function in ∆. A harmonic function h is said to be a
normal function in ∆ if

U(h, α, β) = sup
a,z∈∆

(1− |z|2)β+α

(1− |ϕa(z)|2)β

|grad h(z)|
1 + |h(z)|2 < ∞ .

We denote

Qp(h) = sup
a∈∆

∫ ∫

∆

( |grad h(z)|
1 + |h(z)|2

)2

(1− |ϕa(z)|2)pdxdy

Proposition 5.1 Let h be a real harmonic function in ∆, p > 2(α+β)−1 and
|a| < 1. Then we have that

∫ ∫

∆

( |grad h(z)|
1 + |h(z)|2

)2

(1− |ϕa(z)|2)pdxdy ≤ J(p, α, β)U2(h, α, β). (11)

Proof: The proof of Proposition 5.1 is much akin that of Proposition 3.2, so it
will be omitted.

Theorem 5.1 Let h be a real harmonic function in ∆ and let 1 ≤ α + β < ∞,
then the following conditions are equivalent:
(i) h is a normal function,
(ii) Qp(h) < ∞ for all p > 2(α + β)− 1
(iii) Qp(h) < ∞ for some p > 2(α + β)− 1.

Proof: (i) ⇒ (ii) This follows from Proposition 5.1, (ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) is very similar to Theorem 3 in [6].

9
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A RELATED FIXED POINT THEOREM ON TWO METRIC
SPACES SATISFYING A GENERAL CONTRACTIVE

CONDITION OF INTEGRAL TYPE

CIHANGIR ALACA

Abstract. In this paper, we prove a related �xed point theorem on two com-
plete metric spaces satisfying a general contractive condition of integral type.

1. Introduction

Jungck [9] proved a �xed point theorem for commuting maps generalizing the
Banach�s �xed point and further he [10] introduced more generalizing commutativ-
ity, so called compatibility, which is more general than that of weak commutativity
de�ned by Sessa [13]. Lately, Branciari [4] obtained a �xed point results for a sin-
gle mapping satisfying an analogue of Banach�s contraction principle for an integral
type inequality. Rhoades [12] proved two �xed point theorems involving more gen-
eral contractive conditions. Vijayaraju et al. [14] established a general principle,
which maked it possible to proved many �xed point theorems for a pair of maps
of integral type. It is well known that the Banach contraction principle is a fun-
damental result in �xed point theory, which has been used and extended in many
di¤erent directions. It has been observed in Hicks and Rhoades [8] that some of
the de�ning properties of the metric are not needed in the proofs of certain metric
theorems. Hicks and Rhoades [8] established some common �xed point theorems
in symmetric spaces and proved that very general probabilistic structures admit
a compatible symmetric or semi-metric. Aliouche [1] gave a common �xed point
theorem for selfmappings of a symmetric space under a contractive condition of
integral type. Altun and Turkoglu [2] proved a �xed point theorem for mappings
satisfying a general contractive of operator type. Motivated by this fact, Fisher
[6] and Fisher and Murthy [7] proved related �xed point theorems for two pairs
of mappings on two complete metric spaces. Popa [11] proved a generalization of
Theorem 2 is proved by Fisher and Murthy in [7] for pairs of mappings satisfying
two implicit relations on two metric spaces.
The main purpose of this paper is to give a related �xed point theorem for two

pairs of mappings on two metric spaces satisfying a general contractive condition
of integral type. These theorems generalizes of Fisher [6] and Fisher and Murthy
[7] results in two metric spaces satisfying a general contractive condition of integral
type.

2000 Mathematics Subject Classi�cation. 47H10, 54E50, 58J20.
Key words and phrases. Complete metric space; common �xed point; two metric space.
Corresponding author: cihangiralaca@yahoo.com.tr (C. Alaca).
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2 CIHANGIR ALACA

2. Preliminaries

Let X be nonempty set and f : X ! X be a mapping. A point x 2 X is said to
be a �xed point of f if it solves the (�xed-point) equation: f(x) = x.

Theorem 1. Let (X; d) be a metric space, and f : X ! X a mapping. f is said to
be Lipschitz if there exists a real number c � 0 such that for all x, y 2 X, we have

d(f(x); f(y)) � cd(x; y):
f is said to be a contraction mapping if, in the above inequality, c < 1, and it is
nonexpansive if c = 1.

The next result is known as Banach�s contraction principle, being due to Banach
(1922) (see [3] and [5]).

Theorem 2. Let (X; d) be a complete metric space, and f : X ! X a contraction
mapping. Then, f has a unique �xed point x� 2 X such that for each x 2 X
lim
n!1

fnx = x�.

The following theorem was given by Branciari [4] was to analyze the existence of
�xed points for mappings of f de�ned on a complete metric space (X; d) satis�ng
a contractive condition of integral type.

Theorem 3. Let (X; d) be a complete metric space, c 2 (0; 1) and f : X ! X be
a mapping such that for each x; y 2 X one has

d(fx;fy)Z
0

'(t)dt � c
d(x;y)Z
0

'(t)dt

where ' : [0;+1) ! [0;+1) is a Lebesgue-integrable mapping which is summable
(i.e. with �nite integral) on each compact subset of [0;+1), non-negative and such

that for each " > 0,

"Z
0

'(t)dt > 0; then f has a unique �xed point a 2 X such that

for each x 2 X, lim
n!1

fnx = a.

3. A Fixed point theorem and results

Now, we prove the following related �xed point theorem for two pairs of mappings
on two complete metric spaces.

Theorem 4. Let (X; d) and (Y; �) be complete metric spaces; A, B be mappings
of X into Y and S, T be mappings of Y into X satisfying, for all x, x0 2 X and
y, y0 2 Y ,

(3.1)

d(SAx;TBx0)Z
0

'1(t)dt � c
m(x;y)Z
0

'1(t)dt

(3.2)

�(BSy;ATy0)Z
0

'2(t)dt � c
m0(x;y)Z
0

'2(t)dt,
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RELATED FIXED POINTS ON TWO METRIC SPACES 3

where c 2 (0; 1), 'i : R+ ! R+ (i = 1; 2) are Lebesgue-integrable mappings which
are summable, non-negative and such that

(3.3)

"Z
0

'i(t)dt > 0 for each " > 0

and

(3.4) m(x; y) = maxfd(x; x0); d(x; SAx); d(x0; TBx0); �(Ax;Bx0)g,

(3.5) m0(x; y) = maxf�(y; y0); �(y;BSy); �(y0; ATy0); d(Sy; Ty0)g.

If one of the mappings A, B, S, and T is continuous, then SA and TB have a
unique common �xed point z in X and BS and AT have a unique common �xed
point w in Y . Further, Az = Bz = w and Sw = Tw = z.

Proof. Let x be an arbitrary point in X, let

Ax = y1, Sy1 = x1, Bx1 = y2, Ty2 = x2, Ax2 = y3

and in general let

Sy2n�1 = x2n�1, Bx2n�1 = y2n, Ty2n = x2n, Ax2n = y2n+1

for all n = 1, 2,.... Using inequality (3.1) and (3.4) we get

d(x2n+1;x2n)Z
0

'1(t)dt =

d(SAx2n;TBx2n�1)Z
0

'1(t)dt

� c

m(x2n;x2n�1)Z
0

'1(t)dt

= c

maxfd(x2n�1;x2n);d(x2n;x2n+1);�(y2n+1;y2n)gZ
0

'1(t)dt.

Since c < 1, it follows that

(3.6)

d(x2n+1;x2n)Z
0

'1(t)dt � c
maxfd(x2n;x2n�1);�(y2n;y2n+1)gZ

0

'1(t)dt.

Using inequality (3.1) again, it follows similarly that

(3.7)

d(x2n;x2n�1)Z
0

'1(t)dt � c
maxfd(x2n�1;x2n�2);�(y2n;y2n�1)gZ

0

'1(t)dt.

Similarly, using inequality (3.2) and (3.5) we get

(3.8)

�(y2n;y2n�1)Z
0

'2(t)dt � c
maxfd(x2n�1;x2n);�(y2n�1;y2n)gZ

0

'2(t)dt
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and

(3.9)

�(y2n�1;y2n)Z
0

'2(t)dt � c
maxfd(x2n�2;x2n�1);�(y2n�2;y2n�1)gZ

0

'2(t)dt.

Using inequalities (3.6) and (3.8), we have

d(x2n+1;x2n)Z
0

'1(t)dt � c

maxfd(x2n;x2n�1);�(y2n;y2n+1)gZ
0

'1(t)dt (3.10)

� c

maxfd(x2n;x2n�1);cd(x2n�1;x2n);c�(y2n�1;y2n)gZ
0

'1(t)dt

� c

maxfd(x2n;x2n�1);�(y2n�1;y2n)gZ
0

'1(t)dt

and similarly from inequalities (3.7) and (3.9), we have

(3.11)

d(x2n;x2n�1)Z
0

'1(t)dt � c
maxfd(x2n�1;x2n�2);�(y2n�1;y2n�2)gZ

0

'1(t)dt.

It now follows from inequalities (3.8), (3.9), (3.10) and (3.11) that

d(xn+1;xn)Z
0

'1(t)dt � c

maxfd(xn;xn�1);�(yn;yn�1)gZ
0

'1(t)dt,

�(yn+1;yn)Z
0

'2(t)dt � c

maxfd(xn;xn�1);�(yn;yn�1)gZ
0

'2(t)dt

and an induction argument shows that

d(xn+1;xn)Z
0

'1(t)dt � cn�1
maxfd(x1;x2);�(y1;y2)gZ

0

'1(t)dt,

�(yn+1;yn)Z
0

'2(t)dt � cn�1
maxfd(x1;x2);�(y1;y2)gZ

0

'2(t)dt

for all n = 1, 2,.... which implies that (c < 1), lim
n

d(xn+1;xn)Z
0

'1(t)dt = 0 and

lim
n

�(yn+1;yn)Z
0

'2(t)dt = 0 which, from (3.3), implies that lim
n
d(xn+1; xn) = 0 and

lim
n
�(yn+1; yn) = 0 respectively. It follows that fxng and fyng are Cauchy sequences

with limits z in X and w in Y .
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Now suppose that A is continuous. Then

lim
n
Ax2n = Az = lim

n
y2n+1 = w

and so Az = w. Using inequality (3.1) and (3.4) we have

d(Sw;x2n)Z
0

'1(t)dt =

d(SAz;TBx2n�1)Z
0

'1(t)dt

� c

m(z;x2n�1)Z
0

'1(t)dt.

Letting n tend to in�nity, we have

d(Sw;z)Z
0

'1(t)dt � c
d(z;SAz)Z
0

'1(t)dt = c

d(z;Sw)Z
0

'1(t)dt

which is a contradiction. Therefore,

d(Sw;z)Z
0

'1(t)dt = 0 and (3.3) implies that

Sw = z = SAz.

Now using inequality (3.2) and (3.5) we have

�(Bz;y2n+1)Z
0

'2(t)dt =

�(BSw;ATy2n)Z
0

'2(t)dt

� c

m0(w;y2n)Z
0

'2(t)dt.

Letting n tend to in�nity, we have

�(Bz;w)Z
0

'2(t)dt � c
maxf�(w;BSw);d(Sw;z)gZ

0

'2(t)dt = c

�(w;Bz)Z
0

'2(t)dt

which is a contradiction. Therefore,

�(Bz;w)Z
0

'2(t)dt = 0 and (3.3) implies that

Bz = w = BSw.
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Using inequality (3.1) and (3.4) we have
d(z;Tw)Z
0

'1(t)dt =

d(SAz;TBz)Z
0

'1(t)dt

� c

m(z;z)Z
0

'1(t)dt

= c

d(z;Tw)Z
0

'1(t)dt

which is a contradiction. Therefore,

d(z;Tw)Z
0

'1(t)dt = 0 and (3.3) implies that

Tw = z = TBz.

The same results of course hold if one of the mappings B, S, T is continuous insted
of A. To prove uniquness, suppose that TB has a second �xed point z0. Then using
inequalities (3.1), (3.2), (3.4) and (3.5) we have

d(z;z0)Z
0

'1(t)dt =

d(SAz;TBz0)Z
0

'1(t)dt

� c

m(z;z0)Z
0

'1(t)dt

= c

�(Az;Bz0)Z
0

'2(t)dt = c

�(ASw;BTBz0)Z
0

'2(t)dt

� c2

m0(w;Bz0)Z
0

'2(t)dt

= c2
maxf�(Az;Bz0);d(z;z0)gZ

0

'2(t)dt

= c2
d(z;z0)Z
0

'1(t)dt

which implies that

d(z;z0)Z
0

'1(t)dt = 0, which, from (3.3), implies that d(z; z0) = 0,

or z = z0, proving that z is the unique �xed point of TB. It follows similarly that
z is the unique �xed point of SA and w is the unique �xed point of BS and AT .
This completes the proof of the theorem. �
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Remark 1. If 'i(t) = 1 for i = 1; 2 in Theorem 4, we obtain Theorem 2 of [7].

Remark 2. If 'i(t) = 1 for i = 1; 2 and Tx = Ax = Bx for all x 2 X in Theorem
4, we obtain main theorem of [6].

Putting X = Y in Theorem 4 gives us the following corollary.

Corollary 1. Let (X; d) be a complete metric space, c 2 [0; 1), let A, B, S, T be
mappings of X into itself such that, for all x, y in X,

d(SAx;TBy)Z
0

'(t)dt � c
m(x;y)Z
0

'(t)dt

d(BSx;ATy)Z
0

'(t)dt � c
m0(x;y)Z
0

'(t)dt

where ' : R+ ! R+ is Lebesgue-integrable mapping which is summable, non-

negative and such that

"Z
0

'(t)dt > 0 for each " > 0. If one of the mappings

A, B, S, and T is continuous then SA and TB have a unique common �xed point
z and BS and AT have a unique common �xed point w. Further, Az = Bz = w
and Sw = Tw = z.

Remark 3. If '(t) = 1 in above corollary, we obtain corollary in page 346 of [7].
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Abstract
The �xed points of the Cheney-Sharma operators of uniform approximation are pointed out. Some

properties of the iterates of these operators are investigated.
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1 Introduction

Here we investigate some properties of the iterates of Cheney-Sharma linear operators of uniform approxi-
mation, from �xed point theory point of view. These operators �rstly appear in [3] and was investigated in
[1] (where was studied the rate of convergence and preservation of monotonicity and global smoothness).
Other results in the approximation with these operators was obtained in [6].
Firstly, we recall the notion of weakly Picard operator (shortly WPO) introduced in the Fixed Point

Theory by I.A. Rus (see [4]). Some related properties of WPO�s was investigated in [5].
Let (X; d) be a metric space and A : X ! X an operator. Will be used the following notations:

FA = fx 2 XjA (x) = xg - the �xed point set of A,
I (A) = fY 2 P (X)jA (Y ) � Y g - the family of the nonempty invariant subsets of A,
A0 = 1X ; A

1 = A; :::; An+1 = A �An; n 2 N:

De�nition 1 (I.A. Rus, [5]) Let (X; d) be a metric space.
1) An operator A : X ! X is weakly Picard operator (brie�y WPO) if the sequence of successive
approximations (An (x0))n2N converges for all x0 2 X and the limit (which may depend on x0) is a �xed
point of A.
2) If the operator A : X ! X is WPO and FA = fx�g, then by de�nition the operator A is Picard
operator.
3) If the operator A : X ! X is WPO, then we can consider the operator A1 de�ned by A1 : X !
X; A1 (x) = lim

n!1
An (x).

Theorem 1 (I.A. Rus, [5]) Let (X; d) be a metric space. An operator A : X ! X is WPO if and only
if there exits a partition of X, X =

S
�2�

X�, such that:

(i) X� 2 I (A) ; 8� 2 �;
(ii) AjX�

: X� ! X� is PO, 8� 2 �.

The above theorem characterize the WPO�s. Now, let us consider the Cheney-Sharma operators.

De�nition 2 (in [3], [2]) Let (tm)m2N� be a sequence of positive real numbers. The operator Gm :
C[0; 1]! C[0; 1] given by

(Gmf) (x) = (1 +mtm)
�m �

mX
k=0

Ckmx (x+ ktm)
k�1 � (1� x+ (m� k) tm)m�k � f

�
k

m

�
(1)

for all x 2 [0; 1] and m 2 N�; is named the Cheney-Sharma operator.
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We see that for tm = 0; 8m 2 N�; Gm becomes the well known Bernstein operator. Let e0 (x) = 1
and e1 (x) = x for x 2 [0; 1]: It is proved that (Gme0) (x) = 1; for all x 2 [0; 1] and for (tm)m2N� such
that lim

m!1
mtm = 0 we have

x

1 +mtm
� (Gme1) (x) �

x

1 + tm
(2)

for all x 2 [0; 1] (see [2]). The uniform approximation properties of Gm (using the Bohman-Korovkin
theorem) can be summarized in:

Theorem 2 (in [2]) If (tm)m2N� is a sequence of positive real numbers such that lim
m!1

mtm = 0; then

for any f 2 C[0; 1] we have lim
m!1

Gmf = f; uniform on C[0; 1]:

2 Main results

We denote
pm;k (x) = (1 +mtm)

�m
Ckmx (x+ ktm)

k�1 � (1� x+ (m� k) tm)m�k (3)

and since (Gme0) (x) = 1; we infer that pm;k (x) � 0 and
mX
k=0

pm;k (x) = 1 for all x 2 [0; 1]:

For  2 R; let X = ff 2 C[0; 1] : f (0) = g: It is easy to prove that C[0; 1] =
S
�2�

X� and because

(Gme0) (x) = 1; X 2 I (Gm) for all  2 R and m 2 N�:

Theorem 3 The operators Gm; m 2 N� are WPO�s on C[0; 1]: For any  2 R and m 2 N�; Gm is
Picard operator on X having the �xed point � 2 X ; � (x) = ; 8x 2 [0; 1]:

Proof. We see that (C[0; 1]; k�kC) is Banach space with,

kfkC = maxfjf (x)j : x 2 C[0; 1]g:

Let  2 R and f; g 2 X : Since X is closed in C[0; 1], we infer that it is Banach space too. For all
x 2 [0; 1] and m 2 N�; we have,

jGmf (x)�Gmg (x)j �
���(1 +mtm)�m C0m � (1� x+mtm)m [f (0)� g (0)]���+

+

�����
mX
k=1

(1 +mtm)
�m

Ckmx (x+ ktm)
k�1 � (1� x+ (m� k) tm)m�k � [f

�
k

m

�
� g

�
k

m

�
]

����� �
�

mX
k=1

(1 +mtm)
�m

Ckmx (x+ ktm)
k�1 � (1� x+ (m� k) tm)m�k �

����f � km
�
� g

�
k

m

����� �
�

mX
k=1

pm;k (x) � kf � gkC =
"
mX
k=0

pm;k (x)� pm;0 (x)
#
� kf � gkC =

=

�
1�

�
1� x

1 +mtm

�m�
� kf � gkC �

�
1�

�
1� 1

1 +mtm

�m�
� kf � gkC :

Consequently,

kGmf �GmgkC �
�
1�

�
1� 1

1 +mtm

�m�
� kf � gkC : (4)

Then, according to Banach�s �xed point principle, Gm is contraction on X , that is Picard operator.
According to Theorem 1 we infer that Gm is WPO on C[0; 1]:

Because, Gm� (x) =
mX
k=0

pm;k (x) �  =  for all x 2 [0; 1]; follows that Gm� = �: So, � is the unique
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�xed point of Gm in X :
Considering the sequence of successive approximations, (Gnm)n2N we obtain,

G1mf = lim
n!1

Gnmf = 
� = f (0) for all f 2 X : (5)

Moreover, by induction, we obtain the error estimate in the above convergence:

kGnmf � �kC �
�
1�

�
1� 1

1 +mtm

�m�n
� diam (f) (6)

for all f 2 X , where diam (f) = maxfjf (x)� f (y)j : x; y 2 [0; 1]g:
Now, consider a sequence (tm)m2N� such that lim

m!1
mtm = 0 and (Gmf)m2N� is increasing sequence

on (C[0; 1];�) for f concave and increasing, f 2 C[0; 1]: Such sequence exists, for instance, tm = 0 get
the Bernstein operator and it is well known that (Bmf)m is increasing for f concave.

Theorem 4 If (tm)m2N� is a sequence of positive real numbers such that limm!1
mtm = 0 and (Gmf)m2N�

is increasing sequence for f concave and increasing, then the sequences (Gmf)m2N� and (G
n
kf)n2N for

k 2 N� �xed, have monotone iteration, presenting the following duality in (C[0; 1];�):

f (0) = G1k f = lim
n!1

Gnkf � ::: � Gn+1k f � Gnkf � ::: � G1kf � G0kf = f (7)

f (0) = G0f � G1f � ::: � Gmf � Gm+1f � ::: � lim
m!1

Gmf = f: (8)

Proof. From inequality (2) follows that (Gme1) (x) � x; for all x 2 [0; 1]: Since f is concave and
increasing, using the Jensen�s inequality we obtain,

(Gmf) (x) =

mX
k=0

pm;k (x) � f
�
k

m

�
� f

 
mX
k=0

pm;k (x) �
k

m

!
= f ((Gme1) (x)) � f (x) :

Because the operator Gm is monotone, by induction we have

Gn+1m f � Gnmf � ::: � G1mf � G0mf = f

which lead to (7). On the other hand, f (0) = G0f (x) � G1f (x) = f (0) + (1 + t1)�1 � [f (1)� f (0)]x �
f (x) ; for all x 2 [0; 1]; which lead to (8).
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Abstract

In this study, B-spline method is applied to the convection-dominated dif-

fusion problems. The numerical solution of the equations are discussed and

illustrated with an example. Computational results are provided to demon-

strate the viability of the present new method.

Keywords: B-spline; Perturbed convection-dominated problem.

1. Introduction

Convection-dominated diffusion problems take place in fluid mechanics

[1] and can be applied in various physical and engineering process such as

weather prediction, ocean circulation, petroleum reservoir [2-5], etc. On

the other hand, singularly perturbed problems are also important in many

branches of science and engineering too. Extensive information about such

as problems can be found in [6,7]. There are many publications dealing

with the convection-dominated diffusion equations. They introduced var-

ious numerical methods. For instance, a finite element method has been

proposed for the problems within the frameworks Galerkin formulation and

Eulerian-Lagrangian localized adjoint methods (ELLAM) in a recent work

[8]. Also a Wavelet-Galerkin method has been studied for the numerical

treatment of singularly perturbed convection-dominated diffusion problems

in ref. [9]. In this work, they showed that the Wavelet-Galerkin method is

a very effective tools such problems. A more detailed and extensive review

of different numerical methods for convection-dominated diffusion equations

can be found in [2,10]. Following previous work [11], we present and ana-

lyze the B-spline method for numerical analysis of the singularly perturbed

convection-dominated diffusion equations. For the numerical tests, we con-

sider the singularly perturbed convection-dominated diffusion problems given

in [9]

∂u
∂t

= ε∂2u
∂x2 − ∂u

∂x
+ ν(x, t) , 0 ≤ x ≤ 1, t ≥ 0 , (1)

subject to the boundary conditions

u(0, t) = 0, t ≥ 0 , (2)

2
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u(1, t) = 0, t ≥ 0, (3)

and the initial condition

u(x, 0) = f(x), 0 ≤ x ≤ 1 , (4)

2. The third-degree B-splines

A detailed description of B-spline functions generated by subdivision can

be found in [13]. Consider equally-spaced knots of a partition π : a =

x0 < x1 < ... < xn = b on [a,b]. Let S3[π] be the space of continuously-

differentiable, piecewise, third-degree polynomials on π. That is, S3[π] is the

space of third-degree splines on π. Consider the B-splines basis in S3[π]. The

third-degree B-splines are defined as

B0(x) =
1

6h3



















x3
0 ≤ x < h

−3x3
+ 12hx2 − 12h2x + 4h3 h ≤ x < 2h

3x3 − 24hx2
+ 60h2x − 44h3

2h ≤ x < 3h
−x3

+ 12hx2 − 48h2x + 64h3
3h ≤ x < 4h

(5)

Bi−1(x) = B0(x − (i − 1)h), i = 2, 3, ...,

To solve singularly perturbed convection-dominated diffusion equation, Bi ,
B′

i and B′′
i evaluated at the nodal points are needed. Their coefficients are

summarized in Table 1.

Table 1: Values of Bi, B′
i and B′′

i

xi xi+1 xi+2 xi+3 xi+4

Bi 0 1/6 4/6 1/6 0

B′
i 0 -3/6h 0/6h 3/6h 0

B′′
i 0 6/6h

2
-12/6h

2
6/6h

2
0

3
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3. B-spline solutions for singularly perturbed convection-dominated

diffusion equation

In this section a spline method for solving singularly perturbed convection-

dominated diffusion equation is outlined, which is based on the collocation

approach [12]. Let

S(x) =

n−1
∑

j=−3
CjBj(x) (6)

be an approximate solution of Eq.(1), where Ci are unknown real coefficients

and Bj(x) are third-degree B-spline functions. Let x0, x1, ..., xn be n+1 grid

points in the interval [a, b], so that

xi = a + ih, i = 0, 1, ..., n; x0 = a, xn = b, h = (b − a)/n.

Difference schemes for this problem considered as following:

ui+1−ui

∆t
= ε∂2u

∂x2 − ∂u
∂x

+ ν(x, t) (7)

where ∆t = k

−kεu
′′
i+1 + ku

′
i+1 + ui+1 = ui + kν(x, t) (8)

and the initial condition is given in (4)

u(x, 0) = f(x) = u0, (9)

Subsituting (9) in (8) then is obtained as follows

t = 0 + ∆t −kεu
′′
1 + ku

′
1 + u1 = u0 + kν(x, t) (10)

t = 0 + 2∆t −kεu
′′
2 + ku

′
2 + u2 = u1 + kν(x, t) (11)

4
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. .

. .

. .

t = 0 + n∆t −kεu
′′
n + ku

′
n + un = un−1 + kν(x, t) (12)

The approximate solution of the equation (10)-(12) are sought in the form

of the B-spline functions S(x), it follows that

t = 0 + ∆t −kεS
′′
1 + kS

′
1 + S1 = u0 + kν(x, t) (13)

t = 0 + 2∆t −kεS
′′
2 + kS

′
2 + S2 = u1 + kν(x, t) (14)

. .

. .

. .

t = 0 + n∆t −kεS
′′
n + kS

′
n + Sn = un−1 + kν(x, t) (15)

and boundary conditions (2)-(3)

n−1
∑

j=−3
CjBj(0) = 0 for x = 0, (16)

n−1
∑

j=−3
CjBj(1) = 0 for x = 1 , (17)

The spline solution of eq.(13) with the boundary conditions is obtained

by solving to the following matrix equation. The value of spline functions

at the knots {xi}n
i=0 are determined using Table 1. Then we can write in

matrix-vector form as follows

AC = F

where

C = [ C−3 , C−2 , C−1 , . . . , Cn−3 , Cn−2 ,Cn−1 ]
T

5
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F = [0 , f(0) + ν(0, k) , f(h) + ν(h, k) , f(2h) + ν(2h, k), . . . ,

f((n − 1)h) + ν((n − 1)h, k) , 0]
T

T denoting transpose.

The matrix A can be writen as

A =



































1
6

4
6

1
6

0 0 ... 0

ϕ1 ϕ2 ϕ3 0 0 ... 0

0 ϕ1 ϕ2 ϕ3 0 ... 0

. . . . . . .

. . . . . . .

. . . . . . .
0 0 ... ϕ1 ϕ2 ϕ3 0

0 0 ... 0 ϕ1 ϕ2 ϕ3

0 0 ... 0
1
6

4
6

1
6



































where

ϕ1 = −kεβ(
6

6h2 ) + kα(
3
6h

) +
1
6

ϕ2 = −kεβ(
−12
6h2 ) + kα(

0
6h

) +
4
6

ϕ3 = −kεβ(
6

6h2 ) + kα(
−3
6h

) +
1
6

It is easy to see that, the same approximation is applied the other equations

(14)-(15).

4. Numerical results

In this section, the method discussed in section 2 and 3 is tested on the

following problems from the literature[9]. All computations were carried out

using MATLAB 6.5.

6
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Example

Consider the diffusion problem(1) with ν(x, t) =

(t2−t+(1−x))

ε(1−e−1/ε)
e−(1−x)t/ε, initial

condition

u(x, 0) = 1, 0 ≤ x ≤ 1 ,

and boundary conditions

u(0, t) = 1 +
1−e−t/ε

1−e−1/ε , t ≥ 0,

u(1, t) = 1, t ≥ 0.

The exact solution of this problem is u(x, t) = 1+
1−e−(1−x)t/ε

1−e−1/ε . The observed

maximum absolute errors for various values of k and for different ε values are

given in Table 2. The numerical results are illustrated in Figures 1,2 and 3.

Table 2: The maximum absolute errors, n=91

k ε = 1 ε = 0.1 ε = 0.01

0.01 2.573543668e-004 0.024312386 0.374292263

0.001 2.590668455e-005 0.002496068 0.044766988

4. Conclusions

In this paper, we focused on the solutions of the convection-dominated dif-

fusion problems by using B-spline method. The results illustrated in Figs.

1, 2 and 3 showed that when ε was increased, the maximum absolute error

increased. Analyzing the curves inclination it was possible to conclude that

when the diffusion coefficient increased the inclination was larger. Use of

B-splines has shown that it is an applicable method for determining the dif-

fusion. The method shows promise for small diffusion coefficients (ε) while

it is sensitive to higher values of diffusion coefficients and becomes unstable.

That’s why further work is required to adapt it with the boundary treatment.

7
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Figure 1: Results for ε = 1, n = 91, k = 0.001
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Figure 2: Results for ε = 0.1, n = 91, k = 0.001
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Figure 3: Results for ε = 0.01, n = 91, k = 0.001
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Abstract

We present the first results of a program recently initiated by us whose main
aim is the study of fractals generated by iterated function systems in infinite
dimensional spaces (e.g. function spaces). The aim of this paper is to present
an example of a fractal, generated by Hutchinson’s procedure, embedded in an
infinite dimensional Banach space and its finite dimensional approximations. Up
to now, the initial finite system of contractions has been given in an Euclidian
(finite dimensional) space. Our approach is quite different. Namely, we work
in the Banach space of real valued continuous functions on a compact interval
and we describe the attractor generated by an iterated function system given
by Fredholm integral equations.

Keywords: fractals; iterated function systems; approximation; Fredholm in-
tegral equations; function spaces
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1. INTRODUCTION

Since the appearance of Hutchinson’s paper [4], many papers containing
several types of generalizations of the iterated function systems theory appeared,
e.g. [3], [5], [6] and [7].

The aim of this paper is to present an example of a fractal, generated by
Hutchinson’s procedure, embedded in an infinite dimensional Banach space and
its finite dimensional approximations. Up to now, the initial finite system of
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2 Approximation of fractals generated by Fredholm integral equations

contractions has been given in an Euclidian (finite dimensional) space. Our
approach is quite different. Namely, we work in the Banach space of real val-
ued continuous functions on a compact interval and we describe the attractor
generated by an iterated function system given by Fredholm integral equations.

2. PRELIMINARIES

Let a < b be real numbers. In the sequelX (respective Y ) will be the Banach
space of all continuous f : [a, b]→ R (respective K : [a, b]× [a, b]→ R) equipped
with the sup norm.

For f ∈ X, K ∈ Y and λ ∈ R, such that

|λ| (b− a) ‖K‖ < 1,

we can define the contraction T : X → X, given via T (u) = v, where

v(x) = f(x) + λ

b∫

a

K(x, y)u(y)dy,

with contraction constant |λ| (b− a) ‖K‖.
The fixed point ϕ of T is the solution of the Fredholm integral equation

ϕ(x) = f(x) + λ

b∫

a

K(x, y)ϕ(y)dy.

The space Y includes the subspace S of all polynomial functions having the
form P (x, y) =

∑

i,j

ai,jx
iyj .

Lemma. The space S is dense in Y .
Proof. For instance, in case that a = 0 and b = 1, for K ∈ Y , one can

consider the sequence of polynomial functions (Pn(K))n, defined via

Pn(K)(x, y) =
n∑

k,j=0

K(
k

n
,
j

n
)(
n

k
)(
n

j
)xk(1− x)n−kyj(1− y)n−j

(the bivariate Bernstein polynomials).
Then Pn(K)→

n
K in Y . �

For T as above, take ε > 0 such that

|λ| (b− a)(‖K‖+ ε) < 1

and form a sequence (Pn)n in Y such that

‖Pn −K‖ < ε

(which implies ‖Pn‖ < ‖K‖+ ε), for all n and such that

Pn →
n
K
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in Y .
Then Tn : X → X, given via Tn(u) = vn, where

vn(x) = f(x) + λ

b∫

a

Pn(x, y)u(y)dy

are contractions and
Tn(u)→

n
T (u),

for all u in X.
More precisely, we have, for all u in X,

‖Tn(u)− T (u)‖ ≤ |λ| (b− a) ‖Pn −K‖ ‖u‖

and the supremum of the contraction constants of all Tn is less than or equal to
|λ| (b− a)(‖K‖+ ε) < 1.

If Pn(x, y) =
∑

i,j

ai,jx
iyj , the fixed point ϕ of Tn is the solution of the Fred-

holm integral equation with degenerate kernel Pn,

ϕ(x) = f(x) + λ

b∫

a

(
∑

i,j

ai,jx
iyj)ϕ(y)dy,

and has the form

ϕ(x) = f(x) +
m∑

i=0

aix
i,

where ai ∈ R are the solutions of a Cramer system.
It is possible to make the identification ϕ ≡ (a0, a1, ..., am).

3. THE APPROXIMATION RESULT FOR FRACTALS GEN-

ERATED BY FREDHOLM INTEGRAL EQUATIONS

Let K(X) be the set of all non empty compact subsets of X, which becomes
a complete metric space when equipped with the Hausdorff-Pompeiu metric H,
given via

H(A,B) = max(d(A,B), d(B,A)),

where
d(A,B) = sup{dist(u,B) | u ∈ A}

and
dist(u,B) = inf{‖u− b‖ | b ∈ B}.

Let us consider an integer h ≥ 2, f1, f2, ..., fh in X, K1,K2, ...,Kh in Y
and λ ∈ R such that

|λ| (b− a)
∥∥Ki

∥∥ < 1,

for all i ∈ {1, 2, ..., h}.
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4 Approximation of fractals generated by Fredholm integral equations

We define the Hutchinson contraction (see [2] and [4]) F : K(X) → K(X),
given via

F (B) =
h
∪
i=1
T i(B),

where T i : X → X are given via

T i(u) = vi, vi(x) = f i(x) + λ

b∫

a

Ki(x, y)u(y)dy.

The contraction constant of F is less than or equal to

max
i∈{1,2,...,h}

|λ| (b− a)
∥∥Ki

∥∥ .

Let A ∈ K(X) be the attractor of F (i.e. A = F (A) is the fixed point of F ).
Generally speaking, A is a fractal.
Our aim in the sequel is to approximate A.

3.1. First stage of approximation for A.

Let us approximate every Ki via a sequence (P in)n in S such that

P in →
n
Ki

and ∥∥P in −K
i
∥∥ < ε,

where ε > 0 is subject to the condition

r = |λ| (b− a)(C + ε) < 1,

where C = max
i∈{1,2,...,h}

∥∥Ki
∥∥.

We define as above the contractions T in : X → X given via T in(u) = vin,

vin(x) = f i(x) + λ

b∫

a

P in(x, y)u(y)dy.

Then
T in(u)→

n
T i(u),

for all u in X and all i and the sequence of contraction constants for (T in)n has
supremum less than or equal to r < 1 (for all i).

We can construct the sequence of contractions (Fn)n, Fn : K(X) → K(X)
given via

Fn(B) =
h
∪
i=1
T in(B).

The sequence of contraction constants for (Fn)n has supremum less than or
equal to r < 1.
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Now we can prove the following

Theorem. If An is the attractor of Fn, then

An →
n
A

in the Hausdorff-Pompeiu metric.

Proof. The proof is divided into three steps, namely a), b) and c).
Notice first that the contraction constants of all Fn and of F (and of all Tn

and of T ) are smaller than r.
a) Fix i and prove that

T in(B)→
n
T i(B),

for all B in K(X).
Assuming, by absurd, the existence of some B in K(X) and of some ε > 0

such that
H(T in(B), T

i(B)) > ε

for infinitely many n, two cases can occur:
First case:

d(T in(B), T
i(B)) > ε

for infinitely many n.
For all such n, there exists bn in B, such that

dist(T in(bn), T
i(B)) > ε

and this implies ∥∥T in(bn)− T
i(b)

∥∥ > ε,

for all b in B.
Because B is compact, there exists a sequence (bnk)k and b

′ in B, such that

bnk →
k
b′.

So, for all k, one has

ε <
∥∥T ink(bnk)− T

i(b′)
∥∥ ≤

∥∥T ink(bnk)− T
i
nk
(b′)
∥∥+

∥∥T ink(b
′)− T i(b′)

∥∥ ≤

≤ r ‖bnk − b
′‖+

∥∥T ink(b
′)− T i(b′)

∥∥→
k
0,

which is a contradiction.
Second case:

d(T i(B), T in(B)) > ε

for infinitely many n.
For all such n, there exists bn ∈ B, such that

dist(T i(bn), T
i
n(B)) > ε
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6 Approximation of fractals generated by Fredholm integral equations

and this implies ∥∥T i(bn)− T in(b)
∥∥ > ε

for all b in B.
Again, passing to a suitable subsequence (bnk)k, one finds b

′ in B such that

bnk →
k
b′.

So, for all k, one has

ε <
∥∥T i(bnk)− T

i
nk
(b′)
∥∥ ≤

∥∥T i(bnk)− T
i(b′)

∥∥+
∥∥T i(b′)− T ink(b

′)
∥∥ ≤

≤ r ‖bnk − b
′‖+

∥∥T i(b′)− T ink(b
′)
∥∥→

k
0,

which is again a contradiction.
b) Now, it follows that

Fn(B)→
n
F (B),

for all B in K(X).
Indeed, by using a classical property of H, we have

H(Fn(B), F (B)) = H
(
∪hi=1T

i
n(B),∪

h
i=1T

i(B)
)
≤ max
i∈{1,2,...,h}

H(T in(B), T
i(B))→

n
0.

c) Finally, we are able to prove that

An →
n
A.

Indeed

H(An, A) = H(Fn(An), F (A)) ≤ H(Fn(An), Fn(A)) +H(Fn(A), F (A)) ≤

≤ rH(An, A) +H(Fn(A), F (A))

and this implies

(1− r)H(An,A) ≤ H(Fn(A), F (A))→
n
0. �

These An constitute the first approximation of A.

3.2. Second stage of approximation for A.

Taking into account the theorem from the first stage of approximation for
A, assume that, for a given δ > 0, we succeeded in finding n such that

H(An, A) <
δ

2
.

Now it is possible to find a finite set Bn ⊂ X such that

H(Bn, An) <
δ

2
,
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hence
H(Bn, A) < δ.

The finite set Bn is the second (and final) approximation of A.

4. REMARKS

4.1. In order to find Bn, one can use the algorithm described in [1]. Notice
that the approximation procedure described in [1] is “effective” because it is
based upon the idea of finding fixed points (or approximate fixed points) of the
contractions (T in)n which give the (Fn)n. These fixed points are solutions of
the Fredholm equations with degenerate kernel and are of “finite type” (see the
identification above).

4.2. One can try to check the proposed procedure as follows: Take a = 0,
b = 1, h = 2, f1 : [0, 1] → R, f2 : [0, 1] → R, K1 : [0, 1] × [0, 1] → R and
K2 : [0, 1]× [0, 1]→ R, given by

f1(x) = 1,

f2(x) = x,

K1(x, y) = exy,

K2(x, y) = cosxy.

Here C = e.
One can consider, for all integers n ≥ 1:

P 1n(x, y) = 1 +
xy

1!
+
(xy)2

2!
+ ...+

(xy)2n

(2n)!

and

P 2n(x, y) = 1−
(xy)2

2!
+
(xy)4

4!
...+ (−1)n

(xy)2n

(2n)!
.

Indeed, for i ∈ {1, 2} and for all n ∈ N and (x, y) ∈ [0, 1]× [0, 1], one has

∣∣Ki(x, y)− P in(x, y)
∣∣ ≤

∞∑

k=2n+1

(xy)k

k!
≤

≤
∞∑

k=2n+1

1

k!
≤

1

(2n+ 1)!
(1 +

1

2n+ 2
+

1

(2n+ 2)2
+ ...) =

=
1

(2n+ 1)!
·

1

1− 1

2n+2

=
1

(2n+ 1)!
·
2n+ 2

2n+ 1
.

This implies that, for i ∈ {1, 2},

P in →
n
Ki,

and we can apply the general procedures described above to this concrete case.
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SOME RESULTS FOR EQUILIBRIUM
PROBLEMS AND FIXED POINT PROBLEMS

IN HILBERT SPACES

YEOL JE CHO, XIAOLONG QIN AND SHIN MIN KANG

Abstract. The purpose of this paper is to study the strong con-
vergence of a general iterative scheme to find a common element
of the set of common fixed points of a finite family of nonexpan-
sive mappings, the set of solutions of variational inequality for
a relaxed cocoercive mapping and the set of solutions of a equi-
librium problems. Our results improve and extend recent results
announced by [S. Takahashi, W. Takahashi, Viscosity approxima-
tion methods for equilibrium problems and fixed point problems
in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506-515], [H.
Iiduka, W. Takahashi, Strong convergence theorems for nonexpan-
sive mappings and inverse-strongly monotone mappings, Nonlinear
Anal. 61 (2005) 341-350.] [S. Plubtieng, R. Punpaeng, A general
iterative method for equilibrium problems and fixed point prob-
lems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007) 445-469],
[Y. Su, M. Shang, X. Qin, An iterative method of solution for
equilibrium and optimization problems, Nonlinear Anal. (2007)
doi:10.1016/j.na.2007.08.045] and many others.

Key Words and Phrases: Nonexpansive mapping; Viscosity
approximation method; Equilibrium problem; Fixed point

2000 AMS Subject Classification: 47H09; 47H10; 47H17.

1. Introduction and Preliminaries

Let H be a real Hilbert space, whose inner product and norm are
denoted by 〈·, ·〉 and ‖ · ‖ respectively. Let C be a nonempty closed
convex subset of H and let A : C → H be a nonlinear map. Let PC be
the projection of H onto the convex subset C. The classical variational
inequality which denoted by V I(C,A) is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.1)

For a given z ∈ H, u ∈ C satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ C,

The corresponding author: qxlxajh@163.com (X. Qin) .
1
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2 YEOL JE CHO, XIAOLONG QIN AND SHIN MIN KANG

if and only if u = PCz. It is known that projection operator PC is
nonexpansive. It is also known that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H. (1.2)

Moreover, PCx is characterized by the properties: PCx ∈ C and 〈x −
PCx, PCx− y〉 ≥ 0 for all y ∈ C.

One can see that the variational inequality (1.1) is equivalent to a
fixed point problem.

The function u ∈ C is a solution of the variational inequality (1.1) if
and only if u ∈ C satisfies the relation u = PC(u− λAu), where λ > 0
is a constant. This alternative equivalent formulation has played a
significant role in the studies of the variational inequalities and related
optimization problems.

Recall that the following definitions.

(1) the mapping B : C → C is said to be relaxed (u, v)-cocoercive if
there exist two constants u, v > 0 such that

〈Bx−By, x− y〉 ≥ (−u)‖Bx−By‖2 + v‖x− y‖2, ∀x, y ∈ C.

If u = 0, then B is said to be v-strongly monotone. This class of map-
pings is more general than the class of strongly monotone mappings.

(2) A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

(3) A mapping f : C → C is said to be contractive if there exists a
coefficient α (0 < α < 1) such that

‖f(x)− f(y)‖ ≤ α‖x− y‖, ∀x, y ∈ C.

(4) A operator A : C → C is said to be strong positive if there exists
a constant γ̄ > 0 such that

〈Ax, x〉 ≥ γ̄‖x‖2, ∀x ∈ C.

(5) A set-valued mapping T : H → 2H is said to be monotone if, for
all x, y ∈ H, f ∈ Tx and g ∈ Ty imply 〈x− y, f − g〉 ≥ 0. A monotone
mapping T : H → 2H is said to be maximal if the graph of G(T ) of T is
not properly contained in the graph of any other monotone mapping.

It is known that a monotone mapping T is maximal if and only if,
for any (x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ) implies
f ∈ Tx.

Let B be a monotone mapping of C into H and NCv be the normal
cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C}
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and define

Tv =

{
Bv + NCv, v ∈ C

∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C, B)
(see [17]).

Let F be a bifunction of C × C into R, where R is the set of real
numbers. The equilibrium problem for F : C×C → R is to find x ∈ C
such that

F (x, y) ≥ 0, ∀y ∈ C. (1.3)

The set of solution of (1.3) is denoted by EP (F ). Give a mapping
T : C → H, let F (x, y) = 〈Tx, y−x〉 for all x, y ∈ C. Then z ∈ EP (F )
if and only if 〈Tz, y − z〉 ≥ 0 for all y ∈ C, i.e., z is a solution of the
variational inequality. Numerous problems in physics, optimization and
economics reduce to find a solution of (1.3). Some methods have been
proposed to solve the equilibrium problem (see, for instance, [8, 11]).
Combettes and Hirstoaga [8] introduced an iterative scheme for finding
the best approximation to the initial data when EP (F ) is nonempty
and proved a strong convergence theorem. Recently, Takahashi et al.
[20] also introduced a new iterative scheme:

{
F (yn, u) + 1

rn
〈u− yn, yn − xn〉 ≥ 0, ∀u ∈ C,

xn+1 = αnf(xn) + (1− αn)Tyn,

where f is a contraction on H, F is a bifunction, for approximating
a common element of the set of fixed points of a non-self nonexpan-
sive mapping and the set of solutions of the equilibrium problem and
obtained a strong convergence theorem in a real Hilbert space. Very
recently, Su et al. [18] improved the results of [20] and studied the
following iterative algorithm

{
F (yn, u) + 1

rn
〈u− yn, yn − xn〉 ≥ 0, ∀u ∈ C,

xn+1 = αnf(xn) + (1− αn)TPC(I − λnA)yn,

where f is a contraction on H, F is a bifunction and A is inverse-
strongly monotone operator of C into H. They proved the sequence
{xn} defined by above iterative algorithm converges strongly to a com-
mon element of the set of fixed points of a nonexpansive mapping, the
set of solutions of the equilibrium problems and the set of solutions of
variational inequality problems.

Iterative methods for nonexpansive mappings have recently been ap-
plied to solve convex minimization problems (see [9, 14, 23-25] and the
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references therein). A typical problem is to minimize a quadratic func-
tion over the set of the fixed points of a nonexpansive mapping on a
real Hilbert space H:

min
x∈C

1

2
〈Ax, x〉 − 〈x, b〉, (1.4)

where A is a linear bounded operator, C is the fixed point set of a
nonexpansive mapping S and b is a given point in H. In [24], Xu
proved that the sequence {xn} defined by the iterative method:

{
x0 ∈ H,

xn+1 = (I − αnA)Sxn + αnb, ∀n ≥ 0,

converges strongly to the unique solution of the minimization problem
(1.4) provided the sequence {αn} satisfies certain conditions. Recently,
Marino and Xu [14] introduced a new iterative scheme by the viscosity
approximation method [15]:

{
x0 ∈ H,

xn+1 = (I − αnA)Sxn + αnγf(xn), ∀n ≥ 0.

They proved the sequence {xn} generated by above iterative scheme
converges strongly to the unique solution of the variational inequality:

〈(A− γf)x∗, x− x∗〉 ≥ 0, ∀x ∈ C,

which is the optimality condition for the minimization problem:

min
x∈C

1

2
〈Ax, x〉 − h(x),

where C is the fixed point set of a nonexpansive mapping S, h is a
potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

For finding a common element of the set of fixed points of nonex-
pansive mappings and the set of solution of variational inequalities for
α-cocoerceive mapping, Takahashi and Toyoda [20] introduced the fol-
lowing iterative process:

{
x0 ∈ C,

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn), ∀n ≥ 0,
(1.5)

where A is α-cocoerceive, {αn} is a sequence in (0, 1) and {λn} is a
sequence in (0, 2α). They showed that, if F (S)∩V I(C,A) is nonempty,
then the sequence {xn} generated by (1.5) converges weakly to some
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z ∈ F (S) ∩ V I(C,A). Recently, Iiduka and Takahashi [12] proposed
another iterative scheme as following:

{
x0 ∈ C,

xn+1 = αnx + (1− αn)SPC(xn − λnAxn), ∀n ≥ 0,
(1.6)

where {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2α).
They proved that the sequence {xn} converges strongly to some z ∈
F (S)∩V I(C,A). Chen et al.[7] studied the following iterative process:

{
x0 ∈ C,

xn+1 = αnf(xn) + (1− αn)SPC(xn − λnAxn), ∀n ≥ 0,

where a function f : C → C is contractive, and also obtained a strong
convergence theorem by viscosity approximation method.

In this paper, we will consider a finite family of nonexpansive map-
ping. Let Ti : C → C, where i = 1, 2, · · · , N, be a finite family of
nonexpansive mappings. Let F (Ti) denote the fixed point set of Ti,
that is, F (Ti) := {x ∈ C : Tix = x}. Finding an optimal point in
the intersection ∩N

i=1F (Ti) of the fixed point sets of a family of nonex-
pansive mappings is a task that occurs frequently in various areas of
mathematical sciences and engineering. For example, the well-known
convex feasibility problem reduces to finding a point in the intersection
of the fixed point sets of a family of nonexpansive mappings (see [2,
5]). The problem of finding an optimal point that minimizes a given
cost function over ∩N

i=1F (Ti) is of wide interdisciplinary interest and
practical importance (see [3, 6, 10, 26]). A simple algorithmic solution
to the problem of minimizing a quadratic function over ∩N

i=1F (Ti) is
of extreme value in many applications including set theoretic signal
estimation (see [13, 26]).

Now, we study the mapping Wn defined by




Un0 = I,

Un1 = λn1T1Un0 + (1− λn1)I,

Un2 = λn2T2Un1 + (1− λn2)I,

· · ·
Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)I,

Wn = UnN = λnNTNUn,N−1 + (1− λnN)I,

(1.7)

where {λn1}, {λn2}, · · · , {λnN} are sequences in (0, 1]. Such a map-
ping Wn is called the W -mapping generated by T1, T2, · · · , TN and
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{λn1}, {λn2}, · · · , {λnN}. Nonexpansivity of each Ti ensures the non-
expansivity of Wn. Moreover, in Lemma 3.1 of [1], it is shown that
F (Wn) = ∩N

i=1F (Ti).

In this paper, we introduce a more general iterative process as fol-
lowing:





F (zn, η) + 1
rn
〈η − zn, zn − xn〉 ≥ 0, ∀η ∈ C,

yn = βnγf(zn) + (I − βnA)WnPC(I − snB)zn,

xn+1 = αnxn + (1− αn)yn, ∀n ≥ 0,

(1.8)

where Wn is defined by (1.7), F is a bifunction, A is a linear bounded
operator and B is relaxed cocoercive. We prove that the sequence {xn}
generated by the iterative scheme (1.8) converges strongly to a common
element of the set of common fixed points of a finite nonexpansive
mappings, the set of solutions of the variational inequalities for relaxed
cocoercive mappings and the set of solutions of the equilibrium problem
(1.3), which solves another variation inequality:

〈γf(q)− Aq, p− q〉 ≤ 0, ∀p ∈ F,

where F = ∩N
i=1F (Ti) ∩ V I(C, B) ∩ EP (F ) and is also the optimality

condition for the minimization problem minx∈F
1
2
〈Ax, x〉−h(x), where

h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H). The
results are obtained in this paper improve and extend the recent ones
announced by Su et al. [18], Takahashi and Takahashi [20], Iiduka and
Takahashi [12], Marino and Xu [14], Chen et al. [7], Combettes and
Hirstoaga [8], Plubtieng and Punpaeng [22], Yao, et al. [27] and some
others.

We now recall some well-known concepts and results.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖,
respectively. It is well known that, for all x, y ∈ H and λ ∈ [0, 1],

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

A space X is said to satisfy Opial’s condition [16] if, for each sequence
{xn}∞n=1 in X which converges weakly to point x ∈ X,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

For solving the equilibrium problem for a bifunction F : C×C → R,
let us assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C,
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C,
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(A3) for each x, y, z ∈ C,

lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y),

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinu-
ous.

Lemma 1.1. (Xu [23], [24]) Assume that {αn} is a sequence of non-
negative real numbers such that

αn+1 ≤ (1− γn)αn + δn, ∀n ≥ 1,

where γn is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn = ∞,
(ii) lim supn→∞

δn

γn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ αn = 0.

Lemma 1.2. In a real Hilbert space H,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Lemma 1.3. (Marino and Xu [14]) Assume that B is a strong positive
linear bounded operator on a Hilbert space H with coefficient γ̄ > 0 and
0 < ρ ≤ ‖B‖−1. Then ‖I − ρB‖ ≤ 1− ργ̄.

Lemma 1.4. (Blum and Oettli [4]) Let C be a nonempty closed convex
subset of a Hilbert space H and B be a bifunction of C × C into R
satisfying (A1)∼(A4). Let r > 0 and x ∈ H. Then there exists z ∈ C
such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 1.5. (Combettes and Hirstoaga [8]) Assume that F : C×C →
R satisfies (A1)∼(A4). For any r > 0 and x ∈ H, define a mapping
Tr : H → C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then the following hold:
(1) Tr is single-valued.
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉.
(3) F (Tr) = EP (F ).
(4) EP (F ) is closed and convex.
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Lemma 1.6. (Suzuki [19]) Let {xn} and {yn} be bounded sequences in
a Banach space X and βn be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that

xn+1 = (1− βn)yn + βnxn, ∀n ≥ 0

and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

2. Main Results

Now, we are ready to give our main results in this paper.

Theorem 2.1. Let C be a nonempty closed convex subset of a Hilbert
space H. Let F be a bifunction from C × C to R which satisfies
(A1)∼(A4), T1, T2, T3, · · · , TN be a finite family of nonexpansive map-
pings of C into H and B be a µ-Lipschitzian relaxed (u, v)-cocoercive
mapping of C into H such that F = ∩N

i=1F (Ti)∩EP (F )∩V I(C, B) 6= ∅.
Let A be a strongly positive linear bounded operator with coefficient
γ̄ > 0. Assume that 0 < γ < γ̄

α
. Let f be a contractive mapping of H

into itself with a coefficient α (0 < α < 1) and {xn}, {yn} be sequences
generated by (1.8), where αn ⊂ [0, 1] and {rn}, {sn} ⊂ [0,∞) satisfy
the following:

(i) limn→∞ βn = 0,
∑∞

n=1 βn = ∞,
(ii) limn→∞ |rn+1−rn| = 0, lim infn→∞ rn > 0, limn→∞ |sn+1−sn| =

0,
(iii) there exists c, d ∈ (0, 1) such that c < αn < d for all n ≥ 0,

(iv) {sn} ∈ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v−uµ2)
µ2 ,

(v) limn→∞ |λn,i − λn−1,i| = 0 for all i = 1, 2, · · · , N.

Then {xn} converges strongly to q ∈ F, where q = PF (γf +(I−A))(q),
which solves the following variational inequality:

〈γf(q)− Aq, p− q〉 ≤ 0, ∀p ∈ F.

Proof. We divide the proof into seven steps as follows:
Step (I) We prove that the sequences {xn}, {yn} and {zn} are

bounded.
First, we show that I−snB is nonexpansive. Indeed, from the relaxed

(u, v)-cocoercive and µ-Lipschitzian definition on B and the condition
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(iv), we have

‖(I − snB)x− (I − snB)y‖2

= ‖(x− y)− sn(Bx−By)‖2

= ‖x− y‖2 − 2sn〈x− y,Bx−By〉+ s2
n‖Bx−By‖2

≤ ‖x− y‖2 − 2sn[−u‖Bx−By‖2 + v‖x− y‖2] + s2
n‖Bx−By‖2

≤ ‖x− y‖2 + 2snµ2u‖x− y‖2 − 2snv‖x− y‖2 + µ2s2
n‖x− y‖2

= (1 + 2snµ2u− 2snv + µ2s2
n)‖x− y‖2

≤ ‖x− y‖2,

which implies the mapping I − snB is nonexpansive.
Now, we observe that {xn} is bounded. Indeed, pick p ∈ F . Since

zn = Trnxn, we have

‖zn − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖.
Putting ρn = PC(I − snB)zn, we have

‖ρn − p‖ ≤‖(I − snB)zn − p‖ ≤ ‖zn − p‖ ≤ ‖xn − p‖.
Since βn → 0 by the condition (i), we may assume, without loss of
generality, that βn < ‖A‖−1 for all n ≥ 1. From Lemma 1.3, we know
that, if 0 < ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤ 1− ργ̄. Therefore, we obtain

‖yn − p‖
= ‖βn(γf(zn)− Ap) + (I − βnA)(Wnρn − p)‖
≤ βn‖γf(zn)− Ap‖+ ‖I − βnA‖‖Wnρn − p‖
≤ βn[γ‖f(zn)− f(p)‖+ ‖γf(p)− Ap‖] + (1− βnγ̄)‖ρn − p‖
≤ [1− (γ̄ − γβn)βn]‖xn − p‖+ βn‖γf(p)− Ap‖,

which yields that

‖xn+1 − p‖
= ‖αn(xn − p) + (1− αn)(yn − p)‖
≤ αn‖xn − p‖+ (1− αn)‖yn − p‖
≤ αn‖xn − p‖+ (1− αn)[1− (γ̄ − γβn)βn]‖xn − p‖

+ (1− αn)βn‖γf(p)− Ap‖.
This in turn implies that

‖xn − p‖ ≤ max{‖x0 − p‖, ‖γf(p)− Ap‖
γ̄ − γα

}, ∀n ≥ 0. (2.1)

Therefore, we obtain that {xn} is bounded and so are {yn} and {zn}.
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Step (II) We shall estimate the sequence {‖zn+1 − zn‖}.
Let M denotes the possible different constant appearing in the fol-

lowing argument. Observing that zn = Trnxn and zn+1 = Trn+1xn+1,
we have

F (zn, η) +
1

rn

〈η − zn, zn − xn〉 ≥ 0, ∀η ∈ C, (2.2)

and

F (zn+1, η) +
1

rn+1

〈η − zn+1, zn+1 − xn+1〉 ≥ 0, ∀η ∈ C. (2.3)

Putting η = zn+1 in (2.2) and η = zn in (2.3), we have

F (zn, zn+1) +
1

rn

〈zn+1 − zn, zn − xn〉 ≥ 0

and

F (zn+1, zn) +
1

rn+1

〈zn − zn+1, zn+1 − xn+1〉 ≥ 0.

Thus it follows from (A2) that

〈zn+1 − zn,
zn − xn

rn

− zn+1 − xn+1

rn+1

〉 ≥ 0,

that is,

〈zn+1 − zn, zn − zn+1 + zn+1 − xn − rn

rn+1

(zn+1 − xn+1)〉 ≥ 0.

Without loss of generality, let us assume that there exists a real number
m such that rn > m > 0 for all n ≥ 1. It follows that

‖zn+1 − zn‖2 ≤ ‖zn+1 − zn‖(‖xn+1 − xn‖+ |1− rn

rn+1

|‖zn+1 − xn+1‖),

which implies that

‖zn+1 − zn‖ ≤‖xn+1 − xn‖+ |1− rn

rn+1

|‖zn+1 − xn+1‖

≤‖xn+1 − xn‖+
M

m
|rn+1 − rn|.

(2.4)

Step (III) Next, we shall prove that limn→∞ ‖xn+1 − xn‖ = 0.
Note that

‖ρn+1 − ρn‖
= ‖PC(I − sn+1B)zn+1 − PC(I − snB)zn‖
≤ ‖(I − sn+1B)zn+1 − (I − snB)zn‖
= ‖(I − sn+1B)zn+1 − (I − sn+1B)zn + (sn − sn+1)Bzn‖
≤ ‖zn+1 − zn‖+ |sn − sn+1|‖Bzn‖.

(2.5)
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Substituting (2.4) into (2.5) yields that

‖ρn+1 − ρn‖ ≤‖xn+1 − xn‖+ M(|rn+1 − rn|+ |sn − sn+1|). (2.6)

Observe that

‖yn − yn+1‖
= ‖(I − βn+1A)(Wn+1ρn+1 −Wnρn)− (βn+1 − βn)AWnρn

+ γ[βn+1(f(zn+1)− f(zn)) + f(zn)(βn+1 − βn)]‖
≤ (1− βn+1γ̄)(‖ρn+1 − ρn‖+ ‖Wn+1ρn −Wnρn‖)

+ |βn+1 − βn|‖AWnρn‖+ γ[βn+1α‖zn+1 − zn‖
+ |βn+1 − βn|‖f(zn)‖].

(2.7)

Next, we estimate ‖Wn+1ρn −Wnρn‖. It follows from the definition
of Wn that

‖Wn+1ρn −Wnρn‖
= ‖λn+1,NTNUn+1,N−1ρn + (1− λn+1,N)ρn

− λn,NTNUn,N−1ρn − (1− γn,N)ρn‖
≤ |λn+1,N − λn,N |‖ρn‖+ ‖λn+1,NTNUn+1,N−1ρn − λn,NTNUn,N−1ρn‖
≤ |λn+1,N − λn,N |‖ρn‖+ ‖λn+1,N(TNUn+1,N−1ρn − TNUn,N−1ρn)‖

+ |λn+1,N − λn,N |‖TNUn,N−1ρn‖
≤ 2M |λn+1,N − λn,N |+ λn+1,N‖Un+1,N−1ρn − Un,N−1ρn‖.

(2.8)
Next, we consider

‖Un+1,N−1ρn − Un,N−1ρn‖
= ‖λn+1,N−1TN−1Un+1,N−2ρn + (1− λn+1,N−1)ρn

− λn,N−1TN−1Un,N−2ρn − (1− λn,N−1)ρn‖
≤ |λn+1,N−1 − λn,N−1|‖yn‖

+ ‖λn+1,N−1TN−1Un+1,N−2ρn − λn,N−1TN−1Un,N−2ρn‖
≤ |λn+1,N−1 − λn,N−1|‖ρn‖

+ λn+1,N−1‖TN−1Un+1,N−2ρn − TN−1Un,N−2ρn‖
+ |λn+1,N−1 − λn,N−1|‖TN−1Un,N−2ρn‖

≤ 2M |λn+1,N−1 − λn,N−1|+ ‖Un+1,N−2ρn − Un,N−2ρn‖.
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It follows that

‖Un+1,N−1ρn − Un,N−1ρn‖
≤ 2M |λn+1,N−1 − λn,N−1|+ 2M |λn+1,N−2 − λn,N−2|

+ ‖Un+1,N−3ρn − Un,N−3ρn‖

≤ 2M
N−1∑
i=2

|λn+1,i − λn,i|+ ‖Un+1,1ρn − Un,1ρn‖

= 2M
N−1∑
i=2

|λn+1,i − λn,i|

+ ‖γn+1,1T1ρn + (1− λn+1,1)ρn − λn,1T1ρn − (1− λn,1)ρn‖

≤ 2M
N−1∑
i=1

|λn+1,i − λn,i|.

(2.9)

Substituting (2.9) into (2.8) yields that

‖Wn+1ρn −Wnρn‖

≤ 2M |λn+1,N − λn,N |+ 2λn+1,NM

N−1∑
i=1

|λn+1,i − λn,i|

≤ 2M
N∑

i=1

|λn+1,i − λn,i|.

(2.10)

Substituting (2.6) and (2.10) into (2.7) yields that

‖yn − yn+1‖
≤ [1− βn+1(γ̄ − αγ)]‖xn+1 − xn‖

+ M(
N∑

i=1

|λn+1,i − λn,i|+ |rn+1 − rn|+ |sn − sn+1|+ |βn − βn+1|).
(2.11)

It follows from the conditions (i), (ii) and (v) that

lim
n→∞

{‖yn − yn+1‖ − ‖xn+1 − xn‖} ≤ 0. (2.12)

By virtue of Lemma 1.6, we obtain

lim
n→∞

‖yn − xn‖ = 0. (2.13)

On the other hand, from (1.8), we have

‖xn+1 − xn‖ = (1− αn)‖xn − yn‖, (2.14)
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which, combining with (2.13) and the condition (iii), yields that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.15)

Step (IV) We show that limn→∞ ‖zn −Wnzn‖ = 0.
Observing that yn = βnγf(Wnzn) + (I − βnA)Wnρn, we have

‖yn −Wnρn‖ = βn‖γf(zn)− AWnρn‖,
which, combining with the condition (i), gives

lim
n→∞

‖yn −Wnρn‖ = 0. (2.16)

For p ∈ F, we have

‖zn − p‖2

= ‖Trnxn − Trnp‖2 ≤ 〈Trnxn − Trnp, xn − p〉 = 〈zn − p, xn − p〉
=

1

2
(‖zn − p‖2 + ‖xn − p‖2 − ‖xn − zn‖2)

and hence

‖zn − p‖2 ≤ ‖xn − p‖2 − ‖xn − zn‖2.

It follows that

‖xn+1 − p‖2

= ‖αn(xn − p) + (1− αn)(yn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)‖yn − p‖2

= αn‖xn − p‖2 + (1− αn)‖βn(γf(zn)− Ap)

+ (I − βnA)(Wnρn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)(βn‖γf(zn)− Ap‖+ (1− βnγ̄)‖ρn − p‖)2

≤ αn‖xn − p‖2 + (1− αn)βn‖γf(zn)− Ap‖2

+ (1− αn)(1− βnγ̄)‖ρn − p‖2

+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖
≤ αn‖xn − p‖2 + (1− αn)βn‖γf(zn)− Ap‖2

+ (1− αn)(1− βnγ̄)‖zn − p‖2

+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖
≤ αn‖xn − p‖2 + (1− αn)βn‖γf(zn)− Ap‖2

+ (1− αn)‖xn − p‖2 − (1− αn)(1− βnγ̄)‖xn − zn‖2

+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖,
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which implies that

(1− αn)(1− βnγ̄)‖xn − zn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (1− αn)βn‖γf(zn)− Ap‖2

+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖
≤ (‖xn − p‖ − ‖xn+1 − p‖)‖xn − xn+1‖+ (1− αn)βn‖γf(zn)− Ap‖2

+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖

It follows from the conditions (i), (iii) and (2.15) that

lim
n→∞

‖zn − xn‖ = 0. (2.17)

For p ∈ F , we have

‖ρn − p‖2

= ‖PC(I − snA)zn − PC(I − snA)p‖2

≤ ‖(zn − p)− sn(Azn − Ap)‖2

= ‖zn − p‖2 − 2sn〈zn − p,Azn − Ap〉+ s2
n‖Azn − Ap‖2

≤ ‖xn − p‖2 − 2sn[−u‖Azn − Ap‖2 + v‖zn − p‖2] + s2
n‖Azn − Ap‖2

≤ ‖xn − p‖2 + 2snu‖Azn − Ap‖2 − 2snv‖zn − p‖2 + s2
n‖Azn − Ap‖2

≤ ‖xn − p‖2 + (2snu + s2
n −

2snv

µ2
)‖Azn − Ap‖2.

(2.18)
Observe that

‖xn+1 − p‖2

= ‖αn(xn − p) + (1− αn)(yn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)‖yn − p‖2

= αn‖xn − p‖2 + (1− αn)‖βn(γf(zn)− Ap)

+ (I − βnA)(Wnρn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)(βn‖γf(zn)− Ap‖
+ ‖I − βnA‖‖Wnρn − p‖)2

≤ αn‖xn − p‖2 + (1− αn)(βn‖γf(zn)− Ap‖+ (1− βnγ̄)‖ρn − p‖)2

≤ αn‖xn − p‖2 + (1− αn)βn‖γf(zn)− Ap‖2

+ (1− αn)‖ρn − p‖2 + 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖.
(2.19)
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Substituting (2.18) into (2.19), we have

‖xn+1 − p‖2

≤ (1− αn)βn‖γf(zn)− Ap‖2 + ‖xn − p‖2

+ (2snu + s2
n −

2snv

µ2
)‖Azn − Ap‖2

+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖.

It follows from the condition (iv) that

(
2av

µ2
− 2bu− b2)‖Azn − Ap‖2

≤ (1− αn)βn‖γf(zn)− Ap‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖
≤ (1− αn)βn‖γf(zn)− Ap‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖

+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖

Since the condition (i) and (2.15), we have that

lim
n→∞

‖Azn − Ap‖ = 0. (2.20)

On the other hand, we have

‖ρn − p‖2

= ‖PC(I − snA)zn − PC(I − snA)p‖2

≤ 〈(I − snA)zn − (I − snA)p, ρn − p〉
=

1

2
[‖(I − snA)zn − (I − snA)p‖2 + ‖ρn − p‖2

− ‖(I − snA)zn − (I − snA)p− (ρn − p)‖2]

≤ 1

2
[‖zn − p‖2 + ‖ρn − p‖2 − ‖(zn − ρn)− sn(Azn − Ap)‖2]

=
1

2
[‖xn − p‖2 + ‖ρn − p‖2 − ‖zn − ρn‖2 − s2

n‖Azn − Ap‖2

+ 2sn〈zn − ρn, Azn − Ap〉],

which yields that

‖ρn − p‖2

≤ ‖xn − p‖2 − ‖zn − ρn‖2 + 2sn‖zn − ρn‖‖Azn − Ap‖. (2.21)
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Substituting (2.21) into (2.19) yields that

‖xn+1 − p‖2

≤ (1− αn)βn‖γf(zn)− Ap‖2 + ‖xn − p‖2

+ 2sn(1− αn)‖zn − p‖‖Azn − Ap‖
+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖ − (1− αn)‖zn − ρn‖2.

It follows that

(1− αn)‖zn − ρn‖2

≤ (1− αn)βn‖γf(zn)− Ap‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2sn(1− αn)‖zn − p‖‖Azn − Ap‖
+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖

≤ (1− αn)βn‖γf(zn)− Ap‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖
+ 2sn(1− αn)‖zn − p‖‖Azn − Ap‖
+ 2(1− αn)βn‖γf(zn)− Ap‖‖ρn − p‖

From the conditions (i) (ii), (2.15) and (2.20), we have

lim
n→∞

‖zn − ρn‖ = 0. (2.22)

Observe that

‖zn −Wnzn‖
≤ ‖Wnzn −Wnρn‖+ ‖Wnρn − yn‖+ ‖yn − xn‖+ ‖xn − zn‖
≤ ‖zn − ρn‖+ ‖Wnρn − yn‖+ ‖yn − xn‖+ ‖xn − zn‖.

From (2.13), (2.16), (2.17) and (2.22), we have

lim
n→∞

‖zn −Wnzn‖ = 0. (2.23)

Step (V) We prove that the mapping PF (γf + (I −A)) has a unique
fixed point.

Since βn → 0 by the condition (i), we may assume, without loss of
generality, that βn < ‖A‖−1 for all n ≥ 1. From Lemma 1.3, we know
that, if 0 < ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤ 1 − ργ̄. In this part, we
will assume that ‖I −A‖ ≤ 1− γ̄. Observe that PF (γf + (I −A)) is a
contractive mapping.
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Indeed, for all x, y ∈ H, we have

‖PF (γf + (I − A))(x)− PF (γf + (I − A))(y)‖
≤ ‖(γf + (I − A))(x)− (γf + (I − A))(y)‖
≤ γ‖f(x)− f(y)‖+ ‖I − A‖‖x− y‖
≤ γα‖x− y‖+ (1− γ̄)‖x− y‖
< ‖x− y‖.

Thus Banach’s Contraction Principle guarantees that PF (γf +(I−A))
has a unique fixed point, say q ∈ H, that is,

q = PF (γf + (I − A))(q).

Step (VI) Next, we show that lim supn→∞〈γf(q)− Aq, xn − q〉 ≤ 0.
To see this, we choose a subsequence {xni

} of {xn} such that

lim sup
n→∞

〈γf(q)− Aq, xn − q〉 = lim
i→∞

〈γf(q)− Aq, xni
− q〉.

Correspondingly, there exists a subsequence {zni
} of {zn}. Since {zni

}
is bounded, there exists a subsequence {znij

} of {zni
} which converges

weakly to w. Without loss of generality, we can assume that zni
⇀ w.

Next, we show w ∈ F . First, we prove w ∈ EP (F ). Since zn =
Trnxn, we have

F (zn, η) +
1

rn

〈η − zn, zn − xn〉 ≥ 0, ∀η ∈ C.

It follows from the condition (A2) that

〈η − zn,
zn − xn

rn

〉 ≥ F (η, zn),

〈η − zni
,
zni

− xni

rni

〉 ≥ F (η, zni
).

Since
zni−xni

rni
→ 0, zni

⇀ w and (A4), we have F (η, w) ≤ 0 for all

η ∈ C. For t with 0 < t ≤ 1 and η ∈ C, let ηt = tη + (1 − t)w. Since
η ∈ C and w ∈ C, we have ηt ∈ C and hence F (ηt, w) ≤ 0. So, from
(A1) and (A4), we have

0 = F (ηt, ηt) ≤ tF (ηt, η) + (1− t)F (ηt, w) ≤ tF (ηt, η).

That is, F (ηt, η) ≥ 0. It follows from (A3) that F (w, η) ≥ 0 for all
η ∈ C and hence w ∈ EP (F ). Since every Hilbert space has Opial’s
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condition, it follows from (2.23) that

lim inf
i→∞

‖zni
− w‖ < lim inf

i→∞
‖zni

−Wnw‖
= lim inf

i→∞
‖zni

−Wnzni
+ Wnzni

−Wnw‖
≤ lim inf

i→∞
‖Wnzni

−Wnw‖
≤ lim inf

i→∞
‖zni

− w‖,

which derives a contradiction. Thus we have w ∈ F (Wn). It follows
from F (Wn) = ∩N

i=1F (Ti) that w ∈ ∩N
i=1F (Ti).

Next, let us first show that w ∈ V I(C,A). Put

Tw1 =

{
Bw1 + NCw1, w1 ∈ C,

∅, w1 /∈ C.

Since B is relaxed (u, v)-cocoercve, from the condition (iv), we have

〈Bx−By, x− y〉 ≥ (−u)‖Bx−By‖2 + v‖x− y‖2

≥ (v − uµ2)‖x− y‖2 ≥ 0,

which yields that B is monotone. Thus T is maximal monotone. Let
(w1, w2) ∈ G(T ). Since w2 − Aw1 ∈ NCw1 and ρn ∈ C, we have

〈w1 − ρn, w2 −Bw1〉 ≥ 0.

On the other hand, from ρn = PC(I − snB)zn, we have

〈w1 − ρn, ρn − (I − snB)zn〉 ≥ 0

and hence

〈w1 − ρn,
ρn − zn

sn

+ Bzn〉 ≥ 0.

Thus it follows that

〈w1 − ρni
, w2〉 ≥ 〈w1 − ρni

, Bw1〉 ≥ 〈w1 − ρni
, Bw1〉

− 〈w1 − ρni
,
ρni

− zni

sni

+ Bzni
〉

= 〈w1 − ρni
, Bw1 − ρni

− zni

sni

−Bzni
〉

= 〈w1 − ρni
, Bw1 −Bρni

〉+ 〈w1 − ρni
, Bρni

−Bzni
〉

− 〈w1 − ρni
,
ρni

− zni

sni

〉

≥ 〈w1 − ρni
, Bρni

−Bzni
〉 − 〈w1 − ρni

,
ρni

− zni

sni

〉,
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which implies that 〈w1 − w, w2〉 ≥ 0. We have w ∈ T−10 and hence
w ∈ V I(C,A), that is, w ∈ F. Since q = PF (γf + (I −A))(q), we have

lim sup
n→∞

〈γf(q)− Aq, xn − q〉 = lim
n→∞

〈γf(q)− Aq, xni
− q〉

= 〈γf(q)− Aq, w − q〉 ≤ 0.
(2.24)

Step (VII) Finally, we prove xn → q strongly.
It follows from Lemma 1.2 that

‖yn − q‖2

= ‖(I − βnA)(Wnρn − q) + βn(γf(zn)− Aq)‖2

≤ ‖(I − βnA)(Wnρn − q)‖2 + 2βn〈γf(zn)− Aq, yn − q〉
≤ (1− βnγ̄)2‖ρn − q‖2 + 2βn〈γf(zn)− Aq, yn − q〉
≤ (1− βnγ̄)2‖zn − q‖2 + 2βnγ〈f(zn)− f(q), yn − q〉

+ 2βn〈γf(q)− Aq, yn − q〉
≤ (1− βnγ̄)2‖xn − q‖2 + 2βnγα‖zn − q‖‖yn − q‖

+ 2βn〈γf(q)− Aq, yn − q〉
≤ (1− βnγ̄)2‖xn − q‖2 + βnγα(‖zn − q‖2 + ‖yn − q‖2)

+ 2βn〈γf(q)− Aq, yn − q〉
≤ (1− βnγ̄)2‖xn − q‖2 + βnγα(‖xn − q‖2 + ‖yn − q‖2)

+ 2βn〈γf(q)− Aq, yn − q〉,

which implies that

‖yn − q‖2

≤ (1− βnγ̄)2 + βnγα

1− βnγα
‖xn − q‖2 +

2βn

1− βnγα
〈γf(q)− Aq, yn − q〉

=
(1− 2βnγ̄ + βnαγ)

1− βnγα
‖xn − q‖2 +

β2
nγ̄

2

1− βnγα
‖xn − q‖2

+
2βn

1− βnγα
〈γf(q)− Aq, yn − q〉

≤ [1− 2βn(γ̄ − αγ)

1− βnγα
]‖xn − q‖2

+
2βn(γ̄ − αγ)

1− βnγα
[

1

γ̄ − αγ
〈γf(q)− Aq, yn − q〉+

βnγ̄
2

2(γ̄ − αγ)
M ].

(2.25)
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On the other hand, we have

‖xn+1 − p‖2 = ‖αn(xn − p) + (1− αn)(yn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)‖yn − p‖2.
(2.26)

Substituting (2.25) into (2.26) yields that

‖xn+1 − p‖2

≤ [1− (1− αn)
2βn(γ̄ − αγ)

1− βnγα
]‖xn − q‖2

+ (1− αn)
2βn(γ̄ − αγ)

1− βnγα
[

1

γ̄ − αγ
〈γf(q)− Aq, yn − q〉

+
βnγ̄

2

2(γ̄ − αγ)
M ].

(2.27)

In (2.27), put ln = (1− αn)2βn(γ̄−αnγ)
1−βnαγ

and

tn =
1

γ̄ − αγ
〈γf(q)− Aq, xn+1 − q〉+

βnγ̄2

2(γ̄ − αγ)
M.

Then we have

‖xn+1 − q‖2 ≤ (1− ln)‖xn − q‖2 + lntn. (2.28)

It follows from the condition (i) and (2.24) that

lim
n→∞

ln = 0,
∞∑

n=1

ln = ∞ and lim sup
n→∞

tn ≤ 0.

If we apply Lemma 2.1 to (2.28), it follows that xn → q strongly.

3. Applications

By using Theorem 2.1, we have the following:

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert
space H. Let T be a nonexpansive mappings of C into H and B be a
µ-Lipschitzian relaxed (u, v)-cocoercive mapping of C into H such that
F = F (T )∩EP (F )∩V I(C,B) 6= ∅. Let A be a strongly positive linear
bounded operator with coefficient γ̄ > 0. Assume that 0 < γ < γ̄

α
. Let f

be a contractive mapping of H into itself with coefficient α (0 < α < 1)
and {xn} and {yn} be sequences generated by





x1 ∈ H,

yn = βnγf(zn) + (I − βnA)TPC(I − snB)zn,

xn+1 = αnxn + (1− αn)yn,
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where zn = PCxn for all n ≥ 0 and PC is the metric projection form H
onto C, αn ⊂ [0, 1] and {rn}, {sn} ⊂ [0,∞) satisfy the following:

(i) limn→∞ βn = 0,
∑∞

n=1 βn = ∞,
(ii) limn→∞ |sn+1 − sn| = 0,
(iii) there exists c, d ∈ (0, 1) such that c < αn < d for all n ≥ 0,

(iv) {sn} ∈ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v−uµ2)
µ2 .

Then {xn} converges strongly to q ∈ F, where q = PF (γf +(I−A))(q),
which solves the following variational inequality:

〈γf(q)− Aq, p− q〉 ≤ 0, ∀p ∈ F.

Proof. Taking F (x, y) = 0 for all x, y ∈ C and {rn} = 1 for all n ≥ 1
in Theorem 2.1, we have

〈η − zn, zn − xn〉 ≥ 0, ∀η ∈ C,

which implies that zn = PCxn. Putting N = 1 and λn1 = 1 in (1.8),
we can obtain the desired conclusion from Theorem 2.1 immediately.

Furthermore, If taking {sn} = 0, γ = 1 and A = I in Theorem 3.1,
we can also obtain the following theorem easily:

Theorem 3.2. Let C be a nonempty closed convex subset of a Hilbert
space H. Let T be a nonexpansive mappings of C into H such that
F = F (T ) ∩ EP (F ) 6= ∅. Let f be a contractive mapping of H into
itself with coefficient α (0 < α < 1) and {xn}, {yn} be sequences
generated by 




x1 ∈ H,

yn = βnf(zn) + (I − βnA)Tzn,

xn+1 = αnxn + (1− αn)yn,

where zn = PCxn for all n ≥ 0 and PC is the metric projection form H
onto C, αn ⊂ [0, 1] and {rn}, {sn} ⊂ [0,∞) satisfy the following:

(i) limn→∞ βn = 0,
∑∞

n=1 βn = ∞,
(ii) there exists c, d ∈ (0, 1) such that c < αn < d for all n ≥ 0.

Then {xn} converges strongly to q ∈ F, where q = PF f(q), which solves
the following variational inequality:

〈f(q)− q, p− q〉 ≤ 0, ∀p ∈ F.
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Weighted composition operators between weighted Bergman

spaces and weighted Bloch type spaces

Elke Wolf

Abstract

Let φ : D → D and ψ : D → C be analytic maps. They induce a weighted composition

operator Cφ,ψ acting between weighted Bergman spaces and weighted Bloch type spaces.

Under some assumptions on the weights we give a necessary as well as a sufficient condition

when such an operator is continuous resp. compact.

MSC 2000: 47B33, 47B38
Keywords: weighted composition operators, weighted Bloch type spaces, weighted Bergman spaces

I. Introduction

Let φ be an analytic self-map of the open unit disk D and ψ be an analytic map defined on D. These
maps induce a weighted composition operator Cφ,ψ : H(D) → H(D), f → ψ(f ◦ φ), where H(D)
denotes the set of all holomorphic functions on D. Furthermore let v and w be strictly positive
continuous and bounded functions (weights) on D. We consider weighted Bloch type spaces Bv of
functions f ∈ H(D) satisfying ‖f‖Bv

:= supz∈D
v(z)|f ′(z)| < ∞. Provided we identify functions

that differ by a constant, ‖.‖Bv
becomes a norm and Bv a Banach space. Moreover let Aw,p denote

the weighted Bergman space

Aw,p := {f ∈ H(D); ‖f‖w,p =

(
∫

D

|f(z)|pw(z) dA(z)

)
1
p

<∞},

where A is the area measure, normalized so that area of D is one. In case w ≡ 1 we write
Ap. Composition operators and weighted composition operators acting between various spaces
of analytic functions have been investigated by several authors, see e.g. [12], [8], [10], [2], [4],
[3], [9], [11]. In this article we want to give necessary and sufficient conditions for a weighted
composition operator acting between weighted Bergman spaces and weighted Bloch type spaces
to be continuous resp. compact. These conditions are given in terms of the weights as well as the
involved analytic functions φ and ψ.

II. Preliminaries

For notation on composition operators we refer the reader to the monographs [5] and [13]. We
want to consider some special weights, the so-called standard weights, vp(z) = (1 − |z|2)p, p > 0.

We need some auxiliary results.

Lemma 1 (Hedenmalm-Korenblum-Zhu, Lemma 3.2) Let f ∈ Avα,p, then for every z ∈ D we
have

|f(z)| ≤
‖f‖vα,p

(1 − |z|2)
2+α

p

.

Lemma 2 (Wolf, [14], Lemma 1) Let w be a weight of the form w = |u|, where u is a holomorphic
function without any zeros on D. Then

|f(z)| ≤
1

(1 − |z|2)
2
pw

1
p (z)

‖f‖w,p

for all z ∈ D, f ∈ Aw,p.

1
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For the study of the compactness of the operator Cφ,ψ we need the following result.

Proposition 3 (Cowen-MacCluer, [5] Proposition 3.11) Let X and Y be Aw,p or Bv. Then
Cφ,ψ : X → Y is compact if and only if for every bounded sequence (fn)n∈N in X such that fn → 0
uniformly on the compact subsets of D, then Cφ,ψfn → 0 in Y .

III. Main Result

Proposition 4 Let w be a weight of the form w = |u|, where u is a holomorphic function without
any zeros on D. If

(a) supz∈D

v(z)|ψ′(z)|

w
1
p (φ(z))(1−|φ(z)|2)

2
p

<∞,

(b) supz∈D

v(z)|ψ(z)||φ′(z)||u′(φ(z))|

(1−|φ(z)|2)
2
pw(φ(z))

<∞,

(c) supz∈D

v(z)|ψ(z)||φ′(z)|

w
1
p (φ(z))(1−|φ(z)|2)

(2+p)
p

<∞,

then the weighted composition operator Cφ,ψ : Aw,p → Bv is continuous.

Proof. We have f ∈ Aw,p if and only if fu
1
p ∈ Ap. By a theorem of Hardy-Littlewood and Flett

(see [6]) this yields that (fu
1
p )′ ∈ Avp

.
Next, we fix f ∈ Aw,p and obtain using Lemma 1

|f ′(z)u
1
p (z) −

1

p
f(z)u

1
p
−1(z)u′(z)| ≤ cp

‖fu
1
p ‖p

(1 − |z|2)
2+p

p

= cp
‖f‖w,p

(1 − |z|2)
2+p

p

for every z ∈ D. Thus we get applying Lemma 2

|f ′(z)| ≤ cp
‖f‖w,p

w
1
p (z)(1 − |z|2)

2+p

p

+
1

p
|f(z)|w

1
p
−1(z)|u′(z)|

≤ cp
‖f‖w,p

w
1
p (z)(1 − |z|2)

2+p

p

+
1

p

|u′(z)|‖f‖w,p
(1 − |z|2)

2
pw(z)

(0.1)

for every z ∈ D. Now, for every z ∈ D we get using Lemma 2 once again

‖Cφ,ψf‖Bv
= sup

z∈D

v(z)|(Cφ,ψf)′(z)|

≤ sup
z∈D

v(z)|ψ′(z)||f(φ(z))| + sup
z∈D

v(z)|ψ(z)||f ′(φ(z))||φ′(z)|

≤ sup
z∈D

v(z)|ψ′(z)|‖f‖w,p
(1 − |φ(z)|2)

2
pw

1
p (φ(z))

+ sup
z∈D

cpv(z)|ψ(z)||φ′(z)|‖f‖w,p
w

1
p (φ(z))(1 − |φ(z)|2)

2+p

p

+
1

p
sup
z∈D

v(z)|ψ(z)||φ′(z)||u′(φ(z)))|‖f‖w,p
(1 − |φ(z)|2)

2
pw(φ(z))

.

Thus, the claim follows. 2

Proposition 5 Let w be a weight of the form w = |u| where u is a holomorphic function without
any zeros on D. If the weighted composition operator Cφ,ψ : Aw2p,p → Bv is continuous, then

(a) supz∈D

v(z)|ψ′(z)|
w(φ(z)) <∞.

(b) supz∈D

v(z)|ψ(z)||φ′(z)||u′(φ(z))|
w(φ(z)) <∞.

2
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Proof. Fix a ∈ D and put fa(z) = 2
u(z) −

u(φ(a))
u2(z) . Then obviously fa ∈ Aw2p,p since

‖fa‖pw2p,p
=

∫

D

|fa(z)|pw2p(z) dA(z) =

∫

D

|2u(z)− u(φ(a))|p dA(z) ≤ 3Mp,

where M = supz∈D w(z). Moreover we have

f ′
a(z) = −2

u′(z)

u2(z)
+ 2

u(φ(a))u′(z)

u3(z)

and thus fa(φ(a)) = 1
u(φ(a)) and f ′

a(φ(a)) = 0. Finally

v(a)|(Cφ,ψfa)′(a)| = v(a)
|ψ′(a)|
w(φ(a))

≤ ‖Cφ,ψ‖‖fa‖w2p,p ≤ 3
1
pM‖Cφ,ψ‖.

Thus, we have proved that condition (a) holds.

Next, we consider ga(z) = u(φ(a))
u2(z) − 1

u(z) . Then, ga ∈ Aw2p,p, since

‖ga‖pw,p =

∫

D

|ga(z)|pw2p(z) dA(z) =

∫

D

|u(φ(a)) − u(z)|p dA(z) ≤ 2Mp.

Moreover we have g′a(z) = −2u(φ(a))u′(z)
u3(z) + u′(z)

u2(z) . Then ga(φ(a)) = 0 and g′a(φ(a)) = − u′(φ(a))
u2(φ(a))

and
|ψ(a)||φ′(a)||u′(φ(a))|v(a)

w2(φ(a)
= v(a)|(Cφ,ψf)′(a)| ≤ 2

1
pM‖Cφ,ψ‖,

and condition (b) follows. 2

Proposition 6 Let w be a weight of the form w = |u| where u is a holomorphic function without
any zeros on D. If

(a) limr→1 sup|φ(z)|>r
v(z)|ψ′(z)|

w
1
p (φ(z))(1−|φ(z)|2)

2
p

= 0,

(b) limr→1 sup|φ(z)|>r
v(z)|ψ(z)||φ′(z)||u′(φ(z))|

(1−|φ(z)|2)
1
pw(φ(z))

= 0,

(c) limr→1 sup|φ(z)|>r
v(z)|ψ(z)||φ′(z)|

w
1
p (φ(z))(1−|φ(z)|2)

2+p

p

= 0,

(d) supz∈D

v(z)
w(φ(z)) |ψ(z)||φ′(z)| <∞,

then the weighted composition operator Cφ,ψ : Aw,p → Bv is compact.

Proof. Let (fn)n be a sequence in Aw,p with ‖fn‖w,p ≤ 1 and fn → 0 uniformly on compact
subsets of D. By assumption, for any ε > 0, there is a constant δ, 0 < δ < 1 such that δ < |φ(z)| < 1
implies

v(z)|ψ(z)||φ′(z)||u′(φ(z))|

w(φ(z))(1 − |φ(z)|2)
1
p

<
ε

3
and

v(z)|ψ(z)||φ′(z)|

w
1
p (φ(z))(1 − |φ(z)|2)

2+p

p

<
ε

3
and

v(z)|ψ′(z)|

w
1
p (φ(z))(1 − |φ(z)|2)

2
p

<
ε

3
.

3
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Let K denote the compact set K = {w ∈ D; |w| ≤ δ}. Then we obtain

‖Cφ,ψfn‖Bv
= sup

z∈D

v(z)|(Cφ,ψfn)′(z)|

≤ sup
z∈D

v(z)|ψ′(z)||fn(φ(z))| + sup
z∈D

v(z)|ψ(z)||f ′
n(φ(z))||φ′(z)|

≤ sup
{z∈D; φ(z)∈K}

v(z)|ψ′(z)||fn(φ(z))| + sup
{z∈D; φ(z)∈K}

v(z)|ψ(z)||f ′
n(φ(z))||φ′(z)|

+ ε

≤ ‖ψ‖Bv
sup
s∈K

|fn(s)| +M sup
s∈K

w(s)|f ′
n(s)|,

where M = supz∈D

v(z)
w(φ(z) |ψ(z)||φ′(z)|. By condition (a) ψ ∈ Bv. Hence ‖Cφ,ψfn‖Bv

→ 0 if

n→ ∞. Thus, Cφ,ψ : Aw,p → Bv is a compact operator. 2

Proposition 7 Let w be a weight of the form w = |u| where u is a holomorphic function without
any zeros on D. If the weighted composition operator Cφ,ψ : Aw2p,p → Bv is compact, then the
following conditions hold:

(a) limr→1 sup|φ(z)|>r
|ψ′(z)|v(z)

w
1
2 (φ(z))

= 0.

(b) limr→1 sup|φ(z)|>r
|ψ(z)||φ′(z)||u′(z)|v(z)

w
3
2 (φ(z))

= 0.

Proof. Let (zn)n∈N ⊂ D be a sequence such that |φ(zn)| → 1 if n→ ∞. Next, consider

fn(z) = u
1
2 (φ(zn))

(

2

u(z)
−
u(φ(zn))

u2(z)

)

, z ∈ D.

Then fn ∈ Aw2p,p, ‖fn‖w,p ≤ 3
1
pM2 for every n ∈ N and (fn)n converges to 0 uniformly on com-

pact subsets of D. Moreover f ′
n(z) = u

1
2 (φ(zn))

(

−2 u
′(z)

u2(z) + 2u(φ(zn))u′(z)
u3(z)

)

and thus fn(φ(zn)) =
1

u
1
2 (φ(zn))

and f ′
n(φ(zn)) = 0. Since Cφ,ψ is compact, we have ‖Cφ,ψfn‖Bv

→ 0 if n → ∞.

Furthermore

‖Cφ,ψfn‖Bv
= sup

z∈D

v(z)|(Cφ,ψfn)′(z)|

≥ v(zn)|(Cφ,ψfn)′(zn)| = |ψ′(zn)|
v(zn)

w
1
2 (φ(zn))

.

Finally, (a) follows. In order to show (b) we consider the functions

gn(z) = u
1
2 (φ(zn))

(

u(φ(zn))

u2(z)
−

1

u(z)

)

.

Then gn ∈ Aw2p,p, ‖gn‖Bv
≤ 2

1
pM2 for every n ∈ N and (gn)n converges to 0 uniformly on compact

subsets of D. Moreover g′n(z) = u
1
2 (φ(zn))

(

−2u(φ(zn))u′(z)
u3(z) + u′(z)

u2(z)

)

. Thus, gn(φ(zn)) = 0 and

g′n(φ(zn)) = − u′(φ(zn))

u
3
2 (φ(zn))

and ‖Cφ,ψfn‖Bv
≥ v(zn)

|φ′(zn)||u′(zn)|

w
3
2 (φ(zn))

. 2

References

[1] K.D. Bierstedt, J. Bonet, J. Taskinen, Associated weights and spaces of holomorphic func-
tions, Studia Math. 127 (1998), 137-168.

4

WOLF:WEIGHTED COMPOSITION OPERATORS320
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2 The TTF Method

1 Introduction

The approach of the TTF method is to use the overspeci�ed condition to elimi-

nate the unknown function from the partial di¤erential equation. The resulting

problem then has the form of a standart boundary value or initial boundary

value problem but having coe¢ cients which are functionals of the unknown

solution. If the overspesi�ed data is measured on the boundary then these func-

tionals will depend on restriction to the boundary of the solution (i.e. they will

be "trace-type functionals" ). After solving this TTF (Trace-type functional)

problem, the unknown function can be determined using the overspeci�ed con-

ditions. Trace-type functionals can be used to establish existence of a solution

in an inverse problems[1-4]. This approach can also be implemented numerically

[5,6]. The usual numerical methods such as �nite di¤rence and �nite element

can be used for numerical solution of TTF problem.

A classical approach to solve the considered problem referred to in the lit-

erature as the method of output least squares is to assume that the unknown

function is a speci�c functional form depending on some parameters and then

seek to determine optimal parameter values so as to minimize an error functional

based on the overspeci�ed data. However, this approach has some drawbacks.

For example, it is usually not evident that the solution to the optimization prob-

lem solves the original inverse problem and the error functional may be based on

data which do not uniquely determine the unknown function. Another methods

to solve this problem are residual update methods such as Newton, Homotopy,

FPP(Fixed Point Projection) methods[7 ] or montonicity methods [8,9]. The
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main di¢ culty with these methods is the form of the nonlinearity. In this work

we apply TTF method for the solution of considered problem and show e¤ec-

tiveness of this method by comparison with other methods.

This paper is organized as follows. In section 2 we give the formulation of the

direct and inverse problems and the properties of solution of the direct problem.

In section 3 we describe the trace-type functional formulation of the problem.

The �nite di¤erence scheme for solving of TTF formulation of the problem is

also described in this section 3 and the results of numerical calculations are

presented in section 4.

2 Formulation of the Problem

We consider the problem of structural identi�cation of an unknown source term

in a heat equation subject to the speci�cation of the solution at the boundary.

This problem is described by the following inverse problem:

Find u = u(x; t) and F = F (u) which satisfy

ut(x; t) = uxx(x; t) + F (u(x; t)); (x; t) 2 QT = (0; 1)� (0; T ); (1)

u(x; 0) = 0; x 2 (0; 1); (2)

ux(0; t) = g(t); t 2 (0; T ); (3)

ux(1; t) = 0; t 2 (0; T ); (4)

subject to the overspeci�cation

u(0; t) = f(t); t 2 (0; T ) (5)

324



4 The TTF Method

where f(t) and g(t) are known functions.

In the context of heat conduction and di¤usion when u represents tempera-

ture and concentration the unknown function F (u) is interpreted as a heat and

material source, respectively, while in a chemical or biochemical application F

may be interpreted as a reaction term. Although the results in this paper apply

to each of these interpretations, the unknown function F (u) will be referred to

here as a source term.

The problem above in such formulation have been studied, for instance, in

[10-12].

If F is continuous and piecewise di¤erentiable on R and g 2 C(0;1) with

g(0) = 0 functions, then initial boundary value problem (1)-(4) has a unique

classical solution inQT 0 for su¢ ciently small T
0
(local existence of a solution)[13].

It is known that if the local solution is known to satisfy an a priori estimate

then the local solution may be extended to a global solution. In particular, if it

is known a priori that the solution of (1)-(4) satis�es

ju(x; t)j � C1 for 0 � x � 1 and 0 � t � T (6)

for some T > 0; then it can be concluded that T
0
= T: One refers to (1)-(4) as

a direct problem.

Let u = u(x; t;F; g) denote the solution of (1)-(4) for boundary input g =

g(t) and source term F = F (u). Assume that this solution is known to satisfy

(6) for a �xed T > 0 so that u(x; t) is then a solution in QT . Then u(x; t) will

be said to be a solution of the direct problem. The function f(t) = u(0; t;F; g)

will be viewed as an output corresponding to the input g(t) in the presence of
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the source term F . In [9] the following properties were deduced for the direct

problem solution:

suppose that g(t) < 0 for 0 < t < T . Then

a) for each t; 0 < t < T; f(t) = u(0; t) > u(x; t) > u(1; t) for 0 < x < 1: If, in

addition, F (0) � 0 with F (u) � 0 for 0 � u � U1 for some U1 > 0; then exists

T1 > 0 such that f
0
(t) > 0 for 0 < t < T1 and

b)f(t) = u(0; t) > u(x; t) > u(1; t) � 0 for 0 < x < 1; 0 < t < T1:

We shall use these properties to construct numerical procedure for the solu-

tion of considered problem.

Now the inverse problem can be de�ned as follows: suppose g 2 C[0; T ]; g(0) =

0; g(t) < 0 and f 2 C
0
[0; T ]; f(0) = 0; f

0
(t) > 0 for 0 < t < T . Then the

problem of determining F (u) on an interval [0; f(T )] from the data f(t) and g(t)

whose values are known on the interval [0; T ] will be said the inverse problem.

The uniqueness of formulated and similar inverse problem has been established

in [10; 15].

3 The TTF Method

3.1 Trace-Type Functional Formulation of the Problem

If the function pair fu; Fg solves the inverse problem (1) � (5) then it follows

that,

F (u(0; t)) = f 0(t)� uxx(0; t) (7)
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6 The TTF Method

Let s = u(0; t) = f(t) then

F (s) = f 0(f�1(s))� uxx(0; f�1(s))

If we eliminate F from (1) using the last formula we obtain the Trace Type

Functional (or TTF) equation

ut(x; t)� uxx(x; t) = f 0(f�1(u(x; t)))� uxx(0; f�1(u(x; t)) (8)

The equation (8) along with initial condition (2) and boundary condition (3),

(4) is called as the Trace-Type Functional Formulation of the inverse problem

(1)� (5) :

Then from the solution u(x; t) of the TTF formulation of the problem

ut(x; t)� uxx(x; t) = f
0
(f�1(u(x; t))� uxx(0; f�1(u(x; t))) (9)

u(x; 0) = 0; x 2 (0; 1) (10)

ux(0; t) = g(t); t 2 (0; T ) (11)

ux(1; t) = 0; t 2 (0; T ) (12)

we can �nd F (u) by using (7). Numerical solution of (9) � (12) is realized by

the implicit �nite-di¤erence scheme.

3.2 Finite-Di¤erence Approximation of TTF problem.

Let � = �t > 0 and h = �x > 0 be step length on time and space coordinate,

f0 = t0 < t1 < ::: < tM = Tg and f0 = x0 < x1 < ::: < xN = 1g denotes a

partitions of the [0; T ] and [0; 1] respectively.

327



A.G.Fatullayev et al. 7

The implicit �nite-di¤erence approximation of this system can be written in

the form

Ui;n � Ui;n�1
�

=
Ui�1;n � 2Ui;n + Ui�1;n

h2
+

f
0
(f�1(Ui;n))� Uxx(0; f�1(Ui;n)) 1 � i � N � 1; 1 � n �M (13)

Ui;0 = u0; 0 � i � N (14)

U1;n � U0;n
h

= g(tn); 1 � n �M (15)

UN;n � UN�1;n
h

= 0; 1 � n �M (16)

where Ui;n is the approximate value of ui;n = u(xi; tn);

f 0(f�1(Ui;n)) =
f(f�1(Ui;n))� f(f�1(Ui;n�1))

�
;

Uxx(0; f
�1(Ui;n) =

U2;n� � 2U1;n� + U0;n�
h2

;

and n� is such that tn� < f�1(Ui;n) < tn�+1.

The di¤erence scheme (13) � (16) has a second order approximation on x

at the interior nodal points and �rst order approximation on t. A solution of

this �nite�di¤erence scheme can be realized by the standard solver. From the

numerically obtained solution U the unknown F can be calculated through the

formula (7) via numerical di¤erentiation.

4 Numerical Results

In this section we report some results of our numerical calculations using the

numerical algorithm proposed in the previous section.
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8 The TTF Method

Example 1. The data function g(t), the source F (u); u0 and T were given

by

g(t) = �3t; F (u) = 5� 4=(u+ 1); T = 1; u0 = 0:

By solving the direct problem with these data the solution values of f(t) were

recorded. Then the inverse problem was solved with this overspesi�cation to

determine the unknown source F (u).

At �rst, we investigate the convergence of the numerical solution with respect

to the number of nodal points.

Results of determination of F (u) by the presented numerical method, are

illustrated in �gures 1-3, corresponds to results with grids N � M = 50 �

5; 50 � 10; 50 � 30, respectively, where the symbols correspond to approximate

results and the ones without symbols correspond to exact F (u). It is seen that

approximation of F (u) is improved by increasing the number of nodes and that

for su¢ ciently large number of nodes the agreement between numerical and

exact solution becomes uniformly good. It should be noted that for M = 5 the

numerical solution is already an accurate approximation to the exact solution.

Although not presented here it is reported that other test examples have been

investigated and it was found that in general the TTF method produces an

accurate numerical solution even for small numbers of nodal points.
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0 1 2 3

1

2

3

4

Figure 1. The exact and determined values of F(u), for N=50,M=5.

 determined F(u)
 exact F(u)

u

0 1 2 3

1

2

3

4

Figure 2. The exact and determined values of F(u) for N=50,M=10.

 determined F(u)
 exact

u
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0 1 2 3

1

2

3

4

Figure 3. The exact and determined values of F(u) for N=50,M=30.

 determined F(u)
 exact F(u)

u

Example 2.In the next example input data were used from the previous ex-

ample. The stability of the TTF method proposed is investigated by perturbing

the overspeci�cation data function f(t) as

f�(tn) = f(tn)(1 + �(tn; d)); n = 1; 2; :::;M:

Here �(t; d) is random function of t uniformly distributed on (�d; d) (function

of random errors represents the level of relative error in the corresponding piece

of data).

Calculation results with grid N � M = 50 � 20 with the random errors

�(t; 0:02) and �(t; 0:005) are presented in �gure 4. As seen from the �gure that

in the case of random errors results are worsening and there are approximations

in some integral norm. It is also seen that there is a good approximation for

the small values of arti�cial errors, as it was expected.
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0 1 2 3

1

2

3

4

5

Figure 4. The exact and determined values of F(u)
for N=50, M=20 and various level of random errors.

u

 determined F(u), d=0.005
 determined F(u), d=0.02
 exact F(u)

Example 3.Since u is a monotone increasing function of the unknown coef-

�cient f it is seems that monotonicity type successive determinig (SD) method

[9, 16] is readly available for considered problem[7] . The drawbacks of other

method for considered problem have been mentioned and more thorough survey

of the methods can be also found in [7]. Next, we investigate the performance of

the TTF method in comparision with the SD method. Results of determination

of F (u) are illustrated in Figs. 5-7.

As seen from the �gures that the results for the TTF method approximates

better than the SD method. It is also seen that TTF method is less sensitive

to the random errors. Various other numerical examples have been investigated

and similar results have been obtained.
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0,0 0,5 1,0 1,5 2,0
0,5

1,0

1,5
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2,5

3,0

3,5
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Figure 5. The exact and determined values of F(u) for N=50,M=30 and d=0.
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 TTF method
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Figure 6. The exact and determined values of F(u) for N=50,M=30, d=0.02
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0,0 0,5 1,0 1,5 2,0 2,5

1
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3

4

5

6

Figure 7. The exact and determined values of F(u) for N=50, M=30 and d=0.04.

 SD method
 exact
 TTF method

F(
u)

u

5 Conclusions

In this paper the TTF method is applied for solving the inverse problem of

�nding unknown source function in a parabolic equation. The numerical re-

sults show e¤ectiveness of this method by comparison with other methods and

suggest that the TTF method is an accurate and reliable numerical technique.

The method is very e¢ cient from a computational point of view since it was

found that it produces accurate results even if small numbers nodal points are

used. Moreover the method is easy to adapt to other type of inverse coe¢ cient

problems for parabolic equations.
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ABSTRACT

In the present paper, random fixed point results for generalized nonexpansive
mapping in the setup of compact and weakly compact subset of q-normed space
have been established. Random best approximation results have also been
derived as its application. Our results give stochastic version generalization of
Dotson and Singh.
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1. INTRODUCTION

Probabilistic functional analysis is an important mathematical discipline be-
cause of its applications to probabilistic models in applied problems. Random
operator theory is needed for the study of various classes of random equations.
The theory of random fixed point theorems was initiated by the Prague school
of probabilistic in the 1950s.The interest in this subject enhanced after publi-
cation of the survey paper by Bharucha Reid [5]. Random fixed point theory
has received much attention in recent years(see, e.g. [2, 12, 13, 14, 17]).

Interesting and valuable results applying various random fixed point theo-
rems appeared in the literature of approximation theory. In this direction, some
of the authors are Beg and Shahzad [3, 4], Lin [10], Tan and Yuan [17] and Papa-
georgion [13, 14]. In the subject of best approximation, we often wish to know
whether there are some useful property of the function being approximation
which can be inherited by the approximating function.

In fact, Meinardus [11] was the first who observed the gereral principle and
employed a fixed point theorem to established the existence of an invariant
approximation. Later on, number of results were developed in this direction
under different conditions following the line made by Meinardus [11].

The aim of this paper is to establish existence of random fixed point as
random best approximation in the setting of q-normed space. While doing
so, however, we need to prove such result for compact and weakly compact
subset by using result of O’Regan, Shazad and Agrawal [12]. In this way, we
give random best approximation generalization of best approximation theorem

1
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2 HEMANT KUMAR NASHINE AND RITU SHRIVASTAVA

obtained by Singh [16] and random fixed point generalization of fixed point
theorem of Dotson [6]

2. PRELIMINARIES

In the material to be produced here, the following definitions have been used:

Let X be a linear space. A q-norm on X is a real-valued function ‖.‖q on X
with 0 < q ≤ 1, satisfying the following conditions :

(a) ‖x‖q ≥ 0 and ‖x‖q = 0 iff x = 0,

(b) ‖λx‖q = | λ |q‖x‖q,

(c) ‖x + y‖q ≤ ‖x‖q + ‖y‖q,
for all x, y ∈ X and all scalars λ. The pair (X , ‖.‖q) is called a q-normed space. It
is a metric space with dq(x, y) = ‖x−y‖q for all x, y ∈ X , defining a translation
invariant metric dq on X . If q = 1, we obtain the concept of a normed linear
space. It is well-known that the topology of every Hausdorff locally bounded
topological linear space is given by some q-norm, 0 < q ≤ 1. The spaces lq and
Lq[0, 1], 0 < q ≤ 1 are q-normed space. A q-normed space is not necessarily
a locally convex space. Recall that, if X is a topological linear space, then its
continuous dual space X ∗ is said to separate the points of X , if for each x 6= 0
in X , there exists an g ∈ X ∗ such that gx 6= 0. In this case the weak topology
on X is well-defined. We mention that, if X is not locally convex, then X ∗ need
not separates the points of X . For example, if X = Lq[0, 1], 0 < q < 1, then
X ∗ = {0} [15, page 36-37]. However, there are some non-locally convex spaces
(such as the q-normed space lq, 0 < q < 1) whose dual separates the points [8].

Definition 2.1. [12]. Let (Ω,A) be a measurable space and X be a metric
space. Let 2X be the family of all nonempty subsets of X and C(X ) denote
the family of all nonempty compact subsets of X . Now, we call a mapping
F : Ω → 2X measurable (respectively, weakly measurable) if, for any closed
(respectively, open) subset B of X , F−1(B) = {ω ∈ Ω : F(ω) ∩ B 6= φ} ∈ A.
Note that, if F(ω) ∈ C(X ) for every ω ∈ Ω, then F is weakly measurable if and
only if measurable.

A mapping ξ : Ω → X is called a measurable selector of a measurable
mapping F : Ω → 2X , if ξ is measurable and, for any ω ∈ Ω, ξ(ω) ∈ F(ω). A
mapping f : Ω×X → X is called a random operator if for any x ∈ X , f(., x) is
measurable. A measurable mapping ξ : Ω → X is called a random fixed point
of a random operator f : Ω × X → X if for every ω ∈ Ω, ξ(ω) = f(ω, ξ(ω)).
A random operator f : Ω × X → X is continuous if, for each ω ∈ Ω, f(ω, .) is
continuous.

Definition 2.2. Let M be a nonempty subset of a Banach space X . For
x0 ∈ X , define

d(x0,M) = inf
y∈M

‖x0 − y‖
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and
PM(x0) = {y ∈M : ‖x0 − y‖ = d(x0,M)}.

Then an element y ∈ PM(x0) is called a best approximant of x0 of M. The set
PM(x0) is the set of all best approximants of x0 of M.

We also use the following result of O’Regan, Shahzad and Agarwal [12]:

Theorem 2.3. [12]. Let (X , d) be a Polish space and T : Ω × X → X be a
continuous random operator. Suppose, there is some h ∈ (0, 1) such that for
x, y ∈ X and ω ∈ Ω, we have

d(T (ω, x), T (ω, y)) ≤ h max{d(x, y), d(x, T (ω, x)), d(y, T (ω, y)),

1
2 [d(x, T (ω, y)) + d(y, T (ω, x))]}.

Then T have a random fixed point.

3. MAIN RESULT

We first prove our main result for compact subset of a q-normed space.

Theorem 3.1. Let X be a q-normed space and M be a subset of X , and
T : Ω ×M →M be a continuous random operator. Suppose M is nonempty,
compact and starshaped to a point p ∈M. If T satisfies
(3.1)
‖T (ω, x)− T (ω, y)‖q ≤ max{‖x− y‖q, dist(x, [T (ω, x), p]), dist(y, [T (ω, y), p]),

1
2 [dist(x, [T (ω, y), p]) + dist(y, [T (ω, x), p])]}

for x, y ∈ M, ω ∈ Ω, then there exists a measurable map ξ : Ω →M such that
ξ(ω) = T (ω, ξ(ω)) for each ω ∈ Ω.

Proof. Choose a sequence kn ⊂ (0, 1) such that {kn} → 1 as n →∞. Then for
each n, define a random operator Tn : Ω×M→M as

(3.2) Tn(ω, x) = knT (ω, x) + (1− kn)p for each x ∈M.

Then each Tn is a self map from M into M and ω ∈ Ω. Also (3.1) and (3.2)
imply that

‖Tn(ω, x)− Tn(ω, y)‖q = (kn)q‖T (ω, x)− T (ω, y)‖q

≤ (kn)q max{‖x− y‖q, dist(x, [T (ω, x), p]), dist(y, [T (ω, y), p]),

1
2 [dist(x, [T (ω, y), p]) + dist(y, [T (ω, x), p])]}

≤ (kn)q max{‖x− y‖q, ‖x− Tn(ω, x)‖q, ‖y − Tn(ω, y)‖q,

1
2 [‖x− Tn(ω, y)‖q + ‖y − Tn(ω, x)‖q]}

i.e.,

‖Tn(ω, x)− Tn(ω, y)‖q ≤ (kn)q max{‖x− y‖q, ‖x− Tn(ω, x)‖q, ‖y − Tn(ω, y)‖q,

1
2 [‖x− Tn(ω, y)‖q + ‖y − Tn(ω, x)‖q]}
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for all x, y ∈ M, ω ∈ Ω. By the continuity of Tn(., x) (x ∈ M), the inverse
image of any open subset K of M is open in ω = [0, 1] and hence Lebsegue
measurable. Thus each Tn(., x) is a random operator. By Theorem 2.3, Tn has
a random fixed point ξn of Tn such that ξn(ω) = Tn(ω, ξn) for all n ∈ N.
For each n, define Gn : Ω → C(M) by Gn = cl{ξi(ω) : i ≥ n} where C(M) is
the set of all nonempty compact subset of M.
Let G : Ω → C (M) be a mapping defined as G(ω) = ∩∞n=1Gn(ω). Then, by
a result of Himmelberg [7, Theorem 4.1] we see that G is measurable. The
Kuratowski and Ryll-Nardzewski selection Theorem [9] further implies that G
has a measurable selector ξ : Ω → M. We now show that ξ is the random
fixed point of T . We first fix ω ∈ Ω. Since ξ(ω) ∈ G(ω), there exists a subse-
quence {ξm(ω)} of {ξn(ω)} that converges to ξ(ω); that is ξm(ω) → ξ(ω). Since
Tm(ω, ξm(ω)) = ξm(ω), we have Tm(ω, ξm(ω)) → ξ(ω).
Proceeds to the limit as m → ∞, km → 1, we have ξ(ω) = T (ω, ξ(ω)). This
completes the proof.

