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ON REPRESENTABILITY OF QUASI QUADRATIC
FUNCTIONALS BY SESQUILINEAR FUNCTIONALS

MEHMET AÇIKGÖZ AND ALIAKBAR GOSHABULAGHI

Abstract. In this paper, the representability of quasi-quadratic functionals
by sesquilinear ones over real and complex *-Banach algebras will be deter-
mined. Moreover, we will give some relative results for modules over general
*-rings.

1. Introduction

Let R be a *-ring with identity such that 2 is a unit in R and M be left R-
module. The mapping Q : M ! R is said to be quasi quadratic functional if for
any x; y 2M and � 2 R the parallelogram law

(1.1) Q (x+ y) +Q (x� y) = 2Q (x) + 2Q (y)
and the homogeneity equation

(1.2) Q (ax) = aQ (x) a�

holds. A biadditive mapping S :M �M ! R satisfying

(1.3) S (a1x1 + a2x2; y) = a1S (x1; y)+a2S (x2; y) (a1; a2 2 R; x1; x2; y 2M) ;

(1.4) S (x; a1y1 + a2y2) = S (x; y1) a�1 + S (x; y2) a
�
2 (a1; a2 2 R; x; y1; y2 2M)

is a sesquilinear functional.
Over *-algebra A an element with the property h� = h is said to be hermitian.

An element a 2 A will be called normal if a�a = aa�: It is seen that over a complex
*-algebra A each element a 2 A has a unique decomposition a = h + ik with
hermitian h and k: A *-algebra being a Banach algebra is said to be Banach *-
algebra. A Banach *-algebra is called hermitian if each hermitian element has real
spectrum. If A be a hermitian Banach *-algebra and h 2 A be a hermitian element
then it is convenient to write h > 0 if the spectrum of h be positive.
Now let M be a left R�module over a *-ring R and Q : M ! R be a quasi

quadratic functional. It is interesting to know that is there a sesquilinear functional
S such that Q (x) = S (x; x) for any x 2M?
In 1984 Vukman [10] possed the problem of representability of quasi quadratic

functionals by sesquilinear ones over complex *-algebras. The complete solution
was given in [2]. In our present work [1] we gave a solution to a general case,
modules over special *-rings including complex *-algebras. However here we will
give a solution of the problem of representability of some quasi quadratic functionals

Date : April 12, 2007.
2000 Mathematics Subject Classi�cation. Primary 11E04, 46C05, Secondary 11D09.
Key words and phrases. Quasi-quadratic functional, sesquilinear(bilinear) functional, *-

algebra, *-ring .
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2 MEHMET AÇIKGÖZ AND ALIAKBAR GOSHABULAGHI

with sesquilinear functionals for ones over modules on general *-rings including
commutative *-rings with trivial involution.

2. Quasi-quadratic functionals over real Banach *-algebras

Lemma 1. Let X be a real vector space and Q : X ! R be additive functional.
Then the functional

m (x; y) =
1

4
[Q (x+ y)�Q (x� y)]

is symmetric and biadditive.

Proof. See [10] : �

Theorem 1. Let A be a commutative Banach algebra and X be a left A�module.
Moreover Q : X ! A be a mapping such that each invertible a 2 A and x; y 2 X
satis�es:
1) Q (x+ y) +Q (x� y) = 2Q (x) + 2Q (y)
2) Q (ax) = a2Q(x)
then for the functional S : X �X ! A de�ned by

S (x; y) =
1

4
[Q (x+ y)�Q (x� y)]

the following conditions hold.
1) S is biadditive;
2) for any x; y 2 X; S (x; x) = Q (x) ;
3) for any x; y 2 X and a 2 A;

S (ax; y) + S (x; ay) = 2aS (x; y) :

Proof. (1) and (2) are clear. To prove (3), let x; y 2 X be �xed and the mapping
f : A! A be de�ned in the way

f (a) = S (ax; y) + S (x; ay) :

Since S is biadditive so f is additive. It is seen that for any invertible a 2 A;
f (a) = a2f

�
a�1

�
: For any a 2 A the identity f (a) = af (e) holds(See [7]). So for

any a 2 A and x; y 2 X;
S (ax; y) + S (x; ay) = a [S (ex; y) + S (x; ey)]

= a [S (x; y) + S (x; y)]

= 2aS (x; y) :

�

Theorem 2. Let A be a commutative Banach algebra with identity and X be a
unitary left A�module and let Q : X ! A be a such mapping that for any invertible
a 2 A and x; y 2 X;
i) Q (x+ y) +Q (x� y) = 2Q (x) + 2Q (y) ;
ii) Q (ax) = a2Q (x) ;
iii) Let Q : X ! A be a functional such that a ! Q (ax+ y) be continuous for

any �xed x; y 2 X:

8



ON QUASI QUADRATIC FUNCTIONALS BY SESQUILINEAR FUNCTIONALS 3

Then then the functional S : X �X ! A de�ned by

S (x; y) =
1

4
[Q (x+ y)�Q (x� y)]

is a bilinear form and for any x 2 X; S (x; x) = Q (x) :

Proof. From Theorem 1, it su¢ cies to prove

S (ax; y) = aS (x; y) ; S (x; ay) = aS (x; y) :

For �xed x; y 2 X; de�ne f : A! A such as

f (a) = S (ax; y)� S (x; ay) ;
f is additive since S is biadditive. From (iii) f is continuous and for any invertible
a 2 A; f (a) = �a2f

�
a�1

�
holds hence from [10] ; Corollary 1 (3), for any a 2 A;

f (a) = 0 (See [6] ; [7]), that yields;

S (ax; y) = S (x; ay) ;

and from Theorem 1, (3), the proof completes. �

Theorem 3. Let X be a vector space over a complex *-algebra A having an identity
element 1. For any quasi-quadratic functional Q : X ! A de�ne S : X �X :! A;

S (x; y) =
1

4
[Q (x+ y)�Q (x� y)] + i

4
[Q (x+ iy)�Q (x� iy)] :

The following conditions hold.
(a) S is biadditive;
(b) For x; y 2 X and a 2 A;

S (ax; y) = aS (x; y) ; S (x; ay) = S (x; y) a�;

(c) For any x 2 X; Q (x) = S (x; x) :

Proof. See [10] : �

3. Modules over *-rings

Theorem 4. Let R be a *-ring with identity and there exist a0 2 R satisfying
(3.1) a0 + a

�
0 = 0; a0a

�
0 = 1

(3.2) a0a = aa0; (a 2 R) :
then for any quasi quadratic functional Q :M ! R; the functional S :M�M ! R
de�ned by

S (x; y) =
1

4
(Q (x+ y)�Q (x� y)) + a0

4
(Q (x+ a0y)�Q (x� a0y))

is the unique sesquilinear functional satisfying Q (x) = S (x; x) for any x 2M:

Proof. From, Theorem 1 of [1], S is sesquilinear and for any x 2 M; S (x; x) =
Q (x) : The only fact remains to prove is uniqueness. Let T be an other sesquilinear
functional satisfying the condition of theorem. Now for x; y 2M ;
S (x; x) + S (x; y) + S (y; x) + S (y; y) = S (x+ y; x+ y) = Q (x+ y)

= T (x+ y; x+ y)

= T (x; x) + T (x; y) + T (y; x) + T (y; y)

9



4 MEHMET AÇIKGÖZ AND ALIAKBAR GOSHABULAGHI

So

(3.3) S (x; y) + S (y; x) = T (x; y) + T (y; x)

Now by replacing x with a0x we conclude

S (x; y)� S (y; x) = T (x; y)� T (y; x)

This with (3:3) yields S = T: �

Proposition 1. Let R be a *-ring with identity then R � R is a *-ring with the
addition (a; b)+(c; d) = (a+ c; b+ d) ; product (a; b) : (c; d) = (ac� bd; ad+ bc) and
involution (a; b)� = (a�;�b�) :

Proof. Since

(c; d)
�
: (a; b)

�
= (c�;�d�) : (a�;�b�) = (c�a� � d�b�;�c�b� � d�a�)
= (ac� bd; ad+ bc)�

= ((a; b) : (c; d))
�
:

Reminder of proof is clear. �

Proposition 2. Let M be a left R-module then M�M is a left module over R�R
with the module action de�ned by

(a; b) : (x; y) = (ax� by; ay + bx) (a; b 2 R; x; y 2M) :

Proof. For any a; b; c; d 2 R; x; y 2M we have;

(a; b) : [(c; d) : (x; y)] = (a; b) : (cx� dy; cy + dx)
= (acx� ady � bcy � bdx; acy + adx+ bcx� bdy)
= ((ac� bd)x� (ad+ bc) y; (ac� bd) y + (ad+ bc)x)
= (ac� bd; ad+ bc) : (x; y)
= ((a; b) (c; d)) : (x; y) :

One can easily check other module action properties. �

Proposition 3. i) R �= R� 0 � R�R;
ii) (1; 0) is the identity of R�R and a0 = (0; 1) satis�es (3:1) ; (3:2) :

Theorem 5. Let M be a left module over *-ring R with identity such that 2 be a
unit in R: Moreover, let q : M ! R be a functional such that for any a; b 2 R;
x; y 2M ;

(3.4) q (ax� by) + q (ay + bx) = a (q (x) + q (y)) a� + b (q (x) + q (y)) b�;

and

(3.5) aq (x) b� = bq (x) a�

then the functional S :M �M ! R de�ned by

S (x; y) =
1

4
(q (x+ y)� q (x� y)) ;

is sesquilinear and S (x; x) = q (x) for any x 2M:

10



ON QUASI QUADRATIC FUNCTIONALS BY SESQUILINEAR FUNCTIONALS 5

Notice 1. By giving a = b = 1 and a = b; y = 0 in (3:4) we get parallelogram
law and homogeneity equation, respectively.
Notice 2. In the case of commutative *-rings with trivial involution (3:5) holds.
Proof of Theorem 5. Consider Q : M �M ! R � R � R as Q ((x; y)) =

(q (x) + q (y) ; 0) then

Q ((x1; y1) + (x2; y2)) +Q ((x1; y1)� (x2; y2))
= Q ((x1 + x2; y1 + y2)) +Q ((x1 � x2; y1 � y2))
= (q (x1 + x2) + q (y1 + y2) + q (x1 � x2) + q (y1 � y2) ; 0)
= (2q (x1) + 2q (x2) + 2q (y1) + 2q (y2) ; 0)

= 2 (q (x1) + q (y1) ; 0) + 2 (q (x2) + q (y2) ; 0)

= 2Q ((x1 + y1)) + 2Q ((x2; y2)) ;

also

(a; b)Q ((x; y)) (a; b)
�
= (a; b) (q (x) + q (y) ; 0) (a�;�b�)
= (aq (x) + aq (y) ; bq (x) + bq (y)) (a�;�b�)
= (aq (x) a� + aq (y) a� + bq (x) b� + bq (y) b�; bq (x) a�

+bq (y) a� � aq (x) b� � aq (y) b�)
= (q (ax� by) + q (ay + bx) ; 0)
= Q ((ax� by; ay + bx))
= Q ((a; b) : (x; y))

SoQ is quasi quadratic, now by theorem 4, the mapping S : (M �M)�(M �M)!
R�R determined by

T ((x1; y1) ; (x2; y2))

=
1

4
(Q ((x1 + x2; y1 + y2))�Q ((x1 � x2; y1 � y2)))

+
(0; 1)

4
(Q ((x1; y1) + (0; 1) : (x2; y2))�Q ((x1; y1)� (0; 1) : (x2; y2)))

=
1

4
(Q ((x1 + x2; y1 + y2))�Q ((x1 � x2; y1 � y2)))

+
(0; 1)

4
(Q ((x1 � y2; y1 + y2))�Q ((x1 + y2; y1 � x2)))

=
1

4
(q (x1 + x2) + q (y1 + y2)� q (x1 � x2)� q (y1 � y2) ; 0)

+
(0; 1)

4
(q (x1 � y2) + q (y1 + x2)� q (x1 + y2)� q (y1 � x2) ; 0)

=
1

4
(q (x1 + x2) + q (y1 + y2)� q (x1 � x2)� q (y1 � y2) ;

q (x1 � y2) + q (y1 + x2)� q (x1 + y2)� q (y1 � y2))

is sesquilinear and T ((x; y) ; (x; y)) = Q ((x; y)) = (q (x) + q (y) ; 0) :Now letB (x; y) =
T ((x; 0) ; (y; 0)) then clearly B : M �M ! R �R is biadditive. Also for a; b 2 R;

11



6 MEHMET AÇIKGÖZ AND ALIAKBAR GOSHABULAGHI

x; y 2M ;
B (ax; by) = S ((ax; 0) ; (by; 0))

= S ((a; 0) : (x; 0) ; (b; 0) (y; 0))

= (a; 0)S ((x; 0) ; (y; 0)) (b�; 0)

= aS ((x; 0) ; (y; 0)) b�

= aB (x; y) b�:

On the other hand B (x; y) = 1
4 (q (x+ y)� q (x� y) ; 0) so by giving

S (x; y) =
1

4
(q (x+ y)� q (x� y))

the proof completes.

Corollary 1. Let M be a module over a commutative *-ring R with trivial involu-
tion and identity element such that 2 be a unit in R:Moreover, let q :M ! R be a
functional such that for any a; b 2 R; x; y 2M ;
(3.6) q (ax� by) + q (ay + bx) = a2 (q (x) + q (y)) + b2 (q (x) + q (y)) ;
then the functional S :M �M ! R de�ned by

S (x; y) =
1

4
(q (x+ y)� q (x� y)) ;

is sesquilinear and S (x; x) = q (x) for any x 2M:
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SOME INEQUALITIES EQUIVALENT TO TRIANGULAR
INEQUALITY IN NORMED AND 2-NORMED SPACES

AL·IAKBAR GOSHABULAGHI AND MEHMET AÇIKGÖZ

Abstract. We give an equivalent de�nition of semi norm and 2-norm extend-
ing the notion of q-norm to q 2 R� f0g.

1. INTRODUCTION

It is known that the parallelogram equation

kx+ yk2 + kx� yk2 = 2
�
kxk2 + kyk2

�
characterizes Hilbert spaces among normed spaces. S. Saitoh [Sa] noted that the

inequality kx+ yk2 � 2
�
kxk2 + kyk2

�
may be more suitable than the usual trian-

gular inequality. He used this inequality to the setting of a natural sum Hilbert
space for two arbitrary Hilbert spaces. Obviously the triangle inequality implies
the above inequality so one motivates to consider an extension of the triangle in-
equality. In [Mos], it was shown that every q-norm which is de�ned by replacing the

triangle inequality by kx+ ykq � 2q�1
�
kxk2 + kyk2

�
; where q � 1, is a norm in

usual sense. Here we will give an extension of the notion of q-norm by determining
some results. Finally, we will assert the previous results for 2-normed spaces, a
notion which is de�ned naturally di¤erent of q-normed spaces.

2. Normed spaces

De�nition 1. Let X be a real or complex vector space and q 2 [1;1). A mapping
k:k : X ! R is called a q-norm on X if it satis�es the following conditions:

(i) k:k = 0, x = 0;
(ii) k�xk = j�j kxk for all x 2 X and scalar �:
(iii) kx+ ykq � 2q�1 (kxkq + kykq) for all x; y 2 X:

Theorem 1. k:k is a norm i¤ it is a q-norm for any q 2 [1;1):

Proof. see [2]. �

Now we obtain the following theorems.

Date : September 04, 2008.
1991 Mathematics Subject Classi�cation. Primary 44B20, Secondary 46C05.
Key words and phrases. Triangular inequality, parallelogram law, normed space, 2-normed

space, q norm.
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2 AL·IAKBAR GOSHABULAGHI AND MEHMET AÇIKGÖZ

Theorem 2. Let q < 0 be real. Then the triangular inequality holds i¤ the inequal-
ity

2q�1 (kxkq + kykq) � kx+ ykq (x; y 2 X)
holds.

Proof. ()) Consider the function f (t) = 1+tq

2 �
�
1+t
2

�q
on (0;1) : It is seen that

f has a negative derivative on [1;1) and so for any 0 < t � 1; f (t) � 0: Now let
kxk � kyk then

1 +
�
kyk
kxk

�q
2

�

0@1 + kyk
kxk

2

1Aq

;

Hence
kxkq + kykq

2
�
�
kxk+ kyk

2

�q
�
�
kx+ yk
2

�q
;

so
2q�1 (kxkq + kykq) � kx+ ykq :

(() conversely, the function f (t) = 2
q�1
q (tq + 1)

1
q � t � 1 has positive derivative

on (0; 1]. Then for t = kyk
kxk with kyk � kxk ; f (t) � 0: So

2
q�1
q (kxkq + kykq)

1
q � kxk+ kyk ;

Hence
(kxk+ kyk)q � 2q�1 (kxkq + kykq) � kx+ ykq

which yields the triangular inequality. �

Theorem 3. Let q 2 (0; 1] and k:k : X ! R satis�es k�xk = j�j kxk for all x 2 X
and scalar �: Then triangular inequality holds i¤ the inequality

kx+ ykq � kxkq + 2q�1 kykq ; (x; y 2 X; kyk � kxk)
holds.

Proof. ()) The function f (t) = 1+tq

2 �
�
1+t
2

�q
is increasing on [0; 1] since the

derivative function of f is nonnegative on (0; 1). So for t = kyk
kxk with kyk � kxk ;

f (t) � 1
2 �

1
2q that is

1 +
�
kyk
kxk

�q
2

+
1

2q
� 1
2
�

0@1 + kyk
kxk

2

1Aq

�
�
kx+ yk
2 kxk

�q
;

Hence

kx+ ykq � 2q�1 (kxkq + kykq) +
�
1� 2q�1

�
kxkq = kxkq + 2q�1 kykq :

(() Conversely, the function f (t) =
�
tq + 2q�1

� 1
q � t � 1 is increasing on [0;1)

and f (0) f
�
2
q�1
q

�
< 0 so there exists c 2

�
0; 2

q�1
q

�
such that f (c) = 0 and for

any t 2 [0; c]; f (t) � f (c) = 0: Now for t = kyk
kxk where kyk � c kxk ;�

(
kyk
kxk )

q + 2q�1
� 1

q

� kyk
kxk + 1)

�
kykq + 2q�1 kxkq

� 1
q � kxk+ kyk

) kx+ yk �
��
kykq + 2q�1 kxkq

� 1
q

�
� kxk+ kyk :

14
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Similarly, for x; y 2 X which kxk � c kyk ; kx+ yk � kxk+ kyk :
Now let c kxk < kyk < 1

c kxk ; thenx
c

 >
1

c
kcykx

c
+ cy

 <
1

c
kxk+ c kykx+ c2y < kxk+ c2 kyk ;(2.1)

and

kxk < c
 y
c2

x+ y

c2

 < kxk+ 1

c2
kykc2x+ y < c2 kxk+ kyk :(2.2)

Now if both c
x+ c2y > c2x+ y and cc2x+ y > x+ c2y hold then

c
�x+ c2y+ c2x+ y� > c2x+ y+ x+ c2y) c > 1 or 0 > 0

which is a contradiction. Now let c
x+ c2y � c2x+ y then by (2:1) and (2:2) ;�

1 + c2
�
kx+ yk =

x+ c2y + c2x+ y � x+ c2y+c2x+ y < �c2 + 1� (kxk+ kyk) ;
so the triangular inequality holds. �

Theorems (1) ; (2) and (3) show that the de�nition of a semi-norm is equivalent
to the following:

Corollary 1. Let X be a real or complex vector space. A mapping k:k : X ! R
which satis�es k�xk = j�j : kxk for all x 2 X and scalar �; then the following
conditions are equivalent:

1) kx+ yk � kxk+ kyk for all x; y 2 X:
2) For any q 2 [1;1); kx+ ykq � (kxkq + kykq) for all x; y 2 X:
3) For any q 2 (0; 1) ; kx+ ykq � kxkq + 2q�1 kykq where x; y 2 X; kyk � kxk :
4) For any q < 0; 2q�1 (kxkq + kykq) � kx+ ykq for all x; y 2 X:
If one of the above four conditions satis�ed then the function k:k is a semi norm

on X:
It is known that the parallelogram equality

kx+ yk2 + kx� yk2 = 2
�
kxk2 + kyk2

�
;

characterizes Hilbert spaces among normed spaces. Now for the equation

(2.3) kx+ ykq + kx� ykq = 2q�1 (kxkq + kykq) ; q 6= 2:

we state the following proposition.

Proposition 1. For any q 6= 2 the equation (2:3) yields k:k = 0:

Proof. First give x = y = 0 and then give y = 0 in (2:3) : Note that the limitation
k0k = 0 is necessary in case q = 1: �
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3. 2-Normed Spaces

De�nition 2. Let X be a vector space of dimension greater than one over F; where
F is the real or complex numbers �eld. Suppose k:; :k be a non-negative real function
on XxX satis�es the following conditions:

i) kx; yk = 0 if and only if x and y are linearly dependent vectors,
ii) kx; yk = ky; xk for all x; y 2 X;
iii) k�x; yk = j�j kx; yk for all � 2 F and x; y 2 X;
iv) kx+ y; zk � kx; zk+ ky; zk for all x; y; z 2 X;
Then k:; :k is called a 2-normed space.
Clearly, for any 2-norm k:; :k and each y 2 X the mapping k:k de�ned by kxk =

kx; yk is a semi- norm. So we can obtain the results of section II to the 2-normed
spaces.

Theorem 4. Let X be a vector space of dimension greater than one over F; where
F is the real or complex numbers �eld. Suppose k:; :k be a non-negative real function
on X �X satis�es the following conditions:

i) kx; yk = 0 if and only if x and y are linearly dependent vectors,
ii) kx; yk = ky; xk for all x; y 2 X;
iii) k�x; yk = j�j kx; yk for all � 2 F and x; y 2 X;
Then the following statements are equivalent:
1) kx+ y; zk � kx; zk+ ky; zk for all x; y; z 2 X:
2) For any q 2 [1;+1); kx+ y; zkq � 2q�1 (kx; zkq + ky; zkq) for all x; y; z 2 X:
3) For any q 2 (0; 1) ; kx+ y; zkq � kx; zkq + 2q�1 ky; zkq where x; y; z 2 X;

ky; zk � kx; zk :
4) For any q < 0; 2q�1 (kx; zkq + ky; zkq) � (kx+ y; zkq) for all x; y; z 2 X:
If one of the above four conditions satis�ed then the function k:; :k is a 2-norm

on X:
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M. Güngör 1  and A. Turan 2  

1 Department of Mathematics, University of Firat, 23119 Elazığ, Turkey  
2  Department of Statistics, University of Firat, 23119 Elazığ, Turkey 

 
 
Abstract. In this study, the probability density and distribution functions of order statistics of the innid random 
vectors expressed as the probability density and distribution functions of order statistics of the iid random 
vectors using permanents. Moreover, we collect some results concerning the probability density and distribution 
functions of order statistics for the specialized cases. 
 
Keywords. Order statistics, permanent, joint probability density function, joint distribution function, iid random 
variables, innid random variables, recurrence relations. 
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1. Introduction 

 
Balakrishnan[1] considered recent developments on order statistics arising from 

independent and not necessarily identically distributed(innid) random variables based 

primarily on the theory of permanents.  

Balasubramanian et al.[2] established identities satisfied by distributions of order statistics 

from non-independent non-identical variables through operator methods based on difference 

and differential operators. 

Beg[3] obtained several recurrence relations and identities for product moments of order 

statistics of innid random variables using permanents. 

Childs and Balakrishnan[4] obtained, using multinomial arguments, the probability 

density function(pdf) of  1: nrX  (1 r n+1) if another independent random variable with 

distribution function(df) iF  and pdf if   (i=1,2,…,n) is added to the original n variables 

.,...,, 21 nXXX  

David[5] considered the fundamental distribution theory of order statistics. 

Gan and Bain[6] obtained the joint probability function(pf) of any k order statistics and 

also conditional distributions of discrete order statistics from a general discrete parent by “tie-

runs”. 

Guilbaud[7] expressed probability of the functions of innid random vectors as a linear  
__________________________ 
1 Corresponding author.   

E- mail addresses: mgungor@firat.edu.tr (M. Güngör), aturan@firat.edu.tr (A. Turan). 
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2 
 

combination of probabilities of the functions of  independent and identically distributed(iid) 

random vectors and thus also for order statistics of random variables. 

Khatri[8] examined the pf  and  df  of a single order statistics, the joint pf  and df  of any 

two order statistics and joint df  of any three order statistics of iid random variables from a 

discrete parent.  

Reiss[9] considered the joint pdf, marginal pdf and df of any k order statistics of iid 

random variables under a continuous df and discontinuous df. He also considered pdf of 

bivariate order statistics by marginal ordering of bivariate iid random vectors with a 

continuous df  by means of multinomial probabilities of appropriate “cell frequency vectors”, 

defining multivariate order statistics by marginal ordering of iid random vectors with a 

continuous df. 

Vaughan and Venables[10] denoted the joint pdf  and marginal pdf  of order statistics of 

innid random variables by means of permanents. 

If ,...a,a 21 are defined as column vectors, then the matrix obtained by taking 1m  copies 

1a , 2m  copies 2a ,… can be denoted as  
 
[

1

1a
m

 
2

2a
m

 …] 

 
and perA denotes the permanent of a square matrix A, which is defined as similar to 
determinants except that all terms in the expansion have a positive sign. 

 
Consider x ),...,,( )()2()1( bxxx and y ),...,,( )()2()1( byyy , then it can be written as x y 

if )()( vv yx  , v=1, 2, …, b and x y ),...,,( )()()2()2()1()1( bb yxyxyx  . 
 

Let i ),...,,( )()2()1( b
iii  , i=1, 2, …, n be n innid random vectors which components of  

i  are independent. The expression 
 

(:
)(

: nr
v
nr ZX  ),...,, )()(

2
)(

1
v

n
vv                                                                                                      (1) 

 
is stated as the rth order statistic of the vth components of  1 , 2 , …, n .  
From (1), the ordered values of the vth components of 1 , 2 , …, n  are expressed as  
 

.... )(
:

)(
:2

)(
:1

v
nn

v
n

v
n XXX                                                                                                               (2) 

 
From (2), we can write 
 

),...,,(X )(
:

)2(
:

)1(
::

b
nrnrnrnr XXX ,      nr 1 . 
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3 
 

Let iF  be df  of i  and be continuous at any ),...,,(x )()2()1( b
llll xxx , l=1, 2, …, d; d=1, 

2, …, n. 
 
In this study, the df  and pdf  of nrnrnr d

XXX ::: ,...,,
21

,  1 nrrr d  ...21  will be 

given in Theorem 1 and Theorem 2, respectively. Let ),...,,(X )(
:

)(
:

)(
:

)(
21

v
nr

v
nr

v
nr

v
d

XXX  and 

),...,,(x )()(
2

)(
1

)( v
d

vvv xxx . For notational convenience we write  and 
dmmm ,...,, 21

instead of 





kn

n

k

n
kn

s
n
k

1 !
)1( and   

  

n

rm

m

rm

m

rmdd

3

22

2

11

... in the expressions below, respectively. Moreover,  

),...,,(X ),(
:

),(
:

),(
:

),(
21

sv
nr

sv
nr

sv
nr

sv
d

XXX  are random vectors with common df sF and pdf sf ,  
respectively, defined by  

 

),(1)( )()( v
a

si
i

s

v
a

s xF
n

xF 


       a=1,2,…,d.                                                                                  (3) 

and 
 

),(1)( )()( v
a

si
i

s

v
a

s xf
n

xf 


      a=1,2,…,d.                                                                                  (4) 

 
Here, s is a non-empty subset of the integers {1, 2,…, n} with sn 1 elements.  

The following theorem connects the df of order statistics of innid random vectors to 
that of order statistics of  iid random vectors using (3). 
 
 
Theorem 1.  

},
)!(

)]()([!{)x,...,x,x(
)(

1 ,...,,

1

1 1

)(
1

)(

21:,...,,

1

21

21







 

    



aa

d

d

mmb

v mmm

d

a aa

v
a

sv
a

s

dnrrr mm
xFxFnF  

 
dx...xx 21  ,   ,00 m  nmd 1 , 0)( )(

0 vs xF  and .1)( )(
1 

v
d

s xF  
 
Proof. It can be written 
 

}xX,...,xX,xX{)x,...,x,x( :2:1:21:,...,, 2121 dnrnrnrdnrrr dd
PF   

                                     }xX,...,xX,xX{ )()()2()2()1()1( bbP                                                                                                                               

                                     



b

v

vvP
1

)()( }.xX{                                                                             (5) 

(5) can be expressed as 

}],...,,{[
1

)(),(
:

)(
2

),(
:

)(
1

),(
: 21 




b

v

v
d

sv
nr

vsv
nr

vsv
nr xXxXxXP

d
 

                                                                 




 








b

v mmm

mmd

a aa

v
a

sv
a

s

d

aa

mm
xFxFn

1 ,...,,

)(1

1 1

)(
1

)(

21

1

}.
)!(

)]()([!{  

The proof  is complete. 
 

GUNGOR, TURAN: ORDER STATISTICS OF RANDOM VECTORS 19



4 
 

Theorem 1 will be specialized to the following results. 
 
Result 1. From Theorem 1, we can write  

 



b

v mmm
dnrrr

d

d
CperF

1 ,...,,
21:,...,,

21

21
A)x,...,x,x(  

                                  }
)!(

)]()([!{
1 ,...,,

1

1

)(

1

)(
1

)(

21

1

   

















b

v mmm

d

a

mm

aa

v
a

sv
a

s

d

aa

mm
xFxFn   ,                      (6) 

                                                         
where 1

121 ])!)!...((![  dmnmmmC , 
 
A=

1

)(F[ )(
1

m

vx   
12

)(F)(F )(
1

)(
2

mm

vv xx

 … ])(F1 )(

dmn

v
dx


  is matrix, 

 
,))()(),...,()(),()(()(F)(F )(

1
)()(

12
)(

2
)(
11

)(
1

)(
1

)(  
v

tn
v

tn
v

t
v

t
v

t
v

t
v

t
v

t xFxFxFxFxFxFxx   
 
t=1,2,…,d+1  is column vector, 1)(F )(

1 
v

dx  and  0)(F )(
0 vx . 

 
Result 2.  
 

lns
n

rm

mn

l

lmn
n

rm

mn

l lnn ln

lmn xF
l

mn
m
n

sxperl
l

mn
mnm

s















  

     






 

















 



))(()1(.)/][)F([!)1(

)!(!
1

00

.     (7) 

 
Proof. In (6), if  b=1, d=1 and using properties of permanent and binomial expansion, we can 
write 
 


 


n

rm m
nr xper

mnm
xF )F([

)!(!
1)(:    ])F(-1

mn
x


 

 

             




 









 





n

rm

mn

l ln

lmn xper
l

mn
mnm 0

)F([)1(
)!(!

1   
l
]1  

 

            .)/][)F([!)1(
)!(!

1
0

sxperl
l

mn
mnm

n

rm

mn

l lnn ln

lmn

s

  




  









 



  ,                                          (8) 

 
 
where  )F(x = ,))(),...,(),(( 21 xFxFxF n   )F(-1 x = ))(1),...,(1),(1( 21  xFxFxF n , 
1=(1,1,…,1 )   are column vectors and .)/[A s  is the matrix obtained from A by taking rows 
whose indices are in s. 
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(11) is immediate from (12) and (13). The proof is complete. 
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A-Equistatistical Convergence of Positive
Linear Operators

Hüseyin Aktu¼glu a;� , Mehmet Ali Ozarslan a Halil Gezer a
aEastern Mediterranean University, Department of Mathematics, Gazima¼gusa,

Mersin 10. Turkey

Abstract

Recently, the concept of equistatistical convergence which is stronger than statis-
tical uniform convergence was introduced by Balcerzac, Dems and Komisarski. In
the present paper we introduce the concept of A-equistatistical convergence which
extends equi-statistical convergence. Moreover, we construct examples to show that
A-equistatistical convergence lies between A-statistically pointwise and uniform con-
vergence. We also obtain A-equistatistical case of Korovkin result and �nally we
compute the rates of A-equistatistical convergence of sequences of positive linear
operators.

Key words: Statistical convergence, A-statistical convergence, equi-statistical
convergence, Korovkin type approximation theorem, modulus of contininuity,
Bernstein polynomials

1 Introduction

The concept of statistical convergence has been initiated by Fast [11] and
so far various kinds of generalization of statistical convergence and their ap-
plications have been studied by di¤erent researchers (see [4],[7],[12],[13],[18]).
Recently, Balcerzak et al. [3] have introduced the notion of equi-statistical
convergence which is stronger than the statistical uniform convergence. Then
Korovkin type approximation theorem via equi-statistical convergence is con-
sidered in [15]. In the present paper our main interest is to introduce the
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notion of A�equistatistical convergence which extends equi-statistical con-
vergence and to prove a Korovkin type approximation theorem by means of
A�equistatistical convergence.

Recall that for an in�nite summability matrix A = (amk) m; k = 1; 2; : : : and
a sequence x = (xj)j2N , the A-transform of x is denoted by Ax = (Ax)m and
de�ned as;

(Ax)m =
1X
k=1

amkxk

provided that the series converges for each m 2 N: The matrix A is said to
be regular if A-transform of x preserves the limit of x: Suppose that A is a
non-negative regular summability matrix and K � N; then

�mA (K) :=
1P
k=1
amk�K(k)

is called the mth partial A�density of K where �K denotes the charac-
teristic function of K [12]: The A�density of K is de�ned as �A (K) :=
lim
m!1

�mA (K) provided that limit exists. A sequence x := (xj) is called A-
statistically convergent to L and denoted by stA � lim

n!1
xn = L; if for every

" > 0; �A fn 2 N: jxn � Lj � "g = 0: For the case A = C1; the Cesáro ma-
trix of order one, A�statistical convergence reduces to statistical convergence.
Also, taking A = I, the identity matrix, A�statistical convergence coincides
with the ordinary convergence. We also note that if a non-negative regular
summability matrix A = (amk) satis�es the condition limmmaxk famkg = 0;
then A�statistical convergence is stronger than ordinary convergence [16].

2 Types of convergence for sequences of functions

In this section we introduce A�equistatistical convergence which is lying be-
tween A�statistical pointwise and A�statistical uniform convergence, for se-
quences of real valued functions.

Let X be a subset of R and assume f ,fn : X �! R; for all n 2 N; then we
have the following well known de�nitions.

De�nition 1 Let A = (amk) be a non-negative regular summability matrix
then (fn)n2N is said to be A�statistically pointwise convergent to f on X and
denoted by fn �!A f if

stA � lim
n!1

fn(x) = f(x)

2
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for each x 2 X; i.e. for every " > 0 and for each x 2 X;

�A (fn 2 N : jfn(x)� f(x)j � "g) = 0:

De�nition 2 Let A = (amk) be a non-negative regular summability matrix
then (fn)n2N is said to be A�statistically uniform convergent to f on X and
denoted by fn �A f if

stA � lim
n!1

kfn � fkC(X) = 0

i.e. for every " > 0;

�A
�n
n 2 N : kfn(x)� f(x)kC(X) � "

o�
= 0:

In [3], the concept of equi-statistical convergence was based on the Cesáro
matrix of order one. In the following de�nition we extend this idea for an
arbitrary non-negative regular summability matrix A.

De�nition 3 Let A = (amk) be a non-negative regular summability matrix
then (fn)n2N is said to be A�equistatistically convergent to f on X and de-
noted by fn �A f if for every " > 0; the sequence of real valued functions
(hm;")m2N where

hm;"(x) = �
m
A (fn 2 N : jfn(x)� f(x)j � "g) ; x 2 X (2.1)

uniformly converges to the zero function on X: i.e. limm!1 khm;"(�)kC(X) = 0:

Choosing A = C1 then above de�nition reduces to the one considered in [3]
and [15]. As a direct consequence of the de�nitions, we can state the following
lemma.

Lemma 2.1 Let X be a subset of R and assume f; fn : X ! R, for all n 2 N
then

i) fn �A f on X =) fn �A f on X

ii) fn �A f on X =) fn �!A f on X.

The following intriguing examples guarantee that, in general the inverse im-
plications of (i) and (ii) does not hold.

Example 1 Consider the sequence of continuous functions fn : [0; 1] �! R;
n 2 N; de�ned as

fn (x) =

8><>:�4n
2(n+ 1)2

�
x� 1

n

� �
x� 1

n+1

�
, if x 2

�
1
n+1
; 1
n

i
0 , otherwise

3
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and let A = (amk) be the non-negative regular summability matrix such that

amk � bm; k = 1; 2; ::: and lim
m!1

bm = 0

then fn �A 0 but fn �A 0 does not hold. Indeed, for each " > 0 and for
all x 2 [0; 1] ; the set fn 2 N : jfn (x)j � "g has cardinality at most one: Thus
for every " > 0 and x 2 [0; 1]

hm;"(x) = �
m
A (fn 2 N : jfn (x)j � "g) � bm:

Taking limit from both sides as m!1, we have

lim
m!1

khm;" (�)kC[0;1] = 0:

Hence fn �A 0 : Finally, choosing " = 1 and taking into account that

kfnkC[0;1] = sup
x2[0;1]

jfn(x)j = 1 for all n 2 N

we have
�A
n
n 2 N : kfnkC[0;1] � 1

o
= �A fNg = 1 6= 0:

Example 2 Consider the sequence of functions fn : [0; 1] �! R; n 2 N;
de�ned by fn(x) := �f 1

2ng and let A = (ank) be the non-negative regular
summability matrix, where

ank =

8><>:
1
2n
; n � k � 3n� 1

0 ; otherwise

then for each " > 0 and for every x 2 [0; 1] ;

hm;" (x) = �
m
A (fn 2 N : jfn (x)j � "g) �

1

2m

thus fn �A 0: But fn �A 0 does not hold.

Example 3 Consider the sequence of functions fn : [0; 1] �! R; n 2 N;
de�ned by fn(x) = xn and let C1 = (cnk) be the Cesàro matrix of order one,
i:e:

cnk =

8><>:
1
n
; 1 � k � n

0 ; otherwise

and take " = 1
4
; then 8n�N; 9m � n such that for any x 2

�
m

q
1
4
; 1
�
;

f1; 2; :::;mg �
�
n 2 N : jfn(x)j �

1

4

�

4

AKTUGLU et al: ABOUT A-EQUISTATISTICAL CONVERGENCE 27



which implies that

1 = �mC1 (f1; 2; :::;mg) � �
m
C1

��
n 2 N : jfn(x)j �

1

4

��

it follows from (2.1) that fn is not equi-statistically convergent to the ordinary
limit function.

3 Korovkin type approximation theorem

As it is well known, many researchers obtained many Korovkin type approx-
imation theorems via A-statistical convergence (see [1],[2],[4], [6], [8], [9], [10]
and [14]). Recently, a Korovkin type approximation theorem by means of equi-
statistical convergence was given in [15]. The primary goal of this section is
to prove a Korovkin type approximation theorem via A�equistatistical con-
vergence.

Theorem 3.1 Let A = (amk) be a non-negative regular summability matrix
and X be a compact subset of R. Suppose that fLng is a sequence of posi-
tive linear operators de�ned on C(Xr); the space of all continuous real valued
functions on Xr into itself, where Xr = X�� � ��X: Then for all f 2 C(Xr);

Ln(f)�A f

is satis�ed if the following holds;

Ln (f�)�A f� ; � = 0; 1; : : : ; r + 1 (3.1)

where, for �!y = (y1; :::; yr) 2 Xr; f0 (
�!y ) = 1; f� (

�!y ) = y� ; � = 1; 2; : : : ; r;

and fr+1 (
�!y ) =

rX
�=1

y2� :

Proof. Let f be a continuous function on Xr and let �!x = (x1; x2; � � � ; xr) be
a �xed point in Xr: For every " > 0 there exists a real number � > 0 such that
jf(�!y )� f(�!x )j < " for all �!y = (y1; y2; � � � ; yr) 2 Xr satisfying jy� � x� j < �;
� = 1; 2; � � � ; r: If Xr

� := X
r \ Kr

� where Kr
� := f�!y 2 Rr : jy� � x� j < �g ;

then

jf(�!y )� f(�!x )j � jf(�!y )� f(�!x )j�Xr
�
(�!y )

+ jf(�!y )� f(�!x )j�XrnXr
�
(�!y )

� "+ 2M�XrnXr
�
(�!y ) ;

5
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where M := kfkC(Xr) : After some simple calculations we may write that

�XrnXr
�
(�!y ) � 1

�2

rX
�=1

(y� � x�)2 :

Therefore, we get

jf(�!y )�f(�!x )j � "+2M
�2

rX
�=1

(y� � x�)2 ;

for all �!y 2 Xr: By linearity and positivity of the operators fLng ; we have

jLn (f ;�!x )� f (�!x )j
�Ln (jf (�!y )� f (�!x ) f0j ;�!x ) + jf (�!x )j jLn (f0;�!x )� f0 (�!x )j

� "Ln(f0;�!x )+
2M

�2

(
rX

�=1

Ln
�
(y� � x�)2 ;�!x

�)
+M jLn (f0;�!x )� f0 (�!x )j

� "+ ("+M) jLn (f0;�!x )� f0 (�!x )j

+
2M

�2
jLn (fr+1;�!x )� fr+1 (�!x )j

+
rX
�=1

4M

�2
jx� j jLn ((f� ;�!x )� f� (�!x ))j

+
2M

�2

"
rX
�=1

x2�

#
jLn (f0;�!x )� f0 (�!x )j

� "+
0@"+M +

2rM k�!x k2C(Xr)

�2

1A jLn (f0;�!x )� f0 (�!x )j
+
4rM k�!x kC(Xr)

�2

(
rX
�=1

jLn (fi;�!x )� fi (�!x )j
)

+
2M

�2
jLn (fr+1;�!x )� fr+1 (�!x )j

� "+B
r+1P
�=0
jLn(f� ;�!x )� f�(�!x )j (3.2)

where B := "+M +
4rM

�2

�
k�!x k2C(Xr) + k

�!x kC(Xr) + 1
�
:

For a given s > 0; choose 0 < " < s and de�ne the following sets:

Ds(
�!x ) : = fn 2 N : jLn(f;�!x )� f(�!x )j � sg

D�
s (
�!x ) : =

(
n 2 N : jLn(f� ;�!x )� f�(�!x )j �

s� "
(r + 2)B

)

6
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� = 0; 1; : : : ; r + 1: Then from (3.2), we clearly have

Ds(
�!x ) �

r+1[
�=0

D�
s (
�!x ): (3.3)

Also de�ne the following real valued functions

pm;s(
�!x ) := �mA (fn 2 N : jLn(f;�!x )� f(�!x )j � sg)

and

p�m;s(
�!x ) := �mA

 (
n 2 N : jLn(f� ;�!x )� f�(�!x )j �

s� "
(r + 2)B

)!

� = 0; 1; :::; r+ 1; then by the monotonicity of the operators �mA and (3.3); we
�nd

pm;s(
�!x ) �

r+1X
�=0

p�m;s(
�!x )

for all �!x 2 Xr: This gives the inequality

kpm;s(:)kC(Xr) �
r+1X
�=0

p�m;s(:)C(Xr)
: (3.4)

Taking limit in (3.4) as m!1 and using (3.1) we have

lim
m
kpm;s(:)kC(Xr) = 0

which completes the proof.

Corollary 3.2 Let A = (amk) be a non-negative regular summability matrix.
Suppose that fLng is a sequence of positive linear operators from C(X) into
itself, where X is a compact subset of R: Then for all f 2 C(X);

Ln(f)�A f

is satis�ed if the following holds;

Ln (ei)�A ei ; i = 0; 1; 2

where ei(y) = yi:

Remark 1 Let A = C1; and let r = 1; then the Theorem 3.1 reduces to the
Theorem 2.1 of [15].

7
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4 Rates of A-equistatistical convergence

Although, there is no standard de�nition for the rates of A�statistical con-
vergence, in [4] Duman at al. de�ned this rates in four di¤erent ways. After
these de�nitions, rates of A�statistical convergence of various classes of linear
positive operators has been computed in several articles (see [5], [6],[7],[19],
[20]).

For the rates of A�equistatistical convergence we use the idea which was
borrowed from the concept of convergence in measure:

De�nition 4 Let A = (amk) be a non-negative regular summability matrix
and let (an) be a positive, non-increasing and real valued sequence. We say
that the sequence (fn)n2N of functions is A�equistatistically convergent to f
with the rate of o(an); if for every " > 0;

hm;"(x) = �
m
A (fn 2 N : jfn(x)� f(x)j � "ang)

converges uniformly to the zero function i.e. limm khm;"(�)k = 0: In this case
we write

fn � f = stA�equi � o(an); (as n �! 0) :

De�nition 5 Let A = (amk) be a non-negative regular summability matrix
and let (an) be a positive, non-increasing and real valued sequence. We say
that the sequence (fn) of functions is A�equistatistically bounded with the
rate of O(an); if there is a positive number S such that

hm;"(x) = �
m
A (fn 2 N : jfn(x)j � Sang)

converges uniformly to the zero function i.e. limm khm;"(�)k = 0: In this case
we write

fn = stA�equi �O(an); (as n �!1) :

Lemma 4.1 Let A = (amk) be a non-negative regular summability matrix,
(fn) and (gn) be sequences of continuous functions on X: Assume that fn�f =
stA�equi� o(an) on X and gn� g = stA�equi� o(bn) on X (as n!1) where
an and bn are both positive non-increasing sequences then the following hold:
i) (fn + gn)� (f + g) = stA�equi � o(cn)
ii) (fn � f) (gn � g) = stA�equi�o(cn) where
cn = max fan; bng :

Proof. (i) Given " > 0; by the assumption, we have

lim
m!1

khm;"(�)kC(X) = 0 and lim
m!1

kpm;"(�)kC(X) = 0 (4.1)

8
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where

hm;"(x) = �
m
A

��
n 2 N : jfn(x)� f(x)j �

"

2
an

��
and

pm;"(x) = �
m
A

��
n 2 N : jgn(x)� g(x)j �

"

2
bn

��
:

Let
rm;"(x) = �

m
A (fn 2 N : j(fn � gn)(x)� (f � g)(x)j � "cng)

where cn = max fan; bng : Then by the following inequality

rm;"(x) � hm;"(x) + pm;"(x); x 2 X

and (4.1), the result follows immediately.

(ii) Using a similar method and the fact that if ab � "; then a �
p
"
2
or b �

p
"
2

for any a; b � 0; we get the result:

Note that similar results hold when the little "o" is replaced by the big "O".

Nowwe give the rate ofA�equistatistical convergence of the operators Ln(f ;x)
to f(x) by using the modulus of continuity. It is known that the usual modulus
of continuity is de�ned as

!(f ; �) = sup
0<h��

sup
x2[0;1)

jf(x+ h)� f(x)j

and satis�es

!(f ; jy � xj) �
 
1 +

jy � xj
�

!
!(f ; �); � > 0: (4.2)

Then we have the following theorem:

Theorem 4.2 Let A = (amk) be a non-negative regular summability matrix
and let
(i) Ln (e0(x))� e0(x) = stA�equio(an(x))
(ii) w

�
f;

r
Ln
�
(y � x)2 ;x

��
= stA�equio(bn(x))

where an(x) and bn(x) are positive non-increasing sequences. Then

Ln (f ;x)� f(x) = stA�equio(cn(x)), as n!1:

where cn(x) = max fan(x); bn(x)g : Similar result holds when little "o" replace
by "O":

Proof. Using linearity and positivity of the operators and then (4.2), we
have
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jLn (f ;x)� f(x)j �Ln (jf(y)� f(x)j ;x) + jf(x)j jLn (e0;x)� e0(x)j
�Ln (!(f ; jy � xj);x) + jf(x)j jLn (e0;x)� e0(x)j

!(f ; �)

 
e0(x) +

Ln (jy � xj ;x)
�

!
+ jf(x)j jLn (e0;x)� e0(x)j :

Applying the Cauchy- Schwarz inequality, we get

jLn (f ;x)� f(x)j � (1 + Ln (e0(x)))w
 
f;

r
Ln
�
(y � x)2 ;x

�!
+ jf(x)j jLn (e0;x)� e0(x)j

� 2w
 
f;

r
Ln
�
(y � x)2 ;x

�!
+M jLn (e0;x)� e0(x)j

+w

 
f;

r
Ln
�
(y � x)2 ;x

�!
jLn (e0;x)� e0(x)j :(4.3)

Using the inequality (4.3), conditions (i) and (ii), and Lemma 4.1, the proof is
completed at once.

5 Concluding Remarks

In this section, we �rst construct an example to show that A�equistatistical
convergence is stronger than equi-statistical convergence. Then, we modify
the well known Bernstein polynomials and show that A�equistatistical con-
vergence is valid, while the ordinary and equi-statistical convergence are not.
Finally, we compute the rate of A�equistatistical convergence of these modi-
�ed Bernstein polynomials.

We start with the following example:

Example 4 Consider the sequence of functions

un(x) =

8><>: 0 ; if n is evenx ; if n is odd
; x 2 [0; 1]

and the non-negative regular summability matrix A = (ank) where

amk =

8><>:
1
2
, if k = 2n� 1 or k = 2n+ 1

0 , otherwise.
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Since �mA (fn 2 N : jun(x)� xj � "g) = �mA (2N) = 0; for every " > 0 and
x 2 [0; 1] ; un(x) is A�equistatistically and A�statistically convergent to x: On
the other hand, one can easily see that un(x) is not equi-statistically convergent
to x:

Now let un(x) and A = (ank) be the same as in the Example 6 and consider
the following modi�ed version of the Bernstein polynomials:

B�n(f ;x) =
nP
k=0
f

 
k

n

!0B@n
k

1CAukn(x) (1� un(x))n�k ; (5.1)

x 2 [0; 1] and f 2 C [0; 1] : We immediately see that

B�n(e0;x)= e0(x);

B�n(e1;x)=un(x) (5.2)

B�n(e2;x)=

 
u2n(x) +

un(x) (1� un(x))
n

!
:

Therefore we obtain that

B�n(fi;x)�A fi on [0; 1] for i = 0; 1; 2:

Hence by the Corollary 3.2 we have

B�n (f ;x)�A f on [0; 1] for all f 2 C [0; 1] :

Also by (5.2) and the Theorem 4.2, we have

jB�n(f ;x)� f(x)j = stA�equio(w (f; �n(x))), as n!1:

where �2n(x) = 3:max

(
2x jun(x)� xj ; ju2n(x)� x2j ;

�����un(x) (1� un(x))n

�����
)
:

Under the light of the above interesting application, we see that the Corollary
2 of [4] and the Theorem 2.1 of [15] do not work for the operators de�ned
by (5.1). This also shows that the Theorem 3.1 is a non-trivial extension of
A�statistical and equi-statistical version of the Korovkin theorems considered
in [4] and [15], respectively.

11
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Abstract

A new numerical method for second order nonlinear delay di¤erential equations is constructed.
The method combines the �xed point Banach-Picard technique with the trapezoidal quadrature rule
and cubic spline interpolation. The e¤ective error estimation of the method which gives a stopping
criterion of the algorithm is obtained.

Keywords and phrases : second order delay di¤erential equations, numerical method, �xed
point technique, cubic splines.