�

An immediately consequences of the Theorem 3.1 are as follow:

Corollary 3.2. Let M be a subset of a q-normed space X and X and T :
Ω×M→M be continuous random operator. Suppose M is nonempty, compact
and starshaped to a point p ∈M. If T satisfies
(3.3)
‖T (ω, x)− T (ω, y)‖q ≤ max{‖x− y‖q, dist(x, [T (ω, x), p]), dist(y, [T (ω, y), p]),

1
2dist(x, [T (ω, y), p]), 1

2dist(y, [T (ω, x), p])}

for x, y ∈ M, ω ∈ Ω, then there exists a measurable map ξ : Ω →M such that
ξ(ω) = T (ω, ξ(ω)) for each ω ∈ Ω.

Corollary 3.3. Let X be a q-normed space and M be a subset of X , and T :
Ω×M→M be continuous random operator. Suppose M is nonempty, compact
and starshaped to a point p ∈ M. If T is nonexpansive for x, y ∈ M, ω ∈ Ω,
then there exists a measurable map ξ : Ω →M such that ξ(ω) = T (ω, ξ(ω)) for
each ω ∈ Ω.

As application of Theorem 3.1, following is a random fixed point theorem for
random best approximation:

Theorem 3.4. Let X be a q-normed space and T : Ω×X → X be continuous
random operator. Let M ⊂ X such that T (ω, .) : ∂M → M, where ∂M
stands for the boundary of M. Let x0 ∈ X and x0 = T (ω, x0). Suppose
D = PM(x0) is nonempty compact and starshaped to a point p ∈ D. If T
satisfies for x ∈ D ∪ {x0}, ω ∈ Ω
(3.4)

‖T (ω, x)−T (ω, y)‖q ≤


‖x− x0‖q, if y = x0,

max{‖x− y‖q, dist(x, [T (ω, x), p]), dist(y, [T (ω, y), p]),

1
2 [dist(x, [T (ω, y), p]) + dist(y, [T (ω, x), p])]}, if y ∈ D,
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then there exists a measurable map ξ : Ω → D such that ξ(ω) = T (ω, ξ(ω)) for
each ω ∈ Ω.

Proof. Let y ∈ D. Also, if y ∈ ∂M then T (ω, y) ∈M, because T (ω, ∂M) ⊆M
for each ω ∈ Ω. Now since x0 = T (ω, x0), we have

‖T (ω, y)− x0‖q = ‖T (ω, y)− T (ω, x0)‖q ≤ ‖x− x0‖q,

yielding thereby T (ω, y) ∈ D; consequently D is T (ω, .)-invariant, that is,
T (ω, .) ⊆ D. Now, Theorem 3.1 guarantees that there exists a measurable
map ξ : Ω → D such that ξ(ω) = T (ω, ξ(ω)) for each ω ∈ Ω.

�

Next, an immediate consequences of the Theorem 3.4 are as follow:

Corollary 3.5. Let X be a q-normed space and T : Ω×X → X be continuous
random operator. Let M ⊂ X such that T (ω, .) : ∂M → M, where ∂M
stands for the boundary of M. Let x0 ∈ X and x0 = T (ω, x0). Suppose
D = PM(x0) is nonempty compact and starshaped to a point p ∈ D. If T
satisfies for x ∈ D ∪ {x0}, ω ∈ Ω
(3.5)

‖T (ω, x)−T (ω, y)‖q ≤


‖x− x0‖q, if y = x0,

max{‖x− y‖q, dist(x, [T (ω, x), p]), dist(y, [T (ω, y), p]),

1
2dist(x, [T (ω, y), p]), 1

2dist(y, [T (ω, x), p])}, if y ∈ D,

then there exists a measurable map ξ : Ω → D such that ξ(ω) = T (ω, ξ(ω)) for
each ω ∈ Ω.

Corollary 3.6. Let X be a q-normed space and T : Ω×X → X be continuous
random operator. Let M⊂ X such that T (ω, .) : ∂M→M, where ∂M stands
for the boundary of M. Let x0 ∈ X and x0 = T (ω, x0). Suppose D = PM(x0)
is nonempty compact and starshaped to a point p ∈ D. If T is nonexpansive for
x ∈ D ∪ {x0}, ω ∈ Ω, then there exists a measurable map ξ : Ω → D such that
ξ(ω) = T (ω, ξ(ω)) for each ω ∈ Ω.

An analogue of the Theorem 3.1 for weakly compact subset is as follows:

Theorem 3.7. Let X be a q-normed space and M be a subset of X . Let T :
Ω×M→M be weakly continuous random operator. Suppose M is nonempty
separable weakly compact and starshaped to a point p ∈ M . If T satisfies (3.1)
for x, y ∈ M, ω ∈ Ω, then there exists a measurable map ξ : Ω →M such that
ξ(ω) = T (ω, ξ(ω)) for each ω ∈ Ω, provided I − T (ω, .) is demiclosed at zero
for each ω ∈ Ω, where I is a identity mapping.

Proof. For each n ∈ N, define {kn}, {Tn} as in the proof of the Theorem 3.1.
Also, we have

‖Tn(ω, x)− Tn(ω, y)‖q ≤ (kn)q max{‖x− y‖q, ‖x− Tn(ω, x)‖q, ‖y − Tn(ω, y)‖q,

1
2 [‖x− Tn(ω, y)‖q + ‖y − Tn(ω, x)‖q]}

for all x, y ∈M, ω ∈ Ω. Since weak topology is Hausdorff andM is weakly com-
pact, it follows thatM is strongly closed and is a completely metric space. Thus,
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weak continuity of T , joint weakly continuous family ∆ and Theorem 2.3 guar-
antee that there exists a random fixed point ξ of Tn such that ξn = Tn(ω, ξn(ω))
for each ω ∈ Ω.
For each n, define Gn : Ω → WC(M) by Gn = w − cl{ξi(ω) : i ≥ n},
where WC(M) is the set of all nonempty weakly compact subset of M and
w − cl denotes the weak closure. Define a mapping G : Ω → WC(M) by
G(ω) = ∩∞n=1Gn(ω). Because M is weakly compact and separable, the weak
topology onM is a metric topology. Then by result of Himmelberg [7, Theorem
4.1] implies that G is w−measurable. The Kuratowski and Ryll-Nardzewski se-
lection Theorem [9] further implies that G has a measurable selector ξ : Ω →M.
We now show that ξ is the random fixed point of T . We first fix ω ∈ Ω. Since
ξ(ω) ∈ G(ω), therefore there exists a subsequence {ξm(ω)} of {ξn(ω)} that con-
verges weakly to ξ(ω); that is ξm(ω) →w ξ(ω).
Now,

ξm(ω)− T (ω, ξm(ω)) = ξm(ω)− 1
km

(Tm(ω, ξm(ω))− (1− km)p)

= (1− 1
km

)(ξm(ω)− p).

Since M is bounded and km → 1, it follows that ξm(ω) − T (ω, ξm(ω)) → 0.
Now, ym = ξm(ω) − T (ω, ξm(ω)) = (I − T )(ω, ξm(ω)) and ym → 0. Since
(I − T )(ω, .) is demiclosed at 0, so 0 ∈ (I − T )(ω, ξ(ω)). This implies that
ξ(ω) = T (ω, ξ(ω)). This completes the proof.

�

An immediate consequences of the Theorem 3.7 are as follow:

Corollary 3.8. Let X be a q-normed space and M be a subset of X . Let T :
Ω×M→M be weakly continuous random operator. Suppose M is nonempty
separable weakly compact and starshaped to a point p ∈M. If T satisfies (3.3)
for x, y ∈ M, ω ∈ Ω, then there exists a measurable map ξ : Ω →M such that
ξ(ω) = T (ω, ξ(ω)) for each ω ∈ Ω, provided I − T (ω, .) is demiclosed at zero
for each ω ∈ Ω, where I is a identity mapping.

Corollary 3.9. Let X be a q-normed space and M be a subset of X . Let T :
Ω×M→M be weakly continuous random operator. Suppose M is nonempty
separable weakly compact and starshaped to a point p ∈M. If T is nonexpansive
for x, y ∈ M, ω ∈ Ω, then there exists a measurable map ξ : Ω →M such that
ξ(ω) = T (ω, ξ(ω)) for each ω ∈ Ω, provided I − T (ω, .) is demiclosed at zero
for each ω ∈ Ω, where I is a identity mapping.

As application of Theorem 3.7, we prove following random fixed point theo-
rem for random best approximation:

Theorem 3.10. Let X be a q-normed space and T : Ω × X → X be weakly
continuous random operator. Let M⊂ X such that T (ω, .) : ∂M→M, where
∂M stands for the boundary of M. Let x0 ∈ X and x0 = T (ω, x0). Suppose
D = PM(x0) is nonempty separable weakly compact and starshaped to a point
p ∈ D. Further, Suppose T satisfies the condition (3.4) for x ∈ D ∪ {x0},
ω ∈ Ω and t ∈ (0, 1). Then there exists a measurable map ξ : Ω → D such that
ξ(ω) = T (ω, ξ(ω)) for each ω ∈ Ω, provided I − T (ω, .) is demiclosed at zero
for each ω ∈ Ω, where I is a identity mapping.
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Proof. It follows from the proof of the Theorem 3.4 and Theorem 3.7. �

Next, an immediate consequences of the Theorem 3.10 are as follow:

Corollary 3.11. Let X be a q-normed space and T : Ω × X → X be weakly
continuous random operator. Let M⊂ X such that T (ω, .) : ∂M→M, where
∂M stands for the boundary of M. Let x0 ∈ X and x0 = T (ω, x0). Suppose
D = PM(x0) is nonempty separable weakly compact and starshaped to a point
p ∈ D. Further, Suppose T satisfies the condition (3.5) for x ∈ D∪{x0}, ω ∈ Ω.
Then there exists a measurable map ξ : Ω → D such that ξ(ω) = T (ω, ξ(ω)) for
each ω ∈ Ω, provided I − T (ω, .) is demiclosed at zero for each ω ∈ Ω, where I
is a identity mapping.

Corollary 3.12. Let X be a q-normed space and T : Ω × X → X be weakly
continuous random operator. Let M⊂ X such that T (ω, .) : ∂M→M, where
∂M stands for the boundary of M. Let x0 ∈ X and x0 = T (ω, x0). Suppose
D = PM(x0) is nonempty separable weakly compact and starshaped to a point
p ∈ D. Further, Suppose T is nonexpansive for x ∈ D ∪ {x0}, ω ∈ Ω. Then
there exists a measurable map ξ : Ω → D such that ξ(ω) = T (ω, ξ(ω)) for each
ω ∈ Ω, provided I − T (ω, .) is demiclosed at zero for each ω ∈ Ω, where I is a
identity mapping.

Remark 3.13. Theorem 3.1, Corollary 3.2, Corollary 3.3, Theorem 3.7, Corol-
lary 3.8 and Corollary 3.9 are stochastic version generalization of Dotson [6] to
q-normed space.

Remark 3.14. Theorem 3.4, Corollary 3.5, Corollary 3.6, Theorem 3.10, Corol-
lary 3.11 and Corollary 3.12 are stochastic version generalization of Singh [16]
to q-normed space.
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Abstract

In this work, we consider (r(t)y′′)′ + q(t)k(y′) + p(t)h(y) = f(t) ,where r(t) > 0,

f(t) ≥ 0 are real -valued continuous functions of [0,∞), k(y′) and h(y) is a continuous

function of y′ ∈ (−∞,∞) such that k(y′)y′ > 0 for y′ 6= 0 and h(y)y > 0 for y 6= 0. We

obtain sufficient conditions so that solutions of considered equations are nonoscillatory.

AMS 2000 MR Subject Classification 34C15, 34D05

Keywords: Oscillatory, nonoscillatory

1 Introduction

In this paper, we consider

(r(t)y′′)′ + q(t)k(y′) + p(t)h(y) = f(t) (1)

and various particular cases of (1), where p, q, r and f are real -valued continuous functions

of [0,∞) such that r(t) > 0, f(t) ≥ 0 and k is a continuous function of y′ ∈ (−∞,∞)

satisfying k(y′)y′ > 0 for y′ 6= 0 and h is a continuous function of y ∈ (−∞,∞) satisfying

1
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h(y)y > 0 for y 6= 0. We restrict our considerations to those real solutions of (1) which

exist on the half line [T,∞), where T ≥ 0 depends on the particular solution and are non-

trivial in any neighborhood of infinity. We give sufficient conditions under which solutions

of (1) are nonoscillatory and oscillatory.

We classify solutions of (1) as follows :

(i) A solution y(t), t ∈ [T,∞), is said to be nonoscillatory if there exists a t1 ≥ T such that

y(t) 6= 0 for t ≥ t1; (ii) y(t) is said to be oscillatory if for any t1 ≥ T there exist t2 and t3

satisfying t1 < t2 < t3 such that y(t2) > 0 and y(t3) < 0, and (iii) it is said to be a z-type

solution if it has arbitrarily large zeros but is ultimately nonnegative or nonpositive. y(t)

is said to be weakly oscillatory if it is oscillatory or z-type.

Equation (1) with r(t) ≡ 1, f(t) ≡ 0, k(y′) = y′ has been consider by Heidel [5], Nelson[6],

Waltman[4] and for the case α = 1, k(y′) = y′, r(t) ≡ 1 and f(t) ≡ 0 we mention the

papers of Lazer [3], Barrett[7], and the book of Swanson[12]. Erbe [8] has considered

equation (1)with r(t) once continuously differentiable, f(t) ≡ 0, k(y′) = y′. They have

given sufficient conditions for the existence of oscillatory and nonoscillatory solutions and

have studied their asymptotic behaviour. Parhi [9] has considered equation (1) with

p(t) ≤ 0, q(t) ≤ 0 ,in addition to Parhi [10] has considered equation (1) with (i)p(t) ≥ 0,

q(t) ≤ 0 and (ii)p(t) ≤ 0, q(t) ≥ 0, h(y) = yα and k(y′) = y′β for α > 0 and β > 0 are

ratio of odd integers. He has given sufficient conditions under which solutions of (1) are

nonoscillatory and has studied the the qualitative behaviour of these solutions. Temtek

[11] has considered equation (1) with p(t) ≥ 0, q(t) ≤ 0 and r(t) ≡ 1, k(y′) = y′α, α > 0

is ratio of odd integers. She obtained sufficient conditions so that solutions of (1) are

nonoscillatory.

2. The Case of p(t) ≤ 0,q(t) ≤ 0 in Equation (1).

In this section, we obtain the sufficient conditions for the nonoscillatory solutions of

Equation(1).

Theorem 2.1. If p(t) ≡ 0, then all solution of (1) are nonoscillatory.

Proof. Let y(t) be a solution of (1) on [T,∞) ,T ≥ 0. If possible let y(t) be non-

2
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negative z-type. Let a and b (T ≤ a < b) be consecutive double zeros of y(t). So there

exists a c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). Multiplying (1) through

by y′(t) , we get

[r(t)y′′(t)y′(t)]′ = r(t)y′′2(t)− q(t)k(y′(t))y′(t) + f(t)y′(t). (2)

Integration of (2) from a to c yields

0 =
∫ c

a
[r(t)y′′2(t)− q(t)k(y′(t))y′(t) + f(t)y′(t)]dt > 0,

a contradiction.

Similarly, if integration of (2) from c to b , it can be shown that y(t) cannot be a nonpositive

z-type solution.

Suppose that y(t) is oscillatory. Let b′, a and b (T ≤ b′ < a < b) be any three consecutive

zeros of y(t) such that y′(b′) ≤ 0, y′(a) ≥ 0, y′(b) ≤ 0, y(t) < 0 for t ∈ (b′, a) and y(t) > 0

for t ∈ (a, b). So there exist points c′ ∈ (b′, a) and c ∈ (a, b) such that y′(c′) = 0 = y′(c)

and y′(t) > 0 for t ∈ (c′, c). We consider two cases viz. (i) y′′(a) ≥ 0 and (ii) y′′(a) < 0.

Suppose that y′′(a) ≥ 0 . Integrating (2) from a to c we obtain

0 ≥ −r(a)y′(a)y′′(a) =
∫ c

a
[r(t)y′′2(t)− q(t)k(y′(t))y′(t) + f(t)y′(t)]dt > 0,

a contradiction. Let y′′(a) < 0. Integrating (2) from c′ to a, we get

0 ≥ r(a)y′(a)y′′(a) =
∫ a

c′
[r(t)y′′2(t)− q(t)k(y′(t))y′(t) + f(t)y′(t)]dt > 0,

a contradiction.

Hence the theorem.

Theorem 2.2. Let h(y) = yα in (1) where α > 0 is the ratio of odd integers. If

p′(t) ≥ 0, f ′(t) ≥ 0 and (α + 1)f(t) + p(t) ≥ 0 then all solutions y(t) of (1) for which

|y(t)| ≤ 1 ultimately are nonoscillatory.

Proof. Let y(t) be a solution of (1) on [T,∞), T ≥ 0 such that |y(t)| ≤ 1 for

t ≥ T1 > T . If possible let y(t) be non-negative z-type. Let a and b (T1 ≤ a < b) be

3
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consecutive double zeros of y(t). So there exists a c ∈ (a, b) such that y′(c) = 0 and

y′(t) > 0 for t ∈ (a, c). Multiplying (1) through by y′(t), we get

[r(t)y′′(t)y′(t)]′ = r(t)y′′2(t)− q(t)k(y′(t))y′(t)− p(t)yα(t)y′(t) + f(t)y′(t). (3)

Integration of (3) from a to c, we obtain

0 =
∫ c

a
[r(t)y′′2(t)− q(t)k(y′(t))y′(t)− p(t)yα(t)y′(t) + f(t)y′(t)]dt > 0

a contradiction.

Suppose that y(t) is of non-positive z-type. Let a and b (T1 ≤ a < b) be consecutive

double zeros of y(t). So there exists a c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for

t ∈ (c, b). Integration of (3) from c to b, we get

0 =
∫ b

c
[r(t)y′′2(t)− q(t)k(y′(t))y′(t)− p(t)yα(t)y′(t) + f(t)y′(t)]dt.

But

∫ b

c
p(t)yα(t)y′(t)dt =

1
α + 1

[p(t)yα+1(t)]bc −
1

α + 1

∫ b

c
p′(t)yα+1(t)dt

≤ − 1
α + 1

p(c)yα+1(c)

and ∫ b

c
f(t)y′(t)dt = [f(t)y(t)]bc −

∫ b

c
f ′(t)y(t) ≥ −f(c)y(c).

So

∫ b

c
f(t)y′(t)dt−

∫ b

c
p(t)yα(t)y′(t) ≥ −f(c)y(c) +

1
α + 1

p(c)yα+1(c)

≥ 1
α + 1

p(c)[y(c) + yα+1(c)]

> 0

since |y(t)| ≤ 1 for t ≥ T1, a contradiction.

If possible let y(t) be oscillatory. Let b′, a and b (T ≤ b′ < a < b) be any three consecutive

zeros of y(t) such that y′(b′) ≤ 0, y′(a) ≥ 0, y′(b) ≤ 0, y(t) < 0 for t ∈ (b′, a) and y(t) > 0

4
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for t ∈ (a, b). So there exist points c′ ∈ (b′, a) and c ∈ (a, b) such that y′(c′) = 0 = y′(c)

and y′(t) > 0 for t ∈ (c′, c). We consider two cases viz. (i) y′′(a) ≥ 0 and (ii) y′′(a) < 0.

Integrating (3) from a to c, we get

0 ≥ −r(a)y′(a)y′′(a) =
∫ c

a
[r(t)y′′2(t)− q(t)k(y′(t))y′(t)− p(t)yα(t)y′(t) + f(t)y′(t)]dt > 0,

a contradiction.

Now let y′′(a) < 0. Integrating (3) from c′ to a

0 ≥ r(a)y′(a)y′′(a) =
∫ a

c′
[r(t)y′′2(t)− q(t)k(y′(t))y′(t)− p(t)yα(t)y′(t) + f(t)y′(t)]dt. (4)

But

∫ a

c′
p(t)yα(t)y′(t)dt =

1
α + 1

[p(t)yα+1(t)]ac′ −
1

α + 1

∫ a

c′
p′(t)yα+1 ≤ 1

α + 1
p(c′)yα+1(c′)

and ∫ a

c′
f(t)y′(t)dt = [f(t)y(t)]ac′ −

∫ a

c′
f ′(t)y(t)dt ≥ −f(c′)y(c′).

So

∫ a

c′
[f(t)y′(t)− p(t)yα(t)y′(t)]dt ≥ −f(c′)y(c′) +

1
α + 1

p(c′)yα+1(c′)

≥ 1
α + 1

[y(c′) + yα+1(c′)]p(c′)

≥ 0,

since |y(t)| ≤ 1 for t ≥ T1. Hence (4) yields

0 ≥ r(a)y′(a)y′′(a) > 0

a contradiction. So y(t) is nonoscillatory. This completes the proof of the theorem.

Example. Consider the third order differential equation

((e6t +
1
4
e2t)y′′)′ − e−3t(y′2 + y′)− e−ty3 =

1
4
et − e−5t, t > 0.

5
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The equations satisfies conditions of Theorem 2.2. Clearly y(t) = e−t is a nonoscillatory

solution of equations.

3. The case of p(t) ≤ 0 and q(t) ≡ 0 in Equation (1).

Theorem 3.1. Consider (1) with f(t) ≡ 0 . Let r(t) be once continuously differentiable

such that r′(t) ≤ 0. If
∫∞
0 p(t)dt = −∞ and h(y) is increasing, then all bounded solution

of (1) are oscillatory.

Proof. Let y(t) be a a bounded solution of (1) on [T,∞), T ≥ 0. If y(t) is of z-type

with consecutive double zeros at a and b (T ≤ a < b), then we integrate

[r(t)y(t)y′′(t)]′ = r(t)y′(t)y′′(t)− p(t)y(t)h(y(t)) (5)

from a to b to get the necessary contradiction.

If possible , let y(t) be nonoscillatory. Without any loss of generality , we can assume

y(t) > 0 for t ≥ t0 ≥ T . From (1) it is clear that y′(t) cannot have more than two zeros.

So y′(t) is ultimately positive or negative, let y′(t) > 0 for t ≥ t1 ≥ t0 . Integrating (1)

from t1 to t, ∫ t

t1
[r(s)y′′(s)]′ds = −

∫ t

t1
p(s)h(y(s))ds

r(t)y′′(t) ≥ r(t1)y′′(t1)− h(y(t1))
∫ t

t1
p(s)ds

we get limt→∞ r(t)y′′(t) = +∞ which in turn implies that limt→∞ y(t) = +∞, a contra-

diction.

Let y′(t) < 0 for t ≥ t1 ≥ t0. Clearly r(t)y′′(t) is nondecreasing. We claim that y′′(t) ≤ 0

for t ≥ t1. If not, there exists t2 > t1 such that y′′(t2) > 0 . Now t ≥ t2 implies that

y′′(t) ≥ y′′(t2) and hence y′(t) > 0 for large t, a contradiction. So our claim holds. Hence

t ≥ t1 implies that y′(t) ≤ y′(t1). Integrating we get y(t) < 0 for large t. This contradiction

completes the proof of the theorem.

Theorem 3.2. Let p(t) ≤ −1 and r(t) satisfy the conditions of Theorem 3.1. If

f(t) ≡ 0 in (1) , then all solutions y(t) of (1) which satisfy the inequality

r(t)z′z′′ + zh(z) > 0 (6)

6
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in any interval where y(t) > 0 and y′(t) > 0 are nonoscillatory.

Proof. From (5) it is clear that y(t) cannot be of z-type. If possible, let y(t) be

oscillatory with consecutive zeros at a and b (a < b) such that y(t) > 0 for t ∈ (a, b). So

there exist a c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). If y′′(t) ≥ 0, then

integrating (5) from c to b, we get

0 ≥ −r(c)y(c)y′′(c) = −
∫ b

c
p(t)y(t)h(y(t))dt +

1
2
r(b)(y′(b))2

− 1
2

∫ b

c
r′(t)(y′(t))2dt > 0,

a contradiction. Hence y′′(t) < 0 . Again integrating (5) from a to c, we get

0 > r(c)y(c)y′′(c) =
∫ c

a
[r(t)y′(t)y′′(t)− p(t)y(t)h(y(t))]dt

≥
∫ c

a
[r(t)y′(t)y′′(t) + y(t)h(y(t))]dt

> 0,

a contradiction. Hence the theorem.

Example. Consider y′′′ − 8y = 0. Clearly y(t) = e2t satisfies (6) and is a nonoscilla-

tory.

4. The case of p(t) ≥ 0, f(t) ≡ 0 and q(t) ≡ 0 in Equation (1).

In this section we consider

(r(t)y′′)′ + p(t)h(y) = 0. (7)

Theorem 4.1. Let p(t) ≥ 1 , f(t) ≡ 0 and r(t) be once continuously differentiable such

that r′(t) ≥ 0. Then all solutions y(t) of (7) which satisfy the inequality r(t)z′z′′−zh(z) ≤
0 in any interval where y(t) < 0 and y′(t) > 0 are nonoscillatory.

Proof. Let y(t) be a solution of (7) on [T,∞), T ≥ 0 and satisfy the hypothesis

of theorem. If possible, let y(t) be of z-type with consecutive double zeros at a and b

(T ≤ a < b). Integrating

[r(t)y′′(t)y(t)]′ = r(t)y′(t)y′′(t) + p(t)y(t)h(y(t)) (8)

7

SENEL,TEMTEK:THIRD ORDER NONLINEAR DIFFERENTIAL EQUATIONS352



from a to b, we get

0 = −1
2

∫ b

a
r′(t)(y′(t))2dt−

∫ b

a
p(t)y(t)h(y(t))dt < 0

a contradiction.

Suppose that y(t) is oscillatory. Let a and b (T ≤ a < b) be consecutive zeros of y(t) such

that y(t) < 0 for t ∈ (a, b) and y′(a) ≤ 0, y′(b) ≥ 0. So there exists a c ∈ (a, b) such that

y′(c) = 0 and y′(t) > 0 for t ∈ (c, b). We consider two cases, viz., y′′(c) ≤ 0 and y′′(c) > 0.

Let y′′(c) ≤ 0. Integrating (8) from a to c, we get

r(c)y(c)y′′(c) = −1
2
r(a)(y′(a))2 − 1

2

∫ c

a
r′(t)(y′(t))2dt−

∫ c

a
p(t)y(t)h(y(t))dt < 0

a contradiction. Let y′′(c) > 0. Integrating (8) from c to b, we obtain

−r(c)y(c)y′′(c) =
∫ b

c
r(t)y′(t)y′′(t)dt−

∫ b

c
p(t)y(t)h(y(t))dt

≤
∫ b

c
[r(t)y′(t)y′′(t)− y(t)h(y(t))]dt

< 0,

a contradiction. Hence the theorem.

Following example illustrates Theorem 4.1.

Example. Consider y′′′ + 8y = 0, t > 0. Clearly y(t) = −e−2t satisfies the condition

of the theorem and is a nonoscillatory solution of the equation.

Theorem 4.2. Consider equation (7). Let r(t) be once continuous differentiable such

that r′(t) ≥ 0. Let limt→∞ 1
r(t)

∫ t
0 p(s)ds = +∞ and h(y) is decreasing. If y(t) is a solution

of (7) such that limt→∞ y(t) 6= 0 when the limit exists , then y(t) is oscillatory.

Proof. Clearly y(t) cannot be of z-type. If possible, let y(t) be nonoscillatory. Without

any loss of generality we can assume that y(t) is ultimately positive. Let y(t) > 0 for

t ≥ t0 > 0. From (8) it follows that y′(t) cannot be of z-type or oscillatory. If possible, let

y′(t) > 0 for t ≥ t1 ≥ t0. Integrating (7) from t1 to t , we get

y′′(t) ≤ r(t1)y′′(t1)
r(t)

− h(y(t1))
r(t)

∫ t

t1
p(s)ds.

8
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If y′′(t1) ≤ 0, then

y′′(t) ≤ − 1
r(t)

h(y(t1))
∫ t

t1
p(s)ds.

If y′′(t1) > 0, then

y′′(t) ≤ y′′(t1)− h(y(t1))
r(t)

∫ t

t1
p(s)ds.

Hence in each case limt→∞ y′′(t) = −∞. This in turn implies that y′(t) < 0 for large t, a

contradiction. Suppose that y′(t) < 0 for t ≥ t1 ≥ t0. So limt→∞ y(t) exists . From the

given hypothesis it follows that limt→∞ y(t) 6= 0. Now integrating (7) from t1 to t , we get

limt→∞ y′′(t) = −∞. From this it follows that y(t) < 0 for large t, a contradiction. Hence

the theorem.

COROLLARY 4.3. Consider (7) with r(t) ≡ 1 and p(t) ≥ 1. Let y(t) be a solution

of (7) which satisfies the inequality z′z′′ − zh(z) ≤ 0 in any interval where y(t) < 0 and

y′(t) > 0. If limt→∞ y(t) exists, then limt→∞ y(t) = 0.

This follows from Theorems 4.1 and 4.2.
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EXTENDED CESÀRO OPERATORS

FROM H∞ TO ZYGMUND TYPE

SPACES IN THE UNIT BALL

Xiangling Zhu
Department of Mathematics, JiaYing University, 514015, Meizhou, China

E-mail: jyuzxl@163.com

Abstract: Let H(B) denote the space of all holomorphic functions on the
unit ball B of Cn and <h(z) =

∑n
j=1 zj

∂h
∂zj

(z) the radial derivative of h. In this
paper we investigate the boundedness and compactness of the extended Cesàro
operator

Tg(f)(z) =
∫ 1

0

f(tz)<g(tz)
dt

t
, f ∈ H(B), z ∈ B,

from H∞ to the Zygmund type space.

MSC 2000: 47B38; 30H05.

Keywords: Extended Cesàro operator, Zygmund type space, Bloch space.

1 Introduction

Let H(B) be the space of all holomorphic functions in the unit ball B of Cn.
Denote by H∞(B) the bounded holomorphic function space in B. For f ∈ H(B)
with the Taylor expansion f(z) =

∑
|α|≥0 aαzα, where α is a multi-index, let

<f(z) =
∑
|α|≥0 |α|aαzα stand for the radial derivative of f ∈ H(B). It is well

known that(see [20])

<f(z) =
n∑

j=1

zj
∂f

∂zj
(z).

We write <mf = <(<m−1f).
A positive continuous function µ on [0, 1) is called normal, if there exist

positive numbers s and t, 0 < s < t, such that(see, for example, [4])

µ(r)
(1− r)s

↓ 0,
µ(r)

(1− r)t
↑ ∞ as r → 1.

Recall that the Bloch space B(B), is the space of all f ∈ H(B) such that([20])

‖f‖B = |f(0)|+ sup
z∈B

(1− |z|2) |<f(z)| < ∞.
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The little Bloch space B0(B) is the space of all f ∈ H(B) such that

lim
|z|→1

(1− |z|2) |<f(z)| = 0.

Let Λ = Λ(B) denote the class of all f ∈ H(B) for which

sup
z∈B

(1− |z|2)|<2f(z)| < ∞. (1)

From [20] we see that f ∈ Λ if and only if f ∈ A(B) and there exists a constant
C > 0 such that

|f(ζ + h) + f(ζ − h)− 2f(ζ)| < Ch,

for all ζ ∈ ∂B and ζ ± h ∈ ∂B, where A(B) is the ball algebra on B. The
quantity in (1) is only a semi norm. From [20] we see that class Λ with the
following norm

‖f‖Λ = |f(0)|+ sup
z∈B

(1− |z|2)|<2f(z)| (2)

is a Banach space, which is called the Zygmund space. Let Λ0 denote the closure
in Λ of the set of all polynomials. From Theorem 7.12 of [20] we see that

f ∈ Λ0 ⇔ lim
|z|→1

(1− |z|2)|<2f(z)| = 0.

It is natural to generalize the Zygmund space to a more general form. Let
µ be a normal function on [0, 1). Define the space Λµ = Λµ(B), called the
Zygmund type space, which consisting of all f ∈ H(B) such that

sup
z∈B

µ(|z|)|<2f(z)| < ∞. (3)

Similarly, under the norm

‖f‖Λµ = |f(0)|+ sup
z∈B

µ(|z|)|<2f(z)|, (4)

Λµ becomes a Banach space. Let Λµ,0 denote the closure in Λµ of the set of all
polynomials. Similar to Theorem 7.12 of [20] we see that

f ∈ Λµ,0 ⇔ lim
|z|→1

µ(|z|)|<2f(z)| = 0. (5)

Suppose that g : B → C1 is a holomorphic map, define

Tgf(z) =
∫ 1

0

f(tz)
dg(tz)

dt
=

∫ 1

0

f(tz)<g(tz)
dt

t
, f ∈ H(B), z ∈ B. (6)

This operator is called the extended Cesàro operator (or the Riemann-Stieltjes
operator), which was introduced in [4], and studied in [1, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 17, 18, 19].

In this paper, we study the boundedness and compactness of the extended
Cesàro operator Tg from H∞ to the Zygmund type space.

Throughout the paper, constants are denoted by C, they are positive and
may not be the same in every occurrence.
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2 Main results and proofs

In this section, we give our main results and proofs. First, we give several
auxiliary results which will be used in the proofs of our main results.

Lemma 1. Assume that g ∈ H(B) and µ is a normal function on [0, 1). Then
Tg : H∞ → Λµ is compact if and only if Tg : H∞ → Λµ is bounded and for any
bounded sequence (fk)k∈N in H∞ which converges to zero uniformly on compact
subsets of B as k →∞, we have ‖Tgfk‖Λµ

→ 0 as k →∞.

Proof. The proof follows by standard arguments similar to those outlined in
Proposition 3.11 of [2]. We omit the details. ¤
Lemma 2. [6] For every f, g ∈ H(B) it holds

<[Tg(f)](z) = f(z)<g(z).

Lemma 3. Let f ∈ H∞(B). Then f ∈ B. Moreover,

‖f‖B ≤ C‖f‖∞.

Lemma 4. A closed set K in Λµ,0 is compact if and only if it is bounded and
satisfies

lim
|z|→1

sup
f∈K

µ(|z|)|<2f(z)| = 0.

Proof. The proof is similar to the proof of Lemma 1 in [15]. We omit the
details. ¤
Theorem 1. Assume that g ∈ H(B) and µ is a normal function on [0, 1).
Then Tg : H∞ → Λµ is bounded if and only if g ∈ Λµ and

sup
z∈B

µ(|z|)
(1− |z|2) |<g(z)| < ∞. (7)

Proof. Assume that Tg : H∞ → Λµ is bounded. Taking the function f(z) =
1, we see that g ∈ Λµ. Let f(z) = z. For a ∈ B, set

fa(z) =
1− |a|2

1− 〈z, a〉 . (8)

It is easy to see that fa ∈ H∞. By Lemma 2 we have

∞ > ‖Tgfa‖Λµ
≥ sup

z∈B
µ(|z|)|<2(Tgfa)(z)| = sup

z∈B
µ(|z|)|<(fa · <g)(z)|

≥ sup
z∈B

µ(|z|)|<fa(z)<g(z) + fa(z)<2g(z)|

≥ µ(|a|)|<fa(a)<g(a) + fa(a)<2g(a)|
≥ µ(|a|)|<fa(a)<g(a)| − µ(|a|)|<2g(a)|

=
µ(|a|)|a|2
1− |a|2 |<g(a)| − µ(|a|)|<2g(a)|. (9)
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Since g ∈ Λµ, from (9) we see that

sup
|a|> 1

2

µ(|a|)
1− |a|2 |<g(a)| < 4 sup

|a|> 1
2

µ(|a|)|a|2
1− |a|2 |<g(a)|

≤ 4‖Tgfa‖Λµ
+ 4 sup

a∈B
µ(|a|)|<2g(a)| < ∞. (10)

Since(see [18])

sup
0<r≤1/2

µ(r) ≤ Cµ(1/2), (11)

we get

sup
|a|≤ 1

2

µ(|a|)
1− |a|2 |<g(a)| <

4
3
µ(1/2) sup

|a|≤ 1
2

|<g(a)|

< Cµ(1/2) sup
|a|≤(1+ 1

2 )/2

|g(a)| < ∞. (12)

Combining (10) with (12) we get (7).
Conversely, assume that g ∈ Λµ and (7) holds. For an f ∈ H∞, using

Lemmas 2 and 3 we have

µ(|z|)|<2(Tgf)(z)| = µ(|z|)|<(f · <g)(z)|
= µ(|z|)|<f(z)<g(z) + f(z)<2g(z)|
≤ C‖f‖B µ(|z|)

1− |z|2 |<g(z)|+ C‖f‖∞µ(|z|)|<2g(z)|

≤ C‖f‖∞ µ(|z|)
1− |z|2 |<g(z)|+ C‖f‖∞µ(|z|)|<2g(z)|. (13)

On the other hand, we have Tg(f)(0) = 0. From these, by taking the supremum
in (13) over B, and using g ∈ Λµ and (7) the boundedness of the operator
Tg : H∞ → Λµ follows. ¤
Theorem 2. Assume that g ∈ H(B) and µ is a normal function on [0, 1).
Then Tg : H∞ → Λµ is compact if and only if Tg : H∞ → Λµ is bounded and
g ∈ Λµ,0 and

lim
|z|→1

µ(|z|)
1− |z|2 |<g(z)| = 0. (14)

Proof. Assume that Tg : H∞ → Λµ is compact. Then it is clear that
Tg : H∞ → Λµ is bounded.

Let (zk)k∈N be a sequence in B such that limk⇀∞ |zk| = 0. Set

fk(z) =
(1− |zk|2)2

(1− 〈z, zk〉)2 −
1− |zk|2

1− 〈z, zk〉 . (15)

ZHU:EXTENDED CESARO OPERATORS 359



It is easy to see that fk ∈ H∞ and fk → 0 uniformly on compact subsets of B
as k →∞. By Lemma 1, it holds

lim
k→∞

‖Tgfk‖Λµ = 0. (16)

By Lemma 2 we have

‖Tgfk‖Λµ
≥ sup

z∈B
µ(|z|)|<fk(z)<g(z) + fk(z)<2g(z)|

≥ µ(|zk|)|<fk(zk)<g(zk) + fk(zk)<2g(zk)|

= µ(|zk|)|<g(zk)| |zk|2
1− |zk|2 . (17)

From (16) and (17) we see that

lim
k→∞

µ(|zk|)
1− |zk|2 |<g(zk)| = lim

k→∞
µ(|zk|)|<g(zk)| |zk|2

1− |zk|2 = 0, (18)

which means that (14) holds.
Now set

hk(z) =
1− |zk|2

1− 〈z, zk〉 . (19)

Then hk ∈ H∞ and hk → 0 uniformly on compact subsets of B as k →∞. By
Lemma 1, it holds

lim
k→∞

‖Tghk‖Λµ = 0. (20)

By Lemma 2 we have

‖Tghk‖Λµ ≥ sup
z∈B

µ(|z|)|<hk(z)<g(z) + hk(z)<2g(z)|

≥ µ(|zk|)|<hk(zk)<g(zk) + hk(zk)<2g(zk)|

≥ µ(|zk|)|<2g(zk)| − µ(|zk|)|<g(zk)| |zk|2
1− |zk|2 . (21)

From (17), (20) and (21) we get

lim
k→∞

µ(|zk|)|<2g(zk)| = 0, (22)

which implies that g ∈ Λµ,0.
Now assume that Tg : H∞ → Λµ is bounded and g ∈ Λµ,0 and (14) holds.

Since Tg : H∞ → Λµ is bounded, from the proof of Theorem 1 we see that

M1 = sup
z∈B

µ(|z|)|<2g(z)| < ∞ and M2 = sup
z∈B

µ(|z|)
1− |z|2 |<g(z)| < ∞. (23)
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Let (fk)k∈N be a sequence in H∞ such that supk∈N ‖fk‖∞ ≤ L and that fk → 0
uniformly on compact subsets of B as k → ∞. Now note that for every ε > 0,
there is a δ ∈ (0, 1), such that

µ(|z|)|<2g(z)| < ε and
µ(|z|)

1− |z|2 |<g(z)| < ε, (24)

whenever δ < |z| < 1. Let K = {z ∈ B : |z| ≤ δ}. Note that K is a compact
subset of B. In view of (23-24) and Tgfk(0) = 0, we have

‖Tgfk‖Λµ
= |fk(0)||<g(0)|+ sup

z∈B
µ(|z|)|<2(Tgf)(z)|

= |fk(0)||<g(0)|+ sup
z∈B

µ(|z|)|<fk(z)<g(z) + fk(z)<2g(z)|

≤ |fk(0)||<g(0)|+ sup
z∈K

µ(|z|)|<fk(z)<g(z)|+ sup
z∈B\K

µ(|z|)|<fk(z)<g(z)|

+ sup
z∈K

µ(|z|)|fk(z)<2g(z)|+ sup
z∈B\K

µ(|z|)|fk(z)<2g(z)|

≤ |fk(0)||<g(0)|+ M2 sup
z∈K

|<fk(z)|+ 2ε‖fk‖∞ + M1 sup
z∈K

|fk(z)|. (25)

Since fk → 0 uniformly on compact subsets of B, it follows from Cauchy’s
estimate that <fk → 0 uniformly on compact subsets of B, in particular on K.
Using this and that ε is an arbitrary positive number, by letting k →∞ in (25),
it shows that limk→∞ ‖Tgfk‖Λµ

= 0. According to Lemma 1, the compactness
of the operator Tg : H∞ → Λµ follows. ¤
Theorem 3. Assume that g ∈ H(B) and µ is a normal function on [0, 1).
Then the following statements are equivalent.

(a) Tg : H∞ → Λµ,0 is bounded;

(b) Tg : H∞ → Λµ,0 is compact;

(c) g ∈ Λµ,0 and

lim
|z|→1

µ(|z|)|<g(z)|
1− |z|2 = 0. (26)

Proof. (b) ⇒ (a) is obvious.
(a) ⇒ (c) Assume that Tg : H∞ → Λµ,0 is bounded. Taking f(z) = 1, we

get g ∈ Λµ,0.
Now we prove that (26) holds. Assume to the contrary that there is a

sequence (z(k))k∈N such that limk→∞ |z(k)| = 1 and

µ(|z(k)|)|<g(z(k))|
1− |z(k)|2 ≥ ε0 > 0.

Without loss of generality we assume that (z(k)) → (1, 0, . . . , 0) as k →∞ and
that (1− |z(k)|2) ≥ 1

2 (1− |z(k)
1 |2).
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We may also assume that the sequence (z(k)
1 )k∈N is an interpolating sequence

on the unit disk D, that is, there exists a δ > 0 such that

inf
k∈N

∏

m6=k

|z(k)
1 − z

(m)
1 |

|1− z
(m)
1 z

(k)
1 |

> δ > 0.

It is well known that the Blaschke product(see [3] )

b(z) =
∞∏

m=1

z − z
(m)
1

1− z
(m)
1 z

, z ∈ D,

is a holomorphic function on D and converges uniformly on compact subsets.
Moreover(see [16])

(1− |z(k)
1 |2)|b′(z(k)

1 )| =
∏

m6=k

|z(k)
1 − z

(m)
1 |

|1− z
(m)
1 z

(k)
1 |

≥ δ > 0.

Let f(z) = b(z1). Then f ∈ H∞. Hence for sufficiently large k, we have

µ(|z(k)|)|<2(Tgf)(z(k))| = µ(|z(k)|)|<f(z(k))<g(z(k)) + f(z(k))<2g(z(k))|
= µ(|z(k)|)|<f(z(k))<g(z(k))|

=
µ(|z(k)|)

1− |z(k)|2 |<g(z(k))|(1− |z(k)
1 |2)|z(k)

1 b′(z(k)
1 )|

≥ δε0 > 0.

Since Tg(f) ∈ Λµ,0, it follows that

lim
k→∞

µ(|z(k)|)|<2(Tgf)(z(k))| = 0,

which is a contradiction. It follows that (26) holds.
(c) ⇒ (b) Assume that (c) holds. Then, for any f ∈ H∞, from (13) we have

µ(|z|)|<2(Tgf)(z)| = µ(|z|)|<f(z)<g(z) + f(z)<2g(z)|
≤ C‖f‖∞µ(|z|)|<g(z)|

1− |z|2 + ‖f‖∞µ(|z|)|<2g(z)|.

Employing Lemma 4 and the condition (c), the compactness of the operator
Tg : H∞ → Λµ,0 follows. The proof of the theorem is completed. ¤
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An optimal order error estimate of a linear finite element method

for smooth solutions of 2D systems of conservation laws
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Abstract. In this paper we consider approximating smooth solutions of systems of
nonlinear conservation laws by a linear finite element method with uniform mesh in
two spatial dimensions, where the time discretization is carried out by a second order
explicit Runge-Kutta method. An optimal error estimate O(h2) in L2-norm for con-
tinuous linear finite elements is obtained under the CFL condition ∆t ≤ Ch

4
3 , where

h and ∆t are the spatial meshsize and the time step, respectively, and the positive
constant C is independent of h and ∆t.

Keywords. finite element method, hyperbolic conservation laws, error estimates.

1 Introduction

The numerical solution of nonlinear hyperbolic conservation laws is an important but difficult
problem. The main difficulty is due to the nonlinearity. In recent years, numerical methods for
nonlinear multi-dimensional hyperbolic conservation laws on unstructured grids, and some related
analysis of their convergence behavior, have attracted extensive attention. The numerical methods
include: finite volume schemes [2, 7, 8], shock capturing streamline diffusion finite element method
[9, 10], and Rung-Kutta discontinuous Galerkin finite element (RKDG) methods, [3, 4, 5], etc.

Runge-Kutta discontinuous Galerkin (RKDG) method was developed by Cockburn et al. [3, 4,
5] for solving nonlinear hyperbolic conservation laws. It has important advantages in its stability
and highly parallelizable structure. When the scheme was extended to the multi-dimensional case,
the construction of the generalized ‘slope limiter’ represented a serious challenge. The purpose
of the slope limiter is to enforce the nonlinear stability of the scheme. In the multi-dimensional
case, the constraints imposed by nonlinear stability on the accuracy of a scheme are even greater
than that in the one-dimensional case. In [14] and [15] respectively, error estimates are obtained
for RKDG methods to sufficiently smooth solutions in scalar conservation laws and symmetrizable
systems of conservation laws. In [15], time discretization is the second order explicit TVD (total
variation diminishing) Runge-Kutta method, and the P̄k (discontinuous piecewise polynomials
of degree ≤ k) finite element is implemented. Error estimate in the P̄1 finite element space is
obtained under CFL condition τ ≤ βh for nonlinear systems in one dimension and for linear
systems in the multi-dimensional case, where h and τ are the maximum element lengths and time

1
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steps respectively; β is a positive constant independent of h and τ . Error estimates for P̄k (k > 1)
finite element spaces are obtained under further CFL condition.

Both finite element and finite volume methods are suitable for unstructured meshes; finite
volume methods are dominant in upwinding effects. These methods can therefore resolve strong
discontinuities without exhibiting oscillations. High order finite volume schemes can be extended
to multi-dimensional systems of conservation laws. At present, error estimates of the form ‖u(, t)−
uh(, t)‖L1(R2) ≤ chα, where α is sufficiently large, for the numerical solution to high order finite
volume schemes have been established. In [8], LeVeque pointed out that the error estimate is at
most O(h

1
2 ).

A shock-capturing streamline diffusion finite element method in [9, 10] is a general finite element
method for hyperbolic problems which may be regarded as a combination of a standard Galerkin
finite element method and a least squares method, giving added stability through the weighted least
squares control of the residual. It combines O(hk+ 1

2 ) accuracy for smooth solutions approximated
by polynomials of degree k, with good stability obtained through the least squares control of the
residual and the shocking-capturing artificial viscosity. This method is very efficient in solving
scalar hyperbolic conservation laws, but it has not been extended to systems.

At present, general statements are not available for error estimates of smooth solutions to
systems of conservation laws for both finite volume and a shock-capturing streamline diffusion
finite element methods.

In this paper, we consider error estimates for a general finite element method based upon that
of Ying et al. [13]. The method implements second order Runge-Kutta scheme for the temporal
discretization and continuous piecewise linear finite elements for the spatial discretization. We
employ an artificial viscosity term which is at most first order accurate in the neighborhood of
shock waves, but is at least second order accurate away from shock waves. The numerical flux
functions can be reduced to one-dimensional calculations along the edges of elements by introducing
integrating factors ([11]). Below we denote by C a positive constant independent of h and ∆t,
not necessarily the same at each occurrence. We obtain an optimal second order error estimate in
L2-norm under the restrictive CFL condition ∆t ≤ Ch

4
3 . The main techniques used in this paper,

such as Taylor expansions, energy analysis, superapproximation estimate, hyperbolic and parabolic
properties of systems and the a priori assumption, play important roles in error estimates.

The scheme is efficient for solving convection dominated problems and discontinuous solutions
of multi-dimensional hyperbolic conservation laws, where the threshold parameter, C0, used for
measuring the magnitude of gradients of numerical solutions, can be taken as a kind of limiter. The
definition of C0 is further discussed in Step 3 of §3, and unchanged between one-dimensional and
multi-dimensional cases. Numerical computations with this method [13] demonstrate the resolution
of sharp shock transitions with no oscillations and accurate approximate solutions in smooth
areas. The error analysis in [12], which proved second order accuracy for smooth solutions, can
be extended straightforwardly to symmetric systems with the same results. However the analysis
cannot be extended to symmetrizable systems (such as 2D fully compressible Euler equations).
The analysis shown here is more difficult than that in symmetric case, where a norm condition
(condition (f) in Theorem 3.1) is added under which we present that second order accuracy is
maintained for systems.

The rest of the paper is organized as follows. In §2, we discuss the general finite element
scheme. In §3, we examine the truncation error and prove our main result, Theorem 3.1.

2

JI:ABOUT 2D SYSTEMS OF CONSERVATION LAWS 365



2 The finite element scheme

We consider systems of conservation laws of the form

∂u
∂t

+
N∑

i=1

∂fi(u)
∂xi

= 0, (x, t) ∈ RN × (0, T ∗], (1)

where T ∗ is an arbitrary positive constant. Here, u = u(x, t) : RN × (0, T ∗] → Rm is the vector
of dependent solution variables, and fi(u) : Rm → Rm, i = 1, 2, . . . , N , is the vector-valued flux
function. Let f(u) = (f1(u), f2(u), . . . , fN (u)) denote the matrix composed of flux-vector columns.
Without loss of generality, we assume that f(0) = 0, otherwise f(u) can be replaced by f(u)−f(0).
We assume (1) is strictly hyperbolic. Let us consider the Cauchy problem with the initial condition

u(x, 0) = u0. (2)

By adding artificial viscosity, the system becomes

∂u
∂t

+
N∑

i=1

∂fi(u)
∂xi

= ∇ · (ε∇u). (3)

In a numerical implementation, ε may vary from grid to grid. Based on [6], the weak formulation
of the initial value problem (2), (3) of the system is:

Find u = (u1(x, t), . . . , um(x, t))T ∈ L2(0, T ∗;H1(RN ; Rm)) with u′ ∈ L2(0, T ∗;H−1(RN ; Rm)),
such that

d

dt

∫
RN

u · v dx +
∫

RN

N∑
j=1

(
ε

∂u
∂xj

− fj(u)
)
· ∂v
∂xj

dx = 0, (4)

∫
RN

u · v dx
∣∣∣∣
t=0

=
∫

RN

u0 · v dx, (5)

for all v = (v1, . . . , vm)T ∈ H1(RN ; Rm).
Defining the flux matrix J(u; ε) = ε∇u− f(u), (i.e. Jkj = ε∂uk/∂xj − fkj), (4) can be written

d

dt

∫
RN

u · v dx +
∫

RN

m∑
k=1

N∑
j=1

Jkj
∂vk

∂xj
dx = 0. (6)

Let RN be partitioned into simplex finite elements by regular triangulation, a typical element
being denoted by T . Assume hT /ρT ≤ C for any element T , where ρT is the supremum of the
diameters of all balls contained in T , and the diameter of T is denoted by hT . Let h = max

T
hT ,

θT
E ≤ π

2 , where θT
E is the angle between the faces Fi and Fj, where Fi, Fj are N − 1 dimensional

simplices opposite to the vertices Xi and Xj. We also introduce the following notations: let the
nodes be Xj, and Eij be an edge connecting nodes Xi and Xj; hij is the length of Eij and τij is
the unit directional vector pointing from Xi to Xj. We will also carry over the use of Eij, hij and
τij locally to T . We denote the shape functions on each T by ϕi(x) : RN → R, i = 1, 2, ...N + 1,
which are the linear interpolation functions with respect to N + 1 vertices on each T , satisfying

3
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that ϕi(Xj) = δij , i, j = 1, 2, 3, . . . , N + 1. The shape functions are linear and continuous on each
T .

For a given time step ∆t, we denote the approximate solution, which is linear on each T and
continuous, by uh. Let un

h = uh(x, n∆t) and un
i = uh(Xi, n∆t). We develop an explicit scheme

to obtain un+1
i = uh(Xi, (n + 1)∆t).

In [12], to guarantee the maximum principle holds and to ensure a second order scheme, ele-
ments are divided into two categories, where we expand the technique into systems case, labeled
Ti,1 and Ti,2. For a given node Xi, we let Ti denote the set of elements neighboring Xi. These
elements define the region Ωi = ∪

T∈Ti

T . For any T ∈ Ti, let IT denote the index of the nodes of T

excluding Xi. At any fixed time value, the categories Ti,1 and Ti,2 are defined relative to a fixed
constant threshold C0 > 0 as follows:

Ti,1 = {T | T ∈ Ti, |∇uh| > C0},
Ti,2 = {T | T ∈ Ti, |∇uh| ≤ C0}.

(7)

Elements in Ti,1 are located near shock waves; let ε = ε1 be as same order as h in Ti,1. Elements
in Ti,2 are located in regions where the solution is smooth; let ε = ε2 ≤ Ch2 in Ti,2.

We apply the weak solution formulation (6) to Ωi, requiring that the formulation hold for each
of the basis functions vl(x) = elϕ(x), l = 1, . . . ,m, where el = (0, . . . , 0, 1, 0 . . . , 0) is the l-th unit
vector in Rm. The resultant system of m equations, with the flux integrals split into contributions
from Ti,1 and Ti,2, is

d

dt

∫
RN

uϕidx +
∑

T∈Ti,1

∫
T

J(u; ε1) · ∇ϕidx +
∑

T∈Ti,2

∫
T

J(u; ε2) · ∇ϕidx = 0. (8)

We quote two elementary formulae from [11] which will simplify handling the integration terms on
Ti,1 and some of the terms on Ti,2. Let P1(T ) be the space of linear polynomials on the element
T . We have the following results.

(a) If u, v ∈ P1(T ), then ∫
T
∇u · ∇vdx =

∑
i<j

aT
ij(ui − uj)(vj − vi), (9)

where ui, vi, uj , vj are the values of u, v at node Xi,Xj respectively, and

aT
ij =

∫
T
∇ϕi · ∇ϕjdx, i, j = 1, 2, 3, ..., N + 1. (10)

(b) If v ∈ P1(T ) and c is a constant vector, then∫
T

c · ∇v dx =
∑
i<j

aT
i j c · τij hij(vi − vj). (11)

Requiring that approximate solution uh satisfies (8), we can use (9) to handle the ε∇uh in-
tegrand terms on Ti,2. Further, assuming that J(uh; ε1) is approximately constant matrix on
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simplices in Ti,1, we use (11) to approximate the integration terms on Ti,1. As a result, we can
write the spatially semi-discretized scheme∫

Ωi

dun
h

dt
ϕidx +

∑
T∈Ti,1

∑
j∈IT

aT
ijJ(un

h; ε1) · τijhij

+
∑

T∈Ti,2

∑
j∈IT

ε2a
T
ij(u

n
j − un

i )−
∫

T
f(un

h) · ∇ϕidx

 = 0 . (12)

To handle the first term on the left hand side of (12), we use standard “mass lumping” quadrature
and obtain ∫

Ωi

dun
h

dt
ϕidx ≈ Ai

(
duh

dt

)n

i

, (13)

where Ai =
∫

Ωi

ϕi(x)dx. For future reference in §3 we note that Ai = O(h2).

Before discussing the time discretization, we discuss the computation of the “edge projection”
terms J · τij.

We further assume f(u) · τij = A(u) · u, where A(u) is an m×m matrix. This holds true for
many systems, e.g. 2D fully compressible Euler equations of gas dynamics, where

u =


ρ
ρu
ρv
e

 , f(u)·τij =


(u, v) · τij 0 0 0
(p

ρ , 0) · τij (u, v) · τij 0 0
(0, p

ρ) · τij 0 (u, v) · τij 0
0 (p

ρ , 0) · τij (0, p
ρ) · τij (u, v) · τij




ρ
ρu
ρv
e

 = A(u)·u.

By definition,

J · τij = ε1
∂u
∂τij

−A(u) · u . (14)

Considering (14) as an ODE system along Eij, we introduce the integrating factor (matrix) Y for
the right hand side of (14): 

dY
dτij

+ Y · A(u)
ε1

= 0,

Y(Xij) = I,

(15)

where I is the m×m identity matrix, and Xij denotes the midpoint of Eij. Y is related to J along
Eij via

∂(Y · u)
∂τij

= Y · ∂u
∂τij

+
∂Y
∂τij

· u = Y ·
(

∂u
∂τij

− A(u) · u
ε1

)
=

Y · J · τij
ε1

. (16)

Integrating along Eij gives

(Y · u)j − (Y · u)i =
1
ε1

∫ Xj

Xi

Y · J · τij ds. (17)

Assuming J · τij is constant on Eij, we have

J · τij ≈ ε1

(∫ Xj

Xi

Yds

)−1

· ((Y · u)j − (Y · u)i) . (18)
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In the numerical scheme, u varies linearly, so (15) is a variable coefficient system. To simply its
solution, we rewrite (15) in the equivalent form

dY
dτij

+ Y · A(uij)
ε1

= Y ·
(

A(uij)
ε1

− A(u)
ε1

)
, (19)

where uij = u(Xij). If we replace Y in the right hand of (19) with the solution of the constant
coefficient ODE

dY
dτij

+
Y ·A(uij)

ε1
= 0, (20)

we have the approximate representation for Y as follows: let x = (X−Xi) ·τij, xij = (Xij−Xi) ·τij,
then we notice the point X is varying along Eij and

Y = e
−(x−xij)

A(uij)

ε1 ·

{
I +

∫ x

xij

e
−(s−xij)

A(uij)

ε1 ·
(

A(uij)
ε1

− A(u)
ε1

)
· e(s−xij)

A(uij)

ε1 ds

}
.

Completing the discussion of the discretization, we use second order Runge-Kutta for the time
discretization, arriving at the fully discrete scheme

un+1
i = un

i +
1
2
(K(un

i ) + L(wn
i )). (21)

In (21),

Kn
i = K(un

i ) = −∆t
Ai

∑
T∈Ti,1

∑
j∈IT

aT
ijJ(un

i ,un
j ; ε1) · τijhij

−∆t
Ai

∑
T∈Ti,2

∑
j∈IT

ε2a
T
ij(u

n
j − un

i )−
∫

T
f(un) · ∇ϕidx

 ,

(22)

and
wn

j = un
j + Kn

j , ∀j. (23)

Let wn
h denote the linear function interpolating wn

j in T . Then with

T̂i,1 = {T | T ∈ Ti, |∇wn
h | > C0},

T̂i,2 = {T | T ∈ Ti, |∇wn
h | ≤ C0},

(24)

we have

Ln
i = L(wn

i ) = −∆t
Ai

∑
T∈bTi,1

∑
j∈IT

aT
ijJ(wn

i ,wn
j ; ε1) · τijhij

−∆t
Ai

∑
T∈bTi,2

∑
j∈IT

ε2a
T
ij(w

n
j −wn

i )−
∫

T
f(wn

h) · ∇ϕidx

 ,

(25)

In (25),

J(wn
i ,wn

j ; ε1) · τij = ε1

(∫ Xj

Xi

Yds

)−1

· ((Y ·wn
h)j − (Y ·wn

h)i) . (26)

In the calculation of Y in (26), we replace un
h with wn

h .
The initial condition for (21) is

u0
i =

1
Ai

∫
Ωi

u0ϕi dx. (27)
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3 Error analysis

In this section we prove our main result, Theorem 3.1, for smooth solutions to systems of hyperbolic
conservation laws in R2 obeying reasonably general assumptions. We show a second order error
estimate for the explicit finite element solution. This result is more difficult to prove than that in
the scalar case in [12].

As in §2, we denote the exact solution by u(x, t), and the numerical solution by uh. The
numerical solution is denoted un

h on [n∆t, (n + 1
2)∆t) and wn

h on [(n + 1
2)∆t, (n + 1)∆t), ∀n.

Let uI(x, t) denote the spatial linear interpolation to the exact solution u(Xi, t) at nodes Xi. In
contrast to §2, we now let un

i denote values of the exact solution u at nodes, and employ un
hi and

wn
hi to denote nodal values of the numerical solution.

We continue with standard vector and matrix notation (e.g. [6]). For N = 2,

u =

u1

. . .
um

 , f1(u) =

 f11(u)
. . .

fm1(u)

 , f2(u) =

 f12(u)
. . .

fm2(u)

 , f(u) = (f1(u), f2(u)) .

We also employ Jacobean matrix notation,

Df1(u) =


∂f11(u)

∂u1
. . . ∂f11(u)

∂um

. . . . . .
∂fm1(u)

∂u1
. . . ∂fm1(u)

∂um

 , Df2(u) =


∂f12(u)

∂u1
. . . ∂f12(u)

∂um

. . . . . .
∂fm2(u)

∂u1
. . . ∂fm2(u)

∂um

 ,

f ′(u) := Df(u) = (Df1(u), Df2(u)) .

Common notations for norms and semi-norms in Sobolev spaces will be employed.
Throughout this section, as we mentioned in introduction, C will denote a positive constant

independent of h and ∆t. The value of C is not necessarily the same at each occurrence of use.
For N = 2, let Th be a uniform triangulated partition of R2; that is R2 is divided into squares

{(x1, x2)| i1h ≤ x1 ≤ (i1 + 1)h, i2h ≤ x2 ≤ (i2 + 1)h, i1, i2 = 0,±1,±2, · · · }, and each square is
further divided into two triangles along the diagonal x2 = x1 + (i2 − i1)h.

Theorem 3.1. Let Ω be an arbitrary compact subdomain in R2. Assume

(a) the system (1)–(2) is strictly hyperbolic;

(b) the initial data u0 ∈ L∞(R2) such that M0 = max ‖u0‖;

(c) the solution u and the flux functions fi(u), i = 1, 2, are sufficiently smooth with bounded
derivatives;

(d) ε2 ≤ Ch2 and ε1 = 0;

(e) ∆t ≤ Ch
4
3 ;

(f) for all 0 < η < h, there exists a u∗, such that ‖u− u∗‖ < η and

2∑
i=1

‖Dfi(u∗)−DfT
i (u∗)‖ < η.
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Then

‖u− uh‖L2(Ω) ≤ C(T ∗, C0)h2, t ∈ [ 0, T ∗ ],

provided that C0 is large enough and h is small enough. Here || · || is an ordinary matrix norm,
and C0 is the threshold constant appearing in (7) and (24).

Because of assumption (c), we will write ε2 = ε. The uniformity of the grid implies Ai = A =
O(h2) for all regions Ωi associated with an interior node Xi. In proving Theorem 3.1, we first
derive the truncation error in time.

Lemma 3.2. Assume conditions (b), (c) and (d) of Theorem 3.1 are satisfied. Let

w(x, t) = u(x, t) +
∆t

A

∫
Ω0

f(u(z + x, t)) · ∇ϕ0(z)dz, (28)

where ϕ0 is the shape function at the origin, T0 denotes the set of elements neighboring the origin,
and Ω0 = ∪

T∈T0

T . Then

wn
i = un

i −
∆t

A

{
ε

∫
Ωi

∇un
I · ∇ϕi dx−

∫
Ωi

f(un) · ∇ϕi dx + O(h4)
}

, (29)

un+1
i =

1
2
un

i +
1
2
wn

i

− ∆t

2A

{
ε

∫
Ωi

∇wn
I · ∇ϕi dx−

∫
Ωi

f(wn) · ∇ϕi dx + O(h2∆t2 + h4)
}

. (30)

Proof of Lemma 3.2: Applying (28) to the node Xi gives

w(Xi, t) = u(Xi, t) +
∆t

A

∫
Ω0

f(u(z + Xi, t)) · ∇ϕ0(z) dz . (31)

By the uniformity of the mesh Th , as z varies over Ω0, Xi + z varies over Ωi and property of the
shape functions, we have

w(Xi, t) = u(Xi, t) +
∆t

A

∫
Ωi

f(u(z + Xi, t)) · ∇ϕi(z) dz , (32)

where, in (32), z is a coordinate variable local to ϕi (i.e. z = 0 at Xi). Adding and subtracting
common terms, and using the notation un

i = u(Xi, n∆t), (32) can be rewritten:

wn
i = un

i −
∆t

A

{
ε

∫
Ωi

∇un
I · ∇ϕi dx−

∫
Ωi

f(un) · ∇ϕi dx− ε

∫
Ωi

∇un · ∇ϕi dx
}

− ε∆t

A

∫
Ωi

∇(un − un
I ) · ∇ϕi dx.

(33)

The third and fourth terms on the right hand side of (33) can be bounded as∥∥∥∥ε

∫
Ωi

∇un · ∇ϕi dx
∥∥∥∥ =

∥∥∥∥−ε

∫
Ωi

4un · ϕi dx
∥∥∥∥ ≤ Ch4, (34)
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and ∥∥∥∥ε

∫
Ωi

∇(un − un
I ) · ∇ϕi dx

∥∥∥∥ ≤ Ch4, (35)

where we have relied on: the smoothness of un and Taylor expansion, ‖ 5 (un − uI)‖ ≤ Ch; and
‖ 5 ϕi‖ ≤ C

h . Equation (29) follows directly.
In order to show (30), we begin with the Taylor’s expansions,

u(x, t + ∆t)− u(x, t)− ∂u(x, t)
∂t

∆t− ∆t2

2
∂2u(x, t)

∂t2
= O(∆t3), (36)

∆t

2
∂u(x, t + ∆t)

∂t
− ∆t

2
∂u(x, t)

∂t
− ∆t2

2
∂2u(x, t)

∂t2
= O(∆t3). (37)

Subtraction of (36) and (37) yields

u(x, t + ∆t)− u(x, t)− ∂u(x, t)
∂t

∆t

2
− ∂u(x, t + ∆t)

∂t

∆t

2
= O(∆t3). (38)

Spatially convolving equation (1) with ϕ0, and integrating by parts, gives∫
Ω0

∂u(z + x, t)
∂t

ϕ0(z) dz−
∫

Ω0

f(u(z + x, t)) · ∇ϕ0(z) dz = 0. (39)

Adding

R3(x, t) =
∫

Ω0

(
∂u(x, t)

∂t
− ∂u(z + x, t)

∂t

)
ϕ0(z)dz (40)

to (39) gives
∂u(x, t)

∂t
=

1
A

{∫
Ω0

f(u(z + x, t)) · ∇ϕ0(z) dz + R3(x, t)
}

. (41)

Substituting (41) into (38), we have

u(x, t + ∆t)− u(x, t)− ∆t

2A

(∫
Ω0

f(u(z + x, t)) · ∇ϕ0(z) dz + R3(x, t)
)

− ∆t

2A

(∫
Ω0

f(u(z + x, t + ∆t)) · ∇ϕ0(z) dz + R3(x, t + ∆t)
)

= O(∆t3).

(42)

Recalling the integration by parts and using Taylor’s expansion in t, equations (41) and (28), the
second flux integration term in (42) can be written,∫

Ω0

f(u(z + x, t + ∆t)) · ∇ϕ0(z) dz

= −
∫

Ω0

∇ · f(u(z + x, t + ∆t))ϕ0(z) dz

= −
∫

Ω0

∇ · f
(
u(z + x, t) +

∂u(z + x, t)
∂t

∆t + O(∆t2)
)

ϕ0(z) dz

= −
∫

Ω0

∇ · f
(
w(z + x, t) + R3(z + x, t)

∆t

A
+ O(∆t2)

)
ϕ0(z) dz.

(43)
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As the mesh is uniform and ϕ0(z) is an even function in the symmetric domain Ω0, then from (40)

R3(x, t) =
∫

Ω0

(
−5 (

∂u(x, t)
∂t

) · z + O(h2)
)

ϕ0(z) dz. (44)

Since −5 (∂u(x, t)/∂t) · z is an odd function on the symmetric domain Ω0,∫
Ω0

−5 (
∂u(x, t)

∂t
) · zϕ0(z) dz = 0 . (45)

Therefore R3(x, t) = O(h4). Similarly, ∇R3(x, t) = O(h4). With A = O(h2), (43) becomes∫
Ω0

f(u(z + x, t + ∆t)) · ∇ϕ0(z) dz = −
∫

Ω0

∇ · f(w(z + x, t))ϕ0(z) dz + O(h2∆t2 + h4∆t)

=
∫

Ω0

f(w(z + x, t)) · ∇ϕ0(z) dz + O(h2∆t2 + h4∆t).
(46)

Substituting equations (28) and (46) into (42) yields

u(x, t + ∆t)− 1
2
u(x, t)− 1

2
w(x, t)

− ∆t

2A

{∫
Ω0

f(w(z + x, t)) · ∇ϕ0(z) dz + O(h2∆t2 + h4)
}

= 0 . (47)

Applying (47) to the nodal coordinate Xi, and adding and subtracting common terms in analogy
to the procedure in (33) gives

un+1
i =

1
2
un

i +
1
2
wn

i −
∆t

2A

{
ε

∫
Ωi

∇wn
I · ∇ϕi dx−

∫
Ωi

f(wn) · ∇ϕi dx + O(h2∆t2 + h4)
}

+
∆t

2A

{
ε

∫
Ωi

∇wn · ∇ϕi dx− ε

∫
Ωi

∇(wn −wn
I ) · ∇ϕi dx

}
.

(48)

The same estimates hold for the last two terms in (48) as hold in (34) and (35), giving the desired
result (30). 2

The following Lemma, referred to as a superapproximation estimate plays a key role in
the error estimate for Theorem 3.1. Its proof is similar to that given in [16].

Lemma 3.3. If Φ ∈ ((W 1,∞(Ω?))m)2, then∥∥∥∥∫
Ω?

Φ · (u− uI) · ∇v dx
∥∥∥∥ ≤ Ch2‖u‖3,Ω?‖v‖0,Ω? ∀v ∈ Sh

0 ,

where Ω? is a bounded domain and Sh
0 = {v | v ∈ H1

0 (Ω?), v|T ∈ P1(T ),∀T}.

We now prove Theorem 3.1. To deal with the nonlinearity of the flux function f(u), we assume
the a priori that ‖un

h‖ ≤ 2M0 implies ‖∇un
h‖ ≤ C0 and ‖∇wn

h‖ ≤ C0, where the constant C0 is to
be determined, then sets T1,i and T̂1,i are empty. We will prove this assumption in Step 3 (below)
by induction.
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Define the nodal differences Un
i = un

i − un
hi and Wn

i = wn
i −wn

hi. Let

Un =
∑

i

Un
i ϕi,Wn =

∑
i

Wn
i ϕi

denote the respective piecewise linear functions interpolating the nodal differences. We employ
Lemma 3.2, equations (9), (21)-(23), and (25) to obtain

Wn
i = Un

i −
∆t

A

{
ε

∫
Ωi

∇Un · ∇ϕi dx−
∫

Ωi

(f(un)− f(un
h)) · ∇ϕi dx + O(h4)

}
=: Un

i + Θn
i ,

(49)

Un+1
i =

1
2
Un

i +
1
2
Wn

i −
∆t

2A

{
ε

∫
Ωi

∇Wn · ∇ϕi dx−
∫

Ωi

(f(wn)− f(wn
h)) · ∇ϕi dx

}
− ∆t

2A
O(h2∆t2 + h4)

=:
1
2
Un

i +
1
2
Wn

i +
1
2
Λn

i .

(50)

Noting that ((Θn
i )T ·Λn

i )T = (Θn
i )T ·Λn

i , we have

(Θn
i )T ·Un

i + (Λn
i )T ·Un

i + (Θn
i )T ·Λn

i

= 2
(Θn

i + Λn
i )

2

T

·Un
i +

(Θn
i + Λn

i )T · (Θn
i + Λn

i )
4

− (Θn
i −Λn

i )T · (Θn
i −Λn

i )
4

= 2(Un+1
i −Un

i )T ·Un
i + (Un+1

i −Un
i )T · (Un+1

i −Un
i )− (Θn

i −Λn
i )T · (Θn

i −Λn
i )

4

= (Un+1
i −Un

i )T · (Un+1
i + Un

i )− (Θn
i −Λn

i )T · (Θn
i −Λn

i )
4

= (Un+1
i )T ·Un+1

i − (Un
i )T ·Un

i −
(Θn

i −Λn
i )T · (Θn

i −Λn
i )

4

= ‖Un+1
i ‖2 − ‖Un

i ‖2 − 1
4
‖Λn

i −Θn
i ‖2.

(51)

Slight re-arrangement, and use of (49), gives∑
i

{
‖Un+1

i ‖2 − ‖Un
i ‖2

}
A =

∑
i

{
(Θn

i )T ·Un
i + (Λn

i )T ·Wn
i +

1
4
‖Λn

i −Θn
i ‖2

}
A (52)

We use energy estimates to analyze the three terms on the right hand side of (52). We treat
the third terms in Step 1, and the first and second terms in Step 2.

Step 1. From the definition of Λn
i and Θn

i , the last term in (52) is

Λn
i −Θn

i =− ∆t

A

{
ε

∫
Ωi

∇(Wn −Un) · ∇ϕi dx
}

+
∆t

A

{∫
Ωi

(f(wn)− f(wn
h)− f(un) + f(un

h)) · ∇ϕi dx + O(h2∆t2 + h4)
}

.

(53)

By the Schwarz inequality, we have∥∥∥∥ ε

∫
Ωi

∇(Wn −Un) · ∇ϕi dx
∥∥∥∥ ≤ Ch2(|Wn|1,Ωi + |Un|1,Ωi), (54)
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and∥∥∥∫
Ωi

(f(wn)− f(wn
h)− f(un) + f(un

h)) · ∇ϕi dx
∥∥∥

≤ C

h

∫
Ωi

‖f(wn)− f(wn
h)− f(un) + f(un

h)‖dx

=
C

h

∫
Ωi

∥∥∥∫ 1

0
f ′(τwn + (1− τ)wn

h) dτ · (wn −wn
h)

−
∫ 1

0
f ′(τun + (1− τ)un

h) dτ · (un − un
h)

∥∥∥dx

≤ C

h

∫
Ωi

∥∥∥∫ 1

0
f ′(τwn + (1− τ)wn

h) dτ · (wn −wn
h − un + un

h)
∥∥∥dx

+
C

h

∫
Ωi

∥∥∥∫ 1

0

{
f ′(τwn + (1− τ)wn

h)− f ′(τun + (1− τ)un
h)

}
dτ · (un − un

h)
∥∥∥dx

≤ C

h

∫
Ωi

∥∥∥∫ 1

0
f ′(τwn + (1− τ)wn

h)dτ · (wn −wn
I − un + un

I )
∥∥∥dx

+
C

h

∫
Ωi

∥∥∥∫ 1

0
f ′(τwn + (1− τ)wn

h) dτ · (wn
I −wn

h − un
I + un

h)
∥∥∥dx

+
C

h

∫
Ωi

‖f ′(wn)− f ′(un)‖‖un − un
h‖dx

+ (1− τ)
C

h

∫
Ωi

∫ 1

0
‖f ′′‖‖wn −wn

h‖ dτ · ‖un − un
h‖dx

+ (1− τ)
C

h

∫
Ωi

∫ 1

0
‖f ′′‖‖un − un

h‖dτ · ‖un − un
h‖dx

=:
5∑

l=1

Il,

(55)

where the Il, 1 ≤ l ≤ 5 are defined by the 5 terms in the last inequality in (55). In (55), f ′

was defined at the beginning of this section and f ′′ is to be understood as the following: by the
intermediate value theorem for continuous derivatives and Taylor expansion, there exist τ, τ1, τ2 ∈
(0, 1) such that

(f ′(τwn + (1− τ)wn
h))ij = (f ′(wn))ij + (1− τ)D(f ′(τ1wn + (1− τ1)wn

h))ij · (wn
h −wn)ij , (56)

(f ′(τun + (1− τ)un
h))ij = (f ′(un))ij + (1− τ)D(f ′(τ2un + (1− τ2)un

h))ij · (un
h − un)ij . (57)

From (28), we have

wn − un = −∆t

A

∫
Ω0

∇ · f(un(z + x, t))ϕ0(z)dz, (58)

giving
‖wn − un‖ ≤ C∆t, and ‖wn − un‖0,Ωi ≤ Ch∆t, (59)
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with similar inequalities holding for the spatial derivatives of wn−un. Using the Schwarz inequality
and the interpolation inequality in Sobolev spaces [1], we have

I1 ≤
C

h

(∫
Ωi

dx
) 1

2

‖wn −wn
I − un + un

I ‖0,Ωi ≤ Ch2‖wn − un‖2,Ωi ≤ Ch3∆t. (60)

To bound I2, we note

I2 =
C

h

∑
T∈Ti

∫
T

∥∥∥∫ 1

0
f ′(τwn + (1− τ)wn

h) dτ · (Wn −Un)
∥∥∥dx

=
C

h

∑
T∈Ti

∫
T

∥∥∥∫ 1

0
f ′(τwn + (1− τ)wn

h)dτ ·
3∑

k=1

Θn
kϕk

∥∥∥dx.

(61)

To proceed further with I2, we need to evaluate Θn
k , the set of braced terms on the right hand side

of (49). For the first term in Θn
k ,∥∥∥∥ε∆t

A

∫
Ωi

∇Un · ∇ϕidx
∥∥∥∥ ≤ Cε∆t

A
‖∇Un‖0,Ωi ≤ C∆t|Un|1,Ωi . (62)

For the second term in Θn
k , by Taylor’s expansion,

(f(un)− f(un
h))ij = (f ′(un) · (un − un

h))ij + (un − un
h)T ·D2fij · (un − un

h), (63)

where D2fij is the exact remainder term in the Taylor expansion. Using Lemma 3.3,∥∥∥∆t

A

∫
Ωi

f ′(un) · (un − un
h) · ∇ϕidx

∥∥∥
≤

∥∥∥∆t

A

∫
Ωi

f ′(un) · (un − un
I ) · ∇ϕidx

∥∥∥ +
∥∥∥∆t

A

∫
Ωi

f ′(un) · (un
I − un

h) · ∇ϕidx
∥∥∥

≤ C∆t

A
h2‖un‖3,Ωi‖ϕi‖0,Ωi +

C∆t

A
‖Un‖0,Ωi

≤ Ch∆t‖un‖3,Ωi +
C∆t

A
‖Un‖0,Ωi .

(64)

The contribution of the second term in right hand side (63) to Θn
k is bounded by∥∥∥∥∆t

A

∫
Ωi

1
2
(un − un

h)T · (D2fij) · (un − un
h) · ∇ϕidx

∥∥∥∥ ≤ C∆t

h3
‖un − un

h‖2
0,Ωi

≤ C∆t

h3
‖Un‖2

0,Ωi
+ Ch∆t|un|22,Ωi

.

(65)

Thus (62), (64) and (65) imply

‖Θn
i ‖ ≤ C∆t|Un|1,Ωi +

C∆t

h2
‖Un‖0,Ωi

+
C∆t

h3
‖Un‖2

0,Ωi
+ Ch∆t‖un‖3,Ωi + Ch∆t|un|22,Ωi

+ Ch2∆t.
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Then, from (61),

I2 ≤ Ch∆t|Un|1,Ωi +
C∆t

h
‖Un‖0,Ωi +

C∆t

h2
‖Un‖2

0,Ωi

+ Ch2∆t‖un‖3,Ωi + Ch2∆t|un|22,Ωi
+ Ch3∆t.

Using ‖wn − un‖ ≤ Ch∆t and

‖un − un
h‖0,Ωi ≤ ‖un − un

I ‖0,Ωi + ‖un
I − un

h‖0,Ωi

= ‖un − un
I ‖0,Ωi + ‖Un‖0,Ωi

≤ Ch2‖un‖2,Ωi + ‖Un‖0,Ωi ,

(66)

the bound on I3 is

I3 ≤
C

h
‖wn − un‖0,Ωi · ‖un − un

h‖0,Ωi ≤ C∆t(h2|un|2,Ωi + ‖Un‖0,Ωi). (67)

Estimates for I4 and I5 follow in analogous fashion

I4 ≤
C

h
‖wn −wn

h‖0,Ωi · ‖un − un
h‖0,Ωi ≤ C max ‖wn −wn

h‖ · (h2|un|2,Ωi + ‖Un‖0,Ωi), (68)

I5 ≤ C max ‖un − un
h‖ · (h2|un|2,Ωi + ‖Un‖0,Ωi). (69)

Combing (54) and the bounds developed for I1 → I5,

‖Λn
i −Θn

i ‖ ≤ C(∆t +
∆t2

h
)|Un|1,Ωi

+ C
∆t

h2
(
∆t

h
+ max ‖un − un

h‖+ max ‖wn −wn
h‖) · ‖Un‖0,Ωi

+ C
∆t2

h4
‖Un‖2

0,Ωi
+ C∆t|Wn|1,Ωi + C∆t2‖un‖3,Ωi + C∆t2|un|22,Ωi

+ C∆t(∆t + max ‖un − un
h‖+ max ‖wn −wn

h‖)|un|2,Ωi + C∆t(∆t2 + h2).

(70)

By the inverse inequality, we have

‖Λn
i −Θn

i ‖ ≤ C
{∆t

h
(1 +

∆t

h2
+

max ‖un − un
h‖

h
+

max ‖wn −wn
h‖

h
)‖Un‖0,Ωi

+
∆t2

h4
‖Un‖2

0,Ωi
+

∆t

h
‖Wn‖0,Ωi + ∆t2‖un‖3,Ωi + C∆t2|un|22,Ωi

+ ∆t(∆t + max ‖un − un
h‖+ max ‖wn −wn

h‖) |un|2,Ωi + ∆t(∆t2 + h2)
}

.

(71)

By assumption (e), ∆t3 ≤ Ch4 and we conclude

1
4

∑
i

‖Λn
i −Θn

i ‖2A ≤C
{

∆t(1 + h−
2
3 max ‖un − un

h‖2 + h−
2
3 max ‖wn −wn

h‖2)‖Un‖2
0,Ω

+ ∆t2‖Wn‖2
0,Ω + h2∆t2(∆t2 + max ‖un − un

h‖2 + max ‖wn −wn
h‖2)

}
.

(72)
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Step 2. We analyze the first and second terms on the RSH of (52). Let Un
i = (Un

1 , Un
2 , ...Un

m)T
i .

For the first term in
∑

i

(Θn
i )TUn

i A, by the inverse inequality, we have

∥∥∥−∑
i

∆t

A
ε

∫
Ωi

(5Un · 5ϕi)T dx Un
i A

∥∥∥ =
∥∥∥−ε∆t

∑
i

∫
Ωi

m∑
j=1

(Uj)n
i (Un

jx1
, Un

jx2
) · (ϕix1 , ϕix2)

T dx
∥∥∥

=
∥∥∥−ε∆t

m∑
j=1

∑
T

∫
T
(Un

jx1
, Un

jx2
) ·

∑
i

(Uj)n
i (ϕix1 , ϕix2)

T dx
∥∥∥

=
∥∥∥−ε∆t

m∑
j=1

∫
Ω
(Un

jx1
, Un

jx2
) · (Un

jx1
, Un

jx2
)T dx

∥∥∥
= ε∆t

∫
Ω
‖ 5Un‖2dx

≤ C∆t‖Un‖2
0,Ω.

(73)

Let f̂j1 = fj1(un)− fj1(un
h) and f̂j2 = fj2(un)− fj2(un

h), then

∑
i

∆t

A

∫
Ωi

((f(un)− f(un
h)) · 5ϕi)T dxUn

i A = ∆t
m∑

j=1

∑
T

∫
T

∑
i

(Uj)n
i (f̂j1, f̂j2) · (ϕix1 , ϕix2)

T dx

= ∆t
m∑

j=1

∑
T

∫
T
(f̂j1, f̂j2) ·

∑
i

(Uj)n
i (ϕix1, ϕix2)T dx

= ∆t
m∑

j=1

∑
T

∫
T
(f̂j1, f̂j2) · (Un

jx1
, Un

jx2
)T dx.

(74)

By Taylor expansion, using the symbol Df , there are τj , τ1j ∈ (0, 1), j = 1, 2, ...,m, we have

m∑
j=1

∫
Ω
(f̂j1, f̂j2) · (Un

jx1
, Un

jx2
)T dx

=
m∑

j=1

∫
Ω

(Dfj1(τjun + (1− τj)un
h), Dfj2(τ1jun + (1− τ1j)un

h)) · (un − un
I ) · 5Un

j dx

+
m∑

j=1

∫
Ω

(Dfj1(τjun + (1− τj)un
h), Dfj2(τ1jun + (1− τ1j)un

h)) ·Un · 5Un
j dx

=:
2∑

l=1

Îl .

(75)

From Lemma 3.3, we have the estimate for Î1,

Î1 ≤ Ch2‖un‖3,Ω‖Un‖0,Ω. (76)
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We analyze Î2 by integrating by parts,

Î2 =
m∑

j=1

∫
Ω
(Dfj1(τjun + (1− τj)un

h), Dfj2(τ1jun + (1− τ1j)un
h)) ·Un · 5Un

j dx

=
m∑

j=1

∑
i

∫
Ωi

(Dfj1(τjun + (1− τj)un
h) ·Un, Dfj2(τ1jun + (1− τ1j)un

h) ·Un) · (Un
j )i 5 ϕidx

=
m∑

j=1

∑
i

∑
∂Ti⊂∂Ωi

∫
∂Ti

(Dfj1(τjun + (1− τj)un
h) ·Un, Dfj2(τ1jun + (1− τ1j)un

h) ·Un) · ni(Un
j )iϕids

−
m∑

j=1

∫
Ω
∇ · (Dfj1(τjun + (1− τj)un

h) ·Un, Dfj2(τ1jun + (1− τ1j)un
h) ·Un)Un

j dx

= −
m∑

j=1

∫
Ω
(Dfj1(τjun + (1− τj)un

h), Dfj2(τ1jun + (1− τ1j)un
h)) · ∇UnUn

j dx

−
m∑

j=1

∫
Ω
∇ · (Dfj1(τjun + (1− τj)un

h), Dfj2(τ1jun + (1− τ1j)un
h)) ·UnUn

j dx.

(77)

Therefore

2Î2 = −
m∑

j=1

∫
Ω
∇ · (Dfj1(τjun + (1− τj))un

h), Dfj2(τ1jun + (1− τ1j)un
h)) ·UnUn

j dx

−
∫

Ω

m∑
i=1

m∑
k=1

2∑
j=1

(
∂fij

∂uk
−

∂fkj

∂ui
)Un

i Un
kxj

dx

= −
∫

Ω
(Un)T (Fij)m×mUndx

−
∫

Ω

m∑
i=1

m∑
k=1

2∑
j=1

(
∂fij

∂uk
−

∂fkj

∂ui
)Un

i Un
kxj

dx

=: Î7 + Î8.

(78)

Here Fij = ∂fj1

∂x1∂ui
+ ∂fj2

∂x2∂ui
. By assumption (c), the solution u and the flux function f(u) are

sufficiently smooth with bounded derivatives, which ensures that

Î7 ≤ C‖Un‖2
0,Ω. (79)

Term Î8 vanishes for symmetric systems, but not for the systems here. Under assumption (f)
in Theorem 3.1, for all 0 < η < h, there exists u∗ such that ‖u− u∗‖ < η and

2∑
i=1

‖Dfi(u∗)−DfT
i (u∗)‖ < η.
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Using this, and inverse inequality, we have τ̂1, τ̂2 ∈ (0, 1),

Î8 ≤ C
2∑

i=1

‖Dfi(τ̂iu + (1− τ̂i)un
h)−DfT

i (τ̂iu + (1− τ̂i)un
h)‖ 1

h
‖Un‖2

0,Ω,

=: Î9
1
h
‖Un‖2

0,Ω.

(80)

By continuity and the a priori assumption, ‖∇un
h‖ ≤ C0, we have

‖∇Un‖ = ‖∇(uI − un
h)‖ ≤ ‖∇un

h‖+ ‖∇uI‖ ≤ C. (81)

By inverse inequality and interpolation inequality,

‖Un‖ ≤ Ch, ‖un − un
h‖ ≤ ‖un

h − uI‖+ ‖un − uI‖ ≤ Ch + Ch−1 · h2|u|2,Ω ≤ Ch. (82)

Similarly, ‖wn −wn
h‖ ≤ Ch, ‖un − un

h‖0,Ω ≤ Ch2. Therefore

Î9 ≤ C{
2∑

i=1

‖Dfi(τ̂iu + (1− τ̂i)un
h)−Dfi(u)‖+

2∑
i=1

‖Dfi(u)−Dfi(u∗)‖+
2∑

i=1

‖Dfi(u∗)−DfT
i (u∗)‖

+
2∑

i=1

‖DfT
i (u∗)−DfT

i (u)‖+
2∑

i=1

‖DfT
i (τ̂iu + (1− τ̂i)un

h)−DfT
i (u)‖}

= 2C
2∑

i=1

‖Dfi(τ̂iu + (1− τ̂i)un
h)−Dfi(u)‖+ 2C

2∑
i=1

‖Dfi(u)−Dfi(u∗)‖

+ C
2∑

i=1

‖Dfi(u∗)−DfT
i (u∗)‖

≤ C‖un − un
h‖+ Cη + Cη < Ch,

(83)

which implies Î8 ≤ C‖Un‖2
0,Ω, Î2 ≤ C‖Un‖2

0,Ω. Moreover, we have

m∑
j=1

∫
Ωi

(f̂j1, f̂j2)(Un
jx1

, Un
jx2

)T dx ≤ C‖Un‖2
0,Ω, (84)

∑
i

(O(h4))T Un
i ≤ C‖Un‖2

0,Ω + Ch4, (85)

∑
i

(Θn
i )TUn

i A ≤ C∆t‖Un‖2
0,Ω, (86)∑

i

(Λn
i )TWn

i A ≤ C∆t‖Wn‖2
0,Ω. (87)
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By (72), (86) and (87), (52), and ∆t ≤ Ch
4
3 ,max ‖un−un

h‖ ≤ Ch, max ‖wn−wn
h‖ ≤ Ch, we have∑

i

{‖Un+1
i ‖2 − ‖Un

i ‖2}A ≤ C∆t{(1 + h−
2
3 max ‖un − un

h‖2 + h−
2
3 max ‖wn −wn

h‖2)‖Un‖2
0,Ω

+ (1 + ∆t)‖Wn‖2
0,Ω + h2(∆t3 + ∆t(max ‖wn −wn

h‖2

+ max ‖un − un
h‖2))} ≤ C∆t(‖Un‖2

0,Ω + ‖Wn‖2
0,Ω + h4),∑

i

‖Θn
i ‖2A ≤ C

∆t2

h2
‖Un‖2

0 + Ch4∆t2,

‖Wn‖2
0,Ω ≤ C

(
1 +

∆t2

h2

)
‖Un‖2

0,Ω + Ch4∆t2,∑
i

{‖Un+1
i ‖2 − ‖Un

i ‖2}A ≤ C∆t(‖Un‖2
0,Ω + h4).

By interpolation inequality, we get ‖U0‖2
0,Ω = ‖u0

I−u0
h‖2

0,Ω ≤ C‖u0
I−u0‖2

0,Ω+C‖u0−u0
h‖2

0,Ω ≤ Ch4.
Then

‖Un+1‖2
0 − ‖U0‖2

0 ≤ Ch4, ∀n∆t ≤ T ∗,

and ‖Un+1‖2
0,Ω ≤ C2

4h4, which deduces ‖Wn+1‖2
0,Ω ≤ C2

5h4.
Step 3. Finally we verify the a priori assumption imposed earlier. Using inverse inequality,

we get

‖∇Un+1‖ ≤ C

h
‖Un+1‖ ≤ C

h2
‖Un+1‖0,Ω = CC4, ‖∇Wn+1‖ ≤ CC5;

then we define C0 = max{CC4 + ‖∇uI‖, CC5 + ‖∇wI‖}. The a priori assumption is obviously
satisfied for n = 0. If it is satisfied for a certain n, by the inverse inequality we get max ‖Un+1‖ ≤
CC4h. Since the exact solution is smooth enough, and on the bounded and closed domain Ω, we
have ‖u(x, t)‖ ≤ M0. Take h small enough, satisfying CC4h ≤ M0, then

‖un+1
h ‖ = ‖un+1

I − Un+1‖ ≤ ‖un+1
I ‖+ ‖Un+1‖ ≤ M0 + M0 = 2M0.

We defined C0 such that

‖∇un+1
h ‖ ≤ ‖∇Un+1‖+ ‖∇un+1

I ‖ ≤ C0.

The a priori assumption for wn
h can be verified by the same way:

‖∇wn+1
h ‖ ≤ ‖∇Wn+1‖+ ‖∇wn+1

I ‖ ≤ C0.

This completes the proof of Theorem 3.1. 2
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Error Estimate on Crank-Nicolson Scheme for Stochastic
Parabolic Partial Differential Equations∗

Xiaoyuan Yang Yuanyuan Duan Wei Wang
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Corresponding author: xiaoyuanyang@vip.163.com

Abstract

In this paper we study a numerical method for the partial equations. Firstly, we introduce
the basic conceptions and properties of the space, operator, stochastic partial equations
and the finite element method. Then we mainly describe and analyze the finite element
method for a stochastic parabolic partial problem with homogeneous Dirichlet boundary
conditions. The discretization with respect to space is done by piecewise linear finite
elements, and in time we apply the C-N method. Optimal convergence error estimates in
the L2 and H−1 norms are obtained, and the rigorous prove is given.

Key words space, operator, normal, partial equations, the finite element.

1 Introduction
We study the finite element approximation of the stochastic parabolic partial differential equation

du + Audt = σ(u)dW for 0 < t ≤ T, with u(0) = u0, (1.1)

in the Hilbert space H, with inner product (·, ·) and norm ‖ · ‖, where u(t) is an H-valued random
process; A : D(A) ⊂ H → H denotes an unbounded, non-negative self-adjoint operator, such that
D(A) is compactly embedded into H . Here A = −4, where 4 stands for the Laplacian operator
subject to homogeneous Dirichlet boundary conditions, and D(A) ⊂ L2(D), where D is a bounded
convex domain in Rd, d = 1, 2, 3, with a sufficiently smooth boundary ∂D.

The existence, uniqueness, and properties of the solutions of stochastic equations have been well
studied. Curtain and Falb [4] [5] first studied the properties of such equations. Prato and Lunardi [6]
[7] [8] obtained several results for the linear stochastic evolution equations using semigroups method.
Gozzi [9] researched the regularity of such solutions of a second order Hamilton-Jacobi equation.
Peszat and Zabczyk [10] used the Wiener process to approximate the noise. Walsh [11] gave an
introduction to stochastic partial differential equations. However, numerical approximation of such
stochastic equations has not been studied thoroughly.

∗This research was supported by the National Natural Science Foundation of China under grant 60573150 and National
Key Basic Research Program(973)of China under grand 2009CB724000
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Before we start the numerical approximation of (1.1), we first introduce some spaces and the Wiener
process.

We assume that W (t) is a cylindrical Wiener process on H defined on a given stochastic basis
(Ω, F ,P, {Ft}t≥0) with covariance operator Q. This process many be considered in terms of its
Fourier series. Suppose that Q is a bounded, linear, self-adjoint, positive define operator on H, with
eigenvalues γl > 0 and corresponding eigenfunctions el. Let βl, l = 1, 2, ..., be a sequence of real-
valued independently and identically distributed Brownian motions. Then

W (t) =
∞∑

l=1

γ
1/2
l elβl(t)

is a Wiener process with covariance operator Q.
Let L0

2 = HS(Q1/2(H), H) denote the space of Hilbert-Schmidt operators from Q1/2(H) to H ,

L0
2 =

{
ψ ∈ L(H) :

∞∑

l=1

‖ψQ1/2el‖2 < ∞
}

,

with norm ‖ψ‖L0
2

= (
∑∞

l=1 ‖ψQ1/2el‖2)1/2, where L(H) is the space of bounded linear operators from
H to H .

Let E denote the expectation. Let ψ ∈ L0
2. Then

∫ t

0
ψ(s) dW (s) can be defined, and the following

isometry property holds:

E
∥∥∥∥
∫ t

0
ψ(s) dW (s)

∥∥∥∥
2

=

∫ t

0

‖Eψ(s)‖2
L0

2
ds. (1.2)

We assume that σ : H → L0
2 satisfies the following global Lipschitz and growth conditions:

(i)‖σ(x)− σ(y)‖ ≤ C‖x− y‖ ∀x, y ∈ H,

(ii)‖σ(x)‖ ≤ C‖x‖ ∀x ∈ H.

Then (1.1) admits a unique mild solution which has the form

u(t) = E(t)u0 +

∫ t

0

E(t− s)σ(u(s)) dW (s), (1.3)

where E(t) = e−tA is the analytic semigroup generated by −A. Moreover,

sup
t∈[0,T ]

E‖u(t)‖2 ≤ C(1 + E‖u0‖2). (1.4)

Note that if Tr(Q) = ∞, then the identity mapping σ(u) = I does not satisfy the condition (ii).
In order to cover this important case, we introduce a modified version of (ii), i.e.,

(ii′)‖Aβ−1/2σ(x)‖L0
2
≤ C‖x‖, for some β ∈ [0, 1],∀x ∈ H.

Then (ii) is the special case β = 1 of (ii′). If σ(·) = I , the condition (ii′) reduces to ‖A(β−1)/2‖L0
2
≤

C.

The numerical approximation for (1.1) started with the work by Grecksch and Kloeden [12] and
Gyöngy and Nualart [13]. Then Allen, Novosel, and Zhang [14] used the finite element on some linear

2
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stochastic partial differential equations. Benth and Gjerde [15], Davie and Gaines [16] studied the
convergence rates for such finite element approximations of stochastic partial differential equations.
Du and Zhang [17] and Hausenblas [20] [21] made further contribution to the numerical approxima-
tion of some linear stochastic partial differential equations. Gyöngy [18] [19] researched the Lattice
approximations for such equations. Other authors who works on this field include Kloeden and Shott
[22], Lord and Rougemont [23], Printems [32], Shardlow [25], Theting [26] [27], and Yan [28] [29].

In this paper, we will consider error estimates for approximations of (1.1) based on the finite ele-
ment method in space and the C-N method in time.

Let Ḣs = Ḣs(D) = D(As/2) with norm |υ|s = ‖As/2υ‖ for any s ∈ R. For any Hilbert space H ,
we define

L2(Ω; H) = {υ : E‖υ‖2
H =

∫

Ω

‖υ(ω)‖2
H dP(ω) < ∞},

with norm ‖υ‖L2(Ω;H) = (E‖υ‖2
H)1/2.

Let k be a time step and tn = nk with n ≥ 1. We define the C-N scheme

Un − Un−1

k
+ Ah

Un + Un−1

2
=

1

k

∫ tn

tn−1

Pnσ

(
Un + Un−1

2

)
dW (s), n ≥ 1, (1.5)

U0 = Phu0.

with r(λ) = 1/1 + λ, we can rewrite it in the form

Un =
1− kAh

2

1 + kAh

2

× Un−1 +

∫ tn

tn−1

1

1 + kAh

2

Pnσ

(
Un + Un−1

2

)
W(s)

= [1− 2r(
2

kAh

)]× Un−1 +

∫ tn

tn−1

r(
kAh

2
)Pnσ

(
Un + Un−1

2

)
W(s),

where En
kh = [1− 2r(kAh

2
)]n, U0 = Phu0, then we have

Un = [1− 2r(
kAh

2
)]n × U0

+
n∑

j=1

∫ tj

tj−1

[1− 2r(
kAh

2
)]n−jr(

kAh

2
)Phσ

(
Un + Un−1

2

)
W(s)

= En
khPhU0 +

n∑
j=1

∫ tj

tj−1

En−j
kh r(

kAh

2
)Phσ

(
Un + Un−1

2

)
W(s). (1.6)

In this paper, the following theorem is our main result.

Theorem 1.1 Let Un and u(tn) be the solutions of (1.6) and (1.1), respectively. Assume that σ satisfies
(i) and (ii′). Assume that u0 ∈ L2(Ω; Ḣβ), 0 ≤ β ≤ 1. Then there exists a constant C = C(T ) such
that, for tn ∈ [0, T ] and 0 ≤ γ < β ≤ 1,

‖Un − u(tn)‖L2(Ω;H) ≤ C(k
γ
2 + hβ)(‖u0‖L2(Ω;Ḣβ) + sup

0<s<t
‖u(s)‖L2(Ω;H)) (1.7)

In particular, if σ satisfies (i) and (ii), then we have, for u0 ∈ L2(Ω; Ḣ1) and 0 ≤ γ ≤ 1,

‖Un − u(tn)‖L2(Ω;H) ≤ C(k
γ
2 + h)(‖u0‖L2(Ω;Ḣβ) + sup

0<s<t
‖u(s)‖L2(Ω;H)) (1.8)

The paper is organized as follow: In Section 2, some notations and preliminaries are given. In
Section 3, we complete the proof of Theorem 1.1 using lemmas which are mentioned in Section 2.
And Section 4 is the conclusion.

3
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2 Theorem and lemma
In this section, we introduce some lemmas which will be used in the proof of our main theorem.

For later use, we collect some results in the next two lemmas; see Thomée [30] or Pazy [31].

Lemma 2.1 For any µ, ν ∈ R and l ≥ 0, there is a C > 0 such that

|Dl
tE(t)v|ν ≤ Ct−(ν−µ)/2−l|v|µ for t > 0, 2l + ν ≥ µ,

and
∫ t

0

sµ|Dl
tE(t)v|2ν ds ≤ C|v|22l+ν−µ−1 for t ≥ 0, µ ≥ 0.

Lemma 2.2 For any µ ≥ 0, 0 ≤ ν ≤ 1, there is a C > 0 such that

||AµE(t)|| ≤ Ct−µ, for t ≥ 0

and

||A−ν(I − E(t))|| ≤ Ctν , for t ≥ 0

By these lemmas, we can get the following.

Lemma 2.3 Let E denote the expectation. E(t) is the mild solution of (1.1).Then we have

E

∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

(E(tn − tj)− E(tn − s))σ(u(s)) dW (s)

∥∥∥∥∥

2

≤ Ckβ

Proof. Firstly we know that

E

∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

(E(tn − tj)− E(tn − s))σ(u(s)) dW (s)

∥∥∥∥∥

2

=
n∑

j=1

∫ tj

tj−1

E
∥∥(E(tn − tj)− E(tn − s))A1−β/2Aβ−1/2σ(u(s))

∥∥2

L0
2

ds

≤ C

(
n∑

j=1

∫ tj

tj−1

‖(E(tn − tj)− E(tn − s))A1−β/2‖2 ds

)
sup

0≤s≤T
E‖u(s)‖2

where
n∑

j=1

∫ tj

tj−1

‖(E(tn − tj)− E(tn − s))A1−β/2‖2 ds

=
n∑

j=1

∫ tj

tj−1

‖A1/2E(tn − tj)A
−β/2(I − E(tn − s))‖2 ds

≤ Ckβ

n∑
j=1

∫ tj

tj−1

‖A1/2E(tn − tj)‖2 ds

= Ckβ

(
n∑

j=1

∫ tj

tj−1

k‖A1/2E(tn − tj)‖2

)
≤ Ckβ.

4
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So we have

E

∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

(E(tn − tj)− E(tn − s))σ(u(s)) dW (s)

∥∥∥∥∥

2

≤ Ckβ.

We also need regularity in time of the solution of (1.1); see Printems [32], Proposition 3.4.

Lemma 2.4 Let u(t) be the mild solution of (1.1). Assume that σ(·) = I . If ‖Aβ−1/2‖L0
2

< ∞, for some β ∈
[0, 1],then we have, for fixed t ∈ [0, T ],

‖u(t)‖L2(Ω;Hβ) ≤ C(‖u0‖L2(Ω;Hβ) + ‖Aβ−1
2 ‖L0

2
), u0 ∈ L2(Ω; Hβ)

In particular, if W (t) is an H-valued Wiener process with covariance operator Q, Tr(Q) < ∞,
then we have

‖u(t)‖L2(Ω;H1) ≤ C(‖u0‖L2(Ω;H1) + Tr(Q)
1
2 ), u0 ∈ L2(Ω; H1)

Lemma 2.5 Assume that σ satisfies (i) and (ii′). Let u(t) be the mild solution of (1.1). For 0 ≤ γ ≤
β ≤ 1,

E‖u(t2)− u(t1)‖2 ≤ C(t2 − t1)
γE|u0|2γ + C(t2 − t1)

γ sup
0≤s≤T

E‖u(s)‖2

For the coefficient, we have the following conclusion.

Theorem 2.1 Let Fn = En
khr(

kAh

2
)Ph − E(tn) = [1− 2r(kAh)]

nr(kAh

2
)Ph − e−tnA, then

‖Fnν‖ ≤ C(k
β
2 + hβ)|v|β, for ν ∈ Ḣβ, 0 ≤ β ≤ 1 (2.1)

(k
n∑

j=1

‖Fjν‖2)1/2 ≤ C(kβ/2 + hβ)|ν|β, for ν ∈ Ḣβ−1, 0 ≤ β ≤ 1. (2.2)

Proof. Define

u(tn) = un = E(tn)ν, Un = En
khr(

kAh

2
)Phν = [1− 2r(kAh)]

nr(
kAh

2
)Phν,

en = Unν − u(tn)ν = Fnν.

By ∂te
n = (en − en−1)/k, we have

Gh∂te
n + en = ρn + Ghτ

n, (2.3)

where ρn = (Gh −G)ut(tn), τn = ut(tn)− ∂tu
n. Taking the inner product of (2.3) with en, we have

(Gh∂te
n, en) + (en, en) = (ρn, en) + (Ghτ

nen), (2.4)

By summation on n, using the inequality (ρn, en) ≤ 1
2
(‖ρn‖2 +‖en‖2). Noting that Ghe

0 = 0, we have

(Ghe
n, en) + k

n∑
j=1

‖ej‖2 ≤ Ck

n∑
j=1

‖ρj‖2 + Ck

n∑
j=1

‖Gτ j‖2 + Ck

n∑
j=1

‖(Gh −G)τ j‖2.

5
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Using Lemma 2.1, we have, since ρj = ρ(s) +
∫ tj

s
ρt(τ) dτ ,

k
n∑

j=1

||ρj||2 = k||ρ||2 +
n∑

j=1

∫ tj

tj−1

||ρj||2ds

≤ k||ρ||2 + 2
n∑

j=2

∫ tj

tj−1

(||ρ(s)||2 + ||
∫ tj

tj−1

ρt(τ)dτ ||2)ds

≤ k||ρ||2 + 2

∫ tn

t1

||ρ(s)||2ds + 2
n∑

j=2

∫ tj

tj−1

((tj − s)

∫ tj

ts

||ρt(τ)||2dτ)ds

≤ k||ρ||2 + 2

∫ tn

t1

||ρ(s)||2ds + 2
n∑

j=2

∫ tj

tj−1

τ ||ρt(τ)||2dτ

≤ Ck||u||2 + Ch2

∫ tn

0

|u(s)|21ds + Ck

∫ tn

0

τ ||ut(τ)||2dτ

≤ C(k + h2)||v||2

and, by Taylor’s formula,

k
n∑

j=1

||(Gh −G)τ j||2 ≤ Ckh2|r1|2−1 + Ckh2

n∑
j=2

|rj|2−1

= Ckh2|ut(k)− 1

k

∫ k

0

ut(τ)dτ |2−1 + Ckh2

n∑
j=2

|1
k

∫ tj

tj−1

(s− tj−1)utt(s)ds|2−1

≤ Ch2||v||2 + Ch2

n∑
j=2

∫ tj

tj−1

s2|utt(s)|2−1ds

≤ Ch2||v||2

and

k

n∑
j=1

||Gτ j||2 = k

n∑
j=1

||1
k

∫ tj

tj−1

(s− tj−1)ut(s)ds||2

≤ k

n∑
j=1

∫ tj

tj−1

(s− tj−1)||ut(s)||2ds

≤ Ck

∫ tn

0

s||ut(s)||2ds ≤ k||v||2

Therefore we have

(Ghe
n, en)

1
2 + (k

n∑
j=1

||ej||2) 1
2 ≤ C(k

1
2 + h)||v||

Then

(k
n∑

j=1

||Fjv||2) 1
2 ≤ C(k

1
2 + h)||v||.

6

YANG et al:STOCHASTIC PARABOLIC PDE400



By the proof we have the following lemma:

Lemma 2.6 If Fn = En
khr(

kAh

2
)Ph − E(tn), then

||Fnv|| ≤ C(k
β
2 + hβ)|v|β, for v ∈ Ḣβ, 0 ≤ β ≤ 1

and

k
n∑

j=1

∥∥Fn−jA
(1−β)/2

∥∥2 ≤ C(kβ + h2β)

Proof. Here we only prove the latter in detail.

k
n∑

j=1

∥∥Fn−jA
(1−β)/2

∥∥2

= k
n∑

j=1

∥∥∥∥(En−j
kh r(

kAh

2
)Ph − E(tn − tj))A

1−β/2

∥∥∥∥
2

= k

n∑
j=1

(
sup
ν 6=0

‖(En−j
kh r(kAh

2
)Ph − E(tn − tj))A

1−β/2ν‖
‖ν‖

)2

= sup
ν 6=0

k
∑n

j=1 ‖(En−j
kh r(kAh

2
)Ph − E(tn − tj))A

1−β/2ν‖2

‖ν‖2

≤ sup
ν 6=0

C(kβ + h2β)|A1−β/2ν|2β−1

‖ν‖2

≤ C(kβ + h2β)

3 Proofs of Teorem 1.1
By the definition of the mild solution of (1.1), with E(t) = e−tA,

u(tn) = E(tn)u0 +

∫ tn

0

E(tn − s)σ(u(s)) dW (s).

Defining en = Un − u(tn) and Fn = En
khr(

kAh

2
)Ph − E(tn), then

en = Fnu0 +
n∑

j=1

∫ tj

tj−1

En−j
kh r(

kAh

2
)Ph

(
σ

(
U j + U j−1

2

)
− σ

(
u(tj) + u(tj−1)

2

))
dW (s)

+
n∑

j=1

∫ tj

tj−1

En−j
kh r(

kAh

2
)Ph

(
σ

(
u(tj) + u(tj−1)

2

)
− σ

(
u(s) + u(s)

2

))
dW (s)

+
n∑

j=1

∫ tj

tj−1

(
(En−j

kh r(
kAh

2
)Ph − E(tn − tj))σ(u(s))

)
dW (s)

+
n∑

j=1

∫ tj

tj−1

(E(tn − tj)− E(tn − s))σ(u(s)) dW (s)

=
n∑

j=1

Ij

7
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Thus

‖en‖L2(Ω;H) ≤ C

5∑
j=1

‖Ij‖L2(Ω;H).

For I1, let v = u0,

‖I1‖ = ‖Fnu0‖ ≤ C(kβ/2 + hβ)|u0|β,

then ‖I1‖L2(Ω;H) ≤ C(kβ/2 + hβ)‖u0‖L2(Ω;Ḣβ).
For I2, we have, by isometry, the stability of r(λ), and the Lipschitz condition (i),

‖I2‖2
L2(Ω;H) = E

∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

En−j
kh r(

kAh

2
)Ph

(
σ

(
U j + U j−1

2

)
− σ

(
u(tj) + u(tj−1)

2

))
dW (s)

∥∥∥∥∥

2

= k

n∑
j=1

E
∥∥∥∥En−j

kh r(
kAh

2
)Ph

(
σ

(
U j + U j−1

2

)
− σ

(
u(tj) + u(tj−1)

2

))∥∥∥∥
2

L0
2

≤ k
n∑

j=1

E
∥∥∥∥En−j

kh r(
kAh

2
)Ph

∥∥∥∥
2

× E
∥∥∥∥σ

(
U j + U j−1

2

)
− σ

(
u(tj) + u(tj−1)

2

)∥∥∥∥
2

L0
2

≤ Ck
n∑

j=1

E
∥∥∥∥
U j + U j−1

2
− u(tj) + u(tj−1)

2

∥∥∥∥
2

= C
n∑

j=1

∫ tj

tj−1

E
∥∥∥∥
ej + ej−1

2

∥∥∥∥
2

ds

≤ Ck
n∑

j=1

‖ej‖2

For I3, we have, by Lemma 2.5, for 0 ≤ γ < β ≤ 1,

‖I3‖2
L2(Ω;H) =

n∑
j=1

∫ tj

tj−1

E
∥∥∥∥En−j

kh r(
kAh

2
)Ph

(
σ

(
u(tj) + u(tj−1)

2

)
− σ

(
u(s) + u(s)

2

))∥∥∥∥
2

L0
2

ds

≤ C
n∑

j=1

∫ tj

tj−1

E
∥∥∥∥
u(tj) + u(tj−1)

2
− u(s) + u(s)

2

∥∥∥∥
2

ds

≤ C

(
n∑

j=1

∫ tj

tj−1

(tj − s)γ + (tj−1 − s)γ ds

)(
E|u0|2γ + sup

0≤s≤T
E‖u(s)‖2

)

≤ Ckγ

(
E|u0|γ + sup

0≤s≤T
E‖u(s)‖2

)
.

For I4, we have,

‖I4‖2
L2(Ω;H) = E

∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

(En−j
kh r(

kAh

2
)Ph − E(tn − tj))σ(u(s)) dW (s)

∥∥∥∥∥

2

=
n∑

j=1

∫ tj

tj−1

E
∥∥∥∥(En−j

kh r(
kAh

2
)Ph − E(tn − tj))A

1−β/2Aβ−1/2σ(u(s))

∥∥∥∥
2

≤ C

(
k

n∑
j=1

∥∥∥∥(En−j
kh r(

kAh

2
)Ph − E(tn − tj))A

1−β/2

∥∥∥∥
2
)

sup
0≤s≤T

E‖u(s)‖2

8
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By the lemma 2.6, we have,

‖I4‖2
L2(Ω;H) ≤ C(kβ + h2β) sup

0≤s≤T
E‖u(s)‖2.