2000 AMS Mathematics Subject Classi�cation : .34K28.

1 Introduction

Some of the existing numerical methods for second order delay di¤erential equations are based on Runge-
Kutta procedures (see [6]), on spline functions (see [2]), on Adomian decomposition (see [4]) and on
Taylor expansion (see [7]) Most of them require high order smoothness conditions in order to obtain
the convergence of the method (for instance, this is the situation of Runge-Kutta procedures and of
the spline functions method). Here, we present a new numerical method which combines the Picard�s
sequence of successive approximations with a quadrature rule and use spline interpolation only on the
points where the modi�ed argument appears. The interpolation procedure is repeated at each step of
iteration using the values computed at the previous step. All procedures included in the algorithm are
recurrent and therefore, easy to programming. The method is developed, in the aim to be an alternative
to the well-known spline functions method, in general cases for f (without smoothness conditions, for
instance).
Consider the initial value problem:�

x00 (t) = f (t; x (t) ; x (' (t))) ; t 2 [0; a]
x (0) = x0; x

0 (0) = v0
(1)

where a > 0; x0 2 R and ' : [0; a] ! [0; a] is such that ' (0) = 0, ' (t) � t for all t 2 [0; a]: The case
'(t) = �t correspond to the second order pantograph equation used in electrodynamics (a numerical
method for this equation can be viewed in [7]). We suppose that ' is Lipschitzian and f is Lipschitzian
in each argument. These lead to the error estimation of the method which proves the convergence of the
algorithm (the rate of convergence being O(h)). The obtained error estimates lead to a practical stopping
criterion of the algorithm. Finally, we present two numerical examples, of pantograph type, in order to
illustrate the method.
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2 Existence, uniqueness and approximation

Consider the following conditions:
(i) f 2 C([0; a]� R� R) and there is M0 > 0 such that

jf (s; u; v)j �M0; for all s 2 [0; a]; u; v 2 R

(ii) ' 2 C[0; a]; ' (0) = 0 and ' (t) � t for all t 2 [0; a];
(iii) exist L1; L2 > 0 such that

jf (s; u; v)� f(s; u0; v0)j � L1 ju� u0j+ L2 jv � v0j ; for all s 2 [0; a]; u; u0; v; v0 2 R

(iv) a2 (L1 + L2) < 1;
(v) exist �;  > 0 such that

jf (s; u; v)� f(s0; u; v)j �  js� s0j ; for all s; s0 2 [0; a]; u; v 2 R

and
j'(s)� '(s0)j � � js� s0j ; for all s 2 [0; a]:

On C[0; a], we apply the �xed point technique (based on the Picard-Banach principle) to the operator
A : C[0; a]! C[0; a], given by

A (x (t)) = x0 + v0t+

tZ
0

(t� s)f (s; x (s) ; x (' (s))) ds

and obtain su¢ cient conditions for the convergence of the sequence of successive approximations: x0 (t) =
x0; t 2 [0; a];

xm (t) = x0 + v0t+

tZ
0

(t� s)f (s; xm�1 (s) ; xm�1 (' (s))) ds; t 2 [0; a]; m 2 N� (2)

to the unique solution x�, of the initial value problem (1). So, we obtain:

Theorem 1 Under the conditions (i)-(iv) the initial value problem (1) has unique solution x� 2 C[0; a]
and the sequence of successive approximations given by x0 (t) = x0; t 2 [0; a];

xm (t) = x0 + v0t+

tZ
0

(t� s)f (s; xm�1 (s) ; xm�1 (' (s))) ds; t 2 [0; a]; m 2 N�

uniformly converges to x�: Moreover, the following error estimation holds:

jxm (t)� x�(t)j �
(a)

2m
(L1 + L2)

m

1� a2 (L1 + L2)
� (jv0aj+M0a

2); for all t 2 [0; a]; m 2 N�: (3)

Proof. From condition (iv) the operator A is contraction and by the Picard-Banach �xed point
principle follows the estimation

jxm (t)� x�(t)j �
(a)

2m
(L1 + L2)

m

1� a2 (L1 + L2)
�maxfjx1(t)� x0(t)j : t 2 [0; a]g:

Since

jx1(t)� x0j � jv0tj+
tZ
0

jt� sj � jf (s; x0; x0)j ds � jv0aj+M0a
2; for all t 2 [0; a]

we obtain (3). Moreover, after elementary calculus, we infer that x� 2 C2[0; a] and x� is the unique
solution of (1).

2
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Remark 1 Under the hypotheses of the above theorem follows that xm 2 C2[0; a] for all m 2 N� ,

x00m(t) = f(t; xm�1 (t) ; xm�1('(t)))

and

jxm (t)� xm (t0)j � jv0j jt� t0j+

������
t0Z
t

(t� s)f (s; xm�1 (s) ; xm�1 (' (s))) ds

������+
+

t0Z
0

jf (s; xm�1 (s) ; xm�1 (' (s)))j � jt� t0j ds � (jv0j+ 2aM0) � jt� t0j (4)

for all t; t0 2 [0; a]; m 2 N�: Moreover, since xm 2 C2[0; a] follows that x0m is Lipschitzian with the
Lipschitz constant,

maxfjx00m(t)j : t 2 [0; a]g = max(jf(t; xm�1 (t) ; xm�1('(t)))j : t 2 [0; a]g �M0:

Consider the functions Fm given by Fm : [0; a]! R;

Fm(t) = f(t; xm (t) ; xm('(t))); m 2 N:

It is easy to see that the functions x00m and Fm have the same properties.
In the aim to compute the terms of the sequence of successive approximations consider the uniform

partition of [0; a] given by the knots ti = i�a
n ; i = 0; n: On these knots, the relations (2) became

xm (ti) = x0 + v0ti +

tiZ
0

(ti � s)f (s; xm�1 (s) ; xm�1 (' (s))) ds; i = 0; n; :m 2 N�: (5)

Let the functions Gm:i : [0; a]! R; i = 0; n;m 2 N; given by Gm;i(s) = (ti � s) � f(s; xm (s) ; xm('(s)):

Proposition 1 Under the conditions (i)-(v) the functions x00m and Fm; m 2 N� are Lipschitzian with the
same Lipschitz constant L = +(jv0j+ 2aM0) (L1+�L2): Moreover, the functions Gm:i; i = 0; n;m 2 N;
are Lipschitzian with the same constant L = aL+M0:

Proof. Let t; t0 2 [0; a]: We have, jF0(t)� F0(t0)j �  jt� t0j and

jFm(t)� Fm(t0)j �  jt� t0j+ L1 jxm (t)� xm (t0)j+ L2 jxm('(t))� xm('(t0))j �

� [ + L1(jv0j+ 2aM0) � jt� t0j+ �L2(jv0j+ 2aM0)] � jt� t0j
for all t; t0 2 [0; a], m 2 N�: On the other hand,

jx001(t)� x001(t0)j = jf(t; x0(t); x0('(t)))� f(t0; x0(t0); x0('(t0)))j �  jt� t0j

and
jx00m(t)� x00m(t0)j � [ + (jv0j+ 2aM0) (L1 + �L2)] jt� t0j ;

for m 2 N�: We see that

jGm;i(t)�Gm;i(t0)j = j(ti � t)Fm(t)� (ti � t0)Fm(t0)j �

� jti � tj � jFm(t)� Fm(t0)j+ jFm(t0)j � jt� t0j � aL jt� t0j+M0 jt� t0j
for all t; t0 2 [0; a]; i = 0; n and m 2 N�:
To compute the integrals from (5) we apply the trapezoidal quadrature rule with recent remainder

estimation obtained in [3] for Lipschitzian functions:

bZ
a

F (t)dt =
(b� a)
2n

� [
n�1X
i=0

F

�
a+

i (b� a)
n

�
+ F

�
a+

(i+ 1) (b� a)
n

�
] +Rn (F ) (6)

3
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jRn (F )j �
L(b� a)2
4n

(7)

where L > 0 is the Lipschitz constant of F:
Applying the quadrature rule (6)-(7) to the integrals from (5) we obtain the following numerical

method: xm(t0) = x0; for all m 2 N�;

x0(ti) = x0; for all i = 0; n (8)

xm(ti) = x0 + v0ti +

tiZ
0

(ti � s)f (s; xm�1 (s) ; xm�1 (' (s))) ds = x0 + v0ti+

+

tiZ
0

Gm�1;i(s)ds = x0 + v0ti +
a

2n
�
i�1X
j=0

[(ti � tj) � f(tj ; xm�1(tj); xm�1('(tj)))+

+(ti � tj+1) � f(tj+1; xm�1(tj+1); xm�1('(tj+1)))] +Rm;i; (9)

for all i = 1; n and m 2 N�:
Since the functions Gm:i; i = 0; n; m 2 N; are Lipschitzian with the same constant L = aL+M0; for

the remainder estimation in (9) we have

jRm;ij �
La2

4n
; for all i = 1; n; m 2 N�: (10)

3 The algorithm

The relations (8)-(9) lead to the following algorithm:

x0(ti) = x0; for all i = 0; n and x1(t0) = x0 (11)

x1(ti) = x0 + v0ti +
a

2n
�
i�1X
j=0

[(ti � tj) � f(tj ; x0; x0) + (ti � tj+1) � f(tj+1; x0; x0)]+

+R1;i = x1(ti) +R1;i; for all i = 1; n:; (12)

x2(t0) = x0 and

x2(ti) = x0 + v0ti +
a

2n
�
i�1X
j=0

[(ti � tj) � f(tj ; x1(tj) +R1;j ; x1('(tj)))+

+(ti � tj+1) � f(tj+1; x1(tj+1) +R1;j+1; x1('(tj+1)))] +R2;i = x0 + v0ti+

+
a

2n
�
i�1X
j=0

[(ti � tj) � f(tj ; x1(tj); s1('(tj)))+

+(ti � tj+1) � f(tj+1; x1(tj+1); s1('(tj+1)))] +R2;i = x2(ti) +R2;i (13)

for all i = 1; n; where s1 : [0; a] ! R; is the cubic spline generated by initial conditions, inspired by the
construction from [5], which interpolates the values x0; x1(ti); i = 1; n and has the restrictions to the
intervals [ti�1; ti]; i = 1; n;

s
(1)
1 (t) =

M
(1)
1 �M (0)

1

6(t1 � t0)
� (t� t0)3 +

M
(0)
1

2
� (t� t0)2 + z(0)1 (t� t0) + x0; (14)

t 2 [t0; t1];

s
(i)
1 (t) =

M
(i)
1 �M (i�1)

1

6(ti � ti�1)
� (t� ti�1)3 +

M
(i�1)
1

2
� (t� ti�1)2 + z(i�1)1 (t� ti�1) + x1 (ti�1); (15)

4
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t 2 [ti�1; ti]; i = 2; n. Here, the parameters M (i)
1 ; z

(i)
1 ; i = 1; n are recurrent given in:(

z
(1)
1 = 3

h1
� [x1 (t1)� x0]� 2z(0)1 � h1

2 �M
(0)
1

M
(1)
1 = 6

h21
� [x1 (t1)� x0]� 6

h1
� z(0)1 � 2M (0)

1

(16)

(
z
(i)
1 = 3

hi
� [x1 (ti)� x1 (ti�1)]� 2z(i�1)1 � hi

2 �M
(i�1)
1

M
(i)
1 = 6

h2i
� [x1 (ti)� x1 (ti�1)]� 6

hi
� z(i�1)1 � 2M (i�1)

1

; i = 2; n (17)

starting from z
(0)
1 = v0; M

(0)
1 = f(0; x0; x0): By induction, for m � 3; we obtain

xm(ti) = x0 + v0ti +
a

2n
�
i�1X
j=0

[(ti � tj) � f(tj ; xm�1(tj) +Rm�1;j ; xm�1('(tj)))+

+(ti � tj+1) � f(tj+1; xm�1(tj+1) +Rm�1;j+1; xm�1('(tj+1)))] +Rm;i = x0 + v0ti+

+
a

2n
�
i�1X
j=0

[(ti � tj) � f(tj ; xm�1(tj); sm�1('(tj)))+

+(ti � tj+1) � f(tj+1; xm�1(tj+1); sm�1('(tj+1)))] +Rm;i = xm(ti) +Rm;i (18)

for all i = 1; n; where sm�1 : [0; a]! R; is the cubic spline generated by initial conditions, interpolating
the values x0; xm�1(ti); i = 1; n and having the restrictions to the intervals [ti�1; ti]; i = 1; n

s
(1)
m�1(t) =

M
(1)
m�1 �M

(0)
m�1

6(t1 � t0)
� (t� t0)3 +

M
(0)
m�1
2

� (t� t0)2 + z(0)m�1(t� t0) + x0; (19)

t 2 [t0; t1];

s
(i)
m�1(t) =

M
(i)
m�1 �M

(i�1)
m�1

6(ti � ti�1)
� (t� ti�1)3 +

M
(i�1)
m�1
2

� (t� ti�1)2 + z(i�1)m�1 (t� ti�1)+

+xm�1 (ti�1); t 2 [ti�1; ti]; i = 2; n: (20)

Here, the parameters M (i)
m�1; z

(i)
m�1; i = 1; n are recurrently given in:(

z
(1)
m�1 =

3
h1
� [xm�1 (t1)� x0]� 2z(0)m�1 � h1

2 �M
(0)
m�1

M
(1)
m�1 =

6
h21
� [xm�1 (t1)� x0]� 6

h1
� z(0)m�1 � 2M

(0)
m�1

(21)

(
z
(i)
m�1 =

3
hi
� [xm�1 (ti)� xm�1 (ti�1)]� 2z(i�1)m�1 � hi

2 �M
(i�1)
m�1

M
(i)
m�1 =

6
h2i
� [xm�1 (ti)� xm�1 (ti�1)]� 6

hi
� z(i�1)m�1 � 2M

(i�1)
m�1

(22)

i = 2; n; m 2 N�;m � 3; starting from

z
(0)
m�1 = v0; M

(0)
m�1 = f(0; x0; x0): (23)

4 The main result

Firstly, we get a new result about the error estimation in spline approximation, which held in the inter-
polation of functions with Lipschitzian �rst derivative.
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Lemma 2 If f : [a; b]! R is a continuous function such that f (ti) = yi; i = 0; n and its restrictions to
the intervals [ti�1; ti], i = 1; n are di¤erentiable on (ti�1; ti) being Lipschitzian together with their �rst
derivatives, then for any cubic spline s of interpolation of the values yi; i = 0; n we have the following
error estimations:

kf � skC � (L
0 +N (s)) � h2

and
jf 0 (t)� s0 (t)j � (L0 +N (s)) � h

for all t 2 [a; b]nft0; :::; tng; where N (s) = maxfjMij : i = 0; ng;Mi = s00(ti); i = 0; n; L0 = maxfLi :
i = 1; ng; h = maxfhi : i = 1; ng. Here, Li; i = 1; n are the Lipschitz constants of the derivatives of the
restrictions of f to the intervals [ti�1; ti], i = 1; n:

Proof. If s 2 C2[a; b] is cubic spline then the Lipschitz constant of s0 is N (s) = ks00kC = maxfjMij :
i = 0; ng: Let fi; i = 1; n be the restrictions of f to the intervals [ti�1; ti]; i = 1; n: Consider ' = f � s
and let 'i; i = 1; n be the restrictions of ' to the intervals [ti�1; ti]; i = 1; n: We have ' 2 C[a; b] and
'i 2 C1(ti�1; ti);8 i = 1; n: Moreover, '(ti) = f(ti) � s(ti) = 0 for all i = 0; n, and according to the
Rolle�s theorem we infer that exists �i 2 (ti�1; ti) such that '0i(�i) = 0;8i = 1; n: Therefore, f 0i(�i) = s0i(�i)
for all i = 1; n: Let arbitrary t 2 [a; b]: Then there is j 2 f1; :::; ng such that t 2 [tj�1; tj ]: We get

jf 0(t)� s0(t)j �
��f 0j(t)� f 0j(�j)��+ ��s0j(�j)� s0j(t)�� �

� (Lj +N (s)) jt� �j j � (L0 +N (s)) � h

and
jf(t)� s(t)j = jf(t)� s(t)� (f(tj�1)� s(tj�1))j �

�
tZ

tj�1

��f 0j(u)� s0j(u)�� du � (Lj +N (s)) � h2j � (L0 +N (s)) � h2:

4.1 The error estimation

Theorem 3 Under the conditions (i)-(v), if (L1 + 2L2)a2 < 1; then the unique solution of the initial
value problem (1), x� is approximated on the knots ti = i�a

n , i = 1; n by the sequence (xm (ti))m given in
(4)-(6), (13) and the apriori error estimation is:���x� (ti)� xm (ti)��� � a2m (L1 + L2)

m

1� a2 (L1 + L2)
� (jv0aj+M0a

2) +
a2L

4n[1� a2 (L1 + 2L2)]
+

+
a2L2

1� a2 (L1 + 2L2)
� (M0 +maxf

���M (i)
k

��� : k = 1;m� 1; i = 0; ng) � a2
n2

(24)

for all m 2 N� and i = 1; n:

Proof. For m 2 N� and i = 1; n; we have
���x� (ti)� xm (ti)��� � jx� (ti)� xm (ti)j+ ���xm (ti)� xm (ti)��� ;���xm (ti)� xm (ti)��� = ��Rm;i�� and

jx� (ti)� xm (ti)j �
a2m (L1 + L2)

m

1� a2 (L1 + L2)
� (jv0aj+M0a

2); (25)

according to Theorem 1. From (12) and (10), follows���x1 (ti)� x1 (ti)��� = jR1;ij � La2

4n
; 8i = 1; n:

6
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We de�ne the functions Vm; m 2 N�; Vm : [0; a]! R given by its restrictions to the subintervals [ti�1; ti];
i = 1; n; by

Vm (t) = xm (t) + [xm (t1)� xm (t1)] �
t� t0
t1 � t0

; t 2 [t0; t1]

Vm (t) = xm (t) + [xm (ti)� xm (ti)] �
t� ti�1
ti � ti�1

+ [xm (ti�1)� xm (ti�1)]�

� ti � t
ti � ti�1

; t 2 [ti�1; ti]; i = 2; n: (26)

We see that Vm (t0) = xm (t0) = x0 and Vm (ti) = xm (ti); Vm (ti�1) = xm (ti�1) for all i = 2; n and
m 2 N�: So, the spline function sm�1 interpolates Vm�1 on the knots ti; i = 0; n. Moreover, the restrictions
of Vm given in (26) have the same properties as the terms of the sequence of successive approximations,
xm (that is, with Lipschitzian �rst derivative having the same Lipschitz constant M0). On the other
hand, for the splines given in (14)-(17) and (19)-(23) we obtain,

jxk (t)� sk (t)j � jxk (t)� Vk (t)j+ jVk (t)� sk (t)j ; 8t 2 [0; a];

with

jVk (t)� xk (t)j �
���xk (ti)� xk (ti)��� � ���� t� ti�1ti � ti�1

����+
+
���xk (ti�1)� xk (ti�1)��� � ���� ti � t

ti � ti�1

���� � 2 �max ���Rk;i�� ; ��Rk;i�1���
for all i = 0; n� 1 and k = 1;m� 1: From Lemma 2 follows

jVk (t)� sk (t)j �
�
M0 +maxf

���M (i)
k

��� : i = 0; ng� � a2
n2
�

�
�
M0 +maxf

���M (i)
k

��� : i = 0; n; k = 1;m� 1g� � a2
n2
; 8t 2 [0; a];8m 2 N�: (27)

Now, we proceed to estimate the remainders Rm;i; m 2 N�;m � 2; i = 1; n: In this aim, �rstly we get

��R2;i�� = ���x2 (ti)� x2 (ti)��� � jR2;ij+ a

2n
�
i�1X
j=0

[(ti � tj) � (L1 jR1;j j+ L2(!1 �
a2

n2
+

+max(2 jR1;j j ; 2 jR1;j+1j)) + (ti � tj+1) � (L1 jR1;j+1j+ L2(!1 �
a2

n2
+max(2 jR1;j j ; 2 jR1;j+1j))] �

� La2

4n
(1 + a2(L1 + 2L2)) + a

2!1L2 �
a2

n2
; 8i = 1; n

where !1 =M0 +maxf
���M (i)

1

��� : i = 0; ng:
Analogously,

��R3;i�� = ���x3 (ti)� x3 (ti)��� � jR3;ij+ a

2n
�
i�1X
j=0

[(ti � tj) � (L1
��R2;j��+ L2(max(2 ��R2;j�� ;

; 2
��R2;j+1��) + !2 � a2

n2
)) + (ti � tj+1) � (L1

��R2;j+1��+ L2(max(2 ��R2;j�� ; 2 ��R2;j+1��) + !2 � a2
n2
))] �

� La2

4n
� [1 + a2(L1 + 2L2) +

�
a2(L1 + 2L2)

�2
] + a2!1L2a

2(L1 + 2L2) �
a2

n2
+ a2L2!2 �

a2

n2

where !2 =M0 +maxf
���M (i)

2

��� : i = 0; ng: Let ! = max(!1; !2): Then
��R3;i�� � [1 + a2(L1 + 2L2) + a4(L1 + 2L2)2] � La2

4n
+

7
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+a2L2[1 + a
2(L1 + 2L2)] � !

a2

n2
; 8i = 1; n:

By induction for m 2 N�;m � 3 let !k = M0 + maxf
���M (i)

k

��� : i = 0; ng; k = 3;m� 1 and ! =

maxf!1; !2; :::; !m�1g:
We get ���xm(ti)� xm(ti)��� = ��Rm;i�� � jRm;ij+ a

2n
[
i�1X
j=0

[(ti � tj) � (L1
��Rm�1;j��+

+L2(2max(
��Rm�1;j�� ; ��Rm�1;j+1��) + ! � a2

n2
))+

+(ti � tj+1) � (L1
��Rm�1;j+1��+ L2(2max(��Rm�1;j�� ; ��Rm�1;j+1��) + ! � a2

n2
))] �

� [1 + a2(L1 + 2L2) + a4(L1 + 2L2)2 + :::+ (a2)m�1(L1 + 2L2)m�1] �
La2

4n
+

+a2L2[1 + a
2(L1 + 2L2) + :::+ (a

2)m�2(L1 + 2L2)
m�2] � !a

2

n2
; 8i = 1; n:

We can see that ! =M0 +maxf
���M (i)

k

��� : i = 0; n; k = 1;m� 1g: Consequently,
���xm(ti)� xm(ti)��� = ��Rm;i�� � 1� a2m(L1 + 2L2)m

1� a2(L1 + 2L2)
� La

2

4n
+

+a2L2
1� a2(m�1)(L1 + 2L2)m�1

1� a2(L1 + 2L2)
� !a

2

n2
:

Since a2(L1 + 2L2) < 1 we conclude���xm(ti)� xm(ti)��� = ��Rm;i�� � La2

4n[1� a2(L1 + 2L2)]
+

+
!a4L2

n2[1� a2(L1 + 2L2)]
notation
= 
; 8i = 1; n;8m 2 N�;m � 2

and ���x1(ti)� x1(ti)��� = jR1;ij � La2

4n
; 8i = 1; n:

These complete the proof.

Remark 2 From estimation (24) follows the convergence of the method and of its algorithm. Now, we
can see that the same estimation can give a practical stopping criterion of the algorithm. This can be
stated as follows: For given "0 > 0 and given n 2 N� (previously chosen) it determines the �rst natural
number m 2 N� for which, ���xm (ti)� xm�1 (ti)��� < "0 for all i = 1; n

and we stop to this m, retaining the approximations xm (ti); i = 1; n; of the solution:A demonstration of
this criterion is the following:
For each i = 1; n we have���x� (ti)� xm (ti)��� � jx� (ti)� xm (ti)j+ ���xm (ti)� xm (ti)��� �

� a2(L1 + L2)

1� a2(L1 + L2)
� jxm (ti)� xm�1 (ti)j+

��Rm;i��
8
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and
jxm (ti)� xm�1 (ti)j �

���xm (ti)� xm (ti)���+ ���xm (ti)� xm�1 (ti)���+
+
���xm�1 (ti)� xm�1 (ti)��� = ��Rm;i��+ ��Rm�1;i��+ ���xm (ti)� xm�1 (ti)��� :

So, ���x� (ti)� xm (ti)��� � ��Rm;i��+ a2(L1 + L2)

1� a2(L1 + L2)
�
���xm (ti)� xm�1 (ti)���+

+
a2(L1 + L2)

1� a2(L1 + L2)
�
���Rm;i��+ ��Rm�1;i��� :

Then ���x� (ti)� xm (ti)��� � 
 � 1 + a2(L1 + L2)
1� a2(L1 + L2)

+
a2(L1 + L2)

1� a2(L1 + L2)
�
���xm (ti)� xm�1 (ti)��� :

For given " > 0 we require


 � 1 + a
2(L1 + L2)

1� a2(L1 + L2)
<
"

2
(28)

and
a2(L1 + L2)

1� a2(L1 + L2)
�
���xm (ti)� xm�1 (ti)��� < "

2
:

Since


 <
La2

4n[1� a2(L1 + 2L2)]
+

!a4L2
4n[1� a2(L1 + 2L2)]

for n � 5; we can chose the least natural number n for which the inequality (28) holds. Afterward we �nd
the least natural number m (this is the last iterative step to be made) for which���xm (ti)� xm�1 (ti)��� < "

2
� 1� a

2(L1 + L2)

a2(L1 + L2)

for all i = 1; n:With these, we obtain
���x� (ti)� xm (ti)��� < "; for all i = 1; n:

Remark 3 It is easy to prove that if f 2 C1([0; a] � R � R) has bounded partial derivatives @f
@x ,

@f
@y

such that all its �rst order partial derivatives are Lipschitzian in each argument, and if ' 2 C1[0; a] with
Lipschitzian �rst derivative, then Fm 2 C1[0; a] and the functions F 0m are Lipschitzian with the same
Lipschitz constant L0:

Theorem 4 Under the conditions (i)-(v) and in the conditions mentioned in Remark 3, if a2(L1+2L2) <
1 then the unique solution x�, of the initial value problem (1), is approximated on the knots ti = i�a

n ,
i = 1; n by the sequence (xm (ti))m given in (4)-(6), (13) and the apriori error estimation is:���x� (ti)� xm (ti)��� � a2m (L1 + L2)

m

1� a2 (L1 + L2)
� (jv0aj+M0a

2) +
a3L0

12n2[1� a2 (L1 + 2L2)]
+

+
a2L2

1� a2 (L1 + 2L2)
� (M0 +maxf

���M (i)
k

��� : k = 1;m� 1; i = 0; ng) � a2
n2

(29)

for all m 2 N� and i = 1; n:

Proof. Is similar to the proof of Theorem 3, with the di¤erence that instead of inequality (10) it is
used the estimation

jRm;ij �
L0a3

12n2
; for all i = 1; n; m 2 N�: (30)

The inequality (30) is obtained using the remainder estimation in (6)

jRn (F )j �
L0(b� a)3
12n2

which holds for functions with Lipschitzian �rst derivative (see [1]). Here, L0 is the Lipschitz constant of
F 0:

9
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4.2 Numerical examples

Example 5 Firstly, we consider the initial value problem (1) with '(t) = �t; a = 1
2 ; � =

1
2 ; x0 =

1 and f (s; u; v) = 2u
3 + v

3 � e
s=2which has the exact solution x� (t) = et: The stopping condition is���xm (ti)� xm�1 (ti)��� < "0; for all i = 1; n: On this example, the condition of convergence (L1+2L2)a2 =

1+ 4
p
e

6 < 1 is ful�lled. Using the algorithm with "0 = 10�5; n = 10; we get m = 4; the number of iterations,
and the approximations xm (ti) of the exact solution on the corresponding knots (which can be compared
with the exact values of eti) are in Table 1. We observe a very good accuracy and the order of convergence
stated in Theorem 2 is con�rmed to be O(h2); where h = a

n : Moreover, on the interval [0; 0:3] the accuracy
is better, having a convergence order O(h4) on this interval. If we take "0 = 10�9 and n = 10; we get
m = 7; and the values are represented in Table 2 (we can observe a similar accuracy as in Table 1).

ti xm (ti) x� (ti) = e
ti ti xm (ti) x� (ti) = e

ti

0:05 1.0512500 1.05127109637 0:3 1.34946602 1.3498588075
0:1 1.1051273 1.10517091807 0:35 1.41811653 1.4190675485
0:15 1.1617571 1.16183424272 0:4 1.49342171 1.4918246976
0:2 1.2213094 1.22114027581 0:45 1.56962813 1.5683121854
0:25 1.2839754 1.28402541668 0:5 1.63131058 1.6487212707

Table 1

ti xm (ti) x� (ti) = e
ti ti xm (ti) x� (ti) = e

ti

0:05 1.0512500000 1.05127109637 0:3 1.34946602403 1.3498588075
0:1 1.1051273393 1.10517091807 0:35 1.41811653455 1.4190675485
0:15 1.1617571992 1.16183424272 0:4 1.49342174410 1.4918246976
0:2 1.2213094121 1.22114027581 0:45 1.56962803549 1.5683121854
0:25 1.2839754824 1.28402541668 0:5 1.63131062924 1.6487212707

Table 2

Example 6 Consider the initial value problem�
x00(t) =

�� 1
3 � sin t � cos(x(t)) +

1
5 � cos t � sin(x(0:5t))

��
x(0) = 1; x0(0) = 0:5

; t 2 [0; 1]

which is nonlinear and the kernel function cannot be di¤erentiable. On the other hand, this function is
continuous and Lipschitzian in each argument having the Lipschitz constants  = 8

15 ; L1 =
1
3 ; L2 =

1
5

and the convergence condition is (L1 + 2L2)a2 = 11
15 < 1: For this example we cannot use the well-known

methods (Runge-Kutta, collocation, splines) because these methods require, in the proof of convergence,
high order of smoothness properties for the kernel function. But here, we can use the above presented
method, which according to the previous example, has good accuracy. The stopping criterion is similar to
the previous example. For "0 = 10�5; n = 10 we get m = 2 and the results are in Table 3.

ti xm (ti) ti xm (ti)
0.1 1.05 0.6 1.30
0.2 1.10 0.7 1.35
0.3 1.15 0.8 1.40
0.4 1.20 0.9 1.45
0.5 1.25 1 1.50

Table 3

10
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5 Conclusions

A new numerical method for second order delay di¤erential equations is presented. This method combines
the Picard sequence of successive approximations, the trapezoidal quadrature rule and spline interpola-
tion. The interpolation is used only on the modi�ed argument. The method�s algorithm has recurrent
form easy to programming and a practical stopping criterion of the algorithm is obtained using the error
estimate. The main result of the paper is Theorem 3.
The method is created in the aim to be an alternative to the well-known methods (Runge-Kutta,

collocation, spline functions method) in the cases in which these methods are not applicable (when
the kernel function are not smooth). The above presented method is convergent even in the case of
Lipschitzian kernel function and such example is presented (in Example 2). Consequently, the presented
method covers the situations unsolved by other methods. The accuracy of the method is illustrated in
Example 1.
The principle of the method (the use, in numerical integration, of an interpolation procedure only

on the points where the argument is modi�ed) gives its generality, being extensible to other types of
functional equations with modi�ed argument.
Acknowledgement : The research of the �rst author on this paper is supported by the grant 2Cex-

06-11-96/19.09.2006 of the National Authority for Scienti�c Research from the Minister of Education and
Research, Romanian Government.
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[7] M. Sezer, A. Akyuz-Daşcioglu, A Taylor method for numerical solution of generalized pantograph
equations with linear functional argument, J. Comput. Appl. Math. 200, 217-225 (2001).

11

BICA et al: SOLVING  SECOND ORDER D.E. 47



Rate of Convergence of the Integrated
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1. Introduction

For a function f ∈ L1[0, 1] and α > 0, the integrated MKZ-Bézier operators are defined
as

Mn,α(f, x) =
∞∑

k=0

Q
(α)
nk (x)

(n + k)(n + k + 1)
n

∫

Ik

f(t)dt, (1)

where Q
(α)
nk (x) = (Jn,k(x))α − (

Jn,k+1(x)
)α

, Jn,k(x) =
∑∞

j=k mnj(x), and

Ik = [
k

n + k
,

k + 1
n + k + 1

],mnj(x) = (n+j−1
j )xj(1− x)n, j = 0, 1, 2 . . . .

The approximation of bounded variation functions with the operators Mn,α for the
case α ≥ 1 was studied by Zeng [1]. Some related investigation about this bézier type
operators, we can see Refs. [2-4]. In this paper, we discuss the pointwise approximation
of Mn,α for the case 0 < α < 1. Our results extend the work of Zeng.

The main theorem of this paper is as follows:

Theorem 1 Let f be a bounded function on [0, 1], 0 < α < 1, and f(x+), f(x−) exist at
a fixed point x ∈ (0, 1), then for n sufficiently large, we have

∣∣∣∣Mn,α(f, x)− 1
2α

f(x+)− (1− 1
2α

)f(x−)
∣∣∣∣

≤ 6√
nx + 1

|f(x+)− f(x−)|+ 5 + 4C

nx(1− x)

n∑

k=1

Ωx(gx, 1/
√

k) (2)

1
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where C is a positive constant, Ωx(f, λ) = supt∈[x−λ,x+λ] |f(t)− f(x)| and

gx(t) =





f(t)− f(x+), x < t ≤ 1,
0, t = x,

f(t)− f(x−), 0 ≤ t < x.
(3)

For further properties of Ωx(f, λ),we refer the readers to [10].
Let

Kn,α(x, t) =
∞∑

k=0

Q
(α)
nk (x)χk(t)|Ik|−1, (4)

and

λn,α(x, t) =
∫ t

0

Kn,α(x, u)du, (5)

where χk is the characteristic function of the interval Ik = [k/(n + k), (k + 1)/(n + k + 1)]
with respect to I = [0, 1], and |Ik| denotes the length of Ik.

Then by Lebesgue-Stieltjes integral representations, there holds

Mn,α(f, x) =
∫ 1

0

f(t)Kn,α(x, t)dt =
∫ 1

0

f(t)dtλn,α(x, t). (6)

2. Auxiliary results

The proof of our result is based on the following lemmas.

Lemma 1.[11,Theorem 2] For every k ∈ N, x ∈ (0, 1], we have

mnk(x) <
1√

2enx
. (7)

Lemma 2. Let 0 < α ≤ 1 and x ∈ (0, 1), as n > 144/x and k′ = [nx/(1− x)], we have

(i)

∣∣∣∣∣∣


 ∑

k>nx/(1−x)

mnk(x)




α

− 1
2α

∣∣∣∣∣∣
≤ 4√

nx + 1
, (8)

(ii) Q
(α)
nk′(x) <

2√
nx + 1

. (9)

Proof. (i) By mean value theorem, we have
∣∣∣∣∣∣


 ∑

k>nx/(1−x)

mnk(x)




α

− 1
2α

∣∣∣∣∣∣
= α

(
ξnk(x)

)α−1

∣∣∣∣∣∣
∑

k>nx/(1−x)

mnk(x)− 1
2

∣∣∣∣∣∣
, (10)

where ξnk(x) lies between 1
2 and

∑
k>nx/(1−x) mnk(x).

From [1,Lemma 4], there holds
∣∣∣∣∣∣

∑

k>nx/(1−x)

mnk(x)− 1
2

∣∣∣∣∣∣
≤ 3√

nx + 1
. (11)

Thus
ξnk(x) >

∑

k>nx/(1−x)

mnk(x) >
1
4

(12)

2
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for all n > 144/x.
From (10),(11),(12) and noting 3α < 4α, we get

∣∣∣∣∣∣


 ∑

k>nx/(1−x)

mnk(x)




α

− 1
2α

∣∣∣∣∣∣
≤ α

4α−1

3√
nx + 1

<
4√

nx + 1
.

(ii) Noting the expression of Q
(α)
nk′(x), and along the same method of (i), we can get

Q
(α)
nk′(x) ≤ α41−αmn,k′(x) ≤ α41−α

√
2enx

<
1√
nx

. (13)

The second inequality of (13) is obtained from Lemma 1.
Since Q

(α)
nk′(x) ≤ 1, (9) is proved.

Lemma 3. For 0 < α ≤ 1 and 0 ≤ t < x < 1, there holds

λn,α(x, t) =
∫ t

0

Kn,α(x, u)du ≤
∫ t

0

Kn,1(x, u)du ≤ 2x(1− x)2

n(x− t)2
. (14)

Proof. Let t ∈ [k∗/(n + k∗), (k∗ + 1)/(n + k∗ + 1)). Then we can write t = [(n + k∗ +
1)k∗ + δ]/(n + k∗)(n + k∗ + 1)(0 ≤ δ < n). So

∫ t

0

Kn,α(x, u)du =
∫ t

0

∞∑

k=0

Q
(α)
nk (x)χk(u)|Ik|−1du =

∞∑

k=0

Q
(α)
nk (x)|Ik|−1

∫ t

0

χk(u)du

=
k∗−1∑

k=0

Q
(α)
nk (x) + |Ik∗ |−1Q

(α)
nk∗(x)

∫ [(n+k∗+1)k∗+δ]/(n+k∗)(n+k∗+1)

k∗/(n+k∗)
1du

=
k∗−1∑

k=0

Q
(α)
nk (x) + δQ

(α)
nk∗(x) = 1− (1− δ)(Jn,k∗(x))α − δ(Jn,k∗+1(x))α

≤ 1− (1− δ)Jn,k∗(x)− δJn,k∗+1(x) =
∫ t

0

Kn,1(x, u)du.

The right hand inequality of (14) follows from [1,Lemma 6]. The proof is complete.

Lemma 4. For 0 < α ≤ 1 and 0 ≤ x < t < 1, there holds

1− λn,α(x, t) = 1−
∫ t

0

Kn,α(x, u)du ≤ Cx1−α(1− x)2−α

n(t− x)2
, (15)

where C is a positive constant.
Proof.

1−
∫ t

0

Kn,α(x, u)du =
∫ 1

t

Kn,α(x, u)du =
∞∑

k=0

Q
(α)
nk (x)|Ik|−1

∫ 1

t

χk(u)du

≤
∑

t≤ k+1
n+k+1

Q
(α)
nk (x)|Ik|−1

∫ k+1
n+k+1

k
n+k

χk(u)du

=
∑

t≤ k+1
n+k+1

Q
(α)
nk (x) =

∑

k≥ nt
1−t−1

(
Jα

n,k(x)− Jα
n,k+1(x)

)

=


 ∑

k≥ nt
1−t−1

mnk(x)




α

=


 ∑

k≥ nt
1−t

mn,k−1(x)




α

3
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=


 ∑

k≥ nt
1−t

nk

(n + k)(n + k − 1)x(1− x)
(n+k

k )xk(1− x)n+1




α

≤ 1
(x(1− x))α


 ∑

k≥ nt
1−t

Mnk(x)




α

,

where Mnk(x) = (n+k
k )xk(1− x)n+1.

Since 0 ≤ x < t < 1, so | k
n+k − x| ≥ |t− x| for all k ≥ nt

1−t . Thus we have

1−
∫ t

0

Kn,α(x, u)du ≤ 1
(x(1− x))α


 ∑

k≥ nt
1−t

| k
n+k − x|2/α

|t− x|2/α
Mnk(x)




α

≤ 1
(x(1− x))α(t− x)2

( ∞∑

k=0

| k

n + k
− x|2/αMnk(x)

)α

.

we can choose p, q > 1, i.e., 1
p + 1

q = 1.Then by the Hölder inequality,we have
( ∞∑

k=0

| k

n + k
− x|2/αMnk(x)

)α

=

( ∞∑

k=0

| k

n + k
− x|2/αM

1/p
nk (x)M1/q

nk (x)

)α

≤
( ∞∑

k=0

| k

n + k
− x|2p/αMnk(x)

)α/p

since (
∑∞

k=0 Mnk(x))α = 1.
Choosing p = α[1/α+1], then 2p/α = 2[1/α+1] is a positive even integer. By [9,Theorem
2.1] and with a simple calculation, we obtain

( ∞∑

k=0

| k

n + k
− x|2p/αMnk(x)

)α/p

≤ Cx(1− x)2

n
.

This completes the proof of Lemma 4.

Lemma 5. Let f be a bounded function on (0, 1), when n sufficiently large, we have

∣∣Mn,α

(
gx, x)

∣∣ ≤ 5 + 4C

nx(1− x)

n∑

k=1

Ωx(gx, 1/
√

k) . (16)

Proof. By (6), we have

Mn,α(gx, x) =
∫ 1

0

gx(t)dtλn,α(x, t) = Σ1 + Σ2 + Σ3 , (17)

where

Σ1 =
∫ x− x√

n

0

gx(t)dtλn,α(x, t), Σ2 =
∫ x+ 1−x√

n

x− x√
n

gx(t)dtλn,α(x, t),

Σ3 =
∫ 1

x+ 1−x√
n

gx(t)dtλn,α(x, t).

Observing that gx(x) = 0, we first have

∣∣Σ2

∣∣ ≤
∫ x+ 1−x√

n

x− x√
n

|gx(t)− gx(x)|dtλn,α(x, t)

4
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≤ Ωx(gx, 1/
√

n) ≤ 1
n

n∑

k=1

Ωx(gx, 1/
√

k). (18)

To estimate Σ1, let y = x − x/
√

n and using Lebesgue-Stieltjes integration by parts, we
have

∣∣Σ1

∣∣ ≤
∫ y

0

Ωx(gx, x− t)dtλn,α(x, t)

= Ωx(gx, x− y)λn,α(x, y+) +
∫ y

0

λ̂n,α(x, t)dt

(− Ωx(gx, x− t)
)
,

where λ̂n,α(x, t) is the normalized form of λn,α(x, t).
Also λ̂n,α(x, t) ≤ λn,α(x, t) on [0, 1], by(14), it follows that

∣∣Σ1

∣∣ ≤ Ωx(gx, x− y)
2x(1− x)2

n(x− y)2
+

2x(1− x)2

n

∫ y

0

1
(x− t)2

dt

(− Ωx(gx, x− t)
)
. (19)

Since
∫ y

0

1
(x− t)2

dt

(− Ωx(gx, x− t)
)

= −Ωx(gx, x− t)
(x− t)2

∣∣y+

0
+

∫ y

0

2Ωx(gx, x− t)
(x− t)3

dt,

from (19) it follows that

∣∣Σ1

∣∣ ≤ 2(1− x)2

nx
Ωx(gx, x) +

2x(1− x)2

n

∫ x− x√
n

0

2Ωx(gx, x− t)
(x− t)3

dt.

Putting t = x− x/
√

u for the last integral, we get

∣∣Σ1

∣∣ ≤ 2(1− x)2

nx
Ωx(gx, x) +

2(1− x)2

nx

∫ n

1

Ωx(gx, x/
√

u)du

≤ 4(1− x)2

nx

n∑

k=1

Ωx(gx, 1/
√

k). (20)

Using the similar method to estimate |Σ3|, we obtain

∣∣Σ3

∣∣ ≤ 2C(1− x)2−α

nx1+α

n∑

k=1

Ωx(gx, 1/
√

k). (21)

Combining the estimates of (17),(18),(20) and (21), also noting the properties of Ωx(f, λ),
we get the required result.

3. Proof of Theorem 1

Let f satisfy the conditions of Theorem 1, we can decompose f(t) into four parts as

f(t) =
1
2α

f(x+) + (1− 1
2α

)f(x−) + gx(t) +
f(x+)− f(x−)

2α
ŝign(t− x)

+δx(t)
[
f(x)− 1

2α
f(x+)− (1− 1

2α
)f(x−)

]
, (22)

where gx(t) is as defined in (3),

ŝign(t− x) =





2α − 1, t > x,
0, t = x,
−1, t < x,

5
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and

δx(t) =
{

1, t = x,
0, t 6= x.

Therefore, ∣∣∣∣Mn,α(f, x)− 1
2α

f(x+)− (1− 1
2α

)f(x−)
∣∣∣∣ ≤ |Mn,α(gx, x)|

+
∣∣∣∣
f(x+)− f(x−)

2α
Mn,α

(
ŝign(t− x), x

)∣∣∣∣ (23)

+
∣∣∣∣
[
f(x)− 1

2α
f(x+)− (1− 1

2α
)f(x−)

]
Mn,α(δx, x)

∣∣∣∣ .

It is obvious that
Mn,α(δx, x) = 0. (24)

Next we estimate Mn,α

(
ŝign(t− x), x

)
.

Let x ∈ [ k′
n+k′ ,

k′+1
n+k′+1 ), we have

Mn,α

(
ŝign(t− x), x

)
=

k′−1∑

k=0

(−1)Q(α)
nk (x) +

Q
(α)
nk′(x)
|Ik′ |

∫ x

k′
n+k′

(−1)dt

+
Q

(α)
nk′(x)
|Ik′ |

∫ k′+1
n+k′+1

x

(2α − 1)dt +
∞∑

k=k′+1

(2α − 1)Q(α)
nk (x)

=
∞∑

k=k′+1

2αQ
(α)
nk (x)− 1 +

Q
(α)
nk′(x)
|Ik′ |

∫ k′+1
n+k′+1

x

2αdt

≤
∞∑

k=k′+1

2αQ
(α)
nk (x)− 1 +

Q
(α)
nk′(x)
|Ik′ |

∫

Ik′
2αdt.

Hence, we get

∣∣∣Mn,α

(
ŝign(t− x), x

)∣∣∣ ≤
∣∣∣∣∣

∞∑

k=k′+1

2αQ
(α)
nk (x)− 1

∣∣∣∣∣ + 2αQ
(α)
nk′(x)

= 2α

∣∣∣∣∣∣
∑

k>nx/(1−x)

Q
(α)
nk (x)− 1

2α

∣∣∣∣∣∣
+ 2αQ

(α)
nk′(x)

= 2α

∣∣∣∣∣∣


 ∑

k>nx/(1−x)

mnk(x)




α

− 1
2α

∣∣∣∣∣∣
+ 2αQ

(α)
nk′(x).

(25)

Theorem 1 now follows from (23),(24),(25), Lemma 2 and Lemma 5.
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Stability of moving on (2+α) chain 1
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Abstract

There is considered the system of differentional equations on graph which is the

mathematical model of traffic flows on network. The qualitative properties of solutions,

stationary points and system behavior in the neighborhood of critical regimes are

studied.

The paper continues the investigation of flow stabiity on graphs [1]-[3].

1. We consider an one direction moving on the graph as shown in Fig. 1.

N

(2) (1)

ρ2 ρ1

S

(1 − α)

α

(3) ρ3

Figure 1: (2+α) chain

The graph has two nodes N and S, three edges of the same length 1 and the state

function, which means the dependence of the flow intensity from density. In this case the

state function is defined by x(1− x), 0 ≤ x ≤ 1. Next, an α-part of flow from edge (2) ( �NS)

goes to the edge (3) ( �SS), and (1 − α) - part of flow goes to edge (1) ( �SN).

1Supported by NTUST grant No RP07-04
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We assume that θ(t) is the step function with two values. The value of the function is

equal to 0 if the movement is forbidded over node S ’on’ and ’out’ the edge (3) and the value

is equal to 1 if the movement is permitted.

Thus if ρi, 1 ≤ i ≤ 3 denote the densities on edges of the graph, then

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dρ1

dt
= −f(ρ1) + (1 − α)f(ρ2) + θf(ρ3),

dρ2

dt
= f(ρ1) + ((1 − α) + θα) f(ρ2),

dρ3

dt
= θαf(ρ2) − θf(ρ3),

(1)

i.e. ⎛
⎜⎜⎜⎜⎜⎝

dρ1

dt

dρ2

dt

dρ3

dt

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−1 (1 − α) 0

1 − (1 − α) − θα 0

0 θα −θ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

f (ρ1)

f (ρ2)

f (ρ3)

⎞
⎟⎟⎟⎟⎟⎠ (2)

It is clear that (
dρ1

dt
+

dρ2

dt
+

dρ3

dt

)
= (ρ1 + ρ2 + ρ3)

′ ≡ 0,

i.e.

ρ1 (t) + ρ2 (t) + ρ3 (t) ≡ C, (3)

where C is the flow mass, 0 ≤ C ≤ 3. Since

0 ≤ ρi (t) ≤ 1, i = 1, 2, 3 (4)

and if any function ρi0(T ) = 1 , then

ρi0 (t) ≡ 1 ∀t > T. (5)

The solution (5) is called critical.

2
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2. The maximal network (θ ≡ 1)

We consider in this section that the edge with number (3) is always open. The system

(1)-(2) will be transformed as below:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dρ1

dt
= −f (ρ1) + (1 − α) f (ρ2) + f (ρ3) ,

dρ2

dt
= f (ρ1) − f (ρ2) ,

dρ3

dt
= αf (ρ2) − f (ρ3)

(6)

By virtue of (4)-(5), if at some time T the density on any edges becomes maximum, then

the input and output flows become zero for all t ≥ T.

Therefore, the behavior of solutions (6) in neighbourhood of admisable value cube’s (4)

boundary is a very important characteristic.

When α = 1 the system (6) becames a full 3-vertex graph and is equivalent to the graph

as shown in Fig. 2 [1].

ρ2 ρ1

ρ3

Figure 2: 3 vertices full graph (with 3 edges)

When α = 0, we get system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dρ1

dt
= −f (ρ1) + f (ρ2) + f (ρ3) ,

dρ2

dt
= f (ρ1) − f (ρ2) ,

dρ3

dt
= −f (ρ3)

(7)

and the initial conditions are

ρ1 (0) = ρ10, ρ2 (0) = ρ20, ρ3 (0) = ρ30. (8)

3

BUSLAEV et al: ON STABILITY... 57



From (7) we have
ρ3∫

ρ30

dρ3

f (ρ3)
= −

t∫
0

dt = −t,

and according to f (ρ3) = ρ3 (1 − ρ3) , we get

ln
ρ3

(1 − ρ3)

∣∣∣∣∣
ρ3

ρ30

= −t,

i.e.
ρ3 (t)

1 − ρ3 (t)
=

1 − ρ30

ρ30

e−t,

ρ3 (t) =

(
1 +

ρ30

1 − ρ30
et

)−1

. (9)

It is clear that the function ρ3 (t) monotonously decreases and from (3)

ρ1 (t) + ρ2 (t) ↗ C. (10)

If C < 1, then

ρ1 (t) + ρ2 (t) = C − ρ3 (t) ↗ C < 1,

and from (2) it follows that the flow on two edges will be stable.

If C > 1, then for finite time T1 the condition will be achieved

ρ1 (t) + ρ2 (t) > 1

for all t > T1.

Thence, from [2] it follows that the flow on subgraph with edges (1)-(2) will certainly be

in critical regime.

Hence, for α = 0, the (2 + 0)− flow is equivalent to the two-section graph position [2].

4
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3. Qualitative properties of solutions (6) in boundary neighbourhood

We consider the set D of permissible values ρ = (ρ1, ρ2, ρ3) meet Eqs. (3), (4) in depen-

dence on parameter C.

When 0 < C < 1, we have the set D as shown in Fig. 3.

A3

ρ2 = 0 �n2 �n1 ρ1 = 0

�n1

A1 A2
ρ3 = 0

Figure 3: The set D when ρ1 + ρ2 + ρ3 = C < 1

If 1 < C < 2, the set D is shown in Fig. 4.

ρ3 = 0

A31 A32�n12

ρ2 = 0 �n2 �n1 ρ1 = 0

A13 A23

ρ1 = 1 �n23 �n13 ρ2 = 1

�n3

A12 A21

ρ3 = 0

Figure 4: The set D when 1 < ρ1 + ρ2 + ρ3 < 2

If C = 3
2
, we have the regular hexagon as shown in Fig. 4. The cross-sections of the

5
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hexagon are symmetric with certain accuracy that surely depends on rotation on angle π/3

with regard to the above mention value of parameter C.

The similar property is trust also for the set of parameters (0 < C < 1) and (2 < C < 3) .

Hence, if 2 < C < 3, we have the set D as shown in Fig. 5.

B2 B1

B3

Figure 5: The set D when ρ1 + ρ2 + ρ3 = C > 2

Assume that C < 1.

The normal vector �n1 to A2A3 in Fig. 3 is equal to

(
2/
√

6,−1/
√

6,−1/
√

6
)
.

We consider the function

F = �̇ρ · �n1,

which represents the velocity of system moving away from bounding (critical) regime �ρ .

If 0 < C < 1, we have

F =
dρ1

dt
− 1

2

dρ2

dt
− 1

2

dρ3

dt
=

6
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(
−f(ρ1) + (1 − α) f(ρ2) + f(ρ3) − 1

2
f(ρ1)+

+
1

2
f(ρ2) − 1

2
αf(ρ2) +

1

2
f(ρ3)

) √
2

6
=

=

⎛
⎝−

√
3

2
f(ρ1) +

√
3

2
f(ρ2) (1 − α) +

√
3

2
f(ρ3)

⎞
⎠ .

If �ρ ∈ A2A3, then ρ1 = 0, ρ2 + ρ3 = C and

�F
∣∣∣
ρ2+ρ3=C, ρ1≡0

=

√
3

2
((1 − α) f(ρ2) + f(ρ3)) . (11)

Analogously, �n2 =
(
−1/

√
6, 2/

√
6,−1/

√
6
)
, and

�F
∣∣∣
ρ1+ρ3=C, ρ2≡0

=
3√
6
f(ρ1) =

√
3

2
f(ρ1). (12)

Thus �n3 =
(
−1/

√
6,−1/

√
6, 2/

√
6
)

,

�F
∣∣∣
ρ1+ρ2=C,ρ3≡0

=
3α√

6
f(ρ2) =

√
3

2
αf(ρ1) (13)

A
1

A
2

A
3

Figure 6: Tria-gram of velocities, C < 1

Therefore, the following is existed.

Proposition 1. If C < 1, the system (6) moves away from bounding regime with

velocity close to zero (11)-(13).

7
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Figure 7: Diagram of velocities, 1 < C < 2

Then we have �n12 = −�n3, �n13 = −�n2, and �n23 = −�n1.

Hence, from (11)-(13), if C > 1, C < 2,

�F
∣∣∣
ρ2+ρ3=C−1, ρ1≡1

= −
√

3

2
((1 − α) f(ρ2) + f(ρ3)) ,

�F
∣∣∣
ρ1+ρ3=C−1, ρ2≡1

= −
√

3

2
f(ρ1),

�F
∣∣∣
ρ1+ρ2=C−1, ρ3≡1

= −
√

3

2
αf(ρ1).

Summarizing the above statements, we have the diagram of velocities on the boundary

as shown in Fig. 7, if 1 < C < 2.

When C > 2, we obtain the case as shown in Fig.8.