For I5, by lemma 2.3, we have,

‖I5‖2
L2(Ω;H) = E

∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

(E(tn − tj)− E(tn − s))σ(u(s)) dW (s)

∥∥∥∥∥

2

≤ Ckβ sup
0≤s≤T

E‖u(s)‖2.

Together these estimates show, for 0 ≤ γ < β ≤ 1,

E‖en‖2 ≤ C(kγ + h2β)E|u0|2β + Ck
n∑

j=1

E‖ej‖2

+ C(kγ + h2β) sup
0≤s≤T

E‖u(s)‖2.

which implies that

‖en‖2
L2(Ω;H) ≤ C(kγ/2 + h2β)E|u0|L2(Ω;Hβ) + sup

0≤s≤T
‖u(s)‖L2(Ω;H). (3.1)

4 Conclusion
In this paper, we first obtain results on the order of convergence of a discretization in time by an

implicit Crank-Nicolson scheme of a stochastic parabolic equation driven by nuclear or space-time
white noise in the multidimensional case. The noise is approximated by using the generalized L2-
projection operator. The proof of our main theorem is based on appropriate nonsmooth data error
estimates for the corresponding deterministic parabolic problem.
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[13] I. Gyöngy and D. Nualart, Implicit scheme for stochastic parabolic partial differential equations
driven by space-time white noise, Potential Anal., 7 (1997), pp. 725-757.

[14] E. J. Allen, S. J. Novosel, and Z. Zhang, Finite element and difference approximation of some
linear stochastic partial differential equations, Stochastics Stochastics Rep., 64 (1998), pp. 117-
142.

[15] F. E. Benth and J. Gjerde, Convergence rates for finite element approximations of stochastic
partial differential equations, Stochastics Stochastics Rep., 63 (1998), pp. 313-326.

[16] A. M. Davie and J. G. Gaines, Convergence of numerical schemes for the solution of parabolic
stochastic partial differential equations, Math. Comp., 70 (2001), pp. 121-134.

[17] Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equa-
tions driven by special additive noises, SIAM J. Numer. Anal., 40 (2002), pp. 1421-1445.
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EXTENDED CESÁRO OPERATORS ON ZYGMUND SPACES
IN THE UNIT BALL

ZHONG-SHAN FANG AND ZE-HUA ZHOU∗

Abstract. Let g be a holomorphic function of the unit ball B in the n-
dimensional space, and denote by Tg and Ig the induced extended Cesáro
operator and another integral operator. The boundedness and compactness
of Tg and Ig acting on the Zygmund spaces in the unit ball are discussed
and necessary and sufficient conditions are given in this paper.

1. Introduction

Let f(z) be a holomorphic function on the unit disc D with Taylor expansion

f(z) =
∞∑

j=0

ajz
j, the classical Cesáro operator acting on f is

C[f ](z) =
∞∑

j=0

(
1

j + 1

j∑

k=0

ak

)
zj.

In the past few years, many authors focused on the boundedness and com-
pactness of extended Cesáro operator between several spaces of holomorphic
functions . It is well known that the operator C is bounded on the usual Hardy
spaces Hp(D) for 0 < p < ∞ and Bergman space, we recommend the interested
readers refer to [10, 12, 8, 2, 13]. But the operator C is not always bounded,
in [16], Shi and Ren gave a sufficient and necessary condition for the operator
C to be bounded on mixed norm spaces in the unit disc. Recently, Siskakis
and Zhao in [14] obtained sufficient and necessary conditions for Volterra type
operator, which is a generalization of C , to be bounded or compact between
BMOA spaces in the unit disc. It is a natural question to ask what are the
conditions for higher dimensional case.

Let dv be the Lebesgue measure on the unit ball B of Cn normalized so that
v(B) = 1,and dvβ = cβ(1− |z|2)βdv,where cβ is a normalizing constant so that
dvβ is a probability measure. The class of all holomorphic functions on B is
defined by H(B) . For f ∈ H(B) we write

Rf(z) =
n∑

j=1

zj
∂f

∂zj

(z).

2000 Mathematics Subject Classification. Primary: 47B38; Secondary: 46E15, 32A37.
Key words and phrases. Zygmund space; Extended Cesáro Operators; boundedness;

compactness.
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2 Z.S. FANG AND Z.H.ZHOU

A little calculation shows C[f ](z) = 1
z

∫ z

0
f(t)(log 1

1−t
)′dt. From this point

of view, if g ∈ H(B), it is natural to consider the extended Cesáro operator
(also called Volterra-type operator or Riemann-Stieltijes type operator) Tg on
H(B) defined by

Tg(f)(z) =

∫ 1

0

f(tz)Rg(tz)
dt

t
.

It is easy to show that Tg take H(B) into itself. In general, there is no easy
way to determine when an extended Cesáro operator is bounded or compact.

Motivated by [16], Hu and Zhang [6, 7, 19] gave some sufficient and necessary
conditions for the extended C to be bounded and compact on mixed norm
spaces, Bloch space as well as Dirichlet space in the unit ball.

Another natural integral operator is defined as follows:

Ig(f)(z) =

∫ 1

0

Rf(tz)g(tz)
dt

t
.

The importance of them comes from the fact that

(1) Tg(f) + Ig(f) = Mgf − f(0)g(0)

where the multiplication operator is defined by

Mg(f)(z) = g(z)f(z), f ∈ H(B), z ∈ B.

Now we introduce some spaces first. Let H∞ denote the space of all bounded
holomorphic functions on the unit ball, equipped with the norm ||f ||∞ =
sup
z∈B

|f(z)|.
The Bloch space B is defined as the space of holomorphic functions such

that

||f ||B = sup{(1− |z|2)|Rf(z)| : z ∈ B} < ∞.

It is easy to check that if f ∈ B then

(2) |f(z)| ≤ C log
2

1− |z|2‖f‖B.

We define weighted Bloch space Blog as the space of holomorphic functions
f ∈ H(B) such that

||f ||Blog
= sup{(1− |z|2)|Rf(z)| log

2

1− |z|2 : z ∈ B} < ∞.

The Zygmund space Z [20] in the unit ball consists of those functions whose
first order partial derivatives are in the Bloch space.

It is well known that (Theorem 7.11 in [20]) f ∈ Z if and only if Rf ∈ B,
and Z is a Banach space with the norm

(3) ||f || = |f(0)|+ ||Rf ||B.
The purpose of this paper is to discuss the boundedness and compactness of

extended Cesáro operator Tg and another integral operator Ig on the Zygmund
space in the unit ball.
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EXTENDED CESÁRO OPERATORS 3

2. Some Lemmas

In the following, we will use the symbol C to denote a finite positive number
which does not depend on variable z and f .

In order to prove the main results, we will give some Lemmas first.

Lemma 1. Assume f ∈ Z, then we have

||f ||∞ ≤ C||f ||
Proof. Since f ∈ Z implies that Rf ∈ B, it follows from (2) that

(4) |Rf(z)| ≤ C log
2

1− |z|2‖Rf‖B ≤ C log
2

1− |z|2 ||f ||.

Furthermore by lim
|z|→1

(1− |z|2) log 2
1−|z|2 = 0 we have

(5) (1− |z|2)|Rf(z)| ≤ C(1− |z|2) log
2

1− |z|2 ||f || < ∞,

so f ∈ B. It follows from Theorem 2.2 in [20] that

Rf(z) =

∫

B

Rf(z)dvβ(w)

(1− < z,w >)n+1+β

where β is a sufficiently large positive constant. Since Rf(0) = 0,

f(z)− f(0) =

∫ 1

0

Rf(tz)

t
dt =

∫

B

Rf(w)L(z, w)dvβ(w)

where the kernel

L(z, w) =

∫ 1

0

(
1

(1− t < z, w >)n+1+β
− 1)

dt

t

satisfies

|L(z, w)| ≤ C

|1− < z,w > |n+β

for all z and w in B. Note that t1/2 log 2
t
≤ 2

e
· (1− log 2) for all t ∈ (0, 1], then

|f(z)− f(0)| = C

∫

B

(1− |w|2)|Rf(w)|dvβ−1(w)

|1− < z,w > |n+β

≤ C

∫

B

(1− |w|2) log 2
1−|w|2 ||f ||dvβ−1(w)

|1− < z, w > |n+β

≤ C

∫

B

(1− |w|2)1−1/2||f ||dvβ−1(w)

|1− < z,w > |n+β

≤ C||f ||.
The last inequality holds since

∫
B

(1−|w|2)tdv(w)
|1−<z,w>|n+1+t+c is bounded for c < 0. This

completes the proof of Lemma 1.
By Lemma 1, Montel theorem and the definition of compact operator, the

following lemma follows.
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4 Z.S. FANG AND Z.H.ZHOU

Lemma 2. Assume that g ∈ H(B). Then Tg (or Ig) : Z → Z is compact
if and only if Tg (or Ig) is bounded and for any bounded sequence (fk)k∈N

in Z which converges to zero uniformly on B as k → ∞, ||Tgfk|| → 0(or
||Igfk|| → 0) as k →∞.

Lemma 3. If (fk)k∈N is a bounded sequence in Z which converges to zero
uniformly on compact subsets of B as k →∞, then lim

k→∞
sup
z∈B

|fk(z)| = 0.

proof. Assume ||fk|| ≤ M . For any given ε > 0, there exists 0 < η < 1 such

that
√

1−η
η

< ε. Note that t1/2 log 2
t
≤ 2

e
· (1− log 2) for all t ∈ (0, 1], then when

η < |z| < 1, it follows from (4) that

|fk(z)− fk(
η

|z|z)| =

∣∣∣∣∣
∫ 1

η
|z|

Rfk(tz)
dt

t

∣∣∣∣∣ ≤ C

∫ 1

η
|z|

log
2

1− |tz|2 ||fk||dt

t

≤ C
|z|
η

∫ 1

η
|z|

||fk||dt

(1− |tz|2)1/2
≤ C

M

η

∫ 1

η
|z|

|z|dt

(1− t|z|)1/2

≤ 2CM
(1− η)1/2

η
< Cε.

So we get sup
η<|z|<1

|fk(z)| ≤ Cε + sup
|w|=η

|fk(w)|. Thus, we have

lim
k→∞

sup
z∈B

|fk(z)| ≤ lim
k→∞

(sup
|z|≤η

|fk(z)|+ sup
η<|z|<1

|fk(z)|) ≤ Cε.

Now we finish the proof of this lemma.

Lemma 4. Let g ∈ H(B), then

R[Tgf ](z) = f(z)Rg(z)

for any f ∈ H(B) and z ∈ B.

Proof. Suppose the holomorphic function fRg has the Taylor expansion

(fRg)(z) =
∑

|α|≥1

aαzα.

Then we have

R(Tgf)(z) = R

∫ 1

0

f(tz)R(tz)
dt

t
= R

∫ 1

0

∑

|α|≥1

aα(tz)α dt

t

= R[
∑

|α|≥1

aαzα

|α| ] =
∑

|α|≥1

aαzα = (fRg)(z).

3. Main Theorems

Theorem 1. Suppose g ∈ H(B), then the following conditions are all
equivalent:

(a) Tg is bounded on Z;
(b) Tg is compact on Z;
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EXTENDED CESÁRO OPERATORS 5

(c) g ∈ Z.
Proof. b =⇒ a is obvious. For a =⇒ c we just take the test function given

by f(z) ≡ 1.
We are going to prove c =⇒ b. Now assume that g ∈ Z and that (fk)k∈N

is a sequence in Z such that supk∈N ||fk|| ≤ M and that fk → 0 uniformly on
on B as k → ∞. Now note that Tggk(0) = 0 and for every ε > 0, there is a
δ ∈ (0, 1), such that

(1− |z|2)(ln 2

1− |z|2 )2 < ε

whenever δ < |z| < 1. Let K = {z ∈ B : |z| ≤ δ}, it follows from Lemma 4
and (4) that

||Tgfk|| = sup
z∈B

(1− |z|2) |R(R(Tgfk))|

= sup
z∈B

(1− |z|2)|Rfk ·Rg + fk ·R(Rg)|

≤ sup
z∈B

(1− |z|2)(|Rfk ·Rg|+ |fk ·R(Rg)|)

≤ sup
z∈K

(1− |z|2)|Rfk ·Rg|+ sup
z∈B−K

(1− |z|2)(|Rfk ·Rg|

+ sup
z∈B

(1− |z|2)|fk ·R(Rg)|

≤ C||g|| sup
z∈K

(1− |z|2)|Rfk(z)| log
2

1− |z|2

+C||fk|| · ||g|| sup
z∈B−K

(1− |z|2)(log
2

1− |z|2 )2 + ||g|| · sup
z∈B

|fk(z)|.

With the uniform convergence of fk to 0 and the Cauchy estimate, the conclu-
sion follows by letting k →∞.

Theorem 2. Suppose g ∈ H(B), Ig : Z → Z. Then Ig is bounded if and
only if g ∈ H∞ ∩ Blog.

Proof. First we assume that g ∈ H∞ ∩ Blog. Notice that Igf(0) = 0 and
R(Igf) = fRg, it follows from (4) that

(1− |z|2)|RR(Igf)(z)| = (1− |z|2)|R(Rf(z) · g(z))|
= (1− |z|2)|R(Rf)(z) · g(z) + Rf(z) ·Rg(z)|
≤ ‖Rf(z)‖B‖g‖∞ + |Rf(z)|(1− |z2|)|Rg(z)|
≤ C||f || · ||g||∞ + C||f ||(1− |z|2)|Rg(z)| log

2

1− |z|2
≤ C||f || · ||g||∞ + C||f || · ||g||Blog

.

The boundedness of Ig follows.
Conversely, assume that Ig is bounded, then there is a positive constant C

such that

(6) ||Igf || ≤ C||f ||
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6 Z.S. FANG AND Z.H.ZHOU

for every f ∈ Z. Setting

ha(z) = (log
2

1− |a|2 )−1(< z, a > −1)[(1 + log
2

1− < z, a >
)2 + 1]

for a ∈ B such that |a| ≥
√

1− 2/e, then

Rha(z) =< z, a > (log
2

1− < z, a >
)2(log

2

1− |a|2 )−1

and

RRha(z) = {< z, a > (log
2

1− < z, a >
)2+

2 < z, a >2

1− < z, a >
log

2

1− < z, a >
}(log

2

1− |a|2 )−1

It is easy to check that M = sup√
1−2/e≤|a|<1

||ha|| < ∞. Therefore, we have that

∞ > ‖Ig‖‖ha‖ ≥ ||Igha||
≥ sup

z∈B
(1− |z|2)|RRha(z) · g(z) + Rha(z) ·Rg(z)|

≥ (1− |a|2)| 2|a|4
1− |a|2 g(a) + |a|2 log

2

1− |a|2 g(a) + |a|2Rg(a) log
2

1− |a|2 |

≥ −{2|a|4 + |a|2 2

e
(1− log 2)}|g(a)|+ |a|2(1− |a|2)|Rg(a)| log

2

1− |a|2

≥ −(2 +
2

e
(1− log 2))|a|2 + |a|2(1− |a|2)|Rg(a)| log

2

1− |a|2 .(7)

Next let

fa(z) = ha(z)−
∫ 1

0

< z, a > log
2

1− t < z, a >
dt

then

Rfa(z) =< z, a > {(log
2

1− < z, a >
)2(log

2

1− |a|2 )−1 − log
2

1− < z, a >
}

RRfa(z) = RRha(z)− < z, a > log
2

1− < z, a >
− < z, a >2

1− < z, a >

and consequently N = sup√
1−2/e≤|a|<1

||fa|| < ∞. Note that Rfa(a) = 0 and

RRfa(a) = |a|4
1−|a|2 , we have

∞ > ||Ig|| · ||fa|| ≥ ||Igfa||
≥ sup

z∈B
(1− |z|2)|RRfa(z) · g(z) + Rfa(z) ·Rg(z)|

≥ (1− |a|2)|RRfa(a)g(a) + Rfa(a)Rg(a)| = |a|4|g(a)|.(8)

From the maximum modulus theorem, we get g ∈ H∞. So it follows from (7)
and (8) that

(9) sup√
1−2/e≤|a|<1

(1− |a|2)|Rg(a)| log
2

1− |a|2 < ∞.
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EXTENDED CESÁRO OPERATORS 7

On the other hand, we have

sup
|a|≤
√

1−2/e

(1− |a|2)|Rg(a)| log
2

1− |a|2

≤ 2

e
· (1− log 2) max

|a|=
√

1−2/e

|Rg(a)|

≤ sup√
1−2/e≤|a|<1

(1− |a|2)|Rg(a)| log
2

1− |a|2 < +∞.(10)

Combining (9) and (10), we finish the proof of Theorem 2.
Corollary The multiplication operator Mg : Z → Z is bounded if and

only if g ∈ Z.
Proof. If Mg is bounded on Z, then setting the test function f ≡ 1, we

have Mgf = g ∈ Z.
Conversely, if g ∈ Z, from Lemma 1 and (5), it is easy to see that g ∈

H∞ ∩ Blog, so by Theorems 1 and 2, both Tg and Ig are bounded, it follows
from (1) that Mg is also bounded.

Theorem 3. Suppose g ∈ H(B), Ig : Z → Z. Then Ig is compact if and
only if g = 0.

Proof. The sufficiency is obvious. We just need to prove the necessity.
Suppose that Ig is compact, for any given sequence (zk)k∈N in B such that
|zk| → 1 as k → ∞, if we can show g(zk) → 0 as k → ∞, then by the
maximum modulus theorem we have g ≡ 0. In fact, setting

fk(z) = hzk
(z)− (log

2

1− |zk|)
−2

∫ 1

0

< z, zk > (log
2

1− t < z, zk >
)3dt.

Using the same way as in Theorem 2, we can show supk∈N ||fk|| ≤ C and fk

converges to 0 uniformly on compact subsets of B. Since Ig is compact, we

have ||Igfk|| → 0 as k →∞. Note that Rfk(zk) = 0 and RRfk(zk) = − |zk|4
1−|zk|2 ,

it follows that

|zk|4|g(zk)| ≤ sup
z∈B

(1− |z|2)|RRfk(z) · g(z) + Rfk(z) ·Rg(z)|

≤ sup
z∈B

(1− |z|2)|RR(Igfk)(z)| ≤ ||Igfk|| → 0

as k →∞. This ends the proof of Theorem 3.
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Linear Combination of Laplace

and Gumbel Random Variables

by

Saralees Nadarajah1

Abstract: The distribution of linear combinations of random variables arises explicitly in many
areas of the sciences, engineering and medicine. This has increased the need to have available
the widest possible range of statistical results on linear combinations of random variables. In
this note, the exact distribution of the linear combination αX + βY is derived when X and Y
are independent Laplace and Gumbel random variables. A computer program is provided for the
associated percentile points.

AMS (2000) Subject Classification: 33C90; 62E99.

Keywords and Phrases: Gumbel distribution; Laplace distribution; Linear combination of
random variables; Maple.

1 Introduction

The distribution of the linear combination αX + βY has been studied by several authors when X
and Y are independent random variables and come from the same family. For instance, see Fisher
(1935) and Chapman (1950) for Student’s t family, Christopeit and Helmes (1979) for normal
family, Davies (1980) and Farebrother (1984) for chi-squared family, Ali and Obaidullah (1982)
for exponential family, Moschopoulos (1985) and Provost (1989) for gamma family, Dobson et al.
(1991) for Poisson family, Pham-Gia and Turkkan (1993) and Pham and Turkkan (1994) for beta
family, Kamgar-Parsi et al. (1995) and Albert (2002) for uniform family, Hitezenko (1998) and Hu
and Lin (2001) for Rayleigh family, and Witkovský (2001) for inverted gamma family.

However, there is relatively little work of the above kind when X and Y belong to different
families. In applications, it is quite possible that X and Y could arise from different but similar
distributions. Two such distributions are the Gumbel and Laplace distributions specified by the
probability density functions (pdfs)

fX(x) = exp

(

−
x − µ

σ

)

exp

{

− exp

(

−
x − µ

σ

)}

(1)

and

fY (y) =
λ

2
exp {−λ | y − θ |} , (2)

respectively, for −∞ < x < ∞, −∞ < y < ∞, −∞ < µ < ∞, −∞ < θ < ∞, σ > 0 and λ > 0.

The Gumbel distribution given by (1) is perhaps the most widely applied statistical distribution
for problems in engineering. It is also known as the extreme value distribution of type I. Some

1Author’s address: School of Mathematics, University of Manchester, Manchester M60 1QD, UK, E-mail: sar-

alees.nadarajah@manchester.ac.uk

1
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of its recent application areas in engineering include: flood frequency analysis, network engineer-
ing, nuclear engineering, offshore engineering, risk-based engineering, space engineering, software
reliability engineering, structural engineering, and wind engineering. A recent book by Kotz and
Nadarajah (2000), which describes this distribution, lists over fifty applications ranging from ac-
celerated life testing through to earthquakes, floods, horse racing, rainfall, queues in supermarkets,
sea currents, wind speeds and track race records (to mention just a few).

The Laplace distribution given by (2) has found applications in a variety of areas that range
from image and speech recognition and ocean engineering to finance. They are rapidly becoming
distributions of first choice whenever “something” with heavier than Gaussian tails is observed in
the data.

The aim of this note is to study the exact distribution of αX+βY when X and Y are independent
random variables distributed according to (1) and (2), respectively. We assume without loss of
generality that α > 0. The results of this note are organized as follows. Section 2 derives explicit
expressions for the pdf and the cdf (cumulative distribution function) of αX + βY . Moment
properties of αX + βY , including characteristic functions, moments, factorial moments, skewness
and kurtosis, are considered in Section 3. A computer program for the percentile points of αX+βY
is given in Section 4.

The calculations of this note involve several special functions, including the exponential integral
defined by

Ei(x) =

∫ x

−∞

exp(t)

t
dt,

the complementary error function defined by

erf(x) =
2
√

π

∫ x

0
exp

(

−t2
)

dt,

the complementary error function defined by

erfc(x) =
2
√

π

∫

∞

x
exp

(

−t2
)

dt,

the complementary incomplete gamma function defined by

erfc(x) =
2
√

π

∫

∞

x
exp

(

−t2
)

dt,

the incomplete gamma function defined by

γ(a, x) =

∫ x

0
ta−1 exp (−t) dt

and the complementary incomplete gamma function defined by

Γ(a, x) =

∫

∞

x
ta−1 exp (−t) dt.

The properties of the above special functions can be found in Prudnikov et al. (1986) and Grad-
shteyn and Ryzhik (2000).

2
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2 Exact Distribution of Z = αX + βY

Theorem 1 derives explicit expressions for the pdf and the cdf of αX+βY in terms of the incomplete
gamma functions.

Theorem 1 Suppose X and Y are independent random variables distributed according to (1) and
(2), respectively. The cdf of Z = αX + βY can be expressed as

F (z) =
αλσ

2 | β |

[

exp

(

λx

| β |

)

Γ

(

−
λασ

| β |
, exp

( x

ασ

)

)

+ exp

(

−
λx

| β |

)

γ

(

λασ

| β |
, exp

( x

ασ

)

)

]

(3)

for −∞ < z < ∞, where x = βθ + µα − z. The corresponding pdf is:

f(z) =
λ

2 | β |
exp

(

2x

ασ

)

[

exp

(

λx

| β |

)

Γ

(

−
λασ

| β |
− 1, exp

( x

ασ

)

)

+ exp

(

−
λx

| β |

)

γ

(

λασ

| β |
− 1, exp

( x

ασ

)

)

]

(4)

for −∞ < z < ∞.

Proof: One can write

Pr (αX + βY ≤ z) = Pr

(

X ≤
z − βY

α

)

=

∫

∞

−∞

FX

(

z − βy

α

)

fY (y)dy

=
λ

2

∫

∞

−∞

exp {−λ | y − θ |} exp

{

− exp

(

µα + βy − z

ασ

)}

dy

=
λ

2

[

∫ θ

−∞

exp {−λ(θ − y)} exp

{

− exp

(

µα + βy − z

ασ

)}

dy

+

∫

∞

θ
exp {−λ(y − θ)} exp

{

− exp

(

µα + βy − z

ασ

)}

dy

]

=
αλσ

2 | β |

[

exp

(

λx

| β |

)
∫

∞

exp{x/(ασ)}
u−(λασ)/|β|−1 exp(−u)du

+ exp

(

−
λx

| β |

)
∫ exp{x/(ασ)}

0
u(λασ)/|β|−1 exp(−u)du

]

, (5)

where the last step follows by substituting u = exp{(βy + αµ− z)/(ασ)}. The result in (3) follows
from (5) by using the definitions of the incomplete gamma functions defined in Section 1. The
result in (4) is the derivative of (3). ¥

Using special properties of the incomplete gamma functions, one can reduce (3) to elementary
forms when (λασ)/ | β | takes integer or half-integer values. This is illustrated in the corollaries
below.

3
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Corollary 1 Suppose X and Y are independent random variables distributed according to (1) and
(2), respectively. If λασ/ | β |= n + 1/2 then (3) can be reduced to

F (z) =
αλσ

2 | β |

[

exp

(

λx

| β |

)

I1(n) + exp

(

−
λx

| β |

)

I2(n)

]

(6)

for −∞ < z < ∞, where

I1(n) =
(−1)n+1√π

(1/2)n+1
erfc (

√
y) − y−(n+1/2) exp(−y)

n
∑

k=0

yk

(−1/2 − n)k+1

and

I2(n) = Γ

(

n +
1

2

)

erf (
√

y) − (−1)n−1 exp(−y)
√

y
n−1
∑

k=0

(

1

2
− n

)

n−k−1

(−y)k,

where y = exp{x/(ασ)} and x = βθ + µα − z. If −λασ/ | β |= n + 1/2 then (3) can be reduced to
(6) with

I1(n) = Γ

(

n +
1

2

)

erfc (
√

y) + (−1)n−1 exp(−y)
√

y
n−1
∑

k=0

(

1

2
− n

)

n−k−1

(−y)k

and

I2(n) = Γ

(

−n −
1

2

)

−
(−1)n+1√π

(1/2)n+1
erfc (

√
y) + y−(n+1/2) exp(−y)

n
∑

k=0

yk

(−1/2 − n)k+1

.

Corollary 2 Suppose X and Y are independent random variables distributed according to (1) and
(2), respectively. If λασ/ | β |= n then (3) can be reduced to

F (z) =
αλσ

2 | β |

[

exp

(

λx

| β |

)

I1(n) + exp

(

−
λx

| β |

)

I2(n)

]

(7)

for −∞ < z < ∞, where

I1(n) =
(−1)n−1

n!

[

Ei(y) −
1

2

{

log(−y) − log

(

−
1

y

)}

+ log(y)

]

− exp(−y)
n

∑

k=1

yk−n−1

(−n)k

and

I2(n) = (n − 1)! − (n − 1)! exp(−y)
n−1
∑

k=0

yk

k!
,

where y = exp{x/(ασ)} and x = βθ + µα − z. If −λασ/ | β |= n then (3) can be reduced to (7)
with

I1(n) = (n − 1)! exp(−y)
n−1
∑

k=0

yk

k!

4
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and

I2(n) = Γ (−n) −
(−1)n−1

n!

[

Ei(y) −
1

2

{

log(−y) − log

(

−
1

y

)}

− log(y)

]

− exp(−y)
n

∑

k=1

yk−n−1

(−n)k
.

The following corollaries provide the pdfs and the cdfs for the sum and the difference of the
Gumbel and Laplace random variables.

Corollary 3 Suppose X and Y are independent random variables distributed according to (1) and
(2), respectively. Then, the cdf and the pdf of Z = X + Y can be expressed as

F (z) =
λσ

2

[

exp (λx) Γ
(

−λσ, exp
(x

σ

))

+ exp (−λx) γ
(

λσ, exp
(x

σ

))

]

and

f(z) =
λ

2
exp

(

2x

σ

)

[

exp (λx) Γ
(

−λσ − 1, exp
(x

σ

))

+ exp (−λx) γ
(

λσ − 1, exp
(x

σ

))

]

for −∞ < z < ∞, where x = θ + µ − z.

Corollary 4 Suppose X and Y are independent random variables distributed according to (1) and
(2), respectively. Then, the cdf and the pdf of Z = X − Y can be expressed as

F (z) =
λσ

2

[

exp (λx) Γ
(

−λσ, exp
(x

σ

))

+ exp (−λx) γ
(

λσ, exp
(x

σ

))

]

and

f(z) =
λ

2
exp

(

2x

σ

)

[

exp (λx) Γ
(

−λσ − 1, exp
(x

σ

))

+ exp (−λx) γ
(

λσ − 1, exp
(x

σ

))

]

for −∞ < z < ∞, where x = −θ + µ − z.

[Figure 1 about here.]

Figure 1 illustrates possible shapes of (4) for selected values of α, β and σ. The four curves in
each plot correspond to selected values of σ. The effect of the parameters is evident.

3 Moment Properties of Z = αX + βY

The moment properties of Z = αX + βY can be derived by knowing the same for X and Y since

E (Zn) =
n

∑

k=0

(

n

k

)

αkβn−kE
(

Xk
)

E
(

Y n−k
)

.

It is well known (see, for example, Johnson et al. (1995)) that

E (Xn) =
n

∑

k=0

(

n

k

)

µn−kσk(−1)kΓ(k)(1)

5
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and

E (Y n) = λ
n

∑

k=0

(

n

k

)

θn−kλ−k−1k!I{k even},

where Γ(k)(1) denotes the kth derivative of Γ(x) at x = 1 and I{} denotes the indicator function.
Thus, the first four moments of Z can be calculated as

E (Z) = α
{

µ − σΓ
′

(1)
}

+ βθ,

E
(

Z2
)

= α2
{

µ2 − 2µσΓ
′

(1) + σ2Γ
′′

(1)
}

+ β2
(

θ2 + 2λ−2
)

+ 2θαβ
{

µ − σΓ
′

(1)
}

,

E
(

Z3
)

= α3
{

µ3 − 3µ2σΓ
′

(1) + 3µσ2Γ
′′

(1) − σ3Γ
′′′

(1)
}

+ β3θ
(

θ2 + 6λ−2
)

+3αβ2
(

θ2 + 2λ−2
)

{

µ − σΓ
′

(1)
}

+ 3θα2β
{

µ2 − 2µσΓ
′

(1) + σ2Γ
′′

(1)
}

and

E
(

Z4
)

= α4
{

µ4 − 4µ3σΓ
′

(1) + 6µ2σ2Γ
′′

(1) − 4µσ3Γ
′′′

(1) + σ4Γ
′′′′

(1)
}

+β4
(

θ4 + 12θ2λ−2 + 24λ−4
)

+ 4αβ3θ
(

θ2 + 6λ−2
)

{

µ − σΓ
′

(1)
}

+4θα3β
{

µ3 − 3µ2σΓ
′

(1) + 3µσ2Γ
′′

(1) − σ3Γ
′′′

(1)
}

+6α2β2
(

θ2 + 2λ−2
)

{

µ2 − 2µσΓ
′

(1) + σ2Γ
′′

(1)
}

.

Note that Γ
′

(1) = −C, Γ
′′

(1) = C2 + π2/6, Γ
′′′

(1) = −C3 − π2C/2 − 2η(3) and Γ
′′′′

(1) = C4 +
π2C2 +8η(3)C +3π2/20, where C is the Euler’s constant and η(·) denotes the zeta function defined
by ζ(x) =

∑

∞

k=1 k−x. The factorial moments, skewness and the kurtosis can be calculated by using
the relationships that

E [(Z)n] = E [Z(Z − 1) · · · (Z − n + 1)] ,

Skewness(Z) =
E

(

Z3
)

− 3E(Z)E
(

Z2
)

+ 2E3(Z)
{

E
(

Z2
)

− E2 (Z)
}3/2

,

and

Kurtosis(Z) =
E

(

Z4
)

− 4E(Z)E
(

Z3
)

+ 6E
(

Z2
)

E2(Z) − 3E4(Z)
{

E
(

Z2
)

− E2 (Z)
}2 .

Finally, using the facts that the characteristic functions (chfs) of X and Y are

E [exp(itX)] = Γ (1 − iσt) exp(iµt)

and

E [exp(itY )] =
λ2 exp(iθt)

λ2 + t2
,

where i =
√
−1, the chf of Z can be expressed as

E [exp(itZ)] = Γ (1 − iσαt) exp(iµαt)
λ2 exp(iθβt)

λ2 + β2t2
.

6
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4 Percentiles of Z = αX + βY

In this section, we provide a computer program for the percentage points zp associated with the
cdf of Z = αX + βY . The value of zp is obtained by solving the equation

αλσ

2 | β |

[

exp

(

λxp

| β |

)

Γ

(

−
λασ

| β |
, exp

( xp

ασ

)

)

+ exp

(

−
λxp

| β |

)

γ

(

λασ

| β |
, exp

( xp

ασ

)

)

]

= p, (8)

where xp = βθ + µα− zp. Evidently, this involves computation of the incomplete gamma functions
and routines for this are widely available. We used the functions GAMMA (·) and GAMMA (·, ·) in
the algebraic manipulation package, MAPLE.

percent:=proc(alpha,beta,mu,sigma,theta,lambda,p)

local x,z,tt1,tt2,tt3,tt4,tt,ff;

x:=beta*theta+mu*alpha-z;

tt1:=exp(lambda*x/abs(beta));

tt2:=exp(-lambda*x/abs(beta));

tt3:=GAMMA(-lambda*alpha*sigma/abs(beta),exp(x/(alpha*sigma)));

tt4:=GAMMA(lambda*alpha*sigma/abs(beta),exp(x/(alpha*sigma)));

tt4:=tt4-GAMMA(lambda*alpha*sigma/abs(beta));

ff:=alpha*lambda*sigma*(tt1*tt3+tt2*tt4)/(2*abs(beta));

tt:=fsolve(ff=p,z=-1000..1000);

end proc;

The above is a listing of a MAPLE procedure for solving (8). For given alpha, beta, mu, sigma,
theta, lambda and p, the call to percent(alpha,beta,mu,sigma,theta,lambda,p) will return the value
of zp.
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Figure 1. Plots of the pdf (4) for µ = 0, θ = 0, λ = 1, σ = 0.5, 1, 2, 3 and (a): α = 1 and β = 1;
(b): α = 1 and β = −1; (c): α = 1 and β = 2; and, (d): α = 1 and β = −2. The four curves in
each plot from the top to the bottom correspond to increasing values of σ.
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ON SOME NEW DOUBLE LACUNARY SEQUENCES SPACES
VIA ORLICZ FUNCTION

EKREM SAVAŞ

Abstract. In this paper we define and study two concepts which arise from
the notions of invariant means and lacunary sequences namely: double la-
cunary strong σ- convergence defined by Orlicz function and uniform (θ, σ)-
statistical convergence and establish natural characterization for the underline
sequence spaces.

1. Introduction and Background

Let l∞ be the Banach space of bounded x = (xk) with the usual norm ||x|| =
supn|xn|. A sequence x ∈ l∞ is said to be almost convergent if all of its Banach
limits coincide. Let ĉ denote the space of all almost convergent sequences. Lorentz
[2] proved that

ĉ = {x ∈ l∞ : lim
m

tm,n(x) exists uniformly in n}
where

tm,n(x) =
xn + xn+1 + · · ·+ xm+n

m + 1
.

The following space of strongly almost convergent sequence was introduced by Mad-
dox in [3]

[ĉ] = {x ∈ l∞ : lim
m

tm,n(|x− Le|) exists uniformly in n for some L ∈ c}
where e = (1, 1, . . .).

Let σ be a one-to-one mapping from the set of natural numbers into itself. A
continuous linear functional φ on l∞ is said to be an invariant mean or a σ-mean
provided that

i φ(x) ≥ 0 when the sequence x = (xk) is such that xk ≥ 0 for all k,
ii φ(e) = 1 where e = (1, 1, 1, . . .), and
iii φ(x) = φ(xσ(k)) for all x ∈ l∞.

For certain class of mapping σ every invariant mean ϕ extends the limit functional
on space c, in the sense that ϕ(x) = lim x for all x ∈ c.

The space [Vσ] is of strongly σ-convergent sequence was introduced by Mursaleen
[6] as follows: A sequence x = (xk) is said to be strongly σ-convergent if there exists
a number L such that

(1.1)
1
k

k∑

i=1

|xσi(m) − L| → 0

Date: April 3, 2007.
2000 Mathematics Subject Classification. Primary 40A99; Secondary 40A05.
Key words and phrases. Double sequence spaces, Orlicz function, double statistical conver-

gent, double lacunary sequences, P-convergent .
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2 EKREM SAVAŞ

as k →∞ uniformly in m. We will denote [Vσ] as the set of all strongly σ-convergent
sequences. When (1.1) holds we write [Vσ]−lim x = L. If we let σ(m) = m+1, then
[Vσ] = [ĉ]. In 1900 Pringsheim presented the following definition for the convergence
of double sequences.

Definition 1.1 (Pringsheim, [7]). A double sequence x = [xk,l] has Pringsheim
limit L (denoted by P-limx = L) provided that given ε > 0 there exists N ∈ N such
that |xk,l − L| < ε whenever k, l > N . We shall describe such an x more briefly as
“P-convergent”.

We shall denote the space of all P-convergent sequences by c
′′
. By a bounded

double sequence we shall mean there exists a positive number K such that |xk,l| < K
for all (k, l), and denote such bounded by ||x||(∞,2) = supk,l |xk,l| < ∞. We shall also
denote the set of all bounded double sequences by l

′′
∞. We also note in contrast to

the case for single sequence, a P-convergent double sequence need not be bounded.
Quite recently Savaş and Patterson [10] defined the following sequence spaces by

using Orlicz function.

Definition 1.2. Let M be an Orlicz function,which is defined in [8], p = (pk,l) be
a factorable double sequence of strictly positive real numbers, and let

[V
′′
σ ,M ]p =



x = (xk,l) : P − lim

p,q

1
pq

p,q∑

k,l=1,1

(
M

( |xσk(m),σl(n) − L|
ρ

))pk,l

= 0,

uniformly in (m,n), for some ρ > 0, and some L > 0}
}

,

and

[V
′′
σ ,M ]0p =



x = (xk,l) : P − lim

p,q

1
pq

p,q∑

k,l=1,1

(
M

( |xσk(m),σl(n)|
ρ

))pk,l

= 0,

uniformly in (m, n), for some ρ > 0
}

,

If M(x) = x then [V
′′
σ ,M ]p,and [V

′′
σ ,M ]0p, reduces to [V

′′
σ ]p, and [V

′′
σ ]0p respec-

tively. When pk,l = 1 for all k and l, [V
′′
σ ]p,and [V

′′
σ ]0p reduces to [V

′′
σ ],and [V

′′
σ ]0

respectively.
Before we enter the motivation for this paper and the presentation of the main

results we give some known definitions.

Definition 1.3. ([12]). The double sequence θr,s = {(kr, ls)} is called double lacunary
if there exist two increasing of integers such that

k0 = 0, hr = kr − kk−1 →∞ as r →∞
and

l0 = 0, h̄s = ls − ls−1 →∞ as s →∞.

Notations: kr,s = krls, hr,s = hrh̄s, θr,s is determine by Ir,s = {(k, l) : kr−1 <

k ≤ kr&ls−1 < l ≤ ls}, qr = kr

kr−1
, q̄s = ls

ls−1
, and qr,s = qr q̄s.

It is quite natural to expect that the sets of sequences that are double lacunary
strong double σ-summable to zero, lacunary strong double σ-summable and lacu-
nary strong double σ-bounded can be defined by combining the concepts of Orlicz
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function, and σ-mean. We now ready to present the multidimensional sequence
spaces.

Definition 1.4. Let θr,s be a double lacunary sequence and let M be an Orlicz
function, and p = (pk,l) be any factorable double sequence of strictly positive real
numbers. Then we write

[Nθr,s ,M, p]σ = {x = (xk,l) : P − lim
r,s

1
hrs

∑

(k,l)∈Ir,s

[
M

( |xσk(m),σl(n)| − L

ρ

)]pk,l

= 0

uniformly in (m,n), for some ρ > 0 and some L > 0},

[Nθr,s ,M, p]σ0 = {x = (xk,l) : P − lim
r,s

1
hrs

∑

(k,l)∈Ir,s

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

= 0

uniformly in (m,n), for some ρ > 0},
and

[Nθr,s ,M, p]σ∞ = {x = (xk,l) : sup
r,s,m,n

∑

(k,l)∈Ir,s

[
M

(
xσk,l(m,n)

ρ

)]pk,l

< ∞

for some ρ > 0}.
We shall denote [Nθr,s ,M, p]σ, [Nθr,s ,M, p]σ0 , and [Nθr,s ,M, p]σ∞ as [Nθr,s ,M ]σ,

[Nθr,s ,M, ]σ0 , and [Nθr,s ,M, ]σ∞ respectively when pk,l = 1 for all k and l. If x is
in [Nθr,s ,M ], we shall say that x is double lacunary strongly σ-convergent with
respect to the Orlicz function M . Also note if M(x) = x, pk,l = 1 for all k and
l, then [Nθr,s , M, p]σ = [Nθr,s ]

σ and [Nθr,s ,M, p]σ0 = [Nθr,s ]
σ
0 which are defined as

follows:

[Nθr,s ]
σ = {x = (xk,l) : P−lim

r,s

1
hr,s

∑

(k,l)∈Ir,s

|xσk(m),σl(n)−L| = 0, uniformly in (m,n)

and some L > 0}.
and

[Nθr,s
]σ0 = {x = (xk,l) : P−lim

r,s

1
hr,s

∑

(k,l)∈Ir,s

|xσk(m),σl(n)| = 0, uniformly in (m,n)}.

If we take σ(m) = m + 1, and σ(n) = n + 1 we can get [N̂θr,s ,M, p], [N̂θr,s ,M, p]0,
and [N̂θr,s ,M, p]∞.
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2. Main Results

With these new concepts we can now consider the following theorem. The proof
of the theorem is standard and so we omitted.

Theorem 2.1. Let the sequence (pk,l) be bounded then [Nθr,s ,M, p]σ, [Nθr,s ,M, p]σ0 ,
and [Nθr,s ,M, p]σ∞ are linear spaces over the set of complex numbers.

Definition 2.1. An Orlicz function M is said to satisfy ∆2-condition for all values
of u, if there exists a constant K > 0 such that M(2u) ≤ KM(u) for all u ≥ 0. The
∆2-condition is equivalent to the satisfaction of the following inequality M(lu) ≤
K(l)M(u) for all values of u and for l ≥ 1.

Theorem 2.2. Let M be an Orlicz function. If β = limt→∞
M(t\ρ)

t ≥ 1, then
[Nθr,s ,M ]σ = [Nθr,s ]

σ.

Proof. Let x ∈ [Nθr,s ]
σ, then

T r,s
m,n = P − lim

r,s

1
hrs

∑

(k,l)∈Ir,s

|xσk(m),σl(n) − L| = 0, uniformly in (m,n).

Let ε > 0 be given and choose 0 < δ < 1 such that M(u) < ε for every 0 ≤ u ≤ δ.
We can write for each (m,n)

∑

(k,l)∈Ir,s

M

( |xσk(m),σl(n) − L|
ρ

)
=

∑

(k,l)∈Ir,s&|x
σk(m),σl(n)−L|≤δ

M

( |xσk(m),σl(n) − L|
ρ

)

+
∑

(k,l)∈Ir,s&|x
σk,l(m,n)−L|>δ

M

( |xσk(m),σl(n) − L|
ρ

)
.

It is clear that:
∑

(k,l)∈Ir,s&|x
σk(m),σl(n)−L|≤δ

M

( |xσk(m),σl(n) − L|
ρ

)
< ε(hrs).

On the other hand, we use the fact that

|xσk(m),σl(n) − L| < 1 +
[ |xσk(m),σl(n) − L|

ρ

]

where [h] denotes the integer part of h. Since M is an Orlicz function we have

M

( |xσk(m),σl(n) − L|
ρ

)
≥ M(1).

Now, let us consider the second part where the sum is taken over |xσk(m),σl(n)−L| >
δ. Thus

∑

(k,l)∈Ir,s&|x
σk(m),σl(n)−L|>δ

M

( |xσk(m),σl(n) − L|
ρ

)
≤

∑

(k,l)∈Ir,s

M

(
1 +

[ |xσk(m),σl(n) − L|
ρ

])

≤ 2M(1)
1
δ
(hr,s)T r,s

m,n.
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Therefore

∑

(k,l)∈Ir,s

M

( |xσk(m),σl(n) − L|
ρ

)
≤ ε(hr,s) + 2M(1)

1
δ
(hr,s)T r,s

m,n

for every (m,n). Hence x ∈ [Nθr,s , M ]. Observe that in this part of the proof we did
not need β ≥ 1. Let β ≥ 1 and x ∈ [Nθr,s , M ]σ. Since β ≥ 1 we have M(t) ≥ β(t)
for all t ≥ 0. It follows that xk,l → L[Nθr,s , M ]σ implies xk,l → L[Nθr,s ]

σ. This
implies [Nθr,s , M ]σ = [Nθr,s ]

σ. ¤

Theorem 2.3. Let θr,s = {kr, ls} be a double lacunary sequence with lim infr qr >

1, and lim infs q̄s > 1 then for any Orlicz function M , [V
′′
σ ,M ]p ⊂ [Nθr,s , M, p]σ.

Proof. It is sufficient to show that [V
′′
σ , M ]0p ⊂ [Nθr,s ,M, p]σ0 . The general inclusion

follows by linearity. Suppose lim infr qr > 1 and lim infs q̄s > 1; then there exists
δ > 0 such that qr > 1 + δ and q̄s > 1 + δ. This implies hr

kr
≥ δ

1+δ and h̄s

ls
≥ δ

1+δ .
Then for x ∈ [V

′′
σ ,M ]0p, we can write for each m and n

Br,s =
1

hrs

∑

(k,l)∈Ir,s

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

=
1

hrs

kr∑

k=1

ls∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

− 1
hrs

kr−1∑

k=1

ls−1∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

− 1
hrs

kr−1∑

k=kr+1

ls−1∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

− 1
hrs

ls−1∑

l=ls+1

kr−1∑

k=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

=
krks

hrs

(
1

krls

kr∑

k=1

ls∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l
)

− kr−1ls−1

hrs


 1

kr−1ls−1

kr−1∑

k=1

ls−1∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l




− 1
hr

kr∑

k=kr−1+1

ls − 1
hs

1
ls − 1

ls−1∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

− 1
hs

ls∑

l=ls−1+1

kr−1

hr

1
kr−1

kr−1∑

k=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

.

Since x ∈ [V
′′
σ ,M ]p the last two terms trends to zero uniformly in (m,n) in the

Pringsheim sense, thus for each m and n
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Br,s =
krks

hrs

(
1

krls

kr∑

k=1

ls∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l
)

− kr−1ls−1

hrs


 1

kr−1ls−1

kr−1∑

k=1

ls−1∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l


 + o(1).

Since hrs = krls − kr−1ls−1 we are granted for each m and n the following:

krls
hrs

≤ 1 + δ

δ
and

kr−1ls−1

hrs
≤ 1

δ
.

The terms

1
krls

kr∑

k=1

ls∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

and

1
kr−1ls−1

kr−1∑

k=1

ls−1∑

l=1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

are both Pringsheim null sequences. Thus Br,s is a Pringsheim null sequence for
all m and n. Therefore x is in [Nθr,s

,M, P ]σ. This completes the proof of this
theorem. ¤

Theorem 2.4. Let θr,s = {k, l} be a double lacunary sequence with lim supr qr < ∞
and lim sups q̄s < ∞ then for any Orlicz function M , [Nθr,s ,M, p]σ ⊂ [V

′′
σ ,M ]p.

Proof. Since lim supr qr < ∞ and lim sups q̄s < ∞ there exists H > 0 such that
qr < H and q̄s < H for all r and s. Let x ∈ [Nθr,s ,M, p]σ and ε > 0. Also there
exist r0 > 0 and s0 > 0 such that for every i ≥ r0 and j ≥ s0 and for all m and n,

Ai,j =
1

hij

∑

(k,l)∈Ii,j

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

< ε.
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Let M
′

= max{Ai,j : 1 ≤ i ≤ r0 and 1 ≤ j ≤ s0}, and p and q be such that
kr−1 < p ≤ kr and ls−1 < q ≤ ls. Thus we obtain the following:

1
pq

p,q∑

k,l=1,1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

≤ 1
kr−1ls−1

krls∑

k,l=1,1

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l

≤ 1
kr−1ls−1

r,s∑
p,u=1,1


 ∑

k,l∈Ip,u

[
M

( |xσk(m),σl(n)|
ρ

)]pk,l




=
1

kr−1ls−1

r0,s0∑
p,u=1,1

hp,uAp,u +
1

kr−1ls−1

∑

(r0<p≤r)∪(s0<u≤s)

hp,uAp,u

≤ M
′

kr−1ls−1

r0,s0∑
p,u=1,1

hp,u +
1

kr−1ls−1

∑

(r0<p≤r)∪(s0<u≤s)

hp,uAp,u

≤ M
′
kr0 ls0r0s0

kr−1ls−1
+

1
kr−1ls−1

∑

(r0<p≤r)∪(s0<u≤s)

Ap,uhp,u

≤ M
′
kr0 ls0r0s0

kr−1ls−1
+

(
sup

p≥r0∪u≥s0

Ap,u

)
1

kr−1ls−1

∑

(r0<p≤r)∪(s0<u≤s)

hp,u

≤ M
′
kr0 ls0r0s0

kr−1ls−1
+ ε

∑

(r0<p≤r)∪(s0<u≤s)

hp,u

≤ M
′
lr0 ls0r0s0

kr−1ls−1
+ εH2.

Since kr and ls both approaches infinity as both p and q approaches infinity.Therefore
x ∈ [V

′′
σ ,M ]p. ¤

The following is an immediate consequence of Theorem 2.3 and Theorem 2.4

Theorem 2.5. Let θr,s = {k, l} be a double lacunary sequence with 1 < lim infr,s qrs ≤
lim supr,s qr,s < ∞, then for any Orlicz function M , [Nθr,s ,M, p]σ = [V

′′
σ ,M ]p .

3. Double statistical convergence

In this section we discuss uniformly double lacunary statistical convergence.
The following definition was presented by Mursaleen and Edely in [4]: A real

double sequence x = (xk,l) is said to be statistically convergent to L, provided that
for each ε > 0

P − lim
m,n

1
mn

|{(k, l) : k ≤ m and l ≤ n, |xk,l − L| ≥ ε}| = 0

where the vertical bars indicate the numbers of elements in the enclosed set.
We now present uniformly lacunary (θ, σ)- statistical analogues for double se-

quence x = (xk,l) as follows:

Definition 3.1. A double sequence x = (xk,l) is said to be uniformly S
′′
(θ,σ)-

convergent or uniformly (θ, σ)-statistical convergent to L, provided that for every
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ε > 0
P − lim

r,s

1
hr,s

max
m,n

|{(k, l) ∈ Ir,s : |xσk(m),σl(n)| > ε}| = 0.

In this case we write S
′′
(θ,σ) − limx = L or xk,l → L(S

′′
(θ,σ)) and S

′′
(θ,σ) = {x :

∃L ∈ R, S
′′
(θ,σ) − lim x = L}.

Finally we conclude this paper by stating a theorem which establish an inclusion
between [Nθr,s ,M ]σ and S

′′
(θ,σ). We omit the proof since this can be proved by using

the techniques similar to those used in Theorem 2.1. of Savas and Patterson [12].

Theorem 3.1. For any Orlicz function M , [Nθr,s ,M ]σ ⊂ S
′′
(θ,σ).
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Abstract 
 

An algorithm based on the variational form of the integral identity method is used for the 
determining the numerical solution of a boundary value problem that accompanies a stationary transport 
equation. The numerical example proves the accuracy and computational efficiency of the proposed method.

 
   AMS: 35J99, 65N99 
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1   Introduction  
The neutron transport equation has wide applications in physics, geophysics and astrophysics. This 
integral-differential equation models the transport of neutral particles in a scattering fission and 
absorption events with no self-interactions. It is used in radiation shielding and the reactor 
calculations, as well as in radiative transfer of stellar and planetary atmospheres and it also 
describes dispersion of light. The resolution of the problems dealing with transport phenomena is 
the subject of several works:[1]- [15]. The following methods are proposed by these papers: Fourier 
transform, Laplace transform, the least squares, the finite element, Monte Carlo, truncated series of 
Chebyshev polynomials. The differences schemes have a significant importance in the solution of 
the problems from the mathematical physics field. From these, we use for the solving an integral-
differential equation, a variational form of the integral identity method, [6]. Unlike the Galerkin 
method, this algorithm allows the using of the discontinuous basis functions for the constructing of 
the approximate solution.   
 
2   Problem formulation 
 
The main problem in the nuclear reactor theory is to find the neutrons distribution, therefore the 
neutron flux ϕ. The number of neutrons that pass in the unit time through a perpendicular unit area 
on a given direction Ox defines the scalar ϕ. By convention, the positive flux leaves a closed 
surface and a negative flux enters in a closed surface. 

Let us consider the neutron transport stationary theory in a plan-parallel geometry. In this 
case, the flux verifies the integral-differential equation 
 

                                         ),(),(
2

),(
),( 1

1
µµµϕσµϕσµϕµ xfdxx

x
x s +′′=+

∂
∂

�
−

  (1) 

                         ],1,1[],0[),( 21 −×=×∈∀ HDDx µ   ]1,0[]0,1[222 ΥΥ −=′′′= DDD  
 
and the following boundary conditions: 
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µµϕ
H

                                                      (2) 
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2  

where 
 
    • ϕ(x, µ) is the flux in the point x corresponding to the neutrons, which migrate in a direction that 
makes an angle α  with the  x – axis and µ = cos α ; 
    •  σ  and σs are the constants (isotropic region), which depend on the material properties of  the 
region, such that 0 < σs <σ ; 
    • f(x, µ) is a given radioactive source function. We assume f as a even function with respect to µ. 

        
Now, we split the equation (1) in two equations, using the following notations: 
 
                                 0 if ),(;0 if ),( <=>= −+ µµϕϕµµϕϕ xx                                           (3) 
 
Substituting µ′′ = - µ′, we get 
 

                                               ��� ′′=′′′′−=′′ −

−

1

0

1

0

0

1
),(),( µϕµµϕµµϕ ddxdx . 

 
and the conditions (2) become 
                                                        0),(,0),0( == −+ µϕµϕ H                                                    (4)         
 
In view of (3), the equation (1) can be written in the form 
 

� +−++
+

+′+=+
∂

∂ 1

0
)(

2
fd

x
s µϕϕσϕσϕµ             

                (5) 

                                   � −−+−
−

+′+=+
∂

∂
−

1

0
)(

2
fd

x
s µϕϕσϕσϕµ  

 
Adding and subtracting the equations (5) and introducing the notations: 
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2
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                                              (6) 

 
we obtain the following system 
 

                                                  

)(0

)(
1

0

bv
x
u

agduu
x
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s

=+
∂
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+=+
∂
∂

�

σµ

µσσµ
                                          (7) 

 
The corresponding boundary conditions will be of the form 
 
                                                              u + v = 0    for   x = 0, 
                                                                                                                (8) 
                                                              u - v = 0    for   x = H. 
 

Now, we find v from the second equation of (7) and using the first equation, we rewrite the 
problem (7) - (8) in the following form 
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                             (10) 

 
 Let us now suppose that the functions u and g belong to the Hilbert space L2 (D), where      
D = D1× 2D ′′ and the norm is defined by the formula 
 

            
2/1

0

1

0

2 ),( �
�

�
�
�

�
� �=
H

dxdxuu µµ                         (11) 

Theorem 
 
If the solution of the problem (9) – (10), u∈L2 (D) and the function g ∈L2 (D), then  
 

                                                         gu
sσσ −

≤ 1
                                       (12)        

Proof 
 
Multiplying (9) by u and integrating with respect to x and µ, we obtain  
                            

=+
∂
∂− ���� µσµµ

σ
dxdudxdu

x
u

DD

2
2

2
21

��� �� +��
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�

D

H

s dxdugdxudxudx µµµµµσ
0

1

0

1

0
),(),(      (13) 

  
In view of the boundary conditions (10) and using the integration by parts we have 

 

    ( ) µµµµσµµ duHudxdu
x

u

D
��� −−−=

∂
∂−

1

0

22
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On the other hand, we get from the Cauchy-Schwarz inequality  
 

             µµµµ dxudxu ),(),(
1

0

2
21

0
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�

�
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�    

                
With the help of these inequalities, (13) can be written in the form 
 

                       � �� �� � +≤
HH

s

H
dxdugdxdudxdu

0

1

00

1

0

2

0

1

0

2 µµσµσ  

 
Finally, we arrive at inequality (12).  
        
In order to get a numerical solution of the problem (9)-(10), we consider on x axis two points 
systems: 
- a principal system: {xk } = 1∆′ , k∈{0, 1,….,N },  with x0 = 0, xN = H and  h = xk+1 – xk; 
- a secondary system,  { } ,12/1 ∆ ′′=+kx { }1,....,2,1,0 −∈ Nk , which verifies the inequalities:  
              2/12/1 +− << kkk xxx ,      where     2/)( 12/1 ++ += kkk xxx                  
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and  Hxxxx NN =<<<<= − 2/12/10 ....0 . Besides, let { } { }Lll ,...,1,0,2 ∈=∆ µ be a 
partition of the interval 2D ′′  = [0,1] with the step ,1 ll µµτ −= +  { }1,...,1,0 −∈ Ll . 

If we now consider H = 1, σ = 1 and σs =1/2, we get for every fixed value µl ∈∆2 a 
boundary problem for a one-dimensional diffusion equation 
 

                                          ),(),(
),(

12

2
2

ll
l

l xfxu
xd
xud µµµµ =+−                                              (14) 

where 

                                        �=+=
1

0
1 ),(

2
1

)(),,()(),( µµµµ dxuxSxgxSxf ll  

and 

                                               

0
1

),(
),(

0
0

),(
),(

=
=��

�

�
��
�

�
+

=
=��

�

�
��
�

�
−

xxd
xdu

xu

xxd
xdu

xu

l
ll

l
ll

µµµ

µµµ
                                             (15) 

 
Integrating (14) with respect to x on the intervals:  (xk -1/2, xk +1/2), we obtain 
 

                                               �
+

−

=−++− −+

2/1

2/1

0)( 12/12/1

k

k

x

x
kk dxfuJJ                                        (16) 

where 

                                         
xd

xdu
xJxJJ l

llkk
),(

),(),( 2
2/12/1

µµµ == ±± . 

 
We find Jk  - 1/2, integrating (14) on the interval (xk -1/2, x), where x∈(xk -1, xk). We get 
 

                                        �
−

−+= −

x

x
llk

l
l

k

dfuJ
xd

xdu

2/1

)),(),((
),(

12/1
2 ξµξµξµµ                       (17) 

 
Then, dividing (17) by 2

lµ and integrating on (xk – 1, xk ) we have 
 

                                        � ��
− −−

−+=− −−

k

k k

k

k

x

x

x

xl

x

x l
kkk dfu

dxdx
Juu

1 2/11

)( 1222/11 ξ
µµ

            (18) 

where ),( lii xuu µ= . 
Finally, we get    

                             
�
�

	




�
�

�


−−−= � �

− −

−−

k

k k

x

x

x

xl
kk

l
k dfu

dx
uu

h
J

1 2/1

)( 121

2

2/1 ξ
µ

µ
                                    (19) 

 
This is an exact relation in the finite differences, because the differential flux Jk-1/2 is determined 
with respect to the known values of u: uk-1, uk-1/2, uk. In a similar manner, we find Jk  +1/2, replacing k 
by k+1.   
Consequently, the equality (16) becomes: 
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�����
−−+

++

−

−+−−=−+�
�

�
�
�

� −
+

− −+
x

x

x

x

x

x

x

x

x

x

kkkk
l

k

k

kk

k

k

k

k

dfudx
h

dfudx
h

dfu
h
uu

h
uu

2/112/1

12/1

2/1

)(
1

)(
1

)( 111
112 ξξξµ

                                                                                              (20) 
 
where  k∈{1, 2,…,  N-1}. This is the fundamental identity of the equation in the finite differences.
 In order to obtain a form of the integral identity (20) that is similarly with the Galerkin’s 
equation, we introduce the functions 
 

     ),(),()( 1 ll xfxux µµψ −=  
                                (21) 

      hxxx kk /)()( −=ρ . 
 
Appling the method of integration by parts we get 
 

       =
�
�

�

�

�
�

�

�
− �� �

+

+ x

x

x

x

x

x k

k

k k

ddd
h

2/1

1

)(
1 ξξψα  =

�
�
	




�
�
�


−−− ��

++

+

11

2/1

)()()(
1 k

k

k

k

x

x
k

x

x
dxxxxdh

h
ψξξψ  

 

                               dxxxd
k

k

k

k

x

x
k

x

x

)()()(
11

2/1

ψρξξψ ��
++

+

+−=                                                     (22)            

 
Analogously, if we denote 

                                                  
h

xx
x k

k
−

=)(~ρ                                                    (23) 

 
the equation (20) is now of the form 
 

    dxxx
h
uu

h
uu k

k

x

x
k

kkkk
l )())(~1(

1

112 ψρµ �
−

−+�
�

�
�
�

� −
+

− −+  0)())(1( 
1

=−+ �
+

dxxx
k

k

x

x
k ψρ               (24) 

                                                                                                                k∈{1, 2,…, N-1}. 
 
It should be observed that the integral from the left-hand side of (20) was decomposed in the 
intervals: ).,(),( 2/12/1 +− ∪ kkkk xxxx    
Let us introduce the functions: 
 

                                          

�
�
�

�

��
�

�

�

∉

∈
−

=
−

∈
−

=
−

=

+−

+
+

−
−

],[,,0

],[,
1

],[,
~1

)(

11

1
1

1
1

kk

kk
kk

kk
kk

k

xxx

xxx
hh

xx

h

xxx
hh

xx

h
xQ ρ

ρ

                             (25) 

where  

                                                                 
h

xQ kk
1

)( = . 

 
Let us now assume that the function u(x,µl)∈L2 ([0, 1]), which is a Hilbert space with the scalar 
product defined by formula  

                                                       ( ) �=
1

0

)()(, dxxvxwvw                                                    (26)  
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Then, using (25)-(26), the equations (24) can be rewritten in the form 
 

   1,...,1),,(),(
),(),(),(),(

1
112 −==+��

�

�
��
�

� −
+

− −+ NkQhfQhu
h

xuxu
h

xuxu
kk

lklklklk
l

µµµµ
µ     

                                                                                                                                                         (27) 
On the other hand, we observe that 
 

          −⋅=��
�

�
��
�

�
�
−

dx
hhxd

xdu
xd

dQ
xd

xdu k

k

x

x

l
l

kl
l

1

1),(
,

),( 22 µµµµ =⋅�
+

dx
hhxd

xduk

k

x

x

l
l

1 1),(2 µµ  

                         

                                                 ,112
��
�

�
��
�

� −
−

−
= +−

hh

uu

hh

uu kkkk
lµ                (28)

   
and (27) can be rewritten in the following form:  
 

( ) ( ) { }1,..,2,1,,,, 1
2 −∈=+��

�

�
��
�

�
NkQfQu

xd
dQ

xd
du

kk
k

lµ              (29) 

 
This system allows us to consider the integral identity method as a variational method and the 
equations (29) may be used for obtaining the approximate solutions using a sequence of coordinate 
functions. It should be noted that the equations (29) coincide with the relations obtained by 
Galerkin method, where Qk(x) are the coordinate functions. Then, the solution of the system (29) 
can be defined in the following way 

                                                )()(),(~ 1

1
xQaxu k

N

k
lkl �

−

=
= µµ                                               (30) 

where:  22)( lklka µβµ = . 

We shall now determine the coefficients βk from the condition that (30) be a solution of the 
system (29). Also, the boundary conditions must be satisfied. A matrix equation is obtained 
 
                                                                            A ⋅⋅⋅⋅ ΒΒΒΒ = ΓΓΓΓ                                       (31)                            
where 
     
    •   matrix A is of the form 

                                                     

�
�
�
�
�
�

	




�
�
�
�
�
�

�



−−−−

−−−−−−

1,12,1

1,22,23,2

3,22,21,2

2,11,1

0000
000

000
0000

NNNN

NNNNNN

aa

aaa

aaa

aa

Λ
Λ

ΜΜΜΛΜΜΜ
Λ
Λ

 

     with 
 

   

1,

2

2

4

01

2

2

43

00

18

162

,
9

1622

−=
−

+−=

=
−

++=

NN
ll

NN
lll

a
h

a

a
hh

a

µµ

µµµ

 
{ }

{ }1,...,1,
9

)16(24

,1,...,2,
18

162

2

2

4

,

2

2

4

1,

−∈
−

+=

−∈
−

+−=−

Nk
h

a

Nk
h

a

ll
kk

ll
kk

µµ

µµ

       

    { }2,...,1,1,1, −∈= −+ Nkaa kkkk            ,)()(
1

0
00 �=

x

dxxQxgγ  
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         ( ) ,)()(,
1

1

�
+

−

==
k

k

x

x
kkk dxxQxgQgγ             �

−

=
n

N

x

x
NN dxxQxg

1

)()(γ . 

 
Solving the matrix equation (31), we can find the values of coefficients βk, i.e. we can construct by 
(30) the solution u of (14)-(15). Let us now consider: xk = y0 < y1 <…< ym = xk+1 for every interval 
(xk, xk + 1), k = 0, 1,…, N – 1. Using the functions Qk(x), we can find the values of  approximate 
solution:  ),(~~

, ljjk yuu µ= ,k∈{0,1,2,…,N-1}, j ∈{1,2,…,m}. 

 In order to get jkv ,
~ , we use jku ,

~ and the numerical derivative for equation (7b): 

 

                     { },,...,2,1,0,
)/(2

~~
~ 1,1,

, Nk
mh

uu
v l

jkjk
jk ∈⋅

−
−= −+ µ { }1,...,2,1 −∈ mj                                                    

                                 
{ }

l
mN

mN
l

l
mkk

nk

mh

u
v

mh

u
v

Nk
mh

uu
v

µ
µ

µ

⋅=
⋅

−=

−∈⋅
−

−=

−−
−

−+

/

~
~,

/

~
~

,2,...,1,0,
)/(2

~~
~

1,1
,1

1,0
1,0

1,1,1
,

                         (32) 

where                      

                                 ,2~
1

12
, �

�
�

�
�
�
�

� −
+

−
= +

+

hh

xy

hh

yx
u kj

k
jk

kljk ββµ      

 
{ } { } 0,,...,1,0,1,...,2,1,0 0 ==∈−∈ NmjNk ββ                     

 
According to the continuity of function u we get:    { }1,...,2,1,~~

0,,1 −∈=− Nkuu kmk .    

Finally, the values of ϕ obtained by this algorithm will be of the form 
 

                                  
0for    ~~~
0for    ~~~

,,,

,,,

<−=

>+=
−

+

ljkjkjk

ljkjkjk

vu

vu

µϕ

µϕ
  ,      k∈{1,2,…,N}, j ∈{0,1,2,…,m}.        (33) 

 
3  Numerical example 
 
Let us consider the boundary problem (14)-(15), where (14) is of the form 
        

                                           ),(),(
),(

12

2
2

ll
l

l xfxu
xd

xud µµµµ =+−                                             (14) 

with  �+=
1

0
1 ),(

2
1

),(),( µµµµ dxuxgxf ll . 

Here g is an even function with respect to µ and a periodical function with respect to x  
 

                                    
12

16
)2cos(

12
16

2),(
22

42 −+��
�

�
��
�

� −+−= µπµµπµ xxg                               (34) 

 
We break up the closed interval D1 into N = 8 segments of length h = 1/8. For ]1,0[2 =′′D we have  
L = 4. Some computational results will illustrate the application of above algorithm. For (34) we 
get 
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              == �
+

−

1

1

)()(
k

k

x

x
kk dxxQxgγ { }1,..,1,

)(sin)2cos( 2
12

2

1 −∈+ NkhB
hhk

A
π

ππ  

where 
 

                                              
22

)(sin 2

12

2

180
h

B
h

A +==
π

πγγ , 

 

                                      
hh

B
hh

A
12

16
,2

12
611 2

1
24

2

1
−=��

�

�
��
�

�
−−= µπµµ ,    { }7,...,2,1∈k . 

 
 
Figure 1 and Figure 2 present the variations of the function g defined by (34) with respect to µ and 
xi. In view of (6), the function g coincides with the source function  f . 
 
Figures 3 and 4 show the variations of the solution of the problem (14)-(15) for different values of 
µl . Finally, figures 5 and 6 show the variations of the function ϕ and the variations of the error      
er =  u – ue,  where )(sin),( 22 xxue ll πµµ = , with respect to µl. 
 
 

              
0 2 4 6 8

20

0

20

4020.553

27−

fs1i

fs2i

fs3i

fs4i

80 i  
                                  
                                    Fig. 1. Dependence of source function  f on µ and xi, i = 0,1,…,8 
 
                                                    µ = 1/4 (fs1), µ = 1/2 (fs2), µ = 3/4 (fs3), µ = 1(fs4) 
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                             fsm  
                                                      
                                                         Fig. 2. The surface  z = f (x, µ )                                                            
         x∈[0, 1] and  µ ∈[0, 1] 
 
 
 
 

        

0 2 4 6 8
0.5

0

0.5

1

1.51.004

0.5−

u1 i

u2 i

u3 i

u4 i

80 i  
           

                    
              Fig. 3. Dependence of  u on µ and xi, i = 0,1,…,8 
 

                                          µ = 1/4 (u1), µ = 1/2 (u2), µ = 3/4 (u3), µ = 1 (u4) 
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      um  
 
                 Fig. 4. The surface  u = u(x, µ )                                                            
                     x∈[0, 1] and  µ ∈[0, 1] 
 
 
 

                         

0 2 4 6 8

2

0

2

44.5

3.5−

f1i

f2i

f3i

f4i

80 i  
 
                 
                               Fig 5. Dependence of ϕ on µ and xi, i = 0,1,…,8 
 
                                        µ = 1/4(f1), µ = 1/2(f2), µ = 3/4(f3), µ = 1(f4) 
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0 5

0

0.002

0.004

0.006
4.145 10 3−×

1.181 10 4−×

er2 i

er3 i

er4 i

70 i  
      
                                         Fig. 6. Dependence of er on µ and xi, i = 0,1,…,7 
                                                               µ = 1/2 (er2), µ = 3/4 (er3), µ = 1(er4) 
 
4  Conclusions  
 
♦ In this paper we present an algorithm that use integral identity method in the solving a stationary 
transport equation.. 
♦ Splitting the surface ϕ = ϕ (x, µ) in two regions: ϕ + that correspond to µ > 0 and ϕ - that 
correspond to µ < 0, we replace the solving of the boundary problem (1)-(2) with a boundary 
problem for one-dimensional diffusion equation. 
♦ We proved that the exact solution of this equation obtained for every fixed µl is bounded by the 
source function f in the norm of the Hilbert space L2(D). 
♦It follows from the figure 3 that the maximum values of u are obtained if the source there is on the 
Ox axis (µ = 1) and minimum values are obtained if the source there is on a perpendicular direction 
on Ox. 
♦Figure 5 shows that the neutron flux enters in the corresponding surfaces of x∈[0, 1/2] and leaves 
the corresponding surfaces of x∈[1/2, 1] for the source function (34).  
♦It should be observed from the figure 6, that the maximum values of the errors are obtained for     
µ = 1 and these are of the order 0.0042. 
♦ This splitting numerical method can be used and if the coefficients σ and σs of the transport 
equation (1) are the discontinuous functions. In this case, we shall choose the points xk such that 
these to coincide with the discontinuous points of σ(x) andσs(x).  
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1 Introduction

Let D = {z : |z| < 1} be the unit disk in the complex plane C, and H(D) denote
the set of all analytic functions on D. Let ϕ be a holomorphic self-map of D
and u ∈ H(D). They induce the weighted composition operator uCϕ defined
by:

uCϕf = uf ◦ ϕ, for f ∈ H(D).

We can regard this operator as a generalization of the multiplication operator
Mu denoted by Muf = uf for f ∈ H(D), and the composition operator Cϕ

denoted by Cϕf = f ◦ ϕ for f ∈ H(D). It is interesting to provide a function
theoretic characterization when ϕ and u induce a bounded or compact weighted
composition operator between different function spaces. The weighted compo-
sition operator was studied on the Bloch space and the little Bloch space in [5].
Some recent papers on weighted composition operators on Bloch type spaces
can be found in [3, 9]. In [6], Ohno, Stroethoff and Zhao characterized ϕ and u
for the weighted composition operator uCϕ to be bounded or compact between
the α-Bloch spaces. Yoneda [10] studied the composition operator Cϕ in the
logarithmic Bloch space βL and the little logarithmic Bloch space β0

L. In [7]
the author studied the multiplication operator Mu in βL and β0

L. In the paper
we will characterize the weighted composition operator uCϕ to be bounded or
compact between the α-Bloch spaces βα and the little logarithmic Bloch space
β0

L.
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For f ∈ H(D), let

‖f‖βα = sup{(1− |z|2)α|f ′(z)| : z ∈ D}, 0 < α < +∞,

‖f‖βL
= sup{(1− |z|2) ln(

2
1− |z| )|f

′(z)| : z ∈ D}.

As in [7, 11], the α-Bloch space βα consists of all f ∈ H(D) satisfying ‖f‖βα <
+∞ and the little α-Bloch space β0

α consists of all f ∈ H(D) satisfying lim
|z|→1

(1−
|z|2)α|f ′(z)| = 0; the logarithmic Bloch space βL consists of all f ∈ H(D)
satisfying ‖f‖βL

< +∞ and the little logarithmic Bloch space β0
L consists of all

f ∈ H(D) satisfying lim
|z|→1

(1 − |z|2) ln(
2

1− |z| )|f
′(z)| = 0. It can easily proved

that βL is a Banach space under the norm

‖f‖L = |f(0)|+ ‖f‖βL
. (1)

In [7], the author proved that β0
L is a closed subspace and coincides with the

closure of polynomials. It is well known that with the norm ‖f‖α = |f(0)| +
‖f‖βα , βα is a Banach space and β0

α is a closed subspace of βα. It is easily
proved that for 0 < α < 1, βα $ βL $ β1. In this paper, C denotes the positive
constant depending only on the index α, the C may differ at different places.

2 uCϕ from βα to β0
L

Lemma 2.1 (see [7]) If f ∈ βL, then |f(z)| ≤ (2+ln(ln 2
1−|z| ))‖f‖L. Moreover,

|f(z)| ≤ 2 ln(ln 2
1−|z| )‖f‖L, where |z| ≥ r∗ = 1− 2

ee2 .

Lemma 2.2 (see [7]) If f ∈ β0
L, then lim

|z|→1

|f(z)|
ln(ln 2

1−|z| )
= 0.

Lemma 2.3 (see [8]) Let α > 0 and f ∈ βα. Then
(1) ‖ft‖α ≤ ‖f‖α , 0 < t < 1, where ft(z) = f(tz);
(2) |f(z)| ≤ C‖f‖α, where α < 1;

(3) |f(z)| ≤ C ln(
2

1− |z|2 )‖f‖α, where α = 1;

(4) |f(z)| ≤ C

(α− 1)(1− |z|)α−1
‖f‖α, where α > 1.

Lemma 2.4 Let α > 0 and X be a Banach space. Then uCϕ : β0
α → X is a

weakly compact operator if and only if uCϕ : β0
α → X is compact.

The proof is similar to Lemma 4 in [2]. The details are omitted.

Lemma 2.5 (see [11]) Let t > 0 and f ∈ H(D). Then sup
z∈D

(1−|z|)t|f(z)| < +∞
if and only if sup

z∈D
(1− |z|)t+1|f ′(z)| < +∞.

YE:WEIGHTED COMPOSITION OPERATORS444



Lemma 2.6 Let U ⊂ β0
L. Then U is compact if and only if it is closed, bounded

and satisfies

lim
|z|→1

sup
f∈U

(1− |z|2) ln(
2

1− |z| )|f
′(z)| = 0.

The proof is similar to Lemma 1 in [4]. The details are omitted.

Theorem 2.1 Let ϕ and u be analytic on D, ϕ a self-map of D. Let α > 0.
Then the following statements are equivalent:

(1) uCϕ : βα → β0
L is compact;

(2) uCϕ : βα → β0
L is bounded;

(3) uCϕ : β0
α → β0

L is weakly compact;
(4) uCϕ : β0

α → β0
L is compact;

(5) (i) If α > 1, lim
|z|→1

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2)α−1
|u′(z)| = 0 and

lim
|z|→1

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2)α
|ϕ′(z)u(z)| = 0

.
(ii) If α = 1, lim

|z|→1
(1− |z|2) ln(

2
1− |z| ) ln(

2
1− |ϕ(z)|2 )|u′(z)| = 0 and

lim
|z|→1

(1− |z|2) ln 2
1−|z|

1− |ϕ(z)|2 |ϕ′(z)u(z)| = 0.

(iii) If 0 < α < 1, u ∈ β0
L and lim

|z|→1

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2)α
|ϕ′(z)u(z)| = 0.

Proof From Lemma 2.4, we see that (3) ⇐⇒ (4). It is obvious that (1) =⇒ (2)
and (1) =⇒ (4). Now we need to show that (2) =⇒ (3) and (4) =⇒ (5) =⇒ (1).

(2) =⇒ (3) From (2) we see that it holds uCϕ(βα) ⊂ β0
L. Since uCϕ :

β0
α → β0

L is bounded, by Basic Functional Analysis, we obtain that (uCϕ)∗∗ :
(β0

α)∗∗ → (β0
L)∗∗ is bounded and (uCϕ)∗∗(f) = uCϕ(f) for every f ∈ β0

α. Since
β0

α is w∗ dense in βα, it follows that (uCϕ)∗∗(f) = uCϕ(f) for every f ∈ βα.
Using Gantmacher’s Theorem (see [1]), we obtain that T : X → Y is weakly

compact if and only if T ∗∗(X∗∗) ⊂ Y , where T ∗∗ is the second adjoint of T .
Hence uCϕ : β0

α → β0
L is weakly compact if and only if (uCϕ)∗∗((β0

α)∗∗) ⊂ β0
L.

From the fact that (uCϕ)∗∗(f) = uCϕ(f) for every f ∈ βα and (β0
α)∗∗ ∼= βα (see

[11]), we obtain that uCϕ : β0
α → β0

L is weakly compact.
(4) =⇒ (5) Suppose that uCϕ is compact from β0

α to β0
L. Then u = uCϕ1 ∈

β0
L. Also uϕ = uCϕz ∈ β0

L, thus

lim
|z|→1

(1− |z|2) ln(
2

1− |z| )|u
′(z)ϕ(z) + u(z)ϕ′(z)| = 0.

Since |ϕ| ≤ 1 and u ∈ β0
L, we have

lim
|z|→1

(1− |z|2) ln(
2

1− |z| )|ϕ
′(z)u(z)| = 0. (2)
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Next, by Lemma 2.6, we have

lim
|z|→1

sup{(1− |z|2) ln
2

1− |z| |(uCϕf)′(z)| : f ∈ β0
α, ‖f‖α ≤ M} = 0 (3)

for some M > 0.
Suppose α > 1. Fixing w ∈ D, we take the test function

fw(z) =
α

(1− ϕ(w)z)α−1
− (α− 1)(1− |ϕ(w)|2)

(1− ϕ(w)z)α

for z ∈ D. It is clear that fw ∈ β0
α for every w ∈ D. By a direct calculation,

we obtain that sup
w∈D

‖fw‖α ≤ α + 3(α − 1)α2α, f ′w(ϕ(w)) = 0, and fw(ϕ(w)) =

1
(1− |ϕ(w)|2)α−1

. Then

lim
|w|→1

(1− |w|2) ln 2
1−|w|

(1− |ϕ(w)|2)α−1
|u′(w)| = 0

by (3). Similarly, fix w ∈ D and assume that ϕ(w) 6= 0. Consider the function
gw defined by

gw(z) =
1

ϕ(w)
(

1− |ϕ(w)|2
(1− ϕ(w)z)α

− 1
(1− ϕ(w)z)α−1

)

for z ∈ D. It is clear that gw ∈ β0
α. Since gw(ϕ(w)) = 0, g′w(ϕ(w)) =

1
(1− |ϕ(w)|2)α

, and sup
w∈D

‖gw‖α ≤ 1 + α2α+2, we have

lim
|w|→1

(1− |w|2) ln 2
1−|w|

(1− |ϕ(w)|2)α
|ϕ′(w)u(w)| = 0

for ϕ(w) 6= 0 by (3). However, if ϕ(w) = 0, by (2), we obtain that

lim
|w|→1

(1− |w|2) ln(
2

1− |w| )|ϕ
′(w)u(w)| = 0.

Suppose α = 1. Fixing w ∈ D, we take the test function

hw(z) = 2 ln
2

1− ϕ(w)z
− 1

ln 2
1−|ϕ(w)|2

(ln
2

1− ϕ(w)z
)2

for z ∈ D. It is clear that hw ∈ β0
1 for every w ∈ D. By a direct calculation, we

obtain that h′w(ϕ(w)) = 0, hw(ϕ(w)) = ln
2

1− |ϕ(w)|2 , and sup
w∈D

‖hw‖1 ≤ 13 <

+∞. It follows that

lim
|w|→1

(1− |w|2) ln(
2

1− |w| ) ln(
2

1− |ϕ(w)|2 )|u′(w)| = 0
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by (3). The fact that another condition in (ii) is necessary for uCϕ to be compact
from β0

α into β0
L is shown above.

Suppose 0 < α < 1. The proof is the same as that in the case α > 1. The
details are omitted.

(5) =⇒ (1) First, let α > 1. Assume that f ∈ βα. By Lemma 2.5, we
obtain that

(1− |z|2) ln
2

1− |z| |(uCϕf)′(z)|

≤ (1− |z|2) ln(
2

1− |z| )|u
′(z)f(ϕ(z))|+ (1− |z|2) ln(

2
1− |z| )|u(z)||f ′(ϕ(z))ϕ′(z)|

≤ C‖f‖βα

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2)α−1
|u′(z)|+

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2)α
|ϕ′(z)u(z)|‖f‖βα

−→ 0

as |z| → 1. Then uCϕ(f) ∈ β0
L, thus uCϕ is bounded from βα into β0

L. Thus we
only prove that

lim
|z|→1

sup{(1− |z|2) ln
2

1− |z| |(uCϕf)′(z)| : f ∈ βα, ‖f‖α ≤ 1} = 0

by Lemma 2.6. However, it has just been proved above. Thus uCϕ is compact
from βα to β0

L.
Next, let α = 1. Similarly, assume that f ∈ β1. By Lemma 2.3, we have

(1− |z|2) ln
2

1− |z| |(uCϕf)′(z)|

≤ C‖f‖α(1− |z|2) ln(
2

1− |z| ) ln(
2

1− |ϕ(z)|2 )|u′(z)|

+
(1− |z|2) ln 2

1−|z|
1− |ϕ(z)|2 |ϕ′(z)u(z)|‖f‖βα

−→ 0

as |z| → 1. Using the same method as in the case α > 1, we also obtain that
uCϕ is compact from β1 to β0

L.
Finally, let 0 < α < 1. Suppose that f ∈ βα. By Lemma 2.3, we have

(1− |z|2) ln
2

1− |z| |(uCϕf)′(z)|

≤ C‖f‖α(1− |z|2) ln
2

1− |z| |u
′(z)|+

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2)α
|ϕ′(z)u(z)|‖f‖βα

−→ 0

as |z| → 1. This completes the proof of Theorem 2.1.
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3 uCϕ from β0
L to βα

Lemma 3.1 (see [7]) Let f(z) =
(1− |z|) ln 2

1−|z|
|1− z| ln 4

|1−z|
, z ∈ D. Then |f(z)| < 2.

Lemma 3.2 (see [7]) Let 0 ≤ t ≤ 1, g(z) =
(1− |z|) ln 2

1−|z|
(1− |tz|) ln 2

1−|tz|
, z ∈ D. Then

|g(z)| < 2.

Lemma 3.3 Suppose f ∈ βL. Let ft(z) = f(tz), 0 < t < 1. Then ‖ft‖L ≤
4‖f‖L.

The result is easily proved by lemma 3.2.

Theorem 3.1 Let ϕ and u be analytic on D, ϕ a self-map of D. Let α > 0.
Then the following statements are equivalent:

(a) uCϕ : β0
L → βα is bounded;

(b) uCϕ : βL → βα is bounded;

(c) sup
z∈D

(1− |z|2)α| ln(ln
2

1− |ϕ(z)| )||u
′(z)| < +∞ and

sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)u(z)| < +∞

.

Proof (a) =⇒ (b) It is clear that for any f ∈ βL, we have ft ∈ β0
L for all

0 < t < 1. Then, according to Lemma 3.3,

‖uCϕ(ft)‖α ≤ ‖uCϕ‖‖ft‖L ≤ 4‖uCϕ‖‖f‖L < +∞.

Hence ‖uCϕ(f)‖α ≤ 4‖uCϕ‖‖f‖L < +∞, which shows that uCϕ is bounded
from βL to βα.

(b) =⇒ (c) Suppose that uCϕ is bounded from βL to βα. Taking the test
function f(z) = 1 and f(z) = z respectively, we can easily obtain that

sup
z∈D

(1− |z|2)α|ϕ′(z)u(z)| < +∞. (4)

Fix w ∈ D. Consider the function fw defined by

fw(z) = 2 ln(ln
4

1− ϕ(w)z
)− 1

ln ln 4
1−|ϕ(w)|2

(ln ln
4

1− ϕ(w)z
)2 (5)

for z ∈ D. According to Lemma 3.1 and 3.2 we get that fw ∈ βL and ‖fw‖L ≤
16. Since f ′w(ϕ(w)) = 0 and fw(ϕ(w)) = ln ln

4
1− |ϕ(w)|2 , it follows that

(1− |w|2)α |u′(w)fw(ϕ(w))| = (1− |w|2)α|(uCϕfw)′(w)|

= ‖uCϕ(fw)‖βα
≤ ‖uCϕ(fw)‖α ≤ ‖uCϕ‖‖fw‖L ≤ 16‖uCϕ‖ < +∞.
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Then

sup
w∈D

(1− |w|2)α| ln(ln
2

1− |ϕ(w)| )||u
′(w)| ≤ 16‖uCϕ‖ < +∞. (6)

Next, fix w ∈ D with w 6= 0. Let

gw(z) =
∫ z

0

(1− w2

|w|2 z2)−1(ln
4

1− w2

|w|2 z2
)−1 dz. (7)

By Lemma 3.1, we have

sup
z1∈D

(1− |z1|2)(ln 2
1− |z1|2 )|1− z2

1 |−1| ln 4
1− z2

1

|−1 < 2 < +∞.

Applying z1 = w
|w|z, we obtain that

sup
z∈D

(1− |z|2)(ln 2
1− |z|2 )|1− w2

|w|2 z2|| ln 4
1− w2

|w|2 z2
|−1 < 2 < +∞.

Hence we have gw ∈ βL and ‖gw‖L < 4. Then for w 6= 0 we obtain that

‖uCϕ(gw)‖βα ≤ ‖uCϕ(gw)‖α ≤ ‖uCϕ‖‖gw‖L ≤ 4‖uCϕ‖ < +∞. (8)

So for every z ∈ D such that ϕ(z) 6= 0, let w = ϕ(z) in (8), we have

|ϕ′(z)u(z)| (1−|z|2)α

(1−|ϕ(z)|2) ln 4
1−|ϕ(z)|2

= (1− |z|2)α|u(z)g′w(ϕ(z))ϕ′(z)|

≤ ‖uCϕ(gw)‖βα
+ sup

z∈D
(1− |z|2)α|u′(z)||gw(ϕ(z))|

≤ C + 4 sup
z∈D

(1− |z|2)α(2 + ln(ln
2

1− |ϕ(z)| ))|u
′(z)| < +∞,

where we use Lemma 2.1 and (6).
For every z ∈ D such that ϕ(z) = 0, by (4), we have

(1− |z|2)α

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|u(z)ϕ′(z)| = 1
ln 2

(1− |z|2)α|u(z)ϕ′(z)| < +∞.

(c) =⇒ (a) For f ∈ β0
L, by Lemma 2.1, we have the following inequality:

‖uCϕf‖βα ≤ sup
z∈D

(1− |z|2)α|u′(z)|(2 + ln ln
2

1− |ϕ(z)| )‖f‖L

+ sup
z∈D

(1− |z|2)α
(1− |ϕ(z)|2) ln 2

1−|ϕ(z)|
(1− |ϕ(z)|2) ln 2

1−|ϕ(z)|
|f ′(ϕ(z))||ϕ′(z)u(z)|

≤ C‖f‖L + ‖f‖L sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)u(z)|
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and
|u(0)f(ϕ(0))| ≤ |u(0)|(2 + ln ln

2
1− |ϕ(0)| )‖f‖L.

Then uCϕ is bounded from β0
L to βα. This completes the proof of Theorem 3.1.

Remark 1 If the βL with norm (1) is isometric to the second dual (β0
L)∗∗, we

can prove that uCϕ : β0
L → βα is compact if and only if uCϕ : β0

L → βα is
bounded.
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AVERAGED ITERATES FOR NON-EXPANSIVE
NONSELF-MAPPINGS IN BANACH SPACES

YISHENG SONG AND YEOL JE CHO

Abstract. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm and K be a closed convex subset of E which
is also a sunny non-expansive retract of E. Assume that T : K → E is a non-
expansive mappings with a fixed point. The two averaged iterative sequences
{xn} are given by

xn+1 =
1

n + 1

n∑

j=0

(αnu + (1− αn)(PT )jxn), ∀n ≥ 0,

xn+1 =
1

n + 1

n∑

j=0

P (αnu + (1− αn)(TP )jxn), ∀n ≥ 0,

where P is sunny non-expansive retraction of E onto K and αn ∈ (0, 1) sat-

isfying the conditions: lim
n→∞αn = 0 and

∞∑
n=0

αn = ∞. We prove that {xn}
converges strongly to some fixed point of T and, furthermore, as applications,
we obtain the viscosity averaged approximation results for T .

Key Words and Phrases: Non-expansive nonself-mappings, averaged
iterates; uniformly convex Banach space.

2000 AMS Subject Classification: 47H05, 47H10, 47H17.

1. Introduction

Let T be a mapping with domain D(T ) and range R(T ) in Banach space E. T
is called non-expansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ D(T ).

In 1967, Halpern [5] firstly introduced the following iteration scheme in Hilbert
space: for a non-expansive self-mapping T and u 6= 0, x0 ∈ K,

xn+1 = αnu + (1− αn)Txn, ∀n ≥ 0.

He pointed out that the control conditions limn→∞ αn = 0 and
∑∞

n=1 αn = ∞
are necessary for the convergence of the iteration scheme to a fixed point of T .

In last decades, many authors have studied the iterative algorithms for non-
expansive nonself-mappings and obtained a series of good results. For example, for
any given u ∈ K, define the following implicit iterative sequences {xt} as follows:

xt = tu + (1− t)PTxt, ∀t ∈ (0, 1),

The corresponding author: yjcho@gsnu.ac.kr (Yeol Je Cho).
The second author was supported by the Korea Research Foundation Grant funded by the

Korean Government (MOEHRD) (KRF-2007-313-C00040).
1
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2 YISHENG SONG AND YEOL JE CHO

and
xt = P (tu + (1− t)Txt), ∀t ∈ (0, 1),

where P is the projector (or non-expansive retraction) from E to K.
In 1995, Xu and Yin [23] showed that, as t → 0, {xt} converges strongly to some

fixed point of T in Hilbert spaces. In 1997, Xu [20] proved and extended the results
of Xu and Yin [23] from Hilbert spaces to uniformly smooth Banach spaces.

In 1998, Jung and Kim [6] obtained the same results in uniformly convex Banach
spaces with the uniformly Gâteaux differentiable norm. In the same year, in the
frame of reflexive Banach spaces with the uniformly Gâteaux differentiable norm,
Takahashi and Kim [18] also gained the strong convergent results of the sequence
{xt}. But they all dealt with the implicit iteration of T , not the explicit iteration.

Recently, in a reflexive Banach space E with a weakly sequentially continuous
duality mapping, Song and Chen [11] studied the following explicit iterative schemes
for non-expansive nonself-mapping T defined by

xn+1 = P (αnf(xn) + (1− αn)Txn), ∀n ≥ 0,

and showed that {xn} converges strongly to a fixed point p of T , which is also the
unique solution of a variational inequality.

In 2002, Xu [21] also obtained the strong convergence of {xn} given by (1.1) for a
non-expansive mapping in uniformly convex and uniformly smooth Banach spaces:

xn+1 = αnu + (1− αn)
1

n + 1

n∑

j=0

T jxn, ∀n ≥ 0. (1.1)

In 2004, Matsushita and Kuroiwa [7] investigated the following explicit averaging
iterates of non-expansive nonself-mappings in Hilbert spaces and gained the strongly
convergent outcomes of {xn} defined by (1.2) and (1.3), respectively,

xn+1 =
1

n + 1

n∑

j=0

(αnu + (1− αn)(PT )jxn), ∀n ≥ 0, (1.2)

and

xn+1 =
1

n + 1

n∑

j=0

P (αnu + (1− αn)(TP )jxn), ∀n ≥ 0. (1.3)

In the above two results, the control conditions for the iterative schemes only
need limn→∞ αn = 0 and

∑∞
n=1 αn = ∞.

In this paper, our purpose is to extend the main results of Xu [21], Matsushita
and Kuroiwa [7] to uniformly convex Banach spaces with the uniformly Gâteaux
differentiable norm for nonexpansive non-self mappings, which also develop and
complement the main corresponding results of [22, 20, 23, 11, 13, 14, 6, 18] and
many others.

2. Preliminaries

Let E be a Banach space and J denote the normalized duality mapping from E
into 2E∗ given by

J(x) = {f ∈ E∗, 〈x, f〉 = ‖x‖‖f‖, ‖x‖ = ‖f‖}, ∀ x ∈ E,
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where E∗ is the dual space of E and 〈·, ·〉 denotes the generalized duality pairing.

In the sequel, we denote the single-valued duality mapping by j and denote
F (T ) = {x ∈ D(T ); x = Tx} by the fixed point set of T , where D(T ) is the domain
of T . We write xn ⇀ x (respectively, xn

∗
⇀ x) to indicate that the sequence {xn}

converges weakly (respectively, weak star) to x. As usual, xn → x denotes the
strong convergence. If K ⊂ E, K stands for the closure of K.

Recall that the norm of E is said to be Gâteaux differentiable (or E is said to be
smooth) if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(1.4)

exists for each x, y on the unit sphere S(E) = {x ∈ E : ‖x‖ = 1} of E. Moreover, if
for each y in S(E) the limit defined by (1.4) is uniformly attained for x in S(E), we
say that the norm of E is uniformly Gâteaux differentiable. A Banach space E is said
to uniformly smooth if the limit (1.4) is attained uniformly for (x, y) ∈ S(E)×S(E).

It is well known that the normalized duality mapping J in a smooth Banach
space is single-valued and norm topology to weak star topology continuous on any
bounded sets of E [17, Theorems 4.3.1, 4.3.2, 4.3.3]. Also, see [8, 3].

A Banach space E is said to strictly convex if

‖x‖ = ‖y‖ = 1, x 6= y implies
‖x + y‖

2
< 1.

A Banach space E is said to uniformly convex if, for all ε ∈ [0, 2], ∃δε > 0 such
that

‖x‖ = ‖y‖ = 1 with ‖x− y‖ ≥ ε implies
‖x + y‖

2
< 1− δε.

If C and D are nonempty subsets of a Banach space E such that C is nonempty
closed convex and D ⊂ C, then a mapping P : C → D is called a retraction from
C to D if P is continuous with F (P ) = D. A mapping P : C → D is called sunny
if

P (Px + t(x− Px)) = Px, ∀x ∈ C

whenever Px + t(x − Px) ∈ C and t > 0. A subset D of Cis said to be a sunny
non-expansive retract of C if there exists a sunny non-expansive retraction of C
onto D. For more details, see [17, 20, 18, 4].

The following Lemma is well known [17]:

Lemma 2.1. Let K be a nonempty convex subset of a smooth Banach space E,
∅ 6= D ⊂ K, J : E → E∗ the normalized duality mapping of E and P : K → D a
retraction. Then the following are equivalent:

(i) 〈x− Px, J(y − Px)〉 ≤ 0 for all x ∈ K and y ∈ D.
(ii) P is both sunny and non-expansive.

Hence there exists at most a sunny non-expansive retraction P from K onto D.

In 1980, Reich [9] showed that, if E is uniformly smooth and F (T ) is the fixed
point set of a non-expansive mapping T from K into itself, then there is the unique
sunny non-expansive retraction from K onto F (T ).
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4 YISHENG SONG AND YEOL JE CHO

Theorem R. Let K be a nonempty closed convex subset of a uniformly smooth
Banach space E and T : K → K a non-expansive mapping with a fixed point. Then
F (T ) is a sunny non-expansive retract of K.

In 1984, Takahashi and Ueda [19] obtained the same conclusion as Reich’s in
uniformly convex Banach space with a uniformly Gâteaux differentiable norm. Re-
cently, in a reflexive Banach spaces E with a weakly sequentially continuous duality
mapping, Song and Chen [11] (f(x) ≡ u ∈ K) constructed the similar results to
Reich’s and Takahashi and Ueda’s results.

Recently, Song et al. [10, 13, 14] also obtained the same outcomes in reflexive
and strictly convex Banach space with a uniformly Gâteaux differentiable norm.

Lemma 2.2 [16, Lemmas 3.1, 3.3] Let E be a real smooth and strictly convex
Banach space and K be a nonempty closed convex subset of E which is also a sunny
nonexpansive retract of E. Assume that T : K → E is a nonexpansive mapping
and P is a sunny nonexpansive retraction of E onto K, then F (T ) = F (PT ).

Using the similar technique of Song and Chen [10, Theorem 3.1] (also see [11,
12, 13]), we easily testify the following results (taking f(x) ≡ u in [10, Theorem
3.1]).

Lemma 2.3. Let E be a reflexive and strictly convex Banach space with the
uniformly Gâteaux differentiable norm. Suppose that K is a nonempty closed convex
subset of E and T : K → K is a non-expansive mapping satisfying F (T ) 6= ∅. For
any t ∈ (0, 1), let {xt} be a sequence defined by the following equation:

xt = tu + (1− t)Txt.

Then, as t → 0, {xt} converges strongly to some fixed point PF (T )u of T , where
PF (T ) is a sunny non-expansive retraction from K to F (T ).

In the proof of our main theorems, we also need the following lemmas which can
be found in [22, 21]:

Lemma 2.4. [21, Lemma 2.5] Let {an} be a sequence of nonnegative real num-
bers satisfying the property:

an+1 ≤ (1− γn)an + γnβn, ∀n ≥ 0,

where {γn} ⊂ (0, 1) and {βn} ⊂ R such that

(i)
∞∑

n=0
γn = ∞,

(ii) lim sup
n→∞

βn ≤ 0.

Then {an} converges to zero as n →∞.

3. The Main Results

The following theorem was proved by Bruck in [1, 2]:

Theorem B. [2, Corollary 1.1] Let K be a nonempty bounded closed convex
subset of a uniformly convex Banach space E and T : K → K a non-expansive
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mapping. Then, for any x ∈ K and the Cesàro means Anx =
1
n

n−1∑
j=0

T jx, we have

lim
n→∞

sup
x∈K

‖Anx− T (Anx)‖ = 0.

Theorem 3.1. Let E be a uniformly convex Banach space with the uniformly
Gâteaux differentiable norm. Suppose that K is a nonempty closed convex subset
of E, which is also a sunny non-expansive retract of E, and T : K → E is a
non-expansive mapping with F (T ) 6= ∅. Let {xn} be a sequence defined by

xn+1 =
1

n + 1

n∑

j=0

P (αnu + (1− αn)(TP )jxn), ∀n ≥ 0, (3.1)

where P is a sunny non-expansive retract from E to K. If αn ∈ (0, 1) satisfies the
following conditions:

(i) lim
n→∞

αn = 0,

(ii)
∞∑

n=0
αn = ∞.

Then, as n → ∞, {xn} converges strongly to some fixed point PF (T )u of T , where
PF (T ) is a sunny non-expansive retract from K to F (T ).

Proof. For fixed y ∈ F (T ), we have Py = y = Ty = PTy by Lemma 2.2 and the
definition of the sunny non-expansive retraction. Moreover, it follows that

‖xn+1 − y‖

≤ 1
n + 1

n∑

j=0

‖P (αnu + (1− αn)(TP )jxn)− PTy‖

≤ 1
n + 1

n∑

j=0

(αn‖u− y‖+ (1− αn)‖(TP )jxn − (TP )jy‖)

≤ 1
n + 1

n∑

j=0

(αn‖u− y‖+ (1− αn)‖xn − y‖)

≤ max{‖u− y‖, ‖xn − y‖}
· · ·

≤ max{‖u− y‖, ‖x0 − y‖}.
This implies the boundedness of {xn} and so are {Txn} and {(TP )jxn} for any fixed

j ≥ 0. If we set An = 1
n+1

n∑
j=0

(PT )j and M is a constant such that ‖(TP )jxn−u‖ ≤
M , then we have

‖xn+1 −Anxn‖ ≤ 1
n + 1

n∑

j=0

‖P (αnu + (1− αn)(TP )jxn)− (PT )jxn‖

≤ 1
n + 1

n∑

j=0

(αn‖u− (TP )jxn‖)

≤ αnM → 0 (n →∞).
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Therefore, it follows that

lim
n→∞

‖xn+1 −Anxn‖ = 0. (3.2)

Take v ∈ F (T ) and define a subset D of K by

D = {x ∈ K : ‖x− v‖ ≤ r},
where r = max{‖v−x0‖, ‖v−u‖, ‖v− p‖} and p = PF (T )u. Then D is a nonempty
closed bounded convex subset of K, PT (D) ⊂ D and {xn} ⊂ D. It follows from
Theorem B for a nonexpansive self-mapping PT on D that

lim
n→∞

‖Anxn − PT (Anxn)‖ ≤ lim
n→∞

sup
x∈D

‖Anx− PT (Anx)‖ = 0. (3.3)

On the other hand,

‖xn+1 − PTxn+1‖
≤ ‖xn+1 −Anxn‖+ ‖Anxn − PT (Anxn)‖+ ‖PT (Anxn)− PTxn+1‖
≤ 2‖xn+1 −Anxn‖+ ‖PT (Anxn)−Anxn‖.

Combining (3.2) and (3.3), we have

lim
n→∞

‖xn+1 − PTxn+1‖ = 0. (3.4)

By Lemmas 2.2 and 2.3, there exists a sunny non-expansive retraction from K
to F (T ), say PF (T ). In order to xn → p = PF (T )u, that is, ‖xn − p‖ → 0, the
application of Lemma 2.4 is desired. Since

‖xn+1 − P (αnu + (1− αn)p)‖

≤ 1
n + 1

n∑

j=0

‖P (αnu + (1− αn)(TP )jxn)− P (αnu + (1− αn)p)‖

≤ 1
n + 1

n∑

j=0

(1− αn)‖(TP )jxn − p‖

≤ (1− αn)‖xn − p‖,
then we have

‖xn+1 − p‖2
= 〈xn+1 − (αnu + (1− αn)p), J(xn+1 − p)〉+ αn〈u− p, J(xn+1 − p)〉
≤ ‖xn+1 − P (αnu + (1− αn)p)‖‖xn+1 − p‖+ αn〈u− p, J(xn+1 − p)〉)
≤ (1− αn)‖xn − p‖‖xn+1 − p‖+ αn〈u− p, J(xn+1 − p)〉

≤ (1− αn)
‖xn − p‖2 + ‖xn+1 − p‖2

2
+ αn〈u− p, J(xn+1 − p)〉.

Therefore, we have

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + 2αn〈u− p, J(xn+1 − p)〉. (3.5)

If we employ Lemma 2.4 into (3.5) and use the condition
∞∑

n=0
αn = ∞, then it

remains to prove that

lim sup
n→∞

〈f(p)− p, J(xn+1 − p)〉 ≤ 0. (3.6)
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For this purpose, if we consider zt = tu+(1−t)PTzt, then it follows from Lemma
2.3 and Lemma 2.2 that p = PF (T )u = PF (PT )u = lim

t→0
zt. Hence we have

‖zt − xn+1‖2
= (1− t)〈PTzt − xn+1, J(zt − xn+1)〉+ t〈u− xn+1, J(zt − xn+1)〉
= (1− t)(〈PTzt − PTxn+1, J(zt − xn+1)〉+ 〈PTxn+1 − xn+1, J(zt − xn+1)〉)

+ t〈u− p, J(zt − xn+1)〉+ t〈p− zt, J(zt − xn+1)〉+ t〈zt − xn+1, J(zt − xn+1)〉
≤ ‖xn+1 − zt‖2 + ‖PTxn+1 − xn+1‖M + t〈u− p, J(zt − xn+1)〉+ ‖zt − p‖M

and so

〈u− p, J(xn+1 − zt)〉 ≤ ‖xn+1 − PTxn+1‖
t

M + M‖zt − p‖, (3.7)

where M is a constant such that M ≥ ‖xn+1 − zt‖ by the boundedness of {xn}
and {zt}. Therefore, taking the upper limit as n →∞ firstly and then, as t → 0 in
(3.7), using (3.4) and zt → p, we get

lim sup
t→0

lim sup
n→∞

〈u− p, J(xn+1 − zt)〉 ≤ 0. (3.8)

On the other hand, since {xn+1 − zt} converges strongly to (xn+1 − p) as t → 0
and the duality mapping J is single-valued and the norm topology to the weak star
topology is uniformly continuous in any bounded subset of E with the uniformly
Gâteaux differentiable norm, it follows that, for all n ≥ 0,

|〈u− p, J(xn+1 − p)− J(xn+1 − zt)〉| → 0 uniformly (t → 0).

Therefore, for any ε > 0, there exists δ > 0 such that, for all t ∈ (0, δ) and n ≥ 0,

〈u− p, J(xn+1 − p)〉 < 〈u− p, J(xn+1 − zt)〉+ ε.

Hence, noting (3.8), we have

lim sup
n→∞

〈u− p, J(xn+1 − p)〉 ≤ lim sup
t→0

lim sup
n→∞

(〈u− p, J(xn+1 − zt)〉+ ε)

≤ 0.

Namely, (3.6) is proved. Therefore, Lemma 2.4 is satisfied and so the theorem is
proved. This completes the proof. ¤

Corollary 3.2. Suppose that E, K, T, αn, P are as Theorem 3.1. Let {xn} be a
sequence defined by the following equation:

xn+1 =
1

n + 1

n∑

j=0

(αnu + (1− αn)(PT )jxn), ∀n ≥ 0. (3.9)

Then, as n → ∞, {xn} converges strongly to some fixed point PF (T )u of T , where
PF (T ) is a sunny non-expansive retraction of K onto F (T ).

Proof. Because P is a sunny nonexpansive retraction of E onto K, PTx ∈ K for
all x ∈ K and ‖PTx − PTy‖ ≤ ‖x − y‖ for all x, y ∈ K. Let S = PT . Then S is
a non-expansive self-mapping on K and Sx = PTx = PTPx = SPx since Px = x
for all x ∈ K.

On the other hand,

(PT )j = (PT )(PPT )(PPT )j−2 = · · · = (SP )j−1(PT ) = (SP )j
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since P 2 = P . Therefore, from (3.9), we have

xn+1 =
1

n + 1

n∑

j=0

(αnu + (1− αn)Sjxn)

=
1

n + 1

n∑

j=0

P (αnu + (1− αn)(SP )jxn).

Consequently, from Theorem 3.1, the conclusion is proved. This completes the
proof. ¤

Remark 1. (1) Since every Hilbert space is a uniformly convex Banach space
and the sunny non-expansive retraction in Hilbert space coincides with the met-
ric projection, then Theorems 3.1 and 3.2 contain Theorems 2 and Theorem 1 of
Matsushita and Kuroiwa [7] as a special case, respectively.

(2) The conclusions of Theorem 3.2 and 3,1 still hold if E is assumed to be a
uniformly smooth Banach space instead of to have the uniformly Gâteaux differ-
entiable norm since a uniformly smooth Banach space have the uniformly Gâteaux
differentiable norm. In particular, if T is a non-expansive self-mapping on K and
take P = I (: the identity operator), then our result contains Theorem 3.2 in Xu
[21].

4. Applications

As applications of Theorem 3.1, we present the following viscosity approximation
results in virtue of Lemma 2.1 and the proof technique of Suzuki [15, Theorems 5,
6]:

Theorem 4.1. Suppose that E,K, T, αn, P are as Theorem 3.1. Let {xn} be a
sequence defined by the following equation:

xn+1 =
1

n + 1

n∑

j=0

P (αnf(xn) + (1− αn)(TP )jxn), ∀n ≥ 0, (4.1)

where f is a contractive self-mapping on K with the contractive coefficient β ∈
(0, 1). Then, as n →∞, {xn} converges strongly to p, which is an unique solution
in F (T ) to the following variational inequality:

〈f(p)− p, J(y − p)〉 ≤ 0, ∀y ∈ F (T ). (4.2)

Proof. Theorem 3.1 of Song and Chen [10] guarantees that the variational inequality
(4.2) has the unique solution p in F (T ). (also, see [22, 11, 12, 13]). Then it follows
from Lemma 2.1 that PF (T )f(p) = p. Define a sequence {yn} in K by y1 ∈ K and

yn+1 =
1

n + 1

n∑

j=0

P (αnf(p) + (1− αn)(TP )jyn), ∀n ≥ 0.

Then, by Theorem 3.1, {yn} converges strongly to p = PF (T )f(p) ∈ F (T ).
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Next, we testify xn → p as n →∞. Indeed, it follows that

‖xn+1 − yn+1‖

≤ 1
n + 1

n∑

j=0

(αn‖f(xn)− f(p)‖+ (1− αn)‖(TP )jxn − (TP )jyn‖)

≤ αnβ‖xn − p‖+ (1− αn)‖xn − yn‖
≤ [1− (1− β)αn]‖xn − yn‖+ βαn‖yn − p‖.

Hence, from Lemma 2.4, we obtain ‖xn − yn‖ → 0. Therefore, lim
n→∞

‖xn − p‖ = 0.
This completes the proof. ¤

Corollary 4.2. Suppose that E, K, T, αn, P are as Theorem 3.1. Let {xn} be a
sequence defined by the following equation:

xn+1 =
1

n + 1

n∑

j=0

(αnf(xn) + (1− αn)(PT )jxn), ∀n ≥ 0,

where f is a contractive self-mapping on K with the contractive coefficient β ∈
(0, 1). Then, as n →∞, {xn} converges strongly to p, which is the unique solution
in F (T ) to the variational inequality (4.2).
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Abstract

In this paper we prove convergence of the velocity in the four-step time advanced fractional
scheme for the unsteady incompressible Navier-Stokes equations. The techniques in proving
the convergence for time steps are also be used in devicing the posteriori error estimator of
the equations of the fractional scheme. The estimator yields upper bounds on the error which
are global in space and time and lower bounds that are global in space and local in time.
These functions satisfy two fundamental properties: (i) they are explicitly computable and
thus their difference to the numerical solution is controlled a posteriori, and (ii) they lead
to optimal order residuals as well as to appropriate pointwise representations of the error
equation of the same form as the underlying evolution equation. The resulting estimators
are shown to be of optimal order by deriving upper and lower bounds for them depending
only on the discretization parameters and the data of our problem. We present an adaptive
algorithm which can terminate in finite steps for a given tolerance. Numerical experiments
validate the theory and yield refined meshes.

Key words Navier-Stokes equation, Crank-Nicolson, Fractional scheme, Posteriori er-
ror estimators, Adaptive mesh refinement, Data oscillation.

1 Introduction

The mathematical theories and computational methods of incompressible Navier-Stokes equations
have always been important subjects of theoretical fluid dynamics. The basic error analysis of the nonsta-
tionary incompressible Navier-Stokes equations have been fully studied. Heywood and Rannacher[1]-[4]
provided an error analysis for the Crank-Nicolson method of time discretization applied to spatially dis-
crete Galerkin approximations of the nonstationary Navier-Stokes equations while Geveci [5]considered

∗This research was supported by the National Natural Science Foundation of China under grant 60573150 and National Key
Basic Research Program(973)of China under grand 2009CB724000
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a linearized version of the implicit Euler scheme. However, most of the convergence analysis of the non-
stationary incompressible Navier-Stokes equations concentrated on the standard schemes such as Euler
or C-N scheme on linearized or nonlinearized version which does not split the time steps. Many useful
schemes which are put forward in practice do not have the theoretical analysis. In this paper we introduce
a scheme which is different from the normal Euler or C-N scheme and prove its stability and provide the
error estimation.

In numerical computation of fluid dynamics a semi implicit scheme for the unsteady incompress-
ible Navier-Stokes equations was developed in generalized coordinate systems [17]. The semi-implicit
fractional-step Crank-Nicolson scheme is a special case of the fractional-θ-scheme which is called pro-
jection method [18]. We only need to solve a sequence of decoupled elliptic equations for the velocity and
the pressure at each time step in projection methods. The main advantage of the semi-implicit fractional-
step Crank-Nicolson scheme is its simplicity in prescribing the boundary conditions for the velocity
and pressure formulation. The solution procedure is convenient for parallelizing. Liu C-H and Leung
DYC developed the finite element solution for the unsteady Navier-Stokes equations using projection
method and fractional-θ-scheme[19]. Liu and Leung [20] and Akal et al. [21] demonstrated the feasibil-
ity of overlapping domain decomposition for solving scalar transport equations and the incompressible
Navier-Stokes equations, respectively. Though the fractional scheme was widely and successfully used
in practice for its advantages, the convergence of the multiple steps for time discretization have not been
proved. In the four-step time advancement scheme, one time step is splitted into four steps. There are
two temporary variables which are denoted by ũ and u∗ in this paper between two adjacent time steps.
The pressure is updated by the temporary variables and the next time step velocity is obtained from the
two temporary variables using the original and updated pressure. Therefore the way of obtaining the
velocity and pressure in the fractional scheme is quite different from those in normal schemes. In this
paper we consider the convergence of semi-implicit fractional-step Crank-Nicolson scheme. Since the
updating process of the next time step velocity is second-order accurate, we use C-N scheme which is
also second-order accurate to obtain the first temporary variable in order to complete the whole fractional
scheme in second-order accurate. We first prove the stability of the fractional scheme which means that
the numerical result is bounded by the time and the initial conditions. Then the stability of the velocity
is used in the process of estimating the error between exact solution and the numerical results from the
fractional scheme. The Uniform Gronwall Lemma plays an important rule in proving the convergence.
At last we obtain error estimates of the velocity for the full discretization of the Navier-Stokes equations
for sufficient small time increment.