4. On quantity of stationary points (6)

Let ρα be a minimum solution of the equation

f (ρ) =
1

α
f (ρα) , (14)

where ρα = ρα (ρ) , 0 < α < 1, 0 < ρ < 1.

It is clear that

ρα = (1 − ρ)α . (15)

8
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Figure 8: Case C > 2

Moreover, 0α = 0 and

ρα ↗ (0.5)α if ρ ∈ (0, 1) . (16)

Analogously, if ρ ∈ (0, 0.5) , then it holds

ρα ↗ ρ1 ≡ ρ if α ∈ (0, 1]. (17)

Proposition 2. The unequality is true

ρα + ρ ≤ 1 (18)

for all ρ ∈ [0, 1] and α ∈ [0, 1].

Proof: If ρ ∈ (0, 1/2), from ρα < ρ, we get

ρα + ρ < 2ρ < 1.

If ρ ∈ (1/2, 1) , then ρα = (1 − ρ)α < 1 − ρ, consequently, ρ + ρα < 1.

The stationary points (6) are the solutions of the system

⎧⎪⎨
⎪⎩

f (ρ1) = f (ρ2) ,

f (ρ3) = αf (ρ2) .
(19)

9
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From symmetry of the function f (ρ) relatively to ρ = 0.5, we get the following stationary

points

(1) (ρ, ρ, ρα) , 0 ≤ 2ρ + ρα ≤ 2;

(2) (1 − ρ, 1 − ρ, ρα) , 0 ≤ 2 − 2ρ + ρα ≤ 2;

(3) (ρ, 1 − ρ, ρα) , 1 ≤ 1 + ρα ≤ 1 + (0.5)α ;

(4) (1 − ρ, ρ, ρα) , 1 ≤ 1 + ρα ≤ 1 + (0.5)α ;

(5) (ρ, ρ, 1 − ρα) , 1 ≤ 2ρ + 1 − ρα ≤ 3;

(6) (1 − ρ, 1 − ρ, 1 − ρα) , 1 ≤ 2 − ρ ≤ 3 − 2ρ − ρα ≤ 3;

(7) (ρ, 1 − ρ, 1 − ρα) , 2 − (0.5)α ≤ 2 − 2ρα ≤ 2;

(8) (1 − ρ, ρ, 1 − ρα) , 2 − (0.5)α ≤ 2 − 2ρα ≤ 2;

From ρα = (1 − ρ)α, the family (1) and (2) are equivalent.

Hence, the following families are equivalent:

(3) ⇐⇒ (4), (5) ⇐⇒ (6), (7) ⇐⇒ (8).

Thus it is true

Proposition 3.

When α ∈ (0, 1) is fixed, there exists four families of stable states of system (6) 0 ≤ ρ ≤
1 :

(a) (ρ, ρ, ρα) , 0 ≤ C ≤ 2;

(b) (ρ, 1 − ρ, ρα) , 1 ≤ C ≤ 1 + (0.5)α ;

(c) (ρ, ρ, 1 − ρα) , 1 ≤ C ≤ 3;

(d) (ρ, 1 − ρ, 1 − ρα) , 2 − (0.5)α ≤ C ≤ 2.

Corollary 1. When α = 1

ρα = {ρ, 0 ≤ ρ ≤ 0.5; 1 − ρ, 0.5 ≤ ρ ≤ 1} =

= min {ρ, 1 − ρ} , (0.5)1 = 0.5.

Combining the families (a) and (c), we have

(a′) (ρ, ρ, ρ) , 0 ≤ ρ ≤ 1;

(c′) (ρ, ρ, 1 − ρ) , 1 ≤ ρ ≤ 1;
.

10
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Analogically, from (b) and combining the families (d), we get the following

(b′) (ρ, 1 − ρ, ρ) , 0 ≤ ρ ≤ 1;

(d′) (ρ, 1 − ρ, 1 − ρ) , 1 ≤ ρ ≤ 1,

where sets (a′) − (d′) are derived in [1].

Definition. Let m (C) be a quantity of stable point (6), m (C) = m (C, α) .

Theorem 1. For all α ∈ (0, 1)

m (C) = m (C, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 < C < 1;

4, 1 < C < 1 + (0.5)α ;

2, 1 + (0.5)α < C < 2 − (0.5)α ;

4, 2 − (0.5)α < C < 2;

1, 2 < C < 3.

Proof.

As C − 2ρ + ρα (ρ) monotonically increases, then for C ∈ (0, 1) , the family (a) generates

the unique stable point.

Analogically, when C ∈ (2, 3), the family (c) is uniquely admissible.

And the equation

2ρ + 1 − ρα = ρ + 1 + (ρ − ρα) = C (20)

has the unique solution as the function C − 2ρ + ρα (ρ) is monotonic.

Analogically, if the parameter C satisfies the condition 1+ (0.5)α < C < 2− (0.5)α , then

the equation (20) has the only solution from the family (c) and one solution from the famiy

(a) with the same reason.

If 1 < C < 1 + (0.5)α , then the following families give one solution for each: (a) and (c)

and the family (b) gives exactly two solutions.

The function

ρ + (1 − ρ) + ρα (ρ) = 1 + ρα (ρ)

grows monotonously for ρ ∈ (0, 0.5) and is symmetrically relative to the point ρ = 0.5.

From similar consideration, the statement is true in the case 2 − (0.5)α < C < 2.

11
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The Theorem 2 is proved.

Remark. For α = 1, we get the following values [1]

m (C) = m (C, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 < C < 1;

4, 1 < C < 1.5;

1, C = 1.5;

4, 1.5 < C < 2;

1, 2 ≤ C < 3.

12
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5. On qualitative properties of the solutions in the neighbourhood of the

stationary point

We consider the system of differentional equations (6) in general form

�̇ρ = �F (�ρ) = �F (�ρ, α) , (21)

where �ρ = (ρ1, . . . , ρn) ,

0 < ρi < 1, i = 1, . . . , n, (22)

‖�ρ‖�n
1

= ρ1 + . . . + ρn ≡ C. (23)

Let �ρ∗ be a stationary point, i.e. it means that

�F (�ρ∗) = �0, 0 < ρ∗
1 < 1,

i = 1, . . . , n, ‖�ρ∗‖�n
1

= C.

Let �ρ be an arbitrary admissible point satisfying (21),(22) and (23).

Then (
�̇ρ − ˙�ρ∗,�ρ − �ρ∗)

=
(
�F (�ρ, α) , �ρ − �ρ∗) .

Suppose �∆ = �ρ − �ρ∗ and let T denotes the ortonormal matrix of size n × n satisfying

�∆ ≡ T�x (24)

where �x = (x1, . . . , xn) ,

xn = ∆1 + . . . + ∆n = 0. (25)

Thus the map

�ρ = �ρ∗ + T�x

fulfills the orthogonal tranformation. It is a rotation and transferring of co-ordinates so that

the stationary point becomes point of origin, and the hyperplane (23) has an equation xn = 0

in new co-ordinates.

13
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Hence, we have the follows

1

2

(
‖�ρ − �ρ∗‖�n

1

)′
t
=
(
�F (�ρ, α) , �ρ − �ρ∗) =

(
�F
(
�ρ∗ + �∆, α

)
, �∆
)

=

=
(
�F (�ρ∗ + T�x, α) , T�x

)
= G(�x).

Proposition 3.

The function G(�x) = G(�x, �ρ∗) satisfies the following properties

(a) G
(
�0
)

= 0;

(b) grad G|�x=�0 = �0.

Proof. It is proved by substitution in right part.

Let H = H (�ρ∗, α) denotes the matrix �F ′
∣∣∣
�x=�0

, and by T ∗ = T−1 the adjoint of the

matrix T.

Theorem 2.

If matrix T ∗HT is positively definite on hyperpane xn = 0, then the stationary point �ρ∗

is unstable.

If the matrix T ∗HT is negatively definite on the same set, then the point �ρ∗ is stable.

Proof.

As (
‖�ρ − �ρ∗‖�n

1

)′
t
= 2G(�x)

,

for the function G(�x) when �x = �0 and the sufficient conditions of extremum is fulfiled.

Then the function ‖�ρ − �ρ∗‖�n
1

is monotonous, where from the property of strict unstability

of the point follows.

14
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6. Transform to (x1, x2, x3) = �x co-ordinates

In this part, the following system is introduced for reference⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�e1 = (−
√

2
2

,
√

2
2

, 0),

�e2 = (−
√

6
6

,−
√

6
6

,
√

6
3

),

�e3 = (
√

3
3

,
√

3
3

,
√

3
3

).

Let ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 = (ρ1, ρ2, ρ3) · e1

x2 = (ρ1, ρ2, ρ3) · e2

x3 = (ρ1, ρ2, ρ3) · e3

i.e.

ρ1 �e1 + ρ2 �e2 + ρ3 �e3 ≡ x1 �e1 + x2 �e2 + x3 �e3, �x = T ∗�ρ,

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−
√

2
2

√
2

2
0

−
√

6
6

−
√

6
6

−
√

6
3√

3
3

√
3

3

√
3

3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ρ1

ρ2

ρ3

⎞
⎟⎟⎟⎟⎟⎠

⇐⇒ ⎛
⎜⎜⎜⎜⎜⎝

ρ1

ρ2

ρ3

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−
√

2
2

√
6

6

√
3

3√
2

2
−

√
6

6

√
3

3

0
√

6
3

√
3

3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

⎞
⎟⎟⎟⎟⎟⎠ , (26)

�ρ = T ∗�x = (T ∗)−1 �x = T�x.

As �̇x = T ∗�̇ρ, and �̇x = T ∗ �F (�ρ, α) ⇐⇒⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 =
√

2f(ρ1) −
√

2
2

(2 − α)f(ρ2) −
√

2
2

f(ρ3)

ẋ2 = 0 · f(ρ1) +
√

6
2

αf(ρ2) −
√

6
2

f(ρ3)

ẋ3 = 0

Consider that (ρ1 + ρ2 + ρ3) ≡ C, we get

⎧⎪⎨
⎪⎩

ẋ1 =
√

2f(ρ1) −
√

2
2

(2 − α)f(ρ2) −
√

2
2

f(c − ρ1 − ρ2)

ẋ2 = 0 +
√

6
2

αf(ρ2) −
√

6
2

f(c − ρ1 − ρ2)
(27)

⇐⇒
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�̇x = W (�ρ, c), �x = (x1, x2), �ρ = (ρ1, ρ2)

The properties of solutions in the neighbourhood of stationary point is defined by eigen-

values of the matrix

W ′ =

−
⎛
⎜⎝

√
2f ′(ρ1) +

√
2

2
f ′(C − ρ1 − ρ2)

√
2

2
(α − 2) f ′(ρ2) +

√
2

2
f ′(C − ρ1 − ρ2)

√
6

2
f ′(C − ρ1 − ρ2)

√
6

2
αf ′(ρ2) +

√
6

2
f ′(C − ρ1 − ρ2)

⎞
⎟⎠ (28)

We consider all branches of stationary points one by one (a) − (d), found in Proposition

2.

(a) W ′(ρ, ρ, ρα) = −
⎛
⎜⎝

√
2f ′(ρ) +

√
2

2
f ′(ρα)

√
2

2
(α − 2)f ′(ρ) +

√
2

2
f ′(ρα)

√
6

2
f ′(ρα)

√
6

2

√
6

2
αf ′(ρ) +

√
6

2
f ′(ρα)

⎞
⎟⎠ =

= −
⎛
⎜⎝ 2f ′(ρ) + f ′(ρα) (α − 2)f ′(ρ) + f ′(ρα)

f ′(ρα) αf ′(ρ) + f ′(ρα)

⎞
⎟⎠
⎛
⎜⎝

√
2

2
0

0
√

6
2

⎞
⎟⎠

As multiplying at diagonal matrix is equivalent to the stretching of system of reference,

so the picture of qualitative behavior of the matrix W ′ in stationary points neighbourhood

is equivalent to the matrix given below

W̃ ′ = −
⎛
⎜⎝ 2f ′(ρ) + f ′(ρα) (α − 2)f ′(ρ) + f ′(ρα)

f ′(ρα) αf ′(ρ) + f ′(ρα)

⎞
⎟⎠ , (29)

When α = 1, we obtain

W̃ ′(ρ, ρ, ρ) = −
⎛
⎜⎝ 3f ′(ρ) 0

f ′(ρ) 2f ′(ρ)

⎞
⎟⎠ ,

wherefrom ⎛
⎜⎝ λ1 < 0, λ2 < 0 ⇐⇒ ρ < 0.5

λ1 > 0, λ2 > 0 ⇐⇒ ρ > 0.5

⎞
⎟⎠

This case is investigated in [1].

The characteristical polynomial (29) has the following form

P (λ) = λ2 + ((2 + α)f ′(ρ) + 2f ′(ρα))λ + (2α(f ′(ρ))2 + 4f ′(ρ)f ′(ρα)). (30)
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Obviously that when ρ < 0.5, the both zeroes of P (λ) are negative, and when ρ > 0.5

2f ′(ρ) (αf ′(ρ) + 2f ′(ρα)) < 0,

since

αf ′(ρ) + f ′(ρα) ∀ ρ ∈ (0, 1)

by virtue of the convex up of the function f.

(c) W ′(ρ, ρ, 1 − ρα) =

= −
⎛
⎜⎝

√
2f ′(ρ) +

√
2

2
f ′(1 − ρα)

√
2

2
(α − 2)f ′(ρ) +

√
2

2
f ′(1 − ρα)

√
6

2
f ′(1 − ρα)

√
6

2
αf ′(ρ) +

√
6

2
f ′(1 − ρα)

⎞
⎟⎠

and analogically

W̃ ′ = −
⎛
⎜⎝ 2f ′(ρ) + f ′(1 − ρα) (α − 2)f ′(ρ) + f ′(1 − ρα)

f ′(1 − ρα) αf ′(ρ) + f ′(1 − ρα)

⎞
⎟⎠ ,

P (λ) = λ2 + ((2 + α)f ′(ρ) + 2f ′(1 − ρα))λ + (2α(f ′(ρ))2 + 4f ′(ρ)f ′(1 − ρα)) =

= λ2 + ((2 + α)f ′(ρ) − 2f ′(ρα))λ + (2αf ′(ρ) − 4f ′(ρα))f ′(ρ) (31)

the polynomial P (λ) has ∀ ρ ∈ [0, 1) at least one positive null.

Consequantly, the branch (c) is absolutely unstable.
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7. Application: vector fields maps (α = 0.5)

7.1. 0 < C < 1

(ρ, ρ, ρα)

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 9: Velocity field and integral cuirves in the case C = 0.6

7.2. 1 < C < 1 + (0.5)α

(a) (ρ, ρ, ρα)

(b) (ρ, 1 − ρ, ρα) ; (1 − ρ, ρ, ρα) ;

(c) (ρ, ρ, 1 − ρα)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 10: Velocity field and integral cuirves in the case C = 1.1

7.3. 1 + (0.5)α < C < 2 − (0.5)α)

(a) (ρ, ρ, ρα)

(c) (ρ, ρ, 1 − ρα)
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Figure 11: Velocity field and integral cuirves in the case C = 1.5

7.4. 2 − (0.5)α < C < 2

(a) (ρ, ρ, ρα)

(c) (ρ, ρ, 1 − ρα)

(d) (ρ, 1 − ρ, 1 − ρα) ; (1 − ρ, ρ, 1 − ρα)

−1 −0.5 0 0.5 1
−1
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0.8
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Figure 12: Velocity field and integral cuirves in the case C = 1.8

7.5. C > 2
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(c) (ρ, ρ, 1 − ρα)
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Figure 13: Case C = 2.3
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Abstract. In this paper, it is shown that, if Ishikawa’s type iterative se-
quence associated with the nonlinear mappings G and H converges to a point,
then the limit point is a common fixed point of the mappings G and H in
L-fuzzy metric spaces.
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1. Introduction

In the recent years, several authors [3, 8, 9] have studied the convergence of
the sequence of the Mann iterative sequence [5] of a mapping H to a fixed point
of H under various contractive conditions. The Ishikawa iteration scheme [3]
was first used to establish the strong convergence for a pseudo contractive
self-mapping of a convex compact subset of a Hilbert space. Very soon, both
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2 YEOL JE CHO, REZA SAADATI AND BOŠKO DAMJANOVIĆ

iterative sequences were used to establish the strong convergence of these it-
erative sequences for some contractive type mappings in Hilbert spaces and
then in more general normed linear spaces.

In this paper, we used Ishikawa’s type iterative sequence for finding a com-
mon fixed point for two mappings in L-fuzzy metric spaces.

In the sequel, we shall adopt the usual terminology, notation and conventions
of L-fuzzy metric spaces introduced by Saadati et al. [10].

Definition 1.1. ([2]) Let L = (L;≤L) be a complete lattice (i.e., a partially
ordered set in which every nonempty subset admits supremum and infimum)
and U a non-empty set called the universe. An L-fuzzy set in U is defined as
a mapping U −→ L. For each u in U , A(u) represents the degree (in L) to
which u satisfies A.

Classically, a triangular norm T on ([0, 1],≤) is defined as an increasing,
commutative, associative mapping T : [0, 1]2 −→ [0, 1] satisfying T (1, x) = x
for all x ∈ [0, 1]. These definitions can be straightforwardly extended to any
lattice L = (L,≤L).

Definition 1.2. ([1, 4]) A triangular norm (t–norm) on L is a mapping T :
L2 → L satisfying the following conditions:

(i) (∀x ∈ L)(T (x, 1L) = x) (: boundary condition);
(ii) (∀(x, y) ∈ L2)(T (x, y) = T (y, x)) (: commutativity);
(iii) (∀(x, y, z) ∈ L3)(T (x, T (y, z)) = T (T (x, y), z)) (: associativity);
(iv) (∀(x, x′, y, y′) ∈ L4)(x ≤L x′ and y ≤L y′ ⇒ T (x, y) ≤L T (x′, y′))

(: monotonicity).

A t–norm T on L is said to be continuous if, for any x, y ∈ L, any sequences
{xn} and {yn} in L which converge to x and y, respectively,

lim
n→∞

T (xn, yn) = T (x, y).

For example, T (x, y) = min(x, y) and T (x, y) = xy are two continuous
t–norms on [0, 1].

A t–norm T is said to be of Hadžić type if T (x, y) ≥L ∧(x, y) for all x, y ∈ L,
where

∧(x, y) =

{
x if x ≤L y,
y if y ≤L x.

The t–norm T can be defined recursively as an (n+1)-ary operation (n ∈ N)
by T 1 = T and

T n(x1, · · · , xn+1) = T (T n−1(x1, · · · , xn), xn+1)

for all n ≥ 2 and xi ∈ L.
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ON CONVERGENCE OF ISHIKAWA’S TYPE ITERATION 3

Definition 1.3. A negator on L is any decreasing mapping N : L → L
satisfying N (0L) = 1L and N (1L) = 0L . If N (N (x)) = x for all x ∈ L, then
N is called an involutive negator.

Next, we use a fixed involutive negator. The negator Ns on ([0, 1],≤) defined
asNs(x) = 1− x for all x ∈ [0, 1] is called the standard negator on ([0, 1],≤).

Definition 1.4. The triple (X,M, T ) is said to be an L-fuzzy metric space if
X is an arbitrary (non-empty) set, T is a continuous t–norm on L and M is
an L-fuzzy set on X2× ]0, +∞[ satisfying the following conditions: for every
x, y, z ∈ X and t, s ∈]0, +∞[,

(a) M(x, y, t) >L 0L;
(b) M(x, y, t) = 1L for all t > 0 if and only if x = y;
(c) M(x, y, t) = M(y, x, t);
(d) T (M(x, y, t),M(y, z, s)) ≤L M(x, z, t + s);
(e) M(x, y, ·) : ]0,∞[→ L is continuous;
(f) limt→∞M(x, y, t) = 1L.

In this case, M is called an L-fuzzy metric.

If, in the above definition, the triangular inequality (d) is replaced by

(NA) T (M(x, y, t),M(y, z, s)) ≤L M(x, z, max{t, s})
for all x, y, z ∈ X and t, s > 0 or, equivalently,

T (M(x, y, t),M(y, z, t)) ≤L M(x, z, t)

for all x, y, z ∈ X and t > 0, then the triple (X,M, T ) is called a non-
Archimedean L-fuzzy metric space [6, 7].

Definition 1.5. (1) A sequence {xn} in an L-fuzzy metric space (X,M, T )
is called a Cauchy sequence if, for each ε ∈ L \ {0L, 1L} and t > 0, there exists
n0 ∈ N such that, for all n,m ≥ n0,

M(xn, xm, t) >L N (ε).

(2) A sequence {xn} is said to be converges to a point x ∈ X, which is

denoted by xn
M−→ x if M(xn, x, t) → 1L whenever n → +∞ for all t > 0.

(3) A L-fuzzy metric space (X,M, T ) is said to be complete if every Cauchy
sequence in X is convergent.

Lemma 1.6. ([10]) Let (X,M, T ) be an L-fuzzy metric space. If we define a
mapping Eλ,M : X2 −→ R+ ∪ {0} by

Eλ,M(x, y) = inf{t > 0 : M(x, y, t) >L N (λ)}
for all λ ∈ L \ {0L, 1L} and x, y ∈ X. Then we have the following:
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4 YEOL JE CHO, REZA SAADATI AND BOŠKO DAMJANOVIĆ

(1) For any µ ∈ L \ {0L, 1L}, there exists λ ∈ L \ {0L, 1L} such that

Eµ,M(x, z) ≤ Eλ,M(x, y) + Eλ,M(y, z)

for all x, y, z ∈ X;

(2) A sequence {xn} is convergent with the L-fuzzy metric M if and only if

Eλ,M(xn, x) → 0.

Also, a sequence {xn} is a Cauchy sequence with the L-fuzzy metric M if and
only if it is a Cauchy sequence with the Eλ,M.

2. Main Result

Definition 2.1. Let (X,M, T ) be an L-fuzzy metric space and I = [0, 1] the
closed unit interval.

(1) A continuous mapping W : X2×I −→ X is said to be a convex structure
on X if, for all x, y ∈ X, k ∈ I and λ ∈ L \ {0L, 1L},
(2.1) Eλ,M[u,W (x, y, k)] ≤ kEλ,M(u, x) + (1− k)Eλ,M(u, y)

for all u ∈ X.
(2) A L-fuzzy metric space (X,M, T ) together with a convex structure is

called a convex L-fuzzy metric space.

Theorem 2.2. Let C be a nonempty closed convex subset of a non-Archimedean
convex L-fuzzy metric space (X,M, T ) in which T is of Hadžić type. Let
G,H : X −→ X be two self-mappings satisfying the following condition:

(2.2) M(Gx,Hy, t) ≥L T 2(M(x, y,
t

h
),M(x,Hy,

t

h
),M(Gx, y,

t

h
))

for all x, y ∈ C and t > 0 in which h ∈ (0, 1). Suppose that {xn} is Ishikawa’s
type iterative sequence with G and T defined by




x0 ∈ C,

yn = W (Gxn, xn, βn),

xn+1 = W (Hyn, xn, αn)

(∗)

for all n ≥ 0, where the sequences {αn} and {βn} satisfy 0 ≤ αn, βn ≤ 1
and {αn} is away from zero. If {xn} converges to a point p ∈ C, then p is a
common fixed point of G and H.

Proof. From (∗), it follows that

Eλ,M(xn, xn+1) = Eλ,M[xn,W (Hyn, xn, αn)] = αnEλ,M(xn, Hxn).

Since xn −→ p, M(xn, xn+1, t) −→ 1L and, by Lemma 1.6 (2), it follows that

Eλ,M(xn, xn+1) −→ 0.
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ON CONVERGENCE OF ISHIKAWA’S TYPE ITERATION 5

Since {αn} is away from zero, it follows that

(2.3) lim
n→∞

Eλ,M(xn, Hyn) = 0.

Using (2.7), we get

(2.4)
M(Gxn, Hyn, t)

≥L T 2(M(xn, yn,
t

h
),M(xn, Hyn,

t

h
),M(Gxn, yn,

t

h
)).

By the property of E and (2.4), we have

Eλ,M(Gxn, Hyn)

= inf{t > 0 : M(Gxn, Hyn, t) >L N (λ)}
≤ inf{t > 0 : T 2(M(xn, yn,

t

h
),M(xn, Hyn,

t

h
),M(Gxn, yn,

t

h
)) >L N (λ)}

≤ h inf{t > 0 : T 2(M(xn, yn, t),M(xn, Hyn, t),M(Gxn, yn, t)) >L N (λ)}
≤ h inf{t > 0 : ∧2(M(xn, yn, t),M(xn, Hyn, t),M(Gxn, yn, t)) >L N (λ)}
≤ h[Eλ,M(xn, yn) + Eλ,M(xn, Hyn) + Eλ,M(Gxn, yn)].

It follows from (∗) that

Eλ,M(xn, yn) = Eλ,M[xn,W (Gxn, xn, βn)] = βnEλ,M(xn, Gxn),

Eλ,M(Gxn, yn) = Eλ,M[Gxn,W (Gxn, xn, βn)] = (1− βn)Eλ,M(xn, Gxn).

Thus we have

(2.5) Eλ,M(Gxn, Hyn) ≤ h[Eλ,M(xn, Gxn) + Eλ,M(xn, Hyn)].

By the triangular inequality (NA), we have

(2.6) T (M(Hyn, Gxn, t),M(xn, Hyn, t)) ≤L M(xn, Gxn, t).

By the property of E, since the t–norm is of Hadžić type, we have

Eλ,M(xn, Gxn)

= inf{t > 0 : M(xn, Gxn, t) >L N (λ)}
≤ inf{t > 0 : T (M(Hyn, Gxn, t),M(xn, Hyn, t)) >L N (λ)}
≤ inf{t > 0 : ∧(M(Hyn, Gxn, t),M(xn, Hyn, t)) >L N (λ)}
≤ Eλ,M(Hyn, Gxn) + Eλ,M(xn, Hyn).

Hence, from (2.5) and the last inequality, we have

Eλ,M(Hyn, Gxn) ≤ 2h

1− h
Eλ,M(Hyn, xn).

Taking the limit as n −→∞, by (2.3), we obtain

lim
n→∞

Eλ,M(Hyn, Gxn) = 0.

80



6 YEOL JE CHO, REZA SAADATI AND BOŠKO DAMJANOVIĆ

Since Hyn −→ p, we have Gxn −→ p. From Eλ,M(xn, yn) = βnEλ,M(xn, Gxn),
it follows that yn −→ p. Further, from (2.2) and the property of E, we have

Eλ,M(Gxn, Hp) ≤ h[Eλ,M(xn, p) + Eλ,M(xn, Hp) + Eλ,M(p, Gxn)].

Taking the limit as n −→∞, we obtain

Eλ,M(p,Hp) ≤ hEλ,M(p,Hp).

Since h ∈ (0, 1), we have Eλ,M(p,Hp) = 0 and hence Hp = p.
Similarly, from (2.2) and the property of E, it follows that

Eλ,M(Gp,Hxn) ≤ h[Eλ,M(xn, p) + Eλ,M(p,Hxn) + Eλ,M(xn, Gp)].

Taking the limit as n −→∞, we obtain

Eλ,M(p,Gp) ≤ hEλ,M(p,Gp).

Since h ∈ (0, 1), we have Eλ,M(p, Gp) = 0 and hence Gp = p. Therefore,
Gp = Hp = p and so the point p is a common fixed point of the mappings H
and G. This completes the proof. ¤

If G = H in Theorem 2.2, then we have the following:

Corollary 2.3. Let C be a nonempty closed convex subset of a non-Archimedean
convex L-fuzzy metric space (X,M, T ) in which T is of Hadžić type. Let
G : X −→ X be a self-mapping satisfying the following condition:

(2.7) M(Gx,Gy, t) ≥L T 2(M(x, y,
t

h
),M(x,Gy,

t

h
),M(Gx, y,

t

h
))

for all x, y ∈ C and t > 0 in which h ∈ (0, 1). Suppose that {xn} is Ishikawa’s
type iterative sequence with G defined by




x0 ∈ C,

yn = W (Gxn, xn, βn),

xn+1 = W (Gyn, xn, αn)

for all n ≥ 0, where the sequences {αn} and {βn} satisfy 0 ≤ αn, βn ≤ 1 and
{αn} is away from zero. If {xn} converges to a point p ∈ C, then p is a fixed
point of G.
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IDENTITIES OF ROGERS-RAMANUJAN TYPE VIA “±1”
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Abstract. By modifying the initial terms with “±1”, we review few known
identities of Rogers-Ramanujan type and establish several new ones. The

approach is fundamentally based on known theta function identities.

For two indeterminate q and x, the shifted-factorial of x with base q is defined by

(x; q)0 = 1 and (x; q)n = (1 − x) (1 − xq) · · · (1 − xqn−1) for n ∈ N.

When |q| < 1, the q-shifted factorial of infinite order and the modified Jacobi theta
function read respectively as

(x; q)∞ =
∞∏

k=0

(1 − qkx) and 〈x; q〉∞ = (x; q)∞(q/x; q)∞.

For the sake of brevity, their multiparameter forms are abbreviated to

[ α, β, · · · , γ; q ]∞ = (α; q)∞ (β; q)∞ · · · (γ; q)∞ ,

〈 α, β, · · · , γ; q〉∞ = 〈α; q〉∞〈β; q〉∞ · · · 〈γ; q〉∞.

Following Gasper-Rahman [12], the basic hypergeometric series is defined by

1+rφs

[
a0, a1, · · · , ar

b1, · · · , bs

∣∣∣q; z
]

=
∞∑

n=0

{
(−1)nq(

n
2)

}s−r
[
a0, a1, · · · , ar

q, b1, · · · , bs

∣∣∣q
]

n

zn

where the base q will be restricted to |q| < 1 for nonterminating q-series.

In the q-series theory, there are numerous identities expressing infinite sums as
infinite products. Two typical ones are the celebrated Rogers-Ramanujan identities
(see Andrews [1, §1] and Chu [8, §4] for example):

∞∑

n=0

qn2

(q; q)n
=

1
[q, q4; q5]∞

and
∞∑

n=0

qn2+n

(q; q)n
=

1
[q2, q3; q5]∞

.

For a comprehensive investigation of Rogers-Ramanujan type identities, refer to
Slater [19] in her collection of 130 identities and Sills [17] with an excellent up-to-
date annotation.

The purpose of this paper is to present a new approach to a class of Rogers-
Ramanujan type identities. By employing the theta function identities appeared
mainly in [9], we shall review few known Rogers-Ramanujan identities and establish
several new ones simply by modifying the initial terms with “±1”.

2000 Mathematics Subject Classification. Primary 33D15, Secondary 05A30.
Key words and phrases. Basic hypergeometric series; Rogers-Ramanujan type identities; Jacobi’s
triple product identity, Weirstrass’ classical three term relation on theta function.
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2 Wenchang Chu and Chenying Wang

§1. In this section, we shall establish three pairs of new identities of Rogers-
Ramanujan type through the following two theta function equations (cf. [4, En-
try 25(i-ii), P40] and [9, Eqs 3.1a and 3.1b]):

(−q; q2)∞ + (q; q2)∞ =
2

(q4; q4)∞
[q16,−q6,−q10; q16]∞, (1a)

(−q; q2)∞ − (q; q2)∞ =
2q

(q4; q4)∞
[q16,−q2,−q14; q16]∞. (1b)

Firstly, recalling the q-Kummer theorem (cf. Gasper-Rahman [12, II-9])

2φ1

[
a, c
qa/c

∣∣∣q;−q/c

]
= (−q; q)∞

[qa, q2a/c2; q2)∞
[qa/c,−q/c; q]∞

where |q/c| < 1

we may derive, by letting a → −q2 and c → ∞, the identity [20, Eq 3.14]
∞∑

m=0

(−q; q)m+1

(q; q)m
q(

m+1
2 ) =

(−q; q)∞
(q; q)∞

[q4, q2, q2; q4]∞ =
(−q; q2)∞
(q; q2)∞

.

According to (1a) and (1b), modifying the initial term of the last sum by “±1”
leads us to the following two identities.

Theorem 1 (New identities of Rogers-Ramanujan type).

1+
∞∑

m=0

(−q; q)m+1

(q; q)m
q(

m+1
2 ) = 2

(−q; q2)∞
(q2; q2)∞

[q16,−q6,−q10; q16]∞, (2a)

1+
∞∑

m=0

(−q; q)m+2

(q; q)m+1
q(

m
2 )+2m = 2

(−q; q2)∞
(q2; q2)∞

[q16,−q2,−q14; q16]∞. (2b)

Secondly, recall the q-Gauss summation formula [12, II-8]

2φ1

[
a, b

c

∣∣∣q; c/ab

]
=

[c/a, c/b; q]∞
[c, c/ab; q]∞

where |c/ab| < 1. (3)

When q → q2, a → −q2, c → q3 and b → ∞, it reduces to [7, Eq 2.4]

1φ1

[
−q2

q3

∣∣∣q2;−q

]
1

1 − q
=

∞∑

m=0

(−q2; q2)m

(q; q)2m+1
qm2

=
(−q; q2)∞
(q; q2)∞

.

Combining this equation with “±1”, we derive the two identities.

Theorem 2 (New identities of Rogers-Ramanujan type).

1+
∞∑

m=0

(−q2; q2)m

(q; q)2m+1
qm2

= 2
(−q; q2)∞
(q2; q2)∞

[q16,−q6,−q10; q16]∞, (4a)

1+
∞∑

m=0

(−q2; q2)m+1

(q2; q)2m+2
qm2+2m = 2

(−q3; q2)∞
(q4; q2)∞

[q16,−q2,−q14; q16]∞. (4b)

Finally, the q-Gauss summation formula (3) may be specified, by q → q2, a → −1,
c → q3 and b → ∞, to another identity

(1 + q)
∞∑

m=0

(−1; q2)m

(q; q)2m+1
qm2+2m =

(−q; q2)∞
(q; q2)∞

.

Its combinations with “±1” yields the following two identities.
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Identities of Rogers-Ramanujan Type via “±1” 3

Theorem 3 (New identities of Rogers-Ramanujan type).

1+(1 + q)
∞∑

m=1

(−q2; q2)m−1

(q2; q)2m
qm2+2m =

(−q3; q2)∞
(q4; q2)∞

[q16,−q6,−q10; q16]∞, (5a)

1+(1 + q)
∞∑

m=0

(−q2; q2)m

(q2; q)2m+2
qm2+4m+2 =

(−q3; q2)∞
(q4; q2)∞

[q16,−q2,−q14; q16]∞. (5b)

Furthermore, it is not difficult to verify that (1.7a-1.7b) and (1.9a-1.9b) in Chu-
Wang [10] are two equivalent pairs under the “±1” rule in view of (1a) and (1b).

§2. Next, we reproduce the two theta function identities from [4, Entry 25(vi-v),
P40] (see [9, Eqs 3.1c and 3.1d] also)

(−q; q2)2∞ + (q; q2)2∞ =
2

(q2; q2)∞
[q8,−q4,−q4; q8]∞, (6a)

(−q; q2)2∞ − (q; q2)2∞ =
4q

(q2; q2)∞
[q8,−q8,−q8; q8]∞. (6b)

They will be used to prove two pairs of Rogers-Ramanujan type identities.

Recall the q-analogue of the second Gauss 2F1(−1) sum [12, II-11]

2φ2

[
a2, b2

abq1/2, −abq1/2

∣∣∣q;−q

]
=

[qa2, qb2; q2]∞
[q, qa2b2; q2]∞

. (7)

For a = b =
√
−1, it reduces to the following identity

∞∑

m=0

(−1; q)2m
(q; q)m(q; q2)m

q(
m+1

2 ) =
(−q; q2)2∞
(q ; q2)2∞

.

In view of (6a) and (6b), we may modify the initial term of the last sum by “±1”
and therefore establish the following two identities.

Theorem 4 (New identities of Rogers-Ramanujan type).

1+
∞∑

m=1

(−1; q)m(−q; q)m−1

(q; q)m(q; q2)m
q(

m+1
2 ) =

(−q; q)∞
(q; q)∞

[q8,−q4,−q4; q8]∞, (8a)

∞∑

m=0

(−q; q)2mq(
m
2 )+2m

(q; q)m+1(q; q2)m+1
=

(−q; q)∞
(q; q)∞

[q8,−q8,−q8; q8]∞. (8b)

Similarly, for a =
√
−1 and b = q

√
−1 in (7), the corresponding identity reads as

∞∑

m=0

(−1; q)m(−q; q)m+1

(q; q)m(q; q2)m+1
q(

m+1
2 ) =

(−q; q2)2∞
(q ; q2)2∞

.

Its combinations with “±1” lead us to the further two identities.

Theorem 5 (New identities of Rogers-Ramanujan type).

1+
∞∑

m=1

(−q; q)m−1(−q; q)m+1

(q; q)m(q3; q2)m
q(

m+1
2 ) =

(−q; q)∞
(q2; q)∞

[q8,−q4,−q4; q8]∞, (9a)

1+
∞∑

m=0

(−q; q)m(−q; q)m+2

(q; q)m+1(q3; q2)m+1
q(

m
2 )+2m = 2

(−q; q)∞
(q2; q)∞

[q8,−q8,−q8; q8]∞. (9b)
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§3. Recall the two cubic theta function identities (cf. [5, Theorem 2 and Corol-
lary 2] and [9, Eqs 3.16a and 3.16b]):

(−q; q)∞
(−q3; q3)∞

+
(q; q)∞

(q3; q3)∞
=

2
(q3; q3)∞

[q12,−q5,−q7; q12]∞, (10a)

(−q; q)∞
(−q3; q3)∞

− (q; q)∞
(q3; q3)∞

=
2q

(q3; q3)∞
[q12,−q,−q11; q12]∞. (10b)

They will be employed to show three pairs of Rogers-Ramanujan type identities.

Firstly, combining “±1” with the identity [19, Eqs 24 and 30]
∞∑

m=0

(−1; q)2m

(q2; q2)m
qm =

(−q; q)∞
(q; q)∞

[q6, q3, q3; q6]∞ =
(−q; q)∞
(q; q)∞

(q3; q3)∞
(−q3; q3)∞

and then using (10a) and (10b), we derive the following two identities.

Theorem 6 (New identities of Rogers-Ramanujan type).

1+
∞∑

m=1

(−q; q)2m−1

(q2; q2)m
qm =

[q12,−q5,−q7; q12]∞
(q; q)∞

, (11a)

∞∑

m=0

(−q; q)2m+1

(q2; q2)m+1
qm =

[q12,−q,−q11; q12]∞
(q; q)∞

. (11b)

Similarly, combining “±1” with the identity [14, Proposition 6C]
∞∑

m=0

(−1; q)m(−q; q)m+1

(q; q)2m+1
qm2+m =

[q3,−q,−q2; q3]∞
(q; q)∞

=
(−q; q)∞
(q; q)∞

(q3; q3)∞
(−q3; q3)∞

leads us to the following two Rogers-Ramanujan type identities.

Theorem 7 (New identities of Rogers-Ramanujan type).

1+
∞∑

m=1

(−q; q)m−1(−q; q)m+1

(q2; q)2m
qm2+m =

[q12,−q5,−q7; q12]∞
(q2; q)∞

, (12a)

1+
∞∑

m=0

(−q; q)m(−q; q)m+2

(q2; q)2m+2
qm2+3m+1 =

[q12,−q,−q11; q12]∞
(q2; q)∞

. (12b)

Finally, combining “±1” with the following identity [19, Eq 26]
∞∑

m=0

(−q; q)m

(q; q)m(q; q2)m+1
qm2

=
(−q; q)∞
(q; q)∞

[q6, q3, q3; q6]∞ =
(−q; q)∞
(q; q)∞

(q3; q3)∞
(−q3; q3)∞

we establish the two identities displayed in the following theorem.

Theorem 8 (New identities of Rogers-Ramanujan type).

1+
∞∑

m=0

(−q; q)m

(q; q)m(q; q2)m+1
qm2

= 2
[q12,−q5,−q7; q12]∞

(q; q)∞
, (13a)

1+
∞∑

m=0

(−q; q)m+1

(q; q)m+1(q3; q2)m+1
qm2+2m = 2

[q12,−q,−q11; q12]∞
(q2; q)∞

. (13b)

In addition, there is also a fourth equivalent pair based on relations (10a) and (10b),
which can be found in Chu-Wang [10, Eqs 1.18a and 1.18b].
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§4. Rewrite the theta function equation [9, Example 4] as

(−q; q)∞
(q4;−q4)∞

− (q; q)∞
(−q4;−q4)∞

= 2q
(−q; q)∞

(−q4;−q4)∞
[q8,−q8,−q8; q8]∞. (14)

Taking into account of

(−q; q)∞
(q; q)∞

[q8,−q4,−q4; q8]∞ =
(−q; q)∞
(q; q)∞

(−q4;−q4)∞
(q4;−q4)∞

and then applying the “−1” rule to Theorems 4 and 5, we find that the identities
displayed there constitute two equivalent pairs of Rogers-Ramanujan type identities.
Similarly, one can show that the following identities due to Chu-Wang [10, Eqs 1.12a
and 1.12b] result also in an equivalent pair

1 + 2
∞∑

m=1

(−q2; q2)2m−1

(q; q)2m
qm=

(−q; q)∞
(q; q)∞

[q8,−q4,−q4; q8]∞, (15a)

∞∑

m=0

(−q2; q2)2m
(q; q)2m+2

qm =
(−q; q)∞
(q; q)∞

[q8,−q8,−q8; q8]∞. (15b)

§5. According to the two quintuple theta function equations (cf. Chu [9, Eqs 3.17a
and 3.17b])

(−q; q)∞
(−q5; q5)∞

+
(q; q)∞

(q5; q5)∞
= 2(−q5; q5)2∞〈−q3,−q4; q10〉∞, (16a)

(−q; q)∞
(−q5; q5)∞

− (q; q)∞
(q5; q5)∞

= 2q(−q5; q5)2∞〈−q,−q2; q10〉∞; (16b)

we may apply the “±1” rule to the identity due to Sills [18, Eq 5]

∞∑

m=0

(−1; q)m

(q; q)m(q; q2)m
q(

m+1
2 ) =

(−q; q)∞
(q; q)∞

[q10, q5, q5; q10]∞ =
(−q; q)∞
(q; q)∞

(q5; q5)∞
(−q5; q5)∞

and derive consequently the following two strange identities, where the second one
is due to Bowman-Laughlin-Sills [7, Eq 2.28].

Theorem 9 (Identities of Rogers-Ramanujan type).

1 +
∞∑

m=1

(−q; q)m−1

(q; q)m(q; q2)m
q(

m+1
2 ) =

(−q; q)∞
(q; q)∞

(q10; q10)∞
〈−q,−q2; q10〉∞

, (17a)

∞∑

m=0

(−q; q)m

(q; q)m+1(q; q2)m+1
q(

m
2 )+2m =

(−q; q)∞
(q; q)∞

(q10; q10)∞
〈−q3,−q4; q10〉∞

. (17b)

§6. Recall the theta function equation (cf. [6, Eq 2.16] and [9, Example 16])

(−q; q)∞
(−q9; q9)∞

− (q; q)∞
(q9; q9)∞

= 2q
(−q; q)∞
(q9; q9)∞

[q18, q3, q15; q18]∞. (18)

Taking into account of the equality

(−q; q)∞
(q; q)∞

[q18, q9, q9; q18]∞ =
(−q; q)∞(q9; q9)∞
(q; q)∞(−q9; q9)∞
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and then applying the “−1” rule to the two identities appeared in [2, Eq D3], [3,
Eq 7.2] and [19, Eq 78]

1 +
∞∑

m=1

(q3; q3)m−1(−1; q)m

(q; q)2m−1(q; q)m
q(

m+1
2 ) =

(−q; q)∞
(q; q)∞

[q18, q9, q9; q18]∞, (19a)

1 + 2
∞∑

m=1

(q6; q6)m−1q
m

(q2; q2)m−1(q; q)2m
=

(−q; q)∞
(q; q)∞

[q18, q9, q9; q18]∞ (19b)

we recover, respectively, the two identities of Rogers-Ramanujan type.

Theorem 10 (Bailey [2, Eq D1] and [3, Eq 7.1]).
∞∑

m=0

(q3; q3)m(−q; q)m

(q; q)2m+1(q; q)m+1
q(

m
2 )+2m =

(−q; q)∞
(q; q)∞

[q18, q3, q15; q18]∞, (20a)

∞∑

m=0

(q6; q6)mqm

(q2; q2)m(q; q)2m+2
=

(−q; q)∞
(q; q)∞

[q18, q3, q15; q18]∞. (20b)

§7. In view of the theta function equation (cf. [9, Example 18] and [16, Eq 4.3])

3
(−q; q)∞

(−q9; q9)∞
− (q; q)∞

(q9; q9)∞
= 2

(−q; q)∞
(q9; q9)∞

[q6,−q,−q5; q6]∞ × [q4, q8; q12]∞ (21)

applying the “−1” rule to the three times of (19a) and (19b), we derive the following
two Rogers-Ramanujan type identities, respectively.

Theorem 11 (New identities of Rogers-Ramanujan type).

1+3
∞∑

m=1

(q3; q3)m−1(−q; q)m−1

(q; q)2m−1(q; q)m
q(

m+1
2 ) (22a)

=
(−q; q)∞
(q; q)∞

[q6,−q,−q5; q6]∞ × [q4, q8; q12]∞; (22b)

1+3
∞∑

m=1

(q6; q6)m−1q
m

(q2; q2)m−1(q; q)2m
(23a)

=
(−q; q)∞
(q; q)∞

[q6,−q,−q5; q6]∞ × [q4, q8; q12]∞. (23b)

§8. For A, b, c, d, e subject to A2 = bcde, there holds Weirstrass’ classical three
term relation (cf. Chu [9, Theorem 1]):

〈A/b, A/c, A/d, A/e; q〉∞ − 〈b, c, d, e; q〉∞ = b〈A, A/bc, A/bd, A/be; q〉∞
which can be used to prove the following theta function equations

[q2, qw, q3w; q3w]∞ − (q; q)∞ = q(1 − w)[q27, q6, q21; q27]∞, (24a)

[q, q2w, q3w; q3w]∞ − (q; q)∞ = q2(1 − w)[q27, q3, q24; q27]∞; (24b)

where ω 6= 1 denotes the cubic root of unity. In fact, manipulating the difference
displayed in equation (24a)

[q2, qw, q3w; q3w]∞ − (q; q)∞
= [q9, q2, q7; q9]∞

{
〈qw, q3w, q5w; q9〉∞ − 〈q, q3, q5; q9〉∞

}

=
[q9, q2, q7; q9]∞
[q3w2, q6w; q9]∞

{
〈qw, q3w, q5w, q3w2; q9〉∞ − 〈q, q3, q5, q3w2; q9〉∞

}

= q
[q9, q2, q7; q9]∞
[q3w2, q6w; q9]∞

〈q6w, w, q2w, q2w2; q9〉∞
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and then simplifying the products in the last line, we get the right member stated
in (24a). The equation (24b) follows analogously from the reformulation:

[q, q2w, q3w; q3w]∞ − (q; q)∞
= [q9, q, q8; q9]∞

{
〈q2w, q3w, q4w; q9〉∞ − 〈q2, q3, q4; q9〉∞

}

=
[q9, q, q8; q9]∞

[q3w2, q6w; q9]∞

{
〈q2w, q3w, q4w, q3w2; q9〉∞ − 〈q2, q3, q4, q3w2; q9〉∞

}

= q2 [q9, q, q8; q9]∞
[q3w2, q6w; q9]∞

〈q6w, w, qw, qw2; q9〉∞.

Recall the following two Rogers-Ramanujan type identities due to Bailey [2, Eqs
B2 and 10.8] (see [19, Eqs 91 and 90] also)

∞∑

m=0

(q3; q3)mqm2+2m

(q; q)m(q; q)2+2m
=

[q27, q6, q21; q27]∞
(q; q)∞

, (25a)

∞∑

m=0

(q3; q3)mqm2+3m

(q; q)m(q; q)2+2m
=

[q27, q3, q24; q27]∞
(q; q)∞

. (25b)

Applying the “+1” rule to these two identities multiplied, respectively, by q(1−w)
and q2(1 − w), we recover the two strange identities of Rogers-Ramanujan type.

Theorem 12 (Ismail-Stanton [14, Theorem 9]).

1 + (1 − w)
∞∑

m=1

(q3; q3)m−1q
m2

(q; q)m−1(q; q)2m
=

[q3w, q2, qw; q3w]∞
(q; q)∞

, (26a)

1 + (1 − w)
∞∑

m=1

(q3; q3)m−1q
m2+m

(q; q)m−1(q; q)2m
=

[q3w, q, q2w; q3w]∞
(q; q)∞

. (26b)

§9. According to the two theta function equations [9, Eqs 3.3a and 3.3b]

(−q; q2)∞
(q; q2)∞

+
(q2; q4)2∞

(−q2; q4)2∞
= 2

(−q; q)∞
(−q2; q4)2∞

[−q3,−q4,−q5,−q8; q8]2∞, (27a)

(−q; q2)∞
(q; q2)∞

− (q2; q4)2∞
(−q2; q4)2∞

= 2q
(−q; q)∞

(−q2; q4)2∞
[−q,−q4,−q7,−q8; q8]2∞; (27b)

modifying with “±1” the initial term of the following identity [10, Eq 1.11a]
∞∑

m=0

(−1; q)2m

(q; q)2m
qm =

(−q; q)∞
(q; q)∞

[q4,−q2,−q2; q4]∞ =
(−q; q2)∞
(q; q2)∞

(−q2; q4)2∞
(q2; q4)2∞

we derive further the two identities with strange product expressions.

Theorem 13 (New identities of Rogers-Ramanujan type).

1+
∞∑

m=1

(−q; q)2m−1

(q; q)2m
qm =

(−q; q)∞
(q2; q4)2∞

[−q3,−q4,−q5,−q8; q8]2∞, (28a)

∞∑

m=0

(−q; q)2m+1

(q; q)2m+2
qm =

(−q; q)∞
(q2; q4)2∞

[−q,−q4,−q7,−q8; q8]2∞. (28b)

§10. Further bisections on triple products. In a recent paper [10] by the au-
thors, several identities of Rogers-Ramanujan type have been reviewed by applying
the multisection method to Jacobi’s triple product identity [15]

[q, x, q/x; q]∞ =
+∞∑

n=−∞
(−1)nq(

n
2)xn. (29)
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Splitting the sum into two parts according to the parity of summation index n, we
get the following expression

[q, x, q/x; q]∞ =
+∞∑

n=−∞
q2n2−nx2n − x

+∞∑

n=−∞
q2n2+nx2n.

Factorizing each infinite series by means of (29) leads to the equivalent identity

[q, x, q/x; q]∞ = [q4,−qx2,−q3/x2; q4]∞ − x[q4,−q/x2,−q3x2; q4]∞ (30)

which can also be derived from the sextuple product identity appeared in a recent
paper by Chu-Yan [11, Corollary 2].

Letting x → q and q → q3 in (30), then writing alternatively

(q; q)∞ = [q3, q, q2; q3]∞

we find the following theta function equation:

(q; q)∞ = [q12,−q5,−q7; q12]∞ − q[q12,−q,−q11; q12]∞. (31)

According to the “−1” rule, it is not hard to check that the following identities [19,
Eqs 58 and 56] (see Chu-Wang [10, Eqs 1.18a-1.18b] for correction) are equivalent:

1+
∞∑

m=1

(−q; q)m−1q
m2

(q; q)m(q; q2)m
=

[q12,−q5,−q7; q12]∞
(q; q)∞

, (32a)

∞∑

m=0

(−q; q)mqm2+2m

(q; q)m+1(q; q2)m+1
=

[q12,−q,−q11; q12]∞
(q; q)∞

. (32b)

Similarly by expressing the factorial fraction in terms of triple product

(q2; q2)∞
(−q; q2)∞

= [q4, q, q3; q4]∞

we may specify (30), under x → q and q → q4, to another theta function equation

(q2; q2)∞
(−q; q2)∞

= [q16,−q6,−q10; q16]∞ − q[q16,−q2,−q14; q16]∞. (33)

In accordance with the “−1” rule, we have consequently the following three equiv-
alent pairs of Rogers-Ramanujan type identities.