Another object of this paper is to develop the fractional scheme by using adaptive method in some
crucial steps of the scheme in order to decrease the computational scale in practice. Adaptive procedures
for the numerical solution of partial differential equations started in the late 1970s and are now standard
tools in science and engineering. Because of the success in practice, during the last 36 years the use of
these adaptive methods became more and more widely spread. In 1984, Babuška and Vogelius [8] firstly
showed the finite element solution of one-dimentional boundary value problems. Then Morin, Nochetto
and Siebert [10] extended the convergence of adaptive FEM by using data oscillation in 2000. In 2004,
Binev, Dahmen and DeVore [11] developed an adaptive finite element method which they showed to
be of optimal computational complexity. In this paper the adaptive method is applied in the procedure
of obtaining the first temporary velocity since first step of obtaining the ũ from original velocity by C-
N scheme is the most complicate procedure among the four steps. The other three steps of updating
the velocity and pressure do not need to use the adaptive method of mesh refinement. We present a
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residual type error estimator and prove it bounds the true error by inequalities in both directions. The
upper bound shows that the error estimator can be used as a reliable error indicator for the adaptive local
refinement algorithm, while the lower bound suggests that an unnecessary amount of work can be avoid.
Meanwhile we design the algorithm of computing the first step of the fractional scheme. In order to
validate the algorithm we use the numerical computation results to illustrate procedure of the adaptive
method and to show how the mesh is refined at the location where the error estimator is high. Since we
have proved that the algorithm has the optimal rate of convergence, the adaptive algorithm provided in
the paper is more effective than non-adaptive ones. Therefore we can decrease the degree and achieve
better accuracy in parallelized computation in further studies.

In this paper, §2 shows the convergence of second-order finite element for an unsteady incompress-
ible Navier-Stokes equations using the four-step time advancement scheme. Then in §3 we use the
isotropic adaptive mesh through local refinement to solve the equation and by devicing the posteriori
error estimator we present an adaptive algorithm which can terminate in finite steps for a given tolerance.
The numerical computation result is presented in §4, from which we can validate the adaptive algorithm
for the Navier-Stokes equations. §5 is the conclusion of this paper.

2 Error Estimation

We consider the Navier-Stokes equations on a finite time interval [0, T ]. Let Ω be a open, connected
and bounded subset of Rd, d = 2, 3 with a regular enough boundary ∂Ω. Consider the following unsteady
incompressible Navier-Stokes equations:

∂ui

∂t
+

∂

∂xj
uiuj = − ∂p

∂xi
+

1
Re

∂

xj

∂

xj
ui, for i = 1, 2, 3. (2.1)

and the continuity equations:

∂ui

∂xi
= 0, (2.2)

where xi are the Cartesian coordinates, ui the velocity vectors, p the pressure, and u = (ui, uj). Equa-
tions (2.1) and (2.2) are expressed in tensor notation in which indices i and j range over the dimension
of the spatial domain n. The usual summation convention on repeated indices is employed.

The initial boundary conditions are:

u(x, t) = 0, x ∈ ∂Ω, t > 0,

and

u(x, 0) = u0(x), x ∈ Ω, t = 0.

The coupled equations are decoupled by the fractional-step method [23]. A semi-implicit second-
order accurate fractional-step method is used to decouple (2.1) and (2.2) that is the sequential solution to

3
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the following equations [24]:

ũi − un
i

τ
+

∂

∂xj

(
ũi + un

i

2

)
ûn

j = −∂pn

∂xi
+

1
Re

∂

∂xj

∂

∂xj

(
ũi + un

i

2

)
, ũi|∂Ω = 0 (2.3)

u∗i − ũi

τ
=

∂pn

∂xi
, u∗i |∂Ω = 0 (2.4)

∂

∂xi

∂pn+1

∂xi
=

1
τ

∂u∗i
∂xi

,
∂pn+1

∂n
|∂Ω = 0 (2.5)

un+1
i − u∗i

τ
= −∂pn+1

∂xi
, un+1

i |∂Ω = 0. (2.6)

It is a four-step time advancement scheme where τ is the time increment. Superscript represents vari-
ables at step n. ûn

j is the average velocity of an element T . The convection and diffusion terms in (2.3)
are integrated in time by second-order accurate Crank-Nicolson scheme. The intermediate velocities ũi

and u∗i do not necessarily satisfy (2.2) that are then used to update the pressure at time step n + 1 by
(2.2). Finally, the intermediate velocity u∗i is corrected by 2.6 to obtain the divergence free velocity at
the next time step un+1

i .
The weak FEM formulations of (2.3), (2.4), (2.5) and (2.6) are:

∫

Ω
v


 ũi − un

i

τ
+

d∑

j=1

∂

∂xj

(
ũi + un

i

2

)
ûn

j +
∂pn

∂xi


 ,

+
1

Re

d∑

j=1

∂v

∂xj

∂

∂xj

(
ũi + un

i

2

)
dΩ =

d∑

j=1

∮

ΓN

vnj dΓN , (2.7)

∫

Ω
v

(
u∗i − ũi

τ

)
dΩ =

∫

Ω
v
∂pn

∂xi
dΩ, (2.8)

τ
d∑

j=1

∫

Ω

∂v

∂xi

∂pn+1

∂xi
dΩ =

d∑

j=1

∫

Ω

∂v

∂xi
u∗i dΩ−

d∑

j=1

∮

ΓN

vun+1
i nj dΓN , (2.9)

∫

Ω
v

(
un+1

i − u∗i
τ

)
dΩ = −

∫

Ω
v
∂pn+1

∂xi
dΩ. (2.10)

We introduce the standard Sobolev spaces Hm(Ω), (m = 0, 1, . . . ) whose norms are denoted by
|| · ||m. The norm and inner product of L2 are denoted by || · || and (·, ·). To account fot homogeneous
Dirichlet boundary conditions we define H1

0 (Ω) = {v ∈ H1
0 (Ω) : v|∂Ω = 0}. We introduce two spaces

of incompressible vector fields:

H = {v ∈ [L2(Ω)]d : ∇ · v = 0; v · n|∂Ω = 0},
V = {v ∈ [H1

0 (Ω)]d : ∇ · v = 0}

4

YANG et al:INCOMPRESSIBLE NAVIER-STOKES EQUATION464



d = 2 or 3 for 2D or 3D case, respectively. Define the vector norm || · || such that

||u|| = (
n∑

i=1

||ui||2)1/2, (2.11)

where u = (u1, u2, · · · , ud) ∈ (H1
0 )d. We also use (u, v) =

∑d
i=1(ui, vi).

We define

a(u, v) = (∇u,∇v) =
∑

1≤i,j≤d

∫

Ω

∂ui

∂xj

∂vi

∂xj
dΩ,

b(u, v, w) =
∑

1≤i,j≤d

∫

Ω
ui

∂vj

∂xi
wj dΩ.

and

(Au, v) = a(u, v)
(B(u, v), w) = b(u, v, w)

Within this framework, (2.1)-(2.2) can be expressed as the evolution equation in H: for t > 0

∂u

∂t
(t) + Au(t) + B(u(t), u(t)) = 0, t ≥ 0, u(0) = u0, (2.12)

From (2.4) and (2.5) we have

∆pn+1 =
1
τ
∇u∗n+1 =

1
τ
∇(ũn+1 + τ∇pn) =

1
τ
(∇ũn+1 + τ∆pn), (2.13)

summing up (2.3) at time step n + 1, and (2.4), (2.6) at time step n, we derive

ũn+1
i − ũn

i

τ
+

∂

∂xj

(
ũn+1

i + un
i

2

)
ûn

j =
1

Re

∂

∂xj

∂

∂xj

(
ũn+1

i + un
i

2

)
,

or

ũn+1 − ũn

τ
+ A(

ũn+1 + un

2
) + B(ûn,

ũn+1 + un

2
) = 0. (2.14)

We start by introducing some inequalities for the operators defined above. These inequalities can be
proved by using Hölder’s inequality and Sobolev inequalities.

Lemma 2.1 There exists a constant C1 and C2 depending only on the time t and the shape regularity
constant such that

|a(u, v)| ≤ C1||u|| · ||v||,
|a(v, v)| ≥ C2||v||2,

b(u, v, v) = 0,

5
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and

b(u, v, w) ≤





||u||1||v||1||w||1 , ∀u, v, w ∈ H1
0 (Ω),

||u||2||v||||w||1 , ∀u ∈ H2(Ω)
⋂

H1
0 (Ω), v, w ∈ H1

0 (Ω),
||u||2||v||1||w|| , ∀u ∈ H2(Ω)

⋂
H1

0 (Ω), v, w ∈ H1
0 (Ω),

||u||1||v||2||w|| , ∀v ∈ H2(Ω)
⋂

H1
0 (Ω), u, w ∈ H1

0 (Ω).

Here we recall a discrete version of the Uniform Gronwall Lemma[25] as Lemma 2.2 which will be
useful in our discussion.

Lemma 2.2 Let τ , B, and aj , bj , cj , γj , for integers j ≥ 0, be nonnegative numbers such that

an + τ

n∑

j=0

bj ≤ τ

n∑

j=0

γjaj + τ

n∑

j=0

cj + B. for n ≥ 0.

Suppose that τγj < 1 for all j, then

an + τ

n∑

j=0

bj ≤ e
τ

∑n
j=0

γj
1−kγj (τ

n∑

j=0

cj + B). for n ≥ 0.

Theorem 2.1 If un is the FEM solution of Crank-Nicolson scheme (2.3) to (2.6), then there exists a
constant C depending only on the initial date u0 and time t such that

||un||2 ≤ C(||u0||, t).

Proof. From (2.8) and (2.10)
∫

Ω
vi

(
un+1

i − ũi

τ

)
dΩ =

∫

Ω
vi(

∂pn

∂xi
− ∂pn+1

∂xi
) dΩ.

Use the summation over the dimensions of the spatial domain to obtain

(un+1, v) = (ũ, v) + τ
n∑

i=1

(vi,
∂

∂xi
(pn − pn+1)).

Set v = un+1 and since v ∈ V

||un+1||2 ≤ ||un+1||||ũ||,
||un+1|| ≤ ||ũ||, (2.15)

and the summation over the dimensions of the spatial domain on (2.7)
(

ũ− un

τ
, v

)
+ a

(
ũ + un

2
, v

)
+ b

(
ũ + un

2
, ûn, v

)
= (f, v) , ∀v ∈ V.

Set v = (ũ + un)/2 then (f, v) = 0 and b ((ũ + un)/2, ûn, (ũ + un)/2) = 0,
(

ũ− un

τ
,
ũ + un

2

)
+ a

(
ũ + un

2
,
ũ + un

2

)
= 0, ∀v ∈ V,

||ũ||2 − ||un||2 + 2τC|| ũ + un

2
||2 ≤ 0. (2.16)

6
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By recursion, (2.15) and (2.16) follows the conclusion

||un|| ≤ ||u0||.
The Theorem 2.1 is proved.

Theorem 2.2 If u is the exact solution of (2.1) and (2.2), un is the solution of Crank-Nicolson scheme
(2.3) to (2.6), then there exists a constant C depending on u and time t such that

||u(t)− un|| ≤ Cτ2,

where time t = nτ .

Proof. From (2.12) we have

u(t) = e−tAu0 −
∫ t

0
e−(t−s)AB(u(s), u(s)) ds, (2.17)

and from (2.4), (2.6), and (2.14) we obtain

un = Enu0 −
n∑

j=1

En−j(I +
τ

2
A)−1τB(uj−1,

uj−1 + uj

2
), (2.18)

where E = (I − τ
2A)/(I + τ

2A), I denoting the identity.
Then we have the equation about the error en := u(t)− un

en = (e−tAu0 − Enu0) + (
n∑

j=1

En−j(I +
τ

2
A)−1τB(uj−1,

uj−1 + uj

2
)

−
∫ t

0
e−(t−s)AB(u(s), u(s)) ds, (2.19)

For the first part of (2.19), we note that

lim
τ→0

e−tA − ( I− τ
2
A

I+ τ
2
A)n

τ2
=

1
12

e−tAtA3,

thus for an sufficiently small τ

||e−tAu0 − Enu0|| ≤ C(||u0||)τ2.

The second part of (2.19)
∫ t

0
e−(t−s)AB(u(s), u(s)) ds−

n∑

j=1

En−j(I +
τ

2
A)−1τB(uj−1,

uj−1 + uj

2
)

= [
∫ t

0
e−(t−s)AB(u(s), u(s)) ds−

n∑

j=1

En−j(I +
τ

2
A)−1τB(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)]

+[
n∑

j=1

En−j(I +
τ

2
A)−1τB(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)

−
n∑

j=1

En−j(I +
τ

2
A)−1τB(uj−1,

uj−1 + uj

2
)].

7
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Since

n∑

j=1

En−j(I +
τ

2
A)−1τ [B(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)−B(uj−1,
uj−1 + uj

2
)]

=
n∑

j=1

En−j(I +
τ

2
A)−1τB(u(τ(j − 1))− uj−1,

u(τ(j − 1)) + u(τj)
2

)

+
n∑

j=1

En−j(I +
τ

2
A)−1τB(uj−1,

u(τ(j − 1)) + u(τj)
2

− uj−1 + uj

2
).

We consider

n∑

j=1

||En−j(I +
τ

2
A)−1τB(u(τ(j − 1))− uj−1,

u(τ(j − 1)) + u(τj)
2

)||

≤
n∑

j=1

1
2
||En−j(I +

τ

2
A)−1τ ||||u(τ(j − 1))− uj−1||||u(τ(j − 1)) + u(τj)||

≤ τC(||u||, t)
n−1∑

j=1

Cj ||u(τj)− uj ||.

Similarly, by virtue of Theorem 2.1

n∑

j=1

||En−j(I +
τ

2
A)−1τB(uj−1,

u(τ(j − 1)) + u(τj)
2

− uj−1 + uj

2
)||

≤
n∑

j=1

1
2
||En−j(I +

τ

2
A)−1τ ||||uj−1|| [||u(τ(j − 1))− uj−1||+ ||u(τj)− uj ||]

≤ τC(||u||, t)
n−1∑

j=1

Cj ||u(τj)− uj ||.

So we obtain

||
n∑

j=1

En−j(I +
τ

2
A)−1τB(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)

−
n∑

j=1

En−j(I +
τ

2
A)−1τB(uj−1,

uj−1 + uj

2
)||

≤ τC(||u||, t)
n−1∑

j=1

Cj ||u(τj)− uj ||.

8
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Then we deal with
∫ t

0
e−(t−s)AB(u(s), u(s)) ds−

n∑

j=1

En−j(I +
τ

2
A)−1τB(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)

=
∫ t

0
e−(t−s)A(B(u(s), u(s))−B(u(t), u(t))) ds

−
n∑

j=1

En−j(I +
τ

2
A)−1τ [B(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)−B(u(t), u(t))]

+[
∫ t

0
e−(t−s)A ds−

n∑

j=1

En−j(I +
τ

2
A)−1τ ]B(u(t), u(t)).

Since we have known that
∫ t

0
e−(t−s)A ds−

n∑

j=1

En−j(I +
τ

2
A)−1τ

= (I − e−tA)A−1 − I − En

I − E

τ

I + τ
2A

= (I − e−tA)A−1 − (I − En)A−1

= (En − e−tA)A−1. (2.20)

It is easily verified that

||[
∫ t

0
e−(t−s)A ds−

n∑

j=1

En−j(I +
τ

2
A)−1τ ]B(u(t), u(t)||

= ||(En − e−tA)A−1B(u(t), u(t)||
≤ Cτ2||u(t)||||∇u(t)||
≤ C(||u||, t)τ2.

We write
∫ t

0
e−(t−s)A(B(u(s), u(s))−B(u(t), u(t))) ds

−
n∑

j=1

En−j(I +
τ

2
A)−1τ [B(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)−B(u(t), u(t))]

=
n∑

j=1

[e−(t−τ(j−1/2))A − En−j(I +
τ

2
A)−1]τ [B(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)−B(u(t), u(t))]

+
n∑

j=1

∫ τj

τ(j−1)
e−(t−τ(j−1/2))A[B(u(s), u(s))−B(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)] ds

+
n∑

j=1

∫ τj

τ(j−1)
[e−(t−s)A − e−τ(n−(j−1/2))A](B(u(s), u(s))−B(u(t), u(t))) ds.

9
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Here since

||u(τj)− u(τ(j − 1))− τ
∂u

∂t
u(τ(j − 1/2))||

=
1
2
||

∫ τj

τ(j−1)
(s− τ(j − 1))2

∂3u

∂t3
u(s) ds +

∫ τj

τ(j−1)
(s− τj)2

∂3u

∂t3
u(s) ds||

≤ Cτ2

∫ τj

τ(j−1)
||∂

3u

∂t3
u(s)|| ds

≤ C(||u||, j)τ2.

and as (2.20)

lim
τ→0

n∑

j=1

[e−(t−τ(j−1/2))A − En−j(I +
τ

2
A)−1]τ

= lim
τ→0

n∑

j=1

[e−(t−τ(j−1/2))Aτ −
n∑

j=1

En−j(I +
τ

2
A)−1τ

=
∫ t

0
e−(t−s)A ds− (I − En)A−1

= (En − e−tA)A−1.

Noting that ||B(u(t1), u(t2))−B(u(t), u(t))|| ≤ C(||u||, t) ∀ t1, t2 ∈ [0, t], then

||
∫ t

0
e−(t−s)A(B(u(s), u(s))−B(u(t), u(t))) ds

−
n∑

j=1

En−j(I +
τ

2
A)−1τ [B(u(τ(j − 1)),

u(τ(j − 1)) + u(τj)
2

)−B(u(t), u(t))]||

≤ C(||u||, t)τ2.

Now we have obtained that for sufficient small τ

||u(t)− un|| ≤ C(||u||, t)τ2 + C(||u||, t)
n−1∑

j=1

Cj ||u(τj)− uj ||τ.

Using the Lemma 2.2, the theorem is established.

||u(t)− un|| ≤ C(||u||, t)τ2.

The Theorem 2.2 is proved.

Theorem 2.3 We obtain error estimates for the full discretization of the Navier-Stokes equations. For a
constant C there holds at time t = nτ

||u(t)− un
h|| ≤ C(||u||, t, Ω)(h2 + τ2). (2.21)

10
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Proof. If (2.7), (2.8), (2.9) and (2.10) are solved step by step using second-order finite element. Let
Vh ∈ V be the finite dimensional subspaces, un

h ∈ Vh be the solutions of FEM. There exists a constant
C such that

||un − un
h|| ≤ Ch2||un||.

and thanks to Theorem 2.1, we have

||u(t)− un
h|| ≤ ||u(t)− un||+ ||un − un

h|| ≤ C(h2 + τ2).

The Theorem 2.3 is proved.
Since the four-step scheme is complex and error estimation of pressure is difficult to derive, we will

put forward the approximation result about pressure in further studies to complete the convergence of the
scheme.

3 Convergence of Adaptive Finite Element Method

Now we shall show the adaptive finite element method for the equation (2.7). Firstly we present
a residual type error estimator η and prove it bounds the true error by inequalities in both directions.
The upper bound shows that η can be used as a reliable error indicator for the adaptive local refinement
algorithm, while the lower bound suggests that an unnecessary amount of work can be avoid.

For the purposes of the error analysis it is convenient to introduce the fact that for t ∈ (tj−1, tj ], j =
1, 2, . . . , n

U(x, t) =
t− tj−1

τ
uj

h(x) +
tj − t

τ
uj−1

h (x) (3.1)

Then we can define the inner residual
Define the initial error

η0 = ||u(0)− U(0)||V = ||u0 − u0
h||0,Ω,

the jump residual

η1 = (
∫ t

0
τ

∑

l
⋂

∂Ω=∅

∫

Kl

||h1/2[∇U ]l||2V dx ds)1/2,

where [U ]l is the jump of U on the edge l = K
1
l

⋂
K

2
l ,

the time residual

η2 = (
∑

j

τ ||∇(uj
h − uj−1

h )||2)1/2.

Theorem 3.1 Let u and un
h be the exact solution and the full discretization solution of 2.1 and 2.2,

respectively, and the U is defined as 3.1. For all time t ∈ [0, T ], there exists a constant C1 > 0
depending only on the shape regularity constant such that

||(u− U)(t)||20,Ω +
∫ t

0
||(u− U)(s)||20,Ω ds ≤ C(η2

0 + η2
1 + η2

2). (3.2)
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Proof. From the proof of Theorem 2.2 we arrive at

||(u− U)(t)||20,Ω +
∫ t

0
||(u− U)(s)||20,Ω ds

≤ (||(u− U)(0)||+
∫ t

0
|| ∂
∂t

(u− U)(s)|| ds)2 +
∫ t

0
||(u− U)(s)||20,Ω ds

≤ C(||(u− U)(0)||2 +
∫ t

0
|| ∂
∂t

(u− U)(s)||2 ds +
∫ t

0
||(u− U)(s)||20,Ω ds)

for simplicity we set t ∈ [tn−1, tn], where tj = τj, j = 1, 2, . . . , n, then we derive

||(u− U)(t)||20,Ω +
∫ t

0
||(u− U)(s)||20,Ω ds

≤ C(||(u− U)(0)||2 +
n∑

j=1

∫ tj

tj−1

|| ∂
∂t

(u− U)(s)||2 + ||(u− U)(s)||2 ds).

We note that at time s = tj , U(s) = uj
h and substitute (2.17) and (2.18) into the equation above

||(u− U)(t)||20,Ω +
∫ t

0
||(u− U)(s)||20,Ω ds

≤ C(||(u− U)(0)||2 +
n∑

j=1

∫ tj

tj−1

||Au(s)−AU(s)||2

+||B(u(s), u(s))−B(U(s), U(s))||2 + ||(u− U)(s)||2 ds)

From the proof of Theorem 2.2 we know that for time step [tj−1, tj ]

∫ tj

tj−1

||Au(s)−AU(s)||2 ds

≤
∫ tj

tj−1

(||Au(s)−AU(tj−1)||+ ||AU(s)−AU(tj−1)||)2 ds

≤ C

∫ tj

tj−1

(C1||u(s)− U(s)||2 +
∑

l
⋂

∂Ω=∅

∫

Kl

||h1/2[∇U ]l|| dx) ds

= C

∫ tj

tj−1

||u(s)− U(s)||2 ds + τ
∑

l
⋂

∂Ω=∅

∫

Kl

||h1/2[∇U ]l|| dx

12
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and
∫ tj

tj−1

||B(u(s), u(s))−B(U(s), U(s))||2 ds

≤
∫ tj

tj−1

(||B(u(s), u(s)− U(s))||+ ||B(u(s)− U(s), U(s))||)2 ds

≤ C

∫ tj

tj−1

(||∇u(s)||2 + ||∇U(s)||2 + ||∇(u(s)− U(s))||2) ds

≤ C(τ(||Utj − U(tj−1)||2 +
∫ tj

tj−1

||u(s)− U(s)||2 ds + τ
∑

l
⋂

∂Ω=∅

∫

Kl

||h1/2[∇U ]l|| dx

Hence adding up the time step [tj−1, tj ] and recalling the definition of ηi, i = 0, 1, 2, we have that

||(u− U)(t)||2 +
∫ t

0
||(u− U)(s)||2 ds ≤ C(η2

0 + η2
1 + η2

2)

The proof of Theorem 3.1 is complete.

Theorem 3.2 Let u, un
h and U be defined as same as in Theorem 3.1. For all time t ∈ [0, T ], there exists

a constant C2 > 0 depending only on the shape regularity constant such that

η2
1 − C2oscΩ(uh) ≤ C2(||(u− U)(t)||2 +

∫ t

0
||(u− U)(s)||2 ds), (3.3)

with

oscΩ(uh)2 :=
∫ t

0

∑

K

∫

K

[
||h2(U − U)||2 + ||h2(

∂uh

∂t
− ∂uh

∂t
)||2 + ||h2∇U ||2

]
dx ds.

where v|K =
∫
K v/|K| dx

Proof: We recall the definition of η1, set l = K1
l

⋂
K2

l , then

||[∇U ]l|| = ((∇U)K1
l
− (∇U)K1

l
)n

where n is the unit normal vector on loutwards K1
l . Since U is the linear interpolation of uj

h, j =
0, 1, . . . , nwe arrive at

∑

l
⋂

∂Ω=∅

∫

Kl

||h1/2[∇U ]l||2V dx

≤ C
∑

l
⋂

∂Ω=∅
(|K1

l |+ |K2
l |)

∫

K=max(K1
l ,K2

l )
h||∇U −∇U |K ||2 dx

≤ C
∑

K

∫

K
h(||U − U |K ||2 + ||∇U ||2)
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Integrate the equation above from 0 to t, then

η2
1 ≤ C2(oscΩ(uh) + (||(u− U)(t)||2 +

∫ t

0
||(u− U)(s)||2 ds)),

The proof of Theorem 3.2 is complete..
With the same argument, we have the two sided bounds in nested finite element spaces. Let TH be

a shape regular tetrahedralation of Ω and Th is a refinement of TH such that VH ⊂ Vh . Let uh and uH

be the finite element approximation of u in Vh and VH . Now we present a localized version of the upper
bound for the difference of solutions.

The interior node property used in the above results is important since without the interior nodes
V h in not fine enough to capture the difference of the successive solutions. If the refinement does not
produce interior nodes, the error will not change. In this sense, interior node is a necessary condition for
the error condition.

Now we are going to prove that there exists a local refinement algorithm which produces a sequence
of meshes {Tk} such that the corresponding finite element solutions {uk} satisfy

||u− uk|| ≤ Cδk, for some δ ∈ (0, 1). (3.4)

We are now in the positon to present the algorithms:

Algorithm 3.1

[uH , ηH ] = POSTERIORI(TH)
1. Solve (2.7) on TH to get the solution uH .
2. Compute the residual type error estimator η(uH) := (η0 + η1 + η2)1/2

END POSTERIORI

Let θ, θ̃ ∈ (0, 1) be two fixed numbers and TH is the current mesh. Denote ΩMH
:=

⋃
T∈M ΩT . Our

main subroutine is the refinement in one loop:

Algorithm 3.2

Th = REFINE(TH , ηH , θ, θ̃)
1. Marking Strategy

(a) Mark the minimal edge set MH such that

ηMH
(uH) ≥ θη(uH). (3.5)

(b) Enlarge MH to be MH with minimal extension such that

oscΩMH
(uH) ≥ θ̃oscTH

(uH). (3.6)

2. Refinement
(a) Refine each element T ∈ ΩMH

into elements such that it will
satisfy the interior node property for T and ∂T .

(b) Complete the hanging point to be a conforming partition Th

END REFINE

14
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Before we proof (3.4), we need the lemma:

Lemma 3.1 Let Th = REFINE(TH , ηH , θ, θ̃). There exists a number β ∈ (0, 1) depending only on θ,
the shape regularity of TH such that

||u− uh|| ≤ β||u− uH ||+ oscTH
(uH).

Proof. Using the upper bound inequality in the refinement strategy and the discrete version of lower
bound inequality we find

θ2||u− uH ||2 ≤ C2
1ηMH

(uH)2

≤ 3C2
1/C2

2 ((||uh − uH ||)2 + osc2
TH

(uH)).

Then

||u− uh||2 ≤ (1− θ2C2
2

3C2
1

)||u− uH ||2 + oscTH
(uH)2.

We define β2 := 1− θ2C2
2

3C2
1

, such that

||u− uh||2 ≤ β2(||u− uH ||)2 + oscTH
(uH)2

≤ β(||u− uH ||+ oscTH
(uH))2.

The proof of Lemma 3.1 is completed.

Theorem 3.3 Let uk be the solution obtained in the k-th loop in the algorithm AFEM, then there exists
a constant δ ∈ (0, 1) depending only on θ, θ̃ and the shape regularity of T0 such that

||u− uk|| ≤ Cδk

and thus the algorithm AFEM will terminate in finite steps.

Proof. Obviously, we have the inequations for the data oscillation on the tow mashes TH and Th gener-
ated in the algorithm AFEM.

oscKh
(uh) ≤ αoscKH

(uH).

By Lemma 3.1 and the inequation above there exist α, β ∈ (0, 1) such that

||u− uk+1|| ≤ β(||u− uk||) + oscTk
(uk),

and

oscTk
(uk) ≤ αkoscT0(u0).

If we let ek = ||u− uk||, we then get

ek+1 ≤ βek + αkoscT0(u0),

15
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which by recursion implies

ek+1 ≤ βk+1e0 + oscT0(u0)
k∑

j=0

βjαk−j .

We choose δ such that 1 ≥ δ ≥ max(α, β) to obtain

k∑

j=0

βjαk − j ≤
k∑

j=0

max(α, β)jδk−j

≤ δk
k∑

j=0

(
max(α, β)

δ
)j

≤ δk+1 1
δ −max(α, β)

.

Then the assertion follows immediately

ek+1 ≤ Cδk+1,

with

C = e0 +
oscT0(u0)

δ −max(α, β)
.

The proof of Theorem 3.3 is completed.
From Theorem 3.3, the adaptive algorithm AFEM will stop in finite steps for a given tolerance.

4 Numerical Results

In this section, we take the numerical solution of the N-S equation at different Reynolds number as
examples to test the four-step time advancement scheme and show the mesh refinement to illustrate the
adaptive method.

The case is the backward facing step. The step height h is set to half the height of the expanded
channel. The inflow and outflow boundaries are located at x = 0 and x = 20h, respectively. The bottom
and top of the channel are fixed by stationary walls. We set

Ω = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + Γ5

where

Γ0 = {(x, y) : x = 0, y = t, t ∈ [0, 1]}
Γ1 = {(x, y) : x = 2t, y = 0, t ∈ [0, 1]}
Γ2 = {(x, y) : x = 2, y = −t/2, t ∈ [0, 1]}
Γ3 = {(x, y) : x = 2 + 20t, y = −0.5, t ∈ [0, 1]}
Γ4 = {(x, y) : x = 20, y = −0.5 + 1.5t, t ∈ [0, 1]}
Γ5 = {(x, y) : x = 20t, y = 1, t ∈ [0, 1]}
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with initial condition ui0 = 4y2(1 − y) (0 < x < 2, 0 < y < 1), uj0 = 0, p0 = 0 and boundary
condition

ui = 4y2(1− y), on Γ0

ui = 0, on Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ5

uj = 0, on Γ0 ∪ Γ1 ∪ Γ3 ∪ Γ5

p = 0, on Γ4

And we set dt = 0.2, N(The number of nodes) ≈ 1000

(a)

(b)

(c)

(d)

The pictures show the speed contours(a), spanwise contours(b), pressure contours(c),and stream(d)
at Reynolds number Re = 400(left) and Re = 1500(right). From (a) and (c) we can see that there are
two secondary vortices. The dividing streamlines of the recirculation at the bottom are indicated by the
zero streamfunction contours and the recirculation regions are indicated by negative streamfunctions. At
the Reynolds number Re = 400 increased a recirculation region is observed at the top of the expanded
channel and its size increased at Re = 1500.
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(e1)

(e2)

(e3)

(e1) is the original while (e2) and (e3) are the refined mesh at Re = 400 and Re = 2000, respectively.
(e1) is nearly uniform, (e2) and (e3) are refined at the left bottom and top center of the expanded channel
where near the locations of the two secondary recirculations.

5 Conclusion

The convergence of the four-step time advancement scheme for the unsteady incompressible Navier-
Stokes equations is proved. The governing equations are decoupled by the fractional method. The spatial
domain is solved by the second-order Galerkin FEM and the temporal domain is integrated by the Crank-
Nicolson scheme. We complete the proof of stability and error estimation of the fractional scheme in
second-order accurate. The posteriori error estimator of adaptive method is devised to satisfy the both
upper and lower bounds. And we device an adaptive algorithm using the error estimator as an indicator.
The numerical result is validated with the cases: flow over a backward facing step. The calculated results
also show the step of mesh refinement.
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Abstract

In this paper, based on a smoothing approximation of a lower order penalty function and

Facchinei’s method of dealing with the inconsistency of subproblems in SQP methods, we pro-

pose a SQP algorithm for nonlinear inequality constraints optimization problems. The presented

algorithm incorporates automatic adjustment rules for the choice of parameters. The algorithm

is proved to be globally convergent and superlinearly convergent under some mild conditions

without the strict complementarity.
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gence, convergence rate.
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1. Introduction

In this paper, we consider the following nonlinear inequality constrained optimization:

min f(x)

(P ) s.t. gj(x) ≤ 0, j ∈ I = {1, 2, ...,m},
(1.1)

where the functions f0, fj(j ∈ I) : Rn →R are all twice continuously differentiable.

It is well known that sequential quadratic programming (SQP) algorithms are widely acknowl-

edged to be among the most successful algorithms for solving (P)(See[1], [7]–[11], [13], [18]-[21]).

A good survey of SQP algorithms by Boggs and Toll can be found in [6].

At each iteration of a SQP algorithm, a search direction dk is calculated by solving the following

QP subproblem:

(QP)
min

d
∇f(x)Td + 1

2dT Bkd

s.t. gj(x) + ∇gj(x)T d ≤ 0, j ∈ I,
(1.2)

where Bk is symmetric positive definite. The iteration then has the form

xk+1 = xk + αkdk,

∗Corresponding author. E-mail address: chenyu4660@163.com.cn
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where the stepsize αk is chosen to yield a sufficient decrease of a suitable merit function.

A serious shortcoming in the conventional SQP method for problem (P) is the possible incon-

sistency of the constrains in (1.2). To overcome this difficulty, various method have been proposed.

Generally speaking, there are two ways to overcome it, one is to modify subproblem (1.2) to ensure

that this subproblem is always feasible, e.g. see [3, 8, 19]. The other one is Facchinei’s method. Its

basic idea is: By using the differentiable exact penalty function developed by Lucidi [4] as merit

function, if the subproblem (1.2) is consistent and its solution is acceptable, then the solution

is used as the search direction; otherwise, a first order direction, which is an approximation of

the gradient of the merit function, is used. The algorithm is proved to be global and superlinear

convergence under some mild conditions without the strict complementarity.

Among many SQP algorithms for problem (P), the classical l1 penalty function

F (x, µ) = f(x) + µ

m
∑

i=1

gi
+(x),

where gi
+(x) = max

i∈I
{0, gi(x)}, has been often used as a merit function. Since lower order penalty

function have shown some promising in establishing optimality conditions, and in particular, they

require weaker conditions than the l1 penalty function for the existence of exactness, e.g. see

([15, 16, 17]). Recently, based on a smoothing approximation of the following lower order penalty

function

F s(x, µ) = f(x) + µ
m

∑

i=1

(gi
+(x))s, (1.3)

where s ∈ (0, 1), and Facchinei’s method of dealing with the inconsistency of subproblems in SQP

methods, K.W.Meng, S.J.Li and X.Q.Yang [22] have presented a robust SQP algorithm for solving

a nonlinear constrained optimization problem. This algorithm incorporates automatic adjustment

rules for the choice of parameters. Under a new regularity condition at infeasible points, the

algorithm is proved to be globally convergent. However, no superlinearly convergent result is

presented.

In this paper, based on another smoothing approximation of a lower order penalty function and

Facchinei’s method of dealing with the inconsistency of subproblems in SQP methods, we propose a

SQP algorithm for nonlinear inequality constraints optimization problems. The presented algorithm

incorporates automatic adjustment rules for the choice of parameters. The algorithm is proved to

be globally convergent and superlinearly convergent under some mild conditions without the strict

complementarity.

The remainder of this paper is organized as follows. The proposed algorithm is stated in

Section 2. In Section 3 and Section 4, under some mild assumptions, we show that this algorithm is

globally convergent and locally superlinear convergent, respectively. In section 5, some preliminary

numerical results are reported. Finally, we give concluding remarks about the proposed algorithm.

For the rest of this section, we give a list of notation to be employed in this paper. We define

the following index sets:

IP (x) = {i ∈ I : gi(x) > 0},

IN (x) = {i ∈ I : gi(x) < 0},
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I0(x) = {i ∈ I : gi(x) = 0}.

2. Description of algorithm

In this section, following the similar way as in [5], we firstly give a smoothing approximation for

(1.3) as follows:

F s(x, µ, ε) = f(x) + µ

m
∑

i=1

((gi
+(x))αs + εα)

1

α , (2.1)

where ε > 0, α > 2
s .

It is not difficult to verify that F s(x, µ, ε) is twice continuously differentiable for any x, with

gradient

∇F s(x, µ, ε) = ∇f(x) + µ
m

∑

i=1

s(gi
+(x))(sα−1)

((gi
+(x))αs + εα)1−

1

α

∇gi(x). (2.2)

In the sequel, using the smoothing lower order penalty function F s(x, µ, ε) as the merit function,

we propose a SQP algorithm for (P). If the QP subproblem is feasible, we use its solution as a

search direction. Otherwise, we use the negative gradient direction of the merit function, i.e.,

−∇F s(x, µ, ε) as a search direction.

We state now the algorithm for solving problem (P).

Algorithm 2.1

Data: x0 ∈ Rn, B0 > 0, ε−1, µ−1, Tµ > 1, Tε ∈ (0, 1), θ ∈ (0, 1), σ ∈ (0, 1
2).

Step 0: Set k = 0.

Step 1: Let εk = Tεε
k−1 and µk = µk−1.

Step 2: Compute (dk, λk), the KKT pair for QP subproblem. If the QP subproblem is infeasible,

go to Step 5. Otherwise, if dk = 0, stop.

Step 3: If ∇F s(xk, µk, εk)T dk ≤ −1
2(dk)T Bkd

k, go to Step 9.

Step 4: Set µk = Tµµk, go to Step 3.

Step 5: If
∑

i∈IP (xk)

s(gi
+(xk))(sα−1)

((gi
+(xk))αs + εα)1−

1

α

∇gi(x
k) 6= 0, go to Step 7.

Step 6: Set εk = Tεε
k, go to Step 5.

Step 7: If −‖∇F s(xk, µk, εk)‖2 ≤ −H(xk), where H(xk) = max
i∈I

{gi(x
k), 0}, set dk = −∇F s(xk, µk, εk),

go to Step 9.

Step 8: Set µk = Tµµk, go to Step 7.

Step 9: Let αk be the largest one of the sequence {1, θ, θ2, · · ·} satisfying the following condition:

F s(xk + αkdk, µk, εk) ≤ F s(xk, µk, εk) + σαk∇F s(xk, µk, εk)T dk, (2.3)

Step 10: If the QP subproblem is feasible, generate Bk+1 using the damped BFGS formula

proposed by Powell ([11]). Otherwise, set Bk+1 = Bk.

Step 11: Set k = k + 1, go to Step 1.

To prove that Algorithm 3.1 is well defined and the convergence of the above algorithm, we

need the following assumptions.

3
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Assumption 1: The sequences {xk} and {dk} generated by Algorithm 3.1 are bounded.

Assumption 2: {Bk} are positive definite and there exist two positive constants β1 and β2 such

that

β1‖d‖2 ≤ dT Bkd ≤ β2‖d‖2.

Assumption 3: (Regularity Condition at Feasible Points) At each feasible point x of problem (P),

the gradients of the active constraints are linearly independent.

Since a general constrained problem can be viewed as a combination of two problems: (i) the

feasible problem, i.e., the problem of finding a feasible point; (ii) the problem of finding a local

minimum point of the objective function over the feasible set. The former problem is a hard one,

since it is essentially global; in fact, we have to find a global minimum of the generally nonconvex

function expressing the violation of the constraints. Therefore, in order to be able to easily solve

this problem, we have to resort to some suitable condition. In our approach, similar to [13], this

condition is expressed as follows.

Assumption 4: (Regularity Condition at infeasible Points) At each infeasible point x of problem

(P), there exists ε̃ > 0 satisfying the following condition

∑

i∈IP (x)

s(gi
+(x))(sα−1)

((gi
+(x))αs + εα)1−

1

α

∇gi(x) 6= 0, ∀ε ∈ (0, ε̃]. (2.4)

If subproblem (1.2) is feasible and Bk is positive definite, then it admits a unique solution dk, and

dk is such a solution if and only if there exists a multiplier vector λk satisfying the following KKT

conditions:

∇f(xk) +

m
∑

i=1

λk
i ∇gi(x

k) + Bkd
k = 0

λk
i (∇gi(x

k)T dk + gi(x
k)) = 0, ∀i ∈ I

λk
i ≥ 0, ∀i ∈ I

∇gi(x
k)T dk + gi(x

k) ≤ 0, ∀i ∈ I.

(2.5)

The following result can be obtained immediately.

Lemma 2.1 For any positive definite matrix Bk, the pair (x∗, λ∗) is a KKT pair for problem (P)

if and only if (dk, λk) = (0, λ∗) is a KKT pair for subproblem (1.1).

Taking into account Assumption 3, we can obtain the following result.

Lemma 2.2 (See [13]) Let xk be a feasible point, and let the matrix Bk be positive definite. Then,

d(x,B) exists in a neighborhood of (xk, Bk) and is continuous at (xk, Bk), where d(x,B) indicates

the solution of the subproblem QP(x,B).

Now we show that Algorithm 2.1 is well defined.

Lemma 2.3 Algorithm 2.1 does not cycle between Step 3 and Step 4 infinitely.

Proof. When

µk ≥ max
gi(xk)>0

{
λk

i ((gi(x))αs + εα)1−
1

α

s(gi(x))(sα−1)
}, (2.6)

4
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it follows from (2.5) that we have

∇F s(xk, µ, ε)T dk = ∇f(xk)T dk + uk
m

∑

i=1

s(gi
+(xk))(sα−1)

((gi
+(xk))αs + εα)1−

1

α

∇gi(x
k)T dk

= ∇f(xk)T dk + uk
∑

gi(xk)>0

s(gi(x
k))(sα−1)

((gi(xk))αs + εα)1−
1

α

∇gi(x
k)T dk

= −(dk)T Bkdk −
m

∑

i=1

λk
i ∇gi(x

k)T dk + uk
∑

gi(xk)>0

s(gi(x
k))(sα−1)

((gi(xk))αs + εα)1−
1

α

∇gi(x
k)T dk

≤ −(dk)T Bkdk −
∑

gi(xk)>0

(µk s(gi(x
k))(sα−1)

((gi(xk))αs + εα)1−
1

α

− λk
i )gi(x

k)

≤ −(dk)T Bkdk

≤ −1
2(dk)T Bkdk.

The proof is completed.

By Assumption 4, we have

Lemma 2.4 Algorithm 2.1 does not cycle between Step 5 and Step 6 infinitely.

Lemma 2.5 Algorithm 2.1 does not cycle between Step 7 and Step 8 infinitely.

Proof. From the proof of Lemma 2.3, we have

−‖∇F s(xk, µ, εk)‖2 = −‖∇f(xk)‖2 − µ2‖ s(gi(xk))(sα−1)

((gi(xk))αs+εα)1−
1
α

∇gi(x
k)‖2

− 2µ
∑

gi(xk)>0

s(gi(x
k))(sα−1)

((gi(xk))αs + εα)1−
1

α

∇gi(x
k)T∇f(xk).

By Assumption 4 and lemma 2.4, we have that

lim
µ→+∞

−‖∇F s(xk, µ, εk)‖2 = −∞.

The proof is completed.

Lemma 2.6 Algorithm 2.1 is well defined at Step 9.

Proof. Suppose by contradiction that the condition (2.4) is not satisfied when Algorithm 2.1

reaches Step 9. Then there exist some xk, dk, µk, εk and αn → 0+ such that the following inequality

holds.

F s(xk + αndk, µk, εk) > F s(xk, µk, εk) + σαn∇F s(xk, µk, εk)T dk

Then we have

1

αn
[F s(xk + αndk, µk, εk) − F s(xk, µk, εk)] − σ∇F s(xk, µk, εk)T dk > 0

Since αn → 0+, we obtain (1 − σ)∇F s(xk, µk, εk)T dk ≥ 0. Noting that σ ∈ (0, 1
2), we have

∇F s(xk, µk, εk)T dk ≥ 0.

5
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On the other hand, if Algorithm 2.1 goes to Step 9 from Step 3, we have

∇F s(xk, µk, εk)T dk ≤ −
1

2
(dk)T Bkdk < 0,

and if Algorithm 2.1 goes to Step 9 from Step 7, we also have

∇F s(xk, µk, εk)T dk = −‖∇F s(xk, µk, εk)‖2 ≤ −H(xk) < 0,

either of which causes a contradiction. The proof is completed.

3. Global Convergence

In this section, we analyze the global convergence of the proposed algorithm. For this, we show

that the penalty parameter µ keeps as a constant when k is sufficiently large.

Lemma 3.1 There exists an iterate index k0 satisfying that

µk = µk0 = µ, ∀k ≥ k0.

Proof. We know that the penalty parameter µ only increase at Step 4 and Step 8. It follows from

Lemma 2.3 that Algorithm 2.1 will not go to Step 4 from Step 3 after a finite number of iterations,

that is, the value of the penalty parameter µ is not changed between Step 3 and Step 4 after a

finite number of iterations. Thus, it is sufficient to prove that Algorithm 2.1 will not go to Step 8

from Step 7 after a finite number of iterations.

Suppose by contradiction that Algorithm 2.1 goes to Step 8 from Step 7 infinitely. Then there

exist subsequences {xr}, {µr}, {εr}, {Br} generated by Algorithm 2.1, satisfying that

xr → x∗, µr → +∞, εr → 0, Br → B∗

and

−‖∇F s(xr, µr, εr)‖2 > −H(xr). (3.1)

For x∗, we have possible cases:

Case(i). x∗ is infeasible. From the proof of Lemma 2.5, we have

lim
r→+∞

−‖∇F s(xr, µr, εr)‖2 = −∞.

Since

lim
r→+∞

−H(xr) = −H(x∗).

Step 8 is satisfied eventually. Thus, we have a contradiction to (3.1).

Case(ii). x∗ is feasible. From lemma 3.2, d(xr, Br) is well defined and continuous in a neigh-

borhood of (x∗, B∗). Thus, when r is sufficiently large, subproblem QP (xr, Br) is always feasible,

i.e., Step7 and Step 8 cannot be reached. This contradicts that Algorithm 2.1 goes to Step 8 from

Step 7 infinitely. This completes the proof.

In the sequel, we can prove that after a finite number of iterations, the solution dk of subproblem

QP (xk, Bk) always exists and can be selected as a search direction of the algorithm.

6
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Lemma 3.2 After a finite number of iterations, we have dk := d(xk, Bk), i.e., Steps 5, 6, 7 and 8

are not reached.

Proof. From Lemma 4.1. without loss of generality, we can assume that µk = µ, ∀k. Suppose

by contradiction that there exists a subsequence {xr} of {xk} satisfying that Algorithm 2.1 goes

to Step 5 from Step 2 at xr. It follows from Assumption 1 that xr is a bounded sequence. So we

can assume that xr → x∗. As εk is a monotonically decreasing sequence, by the construction of

Algorithm 2.1, we have

F s(x0, µ, ε0) ≥ F s(x0, µ, ε1) ≥ F s(x1, µ, ε1) ≥ · · · ≥ F s(xk−1, µ, εk−1)

≥ F s(xk−1, µ, εk) ≥ F s(xk, µ, εk) ≥ · · · .
(3.2)

Therefore, {F s(xk, µ, εk)} is monotonically decreasing. It follows from Assumption 1 that {F s(xk, µ, εk)}
is a bounded sequence. Thus it is convergent and

F s(xk, µ, εk) − F s(xk+1, µ, εk+1) → 0. (3.3)

By (3.2) and (3.3), we have

F s(xk, µ, εk) − F s(xk+1, µ, εk) → 0.

It follows from Step 9 and dr = −‖∇F k(xr, µ, εr)‖ that

αr‖∇F s(xr, µ, εr)‖2 → 0.

Now we consider two cases.

Case(i). ‖∇F s(xr, µ, εr)‖2 → 0. From the test of Step 7, we have

lim
r→+∞

H(xr) → 0.

Taking into account the definition of H(·), we know that x∗ is feasible. Following Case(ii) in Lemma

3.1, we conclude that Algorithm 2.1 will not go to Step 5 from Step 2, which is a contradiction.

Case(ii) αr → 0. By assumption, Algorithm 2.1 goes to Step 5 from Step 2 infinitely. It follows

from dr = −∇F s(xr, µ, εr), Lemma 3.1 and the construction of Step 9 that αr

θ does not satisfy

(2.4). Thus, we get

F s(xk − αk

θ ∇F s(xk, µ, εk), µ, εk) > F s(xk, µ, εk) − σ αk

θ ‖∇F s(xk, µ, εk)‖2. (3.4)

By the continuous differentiability of F k(x, µ, ε), we have

F s(xr − αr

θ ∇F s(xr, µ, εr), µ, εr) = F s(xr, µ, εr) − αr

θ ‖∇F s(xr, µ, εr)‖2 + o(αr). (3.5)

It follows from (3.4) and (3.5) that

−(1 − σ)1
θ‖∇F s(xr, µ, εr)‖2 + o(αr)

αr > 0. (3.6)

From (3.6), θ > 0 and σ ∈ (0, 1
2 ), we have

‖∇F s(xr, µ, εr)‖2 → 0, when αr → 0.

By a similar proof of case(i), we also have that Steps 5, 6, 7 and 8 are not reached. Thus, we get

a contradiction. The proof is completed.

Now, we are read to prove the global convergence property of Algorithm 2.1.

7
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Theorem 3.1 Every limit point of the sequence {xk} generated by Algorithm 2.1 is a KKT point

of problem (P).

Proof. From Lemma 4.1 and Lemma 4.2, without loss of generality, we can assume that µk =

µ, dk = d(xk, Bk), ∀k. First we prove that

lim
k→+∞

‖dk‖ = 0. (3.7)

As {εk} is a monotonically decreasing sequence, by the construction of Algorithm 2.1, we have

F s(x0, µ, ε0) ≥ F s(x0, µ, ε1) ≥ F s(x1, µ, ε1) ≥ · · · ≥ F s(xk−1, µ, εk−1)

≥ F s(xk−1, µ, εk) ≥ F s(xk, µ, εk) ≥ · · · .
(3.8)

Therefore, {F s(xk, µ, εk)} is monotonically decreasing. It follows from Assumption 1 that {F s(xk, µ, εk)}
is a bounded sequence. Thus it is convergent and

F s(xk, µ, εk) − F s(xk+1, µ, εk+1) → 0. (3.9)

By (3.8) and (3.9), we have

F s(xk, µ, εk) − F s(xk+1, µ, εk) → 0.

Thus, from Step 9, we have

αk∇F s(xk, µ, εk)T dk → 0. (3.10)

Suppose by contradiction that there exists a subsequence relabelled {xk} again, satisfying that

‖dk‖ ≥ δ > 0, ∀k. (3.11)

Then, by Step 3, (3.11) and (3.12) and Assumption 2, we deduce that

lim
k→∞

αk = 0. (3.12)

From Assumption 1 and (3.11), we can assume without loss of generality that there exist x and

d 6= 0 such that xk → x and dk → d. Then, by Step 3 and Assumption 2, we have

lim
k→∞

∇F s(xk, µ, εk)T dk = ∇F s(x, µ, 0)T d < 0. (3.13)

Now, by (3.12) and Step 9, we can write

F s(xk + αk

θ dk, µk, εk) > F s(xk, µk, εk) + σ αk

θ ∇F s(xk, µk, εk). (3.14)

By the mean theorem, we get from (3.14)

∇F s(xk + ν αk

θ dk, µk, εk) > σ∇F s(xk, µk, εk), (3.15)

where ν ∈ (0, 1). Taking limits of (3.15) for k → ∞, by (3.12) we obtain

(1 − σ)∇F s(x, µ, 0)T d ≥ 0,

As σ < 1, by (3.13), we get a contradiction. Hence, (3.7) is proved. By (1.2), (3.7) implies that x

is feasible, so that, (3.7), Proposition 2.1 and Proposition 2.2 imply the assertion.

8
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4. Rate of convergence

In this section, we will analyze the convergent rate of the proposed algorithm. The main result

of the analysis will be that, if a unit stepsize ensures superlinear convergence, then the (2.4) is

eventually satisfied by αk = 1 so that the Maratos effect does not occur. To this end, we need

the following Assumption. Let x∗ be an accumulation point of the sequence {xk} generated by

Algorithm 2.1 and λ∗ be related multiplier. Then, it follows from Theorem 3.1 that (x∗, λ∗) is a

pair for problem (P).

Assumption 5: Strong second-order sufficient condition holds at (x∗, λ∗), i.e., the Hessian

∇2L(x∗, λ∗) is positive definite on the space {u|∇gi(x
∗)T u = 0, ∀i ∈ I+(x∗)}, where ∇2L(x∗, λ∗) =

∇2f(x∗) +

m
∑

i=1

λ∗

i∇
2gi(x

∗) and I+(x∗) = {i ∈ I0(x
∗) : λ∗

i > 0}.

Lemma 4.1 Under the stated assumptions, the whole sequence {xk} convergence to x∗.

Proof. Assumption 3 and 5 mean that x∗ is an isolated accumulation point of {xk}. The assertion

then follows from [2] and (3.7).

To prove the main result of this section, we first recall the definitions of semismooth function

and SC1-function.

Definition 4.1 (See [14])Let F : Rn → Rm be locally Lipschitz at x ∈ Rn. We say that F is

semismooth at x if

lim
H∈∂F (x+tν′), ν′

→ν,t↓0
Hν ′

exists for any ν ∈ Rn.

Definition 4.2 (See [13])A function H : Rn → R is said to SC1-function on an open set X if

(a) h is continuously differentiable on X;

(b) ∇h is semismooth on X;

Since F s(x, µ, ε) is twice continuously differentiable for any x, F s(x, µ, ε) is SC1-function. Then

applying Theorem 3.2 in [12] and similar to the proof of Theorem 5.2 in [13], we deduce the next

theorem.

Theorem 4.1 Suppose that the stated assumptions hold. If

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖

= 0,

then for all sufficiently large k, the unit stepsize is accepted by the Algorithm 2.1, that is, xk+1 =

xk + dk.

5. Concluding remarks

By applying another smoothing approximation of a lower order penalty function and Facchinei’s

method of dealing with the inconsistency of subproblems in SQP methods, we propose a SQP

9
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algorithm for nonlinear inequality constraints optimization problems. The presented algorithm

incorporates automatic adjustment rules for the choice of parameters. The algorithm is proved to

be globally convergent and superlinearly convergent under some mild conditions without the strict

complementarity.
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On a new application of quasi power increasing sequences

HÜSEYİN BOR
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Abstract

In the present paper, a general theorem on | N̄ , pn; δ |k summability factors of infinite

series has been proved under more weaker conditions. We have also obtained some results

dealing with | N̄ , pn |k, | C, 1 |k and | C, 1; δ |k summability factors.

1 Introduction

Let
∑

an be a given infinite series with partial sums (sn). We denote by uα
n and tαn the

n-th Cesàro means of order α, with α > −1, of the sequence (sn) and (nan), respectively,

i.e.,

uα
n =

1
Aα

n

n∑

v=0

Aα−1
n−vsv, (1)

tαn =
1

Aα
n

n∑

v=1

Aα−1
n−vvav, (2)

where

Aα
n = O(nα), α > −1, Aα

0 = 1 and Aα
−n = 0 for n > 0. (3)

A series
∑

an is said to be summable | C, α |k, k ≥ 1, if (see [6], [9])

∞∑

n=1

nk−1 | uα
n − uα

n−1 |k=
∞∑

n=1

| tαn |k
n

< ∞. (4)

2000 AMS Subject Classification: 40D15, 40F05, 40G99.

Key Words: Absolute summability, summability factors, power increasing sequences.
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and it is said to be summable | C, α; δ |k, k ≥ 1 and δ ≥ 0, if (see [7])

∞∑

n=1

nδk−1 | tαn |k< ∞. (5)

Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (6)

The sequence-to-sequence transformation

σn =
1
Pn

n∑

v=0

pvsv (7)

defines the sequence (σn) of the Riesz mean or simply the (N̄ , pn) mean of the sequence

(sn), generated by the sequence of coefficients (pn) (see [8]). The series
∑

an is said to be

summable | N̄ , pn |k, k ≥ 1, if (see [2])

∞∑

n=1

(Pn/pn)k−1 | ∆σn−1 |k< ∞, (8)

and it is said to be summable | N̄ , pn; δ |k, k ≥ 1 and δ ≥ 0, if (see [4])

∞∑

n=1

(Pn/pn)δk+k−1 | ∆σn−1 |k< ∞, (9)

where

∆σn−1 = − pn

PnPn−1

n∑

v=1

Pv−1av, n ≥ 1. (10)

In the special case pn = 1 for all values of n (resp. δ = 0) | N̄ , pn; δ |k summability is the

same as | C, 1; δ |k (resp. | N̄ , pn |k) summability. Also, if we take δ = 0 and k = 1, then

we get | N̄ , pn | summability. A positive sequence (bn) is said to be almost increasing if

there exists a positive increasing sequence (cn) and two positive constants A and B such

that Acn ≤ bn ≤ Bcn (see ([1]).We denote by BVO the expression BV ∩ CO, where CO and

BV are the set of all null sequences and the set of all sequences with bounded variation,

respectively.Concerning the | N̄ , pn |k summability factors, Bor [5] has recently proved the

following theorem.

2
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Theorem A. Let (Xn) be an almost increasing sequence and there be sequences (βn) and

(λn) such that

| ∆λn |≤ βn, (11)

βn → 0 as n →∞, (12)
∞∑

n=1

n | ∆βn | Xn < ∞, (13)

| λn | Xn = O(1). (14)

If
n∑

v=1

| tv |k
v

= O(Xn) as n →∞ (15)

, where (tn) is the n-th (C,1) mean of the sequence (nan), and (pn) is a sequence such that

Pn = O(npn), (16)

Pn∆pn = O(pnpn+1), (17)

then the series
∑∞

n=1 an
Pnλn
npn

is summable | N̄ , pn |k, k ≥ 1.

2. The main result. The aim of this paper is to generalize Theorem A under more

weaker conditions for | N̄ , pn; δ |k summability. Therefore we need the concept of quasi β-

power increasing sequence. A positive sequence (γn) is said to be quasi β-power increasing

sequence if there exists a constant K = K(β, γ) ≥ 1 such that

Knβγn ≥ mβγm (18)

holds for all n ≥ m ≥ 1 ). It should be noted that every almost increasing sequence is

quasi β-power increasing sequence for any nonnegative β, but the converse need not be

true as can be seen by taking the example, say γn = n−β for β > 0.

Now we shall prove the following theorem.

Theorem. Let (λn) ∈ BVO and (Xn) be a quasi β-power increasing sequence for some

0 < β < 1 and the sequences (βn) and (λn) are such that conditions (11)-(17) of Theorem

A are satisfied with the condition (15) replaced by:
n∑

v=1

(
Pv

pv

)δk | tv |k
v

= O(Xn) as n →∞. (19)

3
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If

m+1∑

n=v+1

(
Pn

pn
)δk−1 1

Pn−1
= O((

Pv

pv
)δk 1

Pv
) as m →∞, (20)

then the series
∑∞

n=1 an
Pnλn
npn

is summable | N̄ , pn; δ |k, k ≥ 1 and 0 ≤ δ < 1/k.

It should be noted that if we take δ = 0 and (Xn) as an almost increasing sequence, then

we get Theorem A. In this case the condition (λn) ∈ BVO is not needed and condition

(20) reduces to

m+1∑

n=v+1

pn

PnPn−1
=

m+1∑

n=v+1

(
1

Pn−1
− 1

Pn

)
= O

(
1
Pv

)
as m →∞, (21)

which always holds.

We require the following lemmas for the proof of our theorem.

Lemma 1 ([10]). Under the conditions on (Xn), (βn) and (λn) as taken in the statement

of the theorem, the following conditions hold :

nXnβn = O(1), (22)
∞∑

n=1

βnXn < ∞. (23)

Lemma 2 ([3]). If the conditions (16) and (17) are satisfied, then ∆(Pn/pnn2) = O(1/n2).

3. Proof of the Theorem. Let (Tn) be the sequence of (N̄ , pn) mean of the series
∑∞

n=1
anPnλn

npn
. Then, by definition, we have

Tn =
1
Pn

n∑

v=1

pv

v∑

r=1

arPrλr

rpr
=

1
Pn

n∑

v=1

(Pn − Pv−1)
avPvλv

vpv
. (24)

Then, for n ≥ 1

Tn − Tn−1 =
pn

PnPn−1

n∑

v=1

Pv−1Pvavλv

vpv

=
pn

PnPn−1

n∑

v=1

Pv−1Pvavvλv

v2pv
.

4
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Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n∑

v=1

∆
(

Pv−1Pvλv

v2pv

) v∑

r=1

rar +
λn

n2

n∑

v=1

vav

=
pn

PnPn−1

n−1∑

v=1

Pv

pv
(v + 1)tvpv

λv

v2

+
pn

PnPn−1

n−1∑

v=1

PvPv∆λv(v + 1)
tv

v2pv
− pn

PnPn−1

n−1∑

v=1

Pvλv+1(v + 1)tv∆(Pv/v2pv)

+ λntn(n + 1)/n2

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.

To complete the proof of the Theorem, by Minkowski’s inequality, it is sufficient to show

that
∞∑

n=1

(
Pn

pn

)δk+k−1

| Tn,r |k< ∞, for r = 1, 2, 3, 4. (25)

Now, applying Hölder’s inequality, we have that

m+1∑

n=2

(
Pn

pn

)δk+k−1

| Tn,1 |k = O(1)
m+1∑

n=2

(
Pn

pn
)δk−1 1

P k
n−1

{
n−1∑

v=1

Pv

pv
pv | tv || λv | 1

v

}k

= O(1)
m+1∑

n=2

(
Pn

pn
)δk−1 1

Pn−1

n−1∑

v=1

(
Pv

pv

)k

pv | tv |k| λv |k 1
vk

×
{

1
Pn−1

n−1∑

v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv | tv |k| λv |k 1
vk

m+1∑

n=v+1

(
Pn

pn
)δk−1 1

Pn−1

= O(1)
m∑

v=1

(
Pv

pv

)k

| λv |k−1| λv | pv | tv |k 1
vk

1
Pv

(
Pv

pv
)δk

= O(1)
m∑

v=1

(
Pv

pv

)k−1

| λv || tv |k 1
vk

(
Pv

pv
)δk

= O(1)
m∑

v=1

(
Pv

pv
)δkvk−1 1

vk
| λv || tv |k

= O(1)
m∑

v=1

| λv | (Pv

pv
)δk | tv |k

v

= O(1)
m−1∑

v=1

∆ | λv |
v∑

r=1

(
Pr

pr
)δk | tr |k

r

5
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+ O(1) | λm |
m∑

v=1

(
Pv

pv
)δk | tv |k

v

= O(1)
m−1∑

v=1

| ∆λv | Xv + O(1) | λm | Xm

= O(1)
m−1∑

v=1

βvXv + O(1) | λm | Xm = O(1)

as m → ∞, by (11), (14), (19), and (23). Now ,using the fact that (Pv/v) = O(pv) by

(16), we have that

m+1∑

n=2

(
Pn

pn

)δk+k−1

| Tn,2 |k = O(1)
m+1∑

n=2

(
Pn

pn
)δk−1 1

Pn−1

n−1∑

v=1

(
Pv

pv

)k

(βv)k | tv |k pv

×
{

1
Pn−1

n−1∑

v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

(βv)k | tv |k pv

m+1∑

n=v+1

(
Pn

pn
)δk−1 1

Pn−1

= O(1)
m∑

v=1

(
Pv

pv
)δk

(
Pv

pv

)k−1

(vβv)k−1vβv
1
vk
| tv |k

= = O(1)
m∑

v=1

vβv(
Pv

pv
)δk | tv |k

v

= O(1)
m−1∑

v=1

∆(vβv)
v∑

r=1

(
Pr

pr
)δk | tr |k

r
+ O(1)mβm

m∑

v=1

(
Pv

pv
)δk | tv |k

v

= O(1)
m−1∑

v=1

v | ∆βv | Xv + O(1)
m−1∑

v=1

βvXv + O(1)mβmXm

= O(1) as m →∞,

by (11), (13), (16), (19), (20), (22) and (23). Now, since ∆( Pv
v2pv

) = O( 1
v2 ) by Lemma 2,

we have that

m+1∑

n=2

(
Pn

pn

)δk+k−1

| Tn,3 |k = O(1)
m+1∑

n=2

(
Pn

pn
)δk−1 1

P k
n−1

{
n−1∑

v=1

Pv | λv+1 || tv | 1
v

v + 1
v

}k

= O(1)
m+1∑

n=2

(
Pn

pn
)δk−1 1

P k
n−1

{
n−1∑

v=1

Pv

pv
pv | λv+1 | 1

v
| tv |

}k

= O(1)
m+1∑

n=2

(
Pn

pn
)δk−1 1

Pn−1

n−1∑

v=1

(
Pv

pv

)k

pv
1
vk
| λv+1 |k| tv |k

6

BOR:QUASI POWER INCREASING SEQUENCES 497



×
{

1
Pn−1

n−1∑

v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv
1
vk
| λv+1 |k−1| λv+1 || tv |k

m+1∑

n=v+1

(
Pn

pn
)δk−1 1

Pn−1

= O(1)
m∑

v=1

(
Pv

pv

)k−1 1
vk
| λv+1 || tv |k (

Pv

pv
)δk

= O(1)
m∑

v=1

(
Pv

pv
)δkvk−1 1

vk
| λv+1 || tv |k

= O(1)
m∑

v=1

(
Pv

pv
)δk | λv+1 | | tv |

k

v

= O(1)
m−1∑

v=1

∆ | λv+1 |
v∑

r=1

(
Pr

pr
)δk | tr |k

r
+ O(1) | λm+1 |

m∑

v=1

(
Pv

pv
)δk | tv |k

v

= O(1)
m−1∑

v=1

| ∆λv+1 | Xv + O(1) | λm+1 | Xm

= O(1)
m−1∑

v=1

| ∆λv+1 | Xv+1 + O(1) | λm+1 | Xm+1

= O(1)
m∑

v=2

| ∆λv | Xv + O(1) | λm+1 | Xm+1

= O(1)
m∑

v=1

βvXv + O(1) | λm+1 | Xm+1 = O(1)

as m →∞, by (11), (14), (16), (19), and (20). Finally, as in Tn,3, we have that

m∑

n=1

(
Pn

pn

)δk+k−1

| Tn,4 |k = O(1)
m∑

n=1

(
Pn

pn
)δk

(
Pn

pn

)k−1 (
n + 1

n

)k 1
nk

| λn |k| tn |k

= O(1)
m∑

n=1

(
Pn

pn
)δknk−1 1

nk
| λn |k−1| λn || tn |k

= O(1)
m∑

n=1

| λn | (Pn

pn
)δk | tn |k

n
= O(1) as m →∞.

Therefore, we get that
m∑

n=1

(
Pn

pn

)δk+k−1

| Tn,r |k= O(1) as m →∞, for r = 1, 2, 3, 4.

This completes the proof of the Theorem. If we take δ = 0, then we get a result for

| N̄ , pn |k summability factors. Also if we take pn = 1 for all values of n, then we obtain

7
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a new result dealing with | C, 1; δ |k summability factors. Furthermore , if we take pn = 1

for all values of n and δ = 0, then we get another new result concerning the | C, 1 |k
summability factors.
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On a simple criteria of convexity of order α

for meromorphic functions

Adriana Cătaş

Abstract

The aim of the paper is to provide sufficient conditions for meromor-

phic functions defined in the punctured disc, U̇ = U \ {0}, to be convex

functions of order α. The present work is based on some results involving

differential subordinations.

Key words: Convex functions, differential subordination, meromorphic func-

tions.

AMS Subject Classification: 30C45.

1 Introduction and preliminaries

For integer n ≥ 0, denote by Σn the class of meromorphic functions, defined

in the punctured disc

U̇ = {z ∈ C : 0 < |z| < 1} = U \ {0}

which are of the form

(1.1) f(z) =
1
z

+ anzn + an+1z
n+1 + . . .

and let Σ = Σ0.

1
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A function f ∈ Σ is said to be starlike if it is univalent and the complement

of f(U̇) is starlike with respect to the origin. Denote by Σ∗ the class of such

functions. A function f ∈ Σn is said to be in the class Λ(α) of meromorphic

convex functions of order α in U̇ if and only if

(1.2) Re
[
−

(
1 +

zf ′′(z)
f ′(z)

)]
> α, z ∈ U̇ , 0 ≤ α < 1.

The following definitions and lemma will be used in the next section.

Let H(U) denote the space of analytic functions in U . For n a positive

integer and a ∈ C let

(1.3) Hn = {f ∈ H(U) : f(z) = anzn + an+1z
n+1 + . . . }

and

(1.4) H[a, n] = {f ∈ H(U) : f(z) = a + anzn + an+1z
n+1 + . . . }.

If f and g are analytic functions in U , then we say that f is subordinate

to g, written f ≺ g, or f(z) ≺ g(z), if there is a function w analytic in U with

w(0) = 0, |w(z)| < 1, for all z ∈ U such that f(z) = g[w(z)] for z ∈ U . If g is

univalent, then f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U).

Lemma 1.1 [2] Let m be a positive integer and let α be real, with 0 ≤ α < m.

Let q ∈ H(U), with q(0) = 0, q′(0) 6= 0 and

(1.5) Re
(

1 +
zq′′(z)
q′(z)

)
>

α

m
.

Define the function h as

(1.6) h(z) = mzq′(z)− αq(z).

If p ∈ Hm and

(1.7) zp′(z)− αp(z) ≺ h(z),

then p(z) ≺ q(z) and this result is sharp.

2
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2 Main results

Theorem 2.1 If f ∈ Σn, n ∈ N∗, with −1 ≤ α < n satisfies the condition

(2.1) |(1− α)z2f ′(z) + z3f ′′(z)− α− 1| < M,

then

(2.2) |z2f ′(z) + 1| < M

n− α

and this result is sharp.

Proof. If we let

p(z) = z2f ′(z) + 1

then p ∈ Hn+1 and (2.1) can be rewritten as

(2.3) |zp′(z)− (α + 1)p(z)| < M

or

(2.4) zp′(z)− (α + 1)p(z) ≺ Mz.

If we take

q(z) =
Mz

n− α
, q ∈ H(U)

with q(0) = 0, q′(0) 6= 0 and

Re
(

1 +
zq′′(z)
q′(z)

)
>

α + 1
n + 1

then from (1.6), h(z) = Mz and the result follows from Lemma 1.1, that is

p(z) ≺ q(z)

|z2f ′(z) + 1| < M

n− α
.

¤

By applying our previous result we can obtain a simple criterion for the

convexity of order α of a meromorphic function.

3
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Theorem 2.2 Let n ∈ N∗, let α ∈ [0, 1) and let

(2.5) Mn(α) =
(1− α)2(n− α)

2α(1− α) +
√

(α + 1)2 + (n− α)2
.

If f ∈ Σn satisfies the condition

|(1− α)z2f ′(z) + z3f ′′(z)− α− 1| < Mn(α), z ∈ U,

then f ∈ Λ(α).

Proof. Let

(2.6) 0 < M ≤ Mn(α),

where Mn(α) is given by (2.5), and suppose that f ∈ Σn satisfies

(2.7) |(1− α)z2f ′(z) + z3f ′′(z)− α− 1| < M, z ∈ U.

If we set P (z) = z2f ′(z) + 1, then by Theorem 2.1 we obtain

(2.8) |P (z)| < M

n− α
≡ R, z ∈ U.

Hence if we let

(2.9) p(z) = −
(

α + 1 +
zf ′′(z)
f ′(z)

)

then p(z) ∈ H[1− α, n + 1] and (2.7) can be written in the form

(2.10) |p(z)(−P (z) + 1)− 2αP (z) + α− 1| < M.

We claim that this inequality implies Re p(z) > 0, z ∈ U . If this is false,

then there exists a point z0 ∈ U , such that p(z0) = iρ, where ρ is real. We will

show that at such a point the negation of condition (2.10) holds, that is

(2.11) |iρ(1− P (z0)) + 2αP (z0) + α− 1| ≥ M,

4
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for all real ρ.

If we let P0 = P (z0), we have

|iρ(P0− 1) + 2αP0 + 1−α|2 = ρ2|P0− 1|2 + |2αP0 + 1−α|2− 2ρ(α + 1)Im P0.

Hence inequality (2.11) is equivalent to

(2.12) ρ2|P0 − 1|2 + |2αP0 + 1− α|2 − 2ρ(α + 1)Im P0 −M2 ≥ 0.

The above inequality holds if and only if

(2.13) (α + 1)2(Im P0)2 ≤ |P0 − 1|2(|2αP0 + 1− α|2 −M2).

Since from (2.8) we have

(2.14) |2αP0 + 1− α| > 1− α− 2αR

and

(2.15)
(1 + α)2(Im P0)2

|P0 − 1|2 < (α + 1)2R2

by using (2.14) and (2.15) we deduce that inequality (2.13) holds if

(2.16)
(α + 1)2(Im P0)2

|P0 − 1|2 < (α + 1)2R2 ≤ (1− α− 2αR)2 −R2(n− α)2

which yields

(2.17) R2[(α + 1)2 − 4α2 + (n− α)2] + 4α(1− α)R− (1− α)2 ≤ 0.

Because of the definition of M given in (2.6) this forces inequalities (2.17),

(2.13) and (2.11) to hold. Thus we have a contradiction of (2.10). Therefore,

Re p(z) > 0, that is

Re
[
−

(
1 +

zf ′′(z)
f ′(z)

)]
> α

and we obtain the desired result. ¤

We were applied the same techniques used in [3].
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Corollary 2.1 If f ∈ Σn, n ∈ N∗ satisfies the condition

(2.18) |z2f ′(z) + z3f ′′(z)− 1| < n√
n2 + 1

then f is a meromorphic convex function.

Theorem 2.2 can be written in the following equivalent form, that is useful

for the other results.

Theorem 2.3 Let f ∈ Σn, n ∈ N∗, have the form

(2.19) f(z) =
1
z

+ g(z), 0 < |z| < 1

where g ∈ Hn. If α ∈ [0, 1) and

(2.20) |(1− α)z2g′(z) + z3g′′(z)| < (1− α)2(n− α)
2α(1− α) +

√
(α + 1)2 + (n− α)2

then f ∈ Λ(α).

Example 2.1 For the Theorem 2.3 we consider the following function

(2.21) f(z) =
1
z

+ λ(1− cos z).

In this case g ∈ H2 and for α = 1
2 we get

∣∣∣∣
1
2
z2g′(z) + z3g′′(z)

∣∣∣∣ < |λ|3e2 + 1
8e

.

Hence, by Theorem 2.3 if

|λ| < 6e

(3e2 + 1)(1 + 3
√

2)
= 0.1342 . . .

then the function

f(z) =
1
z

+
1
8
(1− cos z)

is a meromorphic convex function of order 1/2 that is, f ∈ Λ(1
2).
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The Symbol Series Expression and Hölder Exponent

Estimates of Fractal Interpolation Function
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(1 College of Basic Sciences, Huazhong Agriculture University,
Wuhan, 430070, P. R. China
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Abstract

Now fractal interpolation functions (FIFs) are mainly described in
terms of concrete interpolation region and its partition form. Many
theory and applications only deal with low dimensional interpolation.
In this paper, we consider a high dimensional fractal interpolation
problem and describe a generalized definition of FIFs based on multi-
scale partition and refinable set. This definition enables us to inves-
tigate the expression with symbol series of FIFs under more general
setting. By applying the expression with series of FIFs, we discuss Lip-
schitz continuity of FIFs and give the estimates of Hölder exponent
of FIFs. The obtained results can be easily applied to concrete fractal
interpolation problems.

keyword fractal interpolation function, multiscale partition, refinable set,
Lipschitz continuity, Hölder exponent.

1 Introduction

Fractal interpolation methods introduced by Barnsley [1] are a relatively
new techniques for data imitation which has generated much interest in
both theoretical and applied mathematics over the past decade. FIFs are
attractors of iterated function system (IFS) of a special form, the main
difference from traditional interpolation functions consists in the definition
of a function relation assuming a self-similarity on small scales[1,2,3]. For the
applications of FIFs theory, the properties of FIFs are usually considered,
such as the expression with series in terms of a suitable function system,
smoothness and estimates of Hölder exponent, etc.

∗Corresponding author,dxygh@mail.hzau.edu.cn
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Since FIFs are continuous, in general nowhere differentiable and self-
similar, their analysis can not be done satisfactorily by restricting to clas-
sical analytic tools. This leads to the interest in the properties of FIFs
growing considerably. Sha[4] gave a series representation of self-affine FIFs
through a special function system and studied the Hölder properties of
FIFs. Sha and Chen[5] expanded equidistant FIFs on [0, 1] by using Haar-
wavelet function system and obtained their global Hölder property, in which
the number of interpolation points is N = 2p + 1, p being a definite posi-
tive integer. Hardin, Kessler and Massopust[6] showed that certain classes of
fractal interpolation functions generate a multi-resolution analysis of L2(R).
Subsequently, construction methods of orthogonal wavelets based on frac-
tal functions were provided[7,8], in which the Lipschitz continuity and the
estimates of Hölder exponent were discussed. Lévy-Véhel, Daoudi and Lut-
ton[9] considered the problem of speech modelling with the aid of FIFs,
the idea of matching Hölder singularities of the FIF to those of the original
series was employed. Sebastian, Navascues and Valdizan[10] proposed an ex-
plicit formulae to compute the fractal dimension of experimental recordings
on the brain cortex results by means of fractal interpolation, and discussed
two and three-dimensional brain mapping representations. See [11-16] for
more relative references.

The main purpose of this paper is to describe a high dimensional fractal
interpolation problem, and to give its expression with symbol series and
estimates of Hölder exponent by using two relatively new nations: refinable
set and partition. These results, presented under general setting, provide a
simple method for analyzing properties of fractal interpolation functions. We
proceed as follows: In Section 2, we describe a high dimensional interpolation
problem based on multiscale partitions and refinable set. Then in Section
3, we give the definition and the expression with symbol series of FIFs
belonging to rather general class. In Section 4, the Lipschitz continuity and
the estimates of Hölder exponent are discussed. Finally, in Section 5 we
apply our results to concrete fractal interpolation functions.

2 Multiscale partition and description of a high
dimensional interpolation problem

In this section, we will describe the method we use to generate a multiscale
partition of an invariant set Ω ∈ Rd(d ∈ N), and give the description of a
high dimensional interpolation problem.

We start with a positive integer µ ≥ 1 and a family W := {we : e ∈ Zµ}
of contractive mappings on Rd, where Zµ = {0, 1, ..., µ− 1}. There exists a
unique compact subset Ω of Rd such that

Ω = W (Ω) : =
⋃

e∈Zµ

we(Ω). (2.1)

2

DENG et al:ABOUT FRACTAL INTERPOLATION FUNCTION508



This set Ω is called the invariant set associated with the family of mappings
W(see [17]). Generally, it has a complex fractal structure. For example,
there are choices of W for which Ω is the Cantor subset of [0,1], the Sier-
pinski gasket contained in an equilateral triangle or the twin dragons form
wavelet analysis. In this paper, we are interested in the cases when Ω is usu-
ally convex polygonal region which has a simple structure, for example, the
cube and simplex in Rd. With these cases in mind, we make the following
additional restriction on the family of mapping W

(a) ∀e ∈ Ze, the mapping we has a continuous inverse on Ω.
(b) The region Ω has non-empty interior and

meas(we(Ω) ∩ we′(Ω)) = 0, e 6= e′, ∀e, e′ ∈ Zµ, (2.2)

where meas denotes Lebesgue measure on Rd. Let

Ω1 = {Ω1, e : Ω1, e = we(Ω), e ∈ Zµ}, (2.3)

from equation (2.1) and conditions (a) and (b), Ω1 forms a partition of
region Ω.

Now we use W to obtain a more general partition of Ω in the following
way. Given any e = (e0, ..., en−1) ∈ Zn

µ = Zµ × Zµ × · · ·Zµ, n times , we
define the mappings

we = we0 ◦ .... ◦ wen−1 , (2.4)

let
Ωn = {Ωn, e : Ωn, e = we(Ω), e ∈ Zn

µ}, n ∈ N, (2.5)

then {Ωn} forms a multiscale partition of Ω for any n ∈ N . For a more
detailed presentation of multiscale partition we refer to Chen et.al. [18].

To describe high dimensional interpolation problem, we introduce the
definition of refinable set.

Definition 2.1 A subset V0 of Ω is said to be refinable relative to the
mapping W if V0 ⊂ W (V0).

Let V0 be a nonempty refinable subset of Ω relative to the contractive
mapping W, we have([19])

(1) Let W k := {wei : ei ∈ Zk
µ}, then W k(V0) is also refinable set relative

to the contractive mapping W for k ∈ N .
(2) Let

Vi = W (Vi−1), i ∈ N, (2.6)

then
V0 ⊂ V1 ⊂ · · · ⊂ Vi ⊂ · · ·, (2.7)

and
Ω =

⋃

i∈N0

Vi, (2.8)

where N0 denotes the set of nonnegative integer.
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In traditional interpolation method, interpolation conditions are given
based on partition knots. Now we give the definition of interpolation knots
under multiscale partition.

Definition 2.2 Let V0 be the vertex set of convex polygonal region Ω. If
V0 is refinable set relative to the mapping W, then Vk = W k(V0) is said to
be partition knots of Ωk, where k ∈ N .

We note that Definition 2.2 is the natural generalization of the descrip-
tion of interpolation knots in traditional interpolation methods. To illustrate
this point, we give an example.

Let Ω ⊂ R2 be the triangle with vertices at

A0 = (0, 0), A1 = (1, 0), A2 = (0, 1).

Considering the contractive mapping W = {we : e ∈ Z4}, where we is
defined as follows

we(x) =
1
2
(ye + (−1)τ(e)x), e ∈ Z4, x ∈ R2, (2.9)

where τ(e) = 0, ye = Ae, e ∈ Z3, τ(3) = 1, y3 = (1, 1). The invariant subset
of R2 relative to the mapping W is the triangle Ω, V0 = {A0, A1, A2} is a
refinable set, and V1 = W (V0) = {Ai : i = 0, 1, · · ·, 5} form knots of the
partition Ω1, where A3 = (1/2, 0), A4 = (1/2, 1/2), A5 = (0, 1/2).

Now we give the description of a high dimension interpolation problem.
For some positive integer k, let Vk be partition knots satisfying Definition

2.2. Given function values {YPi : Pi ∈ Vk}, we want to seek a continuous
function f(x) such that

f(Pi) = YPi , Pi ∈ Vk. (2.10)

Differing from traditional interpolation methods, FIF is defined as the
fixed point of an iterated function system(IFS), one can adjust shape and
dimension of FIFs by changing attractive factors. For simplicity, we will
consider interpolation problem corresponding to the partition Ω1.

3 Fractal interpolation function and its expression
with symbol series

In the rest of this paper, we always assume that polygonal interpolation
region Ω is the invariant set associated with the family of mappings W,
conditions (a) and (b) are satisfied. Let B(Ω) denote the Banach space of
bounded real-valued functions on Ω with ∞−norm, β = ⊗µ−1

j=0 B(Ω), and
λ = (λ0, λ1, · · ·, λµ−1) ∈ β. Let vi : Ω×R → R be defined as follows

vi(x, y) = λi(x) + siy, i ∈ Zµ, (3.1)

4
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it will always be assumed that s = max{|si|} < 1. Define T : B(Ω) → B(Ω)
by

(Tf)(x) = vi

(
w−1

i (x), f(w−1
i (x))

)
, x ∈ Ω1,i, i ∈ Zµ, (3.2)

then T is a contractive mapping on B(Ω), and there exists a unique attrac-
tive fixed point fλ(x) ∈ B(Ω). In general, G=graph fλ(x) is typically a
fractal set in R(d+1) made up of images of itself.

In the event that fλ(x) should be well-defined on the intersection of
Ω1,i and Ω1,j , in other words, one should impose additional ‘join-up’ con-
ditions on these faces such that fλ(x) is continuous. This is an interesting
work in the literature of FIFs, as we can find numerous papers dealing with
this subject. For example, in [20] a concise fractal iteration form based
on the triangle partitions was proposed, which generates continuous three-
dimensional fractal interpolation function. See [1-2,4, 12, 21-22] for more
references.

If fixed point fλ(x) of (3.2) is continuous, and satisfies interpolation
condition (2.10), then fλ(x) is called a fractal interpolation function.

For simplicity, in this paper we always assume that fλ(x) is continuous,
then fλ(x) satisfies

fλ(x) = λi

(
w−1

i (x)
)

+ sifλ

(
w−1

i (x)
)
, x ∈ Ω1,i, i ∈ Zµ. (3.3)

Now we consider the expression with symbol series of FIFs. Introduce a
symbol sequence {σi : σi ∈ Zµ}∞i=1. For any positive integer n, let

σ(n) = (σ1, · · ·, σn) ∈ Zn
µ , (3.4)

wσ(n) = wσ1 ◦ .... ◦ wσn , (3.5)

then multiscale partition Ωn can be written as

Ωn := {Ωσ(n) : Ωσ(n) = wσ(n)(Ω), σ(n) ∈ Zn
µ}, n ∈ N. (3.6)

Proposition 3.1 ∀x ∈ Ω, n ∈ N , there exists a symbol sequence σ(n) =
{σ1, · · ·, σn} relative to oint x, such that

fλ(x) =
n∑

k=1

Sσ(k−1)λσk

(
w−1

σ(k)(x)
)

+ Sσ(n)fλ

(
w−1

σ(n)(x)
)

, (3.7)

where

Sσ(0) = 1, Sσ(n) =
n∏

i=1

sσi .

Proof. Suppose x ∈ Ω1,i. Let σ1 = i, it follows from (3.3) that

fλ(x) = Sσ(0)λσ1

(
w−1

σ(1)(x)
)

+ Sσ(1)fλ

(
w−1

σ(1)(x)
)

,

5
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which shows that equation (3.7) holds for n=1. Assume that

fλ(x) =
l∑

k=1

Sσ(k−1)λσk

(
w−1

σ(k)(x)
)

+ Sσ(l)fλ

(
w−1

σ(l)(x)
)

. (3.8)

According to the mathematical induction, we need only to prove that (3.7)
holds for n = l+1. We decompose the last term of equation (3.8) by utilizing
equation (3.3). Suppose w−1

σ(l)(x) ∈ Ω1,j , and let σl+1 = j, we have

fλ(x) =
l∑

k=1

Sσ(k−1)λσk

(
w−1

σ(k)(x)
)

+ Sσ(l)λσl+1

(
w−1

σ(l+1)(x)
)

+ Sσ(l)sσn+1fλ

(
w−1

σ(l+1)(x)
)

=
l+1∑

k=1

Sσ(k−1)λσk

(
w−1

σ(k)(x)
)

+ Sσ(l+1)fλ

(
w−1

σ(l+1)(x)
)

,

which shows that (3.7) holds for n = l + 1. Thus, we gain the conclusion of
the Proposition 3.1.

We note that (3.7) is determined uniquely by real x when x /∈ ∂Ωn.
Otherwise, it follows from the continuity of fλ(x) that function values of
fλ(x) corresponding to different expressions are equal.

Let n →∞, we find from (3.7) that
Corollary 3.1 ∀x ∈ Ω, there exists a symbol sequence {σ1, · · ·, σn, · · ·}

relative to real x, such that

fλ(x) =
∞∑

k=1

Sσ(k−1)λσk

(
w−1

σ(k)(x)
)

. (3.9)

The obtained symbol series expressions of FIFs have different forms cor-
responding to different real x, which is very inconvenient for applications.
To this end, we give the following theorem

Theorem 3.1 For any x ∈ Ωσ(n), if x is interior node of Ωσ(n), then there
exists a unique sequence σ(n), such that

fλ(x) =
n∑

k=1

Sσ(k−1)λσk

(
w−1

σ(k)(x)
)

+ Sσ(n)fλ

(
w−1

σ(n)(x)
)

, (3.10)

Proof. According to Proposition 3.1, there exists a sequence σ(n) = (σ1, ··
·, σn), such that equation (3.7) holds. Let w−1

σ(n)(x) = x, then

x = wσ(n)(x) ∈ Ωσ(n),

6
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and the above expression is determined uniquely by real x. Let y ∈ Ωσ(n)

be another interior node, similarly , there exists a sequence σ̃(n) such that

fλ(y) =
n∑

k=1

Sσ̃(k−1)λσ̃k

(
w−1

σ̃(k)(x)
)

+ Sσ̃(n)fλ

(
w−1

σ̃(n)(x)
)

.

Let w−1
σ̃(n)(y) = y, then

y = wσ(n)(y) ∈ Ωσ̃(n).

If σ̃(n) 6= σ(n), we have Ωσ̃(n) 6= Ωσ(n), it is not consistent with that y is
interior node of Ωσ(n), such we gain σ̃(n) = σ(n).

4 The estimates of Hölder exponent of fractal in-
terpolation functions

For the sake of simplicity, it will be assumed that D(Ω) = 1, where D(A)
represents the diameter of some set A, i.e.,

D(A) = sup{|x− y| : x, y ∈ A},

with | · | denotes the Euclidean norm on the space Rd. For any d-dimensional
vector P = (pi) ∈ Rd and d × d matrix A = (aij) ∈ Rd×d, define norm | · |
and ‖ · ‖ by

|P | =
(

N∑

i=1

|pi|2
) 1

2

, ‖A‖ = sup
|P |=1

|AP |.

In the section, we assume that W is a family of contractive affine mappings
with the following form

wi(x) = Aix + Bi, x ∈ Rd, i ∈ Zµ,

where Ai is d × d matrix, Bi is d-dimensional vector. For given symbol
sequence σ(n) = (σ1, σ2, · · ·, σn)(σi ∈ Zµ), Aσ(n) is defined by

Aσ(n) = Aσ1Aσ2 · · ·Aσn .

Here we note that Ωσ(n) ∈ Ωn is also convex polygonal region for any n ∈ N ,
with the assumption that W is a family of contractive affine mappings. Now
we present one proposition, the conclusion of the proposition is well known.

Proposition 4.1 The sufficient and necessary condition for map wi(x)
being contractive is

‖Ai‖ < 1.

7
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In this section, we also assume that λi(x) ∈ C1(Ω) for i ∈ Zµ. Let

G(λi(x)) =
(

∂λi

∂x1
, · · ·, ∂λi

∂xd

)
,

then there exists a positive constant M such that

max
i∈Zµ

{sup
x∈Ω

|G(λi(x))|} ≤ M. (4.1)

Now we discuss Lipschitz continuity and the estimates of Hölder expo-
nent of FIFs. At first, we recall relevant basic concepts.

A function f defined on Ω is said to be Lipscitz continuous if for some
constant C, there holds the inequality

|f(x)− f(y)| ≤ c|x− y|, ∀x, y ∈ Ω.

The smallest possible constant in the above inequality is called the Lipscitz
constant of f. More generally, a function f is said to be Hölder continuous
with exponent α ∈ (0, 1] if for some constant C,

|f(x)− f(y)| ≤ C|x− y|α, ∀x, y ∈ Ω.

The Hölder exponent of f ∈ C(Ω) at x is

hx = inf
ε→0

{
log |f(x)− f(y)|

log |x− y| : y ∈ B(x, ε)
}

,

and h = inf{hx : x ∈ Ω} is called Hölder exponent of f.
Theorem 4.1 Let h > 0 be a positive number, ρi = |si|‖A−1

i ‖h. If
ρ = max{ρi : i ∈ Zµ} < 1, and

|λi(x)− λi(y)| ≤ C0|x− y|h, x, y ∈ Ω, i ∈ Zµ,

where C0 is a positive constant. Then there exists constant C > 0, such
that

|fλ(x)− fλ(y)| ≤ C|x− y|h, ∀x, y ∈ Ω.

Proof. Let

F (x, y) =





fλ(x)− fλ(y)
|x− y|h , x, y ∈ Ω, x 6= y,

0, x, y ∈ Ω, x = y.

It is sufficient only to prove that F (x, y) is bounded when x− y → 0.
Form (3.3), we have that for x− y 6= 0

F (x, y) = ρ̃i(x, y)F (w−1
i (x), w−1

i (y)) + ψi(x, y),

8
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where

ρ̃i(x, y) =
si|w−1

i (x− y)|h
|x− y|h ,

ψi(x, y) =





λi(w−1
i (x)− λi(w−1

i (y))
|x− y|h , x 6= y,

0, x = y

It follows conditions of theorem that |ρ̃i(x, y)| ≤ |si|‖A−1
i ‖h ≤ ρ < 1 and

|ψi(x, y)| ≤ C0‖A−1
i ‖h.

We construct iterated function system {R2d+1 : Wi, i ∈ Zµ}, where

Wi




x
y
z


 =




Aix + Bi

Aiy + Bi

ρ̃i(x, y)z + ψi(x, y)


 .

It is easy to see that it is a hyperbolic IFS, and its attractor is compact set in
R2d+1. Since that {(x, y, F (x, y)) : (x, y) ∈ Ω×Ω} is decided by the attractor
of IFS and the attractor is a compact set, we have that lim

x−y→0
F (x, y) is

bounded. Thus conclusion of Theorem 4.1 holds.
Now we give two corollaries. Let h = 1, we find from Theorem 4.1 that

Corollary 4.1 Given |si| < 1(i ∈ Zµ), let r = max{|si|‖A−1
i ‖}. If r < 1,

then fλ(x) is Lipschitz continuous, i.e., there exists a constant C > 0 such
that

|fλ(x)− fλ(y)| ≤ C|x− y|, ∀x, y ∈ Ω. (4.2)

Corollary 4.2 Given |si| < 1(i ∈ Zµ), let r = max{|si|‖A−1
i ‖}, ‖A‖ =

max{‖Ai‖}, and

h = 1 +
log r

log ‖A‖ . (4.3)

If 1 < r < ‖A‖−1
, then for any given h ∈ (0, h), there exists constant C > 0

such that
|fλ(x)− fλ(y)| ≤ C|x− y|h, ∀x, y ∈ Ω, (4.4)

Proof. Let ρ = max{|si|‖A−1
i ‖h}, ρ = max{|si|‖A−1

i ‖h}. Then ρ < ρ, and
we have that

ρ = max{|si|‖A−1
i ‖ · ‖A−1

i ‖h−1} ≤ r
(
max{‖A−1

i ‖})h−1
,

and

max{‖A−1
i ‖}‖A‖ ≥ max{‖Ai‖−1}‖A‖ =

‖A‖
min{‖Ai‖} ≥ 1.

By induction, we find that

log ρ ≤ log r

log ‖A‖ log
(
max{‖A−1

i ‖}‖A‖
)
≤ 0.

9
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Thus, ρ < ρ ≤ 1, The inequality (4.4) is immediate from Theorem 4.1.
Theorem 4.2 Given |si| < 1(i ∈ Zµ), let r = max{|si|‖A−1

i ‖}, ‖A‖ =
max{‖Ai‖}. r = |sp|‖A−1

p ‖. If fλ(x) is not a plane in Ω ⊂ Rd, λp is linear

polynomial, then when 1 < r < ‖A‖−1
, the Hölder exponent h of fλ(x)

satisfies: h ≤ h ≤ h, where

h = 1 +
log r

log ‖A‖ , h =
log |sp|

log ‖Ap‖ . (4.5)

Proof. The inequality h ≤ h can be derived from Corollary 4.2, here we
consider the estimate of upper bound h. Let

σ(n) = (p, p, · · ·, p) ∈ Zn
µ ,

given two nodes x, y ∈ Ω, we define nodes x∗, y∗ ∈ Ωσ(n) as follows

x∗ = wσ(n)(x), y∗ = wσ(n)(y).

For any x, y ∈ Ωσ(n), We find from (3.10) that

fλ(x)− fλ(y) =
n∑

k=1

Sσ(k−1)

[
λσk

(
w−1

σ(k)(x)
)
− λσk

(
w−1

σ(k)(y)
)]

+Sσ(n)

[
fλ

(
w−1

σ(n)(x)
)
− fλ

(
w−1

σ(n)(y)
)]

. (4.6)

It follows from differential mean-value theorem that

|fλ(x∗)− fλ(y∗)| =
∣∣∣∣∣

n∑

k=1

sk−1
p G(λp)A−k

p An
p (x− y) + sn

p [fλ(x)− fλ(y)]

∣∣∣∣∣

= |sp|n|fλ(x)− fλ(y)|
∣∣∣∣∣
G(λp)

∑n
k=1 sk−n

p An−k
p (x− y)

sp [fλ(x)− fλ(y))]
+ 1

∣∣∣∣∣

= |sp|n| fλ(x)− fλ(y)|
∣∣∣∣
g1(x− y) + g2(x− y)

sp [fλ(x)− fλ(y))]
+ 1

∣∣∣∣ , (4.7)

where
g1(x) = G(λp)(I − s−1

p Ap)−1x,

g2(x) = −G(λp)(I − s−1
p Ap)−1(s−1

p Ap)nx.

Since g1(x) is a plane, fλ(x) is fractal surface, there exist distinct points x
and y ∈ Ω such that fλ(x) 6= fλ(y) and g1(x− y)/sp[fλ(x)− fλ(y)] > 0, we
let

α =
g1(x− y)

sp [fλ(x)− fλ(y))]
.

10
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The inequality ‖s−1
p Ap‖ < 1 implies that

(s−1
p Ap)n → 0(n →∞),

namely
g2(x) → 0(n →∞), ∀x ∈ Ω.

We choose n large enough such that

ε =
∣∣∣∣

g2(x− y)
sp [fλ(x)− fλ(y))]

∣∣∣∣ < α + 1.

It follows from (4.7) that

|fλ(x∗)− fλ(y∗)| ≥ C1|sp|n, (4.8)

where
C1 = [fλ(x)− fλ(y)](α + 1− ε).

Noting that ‖Ap‖h = |sp|(see (4.5)), we gain

|x∗ − y∗| = |An
p (x− y)| ≤ ‖Ap‖n|x− y|,

this gives
|x∗ − y∗|h ≤ |Ap|hn||x− y|h = |sp|n|x− y|h. (4.9)

Submit (4.9) into (4.8), then

|f(x∗)− f(y∗)| ≥ C|x∗ − y∗|h,

where C = C1|x− y|−h. Since |x∗ − y∗| < 1, we have that

lim
ε→0

{
log |fλ(x∗)− fλ(y∗)|

log |x∗ − y∗| : y∗ ∈ B(x∗, ε)
}
≤ h,

it follows from the definition of Hölder exponent that h ≤ h.
In Theorem 4.2, we restrict λp to linear functions of variable x. Next we

want to seek more general results. To this end, we give some marks.
For any λ(x) ∈ C1(Ω), and d-dimensional vector −→v = (v1, v2, · · ·, vd)T ,

let
GD(λ(x), −→v ) = v1

∂λ

∂x1
+ v2

∂λ

∂x2
+ · · ·+ vd

∂λ

∂xd
.

We denote by L(x0,
−→v ) the straight line which has direction vector −→v 6=

0 and passes through point x0 ∈ Ω, namely

L(x0,
−→v ) : x = x0 + t−→v , t ∈ R.

Denote by L(x0,
−→v ) the line segment which is expressed as follows

L(x0,
−→v ) = {x ∈ Ω|x = x0 + t−→v , t ∈ R}.
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Theorem 4.3 Given |si| < 1(i ∈ Zµ), let r = max{|si|‖A−1
i ‖}, ‖A‖ =

max{‖Ai‖}, r = |sp|‖A−1
p ‖. Denote fixed point of contractive map wp by

xp, real eigenvalue of matrix Ap by γ and the eigenvector corresponding to
γ by

−→
P . For any n ∈ N , we let

Q(n, x) =
n∑

k=1

GD(λp(ξk),
−→
P )ρn−k, (4.10)

where ξk = w−k
p (x), x ∈ L(xp,

−→
P ) ∩ wn

p (Ω) and ρ = s−1
p γ.

If there is choice of γ and
−→
P , such that

(i) 1 < r < ‖A‖−1
, 0 < |ρ| < 1.

(ii) fλ(x) is not a line in L(xp,
−→
P ) ⊂ Ω.

(iii) For any given x ∈ L(xp,
−→
P ) ∩wn

p (Ω), there exists a positive integer
N0 such that Q(n, x) ≥ 0(or Q(n, x) ≤ 0) for every n > N0.

Then the Hölder exponent h of fλ(x) satisfies: h ≤ h ≤ h, where

h = 1 +
log r

log ‖A‖ , h =
log |sp|

log ‖Ap‖ . (4.11)

Proof. According the proving procession of Theorem 4.2, we need only
to prove that there exist two nodes x∗ and y∗ such that (4.8) holds.

Let σ(n) = (p, p, · · ·, p) ∈ Zn
µ , x, y ∈ L(xp,

−→
P ) satisfy x 6= y. Then nodes

x and y can be written as

x = xp + tx
−→
P , y = xp + ty

−→
P , tx 6= ty,

we have that
Ak

p(x− y) = (tx − ty)γk−→P , ∀k ∈ N. (4.12)

Define nodes x∗ and y∗ as follows

x∗ = wσ(n)(x), y∗ = wσ(n)(y),

by using differential mean-value theorem, we find from (4.6) and (4.12) that

|fλ(x∗)− fλ(y∗)| =

∣∣∣∣∣
n∑

k=1

sk−1
p G(λp(ξk))An−k

p (x− y) + sn
p [fλ(x)− fλ(y)]

∣∣∣∣∣

=

∣∣∣∣∣
n∑

k=1

sk−1
p G(λp(ξk))γn−k(tx − ty)

−→
P + sn

p [fλ(x)− fλ(y)]

∣∣∣∣∣

=

∣∣∣∣∣
n∑

k=1

sk−1
p GD(λp(ξk),

−→
P )γn−k(tx − ty) + sn

p [fλ(x)− fλ(y)]

∣∣∣∣∣ ,
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where ξk = w−k
p (ξ) and ξ ∈ L(xp,

−→
P ) ∩ wn

p (Ω). If fλ(x) 6= fλ(y), then

|fλ(x∗)− fλ(y∗)| = |sp|n|fλ(x)− fλ(y)| ·
∣∣∣∣

Q(n, ξ)(tx − ty)
sp [fλ(x)− fλ(y))]

+ 1
∣∣∣∣ . (4.13)

We chose n large enough such that Q(n, ξ) = a|Q(n, ξ)|, where a=1 or -
1(see condition (iii)). It follows from condition (ii) that there exist distinct
points tx and ty, such that fλ(x) 6= fλ(y), and

a(tx − ty)
sp[fλ(x)− fλ(y)]

> 0.

We find from (4.13) that

|fλ(x∗)− fλ(y∗)| = |sp|n|fλ(x)− fλ(y)|
∣∣∣∣
|Q(n, ξ)|a(tx − ty)
sp [fλ(x)− fλ(y)]

+ 1
∣∣∣∣

≥ |sp|n|fλ(x)− fλ(y)|,

and the above inequality gives that

|fλ(x∗)− fλ(y∗)| ≥ C1|sp|n, (4.14)

where
C1 = |fλ(x)− fλ(y)|

Thus inequality (4.8)(i.e. (4.14)) holds, and the proof is completed.
Obviously, it may be somewhat difficult to check condition (iii), here we

give some simple remarks. if λp is a linear polynomial, or GD(λp,
−→
P ) 6= 0

for any x ∈ L(xp,
−→
P ) and ρ > 0, then condition (iii) holds. In general, for

given x, Q(n, x) can be viewed as a serie, if lim
n→∞Q(n, x) = q0 6= 0, then

condition (iii) holds.

5 Examples of the Hölder exponent estimates

The results presented in section 4 are only relative to vertical contractive
factor si and the family of contractive mappings W := {wi : i ∈ Zµ} satis-
fied W (Ω) = Ω. In applications, these results can be applied immediately
to concrete fractal interpolation functions, such as FIFs based on interval,
triangle and quadrangle area, etc. Here we give two examples.

5.1 One-dimensional example

Let I = [0, 1], given a partition of I

4 : x0 = 0 < x1 < x2 < · · · < xN = 1. (5.1)
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The family of contractive affine mappings W = {wi : i ∈ ZN} is defined as
follows

wi(x) = xi + |Ii|x, i ∈ ZN ,

where |Ii| = xi+1−xi corresponding to the length of interval Ii = [xi, xi+1].
fλ(x) denotes affine fractal interpolation function defined on I, and satis-
fies suitable conditions. Now we consider the Hölder exponent of fλ(x).
Corresponding to Theorem 4.2, Ai = |Ii|, we have the following theorem

Theorem 5.1 Given |si| < 1(i ∈ ZN ), let r = max{|si||Ii|−1}, I =
max{|Ii|}, r = |sp||Ip|−1. If fλ(x) is not line, and r > 1, then the Hölder
exponent h of fλ(x) satisfies: h ≤ h ≤ h, where

h = 1 +
log r

log I
, h =

log |sp|
log Ip

(5.2)

Let I = max{|Ii|}, I = min{|Ii|}. If Ip = I, then s = max{|si|} = |sp|,
h = h. We find from Theorem 5.1 that

Corollary5.1 Under suppositions of Theorem 5.1, if Ip = I, then the
Hölder exponent of fλ(x) is

h =
log |s|
log I

. (5.3)

Corollary 5.2 Under suppositions of Theorem 5.1, Let I = βI, if Ip = I,
then

h =
log(|sp|β)

log I
, h =

log |sp|
log I

. (5.4)

Especially, if β = 1, 4 is a uniform partition, it is easily derived that

Ip =
1
N

, s = |sp|,

from Corollary 5.1, we have h = − log s/ log N , and this result can be found
in [8].

5.2 Two-dimensional example

Let Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, given a partition of Ω

0 = x0 < x1 < · · · < xM = 1
0 = y0 < y1 < · · · < xN = 1

Let ∆xi = xi − xi−1, ∆yj = yj − yj−1, then the family of contractive affine
mappings W = {wij : i = 1, 2, · · · ,M, j = 1, 2, · · · , N} can be defined by

wij =
(

∆xi 0
0 ∆yj

)(
x
y

)
+

(
xi−1

yj−1

)
≡ Aij

(
x
y

)
+ Bij .
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Consider the following iterated function system

(Tf)(x, y) = λi,j(w−1
ij (x, y)) + sijf(w−1

ij (x, y)), x, y ∈ Ωij ,

where Ωij = wij(Ω), sij denotes vertical contractive factor, and

λij = aijx + bijy + cijxy + dij .

With some suitable conditions, the existence and uniqueness of fractal inter-
polation function fλ(x, y) was proved in [23]. Now we consider the Hölder
exponent of fλ(x, y).

Let γx, γy and
−→
P x,

−→
P y denote eigenvalues and eigenvectors of Aij respec-

tively, then
γx = ∆xi,

−→
P x = (1, 0),

γy = ∆yj ,
−→
P y = (0, 1).

Corresponding to Theorem 4.3, we have
Theorem 5.2 Given |sij | < 1, let r = max{|sij |‖Aij‖−1}, ‖A‖ = max{‖Aij‖},

r = |spq|‖A−1
pq ‖, ρ = s−1

pq γx, and (xpq, ypq) denote the fixed point of wpq. if

1 < r < ‖A‖−1
, |ρ| < 1, and fλ(x, y) is not a line in L

(
(xpq, ypq),

−→
P x

)
, then

the Hölder exponent h of fλ(x, y) satisfies: h ≤ h ≤ h, where

h = 1 +
log r

log ‖A‖ , h =
log |spq|

log ‖Apq‖ .

Proof. If condition (iii) of Theorem 4.3 holds, Theorem 5.2 is immediate
from Theorem 4.3.

In fact, for any given positive number n and (x, y) ∈ L
(
(xpq, ypq),

−→
P x

)
∩

wn
pq(Ω)(noting that y = ypq), by induction we find that

Q(n, x, y) = (apq + cpqypq)
n∑

k=1

ρn−k,

it is easy to see that condition (iii) of Theorem 4.3 holds.
In theorem 5.2, if replace ρ = s−1

pq γx by ρ = s−1
pq γy, we can obtain the

same conclusion.

6 Conclusions

In this paper, we borrow some notions such as multiscale partition and re-
finable set to describe a high dimensional fractal interpolation problem. This
enables us to investigate the properties of FIFs under more general setting.
With the aids of the expression with symbol series of FIFs, we discuss Lips-
chitz continuity, and give the estimates of Hölder exponent. Compared with
the existing results, ours conclusions are provided in more general meaning,
which can be more easily applied to concrete fractal interpolation problems.
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Abstract

The purpose of this paper is to introduce and study some sequence
spaces which are defined by combining the concepts of a sequence of Orlicz
functions, invariant mean and lacunary convergence. We also examine
some topological properties of these sequence spaces and establish some
elemantary connections between them. These are generalizations of those
defined and studied by Savaş and Rhoades [22] and Bataineh and Azar
[2] and some others before.
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1 Introduction

Let l∞, c and co denote the Banach spaces of bounded, convergent and null
sequences x = (xk), normed by ‖x‖ = supk |xk| , respectively. A sequence x =
(xk) ∈ l∞ is said to be almost convergent if all of its Banach limits coincide (see,
Banach [1]). Let f denote the space of all almost convergent sequences. Lorentz
[11] proved that f = {x = (xk) ∈ l∞ : limk→∞ tkm (x) exists, uniformly in m},
where tkm (x) = xm+xm+1+....xm+k

k+1 . The space [f ] of strongly almost convergent
sequences was introduced by Maddox [13] and also independently by Freed-
mann et al. [6] as follows: [f ] = {x = (xk) ∈ l∞ : limk→∞ |tkm (x− Le)| = 0,
uniformly in m, for some L}, where e = (1, 1, ...) . Schaefer [23] defined the
σ−convergence as follows: Let σ be a mapping of the set positive integers
into itself. A continuous linear functional φ on l∞ is said to be invariant
mean or σ−mean if and only if (i) φ (x) ≥ 0 when the sequence x = (xk)
has xk ≥ 0 for all k ∈ N , (ii) φ (e) = 1,(iii) φ

(
xσ(k)

)
= φ (x) for all x =

1
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(xk) ∈ l∞. In the case σ is the translation mapping k → k + 1 , a σ−mean
is often called a Banach limit and Vσ , the set of bounded sequences all of
whose invariant means are equal, is the set of almost convergent sequences.
If x = (xk), write Tx = T (xk) =

(
xσ(k)

)
. It can be shown that Vσ =

{x = (xk) ∈ l∞ : limk→∞ tkm (x) = l , uniformly in m, l = σ − limx}, where
tkm (x) =

xm+xσ(m)+....xσk(m)

k+1 . Here σk (m) denotes the kth iterate of the map-
ping σ at m . A σ−mean extends the limit functional on c in the sense that
φ (x) = limx for all x ∈ c if and only if σ has no finite orbits; that is to say,
if and only if for all n ≥ 0, j ≥ 0, σj (n) 6= n (see, Mursaleen [15]). A se-
quence x = (xk) is said to be strongly σ−convergent if there exists a number
L such that (|xk − l|) ∈ Vσ with the limit zero (see, Mursaleen [16]). We write
as the set of all strongly σ−convergent sequences. If (|xk − l|) ∈ Vσ, we write
Vσ − limxk = L . Taking σ (n) = n + 1, we obtain [Vσ] =[f ] so that strong
σ−convergence generalizes the concept of strong almost convergence. Note that
c ⊂ [Vσ] ⊂ Vσ ⊂ l∞.Using the concept of invariant means, the following se-
quence spaces have been recently introduced and examined by Mursaleen et al.
[17] is a generalization of the results of Das and Sahoo [4].

wσ =

{
x = (xk) : lim

s
s−1

s∑
k=1

tkm (x− Le) = 0, for some L, uniformly in m

}
,

[w]σ =

{
x = (xk) : lim

s
s−1

s∑
k=1

|tkm (x− Le)| = 0, uniformly in m

}
,

[wσ] =

{
x = (xk) : lim

s
s−1

s∑
k=1

tkm (|x− Le|) = 0, uniformly in m

}
.

By a lacunary sequence θ = (kr); r = 0, 1, 2, ..., where ko = 0, we shall
mean an increasing sequence of nonnegative integers with kr − kr−1 → ∞ .
The intervals determined by θ will be denoted by Ir = (kr−1, kr] and we let
hr = kr − kr−1. The ratio kr

kr−1
will be denoted by qr . The space of lacunary

strongly convergent sequences Nθ was defined by Freedman et al. [6] as follows

Nθ =

{
x = (xk) : lim

r
h−1
r

∑
k∈Ir

|xk − L| = 0, for some L

}
.

The concept of lacunary strong σ−corvergence was introduced by Savaş
[21] which is a generalization of the idea of lacunary strong almost convergence
due to Das and Mishra [3]. If

[
V θσ
]

denotes the set of all lacunary strongly
σ−convergent sequences then Savaş [21] defined

[
V θσ
]

=

{
x = (xk) : lim

r
h−1
r

∑
k∈Ir

∣∣xσk(n) − L
∣∣ = 0, for some L, uniformly in n

}
.

Recall [7, 10] that an Orlicz function is a function M : [0,∞)→ [0,∞),
which is continuous, nondecreasing and convex with M (0) = 0, M (x) > 0

2
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for x > 0 and M (x) → ∞ as x → ∞ . If convexity of Orlicz function M is
replaced by M (x+ y) ≤ M (x) + M (y) then this function is called modulus
function, defined and discussed by Ruckle [20] , Maddox [14] and many others.
Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to construct
the sequence space lM =

{
x = (xk) :

∑
kM

(
|xk|
ρ

)
<∞, for some ρ > 0

}
. The

space lM with the norm ‖x‖ = inf
{
ρ > 0 :

∑
kM

(
|xk|
ρ

)
≤ 1
}

becomes a Ba-
nach space which is called an Orlicz sequence space. The space lM is closely
related to the space lp which is an Orlicz sequence space with M (x) = xp for
1 ≤ p <∞ . A generalization of Orlicz sequence space is due to Woo [24]. Let
Ω = (Mk) be a sequence of Orlicz functions. Define the sequence space l (Ω) by
l (Ω) =

{
x = (xk) :

∑
kMk

(
|xk|
ρ

)
<∞, for some ρ > 0

}
and equip this space

with the norm ‖x‖ = inf
{
ρ > 0 :

∑
kMk

(
|xk|
ρ

)
≤ 1
}

. The space l (Ω) is a
Banach space and is called a modular sequence space. The space l (Ω) also gen-
eralizes the concept of modulared sequence space introduced earlier by Nakano
[18], who considered the space l (Ω) when Mk (x) = xαk , where 1 ≤ αk <∞ for
k ≥ 1.

An Orlicz function M is said to satisfy the ∆2−condition for all values
of u, if there exists a constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0).
It is easy to see that always K > 2. The ∆2−condition is equivalent to the
satisfaction of the inequality M (Lu) ≤ KLM (u) for every value of u and for
L > 1 (see Krasnoselskii and Rutickii [9]).