• Chu-Wang [10, Eqs 1.4a and 1.4b]:

1+
∞∑

m=1

(−q2; q2)m−1

(q2; q2)m
qm=

(−q; q2)∞
(q2; q2)∞

[q16,−q6,−q10; q16]∞, (34a)

∞∑

m=0

(−q2; q2)m

(q2; q2)m+1
qm =

(−q; q2)∞
(q2; q2)∞

[q16,−q2,−q14; q16]∞. (34b)

• Gessel-Stanton [13, Eqs 7.13 and 7.15]:

1+
∞∑

m=1

(−q; q)m−1

(q; q)m
q(

m+1
2 )=

(−q; q2)∞
(q2; q2)∞

[q16,−q6,−q10; q16]∞, (35a)

∞∑

m=0

(−q; q)m

(q; q)m+1
q(

m
2 )+2m=

(−q; q2)∞
(q2; q2)∞

[q16,−q2,−q14; q16]∞. (35b)
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• Slater [19, Eqs 69 and 72]:
∞∑

m=0

(−q2; q2)m

(q; q)2m+2
qm2+2m=

(−q; q2)∞
(q2; q2)∞

[q16,−q2,−q14; q16]∞, (36a)

1+
∞∑

m=1

(−q2; q2)m−1

(q ; q)2m
qm2

=
(−q; q2)∞
(q2; q2)∞

[q16,−q6,−q10; q16]∞. (36b)
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Abstract: Let ϕ be a holomorphic self-map and g a fixed holomorphic
function on the unit ball B in Cn. This paper studies the boundedness and
compactness of the following Volterra composition operator

Tg,ϕf(z) =
∫ 1

0

f(ϕ(tz))<g(tz)
dt

t
,

from the mixed-norm space H(p, q, ϕ) to the Bloch-type space of holomorphic
functions on B.
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1 Introduction

Let B be the unit ball of Cn and H(B) the space of all holomorphic functions
on B. Let dv be the normalized Lebesgue measure of B, i.e. v(B) = 1. For
f ∈ H(B), let

<f(z) =
n∑

j=1

zj
∂f

∂zj
(z)

represent the radial derivative of f ∈ H(B).
A positive continuous function µ on the interval [0, 1) is called normal if

there is δ ∈ [0, 1) and s and t, 0 < s < t such that

µ(r)
(1− r)s

is decreasing on [δ, 1) and lim
r→1

µ(r)
(1− r)s

= 0;

µ(r)
(1− r)t

is increasing on [δ, 1) and lim
r→1

µ(r)
(1− r)t

= ∞. (1)
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If we say that µ : B → [0,∞) is normal we will assume that µ(z) = µ(|z|), z ∈ B.
Let µ : B → [0,∞) be normal. For 0 < p, q < ∞, the mixed norm space

H(p, q, ν) = H(p, q, ν)(B) consists of all f ∈ H(B) such that

‖f‖H(p,q,ν) =
(∫ 1

0

Mp
q (f, r)

ϕp(r)
1− r

dr

)1/p

< ∞,

where

Mq(f, r) =
( ∫

S

|f(rζ)|qdσ(ζ)
)1/q

.

For p = q and ϕ(r) = (1 − r2)α+1, the mixed norm space is equivalent to the
weighted Bergman space Ap

α = Ap
α(B), which consisting of all f ∈ H(B) such

that
‖f‖p

Ap
α

=
∫

B

|f(z)|p(1− |z|2)αdv(z) < ∞.

Let µ : B → [0,∞) be normal. The Bloch-type space Bµ = Bµ(B) is the
space of all functions f ∈ H(B) such that

bµ(f) = sup
z∈B

µ(z)|<f(z)| < ∞.

Bµ is Banach space with the norm ‖f‖Bµ
= |f(0)|+bµ(f). The little Bloch-type

space Bµ,0 = Bµ,0(B) consists of all f ∈ H(B) such that

lim
|z|→1

µ(z)|<f(z)| = 0.

It is easy to see that Bµ,0 is a closed subspace of Bµ. When µ(r) = (1 − r2)α,
α ∈ (0,∞), we obtain α-Bloch spaces and little α-Bloch spaces (see, e.g., [21]).

Let ϕ be a holomorphic self-map of B. The composition operator Cϕ is
defined by

(Cϕf)(z) = (f ◦ ϕ)(z), f ∈ H(B).

The book [2] contains plenty of information on composition operators on various
function spaces.

Suppose that g : B → C1 is a holomorphic map, define

Tgf(z) =
∫ 1

0

f(tz)<g(tz)
dt

t
, f ∈ H(B), z ∈ B.

This operator is called the extended Cesàro operator (or the Riemann-Stieltjes
operator), which was introduced in [3], and studied in [1, 3, 4, 5, 7, 8, 9, 10, 11,
12, 13, 17, 19, 20].

Motivated by the definition of operators Cϕ and Tg, in [22] Zhu defined the
so-called Volterra composition operator as follows.

Tg,ϕf(z) =
∫ 1

0

f(ϕ(tz))<g(tz)
dt

t
, f ∈ H(B), z ∈ B. (2)
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It is easy to see that Tg,z = Tg. In the setting of the unit disk D, the Volterra
composition operator has the following form

Tg,ϕf(z) =
∫ z

0

(f ◦ ϕ)(ξ)g′(ξ)dξ, f ∈ H(D), z ∈ D,

which was first introduced and studied in [6].
In [22], Zhu studied the boundedness and compactness of the Volterra com-

position operator from generalized Bergman spaces to Bloch type spaces. In
[23], Zhu studied the boundedness and compactness of the Volterra composition
operator on logarithmic Bloch spaces. Recall that a linear operator is said to be
bounded if the image of a bounded set is a bounded set, while a linear operator
is compact if it takes bounded sets to sets with compact closure.

In this paper, we study the operator Tg,ϕ from mixed norm spaces to Bloch
type spaces in the unit ball. The sufficient and necessary conditions for the
operator Tg,ϕ to be bounded or compact are given. As some corollaries, we can
obtain the characterization of the boundedness and compactness of the extended
Cesàro operator from mixed norm spaces to Bloch type spaces, which generalize
the corresponding results in [13]. We omit the details.

Throughout the paper, constants are denoted by C, they are positive and
may not be the same in every occurrence.

2 Main Results and Proofs

In this section we state and prove the main results of this paper. First we quote
several lemmas which are used in the proofs of the main results. The following
characterization of compactness can be proved in a standard way (see, e.g., the
proofs of Proposition 3.11 of [2]), hence we omit its proof.

Lemma 1. Assume that 0 < p, q < ∞, g ∈ H(B), ϕ is a holomorphic self-
map of B, ν : B → [0,∞) and µ : B → [0,∞) are normal. Then the operator
Tg,ϕ : H(p, q, ν) → Bµ is compact if and only if Tg,ϕ : H(p, q, ν) → Bµ is bounded
and for every bounded sequence (fk)k∈N ⊂ H(p, q, ν) converging to 0 uniformly
on compacts of B we have

lim
k→∞

‖Tg,ϕfk‖Bµ
= 0.

Lemma 2. Assume that µ : B → [0,∞) is normal. A closed set K in Bµ,0 is
compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

µ(z)|<f(z)| = 0.

Lemma 3. [18] Assume that 0 < p, q < ∞ and ν : B → [0,∞) is normal. Then
there is a positive constant C independent of f such that

|f(z)| ≤ C
‖f‖H(p,q,ν)

ν(z)(1− |z|2)n
q

, z ∈ B. (3)
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Now we are in a position to state and prove our main results.

Theorem 1. Assume that 0 < p, q < ∞, g ∈ H(B), ϕ is a holomorphic
self-map of B, ν : B → [0,∞) and µ : B → [0,∞) are normal. Then Tg,ϕ :
H(p, q, ν) → Bµ is bounded if and only if

M := sup
z∈B

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
< ∞. (4)

Moreover, if Tg,ϕ : H(p, q, ν) → Bµ is bounded then the following asymptotic
relation holds

‖Tg,ϕ‖H(p,q,ν)→Bµ
³ sup

z∈B

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
. (5)

Proof. Assume that (4) holds. A calculation with (2) gives the following
formula (see, e.g. [3, 22])

<[Tg,ϕ(f)](z) = f(ϕ(z))<g(z).

Moreover (Tg,ϕf)(0) = 0. Then by Lemma 3 and the condition (4), we have

‖Tg,ϕf‖Bµ
= |(Tg,ϕf)(0)|+ sup

z∈B
µ(z)|<g(z)||f(z)|

≤ C sup
z∈B

µ(z)|<g(z)| ‖f‖H(p,q,ϕ)

ν(ϕ(z))(1− |ϕ(z)|2)n
q

= CM‖f‖H(p,q,ν), (6)

i.e. Tg,ϕ : H(p, q, ν) → Bµ is bounded.
Now assume that Tg,ϕ : H(p, q, ν) → Bµ is bounded. Set

fw(z) =
(1− |w|2)β

ϕ(w)(1− 〈z, w〉)n
q +β

, z ∈ B, (7)

where β > 1. By [18] we know that supw∈B ‖fw‖H(p,q,ϕ) ≤ C. Therefore

C‖Tg,ϕ‖H(p,q,ν)→Bµ
≥ ‖Tg,ϕfϕ(w)‖Bµ

= sup
z∈B

µ(z)|<g(z)||fϕ(w)(ϕ(z))|

≥ µ(w)|<g(w)||fϕ(w)(ϕ(w))| = µ(w)|<g(w)|
ν(ϕ(w))(1− |ϕ(w)|2)n

q
,

from which (4) follows, moreover

sup
w∈B

µ(w)|<g(w)|
ν(ϕ(w))(1− |ϕ(w)|2)n

q
≤ C‖Tg,ϕ‖H(p,q,ν)→Bµ

. (8)

From (6) and (8), asymptotic relationship (5) follows. ¤
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Theorem 2. Assume 0 < p, q < ∞, g ∈ H(B), ϕ is a holomorphic self-map of
B, ν : B → [0,∞) and µ : B → [0,∞) are normal. Then Tg,ϕ : H(p, q, ν) → Bµ

is compact if and only if g ∈ Bµ and

lim
|ϕ(z)|→1

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
= 0. (9)

Proof. Suppose that g ∈ Bµ and (9) holds. From g ∈ Bµ and (9), it is easy
to see that (4) holds. Hence Tg,ϕ : H(p, q, ν) → Bµ is bounded by Theorem 1.
From (9) we have that for every ε > 0, there is an r ∈ (0, 1) such that

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
< ε. (10)

when |ϕ(z)| > r. Let (fk)k∈N be a bounded sequence in H(p, q, ν) such that fk

converges to 0 uniformly on compact subsets of B as k → ∞. Let G = {w ∈
B : |w| ≤ δ}. From the fact that g ∈ Bµ and (10), we have

‖Tg,ϕfk‖Bµ
= sup

z∈B
µ(|z|)|fk(ϕ(z))<g(z)|

=
(

sup
{z∈B: |ϕ(z)|≤δ}

+ sup
{z∈B : δ<|ϕ(z)|<1}

)
µ(z)|<g(z)||fk(ϕ(z))|

= ‖g‖Bµ sup
w∈G

|fk(w)|+ C‖fk‖H(p,q,ν) sup
{z∈B : δ<|ϕ(z)|<1}

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q

≤ ‖g‖Bµ
sup
w∈G

|fk(w)|+ C‖fk‖H(p,q,ν)ε. (11)

Note that G is a compact subset of B, we have limk→∞ supw∈G |fk(w)| = 0.
Using this fact and letting k →∞ in (11), we obtain lim supk→∞ ‖Tg,ϕfk‖Bµ ≤
C‖fk‖H(p,q,ν)ε. Since ε is an arbitrary positive number, we obtain

lim sup
k→∞

‖Tg,ϕfk‖Bµ = 0.

Employing Lemma 1, we get that Tg,ϕ : H(p, q, ν) → Bµ is compact.
Conversely we assume that Tg,ϕ : H(p, q, ν) → Bµ is compact. We need to

prove that (9) holds. This can be done by contradiction. We assume that (9) is
not true. Then there would be some ε0 > 0 and a sequence (zk)k∈N ⊆ B with
lim

k→∞
|ϕ(zk)| = 1, and such that

µ(zk)|<g(zk)|
ν(ϕ(zk))(1− |ϕ(zk)|2)n

q
≥ ε0, (12)

for every k ∈ N. Set

fk(z) =
(1− |ϕ(zk)|2)β

ν(ϕ(zk))(1− 〈z, ϕ(zk)〉)n
q +β

, k ∈ N, (13)
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where β > 1. Then supk∈N ‖fk‖H(p,q,ν) ≤ C, and fk converges to 0 uniformly
on compacts of B. Hence by Lemma 1,

lim
k→∞

‖Tg,ϕfk‖Bµ = 0. (14)

On the other hand, we have

‖Tg,ϕfk‖Bµ
= sup

z∈B
µ(z)|<(Tg,ϕfk)(z)| ≥ µ(zk)|<g(zk)||fk(ϕ(zk))|

=
µ(zk)|<g(zk)|

ν(ϕ(zk))(1− |ϕ(zk)|2)n
q
≥ ε0,

which contradicts to (14). This completes the proof of this theorem. ¤
Theorem 3. Assume that 0 < p, q < ∞, g ∈ H(B), ϕ is a holomorphic
self-map of B, ν : B → [0,∞) and µ : B → [0,∞) are normal. Then Tg,ϕ :
H(p, q, ν) → Bµ,0 is bounded if and only if g ∈ Bµ,0 and Tg,ϕ : H(p, q, ν) → Bµ

is bounded.

Proof. Suppose that Tg,ϕ : H(p, q, ν) → Bµ,0 is bounded, then Tg,ϕ :
H(p, q, ν) → Bµ is bounded. Taking f(z) = 1, and employing the bounded-
ness of Tg,ϕ : H(p, q, ν) → Bµ,0, we get g ∈ Bµ,0, as desired.

Conversely, suppose that Tg,ϕ : H(p, q, ν) → Bµ is bounded and g ∈ Bµ,0.
For each polynomial p(z), we obtain

µ(z)|<(Tg,ϕp)(z)| = µ(z)|p(ϕ(z))||<g(z)| ≤ ‖p‖∞µ(z)|<g(z)|. (15)

From the above inequality, it follows that for each polynomial p, Tg,ϕ(p) ∈ Bµ,0.
Since the set of all polynomials is dense in H(p, q, ν), for every f ∈ H(p, q, ν)
there is a sequence of polynomials (pk)k∈N such that ‖pk − f‖H(p,q,ν) → 0 as
k →∞. From the boundedness of Tg,ϕ : H(p, q, ν) → Bµ, we have that

‖Tg,ϕpk − Tg,ϕf‖Bµ ≤ ‖Tg,ϕ‖H(p,q,ν)→Bµ
‖pk − f‖H(p,q,ν) → 0, as k →∞. (16)

From this and since Bµ,0 is a closed subset of Bµ, we obtain

Tg,ϕf = lim
k→∞

Tg,ϕpk ∈ Bµ,0. (17)

Therefore Tg,ϕ : H(p, q, ν) → Bµ,0 is bounded. The proof is completed. ¤
Theorem 4. Assume that 0 < p, q < ∞, g ∈ H(B), ϕ is a holomorphic
self-map of B, ν : B → [0,∞) and µ : B → [0,∞) are normal. Then Tg,ϕ :
H(p, q, ν) → Bµ,0 is compact if and only if

lim
|z|→1

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
= 0. (18)
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Proof. Suppose that Tg,ϕ : H(p, q, ν) → Bµ,0 is compact. Then Tg,ϕ :
H(p, q, ν) → Bµ,0 is bounded and Tg,ϕ : H(p, q, ν) → Bµ is compact. By
Theorems 2 and 3 we obtain

lim
|ϕ(z)|→1

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
= 0, (19)

and

lim
|z|→1

µ(z)|<g(z)| = 0. (20)

By (19), for every ε > 0, there exists a δ ∈ (0, 1),

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
< ε

when δ < |ϕ(z)| < 1. By (20), for the above ε, there exists a r ∈ (0, 1),

µ(z)|<g(z)| ≤ εν(δ)(1− |δ|2)n
q

when r < |z| < 1.
Therefore, when r < |z| < 1 and δ < |ϕ(z)| < 1, we have that

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
< ε. (21)

If |ϕ(z)| ≤ δ and r < |z| < 1, we obtain

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
≤ 1

ν(δ)(1− |δ|2)n
q

µ(|z|)|<g(z)| < ε. (22)

Combing (21) with (22) we get (18), as desired.
Conversely, suppose that (18) holds. From Lemma 2, we see that Tg,ϕ :

H(p, q, ν) → Bµ,0 is compact if and only if

lim
|z|→1

sup
‖f‖H(p,q,ν)≤1

µ(z)|<(Tg,ϕf)(z)| = 0. (23)

For any f ∈ H(p, q, ν) with ‖f‖H(p,q,ν) ≤ 1, by (3) we have

µ(z)|<(Tg,ϕf)(z)| ≤ C‖f‖H(p,q,ν)
µ(z)|<g(z)|

ν(ϕ(z))(1− |ϕ(z)|2)n
q

.

Using (18) we get

lim
|z|→1

sup
‖f‖H(p,q,ν)≤1

µ(z)|<(Tg,ϕf)(z)| ≤ C lim
|z|→1

µ(z)|<g(z)|
ν(ϕ(z))(1− |ϕ(z)|2)n

q
= 0,

as desired. This completes the proof of the theorem. ¤
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[4] Z. Hu, Extended Cesàro operators on the Bloch space in the unit ball of Cn, Acta Math.
Sci. Ser. B Engl. Ed. 23 (2003), 561-566.
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1. Introduction and preliminaries

In 1929, Knaster, Kuratowski and Mazurkiewicz [11] deduced the celebrated
KKM theorem. In 1961, Ky Fan [7] gave an extended version of the KKM
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geometric property of convex sets, best approximation theorem and minimax
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2 WEIPING GUO, JUNG IM KANG AND YEOL JE CHO

inequality. Since then, many authors have given numerous generalizations of
the known results and new applications (see Granas [8], Park [15, 17] and
references therein). Later, this theorem was extended to convex spaces by
Lassonde [12, 13] and to space having certain families of contractible subsets
(simply, H-spaces) by Horvath [10] and was further developed in H-spaces ([1-
5, 9, 16]). In [18-22], Park et al. introduced and studied generalized convex
spaces (simply, G-convex spaces) and obtained many important results in G-
convex spaces. The concept of G-convex spaces is a common generalization of
the usual convexity in a topological vector space and many abstract convexities
which have been mainly developed in connection with the fixed point and the
KKM theory.

The purpose of this paper is to establish a new KKM type theorem in G-
convex spaces and as applications, to obtain some new matching theorems,
fixed point theorems, section theorems and minimax theorems in G-convex
spaces. The results presented in this paper improve and generalize the corre-
sponding results in [1-6, 16, 20, 23].

Definition 1.1. ([14, 18, 19]) (1) A generalized convex space (or a G-
convex space) (X, D; Γ) consists of a topological space X and a nonempty
set D such that, for each A = {a0, a1, · · · , an} ∈ 〈D〉, there exists a subset
Γ(A) = ΓA of X and a continuous function φA : 4n → Γ(A) such that
J ⊂ {0, 1, · · · , n} implies φA(4J) ⊂ Γ({aj : j ∈ J}), where 〈D〉 denotes
the set of all nonempty finite subsets of D, 4n an n−simplex with vertices
v0, v1, · · · · · · , vn and 4J = co{vj : j ∈ J} the face of 4n corresponding to J ,
respectively.

In case to emphasize X ⊃ D, (X, D; Γ) will be denoted by (X ⊃ D; Γ); and
if X = D, then (X ⊃ X; Γ) by (X, Γ).

(2) For a G-convex space (X ⊃ D; Γ), a subset K of X is said to be Γ-convex
if, for each N ∈ 〈D〉, N ⊂ K implies ΓN ⊂ K. If X is compact, then the
G-convex space (X, D; Γ) is said to be compact.

Definition 1.2. ([14]) Let (X,D; Γ) be a G-convex space and I a nonempty
set. A mapping F : I ( X is called a generalized KKM mapping provided
that, for each N ∈ 〈I〉, there exists a function σ : N → D such that Γσ(M) ⊂
F (M) for each M ∈ 〈N〉.

Lee [14] studied generalized KKM mapping and proved the following result:

Theorem 1.1. Let (X,D; Γ) be a G-convex space, I a nonempty set and F :
I ( X a generalized KKM mapping with closed values such that

⋂
z∈M F (z)

is compact for some M ∈ 〈I〉. Then
⋂

z∈I F (z) 6= ∅.
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2. A new KKM type theorem

In order to prove the main results of this work, we introduce the following
concept:

Definition 2.1. Let (X, Γ) and (Y, D; Γ′) be two G-convex spaces. A
mapping F : X ( Y is called a quasi-generalized KKM mapping provided
that, for each N ∈ 〈X〉, there exists a function σ : N → D such that Γ′σ(M) ⊂
F (M ∪ ΓM) for each M ∈ 〈N〉.

Example 2.1. Let X = (−∞, 0), Y = (0, +∞) with Euclidean topologies
and, for each M ∈ 〈X〉 and N ∈ 〈Y 〉, let ΓM = co(M ∪ {min M − 2}) and
Γ′N = co(N ∪ {max N + 1}) (coA denotes the hull of A). Then (X, Γ) and
(Y, Γ′) are two G-convex spaces. Define a mapping F : X ( Y by

F (x) = {−x,−x + 1}, ∀x ∈ X,

and, for each M ∈ 〈X〉, let σ(x) = −x for each x ∈ M . Then we have

Γ′σ(M0) = co(σ(M0) ∪ {max σ(M0) + 1}) = co(
⋃

x∈M0

{−x,−x + 1})

⊂ co(
⋃

x∈coM0

{−x,−x + 1}) ⊂
⋃

x∈ΓM0

{−x,−x + 1}

=
⋃

x∈M0∪ΓM0

F (x), ∀M0 ∈ 〈M〉.

This shows that F is a quasi-generalized KKM mapping.

Let X, Y be two nonempty sets and F : X ( Y a mapping. Then, for each
y ∈ Y , we put

F−1(y) = {x ∈ X : y ∈ F (x)}, F ∗(y) = X\F−1(y).

Theorem 2.1. Let (X, Γ), (Y, D; Γ′) be two G-convex spaces and F : X (
Y a quasi-generalized KKM mapping with closed values such that

⋂
x∈M F (x)

is compact for some M ∈ 〈X〉. Suppose that F ∗(y) is Γ-convex for each y ∈ Y .
Then

⋂
x∈X F (x) 6= ∅.

Proof. If F is not a generalized KKM mapping, then there exists N0 ∈ 〈X〉
and, for each function σ : N0 → D, there exists M0 ∈ 〈N0〉 such that

Γ′σ(M0) * F (M0).

That is, there exists y0 ∈ Γ′σ(M0) with y0 /∈ F (M0), i.e., y0 /∈ F (x) for each

x ∈ M0, which implies that x /∈ F−1(y0) for each x ∈ M0 and so M0 ⊂ F ∗(y0).
Since F ∗(y0) is Γ-convex, it follows that ΓM0 ⊂ F ∗(y0). Thus M0 ∪ ΓM0 ⊂
F ∗(y0) and so x /∈ F−1(y0) for each x ∈ M0 ∪ ΓM0 . This shows that y0 /∈
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F (M0 ∪ ΓM0), which is a contradiction to F , that is, the quasi-generalized
KKM mapping. Therefore, it follows from Theorem 1.1 that

⋂
x∈X F (x) 6= ∅.

This completes the proof.

Corollary 2.1. Let (X, Γ), (Y,D; Γ′) be two G-convex spaces and F : X (
Y a quasi-generalized KKM mapping with closed values. Suppose that F ∗(y)
is Γ-convex for each y ∈ Y and there exists x0 ∈ X such that F (x0) is compact.
Then

⋂
x∈X F (x) 6= ∅.

Remark 2.1. Theorem 2.2 and Corollary 2.1 generalize Theorems 1 and 2
in Badaro and Ceppitelli [1], Theorem 4 in Badaro and Ceppitelli [2], Theorem
1 in Chang and Ma [4], Lemma 1.3 in Chang and Yang [5], Theorem 3 and
Corollary 4 in Wu and Li [23] to G-convex spaces.

3. Matching theorems and fixed point theorems

By using Theorem 2.1, we have the following:

Theorem 3.1. Let (X, Γ), (Y, D; Γ′) be two G-convex spaces and F : X (
Y a mapping with open values such that Y \⋃

x∈M F (x) is compact for some
M ∈ 〈X〉 and the following conditions hold:

(i) F (X) = Y ;
(ii) for each y ∈ Y , F−1(y) is Γ-convex.

Then there exists N0 ∈ 〈X〉 such that, for each function σ : N0 → D,

Γ′σ(M0)
∩

⋂
x∈M0∪ΓM0

F (x) 6= ∅

for some M0 ∈ 〈N0〉.
Proof. If the conclusion of Theorem 3.1 is false, then for each N ∈ 〈X〉,

there exists a function σ : N → D such that

Γ′σ(N0) ⊂ Y \
⋂

x∈N0∪ΓN0

F (x) =
⋃

x∈N0∪ΓN0

(Y \F (x)), ∀N0 ∈ 〈N〉.

Let
G(x) = Y \F (x), ∀x ∈ X.

Then
Γ′σ(N0) ⊂

⋃
x∈N0∪ΓN0

G(x) = G(N0 ∪ ΓN0), ∀N0 ∈ 〈N〉.

So G : X ( Y is a quasi-generalized KKM mapping with closed values and⋂
x∈M

G(x) =
⋂

x∈M

(Y \F (x)) = Y \
⋃

x∈M

F (x)

is a compact set.
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Now, we prove that G∗(y) is Γ-convex for each y ∈ Y . Firstly, we prove
G∗(y) 6= ∅. Otherwise, then there exists ȳ ∈ Y such that G∗(ȳ) = ∅ and
thus G−1(ȳ) = X. Therefore, x ∈ G−1(ȳ) for each x ∈ X, which implies that
ȳ ∈ G(x) and so ȳ /∈ F (x), that is, ȳ /∈ F (X) = Y , which is a contradiction.

For each N ∈ 〈G∗(y)〉, let x ∈ N . Then x /∈ G−1(y) and so y /∈ G(x).
Thus y ∈ F (x). This implies that x ∈ F−1(y) for each x ∈ N , that is,
N ⊂ F−1(y). By also the condition (ii), we have ΓN ⊂ F−1(y). Let x ∈ ΓN .
Then x ∈ F−1(y) and so y ∈ F (x). Thus y /∈ G(x). Therefore, x /∈ G−1(y),
which implies that x ∈ G∗(y). This shows that ΓN ⊂ G∗(y) and so that G∗(y)
is Γ-convex. It follows from Theorem 2.1 that⋂

x∈X

(Y \F (x)) =
⋂
x∈X

G(x) 6= ∅

and

Y \F (X) = Y \
⋃
x∈X

F (x) =
⋂
x∈X

(Y \F (x)) 6= ∅.

This is a contradiction to the condition (i). This completes the proof.