Parashar and Choudhary [19] have introduced and examined some prop-
erties of four sequence spaces defined by using an Orlicz function M , which
generalizes the well-known Orlicz sequence space lM and strong summable se-
quence spaces [C, 1, p] ,[C, 1, p]o and [C, 1, p]∞. It may be noted that the spaces
of strongly summable sequences were discussed by Maddox [12].

The difference sequence space X (∆) was introduced by Kizmaz [8]
as follows: X (∆) = {x = (xk) : (∆xk) ∈ X}, for X = l∞, c and co, where
∆xk = xk − xk+1 for all k ∈ N . Later, these difference sequence spaces
were generalized by Et and Çolak [5] as follows: Let n ∈ N be fixed, then
X (∆n) = {x = (xk) : (∆nxk) ∈ X}, for X = l∞, c and co, where ∆nxk =
∆n−1xk −∆n−1xk+1 and ∆0xk = xk for all k ∈ N . The generalized difference
has the following binomial representation: ∆nxk =

∑n
i=0 (−1)i

(
n
i

)
xk+i for each

k ∈ N .
The main object of this paper is to define and study the sequence spaces[

wθ,Ω, u,∆n, p
]
σ
,
[
wθ,Ω, u,∆n, p

]0
σ

and
[
wθ,Ω, u,∆n, p

]∞
σ

which are defined
by combining the concept of a sequence of Orlicz functions, invariant mean and
lacunary convergence. We examine some linearity and inclusion relations of
these sequence spaces. These are generalizations of those defined and studied
by Savaş and Rhoades [22], Bataineh and Azar [2] and some others before.

Let Ω = (Mk) be any sequence of Orlicz functions. Now, if u = (uk) is
any sequence such that uk 6= 0 (k = 1, 2, ...) and for any sequence x = (xk) ,the
generalized difference sequence (∆nxk) is given by ∆nxk =

∑n
i=0 (−1)i

(
n
i

)
xk+i,

3
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then we define the following sequence spaces:

[
wθ,Ω, u,∆n, p

]
σ

=

{
x = (xk) : lim

r
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx− Le)|

ρ

)]pk
= 0,

for some L, ρ > 0, uniformly in m

}
,

[
wθ,Ω, u,∆n, p

]0
σ

=

{
x = (xk) : lim

r
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
= 0,

for some ρ > 0, uniformly in m

}
,

[
wθ,Ω, u,∆n, p

]∞
σ

=

{
x = (xk) : sup

r,m
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
<∞,

for some ρ > 0
}
.

If Mk = M for all k ∈ N and n = 1, then these spaces reduce to those
defined and studied by Bataineh and Azar [2]. When u = e,Mk = M for
all k ∈ N and n = 0, then these spaces reduce to those defined and studied by
Savaş and Rhoades [22]. Also some sequence spaces are obtained by specializing
θ = (kr) ,Ω = (Mk) , n ∈ N and p = (pk) . For instance, if u = e, ∆nxk = xk and
pk = 1 for all k ∈ N , then we get the spaces

[
wθ,Ω

]
σ
,
[
wθ,Ω,

]0
σ

and
[
wθ,Ω

]∞
σ

.
If x ∈

[
wθ,Ω

]
σ
, we say that x is lacunary [w]σ −convergence with respect to

the sequence of Orlicz functions Ω = (Mk) .
If u = e , ∆nxk = xk and pk = 1 for all k ∈ N , θ = (2r) , Mk (x) =

xk and pk = 1 for all k ∈ N , then
[
wθ,Ω, u,∆n, p

]
σ

= [w]σ which were
defined and studied by Mursaleen et.al [17]. If u = e , ∆nxk = xk and
pk = 1 for all k ∈ N , θ = (2r) , Mk (x) = xk and pk = 1 for all k ∈ N ,
σ (n) = n + 1, then

[
ŵθ,Ω, u,∆n, p

]
= [ŵ] which were defined and stud-

ied by Das and Sahoo [4] . If u = e , ∆nxk = xk for all k ∈ N and
θ = (2r) ,then

[
wθ,Ω, u,∆n, p

]
σ

=
[
wθ,Ω, p

]
σ
,
[
wθ,Ω, u,∆n, p

]0
σ

=
[
wθ,Ω, p

]0
σ

and
[
wθ,Ω, u,∆n, p

]∞
σ

=
[
wθ,Ω, p

]∞
σ
.

2 Main Results

We proved the following theorems.

Theorem 1 For any sequence of Orlicz functions Ω = (Mk) and a bounded
sequence p = (pk) of strictly positive real numbers,

[
wθ,Ω, u,∆n, p

]
σ

,[
wθ,Ω, u,∆n, p

]0
σ

and
[
wθ,Ω, u,∆n, p

]∞
σ

are linear spaces over the set of com-
plex numbers C.

4
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Proof. We will prove the result only for
[
wθ,Ω, u,∆n, p

]0
σ

. The others can be

treated similarly. Let x, y ∈
[
wθ,Ω, u,∆n, p

]0
σ

and α, β ∈ C. Then there exist
positive numbers ρ1 and ρ2 such that

lim
r
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ1

)]pk
= 0, uniformly in m

and

lim
r
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆ny)|

ρ2

)]pk
= 0, uniformly in m.

Let ρ3 = max (2 |α| ρ1, 2 |β| ρ2). Since Mk is non-decreasing and convex for
all k ∈ N ,

h−1
r

∑
k∈Ir

[
Mk

(
|tkm (αu∆nx+ βu∆ny)|

ρ3

)]pk
≤ h−1

r

∑
k∈Ir

1
2pk

[
Mk

(
|tkm (u∆nx)|

ρ1

)
+Mk

(
|tkm (u∆ny)|

ρ2

)]pk
≤ h−1

r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ1

)
+Mk

(
|tkm (u∆ny)|

ρ2

)]pk
≤ Dh−1

r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ1

)]pk
+

Dh−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆ny)|

ρ2

)]pk
→ 0, as r →∞, uniformly in m,

where D = max
(
1, 2H−1

)
, H = supk pk <∞.

Therefore αx+ βy ∈
[
wθ,Ω, p, u,∆n

]0
σ
. This completes the proof.

Theorem 2 For any sequence of Orlicz functions Ω = (Mk) and a bounded
sequence p = (pk) of strictly positive real numbers,

[
wθ,Ω, u,∆n, p

]0
σ

is a topo-
logical linear space, paranormed by

h (x) =
n∑
i=1

|uixi|+

inf

ρpr/H :

(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk)1/H

≤ 1, r,m = 1, 2, . . .

 ,

where H = max (1, supk pk <∞).

5
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Proof. Clearly h (x) = h (−x). It is trivial that ∆nxk = 0 for x = 0. Since
Mk (0) = 0 for all k ∈ N, we get inf

{
ρpr/H

}
= 0. Therefore h (0) = 0. Let

ρ1 > 0 and ρ2 > 0 be such that(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ1

)]pk)1/H

≤ 1, r,m = 1, 2, . . .

and (
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆ny)|

ρ2

)]pk)1/H

≤ 1, r,m = 1, 2, . . . .

Let ρ = ρ1 + ρ2. Then we have(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆n (x+ y))|

ρ

)]pk)1/H

=

(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆n (x+ y))|

ρ1 + ρ2

)]pk)1/H

≤

(
h−1
r

∑
k∈Ir

[
ρ1

ρ1 + ρ2
Mk

(
|tkm (u∆nx)|

ρ1

)
+

ρ2

ρ1 + ρ2
Mk

(
|tkm (u∆ny)|

ρ1

)]pk)1/H

by Minkowski’s inequality

≤
(

ρ1

ρ1 + ρ2

)(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ1

)]pk)1/H

+

(
ρ2

ρ1 + ρ2

)(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆ny)|

ρ2

)]pk)1/H

≤ 1.

Since the ρ′s are non-negative, so we have

inf

ρpr/H :

(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆n (x+ y))|

ρ

)]pk)1/H

≤ 1, r,m = 1, 2, . . .


≤ inf

ρpr/H1 :

(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ1

)]pk)1/H

≤ 1, r,m = 1, 2, . . .


+inf

ρpr/H2 :

(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆ny)|

ρ2

)]pk)1/H

≤ 1, r,m = 1, 2, . . .


Therefore h (x+ y) ≤ h (x)+h (y) . We now show that the scalar multiplica-

tion is continuous. Whenever η → 0 and x→ 0, imply h (ηx)→ 0. Also x→ 0
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imply h (ηx) → 0. Now we show that η → 0 and x fixed imply h (ηx) → 0.
Without loss of generality let |η| < 1. Then the required proof follows from the
following inequality:

h (ηx) =
n∑
i=1

|ηuixi|

+ inf

ρpr/H :

(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (ηu∆nx)|

ρ

)]pk)1/H

≤ 1, r,m = 1, 2, . . .


≤ |η|

n∑
i=1

|uixi|

+ inf

(|η| t)pr/H :

(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (ηu∆nx)|

t

)]pk)1/H

≤ 1, r,m = 1, 2, . . .


(where

ρ

|η|
= t )

≤ max
(
|η| , sup |η|

H
M

)
·

n∑
i=1

|uixi|+ inf

tpr/H :

(
h−1
r

∑
k∈Ir

[
Mk

(
|tkm (ηu∆nx)|

t

)]pk)1/H

≤ 1, r,m = 1, 2, . . .




= max
(
|η| , sup |η|

H
M

)
h (x)→ 0, as η → 0.

This completes the proof.
The following result follows by a straightforward calculation using the

∆2-condition.

Lemma 3 For any sequence of Orlicz functions Ω = (Mk) which satisfy the
∆2-condition for all k ∈ N and let 0 < δ < 1. Then for each x ≥ δ, Mk (x) <
Kxδ−1Mk (2) for some constant K > 0.

Theorem 4 For any sequence of Orlicz functions Ω = (Mk) which satisfy the
∆2-condition for all k ∈ N ,[

wθ, u,∆n, p
]
σ
⊂
[
wθ,Ω, u,∆n, p

]
σ
.

Proof. Let x ∈
[
wθ, u,∆n, p

]
σ
. Then we have

Ar = h−1
r

∑
k∈Ir

[|tkm (u∆nx− Le)|]pk → 0, as r →∞ for some L, uniformly in m.

Let ε > 0 and choose δ with 0 < δ < 1 such that Mk (t) < ε for 0 ≤ t ≤ δ.
Then we can write

7
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h−1
r

∑
k∈Ir

[Mk |tkm (u∆nx− Le)|]pk

= h−1
r

∑
k∈Ir,|tkm(u∆nx−Le)|≤δ

[Mk (|tkm (u∆nx− Le)|)]pk

+ h−1
r

∑
k∈Ir,|tkm(u∆nx−Le)|>δ

[Mk (|tkm (u∆nx− Le)|)]pk

< h−1
r hr max

(
εh, εH

)
+ h−1

r max
(
1,Kδ−1Mk (2)

)H
hrAr, by Lemma 3.

Letting r →∞ , it follows that x ∈
[
wθ,Ω, u,∆n, p

]
σ
.

Theorem 5 Let θ = (kr) be a lacunary sequence with lim infr qr > 1. Then for
any sequence of Orlicz functions Ω = (Mk), [w,Ω, u,∆n, p]σ ⊂

[
wθ,Ω, u,∆n, p

]
σ
,

[w,Ω, u,∆n, p]0σ ⊂
[
wθ,Ω, u,∆n, p

]0
σ

and [w,Ω, u,∆n, p]∞σ ⊂
[
wθ,Ω, u,∆n, p

]∞
σ
,

where

[w,Ω, u,∆n, p]σ =

{
x = (xk) : lim

s
s−1

s∑
k=1

[
Mk

(
|tkm (u∆nx− Le)|

ρ

)]pk
= 0,

for some L, ρ > 0, uniformly in m

}
,

[w,Ω, u,∆n, p]0σ =

{
x = (xk) : lim

s
s−1

s∑
k=1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
= 0,

for some ρ > 0, uniformly in m

}
,

[
wθ,Ω, u,∆n, p

]∞
σ

=

{
x = (xk) : sup

s,m
s−1

s∑
k=1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
<∞,

for some ρ > 0
}
.

Proof. We will prove [w,Ω, u,∆n, p]σ ⊂
[
wθ,Ω, u,∆n, p

]
σ

only. The oth-
ers can be treated similarly. It is sufficient to show that [w,Ω, u,∆n, p]0σ ⊂[
wθ,Ω, u,∆n, p

]0
σ
, the general inclusion follows by linearity. Suppose that

lim infr qr > 1, then there exists δ > 0 such that qr = kr
kr−1

≥ 1 + δ for all

r ≥ 1. Then for x ∈ [w,Ω, u,∆n, p]0σ, we write

8
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Br = h−1
r

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk

= h−1
r

kr∑
k=1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
− h−1

r

kr−1∑
k=1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
=
kr
hr

(
k−1
r

kr∑
k=1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk)

− kr−1

hr

k−1
r−1

kr−1∑
k=1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk .

Since hr = kr − kr−1, we have kr
hr
≤ 1+δ

δ , kr−1
hr

≤ 1
δ . The terms

k−1
r

∑kr
k=1

[
Mk

(
|tkm(u∆nx)|

ρ

)]pk
and k−1

r−1

∑kr−1
k=1

[
Mk

(
|tkm(u∆nx)|

ρ

)]pk
both con-

verge to zero uniformly in m, and it follows that Br converges to zero as r →∞,
uniformly in m, that is, x ∈

[
wθ,Ω, u,∆n, p

]0
σ
. This completes the proof.

Theorem 6 Let θ = (kr) be a lacunary sequence with lim supr qr < ∞.
Then for any sequence of Orlicz functions Ω = (Mk), [w,Ω, u,∆n, p]σ ⊃[
wθ,Ω, u,∆n, p

]
σ

, [w,Ω, u,∆n, p]0σ ⊃
[
wθ,Ω, u,∆n, p

]0
σ

and [w,Ω, u,∆n, p]∞σ ⊃[
wθ,Ω, u,∆n, p

]∞
σ
.

Proof. We will prove [w,Ω, u,∆n, p]σ ⊃
[
wθ,Ω, u,∆n, p

]
σ

only. The oth-
ers can be treated similarly. It is sufficient to show that [w,Ω, u,∆n, p]0σ ⊃[
wθ,Ω, u,∆n, p

]0
σ
, the general inclusion follows by linearity. Suppose that

lim supr qr < ∞ , then there exists C > 0 such that qr < C for all r ≥ 1.
Let x ∈

[
wθ,Ω, u,∆n, p

]0
σ

and ε > 0. Then there exists R > 0 such that for
every j ≥ R and all m,

Bj = h−1
j

∑
k∈Ij

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
< ε.

We can also find K > 0 such that Bj < K for all j = 1, 2, . . .. Now let s be any
integer with kr−1 < s ≤ kr, where r > R. Then

s−1
s∑

k=1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
≤ k−1

r−1

kr∑
k=1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
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= k−1
r−1

{∑
k∈I1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
+
∑
k∈I2

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
+ . . .+

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk}

= k−1
r−1k1k

−1
1

∑
k∈I1

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
+

k−1
r−1 (k2 − k1) (k2 − k1)−1

∑
k∈I2

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
+ . . .+

k−1
r−1 (kR − kR−1) (kR − kR−1)−1

∑
k∈IR

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
+ . . .+

k−1
r−1 (kr − kr−1) (kr − kr−1)−1

∑
k∈Ir

[
Mk

(
|tkm (u∆nx)|

ρ

)]pk
= k−1

r−1k1B1 + k−1
r−1 (k2 − k1)B2 + . . .+

k−1
r−1 (kR − kR−1)BR+ . . .+k−1

r−1 (kr − kr−1)Br

≤
(

sup
j≥1

Bj

)
k−1
r−1kR +

(
sup
j≥R

Bj

)
k−1
r−1 (kr − kR) < Kk−1

r−1kR + εC.

Since kr−1 →∞ as n→∞, it follows that s−1
∑s
k=1

[
Mk

(
|tkm(u∆nx)|

ρ

)]pk
→ 0

uniformly in m, and consequently x ∈ [w,Ω, u,∆n, p]0σ. This completes the
proof.

Theorem 7 Let θ = (kr) be a lacunary sequence with 1 < lim infr qr ≤ lim supr qr <
∞. Then for any sequence of Orlicz functions Ω = (Mk),

[w,Ω, u,∆n, p]σ =
[
wθ,Ω, u,∆n, p

]
σ
.

Proof. It follows from Theorem 5 and Theorem 6.
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Abstract: Let ( )kλ=Λ  be a sequence of non-zero complex numbers. In this paper we 

introduce generalized difference sequence spaces associated with multiplier sequence 

( )kλ=Λ  and study their different properties. We also introduce nm,

Λ∆ -statistical 

convergence and strongly ( )pnm,

Λ∆ -Cesaro summable and give some relations between 

them. 
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1.Introduction 

 

Throughout the article w, cco , and ∞�  denote the spaces of all, null, convergent and 

bounded sequences, respectively. The studies on difference sequence spaces was initiated by 

Kizmaz [11]. He studied the spaces  

 

( ) ( ) ( ){ }ZxxwxxZ kk ∈∆=∆∈==∆ :  

 

for =Z cco , and ∞� . It was shown by him that these spaces are Banach spaces, normed by 

 

 kk xxx ∆+=
∆

sup1 . 

 

 The notion was further generalized by Et and Colak [4] as follows: 

 

 Let 0≥m  be an integer, then 

 

( ) ( ) ( ){ }ZxxwxxZ k

mm

k

m ∈∆=∆∈==∆ :  

 

for =Z cco , and ∞� , where kkk

m

k

m

k

m
xxxxx =∆∆−∆=∆ +

−− 0

1

11 , , for all Nk ∈ . It was 

shown by them that these spaces are Banach spaces, normed by 

 

k

m

k

m

k

k xxx m ∆+=∑
=

∆
sup

1

. 

The generalized difference operator k

m
x∆  has the following binomial representation 

( ) ik

m

i

i

k

m
x

i

m
x +

=








−=∆ ∑

0

1                                                                           …(1) 
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 2 

 

 

 

Later on the notion was further investigated by Et and Esi [3], Tripathy [17] and many 

others. 

 

The scope for the studies on sequence spaces was extended on introducing the notion 

of associated multiplier sequences. Goes and Goes [9] defined the differentiated sequence 

space dE  and integrated sequence space ∫ E  for a given sequence E with the help of the 

multiplier sequences ( )1−k  and ( )k , respectively. Kamthan [10] used the multiplier sequence 

( )!k . We shall use a general multiplier sequence fort he sequence spaces introduced in this 

article. Throughout the article, ( )kpp =  is a sequence of positive real numbers. 

 

Let ( )kλ=Λ  be a sequence of non-zero scalars. Then for E  a sequence space, the 

multiplier sequence space ( )ΛE , associated with the multiplier sequence ( )kλ=Λ  is defined 

as 

( ) ( ) ( ){ }ExwxxE kkk ∈∈==Λ λ: . 

  

2.Definitions and Preliminaries 

 

 A sequence space E  is said to be solid (or normal) if ( ) Exx kk ∈= αα , whenever 

( ) Exx k ∈= , for all sequences ( )kαα =  of scalars with 1≤kα  for all .Nk ∈  

 A sequence space E  is said to be symmetric if ( )( ) Ex k ∈π , whenever ( ) Exx k ∈= , 

where ( )kπ  is a permutation on .N  

  

 Let ( )kλ=Λ  be a given multiplier sequence, then we have the following known 

difference sequence spaces: 

 

 ( ) ( ){ }∞→→∆∈==Λ∆ kasxwxxpc
kp

kkko ,0:,, λ ,  

 

( ) ( ) ( ){ }LsomeforkasLxwxxpc
kp

kkk ,,0:,, ∞→→−∆∈==Λ∆ λ  

and  

( ) ( ){ }∞<∆∈==Λ∆∞

kp

kkkk xwxxpl λsup:,, . 

 

Now we introduce the following generalized difference sequence spaces associated 

with a multiplier sequence ( )kλ=Λ : 

 

( ) ( ){ }, , : 0, ,
kp

m m

o k k k nV p x x w x as k uniformly in nλ +∆ Λ = = ∈ ∆ → → ∞ , 

 

( ) ( ) ( ){ }1
, , : 0, , ,

kp
m m

k k k n
V p x x w x L as k uniformly in n for some Lλ +∆ Λ = = ∈ ∆ − → → ∞  

and  

            ( ) ( ){ },, , : sup
kp

m m

k k n k k nV p x x w xλ∞ +∆ Λ = = ∈ ∆ < ∞ . 
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 3 

 

 

 

 

 We get particular cases of the above sequence spaces by restricting some of the 

parameters pnm ,,  and ( )kλ=Λ . Some examples are below: 

 

 When 0== nm  and ( ),...1,1,1==Λ e , we obtain the sequence spaces ( )pco , ( )pc  

and ( )p∞� studied by Maddox [13] , Lascarides [12] and others. 

 

 When 0== nm , ( ),...1,1,1==Λ e  and 1=kp  for all Nk ∈ , we obtain the sequence 

spaces of null, convergent and bounded sequences, respectively.  

 

 When 0== nm , we obtain the sequence spaces ( )pco ,, Λ∆ , ( )pc ,,Λ∆  and 

( ), , p∞ ∆ Λ� . 

 

 Let ( )kpp =  be a bounded sequence of positive real numbers. Let kk pH sup=  and 

( )12,1max −= HC . Then,  we have (see for instance Maddox [14] ). 

  

 ( )kkk p

k

p

k

p

kk yxCyx +≤+                                                                               …(2) 

 

 Remark. Let H= sup
k

k

p < ∞ . Then the spaces ( )pco  and ( )pc are paranormed spaces, 

paranormed by  

                                 ( ) sup | |
kp

M
k

k

g x x= , where M=max {1, H}. 

The space ∞� (p) is paranormed by g, if inf 0k
k

p > (see for instance Maddox [13]). 

 

 3. Main Results 

 

 The proof of the following result is routine verification, so we omit it. 

 

 Theorem 3.1. Let ( )kpp =  be a bounded sequence of  positive real numbers. Then,  

      (a) ( ), ,
m

oV p∆ Λ , ( )1 , ,
m

V p∆ Λ  and ( ), ,
m

V p∞ ∆ Λ  are linear spaces over the complex field C. 

      (b) ( ), ,
m

oV p∆ Λ ⊂ ( )1 , ,
m

V p∆ Λ  ⊂ ( ), ,
m

V p∞ ∆ Λ . 

 

 Theorem 3.2. Let ( )kpp =  be a bounded sequence of  positive real numbers. Then,      

    (a)  The spaces ( ), ,
m

oV p∆ Λ  and ( )1 , ,
m

V p∆ Λ  are complete linear topological spaces, 

paranormed by 

                        ( ) M
p

nk

m

knk

m

i

kk

k

xxxg +

=

∆+=∑ λλ ,

1

sup  

 

where ( )HpM kk == sup,1max . 

   (b) The space ( ), ,
m

V p∞ ∆ Λ  is a complete paranormed space, paranormed by g, if  0 < inf
k

k
p . 

 Proof. (a) Clearly ( ) ( ) ( )xgxgg =−= ,0θ  and by Minkowski’s inequality  
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 4 

 

 

 

( ) ( ) ( )ygxgyxg +≤+ . We now show that the scalar multiplication is continuous. Whenever 

0→η and θ→x  imply ( ) 0→xg η . Also θ→x  imply ( ) 0→xg η . Now, we show that 

0→η  and x  fixed imply ( ) 0→xg η . Without loss of generality let 1<η . Then, the 

required proof follows from the following inequality: 

 

 ( ) M
p

nk

m

knk

m

i

kk

k

xxxg +

=

∆+=∑ ηληλη ,

1

sup  

             { } M
p

nk

m

knk
M

H
m

i

kk

k

xx +

=

∆+≤ ∑ ληηλη ,

1

sup,max  

                        { } ( ) 0,0.,max →→≤ ηηη asxgM
H

. 

 

 Let ( )sx  be a Cauchy sequence in ( )pc
m

o ,,Λ∆ . Then, ( ) ∞→→− tsasxxg ts ,,0 . 

For a given 0>ε , let ( )εoo nn =  be such that 

 ( ) ( ) ελλ <−∆+− ++

=

∑ M
p

t

nk

s

nk

m

knk

m

i

t

k

s

kk

k

xxxx ,

1

sup , for all onts ≥,               …(3) 

 

Hence, ( ) ελ <−∑
=

m

i

t

k

s

kk xx
1

, for all onts ≥, . This implies that ( )s

kk xλ  is a Cauchy sequence 

for each mk ,...,2,1= . So, ( )s

kk xλ  is converges in C for each mk ,...,2,1= . Let k

s

kks yx =λlim           

for each mk ,...,2,1=  and let k

s

ks xx =lim , say  

where  

 1−= kkk yx λ , for each mk ,...,2,1= .                                                                   …(4) 

 

From (3), we have ( ) ελ <−∆ ++
M

p
t

nk

s

nk

m

knk

k

xx,sup  , for all onts ≥, . This implies that 

( )s

k

m

k x∆λ  is a Cauchy sequence in C for each Nk ∈ . Hence ( )s

k

m

k x∆λ  is converges for each 

Nk ∈ . Let k

s

k

m

ks zx =∆λlim ,  for each Nk ∈ .  

Let 1lim −==∆ kkk

s

k

m

s zyx λ , for each Nk ∈ .                                                               …(5) 

 

Hence from (1),(4) and (5), it follows that 11lim ++ = m

s

ms xx . Proceeding in this way 

inductively, we have k

s

ks xx =lim , for each Nk ∈ . By (3) we have 

 

 ( ) ( ) ελλ <







−∆+− ++

=

∑ M
p

t

nk

s

nk

m

knk

m

i

t

k

s

kkt

k

xxxx ,

1

suplim , for all ons ≥ .               

So,  

 ( ) ( ) ελλ <







−∆+− ++

=

∑ M
p

nk

s

nk

m

knk

m

i

k

s

kk

k

xxxx ,

1

sup , for all ons ≥  .   

 

This implies that ( )∈− xx s ( )pc
m

o ,,Λ∆ . Since ( )pc
m

o ,,Λ∆  is a linear space, so we have    

( )∈−−= xxxx ss ( )pc
m

o ,,Λ∆ . This completes the proof. 
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    (b) The proof follows by using the technique applied for establishing the part (a) and 

the Remark.   

 Theorem 3.3. (a) Let 10 ≤≤< kk qp  for all .Nk ∈  Then, ( ), ,
m

V q∞ ∆ Λ  is a subset of 

( ), ,
m

V p∞ ∆ Λ . 

      (b) If inf 0
k

k
q > , then ( ), ,

m
V q∞ ∆ Λ  is a closed subset of ( ), ,

m
V p∞ ∆ Λ  

 Proof.(a)  Let ∈x ( )ql m ,, Λ∆∞ . Then there exists a constant 1>T  such that  

 

 Tx
kq

nk

m

k ≤∆ +λ , for every Nn ∈  

and so 

  

 Tx
kp

nk

m

k ≤∆ +λ , for every Nn ∈ . Thus, ∈x ( ), ,
m

V p∞ ∆ Λ .   

    (b) The proof follows from Theorem 3.3(a) and Theorem 3.2(b). 

 

 Theorem 3.4.(a) Let 1inf0 ≤≤< kkk pp . Then, ( )1 , ,
m

V p∆ Λ ⊂ ( )1 ,
m

V ∆ Λ . 

 (b) Let ∞<≤≤ kkk pp sup1 . Then, ( )1 , ,
m

V p∆ Λ ⊃ ( )1 ,
m

V ∆ Λ . 

 (c) Let 21 mm ≤ . Then ( ) ( )2 1

1 1
, , , ,

m m
V p V p∆ Λ ⊂ ∆ Λ . 

 

 Proof.(a) Let 1inf0 ≤≤< kkk pp  and ( )∈= kxx ( )1 , ,
m

V p∆ Λ . Then there exists L 

such that  

 ( ) ( ) kp

nk

m

knk

m

k LxLx −∆≤−∆ ++ λλ . 

Hence ( )∈= kxx ( )1 ,
m

V ∆ Λ . 

 (b) Let ∞<≤≤ kkk pp sup1  and ( )∈= kxx ( )1 ,
m

V ∆ Λ . Then for each 10 << ε , there 

exists a positive integer ok  such that ( ) 1<<−∆ + ελ Lx nk

m

k , for all okk >  and for all Nn ∈ . 

This implies that 

 

 ( ) ( ) ελλ <−∆≤−∆ ++ LxLx nk

m

k

p

nk

m

k

k

, for all okk >  and for all Nn ∈ . 

Hence ( )∈= kxx ( )1 , ,
m

V p∆ Λ . 

 

 (c) The proof is a routine verification. 

 

 Theorem 3.5. The spaces ( )0 , ,
m

V p∆ Λ , ( )1 , ,
m

V p∆ Λ  and ( ), ,
m

V p∞ ∆ Λ  are not solid in 

general. 

 Proof. To show this, consider the following example. 

 

 Example 1. Let kk =λ  and kpk =  for all .Nk ∈  Then consider the sequence 

( ) ( )2== kxx  and 1=m . Then ∈x ( )0 , ,
m

V p∆ Λ . Now consider the sequence ( )kαα =  defined 

by ( )k

k 1−=α  for all .Nk ∈  Then xα  neither belongs to ( ), ,
m

oV p∆ Λ  nor to ( )1 , ,
m

V p∆ Λ  nor to 

( ), ,
m

V p∞ ∆ Λ . 
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 Theorem 3.6. The spaces ( )0 , ,
m

V p∆ Λ , ( )1 , ,
m

V p∆ Λ  and ( ), ,
m

V p∞ ∆ Λ  are not symmetric 

spaces in general. 

 

 Proof. To show this, consider the following example. 

 

 Example 2. Let 1−= kkλ , kpk =  for all Nk ∈ and 1=m . Then the sequence 

( ) ( )kxx k ==  is in ( )0 , ,
m

V p∆ Λ . Consider the following sequence ( )kyy =  which is a 

rearragement of the sequence ( ) ( )kxx k ==  defined as 

 ( ) ( ),...,,,,,,,,,,,,,,, 11641049836725616593421 xxxxxxxxxxxxxxxxyy k == . Then, the 

sequence ( )kyy =  neither belongs to ( ), ,
m

oV p∆ Λ  nor to ( )1 , ,
m

V p∆ Λ  nor to ( ), ,
m

V p∞ ∆ Λ . 

 

  

 4. Statistical convergence 

 

 A complex number sequence ( )kxx =  is said to be statistically convergent to the 

number L if for every 0>ε , 

 

 { }
1

lim : 0
n k

k n x L
n

ε≤ − ≥ = , 

where the vertical bars indicate the number of elements in the closed set. In this case we write 

lim
k

stat x L− = . 

 The idea of the statistical convergence for sequences of real number was introduced by 

Fast [6] and Schoenberg [16] at the initial stage. Later on it was studied from sequence space 

point of view and linked with summability methods by Salat [15], Fridy [7], Fridy and Orhan 

[8], Esi and Tripathy [2] and many others. 

 

 A complex number sequence ( )kxx =  is said to be nm,

Λ∆ -statistically convergent to the 

number L if for every 0>ε  and fixed Nm ∈ , 

 

 { } 0:
1

lim =≥−∆≤ + ελ lxtk
t

nk

m

kt , uniformly in n . 

In this case we write , limm n

k
stat x LΛ∆ − − =  and by ( )nmS ,

Λ∆ , we denote the class of all nm,

Λ∆ -

statistically convergent sequences. 

 

 When 0== nm  and ( ),...1,1,1==Λ e , the space ( )nmS ,

Λ∆  represents the ordinary 

statistical convergence. 

 

 When 0=n , the space ( )nmS ,

Λ∆  represent the space ( )mS Λ∆ , which was defined and 

studied by Esi and Tripathy [2]. 

 

 When 0=n  and ( ),...1,1,1==Λ e , the space ( )nmS ,

Λ∆  becomes the generalized 

difference statistically convergent sequence space ( )m
S ∆  defined and studied by Et and Nuray 

[5]. 
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 Let ( )kxx =  be a complex number sequence and ( )kpp = be a bounded sequence of  

positive real numbers. The sequence ( )kxx =  is said to be strongly 
,( , ( ))m n

pΛ∆ -Cesaro 

summable if there is a complex number L such that 

 

 
1

1
lim 0

k
t

p
m

k k n
t

k

x L
t

λ +
=

∆ − =∑ , uniformly in n . 

We denote the strongly 
,( , ( ))m n

pΛ∆ -Cesaro summable sequences by ( ), ,m n
w pΛ
 ∆  . 

 

 When 0== nm  and ( ),...1,1,1==Λ e , then we obtain the familiar space of strongly 

p -Cesaro sequences [1]. 

 

 The proof of the following theorem is easy, so omitted. 

 

 Theorem 4.1. Let 0≠kλ  for all Nk ∈ . Then,  

 

 (a) The sequence space 
, , ( )m n

w pΛ
 ∆   is complete linear topological space, paranormed 

by  

 ( )
Mt

k

p

nk

m

knt

m

k

kk

k

x
t

xxg

1

1

,

1

1
sup 








∆+= ∑∑

=

+

=

λλ  

where ( )kk pM sup,1= . 

 

 (b) The sequence space 
, ,m nw pΛ

 ∆   normed BK space with the norm 

 

 
pt

k

p

nk

m

knt

m

k

kk x
t

xx

1

1

,

1
1

1
sup 








∆+= ∑∑

=

+

=

λλ  ,  for ∞<≤ p1  

 

and the sequence space 
, ,m nw pΛ

 ∆   is a complete p -normed space with the norm 

 

 ∑∑
=

+

=

∆+=
t

k

p

nk

m

knt

pm

k

kk x
t

xx
1

,

1
1

1
sup λλ , for 10 << p . 

 

 Now, we will define an another norm on the sequence space 
, ,m nw pΛ

 ∆   in follows 

theorem. 

 

 Theorem 4.2. Let 0≠kλ  for all Nk ∈  and [ )12,2 +∈ rrk . Then, the sequence space  

 
, ,m nw pΛ

 ∆   normed BK space with the norm 
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p

r

p

nk

m

krnr

m

k

kk xxx

1

,

1
2 2

1
sup 








∆+= ∑∑ +

=

λλ  ,  for ∞<≤ p1  

 

and the sequence space 
, ,m nw pΛ

 ∆   is a complete p -normed space with the norm 

 

 ∑∑ +

=

∆+=
r

p

nk

m

krnr

pm

k

kk xxx λλ
2

1
sup ,

1
2

, for 10 << p . 

 

 Result 4.3. The two norms 
1

x  and 
2

x  are equivalent defined in the Theorem 4.1. 

and Theorem 4.2. 

 

 Now, we give some inclusion relations between the spaces ( ), ,m n
w pΛ
 ∆   and  

 

( )nmS ,

Λ∆ . 

 

 Theorem 4.4. Let 0< inf sup
k k

k k

p p≤ < ∞ . Then  

            (a) If ( )∈= kxx ( ), ,m n
w pΛ
 ∆  , then ( )∈= kxx ( )nmS ,

Λ∆ , 

 (b) If ( )∈= kxx ( ), ,
m

p∞ ∆ Λ ∩� ( )nmS ,

Λ∆ , then ( )∈= kxx ( ), ,m n
w pΛ
 ∆  , 

 (c) ( ), ,
m

p∞ ∆ Λ ∩� ( )nmS ,

Λ∆ = ( ), ,
m

p∞ ∆ Λ ∩� ( ), ,m n
w pΛ
 ∆  . 

 

 Proof .(a) Let 0>ε and ( )∈= kxx ( ), ,m n
w pΛ
 ∆  . Then, we have 

  

 ( ) ( )
( )

( )
( )

∑∑∑
<−∆

=
+

≥−∆

=
+

=
+

++

−∆+−∆=−∆
t

Lx

k

p

nk

m

k

t

Lx

k

p

nk

m

k

t

k

p

nk

m

k

nk
m

k

k

nk
m

k

kk

LxLxLx

ελελ

λλλ
111

 

    ( )
( )

∑
≥−∆

=
+

+

−∆≥
t

Lx

k

p

nk

m

k

nk
m

k

k

Lx

ελ

λ
1

 

 

    { }: kpm

k k n
k t x Lλ ε ε+≥ ≤ ∆ − ≥ . 

    { } ( ): min ,m h H

k k n
k t x Lλ ε ε ε+≥ ≤ ∆ − ≥ , 

 

where ∞<=≤≤=< Hpphp kkkkk supinf0 . It follows that ( )∈= kxx ( )nmS ,

Λ∆ . 

 

 (b) Suppose that ( )∈= kxx ( ), ,
m

p∞ ∆ Λ ∩� ( )nmS ,

Λ∆ . Set LxK
kp

nk

m

knk +∆= +λ,sup . 
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( ) ( )
( )

( )
( )

∑∑∑
<−∆

=
+

≥−∆

=
+

=
+

++

−∆+−∆=−∆
t

Lx

k

p

nk

m

k

t

Lx

k

p

nk

m

k

t

k

p

nk

m

k

nk
m

k

k

nk
m

k

kk

LxLxLx

ελελ

λλλ
111

 

 

            ( )
( ) ( )

∑∑
<−∆

=

≥−∆

=

++

+≤
t

Lx

k

p
t

Lx

k

Hh

nk
m

k

k

nk
m

k

KK

ελελ

ε
11

,max  

 

           ( ){ } ( )Hh

nk

m

k

Hh
lxtkKK εεελ ,max:,max +≥−∆≤≤ + . 

 

It follows that ( )∈= kxx ( )[ ]pw nm,

Λ∆ . 

 

 (c) Follows from (a) and (b). 
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The Lyapunov stability for the ε - revised
dynamics of the rigid body with three linear

controls

Dan COMĂNESCU, Mihai IVAN and Gheorghe IVAN

Abstract. In this paper we introduce the ε - revised system associated to a Hamil-
ton - Poisson system. The ε - revised dynamical system of the rigid body with three
linear controls is defined and its geometrical properties and dynamical stability of equi-
librium points are investigated. 1

1 Introduction

It is well known that many dynamical systems can be formulated using a Poisson
structure (see for instance, R. Abraham and J. E. Marsden [1] and M. Puta [11]).

The metriplectic systems and the almost metriplectic systems are investigated in a
series of papers ( see P. J. Morrison [8]; D. Fish [2]; J. E. Marsden [7]; J.-P. Ortega
and V. Planas - Bielsa [9] ). An interesting class of almost metriplectic systems are
so-called the revised dynamical systems associated to Hamilton-Poisson systems (see
Gh. Ivan and D. Opriş [5];MR 2006m:53130).

The control of the rotation rigid body is one of the problems with a large applica-
bility. The dynamics of the rigid body with three linear controls has been studied by
M. Puta and D. Comănescu in [12] ( Zbl 1024.70002 ).

2 Almost metriplectic systems

Let M be a smooth manifold of dimension n and let C∞(M) be the ring of smooth
real-valued functions on M .

A Leibniz manifold is a pair (M, [·, ·]), where [·, ·] is a Leibniz bracket on M , that is
[·, ·] : C∞(M)×C∞(M) → C∞(M) is a R - bilinear operation satisfying the conditions:
(i) the left Leibniz rule:

[f1 · f2, f3] = [f1, f3] · f2 + f1 · [f2, f3] for all f1, f2, f3 ∈ C∞(M);

(ii) the right Leibniz rule:
[f1, f2 · f3] = [f1, f2] · f3 + f2 · [f1, f3] for all f3, f3, f3 ∈ C∞(M)

where ”·” denotes the ordinary multiplication of functions.
12000 Mathematical Subject Classification : 58F05.

Key words and phrases: almost metriplectic system, ε- revised system, rigid body
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2

Let P and g be two tensor fields of type (2, 0) on M and ε ∈ R be a parameter.
We define the map [·, (·, ·)]ε : C∞(M)× (C∞(M)× C∞(M)) → C∞(M) by:

[f, (h1, h2)]ε = P (df, dh1) + εg(df, dh2), for all f, h1, h2 ∈ C∞(M). (1)

Proposition 2.1. The map [·, (·, ·)]ε given by (1) satisfy the following relations:
(i) [af1 + bf2, (h1, h2)]ε = a[f1, (h1, h2)]ε + b[f2, (h1, h2)]ε;

(ii) [f, a(h1, h2) + b(h′1, h
′
2)]ε = a[f, (h1, h2)]ε + b[f, (h′1, h

′
2)]ε;

(iii) [ff1, (h1, h2)]ε = f [f1, (h1, h2)]ε + f1[f, (h1, h2)]ε;

(iv) [f, h(h1, h2)]ε = h[f, (h1, h2)]ε + h1P (df, dh) + εh2g(df, dh),

for all f, f1, f2, h1, h2, h
′
1, h

′
2 ∈ C∞(M) and a, b ∈ R.

Proof. Applying the properties of the differential of functions and using that P
and g are R- bilinear maps, it is easy to establish the relations (i)− (iv). ¤

We consider the map [[·, ·]]ε : C∞(M)× C∞(M) → C∞(M) defined by:

[[f, h]]ε = [f, (h, h)]ε, for all f, h ∈ C∞(M). (2)

Therefore, the map [[·, ·]]ε : C∞(M)× C∞(M) → C∞(M) is given by:

[[f, h]]ε = P (df, dh) + εg(df, dh), for all f, h ∈ C∞(M). (3)

Proposition 2.2. The bracket [[·, ·]]ε on M given by (3) verify the right Leibniz rule:

[[f, hh′]]ε = h[[f, h′]]ε + h′[[f, h]]ε, for all f, h, h′ ∈ C∞(M).

Proof. Indeed, [[f, hh′]]ε = [f, (hh′, hh′)]ε = [f, h(h′, h′)]ε. Putting h1 = h2 = h′ in
the relation (iv) from Proposition 2.1, we have:
[f, h(h′, h′)]ε = h[f, (h′, h′)]+h′P (df, dh)+εh′g(df, dh) = h[f, (h′, h′)]ε +h′(P (df, dh)+
εg(df, dh)) = h[f, (h′, h′)]ε + h′[f, (h, h)]ε = h[[f, h′]]ε + h′[[f, h]]ε. ¤

By Proposition 2.1.(i),(ii) and (iii) and Proposition 2.2, we have that [[·, ·]]ε given
by (3) is a Leibniz bracket on M. Hence, [[·, ·]]ε defines a Leibniz structure on M and
(M,P,g, [[·, ·]]ε) is a Leibniz manifold for each ε ∈ R.

A Leibniz manifold (M, P,g, [[·, ·]]ε) such that P is a skewsymmetric tensor field
and g is a symmetric tensor field is called almost metriplectic manifold. In other words,
given a skewsymmetric tensor field P of type (2, 0) and a symmetric tensor field g of
type (2, 0) on a manifold M , we can define an almost metriplectic structure on M .

If the tensor field P is Poisson and the tensor field g is nondegenerate, then
(M,P,g, [[·, ·]]ε) is a metriplectic manifold, see [9].

Proposition 2.3. Let (M,P,g, [[·, ·]]ε) be an almost metriplectic manifold. If there
exist h1, h2 ∈ C∞(M) such that P (df, dh2) = 0 and g(df, dh1) = 0 for all f ∈ C∞(M),
then the bracket [[·, ·]]ε given by (3) satisfies the relation:

[[f, h1 + h2]]ε = [f, (h1, h2)]ε, for all f ∈ C∞(M). (4)
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Proof. Indeed, [[f, h1 +h2]]ε = P (df, d(h1 +h2))+εg(df, d(h1 +h2)) = P (df, dh1 +
dh2)+εg(df, dh1+dh2) = P (df, dh1)+P (df, dh2)+εg(df, dh1)+εg(df, dh2) = P (df, dh1)+
εg(df, dh2) = [f, (h1, h2)]ε. ¤

Let (M, P,g, [[·, ·]]ε) be an almost metriplectic manifold and let h1, h2 ∈ C∞(M)
two functions such that P (df, dh2) = 0 and g(df, dh1) = 0 for all f ∈ C∞(M). The
vector field Xh1h2 given by:

Xh1h2(f) = [[f, h1 + h2]]ε for any f ∈ C∞(M)

is called the Leibniz vector field associated to triple (h1, h2, ε) on M.
Taking account into Proposition 2.3 and (1), Xh1h2 is given by:

Xh1h2(f) = [f, (h1, h2)]ε = P (df, dh1) + εg(df, dh2), for all f ∈ C∞(M). (5)

In local coordinates on M, the differential system given by:

ẋi = [[xi, h1 + h2]]ε = [xi, (h1, h2)]ε, where (6)

[xi, (h1, h2)]ε = Xh1h2(x
i) = P ij ∂h1

∂xj
+ εgij ∂h2

∂xj
, i, j = 1, n (7)

with P ij = P (dxi, dxj) and gij = g(dxi, dxj), is called the almost metriplectic system
on M associated to Leibniz vector field Xh1h2 with the bracket [[·, ·]]ε.

We denote the matrices of P and g respectively by P = (P ij) and g = (gij).
Proposition 2.4. For a skewsymmetric tensor P of type (2, 0) on a manifold M

and two functions h1, h2 ∈ C∞(M) such that P (df, dh2) = 0 for all f ∈ C∞(M),
there exists a symmetric tensor g of type (2, 0) on M such that g(df, dh1) = 0 for all
f ∈ C∞(M) and (M, P,g, [[·, ·]]ε) is an almost metriplectic manifold.

Proof. Let g = (gij) the matrix which must to be determined. Then

gij ∂h1

∂xj
= 0, i, j = 1, n.

In a chart U such that
∂h1

∂xj
(x) 6= 0 , the components gij are given by:

gii(x) = −
n∑

k=1, k 6=i

(
∂h1

∂xk
)2, gij(x) =

∂h1

∂xi

∂h1

∂xj
, for i 6= j. (8)

Applying now Proposition 2.3 we obtain the result. ¤
Let be a Hamilton-Poisson system on M described by the Poisson tensor P having

the matrix P = (P ij) and by the Hamiltonian function h1 ∈ C∞(M) with the Casimir
function h2 ∈ C∞(M) ( i.e. P ij ∂h2

∂xj = 0 for i, j = 1, n ). The differential equations of
the Hamilton-Poisson system are the following:

ẋi = P ij ∂h1

∂xj
, i, j = 1, n. (9)

Using (8), we determine g = (gij) and we have gij ∂h1

∂xj = 0 for i, j = 1, n.
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Applying now Proposition 2.4, for each ε ∈ R, we obtain an almost metriplectic
structure on M associated to system (9). The differential system associated to this
structure is called the ε - revised system of the Hamilton - Poisson system.

Hence, the ε - revised system of the Hamilton - Poisson system defined by (9) is:

ẋi = P ij ∂h1

∂xj
+ εgij ∂h2

∂xj
, i, j = 1, n. (10)

The terms gij ∂h2

∂xj from (10) describe a cube perturbation of the system (9).
Remark 2.1. For ε = 0, the system (10) coincides with (9). ¤

3 The ε - revised system associated to rigid body with
three linear controls

The rigid body equations with three linear controls ( see [12] ) are given by:




ẋ1 = (a3 − a2)x2x3 + cx2 − bx3

ẋ2 = (a1 − a3)x1x3 − cx1 + ax3

ẋ3 = (a2 − a1)x1x2 + bx1 − ax2
(11)

where x(t) = (x1(t), x2(t), x3(t)) ∈ R3 and a1 =
1
I1

, a2 =
1
I2

, a3 =
1
I3

with I1 > I2 >

I3 > 0 ( I1, I2, I3 being the principal moments of inertia of the body ) and a, b, c ∈ R
are feedback parameters. We have 0 < a1 < a2 < a3.

The dynamics (11) is described by the Poisson tensor Π and the Hamiltonian H ∈
C∞(R3) given by:

Π(x) =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 , (12)

H(x) =
1
2
[a1(x1)2 + a2(x2)2 + a3(x3)2] + ax1 + bx2 + cx3. (13)

Using (12) and (13), the dynamics (11) can be written in the matrix form:

ẋ(t) = Π(x(t)) · ∇H(x(t)), (14)

where ẋ(t) = (ẋ1(t), ẋ2(t), ẋ3(t))T and ∇H(x(t)) is the gradient of the Hamiltonian
function H with respect to the canonical metric on R3.

Therefore, the dynamics (11) has the Hamilton-Poisson formulation (R3, Π,H),
where Π and H are given by (12) and (13).

The function C ∈ C∞(R3) given by:

C(x) =
1
2
[(x1)2 + (x2)2 + (x3)2] (15)
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is a Casimir of the configuration (R3,Π), i.e. C(x) · ∇H(x) = O.
Applying (8) for P = Π, h1(x) = H(x) and h2(x) = C(x), the tensor g is:

g =



−(a2x

2 + b)2 − (a3x
3 + c)2 (a1x

1 + a)(a2x
2 + b) (a1x

1 + a)(a3x
3 + c)

(a1x
1 + a)(a2x

2 + b) −(a1x
1 + a)2 − (a3x

3 + c)2 (a2x
2 + b)(a3x

3 + c)
(a1x

1 + a)(a3x
3 + c) (a2x

2 + b)(a3x
3 + c) −(a1x

1 + a)2 − (a2x
2 + b)2




since
∂h1

∂x1
= a1x

1 + a,
∂h1

∂x2
= a2x

2 + b,
∂h1

∂x3
= a3x

3 + c.

We have
g(x) · ∇h2(x) = (v1(x), v2(x), v3(x))T , where (16)





v1(x) = −[(a2x
2 + b)2 + (a3x

3 + c)2]x1 + (a1x
1 + a)[(a2x

2 + b)x2 + (a3x
3 + c)x3]

v2(x) = −[(a1x
1 + a)2 + (a3x

3 + c)2]x2 + (a2x
2 + b)[(a1x

1 + a)x1 + (a3x
3 + c)x3]

v3(x) = −[(a1x
1 + a)2 + (a2x

2 + b)2]x3 + (a3x
3 + c)[(a1x

1 + a)x1 + (a2x
2 + b)x2]

The ε - revised system associated to dynamics (11) is:




ẋ1 = [(a3 − a2)x2x3 + cx2 − bx3] + εv1(x)
ẋ2 = [(a1 − a3)x1x3 − cx1 + ax3] + εv2(x)
ẋ3 = [(a2 − a1)x1x2 + bx1 − ax2] + εv3(x)

(17)

The differential system (17) is called the ε - revised system of the rigid body with
three linear controls. Taking a = b = c = 0 and ε = 1 in (17), we obtain the revised
system of the free rigid body, see [5].

Vector writing of the dynamics (17). We introduce the following notations:
x = (x1, x2, x3), v = (v1, v2, v3), a = (a, b, c), m(x) = (a1x

1 + a, a2x
2 + b, a3x

3 + c).

For all u = (u1, u2, u3),w = (w1, w2, w3) ∈ R3, the following relation holds:

u · [w × (u×w)] = (u×w)2, with (u×w)2 = (u×w) · (u×w) (18)

where ”× ” and ” · ” denote the cross product resp. inner product in R3; that is:
u×w = (u2w3 − u3w2, u3w1 − u1w3, u1w2 − u2w1), u ·w = u1w1 + u2w2 + u3w3.

With the above notations, the dynamics (11) has the vector form:

ẋ = x×m(x). (19)

It is not hard to verify the following equality:

v = (x×m(x))×m(x). (20)

Using (18), (19) and (17), the ε- revised system (27) is written in the vector form:

ẋ = x×m(x) + ε[(x×m(x))×m(x)]. (21)
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4 The equilibrium points of the ε - revised system

The equilibrium points of the system (19) are solutions of the vector equation:

x×m(x) = 0. (22)

The equilibrium points of the system (21) are solutions of the vector equation:

x×m(x) + ε[(x×m(x))×m(x)] = 0. (23)

Theorem 4.1. The Hamilton - Poisson system (11) and its revised system (17)
have the same equilibrium points.

Proof. Let x0 be an equilibrium point for (11). Then x0 ×m(x0) = 0. We have
that x0 is a solution of equation (23), since x0 ×m(x0) + (x0 ×m(x0))×m(x0) =
= 0 + 0×m(x0) = 0. Hence x0 is an equilibrium point of (17).

Conversely, let x0 be an equilibrium point for (17). Using (22) it follows
(a) x0 ×m(x0) + ε[x0 ×m(x0))×m(x0)] = 0

The relation (a) can be written in the form:
(b) x0 ×m(x0)− ε[m(x0)× (x0)×m(x0))] = 0

Multiplying the relation (b) with the vector x0, we obtain
(c) x0 · (x0 ×m(x0))− εx0 · [m(x0)× (x0)×m(x0))] = 0.

Using the equality (18), the relation (c) is equivalent with
(d) − ε(x0 ×m(x0))2 = 0.

From (d) follows x0 ×m(x0) = 0, i.e. x0 is an equilibrium point for (17). ¤
Proposition 4.1. ([12]) The equilibrium points of the Hamilton - Poisson system

(11) are the following:

(i) e1 = (0, 0, 0); (ii) e2 = (
a

λ− a1
,

b

λ− a2
,

c

λ− a3
) for λ ∈ R\{a1, a2, a3};

(iii) e3 = (α,− b

a2 − a1
,

c

a1 − a3
) for α ∈ R, if a = 0;

(iv) e4 = (
a

a2 − a1
, α,− c

a3 − a2
) for α ∈ R, if b = 0;

(v) e5 = (− a

a1 − a2
,

b

a3 − a2
, α) for α ∈ R, if c = 0.

By Theorem 4.1, the equilibrium points of the ε- revised system (17) are e1, ..., e5

indicated in the Proposition 4.1.
In the sequel, we give a graphic representation of the set of equilibrium points in

various cases.
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I. In this case, we consider the constants:
a1 = 0.2, a2 = 0.4, a3 = 0.6 and a = 1, b = 2, c = 3.

x2
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-50
0

-100

50

-40

-50
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-20

100

02040

0

x1

50

100

150

II. In this case, the constants are:
a1 = 0.2, a2 = 0.4, a3 = 0.6 and a = 0, b = 2, c = 3.

-100-50

x1

-100

-100

0-50

x3
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0

0 50

100

50

200

100100

300

III. In this case, the constants are:
a1 = 0.2, a2 = 0.4, a3 = 0.6 and a = 0, b = 0, c = 3.
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It is well-known that the dynamics (11) have the first integrals H and C given by
(13) and (15). These first integrals may be written thus:

H(x1, x2, x3) =
1
2
x · I−1x + a · x and C(x1, x2, x3) =

1
2
x2 (24)

where I is inertia tensor and I−1 is its inverse. We have:

dH

dt
(x) = m(x) · ẋ and

dC

dt
(x) = x · ẋ. (25)

Theorem 4.2. (i) For each ε ∈ R, the function H given by (13) is a first integral
for the ε- revised system (17).

(ii) If x : R → R3 is a solution of the ε- revised system, then:

d

dt
(
1
2
x2) = −ε(x×m(x))2. (26)

(iii) For ε ∈ R∗, the function C is not a first integral for the ε- revised system.
Proof. (i) Multiplying the relation (21) with the vector m(x), we have:

m(x) · ẋ = m(x) · (x×m(x)) + εm(x) · [(x×m(x))×m(x)] = 0. Applying now (25),

we obtain
dH

dt
= m(x) · ẋ = 0. Hence H is a first integral for the system (17).

(ii) Multiplying the relation (21) with the vector x, we have
x · ẋ = x · (x×m(x)) + εx · [(x×m(x))×m(x)] = −εx · [m(x)× (x×m(x))].

Using now the equality (18), we obtain x · ẋ = −ε(x ×m(x))2. Then, we have
d

dt
(
1
2
x2) = x · ẋ = −(x×m(x))2.

(iii) This assertion follows from the second relation of (25) and (ii). ¤
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Remark 4.1. The function H given by (13) can be put in the equivalent form:

H(x1, x2, x3) =
1
2
[a1(x1 +

a

a1
)2 +a2(x2 +

b

a2
)2 +a3(x3 +

c

a3
)2]− 1

2
(
a2

a1
+

b2

a2
+

c2

a3
). (27)

For a given k ∈ R, the geometrical image of the surface H(x1, x2, x3) = k, is an
ellipsoid since a1 > 0, a2 > 0, a3 > 0. ¤

Proposition 4.2. The set of equilibrium points which belong to the ellipsoid
H(x1, x2, x3) = k is finite.

Proof. Following the description given in Proposition 4.1, we remark that:
(i) the points e3 ( similarly, e4 and e5 ) make a straight line; the intersection

between a straight line and an ellipsoid have at most two points; we deduce that on
the chosen ellipsoid there exist at most two points of the form e3.

(ii) the points e2 can be obtained by solving with respect λ, the equation:

1
2
[a1(

a

λ− a1
)2 + a2(

b

λ− a2
)2 + a3(

c

λ− a3
)2] +

a2

λ− a1
+

b2

λ− a2
+

c2

λ− a3
= k.

The above equation is equivalent with the determination of roots of a polynomial
of degree at most 6; therefore on the chosen ellipsoid there exist at most 6 equilibrium
points of the form e2. ¤

5 The behavior of the solutions of the ε - revised system

Theorem 5.1.(i) The solutions of the ε-revised system are bounded.
(ii) The maximal solutions of the ε-revised system are globally solutions.
Proof.(i) Given a solution of (17), there exists k such that its trajectory lie on the

ellipsoid H(x1, x2, x3) = k. From this, deduce that all solutions are bounded.
(ii) Let x : (m,M) ⊂ R → R3 be a maximal solution. We assume that x is not

globally. It follows m > −∞ or M < ∞. In these situations, we known that there
exists k ∈ R such that H(x1, x2, x3) = k for all t ∈ R and the graph of the solution is
contained in a compact domain. According with [6] (theorem 3.2.5, p.141) we obtain a
contradiction with the fact that x admit a prolongation on the right or the left (also,
can be applied the theorem of Chilingworth, see theorem 1.0.3, p.7 in [3]). ¤

In the sequel we study the asymptotic behavior of the globally solutions of (17).
Denote by E the set of equilibrium points of the ε-revised system (17) and by Γ the

trajectory of a solution x : R → R3 of (17). By theory of differential equations (see
[10] p. 174-176), the ω-limit set and α-limit set of Γ are:

ω(Γ) = {y ∈ R3 | ∃tn →∞, x(tn) → y}; α(Γ) = {z ∈ R3 | ∃tn → −∞, x(tn) → z}.
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Theorem 5.2. Let x : R → R3 be a solution of the ε-revised system with ε 6= 0.
There exist the equilibrium points xm,xM ∈ R3 of (17) such that limt→−∞ x(t) = xM

and limt→∞ x(t) = xm.
Proof. The theorem is proved in the following steps:

(i) α(Γ) 6= ∅, ω(Γ) 6= ∅ ; (ii) α(Γ)
⋂

ω(Γ) ⊂ E; (iii) card(α(Γ)) = card(ω(Γ)) = 1.

Taking account into that each solution is bounded (hence it is contained in a com-
pact domain) and applying theorem 1, p. 175 in [10], we obtain the assertions (i).

(ii) For demonstration consider the case when ε > 0. Using the relation (26), we
deduce that the function t → x2(t) is a strictly decreasing function. Being bounded it
follows that there exists limt→∞ x2(t) = L and L is finite.

For each y ∈ ω(Γ) there exists the sequence tn → ∞ such that x(tn) → y. Then
x2(tn) → y2 and hence y2 = L.

By theorem 2, p.176 in [10], we have that the trajectory Γy of the solution xy
which verifies the initial condition xy(0) = y, satisfies the relation Γy ⊂ ω(Γ).

If we assume that y is not an equilibrium point, then we deduce (using (26)) that for
t > 0 we have x2

y(t) < L and this is in contradiction with the above result. Therefore,
we have ω(Γ) ⊂ E. Similarly, we prove that α(Γ) ⊂ E. Hence the assertion (ii) holds.

The case ε < 0 is similar.
(iii) There exists a constant k such that the sets α(Γ) and ω(Γ) are included in the

ellipsoid H(x1, x2, x3) = k. By (ii), we deduce that α(Γ) and ω(Γ) are included in the
set of equilibrium points which lies of the above ellipsoid. On the other hand, applying
Proposition 4.2 and using the fact that α(Γ) and ω(Γ) are connected (see theorem 1,
p.175 in [10]), we obtain that α(Γ) and ω(Γ) are formed by only one element. ¤

Remark 5.1. Using (26) it is easy to observe that the following assertions hold:

(i) if ε > 0 then x2
M > x2

m; (ii) if ε < 0 then x2
M < x2

m. ¤

As an immediate consequence we obtain the following theorem.
Theorem 5.3. If ε 6= 0, then for each solution x : R → R3 of (17), we have:

(i) if t →∞ ⇒ d(x(t),E) → 0; (ii) if t → −∞ ⇒ d(x(t),E) → 0. ¤

Remark 5.2. From Theorem 5.3 follows that the set E is an attracting set (see
definition 2, p.178 in [10]) and also is a reppeling set (see [3], p.34). Thus, the space
R3 is simultaneously a domain of attraction and a domain of repulsion of E. ¤

6 The Lyapunov stability of equilibrium points of the
ε - revised system in the case ε > 0

The stability of the point e1 = (0, 0, 0). We have the following results.
Theorem 6.1.The equilibrium point e1 is Lyapunov stable.
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Proof. Let γ > 0, t0 ∈ R and x0 ∈ R3 such that |x0| < γ, where | · | denotes the
euclidian norm in R3. Denote by t → x(t, t0,x0) the solution of the ε-revised system
which verifies the initial condition x(0, t0,x0) = x0.

Using the relation |x(t, t0,x0)| =
√

x2(t, t0,x0) and according with the relation (26),
we observe that the function t → x(t, t0,x0) is a decreasing function and hence we have:

|x(t, t0,x0)| ≤ |x0| < γ for t > t0.

Then (see [4], p.22) we have that e1 is a Lyapunov stable equilibrium point. ¤
Remark 6.1.The equilibrium point e1 is not asymptotical stable.
Indeed, if a = b = c = 0 then the coordinates axis are formed from equilibrium

points. If al least of one of the numbers a, b, c is non null, then:

if |λ| → ∞ ⇒ (
a

λ− a1
,

b

λ− a2
,

c

λ− a3
) → (0, 0, 0).

Hence, in all neighbourhood of e1 there exist an infinity of equilibrium points. ¤

The stability of the point x0 = (− a

a1
,− b

a2
,− c

a3
). The equilibrium point x0 is

an equilibrium point of the form e2 and it is obtained for λ = 0.
Theorem 6.2. The equilibrium point x0 is Lyapunov stable.
Proof. Using the relation (27) and the inequality 0 < a1 < a2 < a3, we deduce:

a1

2
|x− x0| ≤ H(x)−H(x0) ≤ a3

2
|x− x0|

For t0 ∈ R and x0 ∈ R3 denote with x(t, t0,x0) a solution of ε-revised system which
verifies the initial condition x(0, t0,x0) = x0.

Let γ > 0 and δ(γ) = 2γ
a1

. Let x0 ∈ R3 such that:

H(x0)−H(x0) ≤ δ(γ).

From the fact that H is a first integral we deduce that:

H(x(t, t0,x0)−H(x0) = H(x0)−H(x0).

Hence for all t ∈ R, we have that a1
2 |x− x0| ≤ δ(γ) and x0 is Lyapunov stable.

¤
Remark 6.2. The equilibrium point x0 realizes the absolute minimum of H. ¤

The unstability of equilibrium points of the form e2 with λ ∈ (0, a1). For
the demonstration of this results we use the Theorem 6.3 and Lemma 6.1.

Theorem 6.3. If x0 ∈ E such that there exists y ∈ E with the properties:

(i) H(y) = H(x0) and (ii) |y| < |x0|
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then x0 is an unstable equilibrium point.
Proof. For k ∈ R denote by Ek = {x ∈ E /H(x) = k}. The set EH(x0) is finite

(by Proposition 4.2). We denote:

γ0 = min{|x− x0| | x ∈ EH(x0) \ {x0}}.
Let z ∈ R3 such that H(z) = H(x0) and |z| < |x0|. Then limt→∞ x(t, 0, z) ∈ E

and if t > 0 ⇒ |x(t, 0, z)| < |z|. We deduce that there exists tz > 0 such that
|x(t, 0, z)− x0| > γ0

2 if t > tz. It follows that x0 is unstable. ¤
We assume that (a, b, c) 6= (0, 0, 0) and we introduce the notation:

e2λ = (
a

λ− a1
,

b

λ− a2
,

c

λ− a3
) for all λ ∈ R− {a1, a2, a3}.

Lemma 6.1.(i) If σ < µ < a1, then |e2σ| < |e2µ|.
(ii) If σ, µ > 0, (µ

σ )2 > a3
a1

and H(e2σ) = H(e2µ), then |e2σ| > |e2µ|.
(iii) If 0 < σ < a1 < a3 < µ and H(e2σ) = H(e2µ), then |e2σ| > |e2µ|.
Proof. (i) Consider the function g : (−∞, a1) → R given by:

g(λ) = (
a

λ− a1
)2 + (

b

λ− a2
)2 + (

c

λ− a3
)2.

The derivative of the function g is:

g′(λ) = − 2a2

(λ− a1)3
− 2b2

(λ− a2)3
− 2c2

(λ− a3)3

We observe that g′(λ) > 0. Then g is a strictly increasing function. We have
g(σ) = |e2σ|2, g(µ) = |e2µ|2 and we obtain the desired result.

(ii) From hypothesis H(e2σ) = H(e2µ) follows that there exists a constant q > 0
with the following properties:

1
a1

a2

(σ − a1)2
+

1
a2

b2

(σ − a2)2
+

1
a3

c2

(σ − a3)2
=

q

σ2

1
a1

a2

(µ− a1)2
+

1
a2

b2

(µ− a2)2
+

1
a3

c2

(µ− a3)2
=

q

µ2
.

Using a1 < a2 < a3, we obtain |e2σ|2 > a1q
σ , |e2µ|2 < a3q

µ and (ii) holds.
(iii) This assertion follows immediately from (ii). ¤
Theorem 6.4. The equilibrium point e2λ with 0 < λ < a1 is unstable.
Proof. Let the function h : (−∞, a1)

⋃
(a3,∞) → R given by h(σ) = H(e2σ).

Using the relation (27) for H, we find:

h(σ) =
σ2

2
[

a2

a1(σ − a1)2
+

b2

a2(σ − a2)2
+

c2

a3(σ − a3)2
]− 1

2
(
a2

a1
+

b2

a2
+

c2

a3
).
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The function h have the following properties:
(i) 0 is an absolute minimum point;
(ii) limσ→−∞ h(σ) = limσ→∞ h(σ) = 0; (iii) limσ→a1 h(σ) = limσ→a3 h(σ) = ∞;
(iv) h is strictly decreasing on (−∞, 0), strictly increasing on (0, a1) and strictly de-
creasing on (a3,∞).

The demonstrations divided on three cases.
(I) Assume that h(λ) < 0. Then there exists σ < 0 < λ < a1 such that h(λ) = h(σ)

and imply H(e2λ) = H(e2σ). Hence e2λ and e2σ belong to same ellipsoid. On the other
hand, by Lemma 6.1 (ii), follows |e2σ| < |e2λ|. Applying now Theorem 6.3, deduce that
e2λ is an unstable equilibrium point.

(II) Assume that h(λ) = 0 we have H(e2λ) = H(0, 0, 0) and it is clearly that
|(0, 0, 0)| < |e2λ|. By Theorem 6.3 we find the desired result.

(III) Assume that h(λ) > 0. Then there exists σ > a3 such that h(λ) = h(σ) and
hence H(e2λ) = H(e2σ). Applying Lemma 6.1 (iii) follows |e2λ| > |e2σ| and by Theorem
6.3 we deduce that e2λ is unstable. ¤

The stability of equilibrium points of the form e2 with λ < 0.
Theorem 6.5. For λ < 0, the equilibrium points e2 are Lyapunov stables.
Proof. Let λ < 0 and the equilibrium point x0 = ( a

λ−a1
, b

λ−a2
, c

λ−a3
) of the form e2.

It is well-known that the study of stability of x0 in the Lyapunov sense is equivalent with
the study of stability of the null solution (0, 0, 0) for the differential system obtained
from the ε-revised system by transformation of variables z = x− x0.

The system obtained in this manner is called the perturbed ε-revised system.
Consider the function K : R3 → R given by

K(z) =
1
2
z · I−1z− λ

2
z2.

Since the tensor I−1 is strictly positive definite and λ < 0 we obtain that K is a
quadratic form strictly positive definite.

We prove that if z : R → R3 is a solution for the perturbed ε-revised system, then:

d

dt
K(z(t)) < 0.

By a direct computation and taking account into the relations (24) we have:

K(z) = H(x)− λC(x)− 1
2
x0 · I−1x0 − a · x0 +

λ

2
x2

0.

Applying now Theorem 4.2, we obtain d
dtK(z(t)) = ελ(x ×m(x))2 and follows

that d
dtK(z(t)) < 0, since ε > 0, λ < 0.

It is easy to see that K∗(t) = K(z(t)) is a strictly decreasing function. By theorem
1.1, p.21 in the paper [4] we deduce that x0 is Lyapunov stable. ¤
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Conclusion - the stability problem for the Hamilton Poisson system (11)
versus the ε- revised system (17) with ε > 0

Concerning to the equilibrium points of the system (11) are established the following
results (see, theorem 1.1, [12]):
(i) e1, e3 and e5 are Lyapunov stables;
(ii) e2 are Lyapunov stables for λ ∈ (−∞, a1) ∪ (a3,∞); (iii) e4 are unstables.

For the stability of equilibrium points of the ε- revised system (17) with ε > 0 have
proved the following assertions:
(1) e1 is Lyapunov stable;
(2) e2 are Lyapunov stables if λ ≤ 0 and unstables if 0 < λ < a1.
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SOME RESULTS ON THE STABILITY OF QUASI-LINEAR
DYNAMIC SYSTEMS ON TIME SCALES

ADNAN TUNA AND SERVET KÜTÜKÇÜ

Abstract. It is shown that we study some results on the stability of Quasi-
linear dynamic systems on time scales characterized completely by its linear
part.

1. Introduction

The theory of dynamic equations on time scales (aka measure chains) was intro-
duced by Hilger [6] with the motivation of providing a uni�ed approach to contin-
uous and discrete analysis. The generalized derivative or Hilger derivative f4(t) of
a function f : T! R, where T is a so-called "time scale" (an arbitrary closed non-
empty subset of R) becomes the usual derivative when T = R, that is f4(t) = f 0(t):
On the other hand, if T = Z, then f4(t) reduces to the usual forward di¤erence,
that is f4(t) = 4f(t): This theory not only brought equations leading to new
applications. Also, this theory allows one to get some insight into and better un-
derstanding of the subtle di¤erences between discrete and continuous systems [1, 3].
DaCunha [4] have introduced stability for time varying linear dynamic systems

on time scales. He introduced the uni�ed theorems of uniform stability and uniform
exponential stability of linear systems on time scales, as well as illustrations of these
theorems in examples, and demonstrated how the quadratic Lyapunov function
developed, it can also be used to determine instability of a system.
In this paper, we study some results on the stability of Quasi-linear dynamic

systems on time scales characterized completely by its linear part.
Now, �rst we mention without proof several foundational de�nitions and result

from the calculus on time scales in an excellent introductory text by Bohner and
Peterson [2, 3].

2. General Definitions

A time scale T is any nonempty closed subset of the real numbers R: Thus time
scales can be any of the usual integer subsets (e.g. Z or N), the entire real line R; or
any combination of discrete points unioned with continuous intervals. The majority
of research on time scales so far has focused on expanding and generalizing the vast
suite of tools available to the di¤erential and di¤erence equation theorist. We now
brie�y outline the portions of the time scales theory that are needed for this paper
to be as self-contained as is practically possible.

2000 Mathematics Subject Classi�cation. Primary 34D20, 39A11, 93D05,
Key words and phrases. Stability; Time scale; Linear dynamic systems; Uni�ed Gronwall�s

inequality.
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2 ADNAN TUNA AND SERVET KÜTÜKÇÜ

The forward jump operator of T, �(t) : T! T, is given by �(t) = infs2T fs > tg :
The backward jump operator of T, �(t) : T! T, is given by �(t) = infs2T fs < tg.
The graininess function �(t) : T! [0,1) is given by �(t) = �(t)� t: Here we adopt
the conventions inf ; = supT (i.e. �(t) = t if T has a maximum element t), and
sup ; = inf T (i.e. �(t) = t if T has a minimum element t). For notational purposes,
the intersection of a real interval [a; b] with a time scale T is denoted by [a; b] \ T:
[a; b]T:
A point t 2 T is right-scattered if �(t) > t and right dense if �(t) = t: A point

t 2 T is left-scattered if �(t) < t and left dense if �(t) = t If t is both left-scattered
and right-scattered, we say t is isolated. If t is both left-dense and right-dense, we
say t is dense. The set Tk is de�ned as follows: If T has a left-scattered maximum
m; then Tk = T -fmg ; otherwise, Tk = T. If f : T!R is a function, then the
composition f(�(t)) is often denoted by f�(t):
For f : T!R and t 2 Tk; de�ne f4(t) as the number (when it exists), with the

property that, for any " > 0; there exists a neighborhood U of f such that��[f(�(t))� f(s))]� f4(t) [�(t)� s]�� � " j�(t)� sj ; 8s 2 U:
The f4 : Tk ! R is called the delta derivative or the Hilger derivative of f on

Tk: We say f is delta di¤erentiable on Tk provided f4(t) exists for all t 2 Tk:
The following theorem establishes several important observations regarding delta

derivatives.

Theorem 1. Suppose f : T!R and t 2 Tk.
(i) If f is di¤erentiable at t; then f is continuous at t:
(ii) If f is continuous at t and t is right-scattered, then f is delta di¤erentiable

at t and f4(t) = f�(t)�f(t)
�(t) :

(iii) If t is right-dense, then f is delta di¤erentiable at t if and only if limt!s
f(t)�f(s)

t�s
exists. In this case, f4(t) = limt!s

f(t)�f(s)
t�s :

(iv) If f is delta di¤erentiable at t; then f(�(t) = f(t) + �(t)f4(t):

2.1. Generalized exponential Functions. The function p : T!R is regressive
if 1 + �(t)p(t) 6= 0 for all t 2 Tk; and this concept motivates the de�nition of the
following sets:
< =

�
p : T!R : p 2 Crd(T) and 1 + �(t)p(t) 6= 0 8t 2 Tk

	
;

<+ =
�
p 2 < : 1 + �(t)p(t) > 0 for all t 2 Tk

	
:

The function p : T!R is uniformly regressive on T there exists a positive con-
stant � such that 0 < ��1 � j1 + �(t)p(t)j ; t 2 Tk: A matrix is regressive if and
only if all of its eigenvalues are in <: Equivalently, the matrix A(t) is regressive if
and only if I + �(t)A(t) is invertible for all t 2 Tk:
If p 2 <; then we de�ne the generalized time scale exponential function by

ep(t; s) = exp

0@ tZ
s

��(�)(p(�))4 �

1A for all s; t 2 T

The following theorem is a compilation of properties of ep(t; s) (some of which
are counterintuitive) that we need in the main body of the paper.

Theorem 2. The function ep(t; s) has the following properties:
(i) If p 2 <; then ep(t; r)ep(r; s) = ep(t; s) for all r; s; t 2 T.
(ii) ep(�(t); s) = (1 + �(t)p(t))ep(t; s):
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(iii) If p 2 <+; then ep(t; t0) > 0 for all t 2 T.
(iv) If 1 + �(t)p(t) < 0 for some t 2 Tk; then ep(t; t0)ep(�(t); t0) < 0:

(v) If T =R; then ep(t; s) = e

tR
s

p(�)d�

: Moreover, If p is constant, then ep(t; s) =
ep(t�s):
(vi) If T =Z; then ep(t; s) = �t�1�=s(1 + p(�)): Moreover, If T =hZ; with h > 0

and p is constant, then ep(t; s) = (1 + hp)
(t�s)
h :

If p 2 < and f : T!R is rd-continuous, then the dynamic equation
(2.1) y4(t) = p(t)y(t) + f(t)

is called regressive.

Theorem 3. If p; q 2 <; then
(i) e0(t; s) � 1 and ep(t; t) � 1;
(ii) ep(�(t); s) = (1 + �(t)p(t))ep(t; s);
(iii) 1

ep(t;s)
= e�p(t; s);

(iv) ep(t; s) = 1
ep(s;t)

= e�p(s; t);

(v) ep(t; s)ep(s; �) = ep(t; �);
(vi) ep(t; s)eq(t; s) = ep�q(t; s);
(vii) ep(t;s)

eq(t;s)
= ep�q(t; s);

Theorem 4. (Variation of constants). Let t0 2 T and y(t0) = y0 2 R:Then the
regressive IVP (2.1) has a unique solution y : T!Rn given by

y(t) = y0ep(t; t0) +

tZ
t0

ep(t; �(�))f(�)4 � :

We say the n� 1-vector-valued system
(2.2) y4(t) = A(t)y(t) + f(t)

is regressive provided A 2 < and f : T!Rn is rd-continuous vector-valued
function.
Let t0 2 T and assume that A 2 < is an n � n-matrix-valued function. The

unique matrix-valued solution to the IVP

(2.3) Y 4(t) = A(t)Y (t); Y (t0) = In

where In is the n � n-identity matrix, is called the transition matrix and it is
denoted by �A(t; t0):
In this paper, we denote the solution to (2.3) as �A(t; t0) when A(t) is time

varying and denote the solution as eA(t; t0) � �A(t; t0) (the matrix exponential, as
in [3] ) only when A(t) � A is a constant matrix. Also, if A(t) is a function on T
and the time scale matrix exponential function is a function on some other time
scale S, then A(t) is constant with respect to eA(t)(� ; s); for all � ; s 2 S and t 2 T.
The following lemma lists some properties of the transition matrix.

Theorem 5. Suppose A;B 2 < are matrix-valued functions on T.
(i) Then the semigroup property �A(t; r)�A(r; s) = �A(t; s) is satis�es for all

r; s; t 2 T.
(ii) �A(�(t); s) = (1 + �(t)p(t))�A(t; s):
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(iii) If T =R and A is constant, then �A(t; s) = eA(t; s) = eA(t�s):
(iv) If T =hZ; with h > 0 and A is constant, then �A(t; s) = eA(t; s) = (1 +

hp)
(t�s)
h :

We now present a theorem that guarantees a unique solution to the regressive
n� 1-vector-valued dynamic IVP (2.2).

Theorem 6. (Variation of constants). Let t0 2 T and y(t0) = y0 2 Rn: Then the
regressive IVP (2.2) has a unique solution y : T!Rn given by

(2.4) y(t) = y0�A(t; t0) +

tZ
t0

�A(t; �(�))f(�)4 � :

Beside the calculus on the time scales, we talk about several foundational de�ni-
tions and result from the stability for time varying linear dynamic systems on time
scales in an excellent introductory text by DaCunha [4].

3. Stability

We now de�ne the concepts of uniform stability and uniform exponential stabil-
ity. These two concepts involve the boundedness of the solutions of the regressive
time varying linear dynamic equation

(3.1) x4(t) = A(t)x(t); x(t0) = x0; t0 2 T.

De�nition 1. The time varying linear dynamic equation (3.1) is uniformly stable if
there exists a �nite constant K > 0 such that for any t0 and x(t0); the corresponding
solution satis�es

(3.2) kx(t)k � K kx(t0)k ; t � t0:

For the next de�nition, we de�ne a stability property that not only concerns the
boundedness of a solution to (3.1), but also the asymptotic characteristics of the
solutions as well. If the solution to (3.1) posses the following stability property,
then the solution approach zero exponentially as t ! 1 (i.e. the norms of the
solutions are bounded above by a decaying exponential function).

De�nition 2. The time varying linear dynamic equation (3.1) is called uniformly
exponentially stable if there exists constants K;� > 0 with �� 2 <+ such that for
any t0 and x(t0); the corresponding solution satis�es

(3.3) kx(t)k � K kx(t0)k e��(t; t0); t � t0:

It is obvious by inspection of the previous de�nitions that we must have K � 1:
By using the word uniform, it is implied that the choice of K does not depend on
the initial time t0:
The last stability de�nition given uses a uniformity condition to conclude expo-

nential stability.

De�nition 3. The linear state equation (3.1) is de�ned to be uniformly asymptot-
ically stable if it is uniformly stable and given any � > 0; there exists a T > 0 so
that for any t0 and x(t0); the corresponding solution x(t) satis�es

(3.4) kx(t)k � � kx(t0)k ; t � t0 + T:
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It is noted that the time T that must pass before the norm of the solution satis�es
(3.4) and the constant � > 0 is independent of the initial time t0.

Theorem 7. The time varying linear dynamic equation (3.1) is uniformly stable
if and only if there exists a K > 0 such that
k�A(t; t0)k � K
for all t � t0; with t; t0 2 T.

Theorem 8. The time varying linear dynamic equation (3.1) is uniformly expo-
nentially stable if and only if there exists K;� > 0 with �� 2 <+ such that
k�A(t; t0)k � Ke��(t; t0)
for all t � t0; with t; t0 2 T.

3.1. Perturbation results. It is also useful to consider state equations that are
"close" to another linear state equation that is uniformly stable. In [7, 8], as well as
[9], if the stability of system (3.1) has been determined by an appropriate Lyapunov
function, then certain conditions on the peturbation matrix F (t) guarantee stability
of the perturbed linear system

(3.5) z4(t) = [A(t) + F (t)] z(t):

DaCunha [4, Theorem 5.1] obtained result about the uniform stability for the
perturbed system (3.5) under the condition

1Z
�

kF (s)k 4 s � �:

for some � � 0 in the following theorem.

Theorem 9. Suppose the linear state equations (3.1) is uniformly stable. Then
the perturbed linear dynamic equation (3.5) is uniformly stable if there exists some
� � 0 such that for all �

(3.6)

1Z
�

kF (s)k 4 s � �:

Let Rn be the n-dimesional space of complex column vectors. Let j:j denote any
norm of a vector the associated induced norm of a square matrix.
Consider the system of nonlinear ordinary di¤erential equations

(3.7) x4(t) = f(t; x);

where f : [0;1)T � Rn ! Rn is a rd-continuous function.
We are interested in the application of this notion to the equation

(3.8) x4(t) = A(t)x(t) + g(t; x);

where A 2 < is an n� n matrix-valued function on T, g : [0;1)T � Rn ! Rn is
a rd-continuous and B�(0) = fx 2 Rn : kxk < �g for � > 0.
Throughout the paper, we shall assume that g satis�es the following condition

of quasilinearity

(3.9) jg(t; x(t))j �  kx(t)k
e�(�(t); t)

; for t � 0;
 x(t)

e�(�(t); t)

 < c;
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DaCunha [4] showed that the solution (3.1) is exponentially stable if and only if
there exists K;� > 0 with �� 2 <+ such that

(3.10) k�A(t; t0)k � Ke��(t; t0)

for all t � t0; with t; t0 2 T.
The following some results on the stability of the solution of the quasilinear

equation (3.8) and perturbed linear equation (3.5).

4. Main Results

Theorem 10 ([10]). Suppose the linear state equations (3.1) is uniformly expo-
nentially stable. Then the perturbed linear dynamic equation (3.5) is uniformly
exponentially stable if there exists some � � 0 and � > 0 with �� 2 <+ such that
for all � 2 T

(4.1)

1Z
�

kF (s)k
e��(�(s); s)

4 s � �:

Proof. For any t0 and z(t0) = z0 , by theorem 4 the solution of (3.5) satis�es

(4.2) z(t) = �A(t; t0)z0 +

tZ
t0

�A(t; �(s))F (s)z(s)4 s;

where �A(t; t0) is the transition matrix for system (3.1). By the uniform expo-
nentially stability of (3.1), there exists constants K;� > 0 with �� 2 <+ such that
k�A(t; �)k � Ke��(t; �); for all t; � 2 T with t � � : By taking the norms of both
sides of (4.2), we have

kz(t)k � K kz0k e��(t; t0) +K
tZ

t0

e��(t; �(s)) kF (s)k kz(s)k 4 s; t � t0:

Dividing by e��(t; t0) on both sides, we have

kz(t)k
e��(t;t0)

� K kz0k+K
tZ

t0

e��(t;�(s))
e��(t;t0)

kF (s)k kz(s)k
e��(s;t0)

e��(s; t0)4 s;

� K kz0k+K
tZ

t0

kF (s)k
e��(�(s);s)

kz(s)k
e��(s;t0)

4 s;

Letting u(t) = kz(t)k
e��(t;t0)

, we have

ku(t)k � K kz0k+K
tZ

t0

kF (s)k
e��(�(s);s)

ku(s)k 4 s

By Gronwall�s Inequality in [3] , a result in [5], and the inequality (4.1), we
obtain

� K kz0k eK kF (s)k
e��(�(s);s)

(t; t0)

� K kz0k exp

0@ tZ
t0

Log(1+�(s)K
kF (s)k

e��(�(s);s)
)

�(s) 4 s

1A
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� K kz0k exp

0@ 1Z
t0

Log(1+�(s)K
kF (s)k

e��(�(s);s)
)

�(s) 4 s

1A
� K kz0k exp

0@K 1Z
t0

kF (s)k
e��(�(s);s)

4 s

1A
� K kz0k eK� ; t � t0:

Thus
kz(t)k � 1 kz0k e��(t; t0) t � t0:
where 1 = KeK� : Hence the state equation (3.5) is uniformly exponentially

stable. �

Theorem 11. Suppose that the linear state equations (3.1) is uniformly exponen-
tially stable and satis�es below conditions
(i) jg(t; x)j � r(t)x(t) for some positive function r : T!R and for all t 2 T,

(ii)

1Z
�

kr(s)k
e��(�(s);s)

4 s � � <1, t � t0 � 0:

Then the dynamic equation (3.8) is uniformly exponentially stable if there exists
some � � 0 and � > 0 with �� 2 <+ such that for all � 2 T.

Proof. it is clear that we can have the same theorem 10. �

Lemma 1. If �� 2 <+; then �� 2 <+ with � = �� K;  � 0; K > 0:

Proof. Since �� is positive regressive, then 1� �� > 0:
1� �� = 1� ��+ �K > 0: Thus �� 2 <+: �

Theorem 12. Suppose that there exist positive constants K > 0; � > 0 such that
condition (3.10) holds, and let g satisfy the inequality (3.9)

jg(t; x)j �  kx(t)k
e�(�(t); t)

; for t � 0;
 x

e�(�(t); t)

 < c;
where  < K�1� and 0 < c < �: Then every solution x of (3.8) for which

kx(t0)k < K�1c for some t0 � 0 is de�ned for all t � t0 and satis�es
kx(t)k � K kx(t0)k e��(t; t0); t � t0:

where � = �� K > 0:

Proof. From the usual integral equation (3.8)

x(t) = �A(t; t0)x0 +

tZ
t0

�A(t; �(s))g(s; x(s))4 s;

we obtain

kx(t)k � Ke��(t; t0) kx0k+ K
tZ

t0

e��(t; �(s))
kx(s)k

e�(�(s); s)
4 s:

e�(t; t0) kx(t)k � K kx0k+ K
tZ

t0

e��(t; �(s))e�(t; t0)

e�(�(s); s)e�(s; t0)
e�(s; t0) kx(s)k 4 s:
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e�(t; t0) kx(t)k � K kx0k+ K
tZ

t0

e�(s; t0) kx(s)k 4 s:

Thus the scalar function !(t) = e�(t; t0) kx(t)k satis�es the inequality

!(t) = K!(t0) + K

tZ
t0

!(s)4 s:

By Gronwall�s Inequality in [3] this implies

!(t) = K!(t0)eK(t; t0)

for t � t0; and hence
kx(t)k � kx(t0)k e��(t; t0); t � t0:

where � = �� K > 0: �

Corollary 1. Suppose that there exist constants K > 0; � > 0 such that condition
(3.10) holds, and let g satisfy the inequality

jg(t; x)j �  kx(t)k ; for t � 0; kx(t)k < c;

where  < K�1� and 0 < c < �. Then every solution x of (3.8) for which
kx(t0)k < K�1c for some t0 � 0 is de�ned for all t � t0 and satis�es

kx(t)k � K kx(t0)k e��(t�t0); t � t0:
where � = �� K > 0:

Proof. If we take T = R; then the proof is easily follows from Theorem 12. �

Let A 2 < be an n � n matrix-valued function on T, suppose that f : T!Rn
is rd-continuous and B(t) is a rd-continuous n � n matrix. Now, we consider the
equation in Rn

(4.3) x4(t) = A(t)x(t) +B(t)x(t) + f(t; x(t)); x(t0) = x0; t 2 T

Theorem 13. Suppose that the linear state equations (3.1) is uniformly exponen-
tially stable and satis�es below conditions
(i) kB(t)k � �

e��(�(t);t)
; t � t0

(ii)kf(t; x(t)k � �
e��(�(t);t)

kx(t)k, t � t0 � 0:
Then the dynamic equation (4.3) is uniformly exponentially stable.

Proof. For any t0 and x(t0) = x0 , by Theorem 4 the solution of (4.3) satis�es

(4.4) x(t) = �A(t; t0)x0 +

tZ
t0

�A(t; �(s)) [B(s)x(s) + f(s; x(s))]4 s;

where �A(t; t0) is the transition matrix for system (3.1). By the uniform exponen-
tially stability of (3.1), there exists constants K;� > 0 with �� 2 <+ such that
k�A(t; �)k � Ke��(t; �); for all t; � 2 T with t � � : By taking the norms of both
sides of (4.4), we have

kx(t)k � K kx0k e��(t; t0)+ 2�K
tZ

t0

e��(t; �(s))e��(�(s); s) kx(s)k4 s; t � t0:
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Dividing by e��(t; t0) on both sides, we have

kx(t)k
e��(t;t0)

� K kx0k+ 2�K
tZ

t0

e��(t;�(s))e��(�(s);s)
e��(t;t0)

e��(s; t0)
kx(s)k

e��(s;t0)
4 s;

= K kx0k+ 2�K
tZ

t0

kx(s)k
e��(s;t0)

4 s;

Letting u(t) = kx(t)k
e��(t;t0)

, we have

ku(t)k � K ku0k+ 2�K
tZ

t0

ku(s)k 4 s

By Gronwall�s Inequality in [3] , a result in [5], we obtain
� K kx0k e2�K(t; t0)

kx(t)k � K kx0k e2�K(t; t0)e��(t; t0); t � t0:
kx(t)k � K kx0k e��(t; t0) t � t0:
where � = �� 2�K: If � are small enough, the quantity � = �� 2�K is positive

and we have the required estimate for t0 � t � t1: Hence the state equation (4.3)
is uniformly exponentially stable. �

Corollary 2. Consider the equation in Rn

x4(t) = A(t)x(t) +B(t)x(t) + f(t; x(t)); x(t0) = x0; t 2 R:
A is a constant n � n-matrix with eigenvalues which have all nonpositive real

part; B(t) is a continuous n� n-matrix with the property
lim
t!1

kB(t)k = 0:

The vector function f(t; x) is continuous in t and x and Lipschitz-continuous in
x in a neighbourhood of x = 0; moreover we have

lim
kxk!0

kf(t; x(t))k
kxk = 0 uniformly in t

Then there exist positive constant C; t0; �; � such that kx0k < � implies

kx(t)k � C kx0k e��(t�t0) t � t0
The solution x = 0 is asymptotically stable and the attraction is exponential in

a �-neighbourhood of x = 0:

Proof. If we take T = R; then the proof is easily follows from Theorem 13. �

Now, with the aid of previous method we consider stability of nonhomogeneous
linear dynamic systems

(4.5) z4(t) = A(t)z(t) + f(t)

Theorem 14. Suppose the linear state equations (3.1) is uniformly stable. Then
the nonhomogeneous linear dynamic equation (4.5) is uniformly stable if there exists
some � � 0 such that for all � 2 T

(4.6)

1Z
�

kf(s)k 4 s � �:
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Proof. For any t0 and z(t0) = z0 , by theorem 4 the solution of (4.5) satis�es

(4.7) z(t) = �A(t; t0)z0 +

tZ
t0

�A(t; �(s))f(s)4 s;

where �A(t; t0) is the transition matrix for system (3.1). By the uniformly
stability of (3.1), there exists constants  > 0 with such that k�A(t; �)k � ; for
all t; � 2 T with t � � : By taking the norms of both sides of (4.7), we have

kz(t)k �  kz0k+
tZ

t0

 kf(s)k 4 s; t � t0:

�  kz0k+
1Z
t0

 kf(s)k 4 s;

�  kz0k+ �;
let � = �� kz0k so that �� > 0
kz(t)k �  kz0k+ �� kz0k

�  kz0k (1 + ��)
� � kz0k

where � = (1 + ��): Then (4.5) is uniformly stable. �

Theorem 15. Suppose the linear state equations (3.1) is uniformly exponentially
stable. Then the perturbed linear dynamic equation (4.5) is uniformly exponentially
stable if there exists some � � 0 and � > 0 with �� 2 <+ such that for all � 2 T

(4.8)

1Z
�

kf(s)k
e��(�(s); t0)

4 s � �:

Proof. For any t0 and z(t0) = z0 , by theorem 4 the solution of (4.5) satis�es

(4.9) z(t) = �A(t; t0)z0 +

tZ
t0

�A(t; �(s))f(s)4 s;

where �A(t; t0) is the transition matrix for system (3.1). By the uniform expo-
nentially stability of (3.1), there exists constants ; � > 0 with �� 2 <+ such that
k�A(t; �)k � e��(t; �); for all t; � 2 T with t � � : By taking the norms of both
sides of (4.9), we have

kz(t)k �  kz0k e��(t; t0) +
tZ

t0

e��(t; �(s)) kf(s)k 4 s; t � t0:

Dividing by e��(t; t0) on both sides, we have

kz(t)k
e��(t;t0)

�  kz0k+ 
tZ

t0

e��(t;�(s))
e��(t;t0)

kf(s)k 4 s;

=  kz0k+ 
tZ

t0

kf(s)k
e��(�(s);t0)

4 s;
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�  kz0k+ 
1Z
t0

kf(s)k
e��(�(s);t0)

4 s

�  kz0k+ �;
let � = �� kz0k so that �� > 0
kz(t)k

e��(t;t0)
�  kz0k+ �� kz0k
�  kz0k (1 + ��)
� � kz0k

kz(t)k � � kz0k e��(t; t0)
where � = (1 + ��): Then (4.5) is uniformly exponentially stable. �
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Abstract. The fermionic p-adic integral (=I−1-integral) is defined by T.Kim in the

previous paper, see [2]. In this paper we consider I−1-Fourier transform and investigate

some properties which are related to this transform.

§1. Introduction

Let us denote N, Z, Q and C sets of positive integers, integers, rational and complex
numbers respectively. Let p be a prime number and x ∈ Q. Then x = pν(x) m

n , where
m,n, ν = ν(x) ∈ Z, m and n are not divisible by p. Let |x|p = p−ν(x) and |0|p = 0.
Then |x|p is valuation on Q satisfying

|x + y|p ≤ max{|x|p, |y|p}.

2000 AMS Subject Classification: 11B68, 11S80
keywords and phrases : p-adic q-integral, q-Euler number and polynomials,q-Genocchi number and

polynomials
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Completion of Q with respect to | · | is denoted by Qp and called the field of p-adic
rational numbers. Cp is the completion of algebraic closure of Qp and Zp = {x ∈
Qp||x|p ≤ 1} is called the ring of p-adic rational integers. We say that f is uniformly
differentiable function at a point a ∈ Zp and denote this property by f ∈ UD(Zp) if
the difference quotients

Ff (x, y) =
f(x)− f(y)

x− y

have a limit l = f ′(a) as (x, y) → (a, a). cf. [1-6].
For f ∈ UD(Zp), the fermionic p-adic invariant integral on Zp as

I−1(f) =
∫

Zp

f(x)dµ−1(x) = lim
n→∞

1
[pn]q

pn−1∑
x=0

f(x)(−1)x, cf. [2,3,4]. (1)

Let Cpn be the cyclic group consisting of all pn-th roots of unity in Cp for any n ≥ 0
and Tp be the direct limit of Cpn with respect to the natural morphism, hence Tp

is the union of all Cpn with discrete topology. Up denotes the group of all principal
units in Cp. Note that Tp ⊂ Up. Define φα : Zp → (C×p , X) by φα(z) = αz for
α ∈ Up(orTp), see[5,6]. If α ∈ Tp, then φα(z) is locally constant function. If α ∈ Up,
then φα(t) is locally analytic function in Cp. The purpose of this paper is to study
the Fourier transform of fermionic p-adic invariant integral on Zp. Finally we will
investigate some properties related to this transform.

§2. I−1-Fourier transform on Zp

Let W (Tp) denote the space of all functions h : w 7−→ hw from Tp to Cp. Through-
out this paper,

∑
w will means limn→∞

∑
w∈Cpn

. We define the Fourier transform for
the fermionic p-adic invariant integral on Zp(=I−1-Fourier transform) as follows:

f̂w−1 = I−1(fφw) =
∫

Zp

f(x)wxdµ−1(x),

for all w ∈ Tp. Let C(Zp) be the space of continuous functions on Zp and Lip(Zp) the
space of Lipschitz functions on Zp. Let U be a non-empty open subset of Up. Then
{φα|α ∈ U} has dense linear span in C(Zp) and UD(Zp). Since we note that

lim
β→α

φβ(z)− φα(z)
β − α

=
z

α
φα(z), for α ∈ U.

For x ∈ Zp, let χx,n = char(x + pnZp), n ≥ 0 be a characteristic function. Then

I1(char(Zp)) =
∫

Zp

dµ−1(x) = 1,

2
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and
I−1(char(a + pnZp)) = I−1(χx,n) =

∫
a+pnZp

dµ−1(x) = (−1)a.

It is easy to see that

∑
w

w−xφw =
pn−1∑
i=0

w−xiwi =
pn−1∑
i=0

wi(1−x) = pnχx,n.

Thus, we have χx,n = 1
pn

∑
w w−xφw.

I−1(fχx,n)− f(x)
pn

= I−1(f
1
pn

∑
w

w−xφw)− f(x)
pn

=
1
pn

∑
w

I−1(fφw)φw−1(x)− f(x)
pn

=
1
pn

(∑
w

(f̂w)−1φw−1(x)− f

)
. (2)

From (2) we derive ∣∣∣∣∣∑
w

(f̂w)−1φw−1(x)− f

∣∣∣∣∣
p

≤ M
1
pn

for some constant M . Hence, we see that∑
w

(f̂w)−1φw−1(x) = f. (3)

Let f, g ∈ UD(Zp). Then we define the convolution associated with I−1-integral
by

(f ∗ g)−1 =
∑
w

(f̂w)−1(ĝw)−1φw−1 .

It is easy to see that (f ∗ g)−1 ∈ Lip(Zp). We now define bilinear map(continuous
system) as follows:

∗ : UD(Zp)× UD(Zp) by (f, g) 7−→ (f ∗ g)−1.

Since UD(Zp) is closed in Lip(Zp) and I−1 is continuous function. We note that
{φα|α ∈ Up} has dense linear span in C(Zp), UD(Zp). Let f = φα, g = φβ for
α, β ∈ Up \ Tp, α 6= β. From the definition of I−1-integral, we can derive

I−1(f1) + I−1(f) = 2f(0), where f1(x) = f(x + 1) (4)
3
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By (4), we easily see that

(f̂w)−1 = I−1(fφw) =
2

αw + 1
,

(ĝw)−1 = I−1(gφw) =
2

βw + 1
, w ∈ Tp. (5)

From (5), we note that

(f ∗ g)−1 =
∑
w

(f̂w)−1(ĝw)−1φw−1

=
∑
w

4
(αw + 1)(βw + 1)

φw−1

=
2

β − α
(αf − βg) ∈ UD(Zp).

Let ((f̂ ∗ g)w)−1 = I−1((f ∗ g)−1φw−1). Then

((f̂ ∗ g)w)−1 = I−1(
2

β − α
(αf − βg)φw−1)

=
2

β − α
(α(f̂w)−1 − β(ĝw)−1)

=
2

β − α

2(α− β)
(αw + 1)(βw + 1)

= −
(

2
αw + 1

)(
2

βw + 1

)
= −(f̂w)−1(ĝw)−1.

Therefore we obtain the following:

Theorem 1. For w ∈ Tp, we have

((f̂ ∗ g)w)−1 = −(f̂w)−1(ĝw)−1.

Let Int(Zp) = {f ∈ UD(Zp)|f ′ = 0} be a ∗-ideal of UD(Zp). We define the
following induced convolution as follows:

⊗ : UD(Zp)/Int(Zp) → C(Zp) with (f ∗ g)−1 = −f ′ ⊗ g′ for f, g ∈ UD(Zp).

In [1], it is easy to show the following theorem:

Corollary 2. For f, g ∈ UD(Zp), we have

I
(z)
−1 (f ⊗ g′(z)(−1)z) = −I

(z)
−1 (f(z)(−1)z)I−1(g(z)(−1)z).

ACKNOWLEDGEMENTS. The present Research has been conducted by the Re-
search Grant of Kwangwoon University in 2008.
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Abstract

In this paper, a theorem dealing with ϕ − |A|k summability method, which generalizes a

theorem of Bor [1] on |R, pn|k summability method, has been proved.

1. Introduction

Let
∑

an be a given infinite series with the partial sums (sn). Let (pn) be a sequence of pos-

itive numbers such that

Pn =
n∑

v=0

pv →∞ as (n →∞), (P−i = p−i = 0, i ≥ 1) . (1)

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv (2)

defines the sequence (tn) of the Riesz means of the sequence (sn), generated by the sequence of

coefficients (pn) (see [3]). The series
∑

an is said to be summable |R, pn|k, k ≥ 1, if (see [1])

∞∑
n=1

nk−1 |tn − tn−1|k < ∞. (3)

Key Words: Absolute matrix summability, infinite series, relative strength.

2000 AMS Subject Classification: 40D25, 40F05, 40G99.

1

576JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS,VOL.11,NO.3,576-583,2009,COPYRIGHT 2009 EUDOXUS PRESS, LLC



Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries.

Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to

As = (An(s)), where

An(s) =
n∑

v=0

anvsv, n = 0, 1, ... (4)

The series
∑

an is said to be summable |A|k , k ≥ 1, if (see [4])

∞∑
n=1

nk−1
∣∣∆̄An(s)

∣∣k < ∞, (5)

where

∆̄An(s) = An(s)−An−1(s).

If we take anv = pv

Pn
, then |A|k summability is the same as |R, pn|k summability.

Let (ϕn) be a sequence of positive real numbers. We say that the series
∑

an is summable

ϕ− |A|k , k ≥ 1, if

∞∑
n=1

ϕk−1
n

∣∣∆̄An(s)
∣∣k < ∞. (6)

If we take ϕn = n for all values of n, then ϕ− |A|k summability is the same as |A|k summability.

Before stating the main theorem we must first introduce some further notations.

Given a normal matrix A = (anv), we associate two lover semimatrices Ā = (ānv) and Â = (ânv)

as follows:

ānv =
n∑

i=v

ani, n, v = 0, 1, ... (7)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (8)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series

transformations, respectively. Then, we have

An(s) =
n∑

v=0

anvsv =
n∑

v=0

ānvav (9)

2
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and

∆̄An(s) =
n∑

v=0

ânvav. (10)

If A is a normal matrix, then A′ = (a′nv) will denote the inverse of A. Clearly if A is normal then,

Â = (ânv) is normal and it has two-sided inverse Â′ = (â′nv), which is also normal (see [2]).

The following result dealing with the relative strength of two absolute summability methods was

given by Bor [1].

Theorem A. Let k > 1. In order that

|R, pn|k ⇒ |R, qn|k (11)

it is necessary that

qn Pn

pn Qn
= O(1). (12)

If we suppose that

∞∑
n=v

nk−1 qk
n

Qk
n Qn−1

= O

(
vk−1 qk−1

v

Qk
v

)
(13)

then (12) is also sufficient.

Remark. If we take k = 1, then condition (13) is obvious.

2. Main Theorem

The aim of this paper is to generalize Theorem A for the ϕ − |A|k and ϕ − |B|k summabilities.

Therefore we shall prove the following theorem.

Theorem. Let k > 1, A = (anv) and B = (bnv) be two positive normal matrices. In order that

ϕ− |A|k ⇒ ϕ− |B|k (14)

it is necessary that

bnn = O(ann). (15)

If we suppose that

bn−1,v ≥ bnv, for n ≥ v + 1, (16)

3
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ān0 = 1, b̄n0 = 1, n = 0, 1, 2, ..., (17)

avv − av+1,v = O(avv av+1,v+1), (18)

n−1∑
v=1

(bvv b̂n,v+1) = O(bnn), (19)

m+1∑
n=v+1

(ϕn bnn)k−1 b̂n,v+1 = O(ϕk−1
v bk−1

vv ), (20)

m+1∑
n=v+1

(ϕn bnn)k−1
∣∣∣∆v b̂nv

∣∣∣ = O(ϕk−1
v bk

vv), (21)

n∑
v=r+2

b̂nv |â′vr| = O(b̂n,r+1), (22)

then (15) is also sufficient.

It should be noted that if we take ϕn = n, anv = pv

Pn
, bnv = qv

Qn
in this Theorem, then we get

Theorem A.

We need the following lemma for the proof of our theorem.

Lemma ([1]). Let k ≥ 1 and let A = (anv) be an infinite matrix. In order that A ε (lk; lk) it is

necessary that

anv = O(1) (all n, v). (23)

3. Proof of the Theorem

Necessity. Now, let (xn) and (yn) be denote the A-transform and B-transform of the series
∑

an, respectively. Then we have, by (9) and (10)

∆̄xn =
n∑

v=0

ânvav and ∆̄yn =
n∑

v=0

b̂nvav

which implies that

av =
v∑

r=0

â′vr ∆xr. (24)
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In this case

∆̄yn =
n∑

v=0

b̂nvav =
n∑

v=0

b̂nv

v∑
r=0

â′vr∆̄xr.

On the other hand, since

b̂n0 = b̄n0 − b̄n−1,0

by (17), we have that

∆̄yn =
n∑

v=1

b̂nv

{
v∑

r=0

â′vr ∆̄xr

}

=
n∑

v=1

b̂nv

{
â′vv ∆̄xv + â′v,v−1 ∆̄xv−1 +

v−2∑
r=0

â′vr ∆̄xr

}

=
n∑

v=1

b̂nv â′vv ∆̄xv +
n∑

v=1

b̂nv â′v,v−1 ∆̄xv−1 +
n∑

v=1

b̂nv

v−2∑
r=0

â′vr ∆̄xr

= b̂nn â′nn ∆̄xn +
n−1∑
v=1

(b̂nv â′vv + b̂n,v+1 â′v+1,v) ∆̄xv

+
n−2∑
r=0

∆̄xr

n∑
v=r+2

b̂nv â′vr. (25)

By considering the equality

n∑

k=v

â′nk âkv = δnv,

where δnv is the Kronocker delta, we have that

b̂nv â′vv + b̂n,v+1 â′v+1,v =
b̂nv

âvv
+ b̂n,v+1 (− âv+1,v

âvv âv+1,v+1
)

=
b̂nv

avv
− b̂n,v+1 (āv+1,v − āv,v)

avv av+1,v+1

=
b̂nv

avv
− b̂n,v+1 (av+1,v+1 + av+1,v − avv)

avv av+1,v+1

=
∆v b̂nv

avv
+ b̂n,v+1

avv − av+1,v

avv av+1,v+1

and so

∆̄yn =
bnn

ann
∆̄xn +

n−1∑
v=1

∆v b̂nv

avv
∆̄xv +

n−1∑
v=1

b̂n,v+1
avv − av+1,v

avv av+1,v+1
∆̄xv +

n−2∑
r=0

∆̄xr

n∑
v=r+2

b̂nv â′vr

= Tn(1) + Tn(2) + Tn(3) + Tn(4), say.
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Now, from (23) we can write down the matrix transforming
(
ϕ

1− 1
k

n ∆̄xn

)
into

(
ϕ

1− 1
k

n ∆̄yn

)
. The

assertion (14) is equivalent to the assertion that this matrix ε
(
lk; lk

)
. Hence, by the Lemma, a

necessary condition for (14) is that the elements of this matrix should be bounded, and this gives

the result that (15) is necessary.

Sufficiency. Suppose the conditions are satisfied. Then, since

|Tn(1) + Tn(2) + Tn(3) + Tn(4)|k ≤ 4k
(
|Tn(1)|k + |Tn(2)|k + |Tn(3)|k + |Tn(3)|k

)

to complete the proof of the Theorem, it is sufficient to show that

∞∑
n=1

ϕk−1
n |Tn(i)|k < ∞ for i = 1, 2, 3, 4.

Firstly, we have

m∑
n=1

ϕk−1
n |Tn(1)|k =

m∑
n=1

ϕk−1
n

∣∣∣∣
bnn

ann
∆̄xn

∣∣∣∣
k

= O(1)
m∑

n=1

ϕk−1
n

∣∣∆̄xn

∣∣k

= O(1) as m →∞,

in view of the hypotheses of the Theorem.

Applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1, we have that

m+1∑
n=2

ϕk−1
n |Tn(2)|k =

m+1∑
n=2

ϕk−1
n

∣∣∣∣∣
n−1∑
v=1

∆v b̂nv

avv
∆̄xv

∣∣∣∣∣

= O(1)
m+1∑
n=2

ϕk−1
n





n−1∑
v=1

∣∣∣∆v b̂nv

∣∣∣
ak

vv

∣∣∆̄xv

∣∣k




{
n−1∑
v=1

∣∣∣∆v b̂nv

∣∣∣
}k−1

= O(1)
m+1∑
n=2

ϕk−1
n bk−1

nn

n−1∑
v=1

∣∣∣∆v b̂nv

∣∣∣
ak

vv

∣∣∆̄xv

∣∣k

= O(1)
m∑

v=1

∣∣∆̄xv

∣∣k
ak

vv

m+1∑
n=v+1

(ϕnbnn)k−1
∣∣∣∆v b̂nv

∣∣∣

= O(1)
m∑

v=1

ϕk−1
v

(
bvv

avv

)k ∣∣∆̄xv

∣∣k

= O(1)
m∑

v=1

ϕk−1
v

∣∣∆̄xv

∣∣k

= O(1) as m →∞,
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by virtue of the hypotheses of the Theorem.

Also

m+1∑
n=2

ϕk−1
n |Tn(3)|k =

m+1∑
n=2

ϕk−1
n

∣∣∣∣∣
n−1∑
v=1

b̂n,v+1
avv − av+1,v

avv av+1,v+1
∆̄xv

∣∣∣∣∣

k

= O(1)
m+1∑
n=2

ϕk−1
n

{
n−1∑
v=1

b̂n,v+1

∣∣∆̄xv

∣∣
}k

= O(1)
m+1∑
n=2

ϕk−1
n

{
n−1∑
v=1

b̂n,v+1

∣∣∆̄xv

∣∣k bvv

bk
vv

}{
n−1∑
v=1

b̂n,v+1 bvv

}k−1

= O(1)
m+1∑
n=2

(ϕn bnn)k−1
n−1∑
v=1

b̂n,v+1

∣∣∆̄xv

∣∣k b1−k
vv

= O(1)
m∑

v=1

b1−k
vv

∣∣∆̄xv

∣∣k
m∑

n=v+1

(ϕn bnn)k−1 b̂n,v+1

= O(1)
m∑

v=1

ϕk−1
v

∣∣∆̄xv

∣∣k

= O(1) as m →∞,

by virtue of the hypotheses of the Theorem.

Finally, as in Tn(3), we have that

m+1∑
n=2

ϕk−1
n |Tn(4)|k =

m+1∑
n=2

ϕk−1
n

∣∣∣∣∣
n−2∑
r=0

∆̄xr

n∑
v=r+2

b̂nv â′vr

∣∣∣∣∣

k

= O(1)
m+1∑
n=2

ϕk−1
n

{
n−2∑
r=0

∣∣∆̄xr

∣∣
n∑

v=r+2

b̂nv |â′vr|
}k

= O(1)
m+1∑
n=2

ϕk−1
n

{
n−2∑
r=0

∣∣∆̄xr

∣∣ b̂n,r+1

}k

= O(1) as m →∞.

by virtue of the hypotheses of the Theorem.

Therefore, we have that

m∑
n=1

nk−1 |Tn(i)|k = O(1) as m →∞, for i = 1, 2, 3, 4.

This completes the proof of the Theorem.
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Algebraic Multigrid Preconditioner for a Finite El-

ement Method in TM Electromagnetic Scattering

K. Kim∗, K. H. Leem†, G. Pelekanos†, and M. Song†

Abstract — The finite element method (FEM) is applied on an arbitrarily shaped
and perfectly conducted cylindrical scatterer whose cross section and material
properties are uniform along its infinite axis, say the z axis here. The scatterer is
enclosed within a fictitious boundary via a simple first order absorbing boundary
condition (ABC). The Algebraic Multigrid (AMG) method is employed as a
preconditioner in order to accelerate the convergence rate of the Krylov iterations.
Our experimental results suggest much faster convergence compared to the non
preconditioned Krylov subspace solver, and hence significant reduction to the
overall computational time.

Keywords:Algebraic Multigrid; Finite elements; Absorbing boundary con-
dition.

1 Introduction

It is widely known that the implementation of the standard finite element method
(FEM) produces a sparse coefficient matrix. Due to significant growth of computer
time and memory during the elimination process direct methods are not preferable
for solving large sparse linear systems. Hence systems of this kind require iterative
methods, such as Krylov subspace methods [15, 17], for their solution. The conver-
gence rate of an iterative method depends on the spectral properties of the coeffi-
cient matrix. Preconditioning is a well-known technique used to accelerate the con-
vergence of iterative methods [15, 17]. Hence, developing efficient preconditioners
has been one of the major research interests in many applications [4, 8, 12, 13, 14].
In this work, scattering by a conducting cylinder is considered and the FEM is used
to construct the resulting linear system. In our numerical experiments, BiCGSTAB
(BiConjugate Gradient Stablized) is used as a choice of a linear solver and AMG
(Algebraic Multigrid) method is employed as a preconditioner for accelerating the
convergence.

AMG has been developed to solve large problems posed on unstructured grids
since it doesn’t require geometric grid information. To date, many AMG based on
element interpolation and smooth aggregation have been proposed [3, 6, 18] and
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are shown to be effective and robust. A variant of smoothed aggregation AMG pre-
conditioner was developed by Leem et al [13] to solve large, sparse, and real-valued
saddle point systems from meshfree discretizations. In [14], the smoothed sggrega-
tion AMG preconditioner was modified to successfully accelerate the convergence
of large, dense, and complex-valued linear systems encountered in scattering by
dielectric objects.

It is important to mention here that since we are dealing with an open-region
scattering problem, the infinite region exterior to the scatterer must be truncated
with an artificial boundary. In order to obtain a unique finite element solution
a boundary condition will be introduced. The purpose of this condition, which is
called absorbing boundary condition (ABC), is to allow the scattered wave to prop-
agate to infinity without causing any reflections back to the object. The (ABCs) are
applied at the artificial boundary and hence their use does not introduce additional
unknowns and retains sparsity. In this work, for simplicity, we will use first-order
(ABCs) [9].

We organize our paper as follows. In section 2, we formulate the problem
and summarize the well known finite elements steps required for the generation of
the corresponding linear system. In section 3, we discuss the construction of the
AMG preconditioner. Numerical experiments that yield a dramatic reduction to
the number iterations and computational time are presented in section 4.

2 Formulation of the problem

It is well known that the propagation of time-harmonic fields in a homogeneous
medium, in the presence of a perfect conductor D, is modeled by the exterior
boundary value problem (direct obstacle scattering problem)

△2uz(x) + k2uz(x) = 0, x ∈ ℜ2 \ D̄ (2.1)

uz(x) + ui(x) = 0, x ∈ ∂D (2.2)

where k is a real positive wavenumber and ui is a given incident plane wave polarized
along the z−direction, that in the presence of D will generate the scattered field
uz which will also be polarized along the z− direction.
As indicated in the introduction the infinite region exterior to the scatterer needs to
be truncated by the introduction of a fictitious boundary. Consequently, a boundary
condition must be applied at this boundary so the field scattered by the cylinder
must continue propagating toward infinity without disturbance. In other words,
such a condition should minimize any reflections from the boundary. This kind of
boundary conditions are called absorbing boundary conditions (ABC). As indicated
in [10] an ideal boundary condition is one that possesses zero reflection for all angles
of incidence. However, absorbing boundary conditions lead to localized relations
between the boundary fields (i.e. they are approximate) hence zero reflection for
all incident angles is impossible.
For simplicity in the present problem we will be using a first order ABC. According
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Figure 1: Sparsity Pattern of the coefficient matrix K when n = 4727.
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to Bayliss at al. [1, 2], the (ABC) employed here is given by

∂uz

∂n
+ (ik +

k(s)

2ρ
)uz = 0 (2.3)

where n denotes the outward unit vector normal to the artificial boundary, s is
the arc length measured along the boundary, and k(s) is the curvature of the
boundary at s.

Details about the major steps of the solution of the problem above can be found
in [9] and include discretization of the domain using linear triangular elements,
generation of proper mesh data, construction of the elemental equations, assembly
of these element matrices and vectors into the global matrix and right hand side
vector, imposition of Dirichlet boundary conditions on the surface of the cylinder,
and finally solution of the matrix system to obtain the total acoustic field at the
nodes of the domain.

3 Smoothed Aggregation AMG Preconditioner

We begin our discussion by introducing the basic framework of AMG. Consider the
complex linear system

Ku = b, (3.4)

where K is a large, and sparse n×n matrix. AMG preconditioner will be constructed
based on the coefficient matrix K. Note that AMG does not require to access the
physical grids of problems. With “grids” we mean sets of indices of the unknown
variables. Hence the grid set for (3.4) is Ω = {1, 2, · · · , n}, since the unknown
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Table 1: Size of Coarse-grid Operator

n K0 K1 K2 K3

4727 4727 659 133

18563 18563 2454 349

73569 73569 9036 952 361
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Figure 2: Solution Comparison (left) and Convergence History (right)

vector u in (3.4) has components u1, u2, ..., un. The graph of the matrix K can be
defined as follows: A node in the graph represents a row and the normalized edge
weights ωij can be computed as follows:

ωij = |kij |/
√

|kii| · |kjj |. (3.5)

The main idea of AMG is to remove the smooth error by coarse grid correction,
where smooth error is the error not eliminated by relaxation on the fine grid, which
also can be characterized by small residuals [5].

In order to develop the multi-grid algorithm, we consider the sets of grids
in each level. The number 0 stands for the finest-grid level. Then the numbers
1, 2, · · · , lmax represent the corresponding coarse-grid levels. Hence, the original
equation (3.4) can be written as K0u0 = b0 and the set of finest grid set is Ω0 = Ω.

AMG can be implemented in two main phases, so called the setup phase and
the solve phase. The setup phase includes the following tasks:

• Create the coarse grid sets Ωl+1.

• Construct interpolation operator I l
l+1, and restriction operators I l+1

l .

• Construct the coarse grid operator Kl+1.
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Figure 3: Convergence Histories

In general, the restriction operator I l+1
l is defined by the transpose of the

interpolation operator I l
l+1, i.e., I l+1

l = (I l
l+1)

T and the coarse grid operator Kl+1

is constructed from the fine grid operator Kl by the Galerkin approach:

Kl+1 = I l+1
l Kl I l

l+1, (3.6)

so that AMG satisfies the principle that the coarse-grid problem needs to provide
a good approximation to fine-grid error in the range of interpolation [5].

We will now provide more information about the setup process. Two main
tasks in the setup phase are to find a suitable coarsening strategy and an effective
interpolation operator I l

l+1. The creation of the coarse-grid sets Ωl, where l =
1, 2, · · · , lmax is based on a combinatorial clustering algorithm developed by Vaněk,
Mandel and Brezina in [18] with normalized edge weights, ωij .

The first step of their coarsening algorithm iterates through the nodes Ω0 =
{1, 2, · · · , n} creating clusters {j | ωij ≥ η1} for a given tolerance η1 > 0, provided
no node in {j | ωij ≥ η1} is already a cluster. Two nodes i and j are said to be
strongly connected if ωij ≥ η1. In the second step, unassigned nodes are assigned
to a cluster from step one to which the node is strongly connected, if any. In the
last step, the remaining nodes are assigned to clusters consisting of strong neighbor-
hoods intersecting with the set of remaining nodes. This aggregation process will
create the corresponding next coarse level grid set Ω1 = {Cl

1, C
l
2, · · · , Cl

nl
}. Each

Cl
k is called a cluster. By repeating same process, Ω2, Ω3, · · · , Ωlmax

are obtained.
As explained earlier, the next important task in AMG is to construct an in-

terpolation operator I l
l+l. In smoothed aggregation AMG [13, 14], we solve a local

linear system to obtain an interpolation vector that interpolates a value for a coarse-
grid cluster onto its neighborhood. Assume that a set of grid points at level l is
Ωl = {Cl

1, C
l
2, · · · , Cl

nl
}. For each cluster Cl

k, we define a neighborhood N l
k as

N l
k = {j 6∈ Cl

k | ωij ≥ η2, i ∈ Cl
k},
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Performing the coarsening process explained earlier yields the next coarse-grid
set, Ωl+1 = {Cl+1

1 , Cl+1
2 , · · · , Cl+1

nl+1
}. Suppose that Cl+1

k is obtained by aggregating

{Cl
i , C

l
j} from the grid set Ωl. Furthermore, assume that clusters Cl

i , and Cl
j have

the neighborhoods N l
i = {Cl

s, C
l
t} and N l

j = {Cl
u, Cl

v}, respectively.

The corresponding interpolation operator from level l+1 to l, I l
l+1, is computed

column-by-column by the following procedure: The kth column pk of the interpo-
lation operator I l

l+1 = [p1|p2| · · · |pnl+1 ] is obtained by solving the following small
local system:

LCl

k

pk = e, (3.7)

where e is the vector given by

ei =

{

1 if i ∈ Cl
k,

0 otherwise,
(3.8)

and the local matrix LCl

k

is given by

LCl

k

=

[

KCl

k
Cl

k

KCl

k
N l

k

KN l

k
Cl

k

KN l

k
N l

k

]

. (3.9)

Note that KIJ = [ kij | i ∈ I, j ∈ J ] indicates an |I| × |J | matrix where I and J
are sets of nodes.

After completion of the AMG setup, either V-, or W-cycle is typically used for
the preconditioning step. In the sequel, the AMG V-cycle algorithm 3.1 is utilized
as a preconditioner to the iterative methods used.

Algorithm 3.1 AMG V-Cycle

ul ← AMGV(Kl,ul,bl)

if Ωl = coarsest grid, then

ul ← Solve (Klul = bl) using Direct Method

else

xl ← Relax ν1 times on Klul = bl on Ωl with initial guess ul

bl+1 ← I l+1
l (bl −Klul)

ul+1 ← 0,

ul+1 ← AMGV(Kl+1,ul+1,bl+1).

Correct ul = ul + I l
l+1ul+1.

ul ← Relax ν1 times on Klul = bl on Ωl with ul.

endif

Note that we employ Gauss-Seidel iterations for the relaxation scheme. More
details on classical AMG can be found in [5], and [7].
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Table 2: Convergence Results

n ǫ No preconditioner AMG preconditioner

# of iter total time AMG setup # of iter iter time total time

4,727 1.0e-03 452 2.86 0.40 24 2.40 2.80

18,563 1.0e-03 1554 40.89 2.56 44 17.65 20.21

73,569 1.0e-02 1777 187.42 17.86 38 61.34 79.20

Table 3: Thresholds
n η1 η2

4,727 0.01 0.05

18,563 0.01 0.1

73,569 0.0001 0.1

4 Numerical Results

A two dimensional FEM algorithm [9] is used to solve the scattering problem de-
scribed in section 2. In our numerical experiments the systems were solved via the
BiConjugate Gradient Stabilized method (BiCGSTAB). The radius of the circular
conducting cylinder, i.e., the inner circular boundary, is λ/2 whereas the radius of
the ABC boundary, i.e., the outer cylinder boundary, is 3λ/2. In other words, the
first-order ABC is imposed at a distance of one wavelength away from the outer
surface of the object. If the discretization size is h = 0.4 wavelengths, then the size
of the corresponding coefficient matrix K is n = 4727 unknowns. Figure 3 shows
the comparison between the total field calculated using the analytical solution and
the field computed via the AMG preconditioned BiCGSTAB algorithm while fig-
ure 1 displays the sparsity pattern of the coefficient matrix K when the number
of unknowns is n = 4727. Note that K is very sparse with density of only 1.4%.
In addition, figure 2(b) shows that the number of iterations has been significantly
reduced from 452 (without preconditioning) to 24(with AMG preconditioning).

Moreover, as h reduces to 0.2 and 0.1 wavelengths, the size of the coefficient
matrix increases to n = 18, 563 and n = 73, 569 unknowns respectively. Figure 3(a)
shows that for the case of 18, 563 unknowns, the number of iterations is reduced
by 97%. Moreover, figure 3(b) shows that even when the number of unknowns
is increased to 73,569, the number of iterations is still reduced by 97%. For a
summary of the above results see table 2. The parameter ǫ indicates our stoping
criterion. The reason why ǫ in the case of n = 73, 569 is set to 1.0e-02 is that
BiCGSTAB without preconditioning does not converge for a tolerance of 1.0e-03
even after 4,000 iterations. However, the BiCGSTAB with AMG preconditioning
did converge in less than 100 iterations for the tolerance set above.
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Table 4: Convergence Rates

n No Preconditioner AMG Preconditioner

4,727 6.22e-03 1.20e-01

18,563 1.79e-03 6.05e-02

73,569 9.97e-04 3.77e-02

In AMG, thresholds for the coarsening process, η1 and for the interpolation
process, η2, are also needed. Table 4 shows the thresholds used in each case. Table
3 shows the size of the coarse-grid operators in each level. For instance, K0 is the
original matrix and K3 is the coarsest level matrix in which the direct solver was
used as indicated in the algorithm 3.1 for n = 73, 569. It is also observed that the
size of the coarsest level matrix, K3 can’t be reduced to even smaller size. This is
due to the sparsity of the matrices on finer levels.

The computational complexity of the AMG preconditioner depends on the ag-
gregations and the size of the neighborhoods of clusters at each level, which vary
from problem to problem. In our experiments, it was observed that despite the
fact that the AMG preconditioner requires some setup time, reduction to the over-
all CPU time was significant as shown in table 2. Hence the convergence rates
have been improved with AMG preconditioning as shown in table 4. Note that
the convergence rates are computed by the log(1/(convergence factor)) where the
convergence factor is the geometric average of successive residual norms [13]. For
our numerical experiments, Meschach [16] was used as a matrix library to speed
software development.
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[4] M. Benzi, C. D. Meyer and Tôuma. A sparse approximate inverse preconditioner
for the conjugate gradient method, Siam J. of Sci. comput, 17, 1135-1149 (1996).

[5] A. Brandt and S. McCormick and J. Ruge. Algebraic Multigrid (AMG) for
Sparse Matrix equations. pp 257-284, Sparse and its applications, Cambridge
Univ. Press, Cambridge, 1985.

KIM et al: TM ELECTROMAGNETIC SCATTERING604



9

[6] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson et. al. Algebraic Multigrid
based on element interpolation (AMGe), SIAM J. Sci. Comput., 22, 1570-1592
(2000).

[7] W. Briggs, V. E. Henson and S. F. McCormick. A Multigrid Tutorial, Siam,
2000.

[8] T. Chen, W. P. Tang. Wavelet sparse approximate inverse preconditioner, BIT,
37, 644-650 (1997).

[9] J. Jin. The Finite Element Method in Electromagnetics 2nd Ed. Wiley-
Interscience, New York, 1997.

[10] J. Jin. and W. C. Chew. Combining PML and ABC for the Finite-Element
Analysis of Scattering Problems. Microwave and Optical Technology Letters,
12, No.4 192-197 (1996).

[11] J. E. Jones and P. Vassilevski. AMGe based on element agglomeration, Siam
J. Sci. Comput., 23, 109-133 (2001).

[12] J. Lee, J. Zhang and C. C. Lu. Sparse inverse preconditioning of multilevel fast
multipole algorithm for hybrid integral equations in electromagnetics, IEEE,
Trans. Antennas Propagat., 52, no. 9, 2277-2287 (2004).

[13] K. H. Leem, S. Oliveira and D. E. Stewart. Algebraic Multigrid (AMG) for
saddle point systems from meshfree discretizations, Num. Lin. Alg. Appl., 11,
293-308 (2004).

[14] K. H. Leem and G. Pelekanos. Algebraic Multigrid Preconditioner for Ho-
mogeneous Scatters in Electromagnetics, IEEE Trans. Antennas Propag., 54,
2081-2087 (2006).

[15] Y. Saad and H. A. van der Vorst. Iterative Solution of Linear Systems in the
20th Centry, J. Comp. Appl. Math., 123, 1-33 (2000).

[16] D. E. Stewart and E. Leyk. meschach : matrix computation in C, Proceedings
of the CMA, Australian National University, 32, 1994.

[17] L. D. Trefethen and D. Bau III. Numerical Linear Algebra. Siam, 1997.
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Abstract. Let C be a convex subset of a complete convex metric space X, and A1, A2, ..., A2k be

some self-mappings on C. In this paper, it is shown that if the sequence of Ishikawa iterations associated

with A1, A2, ..., A2k converges, then its limit point is the common fixed point of A1, A2, ..., A2k. This

result extends and generalizes the corresponding results of Ćirić et. al. [Archivum Math., 39 (2003),

123–127.], Naimpally and Singh [J. Math. Anal. Appl. 96 (1983), 437–446.], Rhoades [Trans. Amer.
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1. Introduction

In the recent years several authors [1, 2, 4, 5] have studied the convergence
of the sequence of the Mann iterates [3] of a mapping H to a fixed point of H,
under various contractive conditions. The Ishikawa iteration scheme [2] was first
used to establish the strong convergence for a pseudo contractive self-mapping of
a convex compact subset of a Hilbert space. Very soon both iterative processes
were used to establish the strong convergence of the respective iterates for some
contractive type mappings in Hilbert spaces and then in more general normed linear
spaces. Recently, Ćirić et. al. [1] showed that if the sequence of Ishikawa iterations
associated with two mappings converges in the a convex metric space, then its limit
point is the common fixed point of two mappings. In this paper, we prove that if
the sequence of Ishikawa iterations associated with 2k mappings converges in the a
convex metric space, then its limit point is the common fixed point of 2k mappings.

1Corresponding author
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2. Main Results

Definition 2.1. ([6]) Let X be a metric space and I = [0, 1] the closed unit interval.
A continuous mapping W : X ×X × I −→ X is said to be a convex structure on
X if for all x, y in X, λ in I, d[u, W (x, y, λ)] ≤ λd(u, x) + (1− λ)d(u, y) for all u in
X. A space X together with a convex structure is called a convex metric space.

Theorem 2.2. Let C be a nonempty closed convex subset of a convex metric space
X and let A,B, T, S : X −→ X be self-mappings satisfy the following condition:

(2.1) d(Ax, By) + d(Sx, Ty)
≤ h[2d(x, y) + d(x, Ty) + d(y, Sx) + d(y, Ax) + d(x, By)]

for all x, y in X where 0 < h < 1. Suppose that {xn} is Ishikawa type iterative
scheme with A,B, S and T , defined by

(1) x0 ∈ C;
(2) yn = W (Axn, xn, βn) = W (Sxn, xn, δn), n ≥ 0;
(3) xn+1 = W (Byn, xn, αn) = W (Tyn, xn, γn), n ≥ 0;

where {αn}, {βn}, {δn} and {γn} satisfy 0 ≤ αn, βn, δn , γn ≤ 1 and {αn} and
{γn} are bounded away from zero. If {xn} converges to some p ∈ C, then p is
common fixed point of A,B, S and T .

Proof. It is clear that

d[x, W (x, y, λ)] = (1− λ)d(x, y); d[y, W (x, y, λ)] = λd(x, y),

(see [1]).
From (3) it follows that

d(xn, xn+1) = d[xn,W (Byn, xn, αn)] = αnd(xn, Byn)

and
d(xn, xn+1) = d[xn,W (Tyn, xn, αn)] = γnd(xn, T yn).

Since xn −→ p, then d(xn, xn+1) −→ 0. Since {αn} and {γn} are bounded away
from zero, it follows that

(2.2) lim
n−→∞

d(xn, Byn) = d(xn, T yn) = 0.

Using (2.1) we get:

d(Axn, Byn) + d(Sxn, T yn)
≤ h[2d(xn, yn) + d(xn, T yn) + d(yn, Sxn) + d(yn, Axn) + d(xn, Byn)].

From (2) and (3) we have that

d(xn, yn) = d[xn,W (Axn, xn, βn)] = βnd(xn, Axn),

d(xn, yn) = d[xn,W (Sxn, xn, δn)] = δnd(xn, Sxn),
d(Axn, yn) = d[Axn,W (Axn, xn, βn)] = (1− βn)d(xn, Axn),

d(Sxn, yn) = d[Sxn,W (Sxn, xn, δn)] = δnd(xn, Sxn).
Thus we have

d(Axn, Byn) + d(Sxn, T yn)
≤ h[d(xn, T yn) + d(xn, Sxn) + d(xn, Axn) + d(xn, Byn)].

Since
d(xn, Axn) ≤ d(Axn, Byn) + d(xn, Byn)
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and
d(xn, Sxn) ≤ d(Sxn, T yn) + d(xn, T yn),

we get

d(Axn, Byn) + d(Sxn, T yn) ≤ h[2d(xn, T yn) + d(Sxn, T yn) + d(Axn, Byn) + 2d(xn, Byn)].

Therefore

d(Axn, Byn) + d(Sxn, T yn) ≤ 2h

1− h
[d(xn, T yn) + d(xn, Byn)].

Taking the limit as n −→∞ we obtain, by (2.2),

lim
n−→∞

d(Axn, Byn) = lim
n−→∞

d(Sxn, T yn) = 0.

Since Byn −→ p, it follows that Axn −→ p also since Since Tyn −→ p, it follows
that Sxn −→ p. Since d(xn, yn) = βnd(xn, Axn), it follows that yn −→ p.

From (2.1) again, we have that

d(Axn, Bp) + d(Sxn, Tp)
≤ h[2d(xn, p) + d(xn, Tp) + d(p, Sxn) + d(p,Axn) + d(xn, Bp)]

Taking the limit as n −→∞ we obtain

d(p, Bp) + d(p, Tp) ≤ h[d(p,Bp) + d(p, Tp)].

Since h ∈ (0, 1) then d(p, Bp) + d(p, Tp) = 0. Then Bp = Tp = p. Similarly, from
(2.1),

d(Ap, Bxn) + d(Sp, Txn)
≤ h[2d(p, xn) + d(p, Txn) + d(xn, Sp) + d(xn, Axn) + d(p, Bxn)]

Taking the limit as n −→∞ we get

d(Ap, p) + d(Sp, p) ≤ h[d(Ap, p) + d(Sp, p)].

Since h ∈ (0, 1) then d(Ap, p) + d(Sp, p) = 0. Then Ap = Sp = p. Hence, Ap =
Bp = Sp = Tp = p and the proof is complete. �

Corollary 2.3. Let C be a nonempty closed convex subset of a convex metric space
X and let A1, A2, ..., A2k : X −→ X be self-mappings satisfy the following condition:

2k−1∑
i=1

d(Aix,Ai+1y) ≤ h[kd(x, y) +
k∑

i=1

d(y, A2i−1y) +
k∑

i=1

d(x, A2iy)]

for all x, y in X where 0 < h < 1. Suppose that {xn} is Ishikawa type iterative
scheme with A1, A2, ..., A2k defined by

(1) x0 ∈ C;
(2) yn = W (A1xn, xn, β1,n) = W (A2xn, xn, β2,n) = · · · = W (A2k−1xn, xn, βk,n),

n ≥ 0;
(3) xn+1 = W (A2yn, xn, α1,n) = W (A4yn, xn, α2,n) = · · · = W (A2kxn, xn, αk,n),

n ≥ 0;
where {αi,n} and {βi,n} for i = 1, 2, ..., k satisfy 0 ≤ αi,n , βi,n ≤ 1 for i = 1, 2, ..., k
and {αi,n} for i = 1, 2, ..., k are bounded away from zero. If {xn} converges to some
p ∈ C, then p is common fixed point of A1, A2, ..., A2k.
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DOUBLE σ-CONVERGENCE LACUNARY STATISTICAL
SEQUENCES

EKREM SAVAŞ & RICHARD F. PATTERSON

Abstract. In this paper we introduce two notions of σ-convergence for double
sequences namely, σ-statistically P-convergence and lacunary σ-statistically P-
convergence. These concepts are used to present multidimensional inclusion
theorems.

1. Introduction

Let us consider the following: Let l∞ and c be the Banach spaces of bounded
and convergent sequences with the usual supremum norm. Let σ be a one-to-one
mapping from the set of natural numbers into itself. A continuous linear functional
φ on l∞ is said to be an invariant mean or a σ-mean if and only if

i φ(x) ≥ 0 when the sequence x = (xk) is such that xk ≥ 0 for all k,
ii φ(e) = 1 where e = (1, 1, 1, . . .), and
iii φ(x) = φ(xσ(k)) for all x ∈ l∞.

Throughout this paper we shall consider the mapping σ has having on finite
orbits, that is σm(k) 6= k for all nonnegative integers with m ≥ 1, where σm(k) is
the m-th iterate of σ at k. Thus σ-mean extends the limit functional on c in the
sense that φ(x) = lim x for all x ∈ c. Consequently, c ⊂ Vσ where Vσ is the set of
bounded sequences all off whose σ-mean are equal.

In the case when σ(k) = k + 1, the σ-mean is often called the Banach limit and
Vσ is the set of almost convergent sequences, which was presented by Lorentz in
[6]. It can be shown that

Vσ =
{

x ∈ l∞ : lim
m

tm,n(x) = s uniformly in n, s = σ − limx
}

where
tm,n(x) =

xn + xσ(n) + · · ·+ xσm(n)

m + 1
, t−1,n(x) = 0.

We say that a bounded sequence x = (xk) is σ-convergent provided that x ∈ Vσ.

Definition 1.1 (Fast, Fridy; [5, 4]). The sequence [x] has statistic limit L, de-
noted by st− lim x = L provided that for every ε > 0,

lim
n

1
n
{the number of k ≤ n : |xk − L| ≥ ε} = 0.

The idea of statistically convergence of sequence of real numbers was introduced
by Fast in [4]. Schonberg in [13] studied statistically convergence as a summability
method and listed some of the elementary properties of statistical convergence.

Date: March 19, 2005.
2000 Mathematics Subject Classification. Primary 42B15; Secondary 40C05.
Key words and phrases. σ-statistically P-convergence, Lacunary σ-statistically P-convergence.
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2 EKREM SAVAŞ & RICHARD F. PATTERSON

Both of these authors noted that if a bounded sequence is statistically convergent
to L, then it is Cesàro summable to L. Recently, Connor in [1] extended the
statistical convergence definition to A-statistical convergence by using nonnegative
regular matrices.

Let K ⊆ N ×N be a two dimensional set of positive integers and let Km,n be
the numbers of (i, j) in K such that i ≤ n and j ≤ m. Then the lower asymptotic
density of K is defined as

P − lim inf
m,n

Km,n

mn
= δ2(K).

In the case when the sequence {Km,n

mn }∞,∞
m,n=1,1 has a limit then we say that K has

a natural density and is defined

P − lim
m,n

Km,n

mn
= δ2(K).

For example, let K = {(i2, j2) : i, j ∈ N}, where N is the set of natural numbers.
Then

δ2(K) = P − lim
m,n

Km,n

mn
≤ P − lim

m,n

√
m
√

n

mn
= 0

(i.e. the set K has double natural density zero). Quite recently, Mursaleen and
Edely [7], defined the statistical analogue for double sequences x = (xk,l) as follows:
A real double sequences x = (xk,l) is said to be P-statistically convergent to L
provided that for each ε > 0

P − lim
m,n

1
mn

{number of (j, k) : j < m and k < n, |xj,k − L| ≥ ε} = 0.

In this case we write st2 − limm,n xm,n = L and we denote the set of all P-
statistical convergent double sequences by st2. By a bounded double sequence
we shall mean a positive number M exists such that |xj,k| < M for all j and
k, ||x||(∞,2) = supj,k |xj,k| < ∞. We will denote the set of all bounded double
sequences by l

′′
∞.

Definition 1.2. The double sequence θr,s = {(kr, ls)} is called double lacunary
if there exist two increasing of integers such that

k0 = 0, hr = kr − kr−1 →∞ as r →∞
and

l0 = 0, hs = ls − ls−1 →∞ as s →∞.

Notations: kr,s = krls, hr,s = hrhs, θr,s is determine by Ir,s = {(i, j) : kr−1 <

i ≤ kr & ls−1 < j ≤ ls}, with qr = kr

kr−1
, qs = ls

ls−1
, and qr,s = qrqs.

2. Main Result

We shall extend notion presented in the introduction to σ-statistically P-convergence.

Definition 2.1. A double complex number sequence x = xk,l is said to be σ-
statistically P-convergent to the number L if for every ε > 0

P − lim
p,q

1
pq

{
the number of k, l ≤ p, q :

∣∣xσk(m),σl(n) − L
∣∣ ≥ ε

}
= 0

uniformly in (m,n).

611



DOUBLE σ-CONVERGENCE LACUNARY STATISTICAL SEQUENCES 3

In this case we write
S
′′
σ − limx = L or xk,l → L(S

′′
σ ) where

S
′′
σ = {x = (xk,l) : S

′′
σ − limx = L, for some L}

Definition 2.2. Let θr,s = {(kr, ls)} be a double lacunary. The double real number
sequence x = (xk,l) is said to be S

′′
σ,θ-convergent to the number L provided that

for every ε > 0

P − lim
r,s

1
hr,s

∣∣{(k, l) ∈ Ir,s :
∣∣xσk(m),σl(n) − L

∣∣ ≥ ε
}∣∣ = 0

uniformly in (m,n). S
′′
σ,θ − limx = L or xk,l → L(S

′′
σ,θ) The set such double

sequences shall be denoted by

S
′′
σ,θ = {x = (xk,l) : S

′′
σ,θ − limx = L, for some L}.

Throughout this paper we will also use the following notations:

Aγ,δ
α,β =





α ≤ i < γ − 1
(i, j) : or

β ≤ j < δ − 1





and

Bm,n =





0 ≤ i < m− 1
(i, j) : or

0 ≤ j < n− 1



 .

Definition 2.3. Let θr,s = {(kr, ls)} be a double lacunary. The double real number
sequence x = (xk,l) is said to be S̄

′′
σ,θ-convergent to the number L provided that

for every ε > 0

P − lim
r,s

1
hr,s

∣∣{(k, l) ∈ Bhr,hs :
∣∣xσk(m),σl(n) − L

∣∣ ≥ ε
}∣∣ = 0

uniformly in (m,n). S̄
′′
σ,θ − limx = L or xk,l → L(S̄

′′
σ,θ) The set such double

sequences shall be denoted by

S̄
′′
σ,θ = {x = (xk,l) : S̄

′′
σ,θ − limx = L, for some L}.

We now introduce a new concept of strong double σ-convergence by combining
σ-convergence with lacunary sequences, which yields multidimensional analog of
Definition 2.1 in [11].

L
′′
θ = {x = (xk,l) : P − lim

r,s

1
hr,s

∑

(k,l)∈Ir,s

∣∣xσk(m),σl(n) − L
∣∣ = 0 uniformly in (m,n)}.

We shall now prove some analogues for double sequences. For single sequences such
results have been presented by Savaş and Nuray in [10].

Theorem 2.1. Let θr,s = {(kr, ls)} be a double lacunary then

(1) if x → L(L
′′
θ ) then x → L(S

′′
σ,θ),

(2) if x ∈ l
′′
∞ and x → L(S

′′
σ,θ) then x → L(L

′′
θ ), and

(3) S
′′
σ,θ ∩ l

′′
∞ = L

′′
θ .
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Proof. Part (1): If ε > 0 and x → L(L
′′
θ ) then

∑

(k,l)∈Ir,s

∣∣xσk(m),σl(n) − L
∣∣ ≥

∑

(k,l)∈Ir,s&|xσk(m),σl(n)−L|≥ε

∣∣xσk(m),σl(n) − L
∣∣

≥ ε
∣∣{(k, l) ∈ Ir,s :

∣∣xσk(m),σl(n) − L
∣∣ ≥ ε

}∣∣ .

Therefore x → L(S
′′
σ,θ). Part (2): Suppose [x] is in l

′′
∞ and x → L(S

′′
σ,θ). Then we

can assume that
∣∣xσk(m),σl(n) − L

∣∣ ≤ M for all k, l, m, and n.

Given ε > 0

1
hr,s

∑

(k,l)∈Ir,s

∣∣xσk(m),σl(n) − L
∣∣ =

1
hr,s

∑

(k,l)∈Ir,s&|xσk(m),σl(n)−L|≥ε

∣∣xσk(m),σl(n) − L
∣∣

+
1

hr,s

∑

(k,l)∈Ir,s&|xσk(m),σl(n)−L|<ε

∣∣xσk(m),σl(n) − L
∣∣

≤ M

hr,s

∣∣{(k, l) ∈ Ir,s :
∣∣xσk(m),σl(n) − L

∣∣ ≥ ε
}∣∣ + ε.

Therefore x → L(L
′′
θ ). Part (3): follows from (1) and (2). ¤

We now present a lemma which shall be used in the following theorem.

Lemma 2.1. Suppose for given ε1 > 0 and every ε > 0 there exist m0 and n0 such
that

1
mn

∣∣{(k, l) ∈ Bm,n :
∣∣xσk(r),σl(s) − L

∣∣ ≥ ε
}∣∣ < ε1,

for all m ≥ m0 n ≥ n0, r ≥ r0 and s ≥ s0 then x → L(S
′′
σ,θ).

Proof. Let ε1 be given. For every ε > 0, choose n1
0 m1

0, r0 and s0 such that

1
mn

∣∣{(k, l) ∈ Bm,n :
∣∣xσk(r),σl(s) − L

∣∣ ≥ ε
}∣∣ <

ε1
2

,(2.1)

for all m ≥ m1
0, n ≥ n1

0, r ≥ r0 and s ≥ s0.
It is sufficient to prove that there exists m1,1

0 and n1,1
0 such that for m ≥ m1,1

0 ,
n ≥ n1,1

0 , 0 ≤ r ≤ r0, and 0 ≤ s ≤ s0

1
mn

∣∣{(k, l) ∈ Bm,n :
∣∣xσk(r),σl(s) − L

∣∣ ≥ ε
}∣∣ < ε1.(2.2)

If we let m0 = max{m1
0,m

1,1
0 } and n0 = max{n1

0, n
1,1
0 } equation (2.2) holds for

m > m0 and n > n0 and for all r and s. Note once r0 and s0 are chosen where
0 ≤ r ≤ r0 and 0 ≤ s ≤ s0. Thus fixed (r0, s0). We can let

∣∣{(k, l) ∈ Br0,s0 :
∣∣xσk(r),σl(s) − L

∣∣ ≥ ε
}∣∣ = K.
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Now equation (2.1) grants us the following:

1
mn

∣∣{(k, l) ∈ Bm,n :
∣∣xσk(r),σl(s) − L

∣∣ ≥ ε
}∣∣ ≤ 1

mn

∣∣{(k, l) ∈ Br0,s0 :
∣∣xσk(r),σl(s) − L

∣∣ ≥ ε
}∣∣

+
1

mn

∣∣{(k, l) ∈ Am,n
r0,s0

:
∣∣xσk(r),σl(s) − L

∣∣ ≥ ε
}∣∣

≤ K

mn
+

1
mn

∣∣{(k, l) ∈ Am,n
r0,s0

:
∣∣xσk(r),σl(s) − L

∣∣ ≥ ε
}∣∣

≤ K

mn
+

ε1
2

.

Thus for m and n sufficiently large

1
mn

∣∣{(k, l) ∈ Bm,n :
∣∣xσk(r),σl(s) − L

∣∣ ≥ ε
}∣∣ ≤ M

mn
+

ε1
2

< ε1.

Thus equation (2.2) holds. This completes the proof of the lemma. ¤

We now establish the next theorem.

Theorem 2.2. S̄
′′
σ,θ = S

′′
σ for every double lacunary θ.

Proof. Let x ∈ S̄
′′
σ,θ, then Definition 2.2 assures us that, given ε1 > 0 there exist

r0, s0, ε > 0, and L such that

1
hr,s

∣∣{(k, l) ∈ Bhr,hs :
∣∣xσk(m),σl(n) − L

∣∣ ≥ ε
}∣∣ < ε1,

for r ≥ r0 and s ≥ s0 and m = kr−1 + 1 + u and n = ls−1 + 1 + v where u ≥ 0
and v ≥ 0. Let p ≥ hr and q ≥ hs and write p = ihr + α and q = ihs + β where
0 ≤ α ≤ hr, and 0 ≤ β ≤ hs, i is an integer. Since p ≥ hr, q ≥ hs, and i ≥ 1 we
obtain the following:

1
pq

∣∣{(k, l) ∈ Bp,q :
∣∣xσk(m),σl(n) − L

∣∣ ≥ ε
}∣∣

≤ 1
pq

∣∣{(k, l) ∈ B(i+1)hr,(i+1)hs
:
∣∣xσk(m),σl(n) − L

∣∣ ≥ ε
}∣∣

=
1
pq

i∑
γ=0

∣∣{γhr ≤ k ≤ (γ + 1)hr − 1 ∪ γhs ≤ l ≤ (γ + 1)hs − 1 :
∣∣xσk(m),σl(n) − L

∣∣ ≥ ε
}∣∣

≤ (i + 1)2hrhs

pq
ε1o(1)

≤ 4i2hrhsε1
pq

o(1); for i ≥ 1.

Since hr

p ≤ 1 and hs

q ≤ 1 it is clear that ihr

p ≤ 1 and ihs

q ≤ 1. Therefore

1
pq

∣∣{(k, l) ∈ Bp,q :
∣∣xσk(m),σl(n) − L

∣∣ ≥ ε
}∣∣ ≤ ε1.

Hence Lemma (2.1) implies S̄
′′
σ,θ ⊆ S

′′
σ . It is also clear that S

′′
σ ⊆ S̄

′′
σ,θ. This

completes the proof. ¤
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Abstract. This article is concerned with the excitability of positive linear time-invariant systems subject to 

internal point delays. It is proved that the excitability independent of delay is guaranteed if an auxiliary delay-

free system is excitable. Necessary and sufficient conditions for excitability and transparency are formulated in 

terms of the parameterization of the dynamics and control matrices and, equivalently, in terms of strict 

positivity of a matrix of an associate system obtained from the influence graph of the original system. Such 

conditions are testable through simple algebraic tests involving moderate computational effort. 

 
Keywords: excitable systems, positive systems, point delays, time-delay systems, transparency. 

 
I. Introduction 

The so-called positive systems are characterized by the fact that its relevant signals are nonnegative for all time. In 

particular, the property of external positivity implies that all the components of the output are non-negative for all 

time and all non-negative input and the property of internal positivity means that all the components of both the state 

and the output are non-negative for all time and for any non-negative input and initial conditions, [1-9]. Positive 

systems are very relevant in some continuous-time and discrete- time problems of the common life which cannot be 

described by negative signals, like, for instance, population dynamics evolutions, prey-predator problems, Ecological 

and Biological problems, like for instance,  the population evolution in a certain habitat being modeled by the well-

known Beverton- Holt equation,[27], the models for chemostat devices etc, [1-3, 5, 27]. Internally positive (usually 

referred to as positive) systems have non-negative control, output and input-output interconnection matrices (i.e. all 

the entries of those matrices are non-negative) and, furthermore, their matrix of dynamics is a so-called Metzler 

matrix (i.e. all its off-diagonal entries are non-negative), [1], [5].  Positive systems are also described in [24] for 

Leontieff models using in the  economical production system,[24] and may be characterized in general arbitrary cones 

and also, in particular, for abstract delayed equations rather than in the first orthant (see, for instance, [24-25]). 

However, it is preferred in this manuscript to give a clear simpler characterization of positivity characterized in the 

first orthant which has a clear insight in related Engineering and Biology/ Ecology problems. Some major facts 

associated with internally positive systems which make very peculiar from the point of view of systems theory are the 

following ones: 

 
1) Internal positivity of realizations in real canonical forms is always associated to real eigenvalues of the dynamics of 

the system. Otherwise, some state- solution trajectories possessing sub-trajectories inside the first quadrant of the 

appropriate two-dimensional phase plane of the phase space with conjugate complex eigenvalues would leave such a 
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quadrant locally around the zero equilibrium at certain time intervals. The reason is the presence of vortex or focus 

equilibrium points for the pair of coordinates defining such a phase plane. Under state/output feedback, this would 

result also in controls having negative values at certain time intervals, [1].This would result in the system not being 

internally positive. 

 
2) Internal positivity is dependent on the chosen state-space realization in the sense that if a state-space realization is 

internally positive another one related to it via a non-singular transformation might not be internally positive. For 

instance, a canonical Jordan realization with real (simple or multiple) eigenvalues with all the components of the 

control and output matrices being non-negative is internally positive. However, if all the coefficients of its 

characteristic polynomial are positive, which is always the case if the system is stable, then its algebraically 

equivalent companion controllability canonical form is never internally positive since the entries of the last row of its 

dynamics matrix are always negative.  

 
3) Stability and internal positivity might be properties in conflict as emphasized in the above discussion since a stable 

canonical controllability state-space realization cannot be internally positive although the algebraically equivalent 

stable canonical Jordan form leading to the same associate transfer matrix is internally positive. 

 
On the other hand, many dynamic systems common in Nature have associated delays which may be internal 

(i.e. in the state) or external (i.e. in the input or output), [11-16]. Examples of systems subject to delays are 

abundant in the literature like, for instance, transportation problems, population growth problems, electric 

power transmission to large distances, peace-war models, chemical processes, heat exchangers and some 

biological problems like, for instance, the sunflower dynamics, [10]. A lot of scientific work is being devoted 

in this last years to the study of the basic properties of such systems like, for instance, observability, 

controllability, stabilizability, closed-loop stabilization and model-matching as well as the use of the associate 

formalism in practical control implementations [17-22]. An important effort has been recently devoted to new 

perspectives and applications in the field of time-delay systems. For instance, the robust decentralized closed-

loop stabilization of interconnected systems with certain nonlinearities has been investigated in [28] by means 

of a fuzzy controller. On the other hand, the robust stabilization of cellular neural networks involving both 

discrete and distributed delays has been focused on in [29]. The state-feedback stabilization of systems 

possessing delays trough a memoryless controller and the optimal filtering under multiple state and 

observation delays have been investigated in [30] and [31], respectively. A major drawback to cope with time-

delay systems from an analytical pointy of view is that internal delays make a dynamic system to become 

infinite-dimensional then possessing infinitely many associated modes [11-13]. This paper is devoted to 

investigate the so-called excitability and transparency properties of time-invariant systems subject to constant 

point delays. Those properties have been characterized for positive delay-free systems in [5] but the existing 

background results in the field of time-delays are rather scarce. The excitability is the system capability of 

exciting all its state variables (i.e. none of them remains identically zero for all finite time) while being 

initially at rest by application of some positive input. Transparency is the property of exciting all the output 

components of the unforced response by any given positive function of initial conditions. Excitability of the 

output components rather than all the state variables will be referred to as external excitability. The 
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transparency will be referred to as “weak transparency” if the excitation of all the output components is only 

achievable under positive point initial conditions. It will be referred to as “strong transparency” or, simply, 

“transparency” if any positive initial condition of a subinterval of nonzero measure of its definition domain 

excites all the output components. This subdivision is inherent to the fact that the system is subject to delays. 

A main consequence of this research is that the properties of excitability and transparency can be achieved by 

a combined effect of the delay- free and delayed dynamics. In this paper, both properties are characterized for 

systems under internal delays and related to parallel properties of two auxiliary systems defined for zero and 

infinity delay, respectively. In particular, related new results dependent on and independent of the delay size 

are obtained. The mechanism which allows obtaining those two different results is to split the characterization 

of the excitability/transparency properties into two vectors characterizing excitability, respectively, 

transparency, which are summed up in the same right-hand-side formula. If one of those vectors, which is 

independent of the delayed dynamics, is strictly positive, then the corresponding property is automatically 

guaranteed independently of the delay size. The extension of both characterizations to the multivariable case 

would consist of the fact that at least one entry per row of a certain matrix related to excitability/ transparency 

is positive. This implies that a corresponding nonzero component of the input excites the associate component 

of the state vector for the excitability property. The external excitability is characterized in a similar way as the 

(internal) excitability as the property implying that all the components of the output trajectory solution take 

strictly positive values in finite time. The transparency property is characterized mutatis- mutandis via the 

corresponding vector/ matrix for testing. If the property holds independent of the delay, then such a property is 

not dependent on the matrix which defines the delayed dynamics. Less stringent conditions are obtained if the 

whole matrix or vector characterizing the excitability / transparency has a positive entry per row by jointly 

considering both right-hand-side terms of the summed-up vector or matrix. If the excitability/transparency 

condition holds in this case but not in the case of just examining the first time then the property is 

characterized as being dependent of the delay size and it also depends on the delayed dynamics matrix as a 

result. In this context, a system which is not excitable independent of the delay might become excitable for a 

particular delay depending on the matrix which defines the delayed dynamics. 

 
Notation Notes: Consider real matrices ( ) mn

jiVV ×∈= R  and vectors ( ) n
ivv R∈= . Then, the subsequent 

notation will be then useful: 0V/0v ≥≥  (no vector component / matrix entry is negative), 0V/0v >> (at 

least a component / entry is positive), 0V/0v >>>> (all components/ entries are positive). The whole set of 

nonnegative real mn× matrices (n-vectors) including the positive and strictly positive ones is denoted by 

mnV ×
+∈R  ( nv +∈R ).  { }nnn

0
0 RRR ∈∪= ++

 for any 1n ≥  and a similar definition would apply to real 

matrices . 
On the other hand, the notation “ iff “ is an abbreviation for “ if and only if “ as usual. A finite set with the first 

n natural numbers is defined as { }n,...,2,1n = . 

ie  denotes the i-th Euclidean  unity vector of nR  for any 2n ≥ whose the only nonzero component is the i-th 

one. 
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II. The class of single point constant time-delay systems: State-trajectory solution  

Consider the single-input single-output linear time-invariant system 

 
 :hS ( ) ( ) ( ) )t(ubhtxAtxAtx 0 +−+=&    ;        ( ) ( )txcty T=                                                     (1) 

  
where ( )tx  is the state n-vector and  u (t) and y (t) are, respectively, the scalar control input signal and 0h ≥  

is the point delay. If h >0, then the above system possesses internal delayed dynamics. The real square n-

matrices A and 0A  are associated with the delay-free and delayed dynamics, respectively and b and c are n 

dimensioned real control and output vectors, respectively.  Particular delay- free systems which lie in the class 

(1) are:   

 
:0S    ( ) ( ) ( ) )t(ubtxAAtx 0 ++=&     ;        ( ) ( )txcty T=                                                     (2.a) 

:∞S    ( ) ( ) )t(ubtxAtx +=&     ;                     ( ) ( )txcty T=                                                      (2.b)                               

 
Note that 0S  and ∞S  are obtained from (1) for h = 0 and ∞→h , respectively. In the first case, the delayed 

dynamics becomes delay–free for zero delay since (2.a) equalizes (1) for h = 0. In the second one, an infinity 

delay makes the delayed dynamics to be trivially irrelevant since the initial conditions have a finite time 

interval definition domain. In this context, note that ( ) ( )txAtx =& for any finite time as ∞→h  and zero 

control so that the unforced state-trajectory solution is generated by the infinitesimal generator A for all finite 

time. A close description to the first equation (1) applies to linear time-invariant discrete-time single-input 

single-output systems of delayed discrete dynamics defined by k1k0k1k ubxAxAx ++= −+  with the 

replacements kTkt →=  (integer index for running samples), 1Th == (sampling period) ( ) 1kxtx +→& , 

( ) kxtx → , ( ) kutu → . The auxiliary system (2.a) describes (1) for infinite delay. The following result 

holds: 

 
Theorem 1: For any absolutely continuous function of initial conditions [ ] n0,h: R→−ϕ  with 

( ) ( ) 0x0x0 ==ϕ  and any piecewise- continuous control input, the state- trajectory solution of hS  is unique 

and given by any of the equivalent expressions below: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ττ+ττ−τ+ττϕ+=ϕ ∫∫∫ τ−− τ−−

−

τ−− dubedxhAedAexeu,,tx
t

0

tA
0

ht

0

htA
0

0

h

htA
0

tA 1          

( ) ( ) ( ) ( ) ( ) τττ−Ψ+ττϕτ−−Ψ+Ψ= ∫∫− dubtdAhtxt
t

0 h0

0

h h0h                                  (3) 

 
where ( )t1  is the unit step (Heaviside) function with discontinuity at t = 0, tAe  is a 0C - semigroup 

(popularly known as the state transition matrix)  associated with the infinitesimal generator A of ∞S , which 

satisfies ( ) tAtA eAtd/ed = ,  and ( )thΨ  is the evolution operator of hS  for any 0h ≥  which satisfies 
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( ) ( ) ( )htAtAt h0hh −Ψ+Ψ=Ψ&                                                                                                 (4) 

 
 
and it  is explicitly defined by 
 

( ) ( ) ( ) ( ]
( )⎪

⎪

⎩

⎪
⎪

⎨

⎧

≥⎟
⎠
⎞

⎜
⎝
⎛ τ−τΨ+

∈
<

=⎟
⎠
⎞

⎜
⎝
⎛ τ−τ−τΨ+=Ψ

∫
∫

τ−

τ−

htfordhAeIe

h,0tfore
0tfor0

dhhAeIet
t

0 h0
AtA

tAt

0 h0
AtA

h 1

                                                                                                                                       (5) 
 
where I is the n-identity matrix. The output trajectory solution ( ) ( )u,,txcu,,ty T ϕ=ϕ  follows 
directly from (3).  
 

Outline of Proof: The first expression in (3) follows directly from (1) by considering 

( ) ( ) ( )tubhtxAu,x,ht,tv 0 +−=−  as an extended forcing time at time t. Taking time-derivatives in (5) 

for ( )thΨ , Eq. 4 follows, provided again that (5) is true, so that (5) is the solution of (4) which is unique by 

using standard arguments from Picard –Lindeloff ´s theorem since the right- hand side of (1) is uniformly 

Lipschitz continuous. Then, by taking the first time-derivative of  the second expression of (3) with the use of 

(4)-(5) in its right hand- side to separate x (t) and x (t-h) , Eq. 1 holds for 0t ≥ . 

 
III. Positivity and Excitability 

In the following, admissible input functions [ ) +→∞ 0,0:u R  and admissible functions of initial conditions 

[ ] n
0

0,h:
+

→−ϕ R are those which satisfy the respective constraints of Theorem 1 for the existence of unique 

trajectory solutions. The following precise definitions concerning the properties of positivity and excitability 

[1-2] for point time-delay systems are then used. 

 
Definition 1: The system hS  is said to be internally positive (or simply positive) if all its state components 

and its output are nonnegative for all time for any admissible [ ) +→∞ 0,0:u R  which satisfies the constraints 

of Theorem 1 for the existence of solutions ( +0R being the set of nonnegative real numbers) and any 

admissible function of initial conditions [ ] n
0

0,h:
+

→−ϕ R , namely, fulfilling their respective constraints in 

Theorem 1 for existence of solution.                                                                                                       

 
Definition 2: The system hS  is said to be externally positive if its output is nonnegative for all time for any 

admissible control [ ) +→∞ 0,0:u R  and 0≡ϕ  on its definition domain [-h, 0].                                 

 
Definition 3: The positive system hS  is said to be internally excitable (or simply excitable) if all its state 

components are positive ( i.e. ( ) 0u,0,tx >> ) for all time 0tt > , for some finite 0t 0 ≥  and some non 
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identically zero admissible [ ) +→∞ 0,0:u R  if the system is initially at rest, i.e. 0≡ϕ  on its definition domain 

[-h, 0].                                                                                                                                    

 

Definition 4: The positive system hS  is said to be externally excitable if its output is positive (i.e. 

( ) 0u,0,ty >> ) for all time 0tt > , for some finite 0t 0 ≥  and some non identically zero 

admissible [ ) +→∞ 0,0:u R if the system being initially at rest.                                                               

 

Note from the above definitions that positivity is related to the fact that the involved signals are nonnegative 

for all time for admissible nonnegative inputs while excitability stated below implies strict positivity of the 

involved signals after a finite interval of time for some admissible nonnegative and non identically zero inputs. 

More precisely, internal positivity is related to the property ( ) 0u,,tx ≥ϕ and ( ) 0u,,ty ≥ϕ  for all 0tt > for 

any admissible [ ) +→∞ 0,0:u R and [ ] n
0

0,h:
+

→−ϕ R . (Internal) excitability of a positive system implies 

that there is some non identically zero input [ ) +→∞ 0,0:u R such that ( ) 0u,0,tx >>  for 0tt > , some finite 

0t 0 ≥ , if the system is initially at rest, i.e. 0≡ϕ  on its definition domain [-h, 0]; i.e. all the state components 

are strictly positive for 0tt > , some finite 0t 0 ≥ . It has been proved in [2] that linear time-invariant delay- 

free systems are excitable iff ( ) 0u,0,tx >>  for 0t > . Similar characterizations apply for external excitability 

referred to as the strict positivity of the output under zero initial conditions for some non identically zero input 

[ ) +→∞ 0,0:u R . 

 
Three assumptions follow to characterize positivity and external positivity of the system hS : 

 

Assumption 1: The matrix A is a Metzler matrix (namely, all its off-diagonal entries are nonnegative, [1-2]) 

0A 0 ≥  and 0b> . 

Assumption 2:  The matrix ( )0AA +  is a Metzler matrix and 0b> . 

Assumption 3:  0c>                                                                                                                           

 
It is well-known that 0e tA > , 0t ≥∀  iff A is a Metzler matrix, [1]. Note also that Assumption 1 implies 

Assumption 2 but the converse is not true in general. The positivity of system (1) is characterized precisely in 

the following result. 

 
Theorem 2. The subsequent properties follow: 

 (i) The system hS  is positive independent of the delay; i.e. for any [ )∞∈ ,0h , iff Assumptions 1 and 3 hold. 

As a result, 0S  and ∞S  are both positive. Also, ( ) 0th >Ψ  for any [ )∞∈ ,0h .  

(ii) The system 0S  is positive iff Assumptions 2-3 hold. 
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Proof: (i) “If part” Since A is a Metzler matrix, 0e tA > , 0t ≥∀ . Since 0A 0 ≥  and 0b > , ( ) 0tx ≥  for 

[ )h,0t ∈ , [ )∞∈∀ ,0h , from (3) for any [ ) +→∞ 0,0:u R and [ ] n
00,h: +→−ϕ R . Proceeding then 

constructively with (3), it follows that ( ) 0u,,tx ≥ϕ  and ( ) 0u,,ty ≥ϕ , since c > 0, for all 0t ≥ and hS  is 

positive for all [ )∞∈ ,0h  and as ∞→h  so that 0S  and ∞S  are both positive as well. From (4) , the 

evolution operator ( )thΨ evolves through time as the unforced (1) so that ( ) 0th ≥Ψ  for any [ )∞∈ ,0h  

and all 0t≥ , since ( )thΨ is an evolution operator of (1), it is nonsingular for all 0t≥ so that ( ) 0th >Ψ  . 

 
“Only if part” It follows proceeding by contradiction for all possible cases. If b > 0 fails then there is some 

0b i < , some { }n,...,2,1:ni =∈ . For 0≡ϕ , some sufficiently large real constant M > 0, and any input 

fulfilling ( ) Mtu > , 0t≥∀ , it follows ( ) 0u,0,tx i < ( ni∈ ), some 0t ≥ , and hS  is not internally  positive 

for any [ )∞∈ ,0h . If 0A 0 ≥  fails (i.e. ( ) 0A 0 ≥− ) then, there is some ( ) nnj,i ×∈  such that 0A
ji0 < . 

Assume 0u ≡ and initial conditions ( ) ( )( ) T
ii 0,....,0kt,...,0t >=ϕ=ϕ , ik being a constant, 

[ ]0,ht −∈∀ , some ni∈ . Then, ( )0,,0x i ϕ+  < 0 so that hS  is not positive for any delay [ )∞∈ ,0h . If c 

> 0 fails then there is nj∈  such that 0c j < . From (1) and (3), ( ) 00,x,0y 0 < , and then hS  is not positive,  

for zero input provided that ( ) 0t =ϕ , [ )0,ht −∈∀  and ( ) ( ) 0x0x0 0 >==ϕ  satisfies the constraint 

( )
j

n

1ij
i0i

0jj0 c

xc
0,x,0x:x

∑
=≠>= . Finally, if A is not a Metzler matrix then ( ) 0tx ≥ fails for 0u ≡ , 

( ) 0≡τϕ , [ )0,h−∈τ∀ , and ( ) 0x0 0 >=ϕ . 

 
(ii) ( )0AA+  is a Metzler matrix iff  ( ) 0e tAA 0 >+  for all 0t ≥ , [1], which together with 0b > , implies and 

it is implied by the delay-free system 0S  being positive.                                                                          

 
Note that if the system hS  is positive then it is also externally positive but the converse is not true in general. 

For instance, if the system hS  is positive with b> 0 and c > 0 and all the signs of all nonzero components of b 

and c are changed simultaneously, then the modified hS  still remains positive but it is not internally positive 

The external positivity of the system hS is now formally characterized. 

 
Theorem 3: The subsequent properties follow: 

 (i) The system hS  is externally positive independent of the delay iff its impulse response  

( ) ( )( )beAAIscLtg shT
h

−− −−= 0
1  fulfills [ ) +→∞ 0h ,0:g R , where 1LL −,  denote the Laplace 

transform operator and its inverse, respectively. As a result, 0S  and ∞S  are both externally positive. 
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(ii) The systems 0S  and ∞S are externally positive iff [ ) +→∞ 00 ,0:g R  and [ ) +∞ →∞ 0,0:g R , 

respectively. 

 
Proof: (i) Note that for zero initial conditions and an admissible input [ ) 0,0:u +→∞ R : 

( ) ( )
( )

( ) ( )
( )

( ) τττ−−τττ−= ∫∫
τ−τ−

dutgdutgty
tN

h
tP

h

uu

 

where ( )tP u  and ( )tN u  are disjoint and complementary real subintervals of [ 0, t ] , one of them being 

possibly empty, defined as ( ) [ ] ( ){ }0tu:t,0tP u ≥∈τ=  and ( ) [ ] ( )tP/t,0tN uu = . If ( ) ∅=tN u  (the 

empty set) for all 0t ≥  then ( ) 0ty ≥ , 0t +∈∀ R  and the sufficiency part has been proved. To prove the 

necessary condition, proceed by contradiction. Assume a time instant 0t >  and an admissible  

[ ) 0,0:u +→∞ R  which is nonzero only on ( )tN u , i.e. ( ) [ ] ( ){ } [ ] ( ){ }0tu:t,00tu:t,0tP u =∈τ=≥∈τ= . 

Since the impulse response is a real continuous function ( ) [ ]t,0tN u =  has a finite measure since it is 

nonempty. Then ( ) 0ty <  and 0≡ϕ  on its definition domain [-h, 0] so that hS  is not externally positive.  

Thus, Property (i) has been proved.  

 
(ii) The proof is similar to that of Property (i).  

 
Excitability conditions:  Note that the basic difference between positivity (respectively, external positivity) and 

excitability of positive systems (respectively, external excitability of externally positive systems) is that in the 

first case all the state (respectively, output) components are nonnegative for all time while in the second one 

they are strictly positive on some time interval. The following key technical result is then used to consider 

only constant control signals to characterize excitability. 

 
Lemma 1: The positive system hS  is excitable independent of the delay iff there is a constant input 

( ) uktu = such that ( ) 0tx >> for the system being initially at rest. 

 
Proof: “If part” If the system is excitable then there is an admissible bounded nonzero constant input 

[ ) +→∞ 0,0:u R when applied to hS  results in  

 

( ) ( )( ) ( ) ( ) 0dubttu,0,txdbtk
t

0 h

t

0 hu >>τττ−Ψ=≥⎟
⎠
⎞

⎜
⎝
⎛ ττ−Ψ ∫∫   

 
if hS  is initially at rest, from the second expression in (3) for some 0t > ,  provided that ( )( ) u

0t
ktuSup ≤

≥
 if 

hS  is  positive ( so that ( ) 0b,0th >>Ψ ) and initially at rest. Thus, the constant input ( ) uktu =  when 

injected to hS initially at rest makes ( ) ( ) 0dbtkk,0,tx
t

0 huu >>⎟
⎠
⎞

⎜
⎝
⎛ ττ−Ψ= ∫ . 
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“Only if part” Assume that there is no constant input uk  implying 

( ) ( ) 0dbtkk,0,tx
t

0 huu >>⎟
⎠
⎞

⎜
⎝
⎛ ττ−Ψ= ∫ , for some 0t > . Then, for some ni∈  and any arbitrary positive 

real constant uk , ( ) ( ) ( ) ( ) ( ) τττ−Ψ=≥=⎟
⎠
⎞

⎜
⎝
⎛ ττ−Ψ= ∫∫ dubteu,0,tx0dbtekk,0,tx

t

0 h
T
ii

t

0 h
T
iuui  

for all 0t ≥ and all admissible u(t) satisfying ( ) 0ktu u>≥  for all 0t ≥ , if the internally positive system hS  

is initially at rest where ie is the i-th unity Euclidean vector in nR . Since 0k u >  is arbitrary there is no 

bounded nonnegative input which makes all the state variables to be positive for all t > 0. 

 
Remark 1: Lemma 1 implies that it is necessary and sufficient to consider constant unity inputs to characterize 

the internal excitability property since ( ) 0dbtk
t

0 hu >>⎟
⎠
⎞

⎜
⎝
⎛ ττ−Ψ∫  for ( ) 0dbt0k

t

0 hu >>⎟
⎠
⎞

⎜
⎝
⎛ ττ−Ψ⇔> ∫ . 

 
The influence graph G of a single-input single-output dynamic system [1-2] of n-th order has (n+2) nodes 

associated with its the n state variables, input and output and all paths in-between those nodes provided they 

are linked through nonzero entries of its parameterization. An associate system G
h

S  to hS  is defined from its 

influence graph  from (1) as : 

 
G
h

S : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) )t(ubhtxAtxAtx GGG
0

GGG +−+=&  ;  ( ) ( ) ( ) ( ) ( )txcty GTGG =         (6) 

 
where all the components and entries of the various matrix and vectors of parameters are defined from their 

counterparts of hS  as unity entries if their corresponding ones are nonzero and zero otherwise. Note that the 

associate system G
h

S  to hS  is always positive by construction even if hS  is not positive. 

 
The following result will then allow the formulation of the main result of the paper. The concept of support of 

the input is invoked. Note that the support of a real function is the proper or improper subset of its definition 

domain where the function range takes nonzero values. The support is said to be compact if it is a compact set. 

 
Proposition 1:  Assume that A is a Metzler matrix and 0A 0 =  . Then, there exists an input  [ ] n

0t,0:u +→ R  

of compact support (i.e. cl ( tX ), the closure of [ ] ( ){ }0u:t,0:X t >τ∈τ=  ) being of nonzero measure for 

all time interval [ ]t,0  of nonzero measure leading to ( ) 0tx i ≠ , ni∈∀ 0t >∀  under identically zero initial 

conditions iff there is an integer ( ) { } 1n0ikk −∪∈= , dependent in general on i, such that the condition 

0bAe kT
i ≠ holds for each ni∈ .  

-  The above condition is also:  

(1) A sufficient condition of positivity (provided that, in addition, c > 0) and excitability independent of delay 

of hS  for any 0A 0 ≥ ; and 
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(2) A necessary and a sufficient condition of positivity (provided that, in addition, c > 0) and excitability of 

∞S . 

 
Proof: From Lemma 1, it suffices to consider constant inputs ( ) uktu = ( )0t ≥ to characterize excitability. 

For zero initial conditions, constant unity input  and 0A 0 = , the state–trajectory solution is  given by  

( ) ( )( ) bAtu,0,tx k
1n

0k

u
k∑

−

=

β=   from (3) where  ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ττ−α=β ∫ dtk:t

t

0 ku
u

k
 and ( )τα k  are a set of 

n unique continuously differentiable and linearly independent real functions on any real interval ( )t,0  such 

that ( ) k
1n

0k
k

tA Ate ∑
−

=

α=  (see [4]). 

Note from the constraint ( ) ( ) [ ] IeA0I0 0t
tAk

k

1n

1k
0 ==α+α =

−

=
∑ , ( ) 100 =α  and ( ) 00k =α for 1nk −∈ . 

It is now proved that the set of functions ( ) ( )τβ u
k

 are also linearly independent on any interval [0, t] of 

nonzero measure. Proceed by contradiction. Assume that they are linearly dependent. Thus, 

( ) ( ) 0u
k

1n

0k
k ≡τβλ∑

−

=

 on [ ]t,0∈τ  for some non identically zero set of real scalar constants kλ ; k = 0,. 

Assume with no loss of generality that 01 ≠λ . Note that  ( ) ( ) 0u
k

1n

0k
k ≡τβλ∑

−

=

( ) ( ) 0u
k

1n

0k
k ≡τβλ⇒∑

−

=

&  

on ( )t,0 . From the definition of the functions ( )u
kβ , it follows that ( ) ( ) ( ) ( )τα−α=τβ kk

u
k 02& ; 

1n,...,1,0k −=  which leads to ( ) ( ) ( )τα−+=τβ 0u
u

0 k1&  and ( ) ( ) ( )τα−=τβ k
u

k
&  for 1nk −∈  on ( )t,0  

since ( ) 100 =α and ( ) 00k =α for 1nk −∈ . Replacing these expressions into ( ) ( ) 0u
k

1n

0k
k ≡τβλ∑

−

=

& , it follows 

that ( ) ( ) ( ) 0uk

1n

0k
k k1: λ+=ταλ=τδ ∑

−

=

. The following situations may occur: 

a) 00 =λ ( ) 0≡τδ⇒  on ( )t,0  with 01 ≠λ . Thus, the functions ( )τα k  are not linearly independent on 

( )t,0 , so that they are not linearly independent on [ ]t,0  , what leads to a contradiction. 

b) 00≠λ ( ) ( ) 0k1 0u ≡λ+−τδ⇒  on ( )t,0  with 01 ≠λ . Then the set of functions ( ) ( ) ( ) 0u0
´
0 k1t:t λ+−α=α , 

( )tkα , 1nk −∈  are linearly dependent on ( )t,0 . Since the set ( ) 1n,...,1,0k;tk −=α  are independent of 

uk , but only dependent on A, that means that for almost all values of uk , the set ( ) 1n,...,1,0k;tk −=α is 

not linearly independent on ( )t,0  and then on [ ]t,0 . 

As a result, for some nonnegative input of compact support on any interval [ ]t,0  of nonzero measure (and , 

in particular, for almost any constant positive input on [ ]t,0  ) one has 
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( ) [ ] ( )( ) ( )( ) ( ) ( )[ ] 0,...,,bAe,...,bAe,beu,0,x Tu
1n

u
1

u
0

1nT
i

T
i

T
ii

≠τβτβτβ=τ −
−

∞S                   (7) 

 
i.e. the i-th state component of the state trajectory solution of the system ∞S on ( ]t,0  for all ni∈  iff 

0bAe kT
i ≠  for some ( ) { } 1n0ikk −∪∈=  since ( ) ( )τβ u

k  are linearly independent on ( ]t,0  for almost all 

nonnegative input of compact support, and thus non identically zero, on [ ]t,0 . Thus, ( ) 0u,0,x S >>τ
∞

 on 

( ]t,0  for some admissible input of the given class. Since A is a Metzler matrix, ∞S  is positive so that 

( ) 0u,0,x ≥τ
∞S on [ ]t,0  for all 0t≥ . For zero initial conditions and any [ )∞∈ ,0h , 

( ) ( ) 0u,0,xu,0,x ≥τ≥τ
∞ShS

 on [ ]t,0  for all 0t≥ for any admissible input and 

( ) ( ) 0u,0,xu,0,x >>τ≥τ
∞SS h

 on [ ]t,0  for all 0t≥ , [ )∞∈∀ ,0h  or some admissible  input of the given 

class. Since A is Metzler and 0A 0 ≥ , the above constraint still holds for any admissible function of initial 

conditions. Then, the system is positive and excitable independent of the delay. The condition is also a 

necessary and sufficient condition for positivity and excitability of ∞S ; i.e. for the case 0A 0 = . 

 
Proposition 2: (i) hS is positive for a given delay 0h ≥  iff c > 0, 0A 0 ≥ , b > 0 and 

( ) ( ) 0bddhAIe
t

0

h

0 h0n
tA >⎥⎦

⎤
⎢⎣
⎡ τ⎟

⎠
⎞

⎜
⎝
⎛ ςς−−τΨ+∫ ∫

−ττ−  for all t > 0. External positivity is 

characterized by changing the last expression by its pre-multiplication by Tc . 

 
(ii) hS  is positive independent of the delay for any delay  0h ≥ if the last of the above conditions is replaced 

with  0be tA >  , [ )Tt,tt 00 +∈∀  0tt≥ , some finite 0t 0 ≥  , some finite T > 0 and any given 0h ≥ . As a 

result , 0S  and  ∞S  are also positive. External positivity independent of the delay is characterized by 

changing  the condition 0be tA >  by 0bec tAT > . 

 
(iii) hS being positive (respectively, externally positive) is excitable (respectively, externally excitable) for a 

given delay  0h ≥  iff ( ) ( ) 0bddhAIe
t

0

h

0 h0n
tA >>⎥⎦

⎤
⎢⎣
⎡ τ⎟

⎠
⎞

⎜
⎝
⎛ ςς−−τΨ+∫ ∫

−ττ− . External positivity 

is characterized by changing the last expression by its pre-multiplication by Tc . 

 
 (iv) hS being positive (respectively, externally positive) is excitable (respectively, externally excitable) 

independent of the delay for any delay  0h ≥  iff ( ) 0be i
tA >  ( )( )0bec,lyrespective i

tAT >  for all ni∈ , 

[ )Tt,tt 00 +∈∀ , some finite 0t 0 ≥  and some finite T > 0. As a result , 0S  and  ∞S  are excitable ( 

respectively, externally excitable). 
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(v) 0S  is positive iff ( )0AA +  is a Metzler matrix , b > 0 and c > 0  (i.e. if Assumptions 1-3  hold ) what is 

guaranteed by hS  being positive  independent of the delay. In addition, it is excitable (respectively, externally 

excitable) iff ( ) 0be i
tA >  ( )( )0bec,lyrespective i

tAT >  for all ni∈ , [ )Tt,tt 00 +∈∀  0tt≥ , some 

finite 0t 0 ≥  and some finite T > 0. 0S  being excitable (respectively, externally excitable)  is guaranteed by 

hS  being excitable independent of the delay. 

 
(vi) ∞S  is positive iff A  is a Metzler matrix , b > 0 and c > 0 (i.e. if Assumptions 1-3  hold with 0A 0 = ) 

what is guaranteed by hS  being positive  independent of the delay. In addition, it is excitable (respectively, 

externally excitable) iff ( )( ) 0be i
tAA 0 >+  ( )( )( )0bec,lyrespective i

tAAT 0 >+  for all ni∈ , 

[ )Tt,tt 00 +∈∀  0tt≥ , some finite 0t 0 ≥  and some finite T > 0. ∞S being excitable (respectively, 

externally excitable)  is guaranteed by hS  being excitable independent of the delay. 

 
Proof:  First note from Theorem 1 that for a unity step control the forced response of hS , 

( ) ( ) ( ) bddhAIetx
t

0

h

0 h0n
tA

⎥⎦
⎤

⎢⎣
⎡ τ⎟

⎠
⎞

⎜
⎝
⎛ ςς−−τΨ+= ∫ ∫

−ττ− . Then, ( ) 0tx >  for any set of nonnegative 

initial conditions, any nonnegative control and any t > 0. This follows since 0b> , 0c >  and since A is a 

Metzler matrix what implying 0xe 0
tA ≥  and ( ) ( ) 0dhxAe

h

0 0
tA ≥τ−τ∫

−τ τ− . Thus, the system is positive 

independent of the delay  iff  ( ) ( ) 0bddhAIe
t

0

h

0 h0n
tA >⎥⎦

⎤
⎢⎣
⎡ τ⎟

⎠
⎞

⎜
⎝
⎛ ςς−−τΨ+∫ ∫

−ττ−  for all t > 0.  If the 

above expression is, furthermore, >> 0 for some time interval then. all the state components are positive on 

such an interval  and the system is excitable independent of the delay since  positivity, respectively, 

excitability hold for any nonnegative control, respectively, any control being positive over some finite interval 

of time. Properties (i)-(iii) have been proved. Properties (ii) – (iv) follow correspondingly by noting the 

following: A being a Metzler matrix is equivalent to 0e tA >  for all 0t≥ . Since tAe is a fundamental matrix 

of the unforced system ∞S ,  it is nonsingular for all 0t≥  then its kernel is zero so that 0be tA =  iff b = 0. 

Since b > 0 then ( )( ) 0hxAebe 0
AtA >−τ+ τ  and ( )( ) 0hxAebe 0

AtA >>−τ+ τ   are related to 

positivity and excitability, respectively, is equivalent to A being a Metzler matrix together with b > 0 then the 

system is positive and either ( ) 00x >+  or ( ) 00x >>+ , respectively,  for any positive constant control and 

then for any  nonnegative control  being positive on some interval of nonzero measure for zero initial 

conditions. Then, the conditions given are equivalent to the joint Assumptions 1 -3 and hS is positive 

independent of the delay and the first part has been proved. Also, note that for identically zero initial 

conditions ( ) 0be i
tA >  for all ni∈  , [ )Tt,tt 00 +∈∀ , some finite 0t 0 ≥  and some finite T > 0. for all 

ni∈  ( ) 0u,0,tx i >⇔  for all ni∈  , [ )Tt,tt 00 +∈∀ , some finite 0t 0 ≥  and some finite T > 0.so that 

hS  is excitable independent of the delay.  Properties (v)-(vi) apply for particular systems (2) with delay zero 
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or infinity. The proofs of positivity of  the delay-free auxiliary systems 0S  and ∞S  are direct from (2) and 

the above result for positivity independent of the delay  .The proof related to external excitability follows in a 

similar way concerning ( ) 0u,0,ty > for all ni∈  , [ )Tt,tt 00 +∈∀ , some finite 0t 0 ≥  and some finite T 

> 0.   External positivity and external excitability follow by pre-multiplying  directly the relevant conditions 

for positivity/ excitability by Tc  .                                                                                                           

 
Remark 2: Note that the condition ( ) 0be i

tA >  invoked in Proposition 2  for all ni∈  and is equivalent 

(although more difficult to test) to the previous excitability condition 0bAe kT
i ≠  for some integer 

( ) { } 1n0ikk −∪∈= , dependent in general on i, for each ni∈ . Note also that, since, the auxiliary system 

∞S  is delay-free and time-invariant if excitability holds then ( )( ) 0tu,0,0x >>+  for some admissible input 

so that 0t 0 = with no loss in generality, [1-2].                                                                                             

 
Proposition 3: There exists an integer ( ) { } 1n0ikk −∪∈= , dependent in general on i, for all ni∈ , such 

that ( ) ( ) 0bAe GkGT
i >  for each ni∈  iff ( ) 0bA

1n

0k

kG >>∑
−

=

. 

Proof : Since ( ) 0A G ≥  and ( ) 0b G ≥  by construction, ( ) ( ) 0bAe GkGT
i ≥ , ( ) { }( )1n0nk,i −∪×∈∀ . 

Then, ( ) ( ) 0bAe GkGT
i > , ni∈∀  and some k = k(i) depending in general on each ni∈  

                         ( ) ( ) 0bA
i

GkG >⎟
⎠
⎞⎜

⎝
⎛⇒  for some ( ) { } 1n0ikk −∪∈= , ni∈∀   

                              ( ) ( ) 0bA
i

GkG
1n

0k

>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⇒ ∑

−

=

( ) 0bA
1n

0k

kG >>⇒∑
−

=

. 

 Conversely, ( ) 0bA
1n

0k

kG >>∑
−

=

( ) ( ) 0bA
i

GkG
1n

0k

>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⇒ ∑

−

=

( ) ( ) 0bA
i

GkG >⎟
⎠
⎞⎜

⎝
⎛⇒  

 for some ( ) { } 1n0ikk −∪∈= , ni∈∀ .                                                                                          

 
Proposition 4: Assume that hS is positive independent of the delay. Then, it is excitable independent of the 

delay iff the associate system G
h

S  is excitable independent of the delay, in particular,  if any of the conditions 

below below, which mutually imply and are implied by all the remaining ones, hold: 

 

      .  0bAe
kT

i ≠  for some ( ) { } 1n0ikk −∪∈=  , depending in general on i, for each ni∈ . 

      .  ( ) ( ) 0bAe GkGT
i >  for some ( ) { } 1n0ikk −∪∈=  , depending in general on i, for each ni∈ . 

      .  For each ni∈ , ( ) ( )GGT
i bAe

k
is not identically zero for all  { } 1n0k −∪∈  . 
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      .  ( ) 0bA
1n

0k

kG >>∑
−

=

 

Any of the above equivalent conditions are necessary and sufficient for both ∞S  and GS
∞

 to be excitable. 

Also,  hS  and G
h

S  are both output excitable independent of the delay if any of the equivalent constraints 

below, which mutually imply and are implied by all the remaining ones, hold: 

 

      .  0bAc
kT ≠  for some { } 1n0k −∪∈ . 

      .  ( ) ( ) 0bAc GkGT >  for some { } 1n0k −∪∈ . 

      .  For each ni∈ , ( ) ( )GGT bAc
k

is not identically zero for all  { } 1n0k −∪∈  . 

      .  ( ) 0bAc
1n

0k

kGT >>∑
−

=

 

      . There exist ni∈ ; { } 1n0k −∪∈ , mj∈  such that 0bAc j
kT

i ≠  or, equivalently, 

( ) ( ) ( ) 0bAc G
j

kGTG
i >  

Any of the above equivalent conditions are necessary and sufficient for both ∞S  and GS
∞

 to be output 

excitable. 

Proof : Note that G
h

S  is positive by construction. Note also that b and 
( )G

b have exactly the same zero 

components by construction of 
( )G

b  from b and that ( ) 0e ji
tA = ⇔

( )
0e ji

tGA =⎟
⎠
⎞⎜

⎝
⎛  for any (off –

diagonal) entry ( ) nnij,i ×∈≠  such that ( ) 0AA G
jiji == . As a result, ( ) 0be i

tA =  ⇔
( ) ( ) 0be i

GtGA =⎟
⎠
⎞⎜

⎝
⎛  

for any ni∈ ⇔ ( ) 0be i
tA ≠  ⇔

( ) ( ) 0be i
GtGA >⎟
⎠
⎞⎜

⎝
⎛  for any ni∈ ⇔ hS  , if positive , is excitable iff 

G
h

S ( being always positive by construction) is excitable. The remaining part of the proof follows directly 

from Propositions 1- 3. The conditions for (internal) excitability have been proven. Those for external 

excitability are close by replacing the Euclidean canonical unity vector by the output vector c.                     

 
Proposition 5: Assume that hS  is externally positive independent of the delay. Then, hS  is externally 

excitable independent of the delay iff G
h

S  is externally excitable independent of the delay.  Also, both hS  

and G
h

S  are both output excitable independent of the delay if any of the equivalent constraints below, which 

mutually imply and are implied by each other, hold 

 

      .  0bAc
kT ≠  for some { } 1n0k −∪∈  . 
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      .  ( ) ( ) ( ) 0bAc GkGTG >  for some { } 1n0k −∪∈ . 

      .  ( ) ( ) ( )GkGTG bAc is not identically zero for all  { } 1n0k −∪∈ .  

      .  ( ) ( ) 0bAc
1n

0k

kGTG >>∑
−

=

. 

Any of the above equivalent conditions are necessary and sufficient for both ∞S  and GS
∞

 to be output 

excitable. 

 
Proof :  It is similar to the proof of Proposition 3 . The proof outline is to extend the proof of Proposition 1 by 

replacing (7) with  

 

( ) [ ] ( )( ) ( )( ) ( ) ( )[ ] 0,...,,bAc,...,bAc,bcu,0,y Tu
1n

u
1

u
0

1nTTT
i

≠τβτβτβ=τ −
−

∞S             (8)         

 
Proposition 6: Assume that 0S  is positive. Then, it is excitable iff the associate system G

0
S  is excitable. Both 

0S  and G
0

S  are excitable iff any of the equivalent constraint below, which mutually imply and are implied by 

all the remaining ones, hold: 

 

   . ( ) 0bAAe
k

0
T
i ≠+  for some ( ) { } 1n0ikk −∪∈=  , depending in general on i, for each ni∈ . 

   . ( ) ( ) ( ) 0bAAe GkG
0

GT
i >⎟

⎠
⎞⎜

⎝
⎛ +  for some ( ) { } 1n0ikk −∪∈= , depending in general on i, for each ni∈ . 

    .  For each ni∈ , ( ) ( ) ( )GkG
0

GT
i bAAe ⎟

⎠
⎞⎜

⎝
⎛ + is not identically zero for all  { } 1n0k −∪∈  . 

      .  ( ) ( ) 0bAAe
1n

0k

kG
0

GT
i >>⎟

⎠
⎞⎜

⎝
⎛ +∑

−

=

. 

 
Now, assume that 0S  is externally positive. Then, it is externally excitable iff the associate system G

0
S  is 

externally excitable. Both 0S  and G
0

S  are externally excitable iff any of the equivalent constraint below, 

which mutually imply and are implied by all the remaining ones, hold: 

 

      .  0bAAc
k

0
T ≠⎟

⎠
⎞⎜

⎝
⎛ +  for some { } 1n0k −∪∈ .  

      .  ( ) ( ) ( ) ( ) 0bAAc GkG
0

GTG >⎟
⎠
⎞⎜

⎝
⎛ +  for some { } 1n0k −∪∈ . 

      .  ( ) ( ) ( ) ( )GkG
0

GTG bAAc ⎟
⎠
⎞⎜

⎝
⎛ + is not identically zero for all  { } 1n0k −∪∈ . 

      .  ( ) ( ) ( ) 0bAAc
1n

0k

kG
0

GTG >⎟
⎠
⎞⎜

⎝
⎛ +∑

−

=

. 
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Excitability conditions dependent on the delay size are obtained below for the case when A and 0A  commute. 

The basis of the proof is that in such a case, a finite set of (delay-dependent) more general real scalar  linearly 

independent functions that the set ( )tkα ; k = 0, 1, …, n-1 used in the expansion ( ) k
1n

0k
k

tA Ate ∑
−

=

α=  are 

obtained to expand the evolution operator ( )thΨ  in the matrix products ji
0 AA . 

 
 

Proposition 7: Assume that A and 0A commute and that that hS  is positive. Then, hS  is excitable  

iff 

0bAAebA ji
0

hAk
≠⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛ −

ll  for some ( ) { }( ) { }( ) { }( )1n01n01n0k,j,i −∪×−∪×−∪∈  depending 

on l  for each { } 1n0 −∪∈l , or, equivalently, iff  G
h

S  is excitable, that is iff  

( ) ( ) ( ) ( ) ( ) 0bAAebA GjG
iG

0
hAGkG ≠⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞⎜

⎝
⎛ −

ll  for some ( ) { }( ) { }( ) { }( )1n01n01n0k,j,i −∪×−∪×−∪∈  

depending on l ,  for each { } 1n0 −∪∈l  , or, equivalently, iff  ( ) ( ) ( ) ( ) 0bAeIA G
1n

0i

iG
0

hAkG G
>>+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −

=

− ∑  

Proof : First , postulate that for the case when A and 0A commute,  

 

( ) ( ) ( ) ji
0

1n

0i

1n

0j

h
jih AAtt ∑ ∑

−

=

−

=

γ=Ψ ( ) ( ) i
0

j
1n

0i

1n

0j

h
ji AAt∑ ∑

−

=

−

=

γ=                                                      (9.a) 

             = ( ) ( ) ( ) ( ) ( ) τ−τ−τγτ−α+α ∑∑ ∑∫∑
−

=

++
−

=

−

=

−

=

dAAhhtAt
1n

0j

1i
0

jk
1n

0i

1n

0k

h
ki

t

0 j
k

k

1n

0k

1      

                                                                                                                                             (9.b) 

by using (5), since A and 0A commute, where ( ) [ ) +→∞γ R,0:h
ji ,  ( ) { }( ) { }( )1n01n0j,i −∪×−∪∈ and 

( ) k
1n

0k
k

tA Ate ∑
−

=

α= . If (9.a) holds then (9.b) holds as well after substituting (9.a) into he right-hand-side  of 

(5) under the integral symbol. From Cayley- Hamilton theorem, there are real scalars ii , σδ (i = 0,1,…, n-1) 

such that: 

 i
1n

0i
i

n AA ∑
−

=

δ=  ;     i
0

1n

0i
i

n
0 AA ∑

−

=

σ=                                                                                      (10) 

 Taking time-derivatives in (9.a) and using (10), one gets 

 

( ) ( ) ( ) ji
0

1n

0i

1n

0j

h
1j,ih AAtt ∑∑

−

=

−

=
−γ=Ψ &&  
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           ( ) ( ) ( ) j1i
0j

1n

0i

1n

0j

h
ji

1ji
0

1n

0i

1n

0j

h
ji AAhtAA +

−

=

−

=

+
−

=

−

=

δ−γ+γ= ∑ ∑∑∑  

             ( ) ( ) ( ) ji
0j

1n

0i

1n

0j

h
1n,i

ji
0

1n

0i

1n

1j

h
1j,i AAhtAA δ−γ+γ= ∑ ∑∑∑

−

=

−

=
−

−

=

−

=
−  

                ( ) ( ) ( ) ji
0i

1n

0i

1n

0j

h
j,1n

ji
0

1n

1i

1n

0j

h
j,1i AAhtAA σ−γ+γ+ ∑ ∑∑∑

−

=

−

=
−

−

=

−

=
−                                       (11) 

 
By equalizing the first and last identities in (11), one gets for ( ) { }( ) { }( )1n01n0j,i −∪×−∪∈  

 
( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 0AAhthtttt ji

0i
j,1i
j,1n

h
j,1ij

h
1n,i

h
1j,i

h
ji =σ−γ−−γ−δγ−γ−γ −

−−−−&                     (12) 

 
so that the scalar real functions in the expansion (9.a) exist , are linearly independent and subject to the 

differential constraints :   

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i

j,1i
j,1n

h
j,1ij

h
1n,i

h
1j,i

h
ji hthtttt σ−γ+−γ+δγ+γ=γ −

−−−−&                                         (13) 

 
for ( ) { }( ) { }( )1n01n0j,i −∪×−∪∈  subject to initial conditions ( ) ( ) 10h

00 =γ , ( ) ( ) 00h
ji =γ  for 

( ) { }( )( ) ( ) { }( )( )1n01n1n1n0j,i −∪×−∪−×−∪∈  implying in (9) that ( ) I0h =Ψ . As a result the 

expansion postulated in (9.a) holds with unique scalar functions ( ) ( )th
jiγ  satisfying (12). Now, from (10) into 

(9.b) the state-trajectory solution (3) under zero initial conditions becomes for a unity step input (see Lemma 1 

and Remark 1) : 

 

( ) ( ) ( ) =⎟
⎠
⎞

⎜
⎝
⎛ τττ−Ψ= ∫ bdtu,0,tx

t

0 h 1 ( ) ( ) ( ) bAAetbAt ji
0

hA
1n

0i

1n

0j

h
ji

k
1n

0k
k

−
−

=

−

=

−

=
∑ ∑∑ ω+β        (14.a) 

          

( ) ( ) ( ) ( )[ ] [ ] T1n1n
0

hA
0

hA1n
1n,1n001n0 bAAe,...,bAAe,bA,...,bt,....t,t,....,t −−−−−

−−− ωωββ=  

                                                                                                                                              (14.b) 

where ( ) ( ) ττ−α=β ∫ dAt:t kt

0 kk ; k = 0,1, …, n-1. Since the functions in the first brackets of the right-

hand-side of (14.b) are linearly independent and the system is positive, ( ) 0u,0,tx >>  for 0t >  (i.e.  it is 

not zero) iff for some ( ) { }( ) { }( ) { }( )1n01n01n0k,j,i −∪×−∪×−∪∈  depending on l  for each 

{ } 1n0 −∪∈l . The remaining of the proof follows in the same way by using the associated system.      

 
Remark 3: The assumption that A and 0A commute is a key one in postulating and then proving that the 

expansion of the evolution operator into a finite number of powers of both matrices is given by a set of 

linearly independent functions. Other alternative expansions into powers of matrix A or, even, arbitrary 
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matrices may be found but the linearly independent real functions become replaced by matrix functions so that 

Proposition 7 cannot be proved. Note that the conditions of excitability involve two terms. If the first one is 

not zero then the excitability holds independent of the delay and it only depends on the matrix A and the 

vector b. All the state components become positive at time += 0t . If the second condition holds then that 

property is achievable at time += ht  since hS  is a positive system so that A is a Metzler matrix , 0A 0 ≥ and 

0b > . Thus, the general condition of excitability also includes a stronger one of excitability independent of the 

delay.                                                                                                                                            

 

Proposition 8: Assume that A and 0A commute and that that hS  is externally positive. Then, hS  is 

externally excitable iff  0bAAecbAc ji
0

hATkT ≠+ −  

or, equivalently, iff  G
h

S  is externally excitable, that is iff 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0bAAecbAc GjG
iG

0
hATGGkGTG ≠+ −  or, equivalently, iff  

( ) ( ) ( ) ( ) ( ) 0bAeIAc G
1n

0i

iG
0

hAkGTG G
>+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −

=

− ∑  

Proof: The proof is very similar to that of  Proposition 7 and, hence, is omitted.                                   

 
Similar considerations as those given in the last part of Remark 3 for the (state) excitability either for the 

current delay or independent of the delay apply. In particular, if bAc
kT  is not zero then external 

excitability independent of the delay is guaranteed. If bAc
kT  is zero then external excitability is 

still guaranteed in finite time for the system hS under the current delay h and all +≥ ht . It is 

immediate to give a direct extension of excitability from Propositions 2- 3 for a positive multi-input system of 

input components ( )tu i ; mi∈∀ and control matrix ( ) mn
m21 b,,....b,bB ×

+∈= R with B > 0 as follows: 

 
Theorem 4. Assume that A is a Metzler matrix and B > 0. The following properties hold: 

(i) hS is excitable if for some finite 0t 0 ≥  and [ )Tt,tt 00 +∈∀  for some finite T > 0,  

0be i

m

nSj
j

tA >⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
∈

and ( ) ( ) 0hxAe i

m

nSj
kkj0

tA >⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−τ∑

∉

τ− , some [ )t,ht −∈τ , nnSi
r

⊂∈∀ ; nSnj \∈∀ .                     

 (ii) hS  is excitable if for some finite 0t 0 ≥  and some finite T > 0, 0be i

m

nSj

)G(tA
j

)G(
>⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
∈

, 

[ )Tt,tt 00 +∈∀  and 
( ) ( ) ( ) 0hxAe i

m

nSj

)G()G(
kj0

tA
k

G
>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−τ∑

∉

τ− , some [ )t,ht −∈τ ; nnSi
r

⊂∈∀ ; 

nSnj \∈∀ .    
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 (iii) hS  is excitable if ( ) 0AbA i

m

nj

)G(
kj0

m

nj

)G(
1n

0k

G
j

k
>⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑∑∑
∈∈

−

=

; ni ∈∀ .                                    

 (iv) hS  is excitable if ( ) 0AbA
m

nj

)G(

kj0

m

nj

)G(
1n

0k

G
j

k
>>⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑∑∑
∈∈

−

=

                                                    

 
Remark 4 : The proof follows directly from the fact that hS  is excitable if and only if ( )G

h
S  is excitable and 

that excitability is achievable by exciting each state component either from an input component through the 

corresponding component of the associate control vector or through excitation of some other state component 

which is coupled with it through the delayed dynamics. Also, Theorem 4 may be reformulated in terms of the 

associate system defined form its influence graph by substituting all matrices by the corresponding ones of the 

associate system leading to Theorem 4 (ii). Finally, since if hS  is positive then ( )GA  is both Metzler and 

positive then  another alternative equivalent of formulating Theorem 4 is 

( ) 0AbA i

m

nj

)G(
kj0

m

nj

)G(
1n

0k

G
j

k
>⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑∑∑
∈∈

−

=

; ni ∈∀ [Theorem 4 (iii)] or its equivalent form of Theorem 4 

(iv). Theorem 4 extends directly to output excitability by pre-multiplying all the given excitability conditions 

by the output vector 0c T > . 

 
IV. Transparency of Positive Systems 

To deal with the property of transparency, consider a p- dimensional output vector ( ) )t(xCty =  replacing the 

output equation of (1)  with ( ) npT
p21 c,...,c,cC ×

+∈= R  of columns n
ic +∈R  with C > 0: pi∈∀ . The 

delayed system and delay-free dynamic systems (2) together with this output are positive if A is a Metzler n-

matrix, nn
0A ×

+∈R , ( ) npT
p21 c,...,c,cC ×

+∈= R , nb +∈R (or each column of B in the multi-input case of 

Theorem 4 is nonnegative) . The property of transparency is associated with the unforced system so that it is 

independent of the positivity of the control vector o matrix. 

 

Definition 5: A positive system hS is said to be weakly transparent if and only if each unforced output response can 

be made positive in some finite time for any given ( ) n
0 0x +∈> R , +∈∀ Rt nonnegative input to the system at rest 

on [ )0,ht −∈ ; i.e. ( ) 0t =ϕ , [ )0,ht −∈∀ . hS  is excitable at  time ( ) +∈> R0T if and only if  ( ) 0Tx >>  under 

the above conditions. 

 
Definition 6: A positive system hS is said to be strongly transparent (or simply transparent) if and only if it is weakly 

transparent and, furthermore, each free output response can be made positive in some finite time for initial conditions 

( ) 00x 0 =ϕ= , ( ) ( ) n0t +∈>ϕ R , for all t on some subinterval of finite measure of [ )0,h− .                          
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Note that weak transparency only depend on point initial conditions while strong transparency applies to arbitrary 

interval initial conditions since strong transparency requires weak transparency the whole function of initial 

conditions considered might be positive on its definition domain. The following result related to transparency of hS  

is given: 

 
Theorem 5: Assume that hS is positive with nnA ×

+∈R . Then, the following items hold: 

(i) hS  is weakly transparent if ( ) ( ) 0eACe0C i
k

1n

0k

T
ji

k
h

1n

0k

T
j ≠=Ψ ∑∑

−

=

−

=

 , ni∈∀ , pj∈∀  where T
jC is the j-th row 

of C, pj∈∀  . If, furthermore, ( ) 0eAdC i0

h

0 h
T
j ≠⎟

⎠
⎞

⎜
⎝
⎛ ττΨ∫ [what holds if 0eAAC i0

k
1n

0k

T
j ≠∑

−

=

] ni∈∀ , pj∈∀  

then hS  is transparent. The condition is equivalent to ( ) 0AdC
p

1j
0

h

0 h
T
j >>⎟

⎠
⎞

⎜
⎝
⎛ ττΨ∑ ∫

=

. 

(ii) hS  is weakly transparent if  

( ) ( ) 0eAAAeACehC i

1k

0

1k
0

hAk
1n

0k

T
ji

k
h

1n

0k

T
j ≠⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=Ψ ∑∑∑

−

=

−−
−

=

+
−

= l

ll , ni∈∀ , pj∈∀ .  The condition is 

equivalent to ( ) ( ) 0AAAeACehC
1k

0

1k
0

hAk
1n

0k

T
ji

k
h

1n

0k

T
j

p

1j

>>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=Ψ ∑∑∑∑

−

=

−−
−

=

+
−

== l

ll  

If, furthermore, ( ) 0eAdC i0

h2

h h
T
j ≠⎟

⎠
⎞

⎜
⎝
⎛ ττΨ∫  [what holds if 0eAAAeAC i0

1i

0j

ji
0

jhAi
1n

0k

T
j ≠⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑∑

−

=

−
−

=

] 

ni∈∀ , pj∈∀   then hS  is transparent. Both conditions are , respectively, equivalent to 

( ) 0AdC 0

h2

h h
T
j

p

1j

>>⎟
⎠
⎞

⎜
⎝
⎛ ττΨ∫∑

=

and to 0AAAeAC 0

1i

0j

ji
0

jhAi
1n

0k

T
j

p

1j

>>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ ∑∑∑

−

=

−
−

==

. 

(iii) hS  is weakly transparent if and only if  

( ) ( ) ( ) 0eAeAAAdeAeIeACeh2C i0

1k

0

hA1k
0

jh2

h

hA
0

A
n

hA2k
1n

0k

T
ji

k
h

1n

0k

T
j ≠

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡ τ+=Ψ ∑∫∑∑

−

=

−−−ττ−
−

=

+
−

= l

l , ni∈∀ , 

pj∈∀  or, equivalently, 

( ) 0AeAAAdeAeIeAC 0

1k

0

hA1k
0

jh2

h

hA
0

A
n

hA2k
1n

0k

T
j

p

1j

>>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡ τ+ ∑∫∑∑

−

=

−−−ττ−
−

== l

l . hS  is (strongly) transparent if 

and only if, furthermore, ( ) 0eAdC i0

h3

h2 h
T
j ≠⎟

⎠
⎞

⎜
⎝
⎛ ττΨ∫ ; what holds if for all ni∈ and pj∈ : 

( ) 0eAeAAdeAeIeAC i0

1i

0j

hAj1i
0

jih2

h

hA
0

A
n

hA2i
1n

0i

1n

0k

T
j ≠

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡ τ+ ∑∫∑∑

−

=

−−−−ττ−
−

=

−

=

 

or, equivalently,  
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( ) 0AeAAdeAeIeAC 0

1i

0j

hAj1i
0

jih2

h

hA
0

A
n

hA2i
1n

0i

1n

0k

T
j

p

1j

>>
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡ τ+ ∑∫∑∑∑

−

=

−−−−ττ−
−

=

−

==

 

 (iv) Assume that hS is positive (without requiring nnA ×
+∈R  but only n

EMA∈ ). Thus, Properties (i)-(iii) hold if all 

the matrices of the parameterization of hS are replaced by the corresponding ones of the system G
hS associated with 

its influence graph in each one of the given conditions. 

 

Proof: (i) Since hS  is positive 0eAC i
k

1n

0k

T
j ≠∑

−

=

0eAC i
k

1n

0k

T
j >⇒∑

−

=

( ) 00y j >⇒ +  for any 0x 0 >  and any 

( ) nt +∈ϕ R  for [ )0,ht −∈  [even if ( ) 0t =ϕ for [ )0,ht −∈ ] for any pj∈  and then hS  is weakly transparent. If, 

furthermore, ( ) 0eAdC i0

h

0 h
T
j ≠⎟

⎠
⎞

⎜
⎝
⎛ ττΨ∫ ni∈∀ , pj∈∀  then ( ) 0ty j >  for some [ )h,0t∈  any 

( ) 0tn ≠γ=ϕ∋ ϕ
+R (and constant with no loss in generality) even if 0x 0 = . Such a condition is guaranteed from 

(3)-(5) if ( ) ( ) 0eAACeA0C i0
k

1n

0k

T
ji0

k
h

1n

0k

T
j ≠=Ψ ∑∑

−

=

−

=

; pj∈∀ . The weak transparency of Property (ii)  follows in 

the same way by noting that 
( ) ( ) 0eAAAeACehC i

1k

0

1k
0

hAk
1n

0k

T
ji

k
h

1n

0k

T
j ≠⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=Ψ ∑∑∑

−

=

−−
−

=

+
−

= l

ll
, 

ni∈∀ , pj∈∀  implies that ( ) 0hy >>+  for any 0x 0 >  and any ( ) nt +∈ϕ R  for [ )0,ht −∈ . If, furthermore, 

 ( ) 0eAdC i0

h2

h h
T
j ≠⎟

⎠
⎞

⎜
⎝
⎛ ττΨ∫ , guaranteed if ( ) ( ) 0eAAAeACeAhC i

1i

0j

ji
0

j
0

hAi
1n

0k

T
ji0

k
h

1n

0k

T
j ≠⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=Ψ ∑∑∑

−

=

−
−

=

+
−

=

; 

ni∈∀ , pj∈∀ via (28). Finally, the “sufficiency part” of weak transparency of Property (iii) holds since 

( ) ( ) 0eh2C i
k

h

1n

0k

T
j >>Ψ +

−

=
∑ ( ) 0h2y >>⇒ +  for any 0x 0 >  and any ( ) nt +∈ϕ R  for [ )0,ht −∈ . The additional 

sufficient condition for transparency is ( ) ( ) 0eAh2C i0
k

h

1n

0k

T
j >>Ψ +

−

=
∑ which holds if 

( ) 0eAeAAdeAeIeAC i0

1i

0j

hAj1i
0

jih2

h

hA
0

A
n

hA2i
1n

0i

1n

0k

T
j >>

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡ τ+ ∑∫∑∑

−

=

−−−−ττ−
−

=

−

=

; ni∈∀ , pj∈∀ , from 

(29), what implies that ( ) 0h2y >>+  for any 0x 0 >  and any function ( ) nt +∈ϕ R  for [ )0,ht −∈ . The 

“necessity parts “of (iii) for weak transparency and transparency follow directly by contradiction. If 

( ) ( ) 0eh2C i
k

h

1n

0k

T
j =Ψ +

−

=
∑ ( respectively, ( ) ( ) 0eAh2C i0

k
h

1n

0k

T
j =Ψ +

−

=
∑ ) for some ni∈ , pj∈  then any 0)t(y j =  

for all h2t≥  if 0)0(x
ii >γ= ϕ  is the only nonzero component of ( ) 0x0x =  and ( ) 0t =ϕ ; [ )0,ht −∈∀  

(respectively, if 0x)0(x 0==  and ( ) 0t
ii >γ=ϕ ϕ [ )0,ht −∈∀  is the only nonzero component of the function of 
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initial conditions) then hS  is not weakly transparent (respectively transparent). Property (iv) is a direct consequence 

of Properties (i)-(iii) since n
E

nn MA ∩∈ ×
+

Γ R  and Γ
hS  is positive if and only if hS is positive.                               

 
Note that the conditions for transparency for a single input- single output time – delay system (1) follow directly, as  a 

particular case, from the given one in this section by replacing the control and output matrices B and C by the 

corresponding control and output vectors b and Tc . Note from Theorem 5 that the transparency property is 

achievable through the combined delay- free and delayed dynamics of the unforced system. It is interesting to 

characterize a property which relates the properties of external excitability and strong transparency in the specific way 

that the output is positive in finite time either by the action of initial conditions or by that of the input. 

 
Definition 7: hS  is said to be almost externally excitable if  the output  vector is strictly positive in finite time  for 

some nonzero pair ( ) [ ] mnTT 0,h:u, ×
++ →×−ϕ RR  of initial conditions and input.                                        

 
Definition 7 and Theorems 4- 5 with Remark 4, together with the superposition property of the unforced and forced 

output trajectories to conform the whole output trajectory, yield directly the following ( non-necessary ) sufficiency-

type condition for almost external excitability: 

 
Theorem 6: If hS  is either externally excitable or strongly transparent then it is almost externally excitable.        

Explicit conditions for almost external excitability follow by summing up the corresponding left-hand- sides of the 

external excitability conditions (obtained by extending Theorem 4 with Remark 4) with those obtained for strong 

transparency from Theorem 5. 

 

Example 1: Consider the positive second-order system: 

( ) ( )tu)t(xtx 11 +=& ;   ( ) )ht(x)ht(xtx 212 −+−δ=&  

initially at rest on [ ]0,h−  with ( ) 0tu >γ=  for all +∈Rt and 0≥δ . The state trajectory is: 

 

( ) ( ) ( ) 01edetx tt

0

t
1 >−γ=γ⎟

⎠
⎞

⎜
⎝
⎛ τ= ∫ τ−  for t > 0 ; and   

 ( ) ( ) ( )( ) ( ) ( ) 0htUth1edxxtx ht
21

ht

h2 >−−+−δγ=ττ+τδ= −−

−∫  for t > h if 0≠δ  

 
and identically zero for +∈∀ Rt if 0=δ  and the system is initially at rest. As a result, excitability does not 

hold for any delay  if  0=δ  since the second state component initially at rest never takes strictly positive 

values. excitability is achieved after the first delay interval. If h = 0  then ( ) 00x 1 >+ ; ( ) 00x 2 >+ . For u ( t) 

being the Heaviside function, it is obvious that ( ) 0tx 1 >  for t > 0 and any delay 0h ≥ . It is also seen that if 

the output vector is 1e  (i.e. the output equalizes the first state component, then the system is externally 

excitable ( equivalent to the first state component being excitable)  since ( ) 0bAbc T >+  . However, since  

b+ Ab > 0 , but it is not >>0, the system is not excitable for infinite delay then ∞S  is not excitable. 0S  is 
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excitable since 0 bA Abb 0 >>++ . hS  is not excitable independent of the delay size since ∞S  is not 

excitable. These results follow directly from Propositions 2 and 4, However, the system is excitable for any h 

> 0 if 0>δ  . 

Now, consider the modified system: 

 
( ) ( )tu)t(xtx 11 +=& ;   ( ) ( ) )ht(x)t(xtxtx 121122 −δ+δ+=&  

initially at rest with 02,1 ≥δ . The first state variable is immediately excited (i.e. at += 0t ) by any constant 

positive control while the second one is excited immediately if 01 >δ , it is excited at += ht  if 01 =δ and 

02 >δ and it is never excited if 02,1 =δ . In that case, the system is not excitable.  Note that the first 

differential equation is unstable but if the first right-hand-side sign is changed to negative (i.e. , 

( ) ( )tu)t(xtx 11 +−=&  ) so that the equation becomes asymptotically stable then the system is still positive 

and excitable except if 02,1 =δ . If the first right-hand side term of the second equation is also negative then 

the whole system is still excitable although the system is not already positive. 

It is obvious that the system is also transparent if 0c>>  and 0i ≥δ ( )2i∈  and if  c > 0 with  0c 1 >  

, 0i ≥δ ( )2i∈  and 02,1 ≠δ  if    01,2 =δ since the output becomes strictly positive under zero input .   On the 

other hand, it is obvious that the system is also transparent by applying Theorem 5 iff 0c>>  since,  for zero 

input,  the output reaches positive values in finite time  0i ≥δ ( )2i∈  and if  c > 0 with  0c 1 >  

, 0i ≥δ ( )2i∈  and 02,1 ≠δ  if: 

     1)  0c0c 21 >∨>  0c i2 >δ∨  (for some 2i∈  what requires 0c 2 > ) when 0x 0i >  for 2i∈  

     2)   0c 2 >  for 0x 01 = and  0x 02 >  

     3)   0c 1 > 0c i2 >δ∨  (for some 2i∈  what requires 0c 2 > ) for 0x 01 > and  0x 02 =  

The three conditions hold simultaneously iff c >> 0 since transparency is defined for any positive point initial 

condition not necessarily being strictly positive.                                                

 

V. CONCLUSIONS 

This paper focused on the study of the fundamental properties of positivity (i.e. all the component of the state are 

nonnegative for all time for nonnegative controls and initial conditions), excitability (i.e. all  the components of the 

state of a positive system are strictly positive for some finite time for some admissible input under identically zero 

initial conditions) and transparency, namely,  all the output components are positive at some finite time for any 

nonzero admissible initial conditions and zero controls of linear time-invariant dynamic systems under delayed 

dynamics. Excitability/external excitability have been also discussed as related properties obtained separately from 

each input component. Results depending on and independent of the delay size have been obtained in the manuscript. 

Although only one single delay has been considered, the extensions to any finite set of point commensurate or 

incommensurate delays are direct by the only application of superposition related techniques.  
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ALPHA-STABLE PARADIGM IN FINANCIAL
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Abstract

Statistical models of financial data series and algorithms of forecast-
ing and investment are the topic of this research. The objects of research
are the historical data of financial securities, statistical models of stock
returns, parameter estimation methods, effects of self-similarity and mul-
tifractality, and algorithms of financial portfolio selection. The numerical
methods (MLE and robust) for parameter estimation of stable models
have been created and their efficiency were compared. Complex analy-
sis methods of testing stability hypotheses have been created and spe-
cial software was developed (nonparametric distribution fitting tests were
performed and homogeneity of aggregated and original series was tested;
theoretical and practical analysis of self-similarity and multifractality was
made). The passivity problem in emerging markets is solved by introduc-
ing the mixed-stable model. This model generalizes the stable financial
series modeling. 99% of the Baltic States series satisfy the mixed stable
model proposed. Analysis of stagnation periods in data series was made.
It has been shown that lengths of stagnation periods may be modeled by
the Hurwitz zeta law (insteed of geometrical). Since series of the lengths
of each run are not geometrically distributed, the state series must have
some internal dependence (Wald-Wolfowitz runs test corroborates this as-
sumption). The inner series dependence was tested by the Hoel criterion
on the order of the Markov chain. It has been concluded that there are no
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zero order Markov chain series or Bernoulli scheme series. A new mixed-
stable model with dependent states has been proposed and the formulas
for probabilities of calculating states (zeros and units) have been obtained.
Methods of statistical relationship measures (covariation and codifference)
between shares returns were studied and algorithms of significance were
introduced.

Keywords: codifference, covariation; mixed-stable model; portfolio selection;
stable law; pasivity and stagnation phenomenon; Hurwitz zeta distribution; fi-
nancial modeling; self-similarity; multifractal; infinite variance; Hurst exponent;
Anderson–Darling, Kolmogorov–Smirnov criteria

1 Introduction

Modeling and analysis of financial processes is an important and fast develop-
ing branch of computer science, applied mathematics, statistics, and economy.
Probabilistic-statistical models are widely applied in the analysis of investment
strategies. Adequate distributional fitting of empirical financial series has a
great influence on forecast and investment decisions. Real financial data are
often characterized by skewness, kurtosis, heavy tails, self-similarity and multi-
fractality. Stable models are proposed (in scientific literature, [7, 24, 28, 29, 30])
to model such behavior.

Since the middle of the last century, financial engineering has become very
popular among mathematicians and analysts. Stochastic methods were widely
applied in financial engineering. Gaussian models were the first to be applied,
but it has been noticed that they inadequately describe the behavior of finan-
cial series. Since the classical Gaussian models were taken with more and more
criticism and eventually have lost their positions, new models were proposed.
Stable models attracted special attention; however their adequacy in the real
market should be verified. Nowadays, they have become an extremely powerful
and versatile tool in financial modeling [28, 29]. There are two essential reasons
why the models with a stable paradigm (max-stable, geometric stable, α-stable,
symmetric stable and other) are applied to model financial processes. The first
one is that stable random variables (r.vs) justify the generalized central limit
theorem (CLT), which states that stable distributions are the only asymptotic
distributions for adequately scaled and centered sums of independent identi-
cally distributed random variables (i.i.d.r.vs). The second one is that they are
leptokurtotic and asymmetric. This property is illustrated in Figure 1, where
(a) and (c) are graphs of stable probability density functions (with additional
parameters) and (b) is the graph of the Gaussian probability density function,
which is also a special case of stable law.

Following to S.Z. Rachev [29], “the α-stable distribution offers a reasonable
improvement if not the best choice among the alternative distributions that have
been proposed in the literature over the past four decades”.

Each stable distribution Sα(σ, β, µ) has the stability index α that can be
treated as the main parameter, when we make an investment decision, β is the

2

RACHEV et al:ALPHA-STABLE PARADIGM IN FINANCIAL MARKETS642



Figure 1: Stable distributions are leptokurtotic and asymmetric (here ais a
stability parameter, b - asymmetry parameter, m – location parameter and s is
a scale parameter)

parameter of asymmetry, σ is that of scale, and µ is the parameter of position.
In models that use financial data, it is generally assumed that α ∈ (1; 2]. Stable
distributions only in few special cases have analytical distribution and density
functions. That is why they are often described by characteristic functions (CF).
Several statistical and robust procedures are examined in creating the system
for stock portfolio simulation and optimization. The problem of estimating the
parameters of stable distribution is usually severely hampered by the lack of
known closed form density functions for almost all stable distributions. Most of
the methods in mathematical statistics cannot be used in this case, since these
methods depend on an explicit form of the PDF. However, there are numerical
methods [26] that have been found useful in practice and are described below
in this paper.

Since fat tails and asymmetry are typical of stable random variables, they
better (than Gaussian) fit the empirical data distribution. Long ago in empir-
ical studies [23, 24] it was noted that returns of stocks (indexes, funds) were
badly fitted by the Gaussian law, while stable laws were one of the solutions in
creating mathematical models of stock returns. There arises a question, why
stable laws, but not any others are chosen in financial models. The answer is:
because the sum of n independent stable random variables has a stable and
only stable distribution, which is similar to the CLT for distributions with a
finite second moment (Gaussian). If we are speaking about hyperbolic distribu-
tions, so, in general, the Generalized Hyperbolic distribution does not have this
property, whereas the Normal-inverse Gaussian (NIG) has it [1]. In particular,
if Y1 and Y2 are independent normal inverse Gaussian random variables with
common parameters α and β but having different scale and location parameters
δ1,2 and µ1,2, respectively, then Y = Y1 + Y2 is NIG(α, β, δ1 + δ2,µ1 + µ2). So

3
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NIG fails against a stable random variable, because, in the stable case, only
the stability parameter α must be fixed and the others may be different, i.e.,
stable parameters are more flexible for portfolio construction of different asym-
metry. Another reason why stable distributions are selected from the list of
other laws is that they have heavier tails than the NIG and other distributions
from the generalized hyperbolic family (its tail behavior is often classified as
”semi-heavy”).

Foreign financial markets and their challenges were always of top interest
for stock brokers. The new investment opportunities emerged after expansion
of the European Union in 2004. Undiscovered markets of the Baltic States
and other countries of Central and Eastern Europe became very attractive for
investors. Unbelievable growth of the gross domestic product (GDP) 3-8% (the
average of the EU is 1.5–1.8% ) and high profitability overcame the risk. But a
deep analysis has not yet been made in those markets. For a long time it has
been known that financial series are the source of self-similar and multifractal
phenomena and numerous empirical studies support that [3, 7]. In this research,
the analysis of daily stock returns of the Baltic States and some world wide
known indexes is made. Financial series in the Baltic States bear two very
important features (compared with the markets of the USA and EU):

1. Series are rather short: 10–12 years (not exceeding 2000 data points), but
only recent 1000–1500 data points are relevant for the analysis;

2. A stagnation phenomenon is observed in empirical data (1993–2005).
Stagnation effects are characterized by an extremely strong passivity: at some
time periods stock prices do not change because there are no transactions at all.

To avoid the short series problem, the bootstrap method was used [14]. The
bootstrap is a method for estimating the distribution of an estimator or test
statistic by treating the data as if they were the population of interest. In a
word, the bootstrap method allows us to ”make” long enough series required in
multifractality and self-similarity analysis, from the short ones.

The second problem, called a “daily zero return” problem, is more serious
than it may seem. The Baltic States and other Central and Eastern Europe
countries have “young” financial markets and they are still developing (small
emerging markets), financial instruments are hardly realizable and therefore
they are often non-stationary, and any assumptions or conclusions may be in-
adequate when speaking about longtime series. Stagnation effects are often
observed in young markets [2, 4]. In such a case, the number of daily zero
returns can reach 89% . A new kind of model should be developed and ana-
lyzed, i.e., we have to include one more additional condition into the model –
the daily stock return is equal to zero with a certain (rather high) probability
p. Anyway, this problem may be solved by extending a continuous model to the
mixed one, where daily returns equal to zero are excluded from the series when
estimating the stability parameters. The series of non-zero returns are fitted
to the stable distribution. Stable parameters are estimated by the maximal
likelihood method. Goodness of fit is verified by the Anderson-Darling distribu-
tional adequacy test. The stability is also tested by the homogeneity test, based
on the fundamental property of stable laws. Unfortunately, because of strong
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passivity, continuous distribution fitting tests (Anderson-Darling, Kolmogorov-
Smirnov, etc) are hardly applicable. An improvement based on mixed distri-
butions is proposed and its adequacy in the Baltic States market is tested. In
this dissertation the Koutrouvelis goodness-of-fit, test based on the empirical
characteristic function and modified χ2 (Romanovski) test, was used.

When constructing a financial portfolio, it is essential to determine relation-
ships between different stock returns. In the classical economics and statistics
(the data have finite first and second moments), the relationship between ran-
dom variables (returns) is characterized by covariance or correlation. However
under the assumption of stability (sets of stock returns are modeled by sta-
ble laws), covariance and correlation (Pearson correlation coefficient) cannot
be applied, since the variance (if the index of stability α < 2) and the mean
(if the index of stability α < 1) do not exist. In this case, we can apply rank
correlation coefficients (ex. Spearman or Kendall [17, 18]) or the contingency co-
efficient. Under the assumption of stability, it is reasonable to apply generalized
covariance coefficients – covariation or codifference. Therefore the generalized
Markowitz problem is solved taking the generalized relationship measures (co-
variation, codifference [30]). It has been showed that the implementation of
codifference between different stocks greatly simplifies the construction of the
portfolio.

Typical characteristics of the passivity phenomenon are constancy periods
of stock prices. The dissertation deals with the distributional analysis of con-
stancy period lengths. Empirical study of 69 data series from the Baltic states
market and modeling experiments have showed that constancy period lengths
are distributed by the Hurwitz zeta distribution instead of geometrical distri-
bution. An improved mixed stable model with dependent states of stock price
returns is proposed.

2 The object of research

The objects of this research are the historical data of financial securities (stock,
equity, currency exchange rates, financial indices, etc.), statistical models of
stock returns, parameter estimation methods, effects of self-similarity and mul-
tifractality, and algorithms of financial portfolio selection.

In this paper, data series of the developed and emerging financial markets
are used as an example. The studied series represent a wide spectrum of stock
market. Information that is typically (finance.yahoo.com, www.omxgroup.com,
etc.) included into a financial database is [34]:

• Unique trade session number and
date of trade;

• Stock issuer;

• Par value;

• Stock price of last trade;

• Opening price;

• High - low price of trade;

• Average price;

5
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• Closure price;

• Price change % ;

• Supply – Demand;

• Number of Central Market (CM)
transactions;

• Volume;

• Maximal – Minimal price in 4
weeks;

• Maximal – Minimal price in 52
weeks;

• Other related market informa-
tion.

We use here only the closure price, because we will not analyze data as a
time series and its dependence. We analyzed the following r.vs

Xi =
Pi+1 − Pi

Pi

where P is a set of stock prices. While calculating such a variable, we transform
data (Figure 2) from price to return.

The length of series is very different starting from 1566 (6 years, NASDAQ)
to 29296 (107 years, DJTA). Also very different industries are chosen, to repre-
sent the whole market. The Baltic States (64 companies) series studied represent
a wide spectrum of the stock market (the whole Baltic Main list and Baltic I-
list). The length of series is very different, starting from 407 to 1544. The
average of data points is 1402. The number of zero daily stock returns differs
from 12% to 89% , on the average 52% .

Almost all the data series are strongly asymmetric (γ̂1), and the empirical
kurtosis (γ̂2) shows that density functions of the series are more peaked than
that of Gaussian. That is why we make an assumption that Gaussian models
are not applicable to these financial series.

3 The stable distributions and an overview of
their properties

We say [29, 30] that a r.v. X is distributed by the stable law and denote

Figure 2: Data transformation
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X
d=Sα(σ, β, µ) ,

where Sα is the probability density function, if a r.v. has the characteristic
function:

φ(t) =
{

exp
{
−σα · |t|α ·

(
1− iβsgn(t) tan(πα2 )

)
+ iµt

}
, if α 6= 1

exp
{
−σ · |t| ·

(
1 + iβsgn(t) 2

π · log |t|
)

+ iµt
}
, if α = 1 .

Each stable distribution is described by 4 parameters: the first one and most
important is the stability index α ∈(0;2], which is essential when characterizing
financial data. The others, respectively are: skewness β ∈ [−1, 1], a position
µ ∈ R, the parameter of scale σ > 0.

The probability density function is

p(x) =
1

2π

+∞∫
−∞

φ(t) · exp(−ixt)dt.

In the general case, this function cannot be expressed as elementary func-
tions. The infinite polynomial expressions of the density function are well
known, but it is not very useful for Maximal Likelihood estimation because
of infinite summation of its members, for error estimation in the tails, and so
on. We use an integral expression of the PDF in standard parameterization

p(x, α, β, µ, σ) =
1
πσ

∞∫
0

e−t
α

· cos
(
t ·
(
x− µ
σ

)
− βtα tan

(πα
2

))
dt.

It is important to note that Fourier integrals are not always convenient to
calculate PDF because the integrated function oscillates. That is why a new
Zolotarev formula is proposed which does not have this problem:

p(x, α, β, µ, σ) =


α| x−µσ |

1
α−1

2σ·|α−1|

1∫
−θ
Uα(ϕ, θ) exp

{
−
∣∣x−µ
σ

∣∣ a
α−1Uα(ϕ, θ)

}
dϕ, if x 6= µ

1
πσ · Γ

(
1 + 1

α

)
· cos

(
1
α arctan

(
β · tan

(
πα
2

)))
, if x = µ

Uα(ϕ, ϑ) =

(
sin
(
π
2α(ϕ+ ϑ)

)
cos
(
πϕ
2

) ) α
1−α

·

(
cos
(
π
2 ((α− 1)ϕ+ αϑ)

)
cos
(
πϕ
2

) )
,

where θ = arctan
(
β tan πα

2

)
2
απ · sgn(x− µ).

If µ=0 and σ=1, then p(x, α, β) = p(−x, α,−β).
A stable r.v. has a property, tat may be expressed in two equivalent forms:
If X1, X2,. . . , X n are independent r.vs. distributed by Sα(σ, β, µ), then

n∑
i=1

Xi will be distributed by Sα(σ · n1/a, β, µ · n).
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Figure 3: Logarithm of the probability density function S1.5(1, 0, 0)

If X1, X2,. . . , X n are independent r.vs. distributed by Sα(σ, β, µ), then

n∑
i=1

Xi
d=
{
n1/α ·X1 + µ · (n− n1/α), ifα 6= 1
n ·X1 + 2

π · σ · β · n lnn, ifα = 1
.

One of the most fundamental stable law statements is as follows.
Let X1, X2,. . . ,Xn be independent identically distributed random variables

and

ηn =
1
Bn

n∑
k=1

Xk +An,

where Bn¿0 and An are constants of scaling and centering. If Fn(x) is a cu-
mulative distribution function of r.v. ηn, then the asymptotic distribution of
functions Fn(x), as n→∞, may be stable and only stable. And vice versa: for
any stable distribution F (x), there exists a series of random variables, such that
Fn(x) converges to F (x), as n→∞.

The pth moment E|X|p =
∫∞
0
P (|X|p > y)dy of the random variable X

exists and is finite only if 0 < p < α. Otherwise, it does not exist.
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3.1 Stable processes

A stochastic process {X(t), t ∈ T} is stable if all its finite dimensional distribu-
tions are stable [30].

Let {X(t), t ∈ T} be a stochastic process. {X(t), t ∈ T} is α-stable if and

only if all linear combinations
d∑
k=1

bkX(tk) (here d ≥1 t1, t2, . . . , td ∈ T, b1, b2,. . . ,bd

– real) are α-stable. A stochastic process {X(t), t ∈ T} is called the (standard)
α-stable Levy motion if:

1. X(0) = 0 (almost surely);

2. {X(t): t ≥0} has independent increments;

3. X(i)−X(s) ∼ Sα((t− s)1/α, β, 0), for any 0 < s < t <∞ and 0 < α ≤ 2,
−1 < β < 1.

Note that the α-stable Levy motion has stationary increments. As α = 2,
we have the Brownian motion.

3.2 Parameter Estimation Methods

The problem of estimating the parameters of stable distribution is usually
severely hampered by the lack of known closed form density functions for al-
most all stable distributions [3]. Most of the methods in mathematical statistics
cannot be used in this case, since these methods depend on an explicit form of
the PDF. However, there are numerical methods that have been found useful in
practice and are described below. Given a sample x1,. . . ,xn from the stable law,
we will provide estimates α̂, β̂,µ̂, and σ̂of α, β, µ, and σ. Also, some empirical
methods were used:

• Method of Moments (empirical CF);

• Regression method.

3.2.1 Comparison of estimation methods

We simulated a sample of 10 thousand members with the parameters α = 1.75,
β = 0.5, µ = 0 and σ = 1. Afterwards we estimated the parameters of a stable
random variable with different estimators. All the methods are decent, but the
maximal likelihood estimator yields the best results. From the practical point-
of-view, MLM is the worst method, because it is very time-consuming. For large
sets (∼10.000 and more) we suggest using the regression (or moments) method
to estimate α, β and σ, then estimate µ by MLM (optimization only by µ).
As a starting point you should choose α, β, σ and sample mean, if α > 1 and
a median, otherwise, for µ. For short sets, use MLM with any starting points
(optimization by all 4 parameters).

9
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3.3 A mixed stable distribution model

Let Y ∼ B(1, p) and X ∼ Sa [2]. Let a mixed stable r. v. Z take the value
0 with probability 1 if Y = 0, else Y = 1 and Z = X. Then we can write the
distribution function of the mixed stable distribution as

P (Z < z) = P (Y = 0) · P (Z < z|Y = 0) + P (Y = 1) · P (Z < z|Y = 1)
= p · ε(z) + (1− p) · Sα(z) (1)

where ε(x) =
{

0, x ≤ 0
1, x > 0 , is the cumulative distribution function (CDF) of

the degenerate distribution. The PDF of the mixed-stable distribution is

f(x) = p · δ(x) + (1− p) · pα(x),

where δ(x) is the Dirac delta function.

3.3.1 Cumulative density, probability density and characteristic func-
tions of mixed distribution

For a given set of returns {x1, x2, · · · , xn}, let us construct a set of nonzero
values {x̄1, x̄2, · · · , x̄n−k}. The equity ZMP1L (Žemaitijos pienas), from Vilnius
stock exchange is given as an example (p=0,568). Then the likelihood function
is given by

L(x̄, θ, p) ∼ (1− p)kpn−k
n−k∏
i=1

pα(x̄i, θ) (2)

where θ is the vector of parameters (in the stable case, θ = (α, β, µ, σ)). The
function (1 − p)kpn−kis easily optimized: pmax = n−k

n . So we can write the
optimal CDF as

F (z) =
n− k
n

Sα(z, θmax) +
k

n
ε(z), (3)

where the vector θmax of parameters is estimated with nonzero returns.
The probability density function

p(z) =
n− k
n

pα(z, θmax) +
k

n
δ(z). (4)

Finally we can write down and plot (Figure 6) the characteristic function
(CF) of the mixed distribution.

φmix(t) =
n− k
n
· φ(t) +

k

n

The empirical characteristic function φ̂(t,X) = 1
n

n∑
j=1

eitXj .
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Figure 4: CDF of ZMP1L

Figure 5: PDF and a histogram of ZMP1L
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Figure 6: Empirical, Gaussian, Stable mixed, and Stable continuous CF of
ZMP1L

Table 1: Results of goodness-of-fit tests (accepted/rejected cases)
Fit
Method

Gaussian mixed Gaussian stable mixed stable

Modified χ2 0/64 7/64 0/64 52/64
Empirical CF 0/64 0/64 12/64 52/64
Anderson – Darling 0/64 - 0/64 -

3.3.2 Mixed model adequacy

There arises a problem when we are trying to test the adequacy hypothesis for
these models. Since we have a discontinuous distribution function, the classic
methods (Kolmogorov–Smirnov, Anderson-Darling) do not work for the contin-
uous distribution, and we have to choose a goodness–of–fit test based on the
empirical characteristic function [20, 21], or to trust a modified χ2 (Romanovski)
method [18]. The results (see Table 1) of both methods are similar (match in
48 cases).

The CF-based test of Brown and Saliu [6] is not so good (89% of all cases were
rejected, since they are developed for symmetric distributions). A new stability
test for asymmetric (skewed) alpha-stable distribution functions, based on the
characteristic function, should be developed, since the existing tests are not
reliable. Detailed results of stable-mixed model fitting are given in Table 2.

One can see that when the number of “zeros” increases, the mixed model
fits the empirical data better.

A mixed-stable model of returns distribution was proposed. Our results show
that this kind of distribution fits the empirical data better than any other. The
implementation of this model is hampered by the lack of goodness-of-fit tests
for discontinuous distributions. Since adequacy tests for continuous distribution

12
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Table 2: Mixed model fit dependence on the number of zeros in series
Number of
“zeros”

Number of
such series

Fits mixed model
(χ2, % )

Fits mixed model
(Empirical CF, % )

0,1-0,2 2 100 100
0,2-0,3 2 100 100
0,3-0,4 8 25,00 25,00
0,4-0,5 17 64,71 94,12
0,5-0,6 14 71,43 100
0,6-0,7 15 86,67 100
0,7-0,8 4 100 100
0,8-0,9 2 100 100

functions cannot be implemented, the tests, based on the empirical characteristic
function and a modified χ2 test, are used.

3.4 Modeling of stagnation intervals in emerging stock
markets

We analyzed the following r.vs Xi = 0 , if Pi+1 = Pi and Xi = 1 , if Pi+1 6= Pi ,
where {Pi} is a set of stock prices and {Xi} is set of discrete states, representing
behavior of stock price (change=1 or not=0).

3.4.1 Empirical study of lengths distribution of zero state runs

Theoretically if states are independent (Bernoulli scheme), then the series of
lengths of zero state runs should be distributed by geometrical law. However,
the results of empirical tests do not corroborate this assumption. We have fitted
the series distribution of lengths of zero state runs by discrete laws (generalized
logarithmic, generalized Poisson, Hurwitz zeta, generalized Hurwitz zeta, dis-
crete stable). The probability mass function of Hurwitz zeta law is

P (ξ = k) = νs,q (k + q)−s ,

where νs,q =
( ∞∑
i=0

(i+ q)−s
)−1

, k ∈ N ,q¿0, s¿1. The parameters of all discrete

distributions were estimated by the maximal likelihood method.

3.4.2 Transformation and distribution fitting

First of all, we will show how financial data from the Baltic States market are
transformed to subsets length of zero state series and then we will fit each of
the discrete distributions mentioned in above section. Carvalho, Angeja and
Navarro have showed that data in network engineering fit the discrete logarith-
mic distribution better than the geometrical law. So we intend to test whether
such a property is valid for financial data from the Baltic States market.

13
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Figure 7: Data transformation

Table 3: Distribution of zero state series
Signi-
ficance
level

Hurwitz
zeta

Generalized
Hurwitz
zeta

Generalized
logarithmic

Discrete
stable

Poissson Generalized
Poissson

Geomet-
rical

0.01 94.74% 96.49% 63.16% 26.32% 0.00% 1.75% 1.75%
0.025 91.23% 91.23% 50.88% 22.81% 0.00% 1.75% 1.75%
0.05 87.72% 84.21% 42.11% 17.54% 0.00% 1.75% 1.75%
0.1 80.70% 78.95% 31.58% 12.28% 0.00% 1.75% 1.75%

A set of zeros between two units is called a run. The first run is a set of
zeros before the first unit and the last one after the last unit. The length of
the run is equal to the number of zeros between two units. If there are no zeros
between two units, then such an empty set has zero length (Fig. 7).

To transform our data (from the state series, e.g., 010011101011100110)
the two following steps should be taken: (a) extract the zero state runs (e.g.,
0,00,0,0,000,0) from the states series; (b) calculate the length of each run (1,2,0,0,
1,1,0,0,3,0,1,). After the transformation, we estimated the parameters of each
discrete distribution mentioned above and tested the nonparametric χ2 distri-
bution fitting hypothesis.

As mentioned above, theoretically this series should be distributed by ge-
ometrical law, however, from Table 3 we can see that other laws fit our data
(57 series) much better. It means that zero state series from the Baltic States
market are better described by the Hurwitz zeta distribution.

This result allows us to assume that zero-unit states are not purely inde-
pendent. The Wald–Wolfowitz runs test [22] corroborates this assumption for
almost all series from the Baltic States market. The inner series dependence
was tested by the Hoel [15] criterion on the order of the Markov chain. It has
been concluded that there are no zero order series or Bernoulli scheme series.
95% of given series are 4th-order Markov chains with φ=0.1% significance level.
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Figure 8: Simulation of passive stable series

3.4.3 The mixed stable model with dependent states

Since the runs test rejects the randomness hypothesis of the sequence of states,
the probability of states (zeros and ones) depends on the position in the se-
quence. If the lengths of states sequences are distributed by Hurwitz zeta law,
then the probabilities of states are

P (Xn = 1|..., Xn−k−1 = 1, Xn−k = 0, ..., Xn−1 = 0︸ ︷︷ ︸
k

) =
pk

1−
k−1∑
j=0

pj

, n ∈ N, k ∈ Z0,

where pk are probabilities of Hurwitz zeta law; P (X0=1) = p0. It should be
noted that P (Xn = 0|...) = 1− P (Xn = 1|...), n, k ∈ Z0 .

With the probabilities of states and distribution of nonzero returns we can
generate sequences of stock returns (interchanging in the state sequence units
with a stable r.v.) see Fig. 8.

So, the mixed-stable modeling with dependent states is more advanced than
that with independent (Bernoulli) states, it requires parameter estimation by
both the stable (α, β, µ, σ) and Hurwitz zeta (q, s) law.

4 Analysis of stability

Examples of stability analysis can be found in the works of Rachev [5, 16, 31]
and Weron [35]. In the latter paper, Weron analyzed the DJIA index (from
1985-01-02 to 1992-11-30, 2000 data points in all). The stability analysis was
based on the Anderson–Darling criterion and by the weighted Kolmogorov cri-
terion (D‘Agostino), the parameters of stable distribution were estimated by
the regression method proposed by Koutrouvelis [19]. The author states that
DJIA characteristics perfectly correspond to stable distribution.

Almost all data series are strongly asymmetric (γ̂1), and the empirical kur-
tosis (γ̂2) shows that density functions of series are more peaked than Gaussian.
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Figure 9: Distribution of α and β (developed markets)

That is why we make an assumption that Gaussian models are not applicable
to these financial series. The distribution (Figure 9) of α and β estimates shows
that usually α is over 1.5 and for sure less than 2 (this case 1.8) for financial
data.

Now we will verify two hypotheses: the first one – H1
0 is our sample (with

empirical mean µ̂ and empirical variance σ̂) distributed by the Gaussian dis-
tribution. The second – H2

0 is our sample (with parameters α, β,µ and σ)
distributed by the stable distribution. Both hypotheses are examined by two
criteria: the Anderson–Darling (A-D) method and Kolmogorov–Smirnov (K-S)
method. The first criterion is more sensitive to the difference between empiri-
cal and theoretical distribution functions in far quantiles (tails), in contrast to
the K-S criterion that is more sensitive to the difference in the central part of
distribution.

The A-D criterion rejects the hypothesis of Gaussianity in all cases with the
confidence level of 5% . Hypotheses of stability fitting were rejected only in 15
cases out of 27, but the values of criteria, even in the rejected cases, are better
than that of the Gaussian distributions.

To prove the stability hypothesis, other researchers [13, 25] applied the
method of infinite variance, because non–Gaussian stable r.vs has infinite vari-
ance. The set of empirical variances S2

n
of the random variable X with infinite

variance diverges.
Let x1,. . .xn be a series of i.i.d.r.vs X. Let n ≤ N < ∞ and x̄n be the

mean of the first n observations, S2
n = 1

n

n∑
i=1

(xi − x̄n)2, 1 ≤ n ≤ N . If a
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Figure 10: Series of empirical variance of the MICROSOFT company (13-03-86
– 27-05-05)

distribution has finite variance, then there exists a finite constant c¡∞ such that
1
n

n∑
i=1

(xi − x̄n)2 → c (almost surely), as n→∞. And vice versa, if the series is

simulated by the non–Gaussian stable law, then the series S2
n

diverges. Fofack
[11] has applied this assumption to a series with finite variance (standard normal,
Gamma) and with infinite variance (Cauchy and totally skewed stable). In the
first case, the series of variances converged very fast and, in the second case,
the series of variances oscillated with a high frequency, as n → ∞. Fofack and
Nolan [12] applied this method in the analysis of distribution of Kenyan shilling
and Morocco dirham exchange rates in the black market. Their results allow us
to affirm that the exchange rates of those currencies in the black market change
with infinite variance, and even worse – the authors state that distributions of
parallel exchange rates of some other countries do not have the mean (α¡1 in
the stable case). We present, as an example, a graphical analysis of the variance
process of Microsoft corporation stock prices returns (Figure 10).

The columns in this graph show the variance at different time intervals, the
solid line shows the series of variances S2

n
. One can see that, as n increases,

i.e. n → ∞, the series of empirical variance S2
n

not only diverges, but also
oscillates with a high frequency. The same situation is for mostly all our data
sets presented.
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4.1 Stability by homogeneity of the data series and aggre-
gated series

The third method to verify the stability hypothesis is based on the fundamental
statement. Suppose we have an original financial series (returns or subtraction
of logarithms of stock prices) X1, X2,. . . ,Xn. Let us calculate the partial sums

Y1,Y2,. . . ,Y[n/d], where Yk =
k·d∑

i=(k−1)·d+1

Xi, k=1. . . [n/d], and d is the number

of sum components (freely chosen). The fundamental statement implies that
original and derivative series must be homogeneous. Homogeneity of original
and derivative (aggregated) sums was tested by the Smirnov and Anderson
criteria (ω2).

The accuracy of both methods was tested with generated sets, that were
distributed by the uniform R(−1,1), Gaussian N(0,1/

√
3), Cauchy C(0,1) and

stable S1.75(1, 0.25, 0) distributions. Partial sums were scaled, respectively, by√
d,
√
d, d, d1/1.75. The test was repeated for a 100 times. The results of this

modeling show that the Anderson criterion (with confidence levels 0.01, 0.05
and 0.1) is more precise than that of Smirnov with the additional confidence
level.

It should be noted that these criteria require large samples (of size no less
than 200), that is why the original sample must be large enough. The best
choice would be if one could satisfy the condition n/d > 200.

The same test was performed with real data of the developed and emerging
markets, but homogeneity was tested only by the Anderson criterion. Partial
series were calculated by summing d = 10 and 15 elements and scaling with
d1/α.

One may draw a conclusion from the fundamental statement that for inter-
national indexes ISPIX, AMEX, BP, FCHI, COCA, GDAXI, DJC, DJ, DJTA,
GE, GM, IBM, LMT, MCD, MER, MSFT, NIKE, PHILE, S&P and SONY the
hypothesis on stability is acceptable.

4.2 Self–similarity and multifractality

As mentioned before, for a long time it has been known that financial series are
not properly described by normal models [31, 32]. Due to that, there arises a
hypothesis of fractionallity or self–similarity. The Hurst indicator (or exponent)
is used to characterize fractionallity. The process with the Hurst index H = 1/2
corresponds to the Brownian motion, when variance increases at the rate of

√
t,

where t is the amount of time. Indeed, in real data this growth rate (Hurst
exponent) is higher. As 0.5 < H ≤ 1, the Hurst exponent implies a persistent
time series characterized by long memory effects, and when 0 ≤ H < 0.5, it
implies an anti-persistent time series that covers less distance than a random
process. Such behavior is observed in mean – reverting processes[32].

There are a number of different, in equivalent definitions of self-similarity
[33]. The standard one states that a continuous time process Y = {Y (t), t ∈ T}

18

RACHEV et al:ALPHA-STABLE PARADIGM IN FINANCIAL MARKETS658



Figure 11: Self-similar processes and their relation to Levy and Gaussian pro-
cesses

is self-similar, with the self-similarity parameter H(Hurst index), if it satisfies
the condition:

Y (t) d=a−HY (at), ∀t ∈ T, ∀a > 0, 0 ≤ H < 1, (5)

where the equality is in the sense of finite-dimensional distributions. The canon-
ical example of such a process is Fractional Brownian Motion (H = 1/2 ). Since
the process Y satisfying (5) can never be stationary, it is typically assumed to
have stationary increments [8].

Figure 11 shows that stable processes are the product of a class of self-similar
processes and that of Levy processes [9]. Suppose a Levy process X = {X(t), t ≥
0}. Then X is self-similar if and only if each X(t) is strictly stable. The index
α of stability and the exponent H of self-similarity satisfy α = 1/H.

Consider the aggregated series X(m), obtained by dividing a given series of
length N into blocks of length m and averaging the series over each block.

X(m)(k) =
1
m

km∑
i=(k−1)m+1

Xi,here k = 1, 2 . . . [N/m].

Self-similarity is often investigated not through the equality of finite-dimensional
distributions, but through the behavior of the absolute moments. Thus, consider
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AM (m)(q) = E

∣∣∣∣∣ 1
m

m∑
i=1

X(i)

∣∣∣∣∣
q

=
1
m

m∑
k=1

∣∣∣X(m)(k)− X̄
∣∣∣q

If X is self-similar, then AM (m)(q) is proportional to mβ(q), which means
that lnAM (m)(q) is linear in lnm for a fixed q:

lnAM (m)(q) = β(q) lnm+ C(q). (6)

In addition, the exponent β(q) is linear with respect to q. In fact, since
X(m)(i) d=m1−HX(i), we have

β(q) = q(H − 1) (7)

Thus, the definition of self-similarity is simply that the moments must be
proportional as in (6) and that β(q) satisfies (7).

This definition of a self-similar process given above can be generalized to that
of multifractal processes. A non-negative process X(t) is called multifractal
if the logarithms of the absolute moments scale linearly with the logarithm
of the aggregation level m. Multifractals are commonly constructed through
multiplicative cascades [10]. If a multifractal can take positive and negative
values, then it is referred to as a signed multifractal (the term “multiaffine”
is sometimes used instead of “signed multifractal”). The key point is that,
unlike self-similar processes, the scaling exponent β(q) in (6) is not required
to be linear in q. Thus, signed multifractal processes are a generalization of
self-similar processes. To discover whether a process is (signed) multifractal or
self-similar, it is not enough to examine the second moment properties. One
must analyze higher moments as well.

However this method is only graphical and linearity is only visual.
Finally, only 9 indices are self-similar: ISPX, AMEX, FCHI, GDAXI, DJC,

DJ, DJTA, NIKKEI, S&P.

Hurst exponent estimation. There are many methods to evaluate this in-
dex, but in literature the following are usually used [33]:

• Time-domain estimators,

• Frequency-domain/wavelet-domain estimators,

The methods: absolute value method (absolute moments), variance method
(aggregate variance), R/S method and variance of residuals are known as time
domain estimators. Estimators of this type are based on investigating the power
law relationship between a specific statistic of the series and the so-called ag-
gregation block of size m.

The following three methods and their modifications are usually presented
as time-domain estimators:

Periodogram method;
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Whittle;
Abry-Veitch (AV).
The methods of this type are based on the frequency properties of wavelets.
All Hurst exponent estimates were calculated using SELFIS software, which

is freeware and can be found on the web page http://www.cs.ucr.edu/∼tkarag.

4.3 Multifractality and self-similarity in the financial mar-
kets

In the case of The Baltic States and other Central and Eastern Europe financial
markets, the number of daily zero returns can reach 89% . Anyway, this prob-
lem may be solved by extending a continuous model to the mixed one, where
daily returns equal to zero are excluded from the series when estimating the
stability parameters. The series of non-zero returns are fitted to the stable dis-
tribution. Stable parameters are estimated by the maximal likelihood method.
Goodness-of-fit is verified by the Anderson-Darling distributional adequacy test.
The stability is also tested by the homogeneity test, based on the fundamen-
tal property of stable laws. The summation scheme is based on the bootstrap
method in order to get larger series. Multifractality and self-similarity are in-
vestigated through the behavior of the absolute moments. The Hurst analysis
has been made by the R-S method.

We have investigated 26 international financial series focusing on the issues
of stability, multifractality, and self-similarity. It has been established that
the hypothesis of stability was ultimately rejected in 14.81% cases, definitely
stable in 22.22% , and the rest are doubtful. It is important to note that, even
in the case of rejection, the value of the A-D criterion was much better for
stability testing than for the test of Gaussian distribution. No series was found
distributed by the Gaussian law.

The stable model parameters were estimated by the maximal likelihood
method. The stability indexes of stable series are concentrated between 1.65
and 1.8, which confirms the results of other authors that the stability param-
eter of financial data is over 1.5. Asymmetry parameters are scattered in the
area between -0.017 and 0.2.

The investigation of self-similarity has concluded that only 66.67% of the
series are multifractal and the other 33.33% concurrently are self-similar.

The Hurst analysis has showed that the methods of R/S and Variance of
Residuals are significant in the stability analysis. Following these two methods,
Hurst exponent estimates are in the interval H ∈ (0.5; 0.7), which means that
the stability index α ∈ (1.42; 2). If the Hurst exponent is calculated by the R/S
method, H ∈ (0.5; 0.6), then α ∈ (1.666; 2).

The stable models are suitable for financial engineering; however the analysis
has shown that not all (only 22% in our case) the series are stable, so the model
adequacy and other stability tests are necessary before model application. The
studied series represent a wide spectrum of stock market, however it should be
stressed that the research requires a further continuation: to extend the models.
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The analysis of stability in the Baltic States market has showed that 49
series of 64 are multifractal and 8 of them are also self-similar. If we removed
zero returns from the series, there would be 27 multifractal series, concurrently
9 of them are self-similar.

5 Relationship measures

In constructing a financial portfolio it is essential to determine relationships
between different stock returns [28]. However, under the assumption of stabil-
ity (sets of stock returns are modeled by stable laws), the classical relationship
measures (covariance, correlation) cannot be applied. Therefore the general-
ized Markowitz problem is solved by generalized relationship measures (covari-
ation, codifference). We show that implementation of the codifference between
different stocks greatly simplifies the construction of the portfolio. We have
constructed optimal portfolios of ten Baltic States stocks.

In the classical economic statistics (when the distributional law has two first
moments, i.e., mean and variance), relations between two random variables (re-
turns) are described by covariance or correlation. But if we assume that financial
data follow the stable law (empirical studies corroborate this assumption), co-
variance and especially correlation (Pearson) cannot be calculated. In case when
the first (α < 1) and the second (α < 2) moments do not exist, other correlation
(rank, e.g., Spearmen, Kendall, etc. [17]) and contingency coefficients are pro-
posed. However, in the portfolio selection problem Samorodnitsky and Taqqu
suggest better alternatives, even when mean and variance do not exist. They
have proposed alternative relation measures: covariation and codifference.

If X1 and X2 are two symmetric i.d. [30] (with α1 = α2 = α) stable random
variables, then the covariation is equal to

[X1, X2]α =
∫
S2

s1s
〈α−1〉
2 Γ (ds),

where α¿1 , y〈α〉 = |y|αsign (α) and Γ is a spectral measure of (X1, X2).
In such a parameterization, the scale parameter σαX1

of symmetric stable r.v.
can be calculated from [X1, X1]α = σαX1

. If α = 2 (Gaussian distribution), the
covariation is equal to half of the covariance [X1, X2]2 = 1

2Cov (X1, X2) and
[X1, X1]2 = σ2

X1
becomes equal to the variance of X1. However, the covariation

norm of X ∈ Sα (α¿1) can be calculated as ‖X‖ = ([X,X]α)1/α . If X ∼
Sα (σ, 0, 0) (SαS case), then the norm is equivalent to the scale parameter of the
stable distribution ‖X‖α = σ .

In general case [27] the codifference is defined through characteristic func-
tions

codX,Y = ln (E exp{i(X − Y ))})− ln (E exp{iX})− ln (E exp{−iY })
= ln

(
E exp{i(X−Y )}

E exp{iX}·E exp{−iY }

)
= ln

(
φX−Y
φX ·φ−Y

)
,
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or empirical characteristic functions

codX,Y = ln


n ·

n∑
j=1

ei(Xj−Yj)

n∑
j=1

eiXj ·
n∑
j=1

e−iYj


The codifference of two symmetric (SαS ) r.vs X and Y (0 < α ≤ 2) can be

expressed through the scale parameters

codX,Y = ‖X‖αα + ‖Y ‖αα − ‖X − Y ‖
α
α

If α = 2, then codX,Y = Cov (X,Y ) .
Samorodnitsky and Taqqu have showed that(

1− 2α−1
)

(‖X‖αα + ‖Y ‖αα) ≤ codX,Y ≤ ‖X‖αα + ‖Y ‖αα,

here 1 ≤ α ≤ 2, and, if we normalize (divide by ‖X‖αα + ‖Y ‖αα ), we will get a
generalized correlation coefficient.

In the general case [27], the following inequalities

(
1− 2α−1

)
ln
(

1
E exp{iX}·E exp{−iY }

)
≤ codX,Y

= ln
(

E exp{i(X − Y )}
E exp{iX} · E exp{−iY }

)
≤ ln

(
1

E exp{iX} · E exp{−iY }

)
are proper, and if we divide both sides by ln (E exp{iX} · E exp{−iY }), we

will get the following system of inequalities for the correlation coefficient

(
1− 2α−1

)
≤ corrX,Y =

ln
(
E exp{iX}·E exp{−iY }

E exp{i(X−Y )}

)
− ln (E exp{iX} · E exp{−iY })

≤ 1

If 0 < α ≤ 1 this correlation coefficient is only non-negative, and if α =
2, β = 0 , then −1 ≤ corrX,Y = ρX,Y ≤ 1 is equivalent to the Pearson
correlation coefficient.

5.1 Significance of codifference

The significance of the Pearson correlation coefficient is tested using Fisher
statistics, and that of Spearmen and Kendall coefficients, respectively, are tested
using Student and Gaussian distributions. But likely that there are no codiffer-
ence significance tests created. In such a case, we use the bootstrap method (one
of Monte-Carlo style methods). The following algorithm to test the codifference
significance is proposed:
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1. Estimate stable parameters (α, β, σ and µ) and stagnation probability p
of all equity returns series;

2. Estimate relation matrix of measure ρ (covariation or codifference) for
every pair of equities series;

3. Test the significance of each ρij by the bootstrap method:

i. generate a pair of two ith and jth mixed-stable (with estimated pa-
rameters) series, and proceed to the next step;

ii. calculate the kth relation measure ρkij , between the ith and jth series;

iii. repeat (i) and (ii) steps for k = 1, ..., N (for example, 10000) times;

iv. construct ordered series of estimates ρ(k)
ij ;

v. if ρ([N ·0.025])
ij ≤ ρij ≤ ρ

([N ·0.975])
ij , then the significance of ρij is rejected

with the confidence level 0.05, i.e., it is assumed that ρij = 0 .

vi. repeat 3i–3v steps for each pair of equities i and j.

Covariation and codifference are calculated for ten equities with the longest
series (MNF1L, LDJ1L, VNF1R, NRM1T, MKO1T, GZE1R, ETLAT, VNG1L,
SNG1L, TEO1L). The correlation tables are presented for the series of equalized
length 1427.

However, in portfolio the theory covariance (or equivalent measure) is more
useful, since in that case, there is no need to know the variance. The generalized
covariance tables are calculated for previously mentioned series.

6 Conclusions

Parameter estimation methods and software has been developed for models
with asymmetric stable distributions. The efficiency of estimation methods was
tested by simulating the series. Empirical methods are more effective in time,
but the maximal likelihood method (MLM) is more effective (for real data) in
the sense of accuracy (Anderson-Darling goodness-of-fit test corroborate that).
It should be noted that MLM is more sensitive to changes of the parameters α
and σ.

Empirical parameters of the Baltic States series and developed market series
(respectively 64 and 27 series) have been estimated. Most of the series are very
asymmetric (0.1 < |γ1| < 30), and the empirical skewness (γ2 6= 0) suggests
that the probability density function of the series is more peaked and exhibits
fatter tails than the Gaussian one. The normality hypothesis is rejected by the
Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit tests.

Distribution of the stability parameter α and asymmetry parameter β in the
series of developed markets shows, that usually 1.5 < α < 2 and the parameter
β is small. Distribution of the stability parameter in the series of the Baltic
States market (full series) shows that usually α is lower than 1.5 and close to 1.
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But if we remove the zero returns from the series, the parameter α is scattered
near 1.5, while the parameter β is small usually, but positive.

An experimental test of the series homogeneity shows that for the stable
series with asymmetry, the Anderson test is more powerful than the Smirnov
one. The Anderson test for 27 series from the developed markets shows that 21
series are homogeneous with their aggregated series and only 2 series (64 at all)
from the Baltic States market (and only when the zero returns are removed)
are homogeneous with their aggregate series (they do not obey the fundamental
stable theorem).

The analysis of self-similarity and multifractality, by the absolute moments
method, indicates that all 27 series (from the developed markets) are multifrac-
tal and concurrently 9 of them are self-similar. On the other hand, 49 series
(from the Baltic States market) are multifractal and 8 of them are also self-
similar, but if we remove the zero returns from the series, then remain only 27
multifractal and 9 self-similar series. This is because the series becomes too
short for multifractality analysis.

A mixed stable model of returns distribution in emerging markets has been
proposed. We introduced the probability density, cumulative density, and the
characteristic functions. Empirical results show that this kind of distribution
fits the empirical data better than any other. The Baltic States equity lists are
given as an example.

The implementation of the mixed-stable model is hampered by the lack of
goodness-of-fit tests for discontinuous distributions. Since adequacy tests for
continuous distribution functions cannot be implemented, the tests based on
the empirical characteristic function (Koutrouvelis) as well as modified χ2, are
used. The experimental tests have showed that, if the stability parameter α
and the number of zero returns are increasing, then the validity of the tests is
also increasing. 99% of the Baltic States series satisfy the mixed stable model
proposed (by the Koutrouvelis test).

The statistical analysis of the Baltic States equity stagnation intervals has
been made. Empirical studies showed that the length series of the state runs
of financial data in emerging markets are better described by the Hurwitz zeta
distribution, rather than by geometrical. Since series of the lengths of each
run are not geometrically distributed, the state series must have some internal
dependence (Wald-Wolfowitz runs test corroborates this assumption). A new
mixed-stable model with dependent states has been proposed and the formu-
las for probabilities of calculating states (zeros and units) have been obtained.
Adequacy tests of this model are hampered by inner series dependence.

The inner series dependence was tested by the Hoel [15] criterion on the
order of the Markov chain. It has been concluded that there are no zero order
series or Bernoulli scheme series. 95% of given series are 4th-order Markov
chains with φ = 0.1% significance level.

When constructing an optimal portfolio, it is essential to determine pos-
sible relationships between different stock returns. However, under the as-
sumption of stability (stock returns are modeled by mixed-stable laws) tra-
ditional relationship measures (covariance, correlation) cannot be applied, since
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(1, 27 < α < 1, 78). In such a case, covariation (for asymmetric r.v.) and cod-
ifference are offered. The significance of these measures can be tested by the
bootstrap method.

A wide spectrum of financial portfolio construction methods is known, but in
the case of series stability it is suggested to use a generalized Markowitz model.
The problem is solved by the generalized relationship measures (covariation,
codifference). Portfolio construction strategies with and without the codiffer-
ence coefficient matrix are presented. It has been shown that the codifference
application considerably simplifies the construction of the optimal portfolio.
Optimal stock portfolios (with 10 most realizable Baltic States stocks) with and
without the codifference coefficient matrix are constructed.
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Abstract

In this paper, we extended the LPR method to solve the partial differ-

ential equations. Numerical experiments are presented to demonstrate the

utility and the efficiency of the proposed computational procedure.

Keywords: Local polynomial regression(LPR); Convection diffusion;Heat equa-

tion.

1. Introduction

Consider the first problem is convection diffusion equation

∂u
∂t

+ α∂u
∂x

= β ∂2u
∂x2 , 0 ≤ x ≤ 1, t ≥ 0 , (1)

and the second problem is heat equation

∂u
∂t

=
∂2u
∂x2 + ν(x) , 0 ≤ x ≤ 1, t ≥ 0 , (2)

To Eq.(1) and Eq.(2) we attach the initial conditions and boundary condition

u(x, 0) = f(x), 0 ≤ x ≤ 1 , (3)
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u(0, t) = g0(t), t ≥ 0 , (4)

u(1, t) = g1(t), t ≥ 0. (5)

In our previous work[1,2], solution of fifth order boundary value problems

and integral equations by using local polynomial regression. In the present

paper the local polynomial regression(LPR) is used to developed a technique

for solving partial differential equations. We show that the method to achive

the desired accuracy.

2. Local polynomial regression

Suppose that the (p + 1)th derivative of y(x) at point x0 exists. We approx-

imate the unknown regression function y(x) locally at x0 by a polynomial

of order p. The theoretical justification is that we can approximate, in a

neighborhood of x0 , y(x)using a Taylor expansion

y(x) ≈ ∑p
k=0 βk(xi − x0)

k
(6)

where

βk =

y(k)(x0)
k!

(7)

This polynomial, used to approximate the unknown function locally at x0, is

obtained by solving a locally weighted least squares regression problem, i.e.

by minimizing

∑n
i=1

{

Yi −∑p
k=0 βk(xi − x0)

k
}2

K(
xi−x0

h
) (8)

where h is a parameter called bandwidth (also called a smoothing parame-

ter), K is a weighting function called the kernel function. Let βk, k = 0, 1, ...p
be the solution of the minimizing problem. From Eqs.(4), it is clear that j!βj

is an estimator for the derivatives y(j)
(x0), j = 0, 1, ...p. Thus, the estima-

tion obtained, of both the regression function and its derivatives, is local,

and therefore, the process must be repeated at all points where an esti-

mation is of interest. Let us see the analytical expression of the solution

βk, k = 0, 1, ...p of the locally weighted least squares regression problem. Let

X be the nx(p + 1) matrix

2
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X=

















1 (x1 − x0) ... (x1 − x0)
p

. . . .

. . . .

. . . .
1 (xn − x0) ... (xn − x0)

p

















(9)

and the vectors Y = (Y1, Y2, ..., Yn)
′
and β = (β0, β1, ...βp)

′
. Finally, let W

denote the nxn diagonal matrix of weights W = diag{Kh(xi − x0)}. Then,

the solution is

β = (XT WX)
−1XT WY. (10)

The selection of K does not influence the results much. We selected the

quartic kernel as follows

K(u) =

{

15
16

(1 − u2
)
2 if |u| ≤ 1

0 otherwise

}

(11)

The fundemental idea of this methodology appears in [3].

3. LPR solutions for PDE

Difference schemes for the first problem considered as following:

ui+1−ui

∆t
+ α2

∂u
∂x

= α1
∂2u
∂x2 (12)

where ∆t = k

−kα1u
′′
i+1 + kα2u

′
i+1 + ui+1 = ui (13)

and the initial conditions are given in (3)-(4)

u(x, 0) = f(x) = u0, (14)

Subsituting (14) in (13) then is obtained as follows

3
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t = 0 + ∆t −kα1u
′′
1 + kα2u

′
1 + u1 = u0 (15)

t = 0 + 2∆t −kα1u
′′
2 + kα2u

′
2 + u2 = u1 (16)

. .

. .

. .

t = 0 + n∆t −kα1u
′′
n + kα2u

′
n + un = un−1 (17)

In this section, the LPR method for solving Eqs.(1) is outlined. Let Eqs.(6)

be an approximate solution of Eqs.(1).

y(t) =

∑p
j=0 βj(xi − x0)

j
(18)

where

x1 = a, x2, . . . , xn = b

and it is required that the approximate solution(18) satisfies the PDEs at

the pointsx = xi. Putting (18) in (15), it follows that

−kα1(
∑p

j=0 βj(x − x0)
j
)

′′
+ kα2(

∑p
j=0 βj(x − x0)

j
)

′
+

(

∑p
j=0 βj(x − x0)

j
) = u0 a ≤ x ≤ b (19)

This leads to the system

i = 1, a1,j = βj(x1 − x0)
j, j = 0, m y(i) = g0(k) (20a)

i = 2, n − 1, bi,j = −kα1j(j − 1)βj(x1 − x0)
j−2, j = 2, m (20b)

i = 2, n − 1, ci,j = kα2jβj(x1 − x0)
j−1, j = 1, m (20c)

i = 2, n − 1, di,j = βj(x1 − x0)
j, j = 0, m (20d)

4
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y(i) = f(xi) (20e)

i = n, an,j = βj(xn − x0)
j, j = 0, m y(i) = g1(k) (20f)

Then, the matrix form(9) can be written as follows by using (20a-20f).

X=











a1,0 a1,1 ... .... ... a1,m
d2,0 d2,1 + c2,1 d2,2 + c2,2 + b2,2 .... ... d2,m + c2,m + b2,m
d3,0 d3,1 + c3,1 d3,2 + c3,2 + b3,2 .... ... d3,m + c3,m + b3,m

. . . . . .

. . . . . .

. . . . . .
dn−1,0 dn−1,1 + cn−1,1 dn−1,2 + cn−1,2 + bn−1,2 .... ... dn−1,m + cn−1,m + bn−1,m

an,0 an,1 ... .... ... an,m











(21)

Y=

















y(1)

.

.

.
y(n)

















Putting (21) in (10), then estimated set of coefficients βi are obtained by

solving matrix system. Therefore, approximate solution (18) is obtained.

Same procedure can be used for Eq(2).(See example2)

4. Numerical results

In this section, the method discussed in section 2 and 3 is tested on the fol-

lowing problems from the literature[4,5], and absolute error in the analytical

solutions are calculated. All computations were carried out using MATLAB

6.5.

Example 1.

Consider the following convection-diffusion equation with the initial con-

dition

∂u
∂t

+ 0.1∂u
∂x

= 0.02
∂2u
∂x2 , 0 ≤ x ≤ 1, t ≥ 0 , (22)

u(x, 0) = e1.17712434446770x , 0 ≤ x ≤ 1 , (23)

and boundary conditions
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u(0, t) = e−0.09t, t ≥ 0 , (24)

u(1, t) = e1.17712434446770−0.09t , t ≥ 0, (25)

The exact solution of this problem is u(t, x) = e1.17712434446770x−0.09t
. The ob-

served maximum absolute errors for various values of k and for a fixed value

of n=21 are given in Table 1. The numerical results are illustrated in Figure 1.

Example 2.

Consider the following problem,

ut = uxx + 4π2sin(2πx) , 0 < x < 1, 0 < t ≤ 1 , (26)

u(0, t) = u(1, t) = 1 , t ≥ 0 , (27)

u(x, 0) = 1 . (28)

The exact solution of this problem is u(t, x) = 1+(1−e−4π2t
)sin(2πx) . The

observed maximum absolute errors for various values of k and for a fixed

value of n=21 are given in Table 2. The numerical results are illustrated in

Figure 2.

Table 1: The maximum absolute errors for problem 1

n,m,h k = 0.1 k = 0.01 k = 0.001 k = 0.0001

21,7,1/10 0.0011383 1.1504286e-004 1.1829922e-005 9.0270108e-006

Table 2: The maximum absolute errors for problem 2

n,m,h k = 0.1 k = 0.01 k = 0.001 k = 0.0001

21,9,1/10 0.1825205 0.0623807 0.0069566 6.9589135e-004

6

CAGLAR et al:NUMERICAL SOLUTION OF PDE674



5. Conclusions

In this study, we have introduced a new method to solve the partial differen-

tial equations. The LPR has been tested on examples and have tabulated the

numerical results. We have shown that the method is very fast convergent

for solving partial differential equations. The numerical results showed that

the present method approximates the exact solution very well. The method

can be also extended to the different bandwidth and kernel functions.
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Figure 1: Results for n = 21, m = 7, k = 0.0001
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Figure 2: Results for n = 21, m = 9, k = 0.0001
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Abstract

We show that the solutions of the wave equation with potential, Neu-
mann boundary conditions and a locally distributed nonlinear damping,
decay to zero, with an algebraic rate, that is, the total energy E(t) satisfies
for t ≥ 0: E(t) ≤ C(1 + t)−γ , where C is a positive constant depending
on E(0) and γ > 0 is a constant. We assume geometrical conditions as
in P. Martinez [7]. In the one/two-dimensional cases, we obtain exponen-
tial decay rate when the nonlinear dissipation behaves linearly close to
the origin. The same result holds in higher dimension if the dissipative
localized term behaves linearly.

Keywords: wave equation, Neumann boundary condition, non-linear damp-
ing, localized damping, decay rate.
2000Mathematics Subject Classification: 35B35, 35B40, 35LT0

1 Introduction

We study the stabilization of the total energy for the initial boundary value
problem associated to the wave equation with potential, a nonlinear dissipative
term and Neumann boundary condition given by





utt −∆u + a(x)q(x)u + ρ(x, ut) = 0, x ∈ Ω, t > 0
u(x, 0) = u0(x) , x ∈ Ω
ut(x, 0) = u1(x) , x ∈ Ω
∂u
∂η (x, t) = 0 , x ∈ ∂Ω, t ≥ 0

(1)

1
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where η = η(x) denotes the unit exterior normal vector at x ∈ Γ = ∂Ω and Ω
is an open bounded set on RN with smooth boundary. The functions u0 and
u1 are the initial conditions and the dissipation is distributed by the function
ρ = ρ(x, s) : Ω̄ × R → R which is localized on the domain by a continuous
function

a(x) : Ω̄ → R+ , a ∈ L∞(Ω)

with a(x) ≥ a0 > 0 on ω, ω ⊂ Ω̄, a neighborhood of part of the boundary
of Ω. The function q(x) : Ω̄ → R+ is continuous. We assume that a(x)q(x)
is not identically zero. Moreover, we consider the following hypotheses on the
dissipative function ρ(x, s)
I) ρ(x, s)s ≥ 0, s ∈ R, x ∈ Ω;
II) ρ and ∂ρ

∂s are continuous functions in Ω× R;
III) There exist constants K1, K2,K3, K4 > 0 and numbers:
r, p ∈ R, −1 < r < ∞ and −1 < p ≤ 2/(N − 2) if N ≥ 3 or −1 < p < ∞ if
N = 1 or N = 2
such that:

K1 a(x) |s|r+1 ≤ |ρ(x, s)| ≤ K2 a(x) [ |s|r+1 + |s| ], s ∈ R, |s| ≤ 1, x ∈ Ω

K3 a(x) |s|p+1 ≤ |ρ(x, s)| ≤ K4 a(x) [ |s|p+1 + |s| ], s ∈ R, |s| > 1, x ∈ Ω

IV)
∂ρ

∂s
(x, s) ≥ 0, s ∈ R, x ∈ Ω.

Regarding the stabilization of the wave equation in bounded domains with
localized dissipation and Dirichlet boundary condition we mention Zuazua [13]
which studied the semilinear wave equation with a linear damping. Nakao [9]
studied the wave equation with a localized nonlinear damping. In [10] Nakao
studied attractors for a locally damped wave equation. The stabilization of the
incompressible wave equation with localized nonlinear damping is considered in
Oliveira-Charão [8]. The stabilization of more general systems with Dirichlet
boundary condition appear in [2] which studied the system of elasticity with
localized nonlinear damping in bounded domains.

In P. Martinez [7] is studied the stabilization of the energy for the wave
equation with localized linear internal damping and homogeneous Neumann
boundary condition (the system (1) with ρ(·, s) linear) and obtained exponential
decay. In this work we prove the uniform stabilization of the total energy with
explicit decay rates to the the problem (1) with the function ρ(·, s) nonlinear.
When the localized dissipative term is linear for any dimension or linear near
the origin in dimension n = 1, 2 we obtain exponential decay of the energy.
Therefore, the result by Martinez [7] is included in this work. The method we
use are energy identities associated to multipliers adapted to the geometry of the
domain that come from control theory and estimates that involve differences of
energy in order to use the Nakao’s Lemma as in [9]. Thus, the Nakao’s method
is also effective to problems with Neumann condition. However, instead of the
unique continuation principle used in Nakao [9], we impose the same geometrical
conditions on the domain as in Martinez [7]. Due to this fact the constants

2
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of stabilization can be estimated explicitly. This fact does not occurs when
the stabilization is obtained using the unique continuation principle (see Nakao
[9]). In general, problems with Neumann boundary conditions requires a more
delicate treatment. Since we can not use the Poincaré inequality for problems
without Dirichlet boundary condition on the solutions we have also included, as
in [7], a potential term in the system to overcome this difficulty. However, we
note that it is only necessary to localize this term in a part of the region where
the dissipation is effective.

In [3] Cavalcanti studied the exact boundary controllability for the linear
wave equation with time-dependent coefficients and the control action of Neu-
mann type. Also, the boundary stabilization for the free wave equation in a
bounded domain with a linear dissipative mixed Dirichlet-Neumamm bound-
ary condition is studied by Phung [11] and polynomial decay rate is obtained.
More recently, Laziecka-Toundykov [6] studied the wave equation with non-
linear localized damping, nonlinear source term and mixed Dirichlet-Neumann
boundary conditions. In that paper they do not include the case with Neumann
boundary condition on the total boundary of the domain. Moreover, they also
assume an extra condition that the norms of ut and ∇u are bounded in Lp1 and
Lp2 , respectively. For hyperbolic linear systems, which include the wave equa-
tion, with discontinuous coefficients Gómes-Kapitovov [5] proved the uniform
exponential stabilization and exact boundary controllability with Dirichlet and
mixed Dirichlet-Neumann dissipative conditions, on two different parts of the
boundary with empty intersection.

With respect to the wave equation in an exterior domain with Neumann
boundary condition, we cite Aloui [1] which proved in odd dimension under a
microlocal geometrical condition, the exponential decay of the local energy for
the linear wave equation with Neumann boundary damping. For more gen-
eral problems in exterior domains or in Rn we mention Charão-Ikehata [4] and
references therein.

2 Geometrical Hypotheses

Let Ω be a bounded domain in RN . We assume that Ω satisfies the following
geometric conditions which appear in Martinez [7].

1. The set Ω is of class C2.

2. There exists positive constant δ, subdomains Ωj ⊂ Ω, 1 ≤ j ≤ J , J ∈
N, J > 0, with Lipchitz boundaries ∂Ωj , associated functions φj ∈ C2(Ωj)
and constants µj such that

∆φj − µj ≥ δ in Ωj

2λ1,j −∆φj + µj ≥ δ in Ωj (2)

where λ1,j(x) is the smallest eigenvalue of the Jacobian matrix D2φj(x).

3
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3. For i 6= j the sets Ωi and Ωj are disjoint.

Given 1 ≤ j ≤ J , we consider the sets,

Γj(φj) = {x ∈ ∂Ωj :
∂φj

∂ηj
6= 0},

where ηj is the outward normal at x ∈ ∂Ωj .
Moreover, given a set Q ⊂ RN , we denote Vε(Q) = {x ∈ Rn : d(x,Q) < ε}

and assume that there exists ε > 0 such that

Ω ∩ Vε[∪J
j=1Γj(φj) ∪ (Ω\ ∪J

j=1 Ωj)] ⊂ ω (3)

where ω is defined in the introduction and it is the set where the dissipation is
effective.

Examples of such domains appear in Martinez [7].

3 Main results

The energy of a solution u(x, t) of equation (1) at time t is defined as

E(t) =
1
2

∫

Ω

[|ut|2 + |∇u|2 + aqu2]dx.

Lemma 3.1. The energy functional verifies

E(T )− E(S) =
∫ T

S

∫

Ω

utρ(x, ut)dxdt. (4)

for 0 ≤ S ≤ T .

The proof of this lemma is obtained multiplying the equation (1) by ut and
integrate on Ω× [S, T ].

So, the energy E(t) is a non–increasing function of t, due to hypothesis (I)
on the function ρ(x, s). Because of this, it is possible to show that E(t) decays
to zero at an uniform rate.

Also, any solution with initial data u(·, 0) ∈ H1 and ut(·, 0) ∈ L2(Ω) will
satisfy u ∈ L∞(R+,H1) and ut ∈ L∞(R+, L2), where

H1 = {u ∈ H1(Ω) /
∂u

∂η
|∂Ω = 0 }.

Our main result requires more regularity and some uniform bounds on the
solution u(x, t). To this end, we consider the space

V = {v ∈ H2(Ω) /
∂v

∂η
|∂Ω = 0}

4
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and, throughout all this work, we assume that the initial data u(x, 0) = u0(x) ∈
V and ut(x, 0) = u1(x) ∈ H1. Then, using the hypotheses on the function ρ(x, s)
and, for example, the Galerkin method or semigroups theory it is possible to
obtain the existence of a unique solution u(x, t), satisfying u ∈ L∞(R+, V ) and
ut ∈ L∞(R+,H1).

The main result of this paper is given by the following theorem.

Theorem 3.1. The energy associated with the solution of (1) satisfies

E(t) ≤ C(1 + t)−λi t ≥ 0

where C is a positive constant independent of t and the decay rate λi (i =
1, 2, 3 or 4) is given according to the following cases.

Case 1 r > 0, 0 < p ≤ 2
N − 2

, N ≥ 3 : λ1 = min
{

2
r
,

4(p + 1)
p(N − 2)

}
.

If p = 0 then λ1 =
2
r
. If r = 0 then λ1 =

4(p + 1)
4(N − 2)

.

When N = 1, 2 the decay rate is λ1 =
2
r

for r > 0 and 0 ≤ p < +∞.
The decay rate is exponential if r = p = 0 and N ≥ 1 or r = 0,

0 < p < +∞ and N = 1, 2.

Case 2 −1 < r < 0, 0 < p ≤ 2
N − 2

, N ≥ 3 : λ2 = min
{−2(r + 1)

r
,

4(p + 1)
p(N − 2)

)

and λ2 = −2(r + 1)
r

for N ≥ 3 and p = 0 or N = 1, 2 and 0 ≤ p < +∞ .

Case 3 r > 0, −1 < p < 0, N ≥ 3 : λ3 = min
{

2
r
,

4
p(2−N)

}
.

If N = 1, 2 and r > 0 then λ3 =
2
r
.

If r = 0 and N = 1, 2 the decay rate is exponential.

If r = 0 and N ≥ 3 the decay rate is λ3 =
4

p(2−N)
.

Case 4 −1 < r < 0, −1 < p < 0, N ≥ 3 : λ4 = min
{−2(r + 1)

r
,

4
p(2−N)

}

and λ4 =
−2(r + 1)

r
for N = 1, 2.

Before giving the proof, we need to construct several estimates.

4 Preliminary estimates

In this section we present some identities and estimates for the energy E(t)
which are useful to obtain the decay rates in the previous theorem.

We need the Mini-Max principle.

5
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Lemma 4.1 (Mini-Max Principle). The solution u = u(x, t) of the problem
(1) satisfies

∫

Ω

|u|2dx ≤
∫

Ω

[ |∇u|2 + aqu2]dx ≤ CE(t), t ≥ 0

for some positive constant C which depends only on Ω and the function aq.

Proof. Since a(x)q(x) 6≡ 0 is a continuous and nonnegative function on Ω, the
elliptic problem





−4w + a(x)q(x)w = λw in Ω ,

∂w

∂η
= 0 on ∂Ω

has a strictly positive first eigenvalue λ0. By the mini-max principle we have
that

λ0 ≤

∫

Ω

[ |∇w|2 + aqw2]dx
∫

Ω

|w|2dx

for all w ∈ H1(Ω) such that w 6≡ 0 and
∂w

∂η
= 0 on ∂Ω. This implies the

statement of the lemma.

The following energy identity is similar to that one in Martinez [7] for
ρ(x, s) = a(x)s.

Lemma 4.2. Let O ⊆ Ω be an open Lipschitz domain and h : O → RN a C1

function. Given 0 ≤ S < T < ∞, the solution u of the problem (1) satisfies

∫ T

S

∫

∂O
(2

∂u

∂η
h · ∇u + h · η(u2

t − |∇u|2)) dΓ dt

= (
∫

O
2uth · ∇u dx)

∣∣∣∣
T

S

+
∫ T

S

∫

O
2(ρ(x, ut) + a q u)h · ∇u dx dt

+
∫ T

S

∫

O
( div (h)(u2

t − |∇u|2) + 2
∑

i,k

DihkDiuDku) dx dt ,

where hk are the components of the function h, Di = ∂
∂xi

and η = η(x) is the
outward unit normal at x ∈ ∂O.

Proof. The proof of this lemma follows by using the standard multiplier M(u) ≡
h · ∇u and integrating on O × [S, T ].

6
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As in Martinez [7], we now introduce the sets

Qi ≡ Vεi [∪n
j=1Γj(φj) ∪ (Ω\ ∪n

j=1 Ωj)], (5)

for arbitrary fixed numbers: 0 ≤ ε0 < ε1 < ε2 < ε and i = 0, 1, 2. The number
ε > 0 is defined in (3) by the geometric conditions which localize the dissipative
term ρ(x, ut) (see (3) ).

The following energy estimate is fundamental to obtain the proof of Theorem
3.1.

Lemma 4.3. Let 0 ≤ S < T < ∞. Let u be the solution of problem (1). Then,
the associated energy E(t) satisfies

2δ

∫ T

S

E(t) dt ≤ −
[∫

Ω

utM(u)dx

]T

S

−
∫ T

S

∫

Ω

(ρ + a q u)M(u) dxdt

+ C

∫ T

S

∫

Ω∩Q1

(ut + |∇u|2 + u2) dxdt + δ

∫ T

S

∫

Ω

aqu2 dxdt.(6)

Proof. The proof is similar as in Martinez [7] and it uses the geometrical hy-
potheses in Section 2, the Lemma 4.2 with O = Ωj and h = ψj∇φj to obtain
the identity

∫ T

S

∫

∂Ωj

[2
∂u

∂ηj
ψj∇φj · ∇u + ψj∇φj · ηj(u2

t − |∇u|2)]dΓdt

=
∫

Ωj

2utψj∇φj · ∇udx

∣∣∣∣∣

T

S

+ 2
∫ T

S

∫

Ωj

(ρ(x, ut) + a q u)ψj∇φj · ∇u dxdt

+
∫ T

S

∫

Ωj

[div (ψj∇φj)(u2
t − |∇u|2) + 2

∑

i,k

Di(ψj∇φj)kDiuDku ])dΓdt

where (ψj∇φj)k is the k–th component of ψj∇φj .
Moreover, to obtain the estimate (4.3) it is also necessary to use the Lemma

4.1 and the identity

−
∫ T

S

∫

Ω

m u(ρ + a q u) dxdt = (
∫

Ω

m u ut dx )

∣∣∣∣∣

T

S

+
∫ T

S

∫

Ω

m(|∇u|2 − u2
t ) dxdt +

∫ T

S

∫

Ω

u∇m · ∇u dxdt,

which is obtained by multiplying the equation in (1) by m(x)u and integrate
over (S, T )×Ω, where m : Ω → R be a C2–function such that m(x) = µj in Ωj

(constant on each Ωj) for 1 ≤ j ≤ J .

Next we estimate each one of the terms in the right hand side of the inequality
(6) which appears in Lemma 4.3.

7
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Lemma 4.4. Let 0 ≤ S < T < ∞. The solution u of (1) satisfies
∣∣∣∣∣
[∫

Ω

utM(u)dx

]T

S

∣∣∣∣∣ ≤ C[E(T ) + E(S)]

for some positive constant C.

Proof. It follows from standard calculations and the definition of M(u) = 2h ·
∇u + mu.

Lemma 4.5. There exists a positive constant C such that
∣∣∣∣∣
∫ T

S

∫

Ω

aquM(u)dx

∣∣∣∣∣ ≤
δ

2

∫ T

S

E(t)dt +
C

δ

∫ T

S

∫

Ω

aqu2 dxdt

with C > 0 a constant and δ > 0 appears in the estimate of Lemma 4.3 and
the geometrical hypotheses (2).

Proof. Using the definition of M(u), we have that for L > 0,

∣∣∣∣∣
∫ T

S

∫

Ω

aquM(u)dxdt

∣∣∣∣∣ ≤
δ

2L

∫ T

S

∫

Ω

M(u)2 dxdt +
L

2δ

∫ T

S

∫

Ω

(aqu)2 dxdt

≤ Cδ

2L

∫ T

S

∫

Ω

[|∇u|2 + |u|2]dxdt +
C

δ

∫ T

S

∫

Ω

aqu2 dxdt

≤ Cδ

L

∫ T

S

E(t)dt +
C

δ

∫ T

S

∫

Ω

aqu2 dxdt

where we have used the Lemma 4.1 and the fact that aq = a(x)q(x) ∈ L∞(Ω).
By choosing L = 2C the lemma follows.

Next, we want to estimate the integral
∫ T

S

∫

Ω

ρM(u)dxdt

according to the cases of Theorem 3.1.
We note that

∣∣∣∣∣
∫ T

S

∫

Ω

ρM(u) dxdt

∣∣∣∣∣ ≤ C

∫ T

S

∫

Ω

|ρ| [|∇u|+ |u|]dxdt = C(I1 + I2) (7)

where

I1 =
∫ T

S

∫

Ω∗1

|ρ| [|∇u|+ |u|] dxdt and I2 =
∫ T

S

∫

Ω∗2

|ρ| [|∇u|+ |u|]dxdt.

8
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Here we have denoted

Ω∗1 = {x ∈ Ω/|ut| ≤ 1} and Ω∗2 = Ω\Ω∗1 .

Then, for R > 0, using Lemma 4.1 we have

|I1| ≤ R

2δ

∫ T

S

∫

Ω∗1

ρ2dxdt +
δC2

R

∫ T

S

∫

Ω

[|∇u|2 + |u|2]dxdt

≤ R

2δ

∫ T

S

∫

Ω∗1

ρ2dxdt + δ
C1

R

∫ T

S

E(t)dt,

with C1 a positive constant.
Now, we choose R = 2C1 to obtain that

|I1| ≤ C

∫ T

S

∫

Ω∗1

ρ2dxdt + δ/2
∫ T

S

E(t)dt (8)

for 0 < S < T < +∞.

Lemma 4.6. Let 0 ≤ S < T < ∞.

i) If 0 ≤ r < +∞ then

|I1| ≤ C [E(S)− E(T )]
2

r+2 + δ/2
∫ T

S

E(t)dt

ii) If −1 < r < 0 then

|I1| ≤ C [E(S)− E(T )]
2r+2
r+2 + δ/2

∫ T

S

E(t)dt

with C a positive constant which depends on |T − S|, ‖a‖∞ and |Ω|.
Proof. i) Since r ≥ 0, |ut| ≤ 1 in Ω∗1, the hypothesis (III) on ρ(·, s)and the

fact that a = a(x) ∈ L∞(Ω) imply that

∫ T

S

∫

Ω∗1

ρ2dxdt ≤
∫ T

S

∫

Ω∗1

Ca(x)[|ut|2r+2 + |ut|2] dxdt

≤ C

∫ T

S

∫

Ω∗1

a(x)|ut|2dxdt ≤ C

[∫ T

S

∫

Ω∗1

a(x) |ut|r+2

] 2
r+2

≤ C

[∫ T

S

∫

Ω

ρ(x, ut)ut dxdt

] 2
r+2

≤ C [E(S)− E(T )]
2

r+2

where we have used the energy identity (4) in Lemma 3.1 and Hölder’s
inequality.

9
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ii) For −1 < r < 0, using the hypothesis (III) on ρ(·, s), we also have

∫ T

S

∫

Ω∗1

ρ2dxdt ≤ C

∫ T

S

∫

Ω∗1

a(x)[|ut|2r+2 + |ut|2]dxdt

≤ C

∫ T

S

∫

Ω∗1

a(x)|ut|2r+2dxdt ≤ C

[∫ T

S

∫

Ω∗1

a(x)|ut|r+2dxdt

] 2r+2
r+2

|T − S| −r
r+2

≤ C

[∫ T

S

∫

Ω

ρ(x, ut)utdxdt

] 2r+2
r+2

≤ C[E(S)− E(T )]
2r+2
r+2

Combining the above estimates with (8) the lemma follows.

Next we also estimate

I2 =
∫ T

S

∫

Ω∗2

|ρ|[|∇u|+ |u|]dxdt

in terms of energy differences.

Lemma 4.7. Let 0 ≤ S < T < ∞.

i) If 0 ≤ p ≤ 2
N − 2

, N ≥ 3 then : I2 ≤ C[E(S)−E(T )]
p+1
p+2 E(S)

4+p(2−N)
4(p+2) .

ii) If −1 < p < 0 and N ≥ 3 then : I2 ≤ C [E(S)−E(T )]
2

4+p(2−N)
√

E(S).

iii) If 0 ≤ p < +∞ and N = 1 or 2 then : I2 ≤ C[E(S)−E(T )]
p+1
p+2 E(S)

1
p+2 .

iv) If −1 < p < 0 and N = 1 or 2 then : I2 ≤ C[E(S)−E(T )]1/2
√

E(S).

The constant C is positive and depends on ‖a‖∞, |T − S| and the initial
data.

Proof. (i) Since p ≥ 0 and |ut| ≥ 1 in Ω∗2, using the hypothesis (III) on ρ(·, s)
we have

I2 ≤ C

∫ T

S

∫

Ω∗2

a(x)|ut|p+1[|∇u|+ |u|]dxdt

≤ C

[∫ T

S

∫

Ω

ρ(x, ut)utdxdt

] p+1
p+2

[∫ T

S

∫

Ω

(|∇u|p+2 + |u|p+2)dxdt

] 1
p+2

≤ C[E(S)− E(T )]
p+1
p+2

[∫ T

S

∫

Ω

|∇u|p+2 + |u|p+2dxdt

] 1
p+2

10
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At this point, we use the Gagliardo-Niremberg Inequality (see for example
Nakao [9]) to obtain

‖∇u‖Lp+2(Ω) ≤ C‖∇u‖θ
H1(Ω) ‖∇u‖1−θ

L2(Ω) ≤ C‖u‖θ
H2(Ω) ‖∇u‖1−θ

L2(Ω) (9)

≤ C‖∇u‖1−θ
L2(Ω) ≤ CE

1−θ
2 (t)

due to the fact that u ∈ L∞(R+,H2(Ω)) (Existence theorem), where θ =
Np

2(p + 2)
is such that 0 < θ < 1 because, for N ≥ 3, we have that

p ≤ 2
N − 2

<
4

N − 2
.

Now, by the Sobolev embedding’s theorem, for N ≥ 3, we have

‖u‖Lp+2(Ω) ≤ C‖∇u‖L2(Ω), (10)

because 0 ≤ p ≤ 2
N − 2

.

Substituting the estimates (9) and (10) in the last estimate for I2, we con-
clude that

I2 ≤ C[E(S)− E(T )]
p+1
p+2 [E(S)

1−θ
2 + E(S)1/2]

≤ C[E(S)− E(T )]
p+1
p+2 E(S)

1−θ
2 = C[E(S)− E(T )]

p+1
p+2 E(S)

4+p(2−N)
4(p+2) .

because the function E(t) is bounded and nonincreasing in t. The constant
C > 0 depends on the initial data and on |T − S|.

ii) In this case (−1 < p < 0) using the hypothesis (III) on ρ(x, s) we have

I2 ≤ C

∫ T

S

∫

Ω∗2

a(x) |ut|[|∇u|+ |u|]dxdt

≤ C

(∫ T

S

∫

Ω∗2

a(x)|ut|2dxdt

)1/2 (∫ T

S

∫

Ω

(|∇u|2 + |u|2)dxdt

)1/2

≤ C

(∫ T

S

∫

Ω∗2

a(x)|ut|2 dxdt

)1/2

|T − S|1/2
√

E(S)

(11)
due to Lemma 4.1 and the fact that E(t) is a nonincreasing function.

Using Hölder’s inequality we obtain

11
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(∫ T

S

∫

Ω∗2

a(x)|ut|2dxdt

)1/2

≤ C

(∫ T

S

∫

Ω∗2

a(x)|ut|p+2dxdt

) 2
4+p(2−N)

(∫ T

S

∫

Ω∗2

|ut|
2N

N−2 dxdt

) p(2−N)
8+2p(2−N)

(12)

≤ C

(∫ T

S

∫

Ω

ρ(x, ut)utdxds

) 2
4+p(2−N)

because ut belongs to L∞(R+,H1(Ω)) which is continuously embedded in
L∞(R+, L

2N
N−2 (Ω)) for N ≥ 3. The positive constant C in (12) depends

on the initial data and |T − S|.
Now, using the energy identity (4) in (12) and combining with (11) we
obtain the estimate (ii).

iii) From the proof of item (i), we have that

I2 ≤ C[E(S)− E(T )]
p+1
p+2

[∫ T

S

∫

Ω

(|∇u|p+2 + |u|p+2)dxdt

] 1
p+2

.

Using the Sobolev Imbedding H1(Ω) ↪→ Lq(Ω), q ≥ 1, it follows that

I2 ≤ C[E(S)− E(T )]
p+1
p+2

[∫ T

S

∫

Ω

|∇u|p+2dxdt

] 1
p+2

.

Now, applying Gagliardo-Niremberg Lemma with θ =
p

p + 2
we obtain

‖∇u‖Lp+2(Ω) ≤ ‖∇u‖θ
H1(Ω) ‖∇u‖1−θ

L2(Ω ≤ C‖u‖θ
H2(Ω)E(t)

1−θ
2 .

This proves item (iii) since that
1− θ

2
=

1
p + 2

and u ∈ L∞(R+,H2(Ω)).

(iv) From the proof of item (ii) we have

I2 ≤ C

(∫ T

S

∫

Ω∗2

a(x)|ut|2dxdt

)1/2

|T − S|1/2
√

E(S)

≤ C

(∫ T

S

∫

Ω∗2

a(x) |ut|2+pdxdt

)1/2 √
E(S)

12
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because in this case p is negative and ut belongs to L∞(R+,H1(Ω)) which
is contained in L∞(R+ × Ω) for N = 1, 2. Then Item (iv) follows from the
hypotheses (III) on ρ(·, s) and the energy identity (4) of Lemma (3.1).

The Lemma 4.7 is proved.

Next, combining the estimates for I1 and I2, in Lemmas 4.6 and 4.7 with
estimate (7) we obtain the following

Lemma 4.8. Let 0 ≤ S < T < +∞. The solution u satisfies
∣∣∣∣∣
∫ T

S

∫

Ω

ρM(u)dxdt

∣∣∣∣∣ ≤ CDN
i +

δ

2

∫ T

S

E(t)dt (13)

where, according the cases i = 1, 2, 3, 4 we have
Case 1

DN
1 = (4E)

2
r+2 + (4E)

p+1
p+2 E(S)

4+p(2−N)
4(p+2)

for 0 ≤ r < +∞, 0 ≤ p ≤ 2
N−2 , N ≥ 3.

Case 2
DN

2 = (4E)
2r+2
r+2 + (4E)

p+1
p+2 E(S)

4+p(2−N)
4(p+2)

for −1 < r < 0 and 0 ≤ p ≤ 2
N−2 , N ≥ 3.

Case 3
DN

3 = (4E)
2

r+2 + (4E)
2

4+p(2−N)
√

E(S)

for 0 ≤ r < +∞ and −1 < p < 0, N ≥ 3.
Case 4

DN
4 = (4E)

2r+2
r+2 + (4E)

2
4+p(2−N)

√
E(S)

for −1 < r < 0, −1 < p < 0 and N ≥ 3.
Case 1a

DN
1 = (4E)

2
r+2 + (4E)

p+1
p+2 E(S)

1
p+2

for N = 1, 2.
Case 2a

DN
2 = (4E)

2r+2
r+2 + (4E)

p+1
p+2 E(S)

1
p+2

for N = 1, 2.
Case 3a

DN
3 = (4E)

2
r+2 + (4E)1/2E(S)1/2

forN = 1, 2.
Case 4a

DN
4 = (4E)

2r+2
r+2 + (4E)1/2E(S)1/2

forN = 1, 2.
The constant C in estimate (13) depends on ‖a‖∞, |T−S|, |Ω| and the initial

data.
Also, we have used the notation

4E = E(S)− E(T ).

13
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Now, substituting the estimates of Lemmas 4.4, 4.5 and 4.8 in the estimate
of Lemma 4.3, we obtain the following main estimate

δ

∫ T

S

E(t)dt ≤ C

{
[E(T ) + E(S)] + DN

i +
∫ T

S

∫

Ω

aqu2dxdt

+
∫ T

S

∫

Ω∩Q1

(u2
t + u2 + |∇u|2)dxdt

} (14)

with C a positive constant depending on ‖a‖∞ , |T −S|, |Ω| and the initial data.

Next we estimate
∫ T

S

∫

Ω∩Q1

|∇u|2dxdt. To do this we take a function ξ :

Rn → R such that

0 ≤ ξ ≤ 1 , ξ = 1 in Q1 , ξ = 0 in Rn/Q2

where the sets Q1 and Q2 are defined in (5).
By multiplying the equation in (1) by ξu and integrating, we obtain

∫ T

S

∫

Ω

(−ξu)(ρ + aqu)dxdt =
∫ T

S

∫

Ω

ξu(utt −4u)dxdt =

[∫

Ω

ξuutdx

]T

S

+
∫ T

S

∫

Ω

ξ[|∇u|2 − u2
t ]dxdt =

1
2

∫ T

S

∫

Ω

u24ξdxdt

where u is the solution of (1).
Then, by the definition of ξ = ξ(x) we have

∫ T

S

∫

Ω∩Q1

|∇u|2dxdt ≤

≤
∫ T

S

∫

Ω

[
ξu2

t +
1
2
u24ξ

]
dxdt−

[∫

Ω

ξuutdx

]T

S

−
∫ T

S

∫

Ω

ξu[ρ + aqu]dxdt (15)

≤ C

∫ T

S

∫

Ω∩Q2

[u2
t + u2]dxdt + C[E(T ) + E(S)] +

∫ T

S

∫

Ω

|u|[|ρ|+ aq|u|]dxdt

That is,
∫ T

S

∫

Ω∩Q1

|∇u|2dxdt ≤ C

∫ T

S

∫

Ω∩Q2

[u2
t + u2]dxdt + C[E(T ) + E(S)]+

+
∫ T

S

∫

Ω

|u||ρ|dxdt +
∫ T

S

∫

Ω

aqu2dxdt.

(16)
Here we note that similar estimates as in Lemma 4.8 hold for the integral

∫ T

S

∫

Ω

|u||ρ|dxdt. (17)

14
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Therefore, substituting (16) in (14) and using estimates as in Lemma 4.8 for
(17), we obtain that

δ

2

∫ T

S

E(t)dt ≤ C

{
E(T ) + E(S) +

∫ T

S

∫

Ω

aqu2dxdt + DN
i

+
∫ T

S

∫

Ω∩Q2

[u2
t + u2]dxdt

}
(18)

with C a positive constant depending on ‖a‖∞ , |T − S|, the initial data and
|Ω|. The functions DN

i = DN
i (t) are given in Lemma 4.8.

Now,we note that
∫ T

S

∫

Ω∩Q2

[u2
t + u2]dxdt ≤ 1

a0

∫ T

S

∫

Ω

a(x)[u2
t + u2]dxdt

because Ω ∩Q2 ⊂ w and a = a(x) ≥ a0 in w by hypothesis.

Due to this and the fact that q ∈ C(Ω) it results

δ

∫ T

S

E(t)dt ≤ C

{
E(T ) + E(S) + DN

i +
∫ T

S

∫

Ω

a(x)[u2
t + u2]dxdt

}
. (19)

Next, we need estimate the integral,

∫ T

S

∫

Ω

au2dxdt.

To do this, we consider the solution z of the elliptic problem




−4z + aqz = au in Ω

∂z

∂ν
= 0 on ∂Ω.

(20)

We multiply the equation in (20) by z to obtain
∫

Ω

(|∇z|2 + aqz2)dx =
∫

Ω

auzdx. (21)

By hypothesis, we have that g(x) = a(x)q(x) is non negative and g 6≡ 0.
Then, using the Mini-Max principle, there exists C > 0 such that

‖z‖2 ≤ C

∫

Ω

(|∇z|2 + aqz2)dx. (22)

Combining (21) and (22) and using the Cauchy-Schwartz inequality it follows
that

15
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∫

Ω

z2dx = ‖z‖2 ≤ C

∫

Ω

a(x)u2. (23)

Similarly, taking time derivative in (20) we obtain
∫

Ω

|zt|2 ≤ C

∫

Ω

a(x)u2
t . (24)

On the other hand, multiplying the equation in (1) by z, integrating and
using Green’s formula, it results

0 =
∫ T

S

∫

Ω

z(utt −4u + ρ(x, ut) + aqu)dxdt =
[∫

Ω

zutdx

]T

S

−
∫ T

S

∫

Ω

ztutdxdt−
∫ T

S

∫

Ω

u4zdxdt +
∫ T

S

∫

Ω

z[ρ(x, ut) + aqu]dxdt

=
[∫

Ω

zutdx

]T

S

−
∫ T

S

∫

Ω

ztutdxdt−
∫ T

S

∫

Ω

u[aqz − au]dxdt

+
∫ T

S

∫

Ω

z[ρ(x, ut) + aqu]dxdt

with the last equality due to (20).

Hence,

∫ T

S

∫

Ω

a(x)u2dxdt = −
[∫

Ω

zutdx

]T

S

+
∫ T

S

∫

Ω

ztutdxdt−
∫ T

S

∫

Ω

zρdxdt.

Using (23) and Cauchy-Schwartz, we obtain

∫ T

S

∫

Ω

a(x)u2dxdt ≤ C[E(T ) + E(S)] +
∫ T

S

∫

Ω

[ztut − zρ]dxdt. (25)

Also, using (24) we have

∣∣∣∣∣
∫ T

S

∫

Ω

ztutdxdt

∣∣∣∣∣ ≤
∫ T

S

‖zt‖ ‖ut‖dt (26)

≤ C

∫ T

S

(∫

Ω

a(x)u2
t dx

)1/2

‖ut‖dt ≤ C

2η

∫ T

S

∫

Ω

a(x)u2
t dxdt + η

∫ T

S

E(t)dt

with η > 0 to be chosen later.
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Finally, we make
∣∣∣∣∣
∫ T

S

∫

Ω

zρdxdt

∣∣∣∣∣ ≤
∫ T

S

∫

Ω∗1

|z| |ρ|dxdt +
∫ T

S

∫

Ω∗2

|z| |ρ|dxdt (27)

where Ω∗1 and Ω∗2 are defined in the proof of Lemma 4.5.

Then, using (23) we estimate

∫ T

S

∫

Ω∗1

|z|ρdxdt ≤
(∫ T

S

∫

Ω

au2dxdt

)1/2 (∫ T

S

∫

Ω∗1

ρ2

)1/2

≤ λ

∫ T

S

∫

Ω

au2dxdt +
1
4λ

∫ T

S

∫

Ω∗1

ρ2dxdt (28)

with λ > 0 to be chosen.
Combining (26), (27) and (28) with (25), we obtain

∫ T

S

∫

Ω

au2dxdt ≤ C[E(T ) + E(S)] +
C

2η

∫ T

S

∫

Ω

au2
t dxdt

+η

∫ T

S

E(t)dt + λ

∫ T

S

∫

Ω

au2dxdt +
1
4λ

∫ T

S

∫

Ω∗1

ρ2dxdt + 2
∫ T

S

∫

Ω∗2

|z| |ρ|dxdt.

(29)
To estimate the last integral in (29), we use the fact that au ∈ L∞(R+, L2(Ω))

and Elliptic Regularity in (20) to have that z ∈ H2(Ω) and ‖z‖H2(Ω) ≤ C‖u‖H2(Ω)

(C > 0 constant).
Also, from (21) and (23) it is eazy to see that

‖z‖H1(Ω) ≤ C‖u‖ (30)

with C > 0 a constant depending on ‖a‖∞.
Using (30) and Sobolev imbedding,

H1(Ω) ⊂ Lr(Ω)

for 2 ≤ r ≤ 2N

N − 2
, N ≥ 3, it follows that

‖z‖Lp+2(Ω) ≤ C‖u‖ ≤ CE(t)1/2, t ≥ 0, (31)

where we have used the Lemma 4.1.
Finally, by using that |ut| ≥ 1 in Ω∗2, we estimate
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J ≡ 2
∫ T

S

∫

Ω∗2

|z| |ρ|dxdt ≤ C

∫ T

S

∫

Ω∗2

|z|a(x)|ut|p+1dxdt

≤ C

(∫ T

S

∫

Ω∗2

a(x)|ut|p+2

) p+1
p+2

(∫ T

S

∫

Ω

|z|p+2dxdt

) 1
p+2

≤ C

(∫ T

S

∫

Ω

ρ(x, ut)utdxdt

) p+1
p+2

E(t)1/2

≤ C(4E)
p+1
p+2 E(S)1/2|T − S| 1

p+2

≤ C(4E)
p+1
p+2

√
E(S) ≤ C(4E)

p+1
p+2 E(S)

4+p(2−N)
4(p+2)

(32)

where we have used that N ≥ 3, the estimate (31) with the fact that E(t) is

nonincreasing. This holds for 0 ≤ p ≤ 2
N − 2

.

Now, due to the fact that H1(Ω) ⊂ L∞(Ω) ⊂ Lr(Ω) , for r ≥ 1 and
N = 1, 2, the estimate

J ≤ C(4E)
p+1
p+2

√
E(S)

holds for N = 1, 2.
Then

J ≤ C(4E)
p+1
p+2 E(S)

1
2+p (33)

holds for 0 ≤ p < ∞ and N = 1, 2.
¿From (32) and (33), we conclude that the estimates for J are the same as

in Lemma 4.11 for I2 in the cases (i) and (iii) for p ≥ 0.
It is easy to control J with the same estimates for I2, in the cases (ii) and

(iv) for −1 < p < 0.
That is,

J ≤ C(4E)
2

4+p(2−N)
√

E(S) (34)

for −1 < p < 0 and N ≥ 3, and

J ≤ C(4E)1/2
√

E(S) (35)

for −1 < p < 0 and N = 1, 2.
At this point we take λ = 1

2 in (29) to obtain that

∫ T

S

∫

Ω

a(x)u2dxdt ≤ C[E(T ) + E(S)] +
C

η

∫ T

S

∫

Ω

a(x)u2
t dxdt (36)

+2η

∫ T

S

E(t)dt +
∫ T

S

∫

Ω∗1

ρ2dxdt + J.

18
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Substituting estimate (36) in (19), it follows that

δ

∫ T

S

E(t)dt ≤ C

[
E(T ) + E(S) + DN

i +
∫ T

S

∫

Ω

a(x)u2
t dxdt

+2η
∫ T

S

E(t)dt +
∫ T

S

∫

Ω∗1

ρ2dxdt + J

]

with η arbitrary.
Taking η > 0 such that δ − 2ηC > 0 we obtain

∫ T

S

E(t)dt ≤ C

[
E(T ) + E(S) + DN

i +
∫ T

S

∫

Ω

a(x)u2
t dxdt +

∫ T

S

∫

Ω∗1

ρ2dxdt

]

since J can be estimated in terms of DN
i due to (32), (33), (34) and (35), where

DN
i are given in Lemma 4.8, for i = 1, 2, 3 or 4.

Lemma 4.6 and its proof give that the integral

∫ T

S

∫

Ω∗1

ρ2dxdt

can be estimated in terms of DN
i .

Thus, we have proved the following proposition.

Proposition 4.1. Given 0 < S < T < +∞, the solution u = u(x, t) of (1)
satisfies

∫ T

S

E(t)dt ≤ C0

[
E(T ) + E(S) + DN

i +
∫ T

S

∫

Ω

a(x)u2
t dxdt

]
(37)

with C0 > 0 a positive constant which depends on ‖a‖∞, |T − S|, |Ω| and the
initial data, with i = 1, 2, 3 or 4 according to the cases in Lemma 4.8.

5 The energy bounded by energy differences

Due to the fact that E(t) is a nonincreasing function, we have that

∫ T

S

E(t)dt ≥ E(T )(T − S).

Taking S = t and T = t + T0 for t ≥ 0 and a fix T0 > 0 we obtain from (37)

T0E(t + T0) ≤ C0

[
E(t + T0) + E(t) + DN

i +
∫ t+T0

t

∫

Ω

a(x)u2
t dxdt

]
.
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Now we fix T0 such that T0 ≥ 2C0 + 1. Then we obtain that

E(t) ≤ C

[
4E(t) + DN

i +
∫ t+T0

t

∫

Ω

a(x)u2
t dxdt

]
, t ≥ 0 (38)

where
4E(t) = E(t)− E(t + T0)

and C is a positive constant which depends only on T0, ‖a‖∞, |Ω| and the
initial data.

Now, DN
i are given in terms of 4E(t) instead of 4E = E(S)− E(T ) as in

Lemma 4.8.
The idea here is to estimate the integral in (38) in terms of 4E(t).
In fact, we can write

∫ t+T0

t

∫

Ω

a(x)u2
t dxdt =

∫ t+T0

t

∫

Ω∗1

a(x)u2
t +

∫ t+T0

t

∫

Ω∗2

a(x)u2
t . (39)

Then, for p ≥ 0 and N ≥ 1 we have

J2 ≡
∫ t+T0

t

∫

Ω∗2

a(x)u2
t dxdt ≤

∫ t+T0

t

∫

Ω∗2

a(x)u2+p
t dxdt

≤ C

∫ t+T0

t

∫

Ω

ρ(x, ut)utdxdt ≤ C4E(t), (40)

due to the hypotheses on ρ(x, s), the energy identity (4) and the fact that
|ut| ≥ 1 in Ω∗2.

We also have

J1 =
∫ t+T0

t

∫

Ω∗1

a(x)u2
t dxdt ≤ C

(∫ t+T0

t

∫

Ω∗1

a(x)ur+2
t dxdt

) 2
r+2

for r ≥ 0, where C > 0 depends only on T0, ‖a‖∞, |Ω| and r.
Then, using the hypotheses on ρ(x, s) and the energy identity(4) we obtain

that
J1 ≤ C(4E(t))

2
r+2 , (41)

for r ≥ 0.
Therefore, from (39), (40) and (41), we get

I ≡
∫ t+T0

t

∫

Ω

a(x)u2
t dxdt ≤ C[4E(t) + (4E(t))

2
r+2 ]

for r ≥ 0 and p ≥ 0.

So, the integral I, in Case 1, can be estimated in terms of 4E(t).
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In the same way, similarly as in Lemmas 4.6 and 4.7, we can see that this
fact is true for the other cases. Then, combining these conclusions with estimate
(38) we can see that

E(t) ≤ C[4E(t) + DN
i (t)] , t ≥ 0 (42)

where C is a positive constant independent of t which can be estimated explicitly
and DN

i is given in Lemma 4.8 according to the four cases i = 1, 2, 3, 4 .
Finally, we use the following Young inequality

AB
1
α ≤ CAα′ +

1
2
B

with A, B ≥ 0, α > 1 and α′ such that
1
α′ +

1
α

= 1, to estimate in (42) the

expression of DN
i , i = 1, 2, 3, 4, which depends on the power nonlinearity p.

Making this we obtain the next result.

Proposition 5.1. The energy E(t) satisfies,

E(t) ≤ CdN
i (t) , t ≥ 0

with C a positive constant independent of t , where according to the four cases:

Case 1: r ≥ 0, 0 ≤ p ≤ 2
N − 2

, N ≥ 3:

dN
1 (t) = 4E(t) + (4E(t))

2
r+2 + (4E(t))

4(p+1)
4+p(N+2)

and

dN
1 (t) = 4E(t) + (4E(t))

2
r+2

for r ≥ 0, p ≥ 0 and N = 1, 2.

Case 2: −1 < r < 0, 0 ≤ p ≤ 2
N − 2

, N ≥ 3:

dN
2 (t) = 4E(t) + (4E(t))

2r+2
r+2 + (4E(t))

4(p+1)
4+p(N+2)

and

dN
2 (t) = 4E(t) + (4E(t))

2r+2
r+2

for r ≥ 0, p ≥ 0 and N = 1, 2.

Case 3: r ≥ 0, −1 < p < 0, N ≥ 3

dN
i (t) = 4E(t) + (4E(t))

2
r+2 + (4E(t))

4
4+p(2−N

and

dN
i (t) = 4E(t) + (4E(t))

2
r+2
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for r ≥ 0, −1 < p < 0 and N = 1, 2.

Case 4: −1 < r < 0, −1 < p < 0, N ≥ 3

dN
i (t) ≤ 4E(t) + (4E(t))

2r+2
r+2 + (4E(t))

4
4+p(2−N)

and

dN
i (t) = 4E(t) + (4E(t))

2r+2
r+2

for −1 < r < 0, −1 < p < 0 and N = 1, 2.

6 Proof of Theorem 3.1:

We need the following Nakao’s Lemma which appears in [9].

Lemma 6.1. Let E(t) : R+ → R be a non increasing and non negative function
satisfying

sup
t≤s≤t+T

E(S)1+δ ≤ C1[E(t)− E(t + T )]

for all t ≥ 0, with δ > 0, T > 0, C1 > 0 fixed numbers.
Then

E(t) ≤ C2E(0)(1 + t)−
1
δ , t ≥ 0

with C2 > 0 a constant.
If δ = 0, there exist α > 0 and C3 > 0 constants such that

E(t) ≤ C3e
−αt, t ≥ 0 .

Now, to obtain the proof we use in the estimates given by Proposition 5.1
the fact that E(t) is nonincreasing in t.

Thus,

Case 1: r > 0, 0 < p ≤ 2N

N − 2
, N ≥ 3

In this case it holds that

E(t) ≤ C(4E(t))γ1 , γ1 = min
{

2
r + 2

,
4(p + 1)

4 + p(N + 2)

}

Then, writing

1
γ1

= 1 + δ1, δ1 = max
{

r

2
,
p(N − 2)
4(p + 1)

}

we have

sup
t≤s≤t+T0

E(s)1+δ1 ≤ C4E(t) = C[E(t)− E(t + T0].
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Then, applying Nakao’s lemma, we obtain

E(t) ≤ C(1 + t)−1/δ1 = C(1 + t)−λ1

with

λ1 = min
{

2
r

,
4(p + 1)
p(N − 2)

}
.

If r = p = 0 the decay rate is exponential, because in this case (see Nakao’s
Lemma):

E(t) ≤ C4E(t), t ≥ 0.

If r > 0 and p = 0, λ1 =
2
r
. If r = 0 and p > 0, λ1 =

4(p + 1)
p(N − 2)

.

Finally, when N = 1, 2 from Proposition 5.1 we have

E(t) ≤ C(4E(t))
2

r+2

for r ≥ 0 and p ≥ 0.
Then, in this case λ1 is given by

λ1 =
2
r

(for r > 0)

and the decay rate is exponential if r = 0 and p ≥ 0.
The cases 2, 3 and 4 are proven in the same way.
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GENERALIZED HAUSDORFF MATRICES AS BOUNDED
OPERATORS OVER Ak

EKREM SAVAŞ* AND HAMDULLAH ŞEVLİ**

Abstract. In this paper we prove a theorem which shows that a generalized
Hausdorff matrix is a bounded operator on Ak, defined below by (2); i.e.,`
Hβ , µ

´ ∈ B (Ak).

Let σα
n denote the nth terms of the transform of a Cesáro matrix (C, α) of a

sequence (sn). In 1957 Flett [3] made the following definition. A series
∑

an, with
partial sums sn, is said to be absolutely (C, α) summable of order k ≥ 1, written∑

an is summable |C, α|k, if

∞∑
n=1

nk−1
∣∣σα

n−1 − σα
n

∣∣k < ∞. (1)

He also proved the following inclusion theorem. If series
∑

an is summable
|C, α|k, it is summable |C, β|r for each r ≥ k ≥ 1, α > −1, β > α + 1/k − 1/r. It
then follows that, if one chooses r = k, then a series

∑
an which is |C, α|k summable

is also |C, β|k summable for k ≥ 1, β > α > −1.
Let

∑
an be an infinite series with partial sums (sn). Define

Ak :=

{
(sn)∞n=0 :

∞∑
n=1

nk−1 |an|k < ∞ ; an = sn − sn−1

}
(2)

for k ≥ 1.
A matrix T is said to be a bounded linear operator on Ak, written T ∈ B (Ak),

if T : Ak → Ak.
If one sets α = 0 in the inclusion statement involving (C,α) and (C, β), then one

obtains the fact that (C, β) ∈ B (Ak) for each β > 0.
In 1970, using definition (1) and (2), Das [1] defined the concept of absolutely

kth power conservative. Now we introduce some terminology about this concept
and we establish concerning Ak spaces.

Let A be a sequence to sequence transformation mapping the sequence (sn)
into (tn). If, whenever (sn) converges absolutely, (tn) converges absolutely, A is
called absolutely conservative. If the absolute convergence of (sn) implies absolute
convergence of (tn) to the same limit, A is called absolutely regular. For some given
k ≥ 1 if

2000 Mathematics Subject Classification. 40G05.
Key words and phrases. Absolute summability; Bounded operator; Cesáro matrix; Conserva-

tive matrix; Hausdorff matrices.
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2 EKREM SAVAŞ* AND HAMDULLAH ŞEVLİ**

∞∑
n=1

nk−1 |sn − sn−1|k < ∞ (3)

implies

∞∑
n=1

nk−1 |tn − tn−1|k < ∞ (4)

then A is called absolutely kth power conservative.
Using the definition of Ak space, we may write this definition in another form

as follows.
If A is a mapping from Ak to Ak; i.e., A ∈ B (Ak) then A is called absolutely

kth power conservative.
For k = 1 condition (3) guarantees the convergence of (sn). Note that when

k > 1, (3) does not necessarily imply the convergence of (sn). For example, take

sn =
n∑

v=1

1
v log(v + 1)

.

Then (3) holds but (sn) does not converge. Thus, since the limit of (sn) need not
exist, we can’t introduce the concept of absolute kth power regularity when k > 1.

From Knopp and Lorentz [7], Morley [8] we konow that a conservative Hausdorff
transformation is absolutely conservative. The following theorem generalizes this
result.

Theorem 1. [1] Let k ≥ 1. Then a conservative Hausdorff transformation is
absolutely kth power conservative.

Since Euler, Hölder and (C, α) methods are special Hausdorff methods, we obtain
the following corollaries.

Corollary 1. Let 0 < α ≤ 1 and q = (1− α)/α. Then each (E, q) is a map from
Ak to Ak; i.e., (E, q) ∈ B (Ak).

Proof. We know that (E, q), α ∈ (0, 1] and q = (1− α)/α, is a Hausdorff method
generated by the sequence µn = αn. Also, we know that this method is regular and
so conservative. Hence from Theorem 1 Eα : Ak → Ak. ¤

From Corollary 1, each Euler transformation is absolutely kth power conserva-
tive.

Corollary 2. Let α > 0. Then Hα is a transformation from Ak into Ak; i.e.,
Hα ∈ B (Ak).

Proof. It is known that Hölder method Hα is a Hausdorff method generated by the
moment sequence µn = (n + 1)−α for α > 0. Also it is known that Hα is regular
and so conservative for α ≥ 0. Hence for α > 0 Hα : Ak → Ak by Theorem 1. ¤

Let α > 0. Then Hölder transformation is absolutely kth power conservative by
Corollary 2.

Corollary 3. Let α > 0. Then (C, α) ∈ B (Ak).

GENERALIZED HAUSDORFF MATRICES OF BOUNDED OPERATORS 703



3

Proof. We know that (C,α) is a Hausdorff method generated by the moment se-

quence µn =
(

n + α
n

)−1

for α > 0. For α ≥ 0 (C, α) is regular and conserva-

tive. So for α > 0, (C,α) : Ak → Ak by Theorem 1. ¤

In [9] it is shown that (C, α) ∈ B (Ak) for each α > −1. Therefore being
conservative is not a necessary condition for a matrix to map Ak to Ak. Because
we know that (C, α) is not conservative for α < 0.

By Theorem 1, if a Hausdorff transformation (H,µ) is conservative, then (H, µ) ∈
B (Ak). Now, we will obtain this result for the generalized Hausdorff matrices
defined independently by Endl [2] and Jakimovski [4].

Let β be a real number, let (µn) be a real sequence, and let ∆ be the forward
difference operator defined by ∆µk = µk − µk+1, ∆n(µk) = ∆(∆n−1µk). Then
the infinite matrix

(
H(β), µ

(β)
n

)
=

(
Hβ , µ

)
=

(
h

(β)
nk

)
is defined by

h
(β)
nk :=





(
n + β
n− k

)
∆n−kµ

(β)
k , 0 ≤ k ≤ n ,

0 , k > n ,

and the associated matrix method is called a generalized Hausdorff matrix and
generalized Hausdorff method, respectively. The moment sequence µ

(β)
n is given by

µ(β)
n =

1∫

0

tn+βdχ (t), (5)

where χ (t) ∈ BV [0, 1]. We shall consider here only nonnegative β. The case β = 0
corresponds to ordinary Hausdorff summability.

Theorem 2. If the generalized Hausdorff transformation
(
Hβ , µ

)
is conservative,

then it is absolutely kth power conservative; i.e.,
(
Hβ , µ

) ∈ B (Ak).

We need these Lemmas to prove the theorem.

Lemma 1. Let k ≥ 1, n ≥ v and β ≥ 0. Then

Ek−1
n+βEv+β−1

n−v ≤ Ek−1
v+βEv+β+k−2

n−v . (6)

Proof. For v fixed, we define a sequence (fn) by

fn =
Ek−1

n+βEv+β−1
n−v

Ek−1
v+βEv+β+k−2

n−v

.

Then

fn =
(n + β + k − 1) (v + β)
(n + β) (v + β + k − 1)

,

and
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fn+1

fn
=

(n + β + k) (n + β)
(n + β + k − 1) (n + β + 1)

=
(n + β)2 + k (n + β)

(n + β)2 + k (n + β) + (k − 1)
.

fn+1/fn < 1; i.e., (fn) is decreasing. Since

fv =
(v + β + k − 1) (v + β)
(v + β) (v + β + k − 1)

= 1,

and since n ≥ v, then fn ≤ 1. Hence for n ≥ v, (6) is satisfied. ¤

Lemma 2. [6] For 0 ≤ t ≤ 1 and β ≥ 0

m∑
n=0

(
m + α

n

)
(1− t)n

tm+α−n ≤ 1.

Proof of Theorem 2. Let (tn) denote the
(
Hβ , µ

)
transform of (sn); i.e.,

tn =
n∑

v=0

hβ
nvsv.

We will show that

∞∑
n=1

nk−1 |an|k < ∞⇒
∞∑

n=1

nk−1 |tn − tn−1|k < ∞. (7)

We write

tn =
n∑

v=0

bv.

Then bn = tn − tn−1. For k ≥ 1

Ek−1
n =

(
n + k − 1

n

)
=

(
n + k − 1

k − 1

)
=

(n + k − 1)!
n! (k − 1)!

=
Γ (n + k)

Γ (n + 1)Γ (k)
.

Then

Ek−1
n ≈ nk−1

Γ (k)
≈ nk−1,

nk−1 ≈ Ek−1
n ≈ Ek−1

n+β .

Hence (7) is equivalent to

∞∑
n=1

Ek−1
n+β |an|k < ∞⇒

∞∑
n=1

Ek−1
n+β |bn|k < ∞. (8)
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For 0 ≤ t ≤ 1 define

φn (t) =
n∑

v=1

Ev+β−1
n−v tv+β (1− t)n−v

av. (9)

Using Hölder’s inequality,

|φn (t)|k =

∣∣∣∣∣
n∑

v=1

Ev+β−1
n−v tv+β (1− t)n−v

av

∣∣∣∣∣

k

≤
n∑

v=1

Ev+β−1
n−v tv+β (1− t)n−v |av|k ×

{
n∑

v=1

Ev+β−1
n−v tv+β (1− t)n−v

}k−1

.

From Lemma 2

n∑
v=1

Ev+β−1
n−v tv+β (1− t)n−v =

n∑
v=1

(
n + β − 1

n− v

)
tv+β (1− t)n−v

=
n−1∑

i=0

(
n + β − 1
n− i− 1

)
ti+β+1 (1− t)n−i−1

=t
n−1∑

i=0

(
n− 1 + β
n− 1− i

)
ti+β (1− t)n−1−i

=O (t) .

Hence

|φn (t)|k = O (1) tk−1
n∑

v=1

Ev+β−1
n−v tv+β (1− t)n−v |av|k.

Using Lemma 1 we obtain that

∞∑
n=1

Ek−1
n+β |φn (t)|k =O (1)

∞∑
n=1

Ek−1
n+β tk−1

n∑
v=1

Ev+β−1
n−v tv+β (1− t)n−v |av|k

=O (1) tk−1
∞∑

v=1

tv+β |av|k
∞∑

n=v

Ek−1
n+βEv+β−1

n−v (1− t)n−v

=O (1) tk−1
∞∑

v=1

tv+β |av|k Ek−1
v+β

∞∑
n=v

Ev+β+k−2
n−v (1− t)n−v

=O (1) tk−1
∞∑

v=1

tv+β |av|k Ek−1
v+β t−v−β−k+1

=O (1)
∞∑

v=1

Ek−1
v+β |av|k. (10)

It is known by Das [1] and Jakimovski [5] that, if (tn) and (τn) are the (H,µn)
transformation of (sn) and (nan), respectively, then
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n (tn − tn−1) = τn.

A similar result can be proved for
(
Hβ , µ

)
, which we now do.

τn =
n∑

k=0

h
(β)
nk (k + β) ak

=
n∑

k=0

h
(β)
nk (k + β) (sk − sk−1)

=
n∑

k=0

h
(β)
nk (k + β) sk −

n∑

k=1

h
(β)
nk (k + β) sk−1

=
n∑

k=0

h
(β)
nk (k + β) sk −

n−1∑

k=0

h
(β)
n,k+1 (k + β + 1) sk

=
n∑

k=0

(
n + β
n− k

)
∆n−kµ

(β)
k (k + β) sk

−
n−1∑

k=0

(
n + β

n− k − 1

)
∆n−k−1µ

(β)
k+1 (k + β + 1) sk.

Since

(k + β)
(

n + β
n− k

)
=

(k + β) Γ (n + β − 1)
(n− k)!Γ (k + β − 1)

=
(n + β) Γ (n + β)
(n− k)!Γ (k + β)

= (n + β)
(

n + β − 1
n− k

)
,

we write

τn =(n + β)

[
n∑

k=0

(
n + β − 1

n− k

)
∆n−kµ

(β)
k sk −

n−1∑

k=0

(
n + β − 1
n− k − 1

)
∆n−k−1µ

(β)
k+1sk

]

=(n + β)
n∑

k=0

[(
n + β
n− k

)
−

(
n + β − 1
n− k − 1

)]
∆n−kµ

(β)
k sk

−
n−1∑

k=0

(
n + β − 1
n− k − 1

)
∆n−k−1µ

(β)
k+1sk

=(n + β)

[
tn −

n∑

k=0

(
n + β − 1
n− k − 1

) (
∆n−k−1µ

(β)
k sk −∆n−k−1µ

(β)
k+1sk

)

−
n−1∑

k=0

(
n + β − 1
n− k − 1

)
∆n−k−1µ

(β)
k+1sk

]
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=(n + β)

[
tn −

n∑

k=0

(
n + β − 1
n− k − 1

)
∆n−k−1µ

(β)
k sk

]

=(n + β) (tn − tn−1) .

Thus

bn =
1

n + β
τn

=
1

n + β

n∑
v=0

(
n + β
n− v

) (
∆n−vµ(β)

v

)
(v + β) av

=
n∑

v=0

(
n + β − 1

n− v

)
∆n−vµ(β)

v av

=
n∑

v=0

Ev+β−1
n−v ∆n−vµ(β)

v av.

Since
(
Hβ , µ

)
is conservative, µ

(β)
n as given by (5) is a moment sequence and

∆n−vµ(β)
v =

1∫

0

tv+β (1− t)n−v
dχ (t)

from Endl [2]. Using (9) we see that

bn =
n∑

v=1

Ev+β−1
n−v

1∫

0

tv+β (1− t)n−v
dχ (t) av

=

1∫

0

(
n∑

v=1

Ev+β−1
n−v tv+β (1− t)n−v

av

)
dχ (t)

=

1∫

0

φn (t) dχ (t).

Using Minkowski’s inequality and (10) we have
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{ ∞∑
n=1

Ek−1
n+β |bn|k

}1/k

=





∞∑
n=1

Ek−1
n+β

∣∣∣∣∣∣

1∫

0

φn (t) dχ (t)

∣∣∣∣∣∣

k




1/k

≤
1∫

0

|dχ (t)|
{ ∞∑

n=1

Ek−1
n+β |φn (t)|k

}1/k

=O(1)

1∫

0

|dχ (t)|
{ ∞∑

v=1

Ek−1
v+β |av|k

}1/k

.

Hence the proof is complete. ¤
If we take β = 0 in Theorem 2, we get Theorem 1 as a corollary.
We use C

(β)
α , H

(β)
α , and E

(β)
α to denote the corresponding Endl generalizations

of the (C,α), Hα, and Eα methods, respectively. For example C
(β)
α has moment

sequence

µ(β)
n =

1∫

0

tn+βα (1− t)α−1
dt.

Corollary 4. Let 0 < α ≤ 1, q = (1− α)/α, and β ≥ 0. Then each
(
E(β), q

)
is a

map Ak to Ak; i.e., E
(β)
α ∈ B (Ak).

Proof. We know from Endl [2] that E
(β)
α is a generalized Hausdorff method gener-

ated by the sequence µn = αn+β and that this method is conservative for 0 < α ≤ 1,
q = (1− α)/α, and β ≥ 0. Hence from Theorem 2 E

(β)
α : Ak → Ak. ¤

From Corollary 4 for β ≥ 0 each generalized Euler transformation is absolutely
kth power conservative. If we take β = 0 in Corollary 4, we get Corollary 1.

Corollary 5. Let α > 0 and β ≥ 0. Then H
(β)
α is a transformation from Ak into

Ak; i.e., H
(β)
α ∈ B (Ak).

Proof. It is known by Endl [2] that H
(β)
α is a generalized Hausdorff method gen-

erated by the moment sequence µn = (n + β + 1)−α and that this transformation
is conservative for α > 0, β ≥ 0. Hence for α > 0, β ≥ 0 H

(β)
α : Ak → Ak by

Theorem 2. ¤
Let α > 0. Then generalized Hölder transformation is absolutely kth power

conservative by Corollary 5. If we take β = 0 in Corollary 5, we get Corollary 2.

Corollary 6. Let α > 0 and β ≥ 0. Then C
(β)
α ∈ B (Ak).

Proof. We know from Endl [2] that C
(β)
α is a generalized Hausdorff method gen-

erated by the moment sequence µn =
(

n + α + β
n

)−1

and that this method is

conservative for α > 0, β ≥ 0. So for α > 0, β ≥ 0 C
(β)
α : Ak → Ak by Theorem

2. ¤
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From Corollary 6 C
(β)
α is absolutely kth power conservative. If we take β = 0

in Corollary 6, we obtain Corollary 3.
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Abstract: This paper gives sufficient conditions to ensure the stability and boundedness of 
solutions to a class of second order nonlinear delay differential equations of Liénard type. 
With the help of a Lyapunov functional, we obtain three new results and give some 
explanatory examples on the subject.  
 

1. Introduction 

As well-known, the area of differential equations is an old but durable subject that remains 
alive and useful to a wide class of engineers, scientists and mathematicians. In particular, many 
actual systems have the property aftereffect, i.e. the future states depend not only on the 
present, but also on the past history. Aftereffect is believed to occur in mechanics, control 
theory, physics, chemistry, biology, medicine, economics, atomic energy, information theory 
and so on. During investigations in applied sciences, economy and etc. some practical 
problems related to physics, mechanics, engineering technique fields, etc. are associated with 
some second order linear or nonlinear differential equations. Some of these equations are 
Liénard type equations. So far, qualitative properties of Liénard type equations with delay; in 
particular, stability, boundedness, asymptotic behavior, etc. of solutions have been widely 
studied in the literature. For instance, one can refer to the papers or books of Barnett [1], 
Burton ([2], [3]),  Burton and Zhang [4], Caldeira-Saraiva [5], Cantarelli  [6],   Èl’sgol’ts [7], 
 Èl’sgol’ts  and. Norkin [8],  Furumochi [9],   Gao and Zhao [10], Hale [11], Hara and 
Yoneyama ([12],  [13]),  Hatvani  [14],  Heidel ([15],[16]),   Huang and Yu [17],  Jitsuro and   
Yusuke [18],   Kato ([19],  [20]),  Kolmanovskii and Myshkis [21],   Krasovskiì ([22],  [23]), 
Li  [24], Li and Wen  [25],  Lin [26], Liu and  Huang [27], Liu and Xu   [28],  Liu [29],  
Ludeke [30],   Luk [31],  Malyseva [33],  Muresan [34], Nakajima  [35],  Nápoles Valdés [36], 
Qian [37],   Sugie [38], Sugie  and  Amano  [39],  Sugie et al. [40], C. Tunç  and E. Tunç  [41], 
Utz [42], Yang [43],  Yoshizawa [44],  Zhang ([45], [46]), Zhang and  Yan [47],   Zhou and  
Jiang [48],  Zhou and Liu, [49],  Zhou and  Xiang [50],  Wei and  Huang [51],  Wiandt ([52], 
[53]) and the references listed in these sources for some works and applications performed on 
the above mentioned subjects. To the best of our knowledge, for the sake of brevity, some 
results obtained in the literature on stability and boundedness of solutions of Liénard type 
equations can be summarized as follows:   

In 1953, Krasovskiì [22] considered the system  

ayxf
dt

dx
+= )(1 , 

)(2 yfbx
dt

dy
+= . 

______________ 

Key words: Differential equations of Liénard type, boundedness, stability. 
AMS subject classification number: 34K20. 
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and derived simple sufficient conditions which ensure the asymptotic stability of the null 
solution 0== yx  under arbitrary initial conditions. 
Later, in 1970, Burton [2] considered nonlinear differential equation  

 
)()()()( texgxxhxfx =+′′+′′ , 

 
and the stability of solutions  for the case 0)( =te  and boundeness of solutions for the case 

0)( ≠te  were investigated by the author. 
In 1970 and 1972, Heidel ([15], [16]) considered Liénard equation   

                            

0)()( =+′′+′′ xgxxxpx
α

 

and the forced generalized  Liénard equation 
 

)()()()()( texkxgxxhxfx =′+′′+′′ ,  
 

respectively. By using Lyapunov functions [32], the author showed a necessary and sufficient 
condition for global asymptotic stability of the origin )0,0( of the first equation and  
boundedness of solutions )(tx  and )(tx′ , and global asymptotic stability of the trivial solution 
of the second equation. 
Later, in 1976, Luk [31] obtained some results on the boundedness of solutions of Liénard 
equation with delay 

 

0))(()())(()( =−+′+′′ rtxgtxtxftx µ , 
 

subject to different classes of initial values.  
After that, in 1985 and 1988, Hara and Yoneyama ([12], [13]) considered the system  
 

)(xFyx −=′ , 

)(xgy −=′ . 
 

They gave a detailed and interesting discussion of stability, boundedness, oscillation and 
periodicity of solutions, and conditions based on the Poincaré-Bendixson theorem were also 
given to ensure global asymptotic stability of the zero solution of the system.  
Besides, in 1998,    Li [24] considered the second-order differential equation 
 

0)()( =+′+′′ xgxxfx . 

The author established necessary and sufficient conditions for global asymptotic stability of 
the zero solution of this equation and corrected some erroneous conditions of Krasovskiì 
[22]. 
In 1992 and 1993, Zhang ([45], [46]) also considered the second order Liénard equation with 
delay  

0))(()( =−+′+′′ htxgxxfx . 

In the first paper, the author established necessary and sufficient conditions for the 
boundedness of all solutions of this delay differential equation, and also gave necessary and 
sufficient conditions for all solutions and their derivatives to converge to zero. In the second 
paper, the author searched some necessary and sufficient conditions for uniform boundedness 
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of the solutions and their derivatives, and the global asymptotic stability of the zero solution 
of this equation on  [ )∞,0 . 
In 1993, Hatvani [14] established sufficient conditions for stability of the zero solution of the 
differential equation 

 

0)()(),()( =+′′+′′ xgtbxxxftax . 

In 1994, Qian [37] considered the nonlinear system  
 

[ ] )(/)()( xaxFyhx −=′ , 

)()( xgxay −=′ , 
 

and proved global asymptotic stability of the trivial solution of this system subject to the 
certain assumptions. 
In 1995, Liu [29] gave some necessary and sufficient conditions for the global stability of the 
Liénard equation system 
 

)(xFyx −=′ , 

)(xgy −=′ . 
 

In the same year, Gao and Zhao [10] investigated the system  
   

)()( xFyx −=′ ϕ , 

)(xgy −=′ . 
 

Their investigation focused on the question of whether or not that equilibrium point is 
asymptotically stable. The authors developed three criteria, each pertaining to the functions 
ϕ , F , g  and each necessary and sufficient for the required asymptotic stability to hold. 
In 1995, Wiandt [52] considered the equation  
 

0)()( =+′+′′ xgxxfx . 

It was conjectured that the condition ∫ ≥
x

dssfx
0

0)(  is necessary for the global asymptotic 

stability of the zero solution of this equation.  By the use of the Poincaré-Bendixson theorem 
and the LaSalle invariance principle, a counter example was given to this conjecture. 
In 1996, Cantarelli [6] dealt with the generalized Liénard equation 
 

0)()()()( =+′+′′ xgtpxxftax . 

The author studied the Lyapunov stability [32] of the origin by means of Lyapunov functions. 
Three theorems are given that use three different techniques. 
In 1998, Sugie et al. [40] gave some necessary and sufficient conditions under which the zero 
solution of Liénard-type system 
 

)()( xFyhx −=′ , 

)(xgy −=′  
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is global asymptotic stable. 
In 1999, Zhou and Xiang [50] considered the retarded Liénard-type equation 
 

0))(()())(()( 2
21 =−++′+′+′′ htxgxxxfxxfx ϕ . 

Using the Lyapunov functional method, the author obtained some sufficient conditions to 
ensure the stability and boundedness of solutions of this equation.  
In 2000, Zhang and Yan [47] gave sufficient conditions for boundedness and asymptotic 
stability of the delay Liénard equation 
 

0))(()()( =−+−′+′+′′ ττ txgtxaxxfx . 
 
In 2003, Liu and Huang [27] considered the standard Liénard equation 
 

)())(())(()( 2
21 tehtxgxxfxxfx =−+′+′+′′ . 

 

They obtained some new sufficient conditions, as well as some new necessary and sufficient 
conditions, for all solutions and their derivatives to be bounded. 
In 2003, Zhou and Jiang [48] considered the Liénard equation 
 

0))(())(())())((()())(()())(()( 2
321 =−++′+−′+′+′′ τϕτ txgtxtxtxftxtxftxtxftx . 

 

Using appropriate Lyapunov functionals, the authors obtained stability and boundedness 
results for solutions of this equation. 
In 2004, Jitsuro and Yusuke [18] have studied the global asymptotic stability of solutions of  
the non-autonomous system of Lienard type: 

 
)(xFyx −=′ ,  ( dxxdFxf /)()( = ), 

)()()()( 21 xgtqxgtpy −−=′ .  

The main result of Jitsuro and Yusuke [18] was proved by means of phase plane analysis with 
a Lyapunov function. 
More recently, in 2007, C. Tunç and E. Tunç [41] obtained a result on the uniform 
boundedness and convergence of solutions of second order nonlinear differential equations of 
the form 

),,()()(),()( xxtpxgtbxxxftax ′=+′′+′′ . 

In view of the above discussion, it can be seen that so far qualitative properties of Liénard 
type equations with delay or without delay have been discussed by many authors in the 
literature and some different tools have also been used to prove the results in these works. 

In this paper, we consider the real second order Liénard type equation with delay: 
 

))(()())(),(,()( rtxgtbrtxrtxttx −+−′−+′′ ϕ  

= ))(),(),(,( txrtxtxtp ′− ,                                                         (1) 

 

in which r  is a positive constant, that is, r  fixed delay; ϕ , b , g  and  p  are continuous 
functions in their respective domains;  0)0()0,,( == gxtϕ  and the derivatives )(tb′  and  

TUNC:NONLINEAR D.E OF LIENARD TYPE WITH DELAY714



 5 

)(xg
dx

dg
′≡  exist and are also continuous. The primes in equation (1) denote differentiation 

with respect to t . Throughout the paper )(  and  )( tytx  are respectively abbreviated as  x  and 
y . We investigate here the uniform asymptotic stability of zero solution of equation (1) when 

0))(),(),(,( =′− txrtxtxtp  in (1), and establish two results on the boundedness of the 
solutions of equation (1) when 0))(),(),(,( ≠′− txrtxtxtp  in (1). It is worth mentioning that, 
with respect to the observations in the literature, it is not found any research on stability and 
boundedness of solutions of equation (1). To prove our main results we introduce a Lyapunov 
functional. It should be noted that the motivation for the present work has been inspired 
basically by the papers mentioned above and that exist in the relevant literature. Equation (1) 
and the assumptions will be established are different than that in the papers or books 
mentioned above. 

Throughout the paper, instead of equation (1), we consider the equivalent system 

 

)(tx′ = )(ty , 

 ))(()())(),(,( )( txgtbrtyrtxtty −−−−=′ ϕ  

        + ))(),(),(,()())(()( tyrtxtxtpdssysxgtb

t

rt

−+′∫
−

,                                (2) 

which was obtained from (1). 
 

2. Preliminaries 
 

In order to reach our main results, first, we will give some basic definitions and some 
important stability and boundedness criteria for the general non-autonomous delay differential 
system. Consider the general non-autonomous delay differential system 

 

),( txtfx =& , )( θ+= txxt , 0≤≤− θr , 0≥t ,                   (3) 

where [ ) n

HCf ℜ→×∞ ,0:  is a continuous mapping, 0)0,( =tf , and we suppose that f  

takes closed bounded sets  into bounded sets of nℜ . Here ( ) . ,C  is the Banach space of 

continuous function [ ] nr ℜ→− 0 ,:φ   with supremum norm, 0>r , HC   is the open H -ball 

in C ; [ ]( ){ }HrCC n

H <ℜ−∈= φφ :  ,0,: .  Standard existence theory, see Burton [3], shows 

that if HC∈φ  and 0≥t , then there is at least one continuous solution ),,( 0 φttx  such that on 

[ )α+00  , tt  satisfying equation (3) for 0tt > ,   φφ =),(txt  and α  is a positive constant. If 

there is a closed subset HCB ⊂  such that the solution remains in B , then ∞=α . Further, the 

symbol  .  will denote the norm in nℜ  with x = ini x≤≤1max . 

 

Definition 1. (See [3].) A continuous function [ ) [ )∞→∞  ,0 ,0:W  with 0)0( =W , 

0)( >sW  if 0>s , and W  strictly increasing is a wedge. (We denote wedges by W  or iW , 

where i  an integer.) 
 

TUNC:NONLINEAR D.E OF LIENARD TYPE WITH DELAY 715



 6 

Definition 2.  (See [3].) A function [ ) [ )∞→×∞  ,0 ,0: DV  is called positive definite if 

0)0,( =tV  and if there is a wedge 1W  with )(),( 1 xWxtV ≥ , and is called decrescent if there is 

a wedge 2W   with )(),( 2 xWxtV ≤ . 
                

Definition 3. (See [44].) A function ),( 0 φtx is said to be a solution of (3) with the initial 

condition HC∈φ  at 0tt = , 00 ≥t , if there is a constant 0>A  such that ),( 0 φtx  is a function 

from [ ]Atht +− 00  ,  into nℜ  with the properties: 

(i) Ht Ctx ∈),( 0 φ  for Attt +<≤ 00 , 

(ii) φφ =),( 00
txt , 

(iii) ),( 0 φtx  satisfies (3) for Attt +<≤ 00 . 
 

Definition 4. (See [3].) Let 0)0,( =tf . The zero solution of equation (3) is: 

(a) stable if for each 0>ε  there is a 0>δ  such that [ ]0  ,  ,0    ttt ≥<≥ δφ  implies that 

εφ <),,( 0ttx . 

(b) asymptotically stable if it is stable and if for each 0≥t  there is an 0>η  such that 

ηφ <  implies that  0),,( 0 →φttx  as ∞→t . 
 

Definition 5. (See [3].) A continuous functional [ ) [ )∞→×∞  ,0 ,0: HCV , which is locally 
Lipschitizian in φ ,  is called a Lyapunov functional for equation (3) if there is a wedge W  
with  

(a) ),())0(( φφ tVW ≤ , 0)0,( =tV , and 

(b) [ ] 0)),(,()),(,(
1

suplim),( 000)3( ≤−+= +→ φφ txtVtxhtV
h

xtV ththt
& .  

 

Theorem 1. (See ([3].)  If there is a Lyapunov functional for the equation (3) and wedges 

satisfying:  

(i)   )(),())0(( 21 φφφ WtVW ≤≤ , where )(1 rW  and  )(2 rW  are wedges, 

(ii) 0),()3( ≤txtV& , 

then the zero solution of equation (3) is uniformly stable.  
 

Theorem 2.  (See ([3].)  If there is a Lyapunov functional ),( φtV for equation (3) and 

wedges 1W , 2W  and 3W  such that 

(i)   )(),())0(( 21 φφφ WtVW ≤≤ ,   (where )(1 rW  and )(2 rW  are wedges,) 

(ii) ))(( ),( 3)3( txWxtV t −≤& , 

then the zero solution of equation (3) is uniformly asymptotically stable. 
 

Lemma. (See [3].) Let [ ) ℜ→×∞ Ht CxtV ,0:),(  be a continuous functional satisfying a 

local Lipschitz condition. If  
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(i)   )))((())((),())(( 321 ∫
−

+≤≤
t

rt

t dssxWWtxWxtVtxW , and  

(ii) )3(V& ≤ - ))((3 txW + M  for some 0>M , where )(rW  and  iW , )3 ,2 ,1( =i , are wedges, 

then the solutions of the equation (3) are uniform-bounded and uniform-ultimately bounded 
for bound B . 

 
Theorem 3. (See [44].) If ),( φtf  in (3) is continuous in t , φ , for every 

1HC∈φ , 

HH <1 , and  0t , ct <≤ 00 , where c  is a positive constant, then there exist a solution of (3) 

with  initial value φ  at 0tt = , and this solution has a continuous derivative for 0tt > . 

 

 

2. Main results 

For the case 0))(),(),(,( =− tyrtxtxtp  in (1), the first main result of this paper is the 
following: 

 
Theorem 4. In addition to the basic assumptions imposed on the functions  b ,  f  and g , 

we suppose the following assumptions hold ( 1α , 2α -some arbitrary positive constants, 0ε  

and 1ε   are some sufficiently small positive constants): 

(i) 1)( 0 ≥≥≥ btbB  for all t ∈ℜ+ , +ℜ = [ )∞,0 ; and 0)( <′ tb  (,where B  and 0b   are 

some constants).   

(ii) 01)(

))(),(,(
0 εα

ϕ
≤−

−−
≤

ty

rtyrtxt
  for all +ℜ∈t , )( rtx − , )( rty −  and   )(ty  

)0)(( ≠ty , and  0)0),(,( =− rtxtϕ .   

(iii) 0)0( =g  and  12)(0 εα ≤−′≤ xg  for all  x. 

Then the zero solution of equation (1) are uniformly asymptotically stable, provided that   

)( 12

1

εα

α

+
<

B
r . 

 

Proof. To verify the main results of this paper, we introduce a Lyapunov functional 
V0 = ),,(0 tt yxtV , which is   defined by:      

),,(0 tt yxtV = ∫
x

dssgtb
0

)()( + 2

2

1
y + ∫ ∫

− +

0
2 )( 

r

t

st

dsdy θθδ .                                       (4) 

In view of conditions of (i) and (iii) of Theorem 4 and the functional ),,(0 tt yxtV  given by 

(4), we see that  

V0 ≥ ∫
x

dssgb
0

0 )( + 2

2

1
y + ∫ ∫

− +

0
2 )( 

r

t

st

dsdy θθδ , 

≥ 220

2
x

b







 α
+

2

2
y

≥ )( 22
1 yxD + , 
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where 








=
2

1
 ,

2
min 20

1

αb
D . Similarly, making use of conditions (i) and (iii) of Theorem 4, it 

follows that  

V0 ≤ ∫
x

dgB
0

)( ξξ +
2

2
y

+ ∫ ∫
− +

0
2 )( 

r

t

st

dsdy θθδ  

≤ 212

2
x

BB







 + εα
+

2

2
y

+ ∫ ∫
− +

0
2 )( 

r

t

st

dsdy θθδ  

≤ )( 22
2 yxD + + ∫ ∫

− +

0
2 )( 

r

t

st

dsdy θθδ , 

where 






 +

=
2

1
,

2

)(
max 12

2

εαB
D . 

Evaluating the time derivative of the functional ),,(0 tt yxtV  along the system (2), that is, 

),,(0 tt yxtV
dt

d
, we get  

),,(0 tt yxtV
dt

d
= )(

)(

))(),(,(
 2

ty
ty

rtyrtxt







 −−
−

ϕ
+ ∫

−

′
t

rt

dssysxgtytb )())(()()(  

+ ∫′
x

dssxgtb
0

))(()( + ∫
−

−
t

rt

dssyry )(22 δδ .                                          (5) 

Now, in view of the assumptions 1)(

))(),(,(
α

ϕ
≥

−−

ty

rtyrtxt
, Btb ≤)(  and 

212 )( αεα +≤′≤ xg  of  Theorem 4 and the inequality 222 baab +≤ , we obtain from (5) that 
 

),,(0 tt yxtV
dt

d
≤  - )(2

1 tyα + )(
2

)( 212 ty
rB εα +

+
2

)( 12 εα +B
∫
−

t

rt

dssy )(2   

+ )(
2

)( 22 tx
tb








 ′ α
+ ∫

−

−
t

rt

dssytyr )()(  22 δδ  

= -  )( 
2

)( 212
1 tyr

B
















+

+
− δ

εα
α + )(

2

)( 22 tx
tb








 ′ α
 

- 






 +
−

2

)( 12 εα
δ

B
∫
−

t

rt

dssy )(2 .                                                     (6) 

Let us choose 
2

)( 12 εα
δ

+
=

B
.  Then, we have from (6) that  

),,(0 tt yxtV
dt

d
≤ - )( 

2

)( 212
1 tyr

B
















+

+
− δ

εα
α + 0)(

2

)( 22 ≤






 ′
tx

tb α
         (7) 
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provided  
)( 12

1

εα

α

+
<

B
r .            

In view of the above discussion and (7), one can conclude that the zero solution of equation 
(1) is uniformly asymptotically stable. 
 

Example 1.  Consider the second order nonlinear delay differential equation 
 

0)( 
1

))(),((
1

2
)(

2

2

=
+

+−′−
+

+
+′′ tx

e

e
rtxrtx

t

t
tx

t

t

ϕ ,                                (8) 

where r  is a positive constant, that is, r  is fixed delay, [ )∞∈ ,0t , ϕ   is a continuous 
function, 0)0),(( =− rtxϕ  and   
 

0
)(

))(),((
>≥

−−
a

ty

rtyrtxϕ
 for all )( rtx −  )( rty − and )(ty , )0)(( ≠ty .  

Equation (8) can be transformed into an equivalent system of the form 

)()( tytx =′ ,  

)(
1

))(),((
1

2
 )(

2

2

tx
e

e
rtyrtx

t

t
ty

t

t +
−−−

+

+
−=′ ϕ .                                             (9) 

We define the Lyapunov functional  
 

),,(1 tt yxtV =
2

  )1(
2

x
e

t−+ +
2

2
y

+ ∫ ∫
− +

0
2 )( 

r

t

st

dsdy ηηλ                                         (10) 

to verify the stability of the solution 0=x  of equation (8), where λ  is a positive constant 
which will be determined later. It is clear that the Lyapunov functional ),,(1 tt yxtV  is positive 

definite; 0)0,0,(1 =tV , and we have  from (10) that  
 

2
0

2
x

< +
2

2
y

≤ ),,(1 tt yxtV .                                                                      (11) 

Similarly, we obtain from (10) that  

),,(1 tt yxtV ≤ 2
x +

2

2
y

+ ∫ ∫
− +

0
2 )( 

r

t

st

dsdy ηηλ . 

Now, the time derivative of the functional  1V  = ),,(1 tt yxtV  in (10) with respect to the system 

(9) can be calculated as: 
 

),,(1 tt yxtV
dt

d
 = )(

2
 2

tx
e

t−

− )( 
)(

))(),((
 

)1(2

2 2
2

2

ty
ty

rtyrtx

t

t







 −−

+

+
−

ϕ
 

+ ∫
−

−
t

rt

dssytry )()( 22 λλ . 
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Making use of the assumption  0
)(

))(),((
>≥

−−
a

ty

rtyrtxϕ
, )0)(( ≠ty , it follows that  

),,(1 tt yxtV
dt

d
≤ )(

2
 2

tx
e

t−

−  - )(
2

2
ty

a
+ ∫

−

−
t

rt

dssytry )()( 22 λλ  

= )(
2

 2
tx

e
t−

− - )( 
2

2
tyr

a








− λ - ∫

−

t

rt

dssy )(2λ . 

If we choose 
2

L
=λ , then the last inequality implies that  

),,(1 tt yxtV
dt

d
≤  - )(

2
 2

tx
e

t−

- 0)( 2 ≤tyα   provided  
L

a
r < . 

Thus, under the above discussion, one can say that the zero solution of equation (8) is 
uniformly asymptotically stable. 
 

For the case 0))(),(),(,( ≠− rtytytxtp  in (1), the second main result of this paper is the 
following: 

 

Theorem  5.  In addition to the basic assumptions imposed on the functions  b ,  f ,  g  

and p , we suppose that there are arbitrary positive constants  1α , 2α  and sufficiently small 

positive constants 0ε  and 1ε    such that the following assumptions hold  

(i) 1)( 0 ≥≥≥ btbB  for all t ∈ℜ+ and 0)( <′ tb  (, where B  and 0b   are some constants). 

(ii) 01)(

))(),(,(
0 εα

ϕ
≤−

−−
≤

ty

rtyrtxt
  for all +ℜ∈t , )( rtx − , )( rty −  and   )(ty  and  

)0)(( ≠ty , and  0)0),(,( =− rtxtϕ .   

(iii) 0)0( =g  and 12)(0 εα ≤−′≤ xg  for all  x. 

(iv) Ktyrtxtxtp ≤− )(),(),(,(  for all t , )(tx , )( rtx −  and )(ty , where K  is finite 

positive constant. Then, every solution ),( tt yx  of the system (2) is uniform-bounded and 

uniforml-ultimately bounded provided that  
)( 12

1

εα

α

+
<

B
r .             .  

 
 Proof.  We use the Lyapunov functional given by (4) to complete the proof of Theorem 

5. By differentiating the functional ),,(00 tt yxtVV = throughout the system (2), we get   
            

),,(0 tt yxtV
dt

d
= )(

)(

))(),(,(
 2

ty
ty

rtyrtxt







 −−
−

ϕ
+ ∫

−

′
t

rt

dssysxgtytb )())(()()(  

+ ∫′
x

dssxgtb
0

))(()( + ))(),(),(,()( tyrtxtxtpty −  
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+ ∫
−

−
t

rt

dssytry )()( 22 δδ .                                                                   (12) 

Using the assumptions of Theorem 5 and the inequality 222 baab +≤ ,  we obtain from (12) 

that  

),,(0 tt yxtV
dt

d
≤  - )(2

1 tyα + )(
2

)( 212 ty
rB εα +

+
2

)( 12 εα +B
∫
−

t

rt

dssy )(2   

+ )(
2

)( 22 tx
tb








 ′ α
+ ∫

−

−
t

rt

dssytry )()( 22 δδ  

+ ))(),(),(,()( tyrtxtxtpty −  

= -  )( 
2

)( 212
1 tyr

B
















+

+
− δ

εα
α + )(

2

)( 22 tx
tb








 ′ α
 

 + ))(),(),(,( )( tyrtxtxtpty − + 







−

+
δ

εα

2

)( 12B
∫
−

t

rt

dssy )(2  

≤  - )( 
2

)( 212
1 tyr

B
















+

+
− δ

εα
α  + )(

2

)( 22 tx
tb








 ′ α
 

+ )(tyK + 







−

+
δ

εα

2

)( 12B
∫
−

t

rt

dssy )(2 .                                         (13) 

If we choose 
2

)( 12 εα
δ

+
=

B
, then we have from (13) for some constants 0>ρ  and 0>γ  

that  

),,(0 tt yxtV
dt

d
≤ - 22

2
 x







 γα
- yKy +2ρ   provided  

)( 12

1

εα

α

+
<

B
r ,             (14)  

where γ− =
∞<≤

′
t

tb
0

)(sup .                     

Let 








= ρ
γα

α ,
2

min 2 . When we choose αkK = , we get from  (14) that  

),,(0 tt yxtV
dt

d
≤ - )( 22 yx +α + ykα  

≤  - )(
2

22
yx +

α
- 2)(

2
ky −

α
+ 2

2
k

α
 

≤ - )(
2

22
yx +

α
+ 2

2
k

α
  for some constants 0>k  and 0>α . 
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If we take  
2

)(
2

3

r
rW

α
=  and 2

2
kM

α
=  , then it can be easily verified that the Lyapunov 

functional  ),,(0 tt yxtV  satisfies condition (ii) of the lemma. In view of the assumptions of 

Theorem 5, by a similar argument proceeded above, one can easily show that the Lyapunov 
functional  ),,(0 tt yxtV  satisfies the first part of the lemma, (i).  

The proof of this theorem is now complete. 
 

Example 2.  Consider the second order nonlinear delay differential equation 
 

   )(tx ′′ +
1

2
2

2

+

+

t

t ( ) )(1 )()( 22

txe rtxrtx ′+ −′−−− + )( 
1

tx
e

e
t

t +
=

)()()(1

1
2222

txrtxtxt ′+−+++
, (15)  

where r  is a positive constant, [ )∞∈ ,0t . Equation (15) is equivalent to the system: 
 

)()( tytx =′ ,  

1

2
 )(

2

2

+

+
−=′

t

t
ty ( ) )(1 )()( 22

tye rtyrtx −−−−+ -
)()()(1

1
)( 

1
2222

tyrtxtxt
tx

e

e
t

t

+−+++
+

+
.   (16) 

It follows from the system (15) that  

 
)(

))(),(,(

ty

rtyrtxt −−ϕ
=

1

2
2

2

+

+

t

t ( ))()( 22

1 rtyrtxe −−−−+ ,   
1

)(
t

t

e

e
tb

+
= , )())(( txtxg =  and 

))(),(),(,( tyrtxtxtp − =
)()()(1

1
2222

tyrtxtxt +−+++
. 

Clearly, the functions ϕ , b , g  and p  satisfy the assumptions of Theorem 5. 

Namely, ( ) 41
1

2
1 )()(

2

2
22

≤+
+

+
≤ −−−− rtyrtx

e
t

t
, the case for the  function xxg =)(  is clear, that 

is, )(2 xg ′≤α =1 12 εα +≤ , 0)( <−=′ −tetb  for all [ )∞∈ ,0t  and )(),(),(,( tyrtxtxtp −  

=
)()()(1

1
2222

tyrtxtxt +−+++
K=≤ 1 . 

 
We define the Lyapunov functional  

),,(2 tt yxtV =
2

) (1
2

x
e

t−+ +
2

2
y

+ ∫ ∫
− +

0
2 )( 

r

t

st

dsdy ηηλ                                          (17) 

to verify the boundedness of solutions of  equation (15), where λ  is a positive constant which 
will be determined later. The Lyapunov functional ),,(2 tt yxtV  given by (17) is positive 

definite; 0)0,0,(0 =tV  and 
 

2
0

2
x

< +
2

2
y

≤ ),,(2 tt yxtV .                                                                      
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In view of (17), it can be seen that 

),,(2 tt yxtV ≤ 2
x +

2

2
y

+ ∫ ∫
− +

0
2 )( 

r

t

st

dsdy ηηλ . 

Now, the time derivative of the functional  2V  = ),,(2 tt yxtV  with respect to the system (16) 

can be calculated as follows: 
 

),,(2 tt yxtV
dt

d
 = 2

2
 x
e

t−

− -
1

2
2

2

+

+

t

t ( ) )(1 2)()( 22

tye rtyrtx −−−−+  

  +
)()()(1

)(
2222

tyrtxtxt

ty

+−+++
 + ∫

−

−
t

trt

dssytry
)(

22 )()( λλ . 

Hence  

),,(2 tt yxtV
dt

d
≤ 2

2
 x
e

t−

−  - )(2 ty + ∫
−

−
t

rt

dssytry )()( 22 λλ +
)()()(1

)(1
2222

2

tyrtxtxt

ty

+−+++

+
 

≤  2

2
 x
e

t−

− - ( ) 2 1 yrλ− - ∫
−

t

rt

dssy )(2λ + M  

since M
tyrtxtxt

ty
≤

+−+++

+

)()()(1

)(1
2222

2

, 0>M . 

Le us choose 2=λ . Hence  

),,(2 tt yxtV
dt

d
≤  - 2

2
 x
e

t−

- My +2 α  provided  12−<r . 

Thus, under the above discussion, all solutions of equation (15) are uniform-bounded and 
uniform-ultimately bounded.  

 
Our last result is the following theorem: 
 
Theorem 6. Suppose the following conditions are satisfied: 

(i)  Conditions (i)-(iii) of Theorem 5 hold. 

(ii)  )()(),(),(,( tqtyrtxtxtp ≤− , 

where max ∞<)(tq  and ),0(1 ∞∈ Lq , ),0(1 ∞L  is space of integrable Lebesgue functions. 

Then, there exists a finite positive constant K  such that the solution )(tx of equation (1) 
defined by the initial functions  

)()( ttx φ= , )()( ttx φ ′=′  

satisfies the inequalities 
Ktx ≤)( , Ktx ≤′ )(   

for all 0tt ≥  , where [ ]( )ℜ−∈  ,, 00
1

trtCφ ,  provided that 
)( 12

1

εα

α

+
<

B
r . 
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Proof. For the proof of this theorem use the Lyapunov functional ),,(00 tt yxtVV =  

defined by (4). Clearly, we have 
 

)( 22
1 yxD + ≤ ),,(0 tt yxtV . 

Evaluating the time derivative of the functional ),,(0 tt yxtV  along the solution 

))(),(),(( tztytx  of the system (2) and making use of the assumptions Theorem 6, we get 
 

),,(0 tt yxtV
dt

d
≤  ))(),(),(,()( tyrtxtxtpty −  

≤ )(tqy ≤ )()( 2 tqytq + . 

Since 
2y ≤ ),,( 0

1
1 tt yxtVD
− ,  

we have  

),,( ttt zyxV
dt

d
≤ ( ) )(),,(1 1

1 tqyxtVD tt

−+ . 

Now, integrating the last inequality from 0  to t , using the assumption ),0(1 ∞∈ Lq  and 
Gronwall-Reid-Bellman inequality, we obtain  

),,( tt yxtV ≤ ),,0( 00 yxV + ( ) dssqyxsVDA

t

ss )(),,(
0

0
1

1 ∫
−+  

≤ ( )AyxV +),,0( 00 









∫

−
t

dssqD
0

1
1 )(exp  

= ( )AyxV +),,0( 00 ( ) ∞<=−
1

1
1exp KAD ,                                (18) 

where 01 >K  is a constant, 1K = ( )AyxV +),,0( 00 ( )AD 1
1exp −   and ∫

∞

=
0

)( dssqA .  

Now, the inequalities )( 22 yx + ≤ ),,(0
1

1 tt yxtVD
−  and (18) together imply that  

22 yx + ≤ ),,(0
1

1 tt yxtVD
−

K , 

where 1
11
−= DKK . Hence, we conclude that  

Ktx ≤)( , Kty ≤)(  

for all 0tt ≥ . That is,  

Ktx ≤)( , Ktx ≤′ )(  

for all 0tt ≥ .  

The proof of the theorem is now complete. 
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Abstract

A new finite element method is introduced for solving general elastic multi-structure
problems, where displacements on bodies, longitudinal displacements on plates, longitu-
dinal displacements and rotational angles on rods are discretized by conforming linear
elements, transverse displacements on rods and plates are discretized respectively by
Hermite elements of third order and Zienkiewicz-type elements due to Wang, Shi, and
Xu, and the discrete generalized displacement fields in individual elastic members are
coupled together by some feasible interface conditions. The optimal error estimate in the
energy norm is established for the method, which is also validated by some numerical
examples.

Keywords: Elastic multi-structures; New Zienkiewicz-type elements; Error estimates

1 Introduction

Elastic multi-structures are usually assembled by elastic substructures of the same or
different dimensions (bodies, plates, rods, etc.) with proper junctions, which are widely
used in automobile and aeroplane structures, and motion- and force- transmitting machines
and mechanisms. In the past few decades, many researchers have paid much attention to
mathematical modeling and numerical solutions for elastic multi-structures composed of
only two elastic members. We refer to [2, 5, 7, 10, 13, 15] and references therein for details.
However, there are few considerations about general elastic multi-structure problems. Feng
and Shi [8, 9] established mathematical models for general elastic multi-structure problems
by the variational principle together with reasonable presentation for the interface condi-
tions among substructures. The corresponding mathematical theory and a P1-P3-Morley
FEM were developed in [11, 12] by Huang, Shi, and Xu. The purpose of this paper is to
introduce and analyze a new finite element method for solving general elastic multi-structure
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China (NCET-06-0391), NNSFC (10771138), and E–Institutes of Shanghai Municipal Education Commission

(E03004).
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problems, where displacements on bodies, longitudinal displacements on plates, longitudinal
displacements and rotational angles on rods are discretized by conforming linear elements,
transverse displacements on rods and plates are discretized respectively by Hermite elements
of third order and Zienkiewicz-type elements due to Wang, Shi, and Xu [17], and the discrete
generalized displacement fields in individual elastic members are coupled together by some
feasible interface conditions. (The method is called simply as a P1-P3-NZT FEM in what
follows.)

The unique solvability of the method is guaranteed by the Lax-Milgram lemma after
deriving generalized Korn’s inequalities in some nonconforming element spaces over elastic
multi-structures. The optimal error estimate in the energy norm is obtained, which is also
validated by some numerical examples.

We end this section by introducing some notation for later uses. Throughout this paper,
the symbol “. · · · ” stands for “≤ C · · · ” with a generic positive constant C independent
of corresponding parameters and functions under considerations, which may take different
values in different appearances. We adopt standard notation for Sobolev spaces [1, 14], and
use the same index and summation conventions as given in [11,12]. That means, Latin indices
i, j, l take their values in the set {1, 2, 3}, while the capital Latin indices I, J, L (resp. K)
take their values in the set {1, 2} (resp. {2, 3}). The summation is implied when a Latin
index (or a capital Latin index) appears exactly two times. For a sum

∑

t∈Λ at, if at is not
defined for some t0 ∈ Λ, at0 is taken to be zero automatically.

2 The mathematical model and the P1-P3-NZT FEM

Let there be given N3 body members Ω3 := {α1, · · · , αN3
}, N2 plate members Ω2 :=

{β1, · · · , βN2
}, and N1 rod (beam) members Ω1 := {γ1, · · · , γN1

}. They are rigidly connected
to form an elastic multi-structure [9, 12]:

Ω = {α1, · · · , αN3
;β1, · · · , βN2

; γ1, · · · , γN1
}.

As in [9,11], assume that Ω fulfills the following four conditions:

• Each body member α is a bounded polyhedron and each plate member β is a bounded
polygon.

• Ω is geometrically connected in the sense that for any two points in Ω, one can connect
them by a continuous path consisting of a finite number of line segments each of which
belongs to some elastic member in Ω.

• For any two adjacent elastic members A and B, the dimension of the intersection Ā∩ B̄
can only differ from the dimensions of these two members by one dimension at most; for
example, a body member can only have body or plate members as its adjacent elastic
members.

• Ω is geometrically conforming in the sense that if A and B are two adjacent elastic
members in Ω with the same dimension, then ∂A∩∂B should be the common boundary
of A and B.

It is mentioned that if an elastic multi-structure does not satisfy the last two conditions,
one may transform it into a new one satisfying such conditions by adding or changing some
individual elastic members. We refer to [9] for details along this line.

2
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Denote all proper boundary area elements of bodies by

Γ2 := {βN2+1, · · · , β
N

′

2

} = Γ2
1 ∪ Γ2

2, Γ2
1 := {βN2+1, · · · , βN2+M2

}, Γ2
2 := {βN2+M2+1, · · · , β

N
′

2

},

where Γ2
1 consists of all external proper boundary area elements while Γ2

2 consists of all
interfaces of bodies. Analogously, denote all proper boundary line segments of plates by

Γ1 := {γN1+1, · · · , γ
N

′

1

} = Γ1
1 ∪ Γ1

2, Γ1
1 := {γN1+1, · · · , γN1+M1

}, Γ1
2 := {γN1+M1+1, · · · , γ

N
′

1

},

where Γ1
1 consists of all external boundary lines while Γ1

2 consists of all interfaces of plates.
Denote all boundary points of rods by Γ0 := {δ1, · · · , δN0

}, and all corner points of proper
boundaries of plates by Γ0

3 := {δN0+1, · · · , δN
′

0

} (except those in Γ0). Let Γ0 = Γ0
1 ∪ Γ0

2 with

Γ0
1 := {δ1, · · · , δM0

}, Γ0
2 := {δM0+1, · · · , δN0

}.

Here Γ0
1 consists of all external boundary points while Γ0

2 consists of all common boundary
points. An element of Ω3, Ω2 ∪ Γ2, Ω1 ∪ Γ1, and Γ0 ∪ Γ0

3 is called respectively a body, area,
line, and point element.

Introduce a right-handed orthogonal system (x1, x2, x3) in the space R3, whose orthonor-
mal basis vectors are denoted by {ei}3

i=1. With each elastic member in ω, we associate a
local right-handed coordinate system (xω

1 , xω
2 , xω

3 ) as follows. ({eω
i }

3
i=1 represent the related

orthonormal basis vectors.) For a body member α ∈ Ω3, its local coordinate system is chosen
as the global system (x1, x2, x3), and let nα be the unit outward normal to the boundary

∂α of α. For a plate member β ∈ Ω2, xβ
1 and xβ

2 are its longitudinal directions, and xβ
3

the transverse direction. Moreover, along the boundary ∂β of β, a unit tangent vector tβ

is selected such that {nβ , tβ,eβ
3} forms a right-handed coordinate system, where nβ denotes

the unit outward normal to ∂β in the longitudinal plane, and e
β
3 the unit transverse vector

of β. It is noted that similar notation is also used for a subdomain of α or β in what follows.
For a rod line element γ ∈ Ω1, xγ

1 is the longitudinal direction, xγ
2 and xγ

3 are the transverse
directions, and the origin of the local coordinates is located at an endpoint of γ. For a line
element γ ∈ Γ1, let e

γ
1 be a unit vector representing the longitudinal direction of γ.

For any two elements β ∈ Ω2 ∩ Γ2 and α ∈ Ω3, α ∈ ∂−1β means that β is a boundary
element of α. For any two elements β ∈ Ω2 and γ ∈ Ω1 ∪ Γ1, define

ε(β, γ) :=







0 if γ 6∈ ∂β,
1 if γ ∈ ∂β, and e

γ
1 and tβ have the same direction on γ,

−1 if γ ∈ ∂β, and e
γ
1 and tβ have the opposite direction on γ.

The symbols β ∈ ∂−1γ, γ ∈ ∂−1δ, ε(α, β) and ε(γ, δ) are understood in the similar
manners.

We impose the clamped conditions on a line element γN1+1 ∈ ∂β1:

uβ1 = 0, ∂
nβ1

uβ1

3 = 0 on γN1+1,

and impose the force and moment free conditions on all kinds of proper boundaries of Ω except
γN1+1. Here uβ1 denotes the displacement field on the plate member β1 (see the following
descriptions for details). It is noted that all derivations in this paper can be extended naturally
to problems with other boundary conditions after some straightforward modifications.

3
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Since Ω is rigidly connected, the admissible space V of generalized displacement fields
consists of all functions

v :=
{

{vα}α∈Ω3 , {vβ}β∈Ω2 , {vγ}γ∈Ω1 , {vγ
4}γ∈Ω1

}

in
∏

α∈Ω3 W (α) ×
∏

β∈Ω2 W (β) ×
∏

γ∈Ω1 W (γ) ×
∏

γ∈Ω1 H1(γ) which fulfill the following
interface conditions [9, 12]:

vα = vα′

on β ∀α,α′ ∈ ∂−1β ∀ β ∈ Γ2
2; (2.1)

vβ = vβ′

, ε(β, γ)∂nβvβ
3 = ε(β′, γ)∂

nβ′vβ′

3 on γ ∀ β, β′ ∈ ∂−1γ ∀ γ ∈ Γ1
2; (2.2)

vγ
i e

γ
i = vγ′

i e
γ′

i , vγ
i+3e

γ
i = vγ′

i+3e
γ′

i on δ ∀ γ, γ′ ∈ ∂−1δ ∩ Ω1 ∀ δ ∈ Γ0
2, (2.3)

where vγ
5 := −dvγ

3/dxγ
1 , vγ

6 := dvγ
2/dxγ

1 ;

vα = vβ on β ∀α ∈ ∂−1β ∀ β ∈ Ω2; (2.4)

vβ = vγ , −ε(β, γ)∂nβvβ
3 = vγ

4 on γ ∀ β ∈ ∂−1γ, ∀ γ ∈ Ω1. (2.5)

Here

vα := vα
i eα

i , vβ := vβ
i e

β
i , vγ := vγ

i e
γ
i ;

W (α) := (H1(α))3, W (β) := (H1
∗
(β))2 × H2

∗
(β), W (γ) := H1(γ) × (H2(γ))2,

H1
∗
(β1) := H1

0 (β1; γN1+1), H2
∗
(β1) := H2

0 (β1; γN1+1),

H1
∗
(β) := H1(β), H2

∗
(β) := H2(β) for each β ∈ Ω2\β1.

Therefore, under the action of the applied generalized load field

f :=
{

{fα}α∈Ω3 , {fβ}β∈Ω2 , {f γ}γ∈Ω1 , {fγ
4 }γ∈Ω1

}

,

the generalized displacement field of the equilibrium configuration

u :=
{

{uα}α∈Ω3 , {uβ}β∈Ω2 , {uγ}γ∈Ω1 , {uγ
4}γ∈Ω1

}

of Ω is governed by the following problem [9,12]: Find u ∈ V such that

D(u,v) = F (v) ∀v ∈ V , (2.6)

where
F (v) :=

∑

α∈Ω3

Fα(v) +
∑

β∈Ω2

F β(v) +
∑

γ∈Ω1

F γ(v),

Fα(v) :=

∫

α
fα · vαdα, F β(v) :=

∫

β
fβ · vβdβ, F γ(v) :=

∫

γ
fγ · vγdγ +

∫

γ
fγ
4 vγ

4dγ;

moreover, for w =
{

{wα}α∈Ω3 , {wβ}β∈Ω2 , {wγ}γ∈Ω1 , {wγ
4}γ∈Ω1

}

∈ V ,

D(v,w) :=
∑

α∈Ω3

Dα(v,w) +
∑

β∈Ω2

Dβ(v,w) +
∑

γ∈Ω1

Dγ(v,w),

4
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where

Dα(v,w) :=

∫

α
σα

ij(v)εα
ij(w)dα,

εα
ij(v) := (∂iv

α
j + ∂jv

α
i )/2, ∂iv

α
j := vα

j,i = ∂vα
j /∂xα

i ,

σα
ij(v) := Eα

1+να
εα
ij(v) + Eανα

(1+να)(1−2να)(ε
α
ll(v))δij , 1 ≤ i, j ≤ 3;

Dβ(v,w) :=

∫

β
[Qβ

IJ(v)εβ
IJ (w)dβ + Mβ

IJ(v)Kβ
IJ (w)]dβ,

εβ
IJ(v) := (∂Iv

β
J + ∂Jvβ

I )/2, ∂Iv
β
J := vβ

J,I =
∂vβ

J

∂xβ
I

,

Qβ
IJ(v) :=

Eβhβ

1−ν2

β

((1 − νβ)εβ
IJ (v) + νβ(εβ

LL(v))δIJ), 1 ≤ I, J ≤ 2,

Kβ
IJ(v) := −∂IJvβ

3 = − ∂2vβ
3

∂xβ

I
∂xβ

J

,

Mβ
IJ(v) :=

Eβh3

β

12(1−ν2

β
)
((1 − νβ)Kβ

IJ(v) + νβ(Kβ
LL(v))δIJ );

Dγ(v,w) :=

∫

γ
[Qγ

1(v)εγ
11(w) + Mγ

i (v)Kγ
i (w)]dγ,

εγ
11(v) := dvγ

1/dxγ
1 , Qγ

1(v) := EγAγεγ
11(v),

Kγ
2 (v) := −d2vγ

3/(dxγ
1 )2, Kγ

3 (v) := d2vγ
2/(dxγ

1)2,
Mγ

2(v) := EγIγ
22K

γ
2 (v) + EγIγ

23K
γ
3 (v),

Mγ
3(v) := EγIγ

32K
γ
2 (v) + EγIγ

33K
γ
3 (v),

Iγ
23 = Iγ

32,

Kγ
1 (v) := dvγ

4/dxγ
1 , Mγ

1(v) :=
Eγ

2(1 + νγ)
JγK

γ
1 (v).

Here Eω > 0 and νω ∈ (0, 1/2) denote Young’s modulus and Poisson’s ratio of the elastic
member ω = α, β, γ, respectively; hβ is the thickness of plate β; Aγ is the area of the cross
section, Iγ

·· the moment of inertia of the cross section, and Jγ the geometric torsional rigidity
of the cross section; δij and δIJ stand for the usual Kronecker delta.

Following the similar arguments in [11], it is easy to show that problem (2.6) has a
unique solution u. In what follows, we will always use

u :=
{

{uα}α∈Ω3 , {uβ}β∈Ω2 , {uγ}γ∈Ω1 , {uγ
4}γ∈Ω1

}

to denote this solution, and assume that for all α ∈ Ω3, β ∈ Ω2 and γ ∈ Ω1,

uα ∈ (H2(α))3,uβ ∈ (H2(β))2 × H3(β),uγ ∈ H2(γ) × (H3(γ))2, uγ
4 ∈ H2(γ),

fα ∈ (L2(α))3,fβ ∈ (L2(β))3,fγ ∈ (L2(γ))3, fγ
4 ∈ L2(γ). (2.7)

We next introduce a P1-P3-NZT FEM for solving problem (2.6). For each α ∈ Ω3, let
T α

h be a shape-regular triangulation of α into open tetrahedrons Kα [4, 6]. Similarly, let

T β
h := {Kβ} and T γ

h := {Kγ} be the shape-regular triangulations of plate member β ∈ Ω2

and rod member γ ∈ Ω1, respectively. Hence we obtain a total triangulation of Ω,

5
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T Ω
h :=

{

{T α
h }α∈Ω3 , {T β

h }β∈Ω2 , {T γ
h }γ∈Ω1

}

.

To avoid unnecessary complexity, assume that the mesh sizes of all triangulations for individ-
ual elastic members are of the same mesh size h. Moreover, the triangulation T Ω

h is matching
across interfaces among different geometric elements. For instance, if β ∈ Ω2 and α ∈ ∂−1β,
the restriction of the triangulation T α

h to β is nothing but the triangulation T β
h ; if β ∈ Γ2

2,
all the triangulations T α

h for α ∈ ∂−1β induce the same triangulation on β.
Let V 1

h (ω) be the conforming P1 element space associated with the triangulation T ω
h ,

where ω = α, β or γ is an elastic member of Ω. Let V NZT
h (β) and V H

h (γ) be the new
Zienkiewicz-type element space and the Hermite element space of three order, respectively
[4, 6, 17]. Hence, for each Kβ ∈ T β

h , the local shape function space related to V NZT
h (β) is

PNZT
Kβ := P2(K

β) + span{qij , 1 ≤ i < j ≤ 3},

where

qij := λ2
i λj − λiλ

2
j +

(

2 (λi − λj) + 3
(∇λi −∇λj)

⊺∇λk

‖∇λk‖2 (2λk − 1)

)

λ1λ2λ3,

with {λi}3
i=1 the barycentric coordinates of the triangle Kβ, and the nodal variables are given

by
ΣKβ := {v(pβ

i ), ∂1v(pβ
i ), ∂2v(pβ

i ), 1 ≤ i ≤ 3}. (2.8)

For each Kγ ∈ T γ
h , the local shape function space with respect to V H

h (γ) is P3(K
γ) equipped

with the nodal variables

ΣKγ := {v(pγ
I ), v′(pγ

I ), I = 1, 2}.

Here and in what follows, the derivatives are based on the local coordinate system involved,
e.g., ∂1v(pβ

i ) := ∂
xβ
1

v(pβ
i ) in the definition (2.8); Pk(G) represents the space of all polynomials

with the total degree no more than k over an open set G. The symbol p with or without
indices is used to denote a vertex of some individual element of a triangulation. For an area
element β ∈ Ω2 ∪Γ2 (resp. a line element γ ∈ Ω1 ∪Γ1), p ∈ β (resp. p ∈ γ) means that p ∈ β̄
(resp. p ∈ γ̄) is a vertex of some individual element of the corresponding triangulation.

We introduce the following finite element spaces to describe discrete displacement fields
on individual elastic members.

W h(α) := (V 1
h (α))3 ∀α ∈ Ω3;

W h(β) := (V 1
h (β))2 × V NZT

h (β) ∀ β ∈ Ω2\β1,

W h(β1) := (V 1
h (β1; γN1+1))

2 × V NZT
h (β1; γN1+1),

where
V 1

h (β1; γN1+1) := {vh ∈ V 1
h (β1); vh(p) = 0 ∀ p ∈ γN1+1} ,

and

V NZT
h (β1; γN1+1) := {vh ∈ V NZT

h (β1); vh(p) = ∂Ivh(p) = 0 ∀ p ∈ γN1+1, I = 1, 2};

W h(γ) := V 1
h (γ) × (V H

h (γ))2 ∀ γ ∈ Ω1.

6
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The discrete rigid conditions related to (2.1)-(2.5) are given below.

vα
i (p)eα

i = vα′

i (p)eα′

i ∀ p ∈ β, ∀α,α
′

∈ ∂−1β ∀ β ∈ Γ2
2; (2.9)

vα
i (p)eα

i = vβ
i (p)eβ

i ∀ p ∈ β, ∀α ∈ ∂−1β, ∀ β ∈ Ω2; (2.10)

for any line element γ ∈ Γ1
2 and any two plate members β, β

′ ∈ ∂−1γ,

vβ
i (p)eβ

i = vβ′

i (p)eβ′

i , ε(β, γ)∂nβvβ
3 (p) = ε(β′, γ)∂

nβ′vβ′

3 (p) ∀ p ∈ γ; (2.11)

for any rod member γ and any plate member β ∈ ∂−1γ,

vβ
i (p)eβ

i = vγ
i (p)eγ

i , −ε(β, γ)∂nβvβ
3 (p) = vγ

4 (p) ∀ p ∈ γ; (2.12)

vγ
i (δ)eγ

i = vγ′

i (δ)eγ′

i , vγ
i+3(δ)e

γ
i = vγ′

i+3(δ)e
γ′

i ∀ γ, γ
′

∈ ∂−1δ ∩ Ω1 ∀ δ ∈ Γ0
2. (2.13)

With these notations, we get a total finite element space on Ω,

V h :=

{

vh ∈
∏

α∈Ω3

W h(α)×
∏

β∈Ω2

W h(β)×
∏

γ∈Ω1

W h(γ)×
∏

γ∈Ω1

V 1
h (γ), vh satisfies (2.9)-(2.13)

}

.

Thus, our P1-P3-NTZ FEM for solving problem (2.6) is to find uh ∈ V h such that

Dh(uh,vh) = F (vh) ∀vh ∈ V h, (2.14)

where

Dh (uh,vh) :=
∑

α∈Ω3

Dα
h (uh,vh) +

∑

β∈Ω2

Dβ
h (uh,vh) +

∑

γ∈Ω1

Dγ
h (uh,vh) ,

Dα
h (uh,vh) :=

∑

Kα
∈T

α
h

∫

Kα

σα
ij (uh) εα

ij (vh) dKα,

Dβ
h (uh,vh) :=

∑

Kβ
∈T

β

h

∫

Kβ

[

Qβ
IJ (uh) εβ

IJ (vh) + Mβ
IJ (uh)Kβ

IJ (vh)
]

dKβ,

Dγ
h (uh,vh) :=

∑

Kγ
∈T

γ

h

∫

Kγ

[Qγ
1 (uh) εγ

11 (vh) + Mγ
i (uh)Kγ

i (vh)] dKγ .

We will prove unique solvability of the problem (2.14) and then discuss its error analysis
in later sections.

3 Unique solvability of the finite element method

Introduce a broken Sobolev space by

W :=

{

v ∈
∏

α∈Ω3

W (α) ×
∏

β∈Ω2

W (β) ×
∏

γ∈Ω1

W (γ) ×
∏

γ∈Ω1

H1(γ); v satisfies (2.13)

}

,

7
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which is equipped with the norm

‖v‖W :=

{

∑

α∈Ω3

3
∑

i=1

‖vα
i ‖

2
1,α +

∑

β∈Ω2

( 2
∑

I=1

‖vβ
I ‖

2
1,β + ‖vβ

3 ‖
2
2,β

)

+
∑

γ∈Ω1

(

‖vγ
1‖

2
1,γ +

3
∑

K=2

‖vγ
K‖2

2,γ + ‖vγ
4‖

2
1,γ

)}1/2

and the seminorm

|v|W :=

{

∑

α∈Ω3

3
∑

i=1

|vα
i |

2
1,α +

∑

β∈Ω2

( 2
∑

I=1

|vβ
I |

2
1,β + |vβ

3 |
2
2,β

)

+
∑

γ∈Ω1

(

|vγ
1 |

2
1,γ +

3
∑

K=2

|vγ
K |22,γ + |vγ

4 |
2
1,γ

)}1/2

.

The estimate below is due to [11].

Lemma 3.1 For all v ∈ W ,

|v|2W ≤ ‖v‖2
W .

∑

α∈Ω3

3
∑

i,j=1

‖εα
ij(v)‖2

0,α +
∑

β∈Ω2

2
∑

I,J=1

(

‖εβ
IJ (v)‖2

0,β + ‖Kβ
IJ(v

)

‖2
0,β

)

+
∑

γ∈Ω1

(

‖εγ
11(v)‖2

0,γ +
3

∑

i=1

‖Kγ
i (v)‖2

0,γ

)

+ IΩ(v), (3.1)

where
IΩ(v) := I1(v) + I2(v) + I3(v) + I4(v),

I1(v) :=
∑

β∈Γ2

2

∑

α,α′
∈∂−1β

‖vα − vα′

‖2
0,β, I2(v) :=

∑

β∈Ω2

2

∑

α∈∂−1β

‖vα − vβ‖2
0,β ,

I3(v) : =
∑

γ∈Γ1

2

∑

β,β′
∈∂−1γ

‖vβ − vβ′

‖2
0,γ +

∑

γ∈Γ1

2

∑

β,β′
∈∂−1γ

‖ε(β, γ)∂nβvβ
3 − ε(β′, γ)∂

nβ′vβ′

3 ‖2
0,γ

=: I31(v) + I32(v),

I4(v) : =
∑

γ∈Ω1

2

∑

β∈∂−1γ

‖vβ − vγ‖2
0,γ +

∑

γ∈Ω1

2

∑

β,β′
∈∂−1γ

‖ε(β, γ)∂nβvβ
3 + vγ

4‖
2
0,γ

=: I41(v) + I42(v),

and Ω1
2 and Ω2

2 consist of all rod member connected with plate members and all plate members
connected with body members, respectively.

Denote by V B
h (β) the Bell element space [4,6] with respect to the triangulation T β

h ; that

means, for each Kβ ∈ T β
h with three vertices {pβ

i }
3
i=1, the local shape function space is

PKβ := {v ∈ P5(K
β); ∂

nKβ v
∣

∣

F β ∈ P3(F
β) ∀F β ⊂ ∂Kβ}

8
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equipped with the nodal variables

ΣKβ := {v(pβ
i ), ∂1v(pβ

i ), ∂2v(pβ
i ), ∂11v(pβ

i ), ∂12v(pβ
i ), ∂22v(pβ

i ), 1 ≤ i ≤ 3}.

Define

W B
h (β1) := (V 1

h (β1; γN1+1))
2 × V B

h (β1; γN1+1),

where

V B
h (β1; γN1+1) := {vh ∈ V B

h (β1); vh = ∂
nβ1

vh = 0 on γN1+1},

and for each β ∈ Ω2\β1,

W B
h (β) := (V 1

h (β))2 × V B
h (β).

Therefore, we obtain a finite-dimensional subspace of W given by

W h :=

{

vh ∈
∏

α∈Ω3

W h(α) ×
∏

β∈Ω2

W B
h (β) ×

∏

γ∈Ω1

W h(γ) ×
∏

γ∈Ω1

V 1
h (γ);

vh satisfies (2.9)-(2.13)

}

.

Lemma 3.2 For all vh ∈ W h,

|vh|2W .

∑

α∈Ω3

3
∑

i,j=1

‖εα
ij(vh)‖2

0,α +
∑

β∈Ω2

2
∑

I,J=1

(‖εβ
IJ (vh)‖2

0,β + ‖Kβ
IJ (vh)‖2

0,β)

+
∑

γ∈Ω1

(

‖εγ
11(vh)‖2

0,γ +

3
∑

i=1

‖Kγ
i (vh)‖2

0,γ

)

. (3.2)

Proof. The proof is quite similar to that of Lemma 3.2 in [11]. Because of Lemma 3.1,
it suffices to bound IΩ(v) in (3.1) as desired. By (2.9),

I1(vh) = 0. (3.3)

Introduce interpolation operators Π
β
h and Π

γ
h by

Π
β
hv

β
h := (Iβ

1,hvβ
h,i)e

β
i ∀v

β
h ∈ W B

h (β), (3.4)

and

Π
γ
hv

γ
h := (Iγ

1,hvγ
h,i)e

γ
i ∀v

γ
h ∈ W h(γ).

Thus, from (2.10), (3.4), and usual error estimates for interpolation operators Iβ
1,h and Iγ

1,h [6],
it follows that

I2(vh) ≤ 2
∑

β∈Ω2

2

‖vβ
h,3 − Iβ

1,h‖
2
0,β . h4

∑

β∈Ω2

2
∑

I,J=1

‖Kβ
IJ(vh)‖2

0,β . (3.5)

The combination of (2.11) and (3.4) gives

Π
β
hv

β
h = Π

β
′

h v
β
′

h ∀ β, β
′

∈ ∂−1γ ∀ γ ∈ Γ1
2,
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from which and error estimate for interpolation operator Π
β
h we are led to

I31(vh) .

∑

γ∈Γ1

2

∑

β∈∂−1γ

‖vβ
h − Π

β
hv

β
h‖

2
0,γ .

∑

γ∈Γ1

2

∑

β∈∂−1γ

‖vβ
h,3 − Iβ

1,hvβ
h,3‖

2
0,∞,β

. h2
∑

γ∈Γ1

2

∑

β∈∂−1γ

|vβ
h,3|

2
2,β . h2

∑

β∈Ω2

2
∑

I,J=1

‖Kβ
IJ (vh)‖2

0,β. (3.6)

Similarly, from (2.11), (3.4), the mean value theorem, and the local inverse inequality
for finite elements, it follows that

I32(vh) .

∑

γ∈Γ1

2

∑

β∈∂−1γ

∑

F β
⊂γ

‖ε(β, γ)∂nβvβ
h,3 − (ε(β, γ)∂nβvβ

h,3)(p
F β

)‖2
0,F β

.

∑

γ∈Γ1

2

∑

β∈∂−1γ

∑

F β
⊂γ

h2
Kβ |vβ

h,3|
2
2,∞,Kβ .

∑

β∈Ω2

2
∑

I,J=1

‖Kβ
IJ (vh)‖2

0,β . (3.7)

Here and in what follows, for a point set E , F β ⊂ E indicates that F β is some edge of a
triangle Kβ in T β

h , and some subset of E as well.
Arguing as in the above deduction, we also have

I41(vh) . h2
∑

β∈Ω2

2
∑

I,J=1

‖Kβ
IJ (vh)‖2

0,β + h4
∑

γ∈Ω1

2

3
∑

K=2

‖Kγ
K(vh)‖2

0,γ ,

I42(vh) .

∑

β∈Ω2

2
∑

I,J=1

‖Kβ
IJ(vh)‖2

0,β + h2
∑

γ∈Ω1

2

‖Kγ
1 (vh)‖2

0,γ .

These with (3.1), (3.3), and (3.5)-(3.7) lead to (3.2) directly. 2

Next, introduce a connection operator Eβ
h from V NZT

h (β) into V B
h (β) as follows. For

each vβ
3 ∈ V NZT

h (β), Eβ
hvβ

3 is uniquely determined by



















(Eβ
hvβ

3 )(p) = vβ
3 (p) ∀ p ∈ β,

(∂IE
β
hvβ

3 )(p) = (∂Iv
β
3 )(p), 1 ≤ I ≤ 2, ∀ p ∈ β,

(∂IJEβ
hvβ

3 )(p) = 0, 1 ≤ I, J ≤ 2,∀ p ∈ β,

(∂
nKβ Eβ

hvβ
3 )

∣

∣

F β ∈ P3(F
β) ∀F β ⊂ Kβ ∈ T β

h .

Following the arguments for proving Lemma 5.1 in [3], we readily have

Lemma 3.3 For the connection operator Eβ
h given above,

∑

Kβ
∈T

β

h

∣

∣Eβ
hvβ

3

∣

∣

2

2,Kβ .

∑

Kβ
∈T

β

h

∣

∣vβ
3

∣

∣

2

2,Kβ ∀ vβ
3 ∈ V NZT

h (β).

We equip the finite element space V h with a norm ‖ · ‖h given by

‖vh‖h :=

{

∑

α∈Ω3

|vα
h |

2
1,α +

∑

β∈Ω2

|vβ
h|

2
h,β +

∑

γ∈Ω1

|vγ
h|

2
h,γ +

∑

γ∈Ω1

|vγ
h,4|

2
1,γ

}1/2
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for each vh =
{

{vα
h}α∈Ω3 , {vβ

h}β∈Ω2 , {vγ
h}γ∈Ω1 , {vγ

h,4}γ∈Ω1

}

. Here

|vβ
h|h,β :=

{

∑

Kβ
∈T

β

h

( 2
∑

I=1

|vβ
h,I |

2
1,Kβ + |vβ

h,3|
2
2,Kβ

)}1/2

, |vγ
h|h,γ :=

{

|vγ
h,1|

2
1,γ +

3
∑

K=2

|vγ
h,K |22,γ

}1/2

.

It is noted that the above notation will also be used for functions that make it sensible.
Thus, using Lemmas 3.2 and 3.3 and arguing as in the proof of Theorems 1.1-1.2 in [11],

we can achieve the following two results directly.

Theorem 3.1 For each vh ∈ V h,

‖vh‖2
h .

∑

α∈Ω3

3
∑

i,j=1

‖εα
ij(vh)‖2

0,α +
∑

β∈Ω2

2
∑

I,J=1

(‖εβ
IJ (vh)‖2

0,β + ‖Kβ
IJ(vh)‖2

0,β)

+
∑

γ∈Ω1

(

‖εγ
11(vh)‖2

0,γ +

3
∑

i=1

‖Kγ
i (vh)‖2

0,γ

)

and
‖vh‖2

h . Dh(vh,vh).

The first estimate can be viewed as generalized Korn’s inequalities over the nonconforming
finite element space V h.

Theorem 3.2 The discrete problem (2.14) has a unique solution in V h.

4 Error analysis

For each α ∈ Ω3, let Iα
1,h be the usual interpolation operator related to V 1

h (α). Likewise,

for each β ∈ Ω2, let Iβ
1,h and Iβ

NZT,h be the interpolation operators related to V 1
h (β) and

V NZT
h (β), respectively. For each γ ∈ Ω1, let Iγ

1,h and Iγ
H,h be the interpolation operators

related to V 1
h (γ) and V H

h (γ), respectively. We then define interpolation operators Iα
h , I

β
h,

and I
γ
h by

Iα
hvα := (Iα

1,hvα
i )eα

i ∀vα ∈ (H2(α))3,

I
β
hvβ := (Iβ

1,hvβ
I )eβ

I + (Iβ
NZT,hvβ

3 )eβ
3 ∀vβ ∈ (H2(β))2 × H3(β),

and
I

γ
hvγ := (Iγ

1,hvγ
1 )eγ

1 + (Iγ
H,hvγ

K)eγ
K ∀vγ ∈ H2(γ) × (H3(γ))2,

which induce a global interpolation operator Ih as follows.

(Ihv)α := Iα
hvα on α ∀ vα ∈ (H2(α))3, ∀α ∈ Ω3,

(Ihv)β := I
β
hvβ on β ∀ vβ ∈ (H2(β))2 × H3(β)∀ β ∈ Ω2,

(Ihv)γ := {Iγ
hvγ , Iγ

1,hvγ
4} on γ ∀ {vγ , vγ

4} ∈ H2(γ) × (H3(γ))2 × H2(γ)∀ γ ∈ Ω1.

We have by the error estimates [4, 6, 17] for interpolation operators Iα
1,h, Iβ

1,h, Iβ
NZT,h,

Iγ
1,h, and Iγ

H,h that

11
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Lemma 4.1 For the interpolation operator Ih mentioned above,

‖u − Ihu‖h . h

{

∑

α∈Ω3

3
∑

i=1

|uα
i |

2
2,α +

∑

β∈Ω2

( 2
∑

I=1

|uβ
I |

2
2,β + |uβ

3 |
2
3,β

)

+
∑

γ∈Ω1

(

|uγ
1 |

2
2,γ +

3
∑

K=2

|uγ
K |23,γ + |uγ

4 |
2
2,γ

)}1/2

.

Lemma 4.2 presents some equilibrium equations from the variational formulation (2.6),
which is contained in [12].

Lemma 4.2 Let u ∈ V be the solution of problem (2.6). Assume that the regularity assump-
tion (2.7) holds true. Then

−σα
ij,j(u) = fα

i in L2(α) ∀ α ∈ Ω3, (4.1)

∑

α∈∂−1β

σα
ij(u)nα

j eα
i = 0 in (H1/2(β))3 ∀ β ∈ Γ2, (4.2)

−Mγ
1,1(u) +

∑

β∈∂−1γ

ε(β, γ)Mβ
nn(u) = fγ

4 in L2(γ) ∀ γ ∈ Ω1, (4.3)

∑

β∈∂−1γ

ε(β, γ)Mβ
nn(u) = 0 in H1/2(γ) ∀ γ ∈ Γ1\γN1+1, (4.4)

∑

γ∈∂−1δ

ε(γ, δ)Mγ
i (u)(δ)eγ

i = 0 ∀ δ ∈ Γ0. (4.5)

The next result is nothing but the second Strang lemma related to the finite element
method (2.14), which can be proved in the standard manner [4, 6].

Lemma 4.3 Let u and uh be the solutions of problem (2.6) and the discrete problem (2.14),
respectively. Then

‖u − uh‖h . Ea(u) + Ec(u), (4.6)

where

Ea(u) := inf
vh∈V h

‖u − vh‖h, Ec(u) := sup
0 6=vh∈V h

|Dh(u,vh) − F (vh)|
‖vh‖h

.

Now, we are ready to establish error estimates for the finite element method (2.14).

Theorem 4.1 Let u and uh be the solutions of problem (2.6) and the discrete problem (2.14),
respectively. Assume that (2.7) holds true. Then

‖u − uh‖h .h

{

∑

α∈Ω3

3
∑

i=1

|uα
i |

2
2,α +

∑

β∈Ω2

( 2
∑

I=1

|uβ
I |

2
2,β + ‖uβ

3‖
2
3,β

)

+
∑

γ∈Ω1

(

|uγ
1 |

2
2,γ +

3
∑

K=2

|uγ
K |23,γ + |uγ

4 |
2
2,γ

)

+
∑

β∈Ω2

h2‖fβ
3 ‖

2
0,β +

∑

γ∈Ω1

2

( 3
∑

K=2

h2‖fγ
K‖2

0,γ + ‖fγ
4 ‖

2
0,γ

)}1/2

. (4.7)
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Proof. The proof is based mainly on the arguments employed for getting Theorem 1.3
in [11]. At first, from the definition of Ih, it is easy to check that Ihu ∈ V h, so Lemma 4.1
yields

Ea(u) ≤ ‖u − Ihu‖h . h

{

∑

α∈Ω3

3
∑

i=1

|uα
i |

2
2,α +

∑

β∈Ω2

( 2
∑

I=1

|uβ
I |

2
2,β + |uβ

3 |
2
3,β

)

+
∑

γ∈Ω1

(

|uγ
1 |

2
2,γ +

3
∑

K=2

|uγ
K |23,γ + |uγ

4 |
2
2,γ

)}1/2

. (4.8)

Hence, it remains to bound Ec(u) from Lemma 4.3. For this, we have to use the following
integration by parts formulas. For Kα ∈ T α

h ,

∫

Kα

σα
ij(u)εα

ij(vh)dKα = −
∫

Kα

σα
ij,j(u)vα

h,idKα +

∫

∂Kα

σα
ij(u)nKα

j vα
h,idsα;

for Kβ ∈ T β
h ,

∫

Kβ

Qβ
IJ(u)εβ

IJ(vh)dKβ = −
∫

Kβ

Qβ
IJ,J(u)vβ

h,IdKβ +

∫

∂Kβ

Qβ
IJ(u)nKβ

J vβ
h,Idsβ,

∫

Kβ

Mβ
IJ(u)Kβ

IJ(vh)dKβ =

∫

Kβ

Mβ
IJ,J(u)∂Iv

β
h,3dKβ −

∫

∂Kβ

{

MKβ

nn(u)∂
nKβ vβ

h,3

+ MKβ

nt (u)∂
tKβ vβ

h,3

}

dsβ,

where nKβ

:= nKβ

I e
β
I , tKβ

:= tK
β

I e
β
I , and

MKβ

nn(u) := Mβ
IJ(u)nKβ

I nKβ

J , MKβ

nt (u) := Mβ
IJ(u)nKβ

I tK
β

J ;

for Kγ ∈ T γ
h ,

∫

Kγ

Qγ
1(u)εγ

11(vh)dKγ = −
∫

Kγ

Qγ
1(u)vγ

h,1dKγ +
∑

δ∈∂Kγ

ε(Kγ , δ)[Qγ
1 (u)vγ

h,1](δ),

∫

Kγ

Mγ
K(u)Kγ

K(vh)dKγ =

∫

Kγ

Qγ
K(u)(vγ

h,K)′dKγ +
∑

δ∈∂Kγ

ε(Kγ , δ)[Mγ
K (u)vγ

h,K+3](δ),

and
∫

Kγ

Mγ
1(u)Kγ

1 (vh)dKγ = −
∫

Kγ

Mγ
1,1(u)vγ

h,4dKγ +
∑

δ∈∂Kγ

ε(Kγ , δ)[Mγ
1 (u)vγ

h,4](δ).

From the above identities, we have for all vh ∈ V h that

Dh(u,vh) − F (vh) = J1 + J2 + J3 + J4, (4.9)

where

J1 :=
∑

α∈Ω3

∫

α
(−σα

ij,j(u) − fα
i )vα

h,idα +
∑

β∈Γ2

∑

α∈∂−1β

σα
ij(u)nα

j vα
h,idβ,

13
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J2 := −
∑

β∈Ω2

∑

Kβ
∈T

β

h

∑

F β
⊂∂Kβ

∫

F β

MKβ

nn(u)∂
nKβ vβ

h,3dsβ

+
∑

γ∈Ω1

∑

Kγ
∈T

γ

h

∫

Kγ

(−Mγ
1,1(u) − fγ

4 )vγ
h,4dKγ ,

J3 :=
∑

β∈Ω2

∑

Kβ
∈T

β

h

(

−
∫

Kβ

Qβ
IJ,J(u)vβ

h,IdKβ +

∫

Kβ

Mβ
IJ,J(u)∂Iv

β
h,3dKβ

−
∫

Kβ

fβ
i vβ

h,idKβ −
∑

F β
⊂∂Kβ

h

∫

F β

MKβ

nt (u)∂
tKβ vβ

h,3dsβ

)

+
∑

β∈Ω2

∑

α∈∂−1β

∫

β
σα

ij(u)nα
j vα

h,idβ +
∑

β∈Ω2

∫

∂β
Qβ

IJ(u)nβ
Jvβ

h,Idγ

+
∑

γ∈Ω1

∑

Kγ
∈T

γ

h

(
∫

Kγ

Qγ
i (u)(vγ

h,i)
′dKγ −

∫

Kγ

fγ
i vγ

h,idKγ

)

,

J4 :=
∑

γ∈Ω1

∑

δ∈∂γ

ε(γ, δ)[Mγ
i (u)vγ

h,i+3](δ).

From (4.1) and (4.2), it is easy to see that J1 = 0. As with the term J2, we first rewrite
it as

J2 =

{

−
∑

β∈Ω2

∑

Kβ
∈T

β

h

∑

F β
⊂∂Kβ

h
\∂β

∫

F β

MKβ

nn(u)∂
nKβ vβ

h,3dsβ

}

+

{

−
∑

β∈Ω2

∑

F β
⊂Γ1

∫

F β

Mβ
nn(u)∂nβvβ

h,3dsβ

}

+

{

−
∑

β∈Ω2

∑

F β
⊂Ω1

2

∫

F β

MKβ

nn(u)∂
nKβ vβ

h,3dsβ

+
∑

γ∈Ω1

2

∑

Kγ
∈T

γ

h

∫

Kγ

(−Mγ
1,1(u) − fγ

4 )vγ
h,4dKγ

}

+

{

∑

γ∈Ω1

1

∫

Kγ

(−Mγ
1,1(u) − fγ

4 )vγ
h,4dKγ

}

= : J21 + J22 + J23 + J24. (4.10)

Observe that the integral
∫

F β ∇vβ
h,3dF β is continuous across the interior edge F β of the

triangular subdivision T β [17]. Therefore,

J21 = −
∑

β∈Ω2

∑

Kβ
∈T

β

h

∑

F β
⊂∂Kβ

h
\∂β

∫

F β

RF β

0

(

MKβ

nn(u)
)

RF β

0

(

∂
nKβ vβ

h,3

)

dsβ.
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Here and in what follow, RF β

0 := I − PF β

0 , with PF β

0 the L2-orthogonal projection operator
from L2(F β) onto the space of constants on F β. By the trace theorem and the scaling
argument, it holds that [16]

‖RF β

0 g‖0,F β . h
1/2

Kβ |g|1,Kβ ∀ g ∈ H1(Kβ), (4.11)

where hKβ denotes the diameter of a triangle Kβ.
Using (4.11) and the Cauchy-Schwarz inequality we easily have

|J21| . h

(

∑

β∈Ω2

|uβ
3 |

2
3,β

)1/2

‖vh‖h. (4.12)

On the other hand, from the identity (7) in [17] it follows that

PF β

0 (ε(β, γ)∂nβvβ
h,3) =

1

2
(ε(β, γ)∂nβvβ

h,3(p
F β

1 ) + ε(β, γ)∂nβvβ
h,3(p

F β

2 )), (4.13)

where pF β

1 and pF β

2 are two endpoints of the edge F β. In addition, we have by the definition
of V h that

ε(β, γ)∂nβvβ
h,3(p) = ε(β′, γ)∂

nβ′vβ′

h,3(p) ∀ p ∈ γ ∈ Γ1
2 ∀ β, β′ ∈ ∂−1γ, (4.14)

∂
nβ1

vβ1

h,3(p) = 0 ∀ p ∈ γN1+1. (4.15)

Hence, it follows from (4.13)-(4.15) and the equilibrium equation (4.4) that

J22 = −
∑

β∈Ω2

∑

F β
⊂Γ1

∫

F β

RF β

0

(

ε(β, γ)Mnn(u)
)

RF β

0

(

ε(β, γ)∂nβvβ
h,3

)

dsβ,

from which and employing the similar argument for getting (4.12) we find

|J22| . h

(

∑

β∈Ω2

|uβ
3 |

2
3,β

)1/2

‖vh‖h (4.16)

For the estimate of J23, we have by the interface condition (2.12) and relation (4.13)
that

−PF β

0 (ε(β, γ)∂nβvβ
h,3) =

1

2
(vγ

h,4(p
F β

1 ) + vγ
h,4(p

F β

2 )) ∀Kγ = F β ⊂ ∂β ∩ Ω1
2.

This with the equilibrium equation (4.3) implies

J23 = −
∑

β∈Ω2

∑

F β
⊂Ω1

2

∫

F β

ε(β, γ)MKβ

nn(u)(∂
nKβ vβ

h,3dsβ − PF β

0 (ε(β, γ)∂nβvβ
h,3))dsβ

+
∑

γ∈Ω1

2

∑

Kγ
∈T

γ

h

∫

Kγ

(−Mγ
1,1(u) − fγ

4 )(vγ
h,4 − 1/2(vγ

h,4(p
F β

1 ) + vγ
h,4(p

F β

2 )))dKγ

= −
∑

β∈Ω2

∑

F β
⊂γ∈Ω1

2

∫

F β

RF β

0

(

ε(β, γ)Mβ
nn(u)

)

RF β

0

(

ε(β, γ)∂nβvβ
h,3

)

dsβ

+
1

2

∑

γ∈Ω1

2

∑

Kγ
∈T

γ

h

∫

Kγ

(−Mγ
1,1(u) − fγ

4 )((vγ
h,4 − vγ

h,4(p
F β

1 )) + (vγ
h,4 − vγ

h,4(p
F β

2 )))dKγ .

(4.17)
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Therefore, using the Cauchy-Schwarz inequality and estimate (4.11) we get

|J23| . h

{

∑

β∈Ω2

|uβ
3 |

2
3,β +

∑

γ∈Ω1

2

(|uγ
4 |

2
2,γ + ‖fγ

4 ‖
2
0,γ)

}1/2

‖vh‖h. (4.18)

For the term J24, we have by the equilibrium equation (4.3) that

−Mγ
1,1(u) = fγ

4 in L2(γ) ∀ γ ∈ Ω1
1,

so J24 = 0. Combining this with (4.10), (4.12), (4.16), and (4.18) we get

|J2| . h

{

∑

β∈Ω2

|uβ
3 |

2
3,β +

∑

γ∈Ω1

2

(|uγ
4 |

2
2,γ + ‖fγ

4 ‖
2
0,γ)

}1/2

‖vh‖h. (4.19)

Furthermore, since each function in V h is continuous at all vertices of the triangulation
T Ω

h and vanishes at all vertices on γN1+1, using the equilibrium equation (4.5) and following
the same arguments for bounding the terms I3 and I4 in [11], we have J4 = 0 and

|J3| . h

{

∑

β∈Ω2

(|uβ
3 |

2
3,β + h2‖fβ

3 ‖
2
0,β) +

∑

γ∈Ω1

2

3
∑

K=2

(|uγ
K |23,γ + h2‖fγ

K‖2
0,γ)

}1/2

‖vh‖h. (4.20)

Using the identity (4.9), the estimates (4.19)-(4.20), and noting the fact that J1 = J4 = 0
shown before, we find

|Ec(u)| .h

{

∑

β∈Ω2

(|uβ
3 |

2
3,β + h2‖fβ

3 ‖
2
0,β)

+
∑

γ∈Ω1

2

( 3
∑

K=2

(|uγ
K |23,γ + h2‖fγ

K‖2
0,γ) + |uγ

4 |
2
2,γ + ‖fγ

4 ‖
2
0,γ

)}1/2

,

and with (4.6)-(4.8) we get the error estimate (4.7). The proof of Theorem 4.1 is completed.
2

5 Numerical examples

In this section, we want to solve an elastic plate-plate problem by means of the finite
element method (2.14). Consider two elastic plate members β1 := {0} × (−1, 1) × (0, 1)
and β2 := (0, 1) × (−1, 1) × {0}, which are coupled together along the common edge γ1 :=
{0} × (−1, 1) × {0} to form an elastic multi-structure Ω (see Figure 1). We choose the local
coordinate systems as

(xβ1

1 , xβ1

2 , xβ1

3 ) := (x2, x3, x1), (xβ2

1 , xβ2

2 , xβ2

3 ) := (x1, x2, x3),

where (x1, x2, x3) is the global coordinate system in R3.
The displacement fields u on β1 and β2 are given respectively by











uβ1

1 := (1 − x2
2)

2(1 − x2
3)

2,

uβ1

2 := (1 − x2
2)

2(1 − x2
3)

2,

uβ1

3 := (1 − x2
2)

2(1 − x2
3)

2,
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Figure 1: The geometric domain of the plate-plate problem.

with −1 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1, and











uβ2

1 := (1 − x2
1)

2(1 − x2
2)

2,

uβ2

2 := (1 − x2
1)

2(1 − x2
2)

2,

uβ2

3 := (1 − x2
1)

2(1 − x2
2)

2,

with 0 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The corresponding material parameters are given respectively

as hβ1
= hβ2

= 0.02, νβ1
= νβ2

= 0.3, and Eβ1
= Eβ2

=
12(1−ν2

β1
)

hβ1

. It is obvious that uβ1 and

uβ2 satisfy condition (2.2). Hence, u := (uβ1,uβ2) is the unique function characterized by
the variational formulation

D(u,v) = F (v) ∀v ∈ V ,

where

V := {v = (vβ1,vβ2); vβI ∈ H2(βI))
2 × H3(βI),

vβ1

i = vβ2

i , ε(β1, γ)∂
nβ1

vβ1

3 = ε(β2, γ)∂
nβ2

vβ2

3 on γ1, 1 ≤ i ≤ 3},

D(v,w) :=
∑

I

DβI (vβI ,wβI ) ∀v,w ∈ V ,

and the functions required to form the right term F (v) can be obtained by the equilibrium
equations given in [12], since the exact solution u is available.

Next, we use the MATLAB commands: initmesh and refinemesh to form a family of
quasi-uniform finite element triangulations T Ω

h := {T β1

h ,T β2

h } of Ω, whose mesh sizes are
denoted by h. For instance, see the Figure 2 for the generated meshes over β1. Based on the
triangulations obtained, we can solve the last problem via the finite element method (2.14),

to get the approximate solutions uh = (uβ1

h ,uβ2

h ).
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h Number of unknowns Error Plate 1 Error Plate 2 Rh

0.1118 1267 2.0387 2.5449 0.2515
0.055902 4767 0.37743 0.37591 0.1190
0.027951 18487 0.049017 0.03688 0.0298
0.013975 70807 0.00063498 0.0083052 0.0294

Table 1. The computational results with different mesh sizes h.
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Figure 2: The generated meshes over plate β1: (a) initial mesh, (b) 1st refinement, (c) 2nd
refinement, (d) 3rd refinement.

To test the computation performance of our finite element method, we introduce some
quantities as follows.

Error Plate 1 := max
1≤i≤3

|uβ1

h,i(βc,1) − uβ1

i (βc,1)|

|uβ1

i (βc,1)|
, Error Plate 2 := max

1≤i≤3

|uβ2

h,i(βc,2) − uβ2

i (βc,2)|

|uβ2

i (βc,2)|
,

Rh :=
‖Ihu − uh‖h

h

{

2
∑

J=1

(

2
∑

I=1

|uβJ

I |22,βJ
+ ‖uβJ

3 ‖2
3,βJ

+ h2‖fβJ

3 ‖2
0,βJ

)}1/2
,

where Ih denotes the usual nodal interpolation operator given in Section 4, and βc,I are the
centers of plates βI (I = 1, 2), respectively.

The computational results with different mesh sizes h are given in Table 1 and the
comparison between the numerical solution uh after the first refinement and the exact solution
u is shown in Figure 3, from which we may conclude that our finite element method is efficient
in solving the plate-plate problem mentioned above. Moreover, since Rh has an absolute upper
bound independent of h, by virtue of the usual estimate for Ih (see Lemma 4.1), we find that
the numerical results support the theoretical estimate given in Theorem 4.1.
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Figure 3: Left: the graph of the numerical solution after the 1st mesh-refinement, Right:
the graph of the exact solution.
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Abstract

In this paper a main theorem on | N̄ , pn; δ |k summability factors of Fourier series has

been proved. Also some new results have been obtained.

1 Introduction

Let
∑

an be a given infinite series with partial sums (sn). Let (pn) be a sequence of

positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (1)

The sequence-to-sequence transformation

tn =
1
Pn

n∑

v=0

pvsv (2)

defines the sequence (tn) of the (N̄ , pn) means of the sequence (sn) generated

by the sequence of coefficients (pn) (see [6]).

The series
∑

an is said to be summable | N̄ , pn |k, k ≥ 1, if (see [1])

∞∑

n=1

(Pn/pn)k−1 | tn − tn−1 |k< ∞. (3)

2000 AMS Subject Classification: 40D15, 40G99, 42A24, 42B15.

Keywords and Phrases: Absolute summability, Fourier series.
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and it is said to be summable | N̄ , pn; δ |k, k ≥ 1 and δ ≥ 0, if (see [2])

∞∑

n=1

(Pn/pn)δk+k−1 | tn − tn−1 |k< ∞. (4)

In the special case pn = 1 for all values of n (resp. δ = 0) | N̄ , pn; δ |k summability is the

same as | C, 1; δ |k (resp. | N̄ , pn |k) summability. Also if we take k = 1 and pn = 1
n+1 (resp.

k = 1 and δ = 0), then | N̄ , pn; δ |k summability becomes | R, logn, 1 | (resp. | N̄ , pn |)
summability.

A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every positive integer n, where

∆2λn = ∆λn −∆λn+1 and ∆λn = λn − λn+1.

Let f(t) be a periodic function with period 2π, and integrable (L) over (−π, π). Without

any loss of generality we may assume that the constant term in the Fourier series of f(t)

is zero, so that ∫ π

−π
f(t)dt = 0 (5)

and

f(t)∼
∞∑

n=1

(ancosnt + bnsinnt) =
∞∑

n=1

An(t). (6)

2. Known result. Bor [3] has proved the following theorem concerning the | N̄ , pn |k
summability factors for Fourier series.

Theorem A. If (λn) is a convex sequence such that
∑

pnλn < ∞, where (pn) is a sequence

of positive numbers such that Pn → ∞ as n→ ∞, and
∑n

v=1 PvAv(t) = O(Pn), then

the series
∑

An(t)Pnλn is summable | N̄ , pn |k, k ≥ 1.

Also quite recently Bor [4] has proved the following interesting and more general theorem.

Theorem B. If (λn) is a non-negative and non-increasing sequence such that
∑

pnλn < ∞,

where (pn) is a sequence of positive numbers such that Pn → ∞ as n→ ∞, and
∑n

v=1 PvAv(t) = O(Pn), then the series
∑

An(t)Pnλn is summable | N̄ , pn |k, k ≥ 1.

It should be noted that the conditions on the sequence (λn) in Theorem B, are somewhat

more general than in Theorem A.

Main result. The aim of this paper is to generalize Theorem B for | N̄ , pn; δ |k summa-

bility in the following form.
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Theorem. Let k ≥ 1 and 0 ≤ δ < 1/k. Let (λn) be a non-negative and non-increasing

sequence such that
∑

pnλn < ∞, where (pn) is a sequence of positive numbers such that

Pn →∞ as n→∞, and
∑n

v=1 PvAv(t) = O(Pn). Furthermore if the conditions

m∑

v=1

(
Pv

pv
)δkPv∆λv = O(1) as m →∞, (7)

m∑

v=1

(
Pv

pv
)δkpvλv = O(1) as m →∞, (8)

∞∑

n=v+1

(
Pn

pn
)δk−1 1

Pn−1
= O{(Pv

pv
)δk 1

Pv
}, (9)

are satisfied, then the series
∑

An(t)λnPn is summable | N̄ , pn; δ |k.
We need the following lemma for the proof of our theorem.

Lemma ([5]). If (λn) is a non-negative and non-increasing sequence such that
∑

pnλn is

convergent, where (pn) is a sequence of positive numbers such that Pn →∞ as n→∞,

then Pnλn = O(1) as n →∞ and
∑

Pn∆λn < ∞.

Proof of the Theorem. Let Tn(t) denotes the (N̄ , pn) means of the series
∑

An(t)Pnλn.

Then, by definition, we have

Tn =
1
Pn

n∑

v=0

pv

v∑

r=0

Ar(t)Prλr =
1
Pn

n∑

v=0

(Pn − Pv−1)Av(t)λvPv.

Then, for n ≥ 1, we have

Tn(t)− Tn−1(t) =
pn

PnPn−1

n∑

v=1

Pv−1PvAv(t)λv.

By Abel’s transformation, we have

Tn(t)− Tn−1(t) =
pn

PnPn−1

n−1∑

v=1

∆(Pv−1λv)
v∑

r=1

PrAr(t) +
pn

Pn
λn

n∑

v=1

PvAv(t)

= O(1){ pn

PnPn−1

n−1∑

v=1

(Pvλv − pvλv − Pvλv+1)Pv}+ O(1)pnλn

= O(1){ pn

PnPn−1

n−1∑

v=1

PvPv∆λv − pn

PnPn−1

n−1∑

v=1

Pvpvλv + pnλn}

= O(1){Tn,1(t) + Tn,2(t) + Tn,3(t)}, say.
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Since

| Tn,1(t) + Tn,2(t) + Tn,3(t) |k≤ 3k{| Tn,1(t) |k + | Tn,2(t) |k + | Tn,3(t) |k},

to complete the proof of the Theorem, it is sufficient to show that

∞∑

n=1

(Pn/pn)δk+k−1 | Tn,r(t) |k< ∞, for r = 1, 2, 3. (10)

Since
n−1∑

v=1

PvPv∆λv ≤ Pn−1

n−1∑

v=1

Pv∆λv

it follows by the Lemma that

1
Pn−1

n−1∑

v=1

PvPv∆λv ≤
n−1∑

v=1

Pv∆λv = O(1) as m →∞. (11)

Hence, when k > 1, applying Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1,

we get that

m+1∑

n=2

(
Pn

pn
)δk+k−1 | Tn,1(t) |k ≤

m+1∑

n=2

(
Pn

pn
)δk−1 1

Pn−1
{

n−1∑

v=1

PvPv∆λv} × { 1
Pn−1

n−1∑

v=1

PvPv∆λv}k−1.

= O(1)
m+1∑

n=2

(
Pn

pn
)δk−1 1

Pn−1

n−1∑

v=1

PvPv∆λv

= O(1)
m∑

v=1

PvPv∆λv

m+1∑

n=v+1

(
Pn

pn
)δk−1 1

Pn−1

= O(1)
m∑

v=1

(
Pv

pv
)δkPv∆λv = O(1) as m →∞,

by virtue of the hypotheses of the Theorem and Lemma. Again

m+1∑

n=2

(
Pn

pn
)δk+k−1 | Tn,2(t) |k ≤

m+1∑

n=2

(
Pn

pn
)δk−1 1

Pn−1
{

n−1∑

v=1

(Pvλv)kpv} × { 1
Pn−1

n−1∑

v=1

pv}k−1

= O(1)
m+1∑

v=2

(
Pn

pn
)δk−1 1

Pn−1

n−1∑

v=1

(Pvλv)kpv

= O(1)
m∑

v=1

(Pvλv)kpv

m+1∑

n=v+1

(
Pn

pn
)δk−1 1

Pn−1

= O(1)
m∑

v=1

(Pvλv)kpv(
Pn

pn
)δk 1

Pv
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= O(1)
m∑

v=1

(
Pv

pv
)δk(Pvλv)k−1pvλv

= O(1)
m∑

v=1

(
Pv

pv
)δkpvλv = O(1) as m →∞,

by virtue of the hypotheses of the Theorem and the Lemma. Finally as in Tn,1(t), we have

that

m∑

n=1

(
Pn

pn
)δk+k−1 | Tn,3(t) |k =

m∑

n=1

(Pnλn)k−1(
Pn

pn
)δkpnλn

= O(1)
m∑

n=1

(
Pn

pn
)δk−1pnλn = O(1) as m →∞.

Therefore, we get that

m∑

n=1

(
Pn

pn
)δk+k−1 | Tn,r(t) |k= O(1) as m →∞, for r = 1, 2, 3.

This completes the proof of the Theorem.

As special cases of this Theorem, one can obtain the following results.

1. If we take pn = 1 for all values of n and δ = 0, then we get a result concerning the

| C, 1 |k summability factors for Fourier series.

2. If we take pn = 1 for all values of n, then we have a new result concerning the | C, 1; δ |k
summability factors for Fourier series.

3. If we take k = 1, pn = 1/(n + 1) and δ = 0, then we get another new result related

to | R, logn, 1 | summability factors of Fourier series.
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Abstract The metric form Ωx(f, λ) , which was introduced by Zeng and Cheng in
[8], plays an important role in the estimate of pointwise approximation of functions
which have left limit f(x−) and right limit f(x+) at given point x. In this paper ,
Using the metric form Ωx(f, λ) and the Bojanic - Khan - Cheng’s method combining
with analysis techniques , we obtain the asymptotic estimates on the rates of pointwise
approximation of Gauss-Weierstrass operators on two classes of functions with certain
growth condition.

Keywords: Gauss-Weierstrass operators, Metric form Ωx(f, λ), Functions with cer-
tain growth condition, Lebesgue-Stieltjes integration.
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1 Introduction

Let {Un,x} be a sequence of normal distribution random variables with parameters
(n, x, σ)(n ≥ 1, σ > 0) , and the probability density of Un,x is

wn,x(t) =
1√
2πn

exp{− 1
2nσ2

(u− nx)2}

, then for a Baire function f(x) on (−∞,+∞), Gauss-Weierstrass operators Wn is given
by

Wn(f ;x) = E(Un,x

n ) =
+∞∫
−∞

f( t
n)dFUn,x(t) =

+∞∫
−∞

f(t)dFn,x(t)

=
√

n√
2πσ

+∞∫
−∞

f(t)exp{− n
2σ2 (t− x)2}dt

(1)

where E(ξ) is the expectation of random variable ξ, FUn,x(t) and Fn,x(t) are the dis-
tribution functions of Un,x and Un,x

n , respectively. And dFUn,x(t) and dFn,x(t) are the
Lebesgue-Stieltjes measures respectively deduced from FUn,x(t) and Fn,x(t).
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Let σ =
√

2, then Z. Ditzian[1] proved that, if f(x) ≤ M(x2 + 1)exp{x2/4} (−∞ <
x < +∞) and f(x) ∈ C(R), then for [a, b] ⊂ R,

‖Wn[f(t);x]− f(x)‖C[a,b] → 0 (n →∞).

For σ = 1, S. Guo and M.K. Khan[2] showed that
∣∣∣∣Wn[f(t);x]− f(x+) + f(x−)

2

∣∣∣∣ ≤
3
n

n∑

i=0

VIk
(gx), (2)

where f(x) ∈ BV (−∞,+∞), VIk
(gx) denotes the total variation of gx(t) on Ik (Ik =

[x− 1/
√

k, x + 1/
√

k ], k = 1, 2, ..., n; I0 = (−∞,+∞)), and

gx(t) =





f(t)− f(x+) t > x,
0 t = x,
f(t)− f(x−) t < x.

(3)

And for σ = 1 and f ∈ DBV (R) = {f(x)|f(x) = c +
x∫

−∞
h(u)du, h(u) ∈ BV (R)}, R.

Bojanic and M.K. Khan[3] established that

∣∣∣∣Wn(f(t);x)− f(x)− [h(x+)− h(x−)]√
2πn

∣∣∣∣ ≤
2
n

√
n∫

0

x+1/t∨

x−1/t

(ϕx)dt (4)

where

ϕx(t) =





h(t)− h(x+) t > x,
0 t = x,
h(t)− h(x−) t < x.

(5)

In the present paper we investigate the pointwise approximation of Gauss-Weierstrass
operators on a more general class of functions whose left limit f(x−) and right limit
f(x+) at a fixed point x exist and which satisfy some growth conditions. Furthermore,
an asymptotic formula of Gauss-Weierstrass operators is given on a more general class
of absolutely continuous functions whose derivative h(x) have left limit h(x−) and right
limit h(x+) at a fixed point x, assuming that h(x) exists almost everywhere over R. To
be convenient for our discussing , two classes of functions ΦB and ΦAB are given as were
introduced by X.M. Zeng in [6].

Let f(x) be any Baire function on R, then a class of functions ΦB is given as follows

ΦB = {f(x)||f(x)| ≤ Mexp{β|x|}}
where both M > 0 and β ≥ 0 are constants related to f(x). And let h(x) be any
measurable and integrable function on every finite subinterval of (−∞,+∞), then another
class of functions ΦA is given as follows

ΦA = {f(x)|f(x) =
∫ x

a
h(t)dt + f(a)}

2
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where a is a fixed number. By definition, if f(x) ∈ ΦA, then the derivative function of
f(x) is h(x) in the sense of ”almost everywhere”. We should point out that BV (R) ⊂ ΦB

and DBV (R) ⊂ ΦA. Moreover, let ΦAB denote the intersection of ΦB and ΦA, i.e.
ΦAB = ΦB ∩ ΦA, then DBV (R) ⊂ ΦAB.

Furthermore, for f(t) ∈ ΦB we give the metric form Ωx(f, λ) as follows (see [6,7,8])

Ωx(f, λ) = sup
t∈[x−λ,x+λ]

|f(t)− f(x)|

where x ∈ R is fixed and λ ≥ 0. It is easily verified that
(1) Ωx(f, λ) is monotone non-decreasing with respect to λ.
(2) lim

λ→0
Ωx(f, λ) = 0, if f(x) is continuous at the point x.

(3) If f(x) is bounded variation on [a, b], and
b∨
a
(f) denotes the total variation of f(x)

on[a, b], then Ωx(f, λ) ≤
x+λ∨
x−λ

(f).

By the Bojanic - Khan - Cheng’s method (see [3, 4, 5]), using the metric form Ωx(f, λ)
and analysis techniques , we obtain the results given in the following section.

2 Main Results

Theorem 1 Let f ∈ ΦB, if f(x−) and f(x+) exist at the fixed point x, then for n > 2σ2β
ρ

, we have ∣∣∣∣Wn(f(t);x)− f(x+) + f(x−)
2

∣∣∣∣ ≤ Mx[1 +
ρ2n

8σ2
]exp{−ρ2n

8σ2
}

+
2
n

max{1,
σ2

ρ2
}

n∑

i=1

Ωx(gx,
ρ√
i
)

(6)

where ρ > 0 is fixed after chosen, Mx = {Mexp{β|x|} + |f(x+)| + |f(x−)|}exp{σ2β2},
and gx(t) is given by (3).

According to Theorem 1, we note that, Gauss-Weierstrass operators approach f(x+)+f(x−)
2

as n →∞ and the rate of convergence depends on the second part on the right-hand side
of inequality (6) since the first part has so much high rate of convergence. Moreover,
it means more for Gauss-Weierstrass operators that the ρ > 0 in inequality (6) can be
chosen.

From Theorem 1 and Property (3) of Ωx(f, λ), it easily follows that

Corollary 1 Let f(x) ∈ ΦB be a function of bounded variation on every subinter-

3
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val of R,then for n > 2σ2β
ρ , we have

∣∣∣∣Wn(f(t);x)− f(x+) + f(x−)
2

∣∣∣∣ ≤ Mx[1 +
ρ2n

8σ2
]exp{−ρ2n

8σ2
}

+
2
n

max{1,
σ2

ρ2
}

n∑

i=1

x+ρ/
√

i∨

x−ρ/
√

i

(gx).
(7)

We should point out that, let σ = 1, ρ = 1, and n > 2β, then we have

∣∣∣∣Wn(f(t);x)− f(x+) + f(x−)
2

∣∣∣∣ ≤ Mx[1 +
n

8
]exp{−n

8
}+

2
n

n∑

i=1

x+1/
√

i∨

x−1/
√

i

(gx)

which is better than (2) that S. Guo and M.K. Khan[2] obtained .

Corollary 2 Under the conditions of Theorem 1, if Ωx(gx, λ) = o(λ), then

Wn(f(t);x) =
f(x+) + f(x−)

2
+ o(

1√
n

). (8)

Theorem 2 Let f ∈ ΦAB, f(t) =
∫ t
a h(u)du + f(a) , if h(x−) and h(x+) exist at

the fixed point x, then for n > max{2σ2(1+β)
ρ , 4} , we have

∣∣∣∣Wn(f(t);x)− f(x)− [h(x+)− h(x−)]σ√
2πn

∣∣∣∣ ≤ Mx[1 +
ρ2n

8σ2
]exp{−ρ2n

8σ2
}

+
4max{ρ2, σ2}

nρ

[
√

n]∑

i=1

Ωx(ϕx,
ρ

i
)

(9)

where Mx = {2Mexp{β|x|} + |h(x+)| + |h(x−)|}exp{σ2(1 + β)2}, ρ > 0 is fixed after
chosen, and ϕx(t) is given by (5).

By Theorem 2 and Property (3) of Ωx(f, λ) we have

Corollary 3 Let f ∈ ΦAB, f(t) =
∫ t
a h(u)du+f(a) , where h(x) is a function of bounded

variation on every finite subinterval of (−∞,+∞), then for n > max{2σ2(1+β)
ρ , 4} , we

have ∣∣∣∣Wn(f(t);x)− f(x)− [h(x+)− h(x−)]σ√
2πn

∣∣∣∣ ≤ Mx[1 +
ρ2n

8σ2
]exp{−ρ2n

8σ2
}

+
4max{ρ2, σ2}

nρ

[
√

n]∑

i=1

x+ρ/i∨

x−ρ/i

(ϕx).
(10)

4
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Let σ = 1, ρ = 1 and h(x) ∈ BV (R), then by Corollary 3 and for n > 4 we obtain

∣∣∣∣Wn(f(t);x)− f(x)− [h(x+)− h(x−)]√
2πn

∣∣∣∣ ≤ Mx[1 +
n

8
]exp{−n

8
}+

4
n

[
√

n]∑

i=1

x+1/i∨

x−1/i

(ϕx), (11)

where the rate of convergence is not lower than that in (4) which was obtained by R.
Bojanic and M.K. Khan[3] since

1
n

[
√

n]∑

i=1

x+1/i∨

x−1/i

(ϕx) ≤ 1
n

√
n∫

0

x+1/t∨

x−1/t

(ϕx)dt

and the first part on the right-hand side of inequality (11) has so much high rate of
convergence.

Next we give the proofs of Theorem 1 and 2.

3 Proofs of Theorems

To complete the proofs of Theorem 1 and 2, the following lemmas are needed.
Lemma 1 For α > 0 , we have

1√
2πσ

∫ +∞

ασ
exp{− x2

2σ2
}dx ≤ exp{−α2

2
}[1

2
− α√

2π
+

α2

4
]. (12)

Proof:

I :=
1√
2πσ

∫ +∞

ασ
exp{− x2

2σ2
}dx =

1√
2πσ

∫ +∞

0
exp{− 1

2σ2
(t + ασ)2}dt

= exp{−α2

2
} · 1√

2πσ

∫ +∞

0
exp{− t2

2σ2
} · exp{−α

σ
t}dt.

Since exp{x} < 1 + x + x2/2 whenever x < 0, we have

exp{−α

σ
t} < 1− α

σ
t +

α2

2σ2
t2.

then,

I ≤ exp{−α2

2
} · 1√

2πσ

∫ +∞

0
exp{− t2

2σ2
}(1− α

σ
t +

α2

2σ2
t2)dt

= exp{−α2

2
}[1

2
− α√

2π
+

α2

4
].

Lemma 2 Let Fn(t) =
√

n√
2πσ

∫ t
−∞ exp{− n

2σ2 u2}du , then for t > 0, we have

1− Fn(t) ≤ σ2

2nt2
. (13)

5
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Note that Fn(t) = Fn, 0(t) when x = 0.

Proof: Fn(t) is N(0, σ/
√

n) normal distribution function. Let its corresponding random
variable be ξn, then

1− Fn(t) = P (ξn > t) =
∫ +∞

t
dFn(u)

. As the proof of Chebyshev’s inequality, we obtain
∫ +∞

0
u2dFn(u) ≥

∫ +∞

t
u2dFn(u) ≥ t2

∫ +∞

t
dFn(u) = t2[1− Fn(t)].

since ∫ +∞

0
u2dFn(u) =

σ2

2n

, we establish (13).

Firstly, the proof of Theorem 1 is given.

Proof of Theorem 1: Let f(t) ∈ ΦB and assume that f(x+) and f(x−) exist at the
fixed point x, then we can write f(t) as follows

f(t) =
f(x+) + f(x−)

2
+gx(t)+

f(x+)− f(x−)
2

sign(t−x)+δx(t)[f(x)− f(x+) + f(x−)
2

]

where gx(t) is defined in (3), sign(t) is sign function and

δx(t) =
{

1 t = x,
0 t 6= 0.

Then,

Wn(f ;x) =
∫ +∞

−∞
f(t)dFn,x(t) =

f(x+) + f(x−)
2

+ Wn(gx(t);x)

+
f(x+)− f(x−)

2
Wn(sign(t− x);x) + [f(x)− f(x+) + f(x−)

2
]Wn(δx(t);x).

(14)

Obviously, Wn(δx(t);x) = 0. And by direct calculation , it is easily verified that

Wn(sign(t− x);x) = 0

. Therefore, identity (14) can be simplified as

Wn(f ;x) =
f(x+) + f(x−)

2
+ Wn(gx(t);x). (15)

Now we give the estimate of |Wn(gx(t);x)|. Let ρ > 0 be fixed after chosen, then
Wn(gx(t);x) is split up into three parts as follows

Wn(gx(t);x) =
∫ +∞

−∞
gx(t)dFn,x(t) = ∆n,1 + ∆n,2 + ∆n,3 (16)

6
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where

∆n,1 =
∫ x−ρ

−∞
gx(t)dFn,x(t), ∆n,2 =

∫ x+ρ

x−ρ
gx(t)dFn,x(t), ∆n,3 =

∫ +∞

x+ρ
gx(t)dFn,x(t).

The first step is to estimate |∆n,1| + |∆n,3|. By the substitution rule of integrals, we
have

|∆n,1| ≤
√

n√
2πσ

∫ +∞

ρ
|gx(x− u)| exp{− n

2σ2
u2}du. (17)

Observe the definition of gx(t) in (3), we obtain

|gx(x− u)| ≤ Mexp{βu}

where M = Mexp{β|x|}+ |f(x+)|+ |f(x−)|. Therefore, it follows from (17) that

|∆n,1| ≤ M

√
n√

2πσ

∫ +∞

ρ
exp{βu− n

2σ2
u2}du

= Mexp{σ2β2

2n
}
√

n√
2πσ

∫ +∞

ρ−σ2β
n

exp{− n

2σ2
u2}du.

Let n > 2σ2β
ρ , then by the above inequality, we establish

|∆n,1| ≤ Mexp{σ2β2}
√

n√
2πσ

∫ +∞

ρ/2
exp{− n

2σ2
u2}du. (18)

By Lemma 1, we show that
√

n√
2πσ

∫ +∞

ρ/2
exp{− n

2σ2
u2}du ≤ [

1
2

+
ρ2n

16σ2
]exp{−ρ2n

8σ2
}.

Hence from (18), it follows that

|∆n,1| ≤ Mx[
1
2

+
ρ2n

16σ2
]exp{−ρ2n

8σ2
}

where Mx = [Mexp{β|x|}+ |f(x+)|+ |f(x−)|]exp{σ2β2}.

Similarly, we have

|∆n,3| ≤ Mx[
1
2

+
ρ2n

16σ2
]exp{−ρ2n

8σ2
}.

Consequently, we obtain

|∆n,1|+ |∆n,3| ≤ Mx[1 +
ρ2n

8σ2
]exp{−ρ2n

8σ2
} (19)

where Mx = [Mexp{β|x|}+ |f(x+)|+ |f(x−)|]exp{σ2β2}, and n > 2σ2β
ρ .

7
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The second step is to estimate |∆n,2|. Applying the substitution rule of integrals, we get

|∆n,2| =
∣∣∣∣
√

n√
2πσ

∫ x+ρ

x−ρ
gx(t)exp{− n

2σ2
(t− x)2}dt

∣∣∣∣

≤
√

n√
2πσ

∫ ρ

0
[|gx(x− u)|+ |gx(x + u)|]exp{− n

2σ2
u2}du.

(20)

Since gx(x) = 0, it follows from (20) that

|∆n,2| ≤
√

n√
2πσ

∫ ρ

0
2Ωx(gx, u)exp{− n

2σ2
u2}du. (21)

We split up the integral of the right-hand side of (21) into tow parts denoted by I1 and
I2, respectively, i.e.

√
n√

2πσ

∫ ρ

0
2Ωx(gx, u)exp{− n

2σ2
u2}du = I1 + I2 (22)

where

I1 =
√

n√
2πσ

∫ ρ/
√

n

0
2Ωx(gx, u)exp{− n

2σ2
u2}du,

I2 =
√

n√
2πσ

∫ ρ

ρ/
√

n
2Ωx(gx, u)exp{− n

2σ2
u2}du.

For I1 , we obtain

I1 ≤ 2Ωx(gx,
ρ√
n

)
√

n√
2πσ

∫ ρ/
√

n

0
exp{− n

2σ2
u2}du ≤ Ωx(gx,

ρ√
n

). (23)

For I2, we rewrite it as follows

I2 =
∫ ρ

ρ/
√

n
2Ωx(gx, u)dFn(u)

where Fn(u) is given in Lemma 2. Note that Fn(u) is continuous and Ωx(gx, u) is monotone
non-decreasing with respect to u, then applying the Lebesgue-Stieltjes integral by parts,
we have

I2 = [2Ωx(gx, u)Fn(u)]ρ
ρ/
√

n
−

∫ ρ

ρ/
√

n
Fn(u)d[2Ωx(gx, u)]

= 2Ωx(gx,
ρ√
n

)[1− Fn(
ρ√
n

)]− 2Ωx(gx, ρ)[1− Fn(ρ)] +
∫ ρ

ρ/
√

n
[1− Fn(u)]d[2Ωx(gx, u)].

By Lemma 2, it follows from the above equality that

I2 ≤ σ2

ρ2
Ωx(gx,

ρ√
n

) +
σ2

2n

∫ ρ

ρ/
√

n

1
u2

d[2Ωx(gx, u)]

=
σ2

ρ2
Ωx(gx,

ρ√
n

) +
σ2

n

{[
1
u2

Ωx(gx, u)
]ρ

ρ/
√

n

−
∫ ρ

ρ/
√

n
Ωx(gx, u)d[

1
u2

]

}

=
σ2

nρ2
Ωx(gx, ρ) +

σ2

nρ2

∫ n

1
Ωx(gx,

ρ√
u

)du

≤ σ2

nρ2
Ωx(gx, ρ) +

σ2

nρ2

n−1∑

i=1

Ωx(gx,
ρ√
i
).

(24)

8
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Hence by (21)-(24), we establish

|∆n,2| ≤ 2
n

max{1,
σ2

ρ2
}

n∑

i=1

Ωx(gx,
ρ√
i
). (25)

The final is to combine (15),(16),(19)and (25) that completes the proof of Theorem 1.

Secondly, we present the proof of Theorem 2

Proof of Theorem 2: Let f(t) ∈ ΦAB , f(t) =
∫ t
a h(u)du + f(a) , and assume that

h(x+) and h(x−) exist at the fixed point x, then we can write h(t) as follows

h(t) =
h(x+) + h(x−)

2
+ϕx(t)+

h(x+)− h(x−)
2

sign(t−x)+δx(t)[h(x)− h(x+) + h(x−)
2

]

where ϕx(t) is defined in (5), sign(t) is sign function and δx(t) =
{

1 t = x
0 t 6= 0

.

Integrating both sides of the above equality from x to t, and noting that
∫ t

x
sign(u− x)du = |t− x|,

∫ t

x
δx(u)du = 0

, we have

f(t)− f(x) =
h(x+) + h(x−)

2
(t− x) +

∫ t

x
ϕx(u)du +

h(x+)− h(x−)
2

|t− x|.

Hence,

Wn(f(t);x)− f(x) = Wn(
∫ t

x
ϕx(u)du;x) +

h(x+)− h(x−)
2

Wn(|t− x|;x). (26)

By direct calculation , we get Wn(|t− x|;x) =
√

2σ/
√

πn. Therefore from (26), it follows
that

Wn(f(t);x)− f(x)− [h(x+)− h(x−)]σ√
2πn

= Wn(
∫ t

x
ϕx(u)du;x) (27)

For a fixed ρ > 0, We split up the right-hand side of equality (27) into three parts as
follows

Wn(
∫ t

x
ϕx(u)du;x) =

∫ +∞

−∞
(
∫ t

x
ϕx(u)du)dFn,x(t) = Θn,1 + Θn,2 + Θn,3 (28)

where

Θn,1 =
∫ x−ρ

−∞
(
∫ t

x
ϕx(u)du)dFn,x(t), Θn,2 =

∫ x+ρ

x−ρ
(
∫ t

x
ϕx(u)du)dFn,x(t),

Θn,3 =
∫ +∞

x+ρ
(
∫ t

x
ϕx(u)du)dFn,x(t).

Next we will give the estimates of |Θn,1|, |Θn,2| and |Θn,3|.

9
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Applying the substitution rule of integrals, we have

|Θn,1| ≤
√

n√
2πσ

∫ +∞

ρ

∣∣∣∣
∫ x−t

x
ϕx(u)du

∣∣∣∣ exp{− n

2σ2
t2}dt. (29)

Observe that , for t > 0,
∣∣∣∣
∫ x−t

x
ϕx(u)du

∣∣∣∣ = |f(x− t)− f(x) + h(x−)t| ≤ Mexp{(1 + β)t}

where M = 2Mexp{β|x|}+ |h(x+)|+ |h(x−)| , then by (29), we obtain

|Θn,1| ≤ M

√
n√

2πσ

∫ +∞

ρ
exp{(1 + β)t− n

2σ2
t2}dt.

Using the same techniques as in the estimate of |∆n,1| in Proof of Theorem 1, for n >
2σ2(1+β)

ρ , we establish

|Θn,1| ≤ Mx[
1
2

+
ρ2n

16σ2
]exp{−ρ2n

8σ2
}

where Mx = [2Mexp{β|x|}+ |h(x+)|+ |h(x−)|]exp{σ2(1 + β)2}.

Similarly, we get

|Θn,3| ≤ Mx[
1
2

+
ρ2n

16σ2
]exp{−ρ2n

8σ2
}.

Therefore, we obtain

|Θn,1|+ |Θn,3| ≤ Mx[1 +
ρ2n

8σ2
]exp{−ρ2n

8σ2
} (30)

where Mx = [2Mexp{β|x|}+ |h(x+)|+ |h(x−)|]exp{σ2(1 + β)2} and n > 2σ2(1+β)
ρ .

On the other hand, using the substitution rule of integrals, we obtain

|Θn,2| =
∣∣∣∣
√

n√
2πσ

∫ x+ρ

x−ρ
(
∫ t

x
ϕx(u)du)exp{− n

2σ2
(t− x)2}dt

∣∣∣∣

=
∣∣∣∣
√

n√
2πσ

∫ ρ

0

[∫ x+t

x
ϕx(u)du +

∫ x−t

x
ϕx(u)du

]
exp{− n

2σ2
t2}dt

∣∣∣∣
≤

√
n√

2πσ

∫ ρ

0

[∫ t

0
(|ϕx(x + u)|+ |ϕx(x− u)|)du

]
exp{− n

2σ2
t2}dt.

(31)

Since ϕx(x) = 0, it follows from (31) that

|Θn,2| ≤
√

n√
2πσ

∫ ρ

0

[∫ t

0
2Ωx(ϕx, u)du

]
exp{− n

2σ2
t2}dt. (32)

We decompose the integral of the right-hand side of (32) into tow parts denoted by J1 and
J2, respectively, i.e.

√
n√

2πσ

∫ ρ

0

[∫ t

0
2Ωx(ϕx, u)du

]
exp{− n

2σ2
t2}dt = J1 + J2 (33)
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where

J1 =
√

n√
2πσ

∫ ρ/
√

n

0

[∫ t

0
2Ωx(ϕx, u)du

]
exp{− n

2σ2
t2}dt,

J2 =
√

n√
2πσ

∫ ρ

ρ/
√

n

[∫ t

0
2Ωx(ϕx, u)du

]
exp{− n

2σ2
t2}dt.

For J1 , we obtain

J1 ≤ 2
∫ ρ/

√
n

0
Ωx(ϕx, u)du ·

√
n√

2πσ

∫ ρ/
√

n

0
exp{− n

2σ2
t2}dt ≤ ρ√

n
Ωx(ϕx,

ρ√
n

). (34)

For J2, we rewrite it as follows

J2 =
∫ ρ

ρ/
√

n

(∫ t

0
2Ωx(ϕx, u)du

)
dFn(t)

where Fn(t) is given in Lemma 2. Note that Fn(t) is continuous and
∫ t
0 2Ωx(ϕx, u)du is

monotone non-decreasing with respect to t, then applying the Lebesgue-Stieltjes integral
by parts, we get

J2 =
[(∫ t

0
2Ωx(ϕx, u)du

)
Fn(t)

]ρ

ρ/
√

n

−
∫ ρ

ρ/
√

n
Fn(t) · 2Ωx(ϕx, t)dt

=
∫ ρ/

√
n

0
2Ωx(ϕx, u)du · [1− Fn(

ρ√
n

)]−
∫ ρ

0
2Ωx(ϕx, u)du · [1− Fn(ρ)]

+
∫ ρ

ρ/
√

n
[1− Fn(t)]2Ωx(ϕx, t)dt.

By Lemma 2, it follows from the above equality that

J2 ≤ σ2

ρ
√

n
Ωx(ϕx,

ρ√
n

) +
σ2

n

∫ ρ

ρ/
√

n

1
t2

Ωx(ϕx, t)dt

=
σ2

ρ
√

n
Ωx(ϕx,

ρ√
n

) +
σ2

nρ

∫ √
n

1
Ωx(ϕx,

ρ

u
)du

≤ σ2

ρ
√

n
Ωx(ϕx,

ρ√
n

) +
σ2

nρ

[
√

n]∑

i=1

Ωx(ϕx,
ρ

i
).

(35)

Therefore by (32)-(35), we have

|Θn,2| ≤ 4max{ρ2, σ2}
nρ

[
√

n]∑

i=1

Ωx(ϕx,
ρ

i
), (36)

where n ≥ 4. It completes the proof of Theorem 2 to Combine (27),(28),(30) and (36).
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