As an immediate consequence of Theorem 3.1, we have the following:

Theorem 3.2. Let (X, Γ) be a G-convex space, (Y,D; Γ′) a compact G-
convex space and F : X ( Y a mapping with open values. Suppose that the
following conditions hold:

(i) F (X) = Y ;
(ii) for each y ∈ Y , F−1(y) is Γ-convex.

Then there exists N0 ∈ 〈X〉 such that, for each function σ : N0 → D,

Γ′σ(M0)
∩

⋂
x∈M0∪ΓM0

F (x) 6= ∅

for some M0 ∈ 〈N0〉.
Remark 3.1. Theorems 3.1 and 3.2 generalize Theorem 2 and Corollary 1

in Chang and Ma [4] and Theorem 5 in Park [16] to G-convex spaces.

Corollary 3.1. Let (X, Γ) be a G-convex space and F : X ( X a mapping
with open values such that X\⋃

x∈M F (x) is compact for some M ∈ 〈X〉.
Suppose that the following conditions hold:

(i) F (X) = X;
(ii) for each y ∈ X, F−1(y) is Γ-convex.

Then there exist M0 ∈ 〈X〉 and x̂ ∈ ΓM0 such that

ΓM0 ∩
⋂

x∈M0

F (x) 6= ∅, ΓM0 ∩
⋂

x∈ΓM0

F (x) 6= ∅
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and

x̂ ∈ F (x̂).

Proof. Let D = Y = X, Γ′ = Γ and σ be an identical mapping as in
Theorem 3.1. Then we know that there exists M0 ∈ 〈X〉 such that

ΓM0 ∩
⋂

x∈M0

F (x) ⊃ ΓM0 ∩
⋂

x∈M0∪ΓM0

F (x) = Γσ(M0) ∩
⋂

x∈M0∪ΓM0

F (x) 6= ∅

and

ΓM0 ∩
⋂

x∈ΓM0

F (x) ⊃ ΓM0 ∩
⋂

x∈M0∪ΓM0

F (x) = Γσ(M0) ∩
⋂

x∈M0∪ΓM0

F (x) 6= ∅.

Let x̂ ∈ ΓM0 ∩
⋂

x∈ΓM0
F (x). Then there exists x̂ ∈ ΓM0 such that x̂ ∈ F (x̂).

This completes the proof.

From Corollary 3.1, we have the following:

Corollary 3.2. Let (X, Γ) be a compact G-convex space and F : X ( X
a mapping with open values. Suppose that the following conditions hold:

(i) F (X) = X;
(ii) for each y ∈ X, F−1(y) is Γ-convex.

Then there exist M0 ∈ 〈X〉 and x̂ ∈ ΓM0 such that

ΓM0 ∩
⋂

x∈M0

F (x) 6= ∅, ΓM0 ∩
⋂

x∈ΓM0

F (x) 6= ∅

and

x̂ ∈ F (x̂).

Remark 3.2. Corollaries 3.1 and 3.2 generalize Theorem 3.1 in Chen et al.
[6] to G-convex spaces and improve Theorems 5 and 8, Corollaries 8.2 and 8.3
in Park [20].

4. Section theorems

By using Theorem 3.1, we have the following:

Theorem 4.1. Let (X, Γ), (Y, D; Γ′) be two G-convex spaces, Z a nonempty
set, B ⊂ Z and let g : X × Y → Z be a mapping satisfying the following
conditions:

(i) for each x ∈ X, the set {y ∈ Y : g(x, y) ∈ B} is open, and the set
Y \⋃

x∈M{y ∈ Y : g(x, y) ∈ B} is compact for some M ∈ 〈X〉;
(ii) for each y ∈ Y , the set {x ∈ X : g(x, y) ∈ B} is Γ-convex;
(iii)

⋃
x∈X{y ∈ Y : g(x, y) ∈ B} = Y .
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Then there exists N0 ∈ 〈X〉 such that, for each function σ : N0 → D,

g((M0 ∪ ΓM0)× {y0}) ⊂ B

for some M0 ∈ 〈N0〉 and y0 ∈ Γ′σ(M0).

Proof. Let

F (x) = {y ∈ Y : g(x, y) ∈ B}, ∀x ∈ X.

It follows from Theorem 3.1 that there exists N0 ∈ 〈X〉 such that, for each
function σ : N0 → D,

Γ′σ(M0)
∩

⋂
x∈M0∪ΓM0

F (x) 6= ∅

for some M0 ∈ 〈N0〉. Let y0 ∈ Γ′σ(M0) ∩
⋂

x∈M0∪ΓM0
F (x). Then y0 ∈ Γ′σ(M0)

and g(x, y0) ∈ B for each x ∈ M ∪ ΓM0 , that is,

g((M0 ∪ ΓM0)× {y0}) ⊂ B.

This completes the proof.

As an immediate consequence of Theorem 4.1, we have the following:

Theorem 4.2. Let (X, Γ) be a G-convex space, (Y,D; Γ′) a compact G-
convex space, Z a nonempty set, B ⊂ Z and let g : X ×Y → Z be a mapping
satisfying the following conditions:

(i) for each x ∈ X, the set {y ∈ Y : g(x, y) ∈ B} is open;
(ii) for each y ∈ Y , the set {x ∈ X : g(x, y) ∈ B} is Γ-convex;
(iii)

⋃
x∈X{y ∈ Y : g(x, y) ∈ B} = Y .

Then there exists N0 ∈ 〈X〉 such that, for each function σ : N0 → D,

g((M0 ∪ ΓM0)× {y0}) ⊂ B

for some M0 ∈ 〈N0〉 and y0 ∈ Γ′σ(M0).

Remark 4.1. Theorems 4.1 and 4.2 generalize Theorem 1 and Corollary 2
in Wu and Li [23] to G-convex spaces.

Let D = Y = X, Γ′ = Γ, Z = X ×X, g(x, y) = (x, y) and σ be an identical
mapping as in Theorem 4.1, then we have the following:

Corollary 4.1. Let (X, Γ) be a G-convex space and B ⊂ X ×X. Suppose
that the following conditions hold:

(i) for each x ∈ X, the set {y ∈ X : (x, y) ∈ B} is open and the set
X\⋃

x∈M{y ∈ X : (x, y) ∈ B} is compact for some M ∈ 〈X〉;
(ii) for each y ∈ X, the set {x ∈ X : (x, y) ∈ B} is Γ-convex;
(iii)

⋃
x∈X{y ∈ X : (x, y) ∈ B} = X.
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Then there exist M0 ∈ 〈X〉 and x̂ ∈ ΓM0 such that

M0 × {x̂} ⊂ B, ΓM0 × {x̂} ⊂ B

and

(x̂, x̂) ∈ B.

From Corollary 4.1, we have the following:

Corollary 4.2. Let (X, Γ) be a compact G-convex space and B ⊂ X ×X.
Suppose that the following conditions hold:

(i) for each x ∈ X, the set {y ∈ X : (x, y) ∈ B} is open;
(ii) for each y ∈ X, the set {x ∈ X : (x, y) ∈ B} is Γ-convex;
(iii)

⋃
x∈X{y ∈ X : (x, y) ∈ B} = X.

Then there exist M0 ∈ 〈X〉 and x̂ ∈ ΓM0 such that

M0 × {x̂} ⊂ B, ΓM0 × {x̂} ⊂ B

and

(x̂, x̂) ∈ B.

Remark 4.2. Corollary 4.2 generalizes Corollary 1 in Badaro and Ceppitelli
[3] to G-convex spaces.

5. Minimax theorems

We first discuss the minimax theorem for the vector function.

Theorem 5.1. Let (X, Γ), (Y, D; Γ′) be two G-convex spaces and (E,≤) a
complete lattice. Let f : X × Y → E be a mapping satisfying the following
conditions:

(i) for each x ∈ X, f(x, ·) is bounded below and, for each y ∈ Y , f(·, y) is
bounded above;

(ii) for each λ > supx∈X infy∈Y f(x, y) and x ∈ X, the set {y ∈ Y :
f(x, y) ≤ λ} is closed and

⋂
x∈M{y ∈ Y : f(x, y) ≤ λ} is compact

set for some M ∈ 〈X〉;
(iii) for each λ > supx∈X infy∈Y f(x, y) and y ∈ Y , the set {x ∈ X :

f(x, y) � λ} is Γ-convex;
(iv) for each λ > supx∈X infy∈Y f(x, y) and N ∈ 〈X〉, there exists a function

σ : N → D such that, for each M ∈ 〈N〉, there exists x0 ∈ M ∪ ΓM

such that

f(x0, y) ≤ λ, ∀y ∈ Γ′σ(M).

Then

inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y).
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Proof. Put λ0 = supx∈X infy∈Y f(x, y). We need only to prove

inf
y∈Y

sup
x∈X

f(x, y) ≤ λ0.

Let

Bλ = {(x, y) ∈ X × Y : f(x, y) � λ}, ∀λ ∈ E.

Suppose that there exists β > λ0 such that
⋃
x∈X

{y ∈ Y : (x, y) ∈ Bβ} = Y.

It follows from the conditions (ii) and (iii) that

{y ∈ Y : (x, y) ∈ Bβ} = {y ∈ Y : f(x, y) � β}
and

{x ∈ X : (x, y) ∈ Bβ} = {x ∈ X : f(x, y) � β}
are open in Y and Γ-convex in X, respectively. By the condition (ii), we also
know that

Y \
⋃

x∈M

{y ∈ Y : (x, y) ∈ Bβ} =
⋂

x∈M

{y ∈ Y : f(x, y) ≤ β}

is a compact set. Let Z = X × Y and g(x, y) = (x, y) in Theorem 4.1. Then
there exists N0 ∈ 〈X〉 such that, for each function σ : N0 → D,

(M0 ∪ ΓM0)× {y0} ⊂ Bβ

for some M0 ∈ 〈N0〉 and y0 ∈ Γ′σ(M0). Hence f(x, y0) � β for each x ∈ M0∪ΓM0 ,

which is a contradiction to the condition (iv). Therefore, for each λ > λ0, there
exists

yλ ∈ Y \
⋃
x∈X

{y ∈ Y : (x, y) ∈ Bλ} = Y \
⋃
x∈X

{y ∈ Y : f(x, y) � λ}.

This implies that f(x, yλ) ≤ λ for each x ∈ X. Since E is a complete lattice,
we have

sup
x∈X

f(x, yλ) ≤ λ

and so infy∈Y supx∈X f(x, y) ≤ λ. Therefore, since λ > λ0 and λ is arbitrary,
we have

inf
y∈Y

sup
x∈X

f(x, y) ≤ λ0.

This completes the proof.

Remark 5.1. Theorem 5.1 generalizes Theorem 5 in Badaro and Ceppitelli
[3] and Theorem 4.6 in Chen et al. [6] to G-convex spaces.
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As an immediate consequence of Theorem 5.1, we have the following mini-
max theorem for real function, which generalizes Theorem 5 and Corollary 6
in Wu and Li [23] to G-convex spaces.

Corollary 5.1. Let (X, Γ), (Y, D; Γ′) be two G-convex spaces and f :
X × Y → R (R denotes the set of real numbers) a function satisfying the
following conditions:

(i) for each x ∈ X, f(x, ·) is bounded below and, for each y ∈ Y , f(·, y) is
bounded above;

(ii) for each λ > supx∈X infy∈Y f(x, y) and x ∈ X, the set {y ∈ Y :
f(x, y) ≤ λ} is closed and

⋂
x∈M{y ∈ Y : f(x, y) ≤ λ} is compact

set for some M ∈ 〈X〉;
(iii) for each λ > supx∈X infy∈Y f(x, y) and y ∈ Y , the set {x ∈ X :

f(x, y) > λ} is Γ-convex;
(iv) for each λ > supx∈X infy∈Y f(x, y) and N ∈ 〈X〉, there exists a function

σ : N → D such that, for each M ∈ 〈N〉, there exists x0 ∈ M ∪ ΓM

such that

f(x0, y) ≤ λ, ∀y ∈ Γ′σ(M).

Then

inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y).
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Abstract
The paper introduces q-parametric Bleimann, Butzer and Hahn (q-BBH) operators as a

rational transformation of q-Bernstein-Lupaş operators. On their basis, a set of new results
on q-BBH operators can be obtained easily from the corresponding properties of q-Bernstein-
Lupaş operators. Among several other results, a set of identities involving divided di¤erences
are obtained. Furthermore, convergence properties of q-BBH operators are studied.

1 Introduction

q-Bernstein polynomials Bn;q were introduced by G. M. Phillips in [26]. q-Bernstein polynomials
form an area of an intensive research in the approximation theory, see survey paper [25] and references
there in. Nowadays, there are new studies on the q-parametric operators, see [20]-[31]. Two-
parametric generalization of q-Bernstein polynomials have been considered by P. Lewanowicz and
P. Wozny (cf. [20]), an analogue of the Bernstein-Durrmeyer operator and Bernstein-Chlodowsky
operator related to the q-Bernstein basis has been studied by M. - M. Derriennic [9], V. Gupta
[16] and V. Gupta and H. Karsl¬[17], respectively, a q-version of the Szasz-Mirakjan operator has
been investigated by A. Aral and V. Gupta in [6]. Also some results on q-parametric Meyer-König
and Zeller operators can be found in [27], [31], [11]. Recently Aral and Do¼gru [5] introduced a
q-analogue of Bleimann, Butzer, and Hahn operators and they have established some approximation
properties of their q-Bleimann, Butzer, and Hahn operators in the subspace of CB [0;1). Also,
they showed that these operators are more �exible than classical BBH operators, that is, depending
on the selection of q, rate of convergence of the q-BBH operators is better than the classical one.
Voronovskaja type asymptotic estimate and the monotonicity properties for q-BBH operators are
studied in [10].

The linear operator Hn de�ned by

Hn (f; x) :=
1

(1 + x)
n

nX
k=0

f

�
k

n� k + 1

��
n
k

�
xk; x � 0; n = 1; 2; :::;

where f 2 R[0;1) was introduced by Bleimann, Butzer, and Hahn [7] to approximate continuous
functions on the positive semi-axis and has been studied by several authors see, for instance, [8],
[19], [3], [7], [4], [2], [18]. In [7], [2] the authors pointed out some formal similarities and di¤erences
between Hn and the classical Bernstein operator Bn. Connection suggested in [2] can be formulated
by means of the following identity

Hn = V �Bn+1 � U;
V and U are suitable positive linear operators which will be de�ned below. This idea was used in
[22] to de�ne new q-analogue of the Bleimann, Butzer, and Hahn operators as follows:

Hn;q (f ;x) := (V �Bn+1;q � U) (f ;x) ;

1
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where Bn+1;q is a Philips q-analogue of the Bernstein operators.

On the other hand the Lupaş q-analogue of the Bernstein polynomials (Rn;q) are less known.
However, they have an advantage of generating positive linear operators for all q > 0, whereas
Phillips polynomials generate positive linear operators only if q 2 (0; 1). Lupaş [21] investigated
approximating properties of the operators Rn;q(f; x) with respect to the uniform norm of C[0; 1]. In
particular, he obtained some su¢ cient conditions for a sequence fRn;q(f; x)g to be approximating for
any function f 2 C[0; 1] and estimated the rate of convergence in terms of the modulus of continuity.
He also investigated behavior of the operators Rn;q(f; x) for convex functions. In [24] several results
on convergence properties of the sequence fRn;q(f; x)g is presented. In particular, it is proved that
the sequence fRn;q(f; x)g converges uniformly to f(x) on [0; 1] if and only if qn ! 1. On the other
hand, for any q > 0 �xed, q 6= 1, the sequence fRn;q(f; x)g converges uniformly to f(x) if and only
if f(x) = ax+ b for some a; b 2 R.
Using the classical connection between Bernstein and BBH operators we propose the following

q-analogue of the Bleimann, Butzer and Hahn operators in C01+x [0;1) :

Hn;q (f ;x) := (V �Rn+1;q � U) (f ;x) ; (1)

where Rn;q is the Lupaş q-Bernstein operator on C [0; 1] de�ned by

Rn;q(f; x) =
nX
k=0

f

�
[k]

[n]

��
n
k

�
q
k(k�1)

2 xk(1� x)n�k
(1� x+ qx):::(1� x+ qn�1x) :

Thanks to (1), di¤erent properties of Rn+1;q can be transferred to Hn;q with some extra e¤ort. Thus,
the limiting behaviour of Hn;q can be immediately derived from (1) and the well known properties of

Rn+1;q. In [14], Gadjiev and Çakar gave a Korovkin-type theorem using the test function
�

t
1+t

�i
for

i = 0; 1; 2: In [5], for q-BBH operators Ln;q Korovkin-type approximation properties are investigated
by using these test functions. Notice that,

Hn;q (f ;x) = Ln;q (f ; qx)

where Ln;q is the q-BBH operator de�ned in [5].

The paper is organized as follows. In Section 2 we give construction of q-BBH operators and
study some elementary properties. Moreover, Arama�Popoviciu-type Formula and Stancu-type form
for the remainder of the q-BBH approximation process are obtained. In Section 3 we investigate
convergence properties of q-BBH operators and we show how to reduce the case q 2 (1;1) to the
case q 2 (0; 1).

2 Construction and properties

Before introducing the operators, we mention some basic de�nitions of q calculus.

Let q > 0: For any n 2 N [ f0g, the q-integer [n] = [n]q is de�ned by

[n] := 1 + q + :::+ qn�1; [0] := 0;

and the q-factorial [n]! = [n]q! by

[n]! := [1] [2] ::: [n] ; [0]! := 1:

For integers 0 � k � n, the q-binomial is de�ned by�
n
k

�
:=

[n]!

[k]! [n� k]! :

2
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Also, we use the following notations:

(1� x)nq :=
n�1Y
j=0

�
1� qjx

�
; (1� x)1q :=

1Y
j=0

�
1� qjx

�
;

bn;k (q;x) :=

�
n
k

�
q
k(k�1)

2 xk(1� x)n�k
(1� x+ qx):::(1� x+ qn�1x) ; hn;k (q;x) :=

�
n
k

�
qk(k+1)=2xk

(1 + qx)
n
q

;

b1;k(q;x) :=
q
k(k�1)

2 (x=1� x)k

(1� q)k [k]!
1Y
j=0

(1 + qj (x=1� x))
; h1;k (q;x) :=

qk(k+1)=2xk

(1 + qx)
1
q (1� q)

k
[k]!

;

hn;k (q;x) = (1 + x)
[n� k + 1] qk
[n+ 1]

bn+1;k

�
q;

x

1 + x

�
:

As usual, [x0; x1; :::; xn; f ] denotes the divided di¤erence of the function f with respect to distinct
nodes x0; x1; :::; xn in the domain of f and can be expressed as the following formula:

[x0; :::; xn; f ] =
[x1; :::; xn; f ]� [x0; :::; xn�1; f ]

xn � x0
:

We shall also use the following notations:

CB [0;1) = ff 2 C [0;1) j f (x) = O (1 + x)g ;
C [0;1] = ff 2 C [0;1) j f (x) has a �nite limit at 1g ;

C01+x [0;1) = ff 2 C [0;1) j f (x) = o (1 + x) (x!1)g :

It is assumed that C01+x [0;1) is endowed with the norm kfk1+x = supx�0
jf(x)j
1+x :

We consider the operators U : R[0;1) ! R[0;1],

U (f; t) :=

8><>:
(1� t) f

�
t
1�t

�
; t 2 [0; 1) ;

0; t = 1;

and V : R[0;1) ! R[0;1),

V (g; x) := (1 + x) g

�
x

1 + x

�
; x 2 [0;1) :

They were introduced in [2] and, aside from notation, in [13]. Some of properties, used throughout
the paper, are gathered in the following theorem.

Theorem 1 [1] We have the following relations:

1. V � U is the identity operator on R[0;1).

2. f 2 C01+x [0;1) if and only if Uf 2 C [0; 1].

3. If f 2 C01+x[0;1), then f is convex if and only if f is convex and nonincreasing.

We introduce Bleimann, Butzer and Hahn type operators based on q-integers as follows.

De�nition 2 For f 2 R[0;1) the q-Bleimann, Butzer and Hahn operators are given by

Hn;q (f ;x) := (V �Rn+1;q � U) (f ;x) =
nX
k=0

f

�
[k]

qk [n� k + 1]

�
hn;k (q;x)

=
1

(1 + qx)
n
q

nX
k=0

f

�
[k]

qk [n� k + 1]

��
n
k

�
qk(k+1)=2xk; n 2 N:

3
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De�nition 3 Let 0 < q < 1. The linear operator de�ned on R[0;1) given by

H1;q (f ;x) :=
1X
k=0

f

�
1� qk
qk

�
h1;k (q;x) =

1

(1 + qx)
1
q

1X
k=0

f

�
1� qk
qk

�
qk(k+1)=2

(1� q)k [k]!
xk

is called the limit q-BBH operator.

Lemma 4 Hn;q;H1;q : C
0
1+x [0;1)! C01+x [0;1) are linear positive operators and

kHn;q (f)k1+x � kfk1+x ; kH1;q (f)k1+x � kfk1+x :

Proof. We prove the �rst inequality, since the second one can be done in a like manner. Thanks to
the de�nition we have

jHn;q (f ;x)j �
nX
k=0

����f � [k]

qk [n� k + 1]

�����hn;k (q;x)
= (1 + x)

nX
k=0

����f � [k]

qk [n� k + 1]

����� [n� k + 1] qk[n+ 1]
bn+1;k

�
q;

x

1 + x

�

= (1 + x)
nX
k=0

����f � [k]

qk [n� k + 1]

����� =�1 + [k]

qk [n� k + 1]

�
bn+1;k

�
q;

x

1 + x

�

� (1 + x) kfk1+x
n+1X
k=0

bn+1;k

�
q;

x

1 + x

�
= (1 + x) kfk1+x :

Lemma 5 We have

Hn;q (1;x) = 1; Hn;q (t;x) = x�
qn(n+1)=2xn+1

(1 + qx)
n
q

:

The Arama�Popoviciu-type formula was obtained in [4] and in [8] by direct calculation. Formula
(2) below is a q-analogue of the mentioned formula for the q-BBH operators.

Theorem 6 (i) If f 2 C01+x [0;1) is a convex function, then the sequence fHn;q (f ;x)g is nonin-
creasing in n for each q 2 (0; 1] and x 2 [0;1).

(ii) If f 2 R[0;1); then the following formula is valid

Hn;q (f ;x)�Hn+1;q (f ;x) = �
1

(1 + qx)
n+1
q

qn(n+1)=2xn+1
�
[n]

qn
;
[n+ 1]

qn+1
; f

�

+
1

(1 + qx)
n+1
q

n�1X
k=0

qn�3k�2

[n� k] [n� k + 1]

�
�

[k]

qk [n� k + 1] ;
[k + 1]

qk+1 [n� k + 1] ;
[k + 1]

qk+1 [n� k] ; f
� �

n+ 1
k

�
q(k+1)(k+2)=2xk+1: (2)

4

MAHMUDOV, SABANCIGIL: q-PARAMETRIC BBH OPERATORS114



Proof. (i) We start by writing

Hn;q (f ;x)�Hn+1;q (f ;x)

=
1

(1 + qx)
n+1
q

nX
k=0

f

�
[k]

qk [n� k + 1]

��
n
k

�
qk(k+1)=2xk

�
1 + qn+1x

�
� 1

(1 + qx)
n+1
q

n+1X
k=0

f

�
[k]

qk [n� k + 2]

��
n+ 1
k

�
qk(k+1)=2xk

= � 1

(1 + qx)
n+1
q

q(n+1)(n+2)=2xn+1
�
f

�
[n+ 1]

qn+1

�
� f

�
[n]

qn

��

+
1

(1 + qx)
n+1
q

n�1X
k=0

f

�
[k]

qk [n� k + 1]

��
n
k

�
q(k+1)(k+2)=2qn�kxk+1

+
1

(1 + qx)
n+1
q

n�1X
k=0

f

�
[k + 1]

qk+1 [n� k]

��
n

k + 1

�
q(k+1)(k+2)=2xk+1

� 1

(1 + qx)
n+1
q

n�1X
k=0

f

�
[k + 1]

qk+1 [n� k + 1]

��
n+ 1
k + 1

�
q(k+1)(k+2)=2xk+1:

Consequently,

Hn;q (f ;x)�Hn+1;q (f ;x) = �
1

(1 + qx)
n+1
q

q(n+1)(n+2)=2xn+1
�
f

�
[n+ 1]

qn+1

�
� f

�
[n]

qn

��

+
1

(1 + qx)
n+1
q

n�1X
k=0

ak

�
n+ 1
k + 1

�
q(k+1)(k+2)=2xk+1; (3)

where

ak =
qn�k [k + 1]

[n+ 1]
f

�
[k]

qk [n� k + 1]

�
+
[n� k]
[n+ 1]

f

�
[k + 1]

qk+1 [n� k]

�
� f

�
[k + 1]

qk+1 [n� k + 1]

�
: (4)

Now from Theorem 1 since f is nonincreasing the �rst term is nonnegative. Thus to show monotonic-
ity of Hn;q it su¢ ces to show nonnegativity of ak, 0 � k � n. Let us write

� =
qn�k [k + 1]

[n+ 1]
; 1� � = [n� k]

[n+ 1]
; x1 =

[k]

qk [n� k + 1] ; x2 =
[k + 1]

qk+1 [n� k] :

Then it follows that

�x1 + (1� �)x2 =
qn�k [k + 1]

[n+ 1]

[k]

qk [n� k + 1] +
[n� k]
[n+ 1]

[k + 1]

qk+1 [n� k]

=
[k + 1]

qk+1 [n+ 1]

qn�k+1 [k] + [n� k + 1]
[n� k + 1] =

[k + 1]

qk+1 [n+ 1]

[n+ 1]

[n� k + 1] =
[k + 1]

qk+1 [n� k + 1] :

We see immediately that

ak = �f (x1) + (1� �) f (x2)� f (�x1 + (1� �)x2) � 0

which proves part (i).

(ii) For part (ii) we evaluate the second divided di¤erence of f at the points [k]
qk[n�k+1] ;

[k+1]
qk+1[n�k+1] ;

5
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[k+1]
qk+1[n�k] and we obtain �

[k]

qk [n� k + 1] ;
[k + 1]

qk+1 [n� k + 1] ;
[k + 1]

qk+1 [n� k] ; f
�

=
q2k+2 [n� k] [n� k + 1]2

[n+ 1]
f

�
[k]

qk [n� k + 1]

�
� q

2k+2 [n� k] [n� k + 1]2

qn�k [k + 1]
f

�
[k + 1]

qk+1 [n� k + 1]

�
+
q2k+2 [n� k]2 [n� k + 1]2

qn�k [k + 1] [n+ 1]
f

�
[k + 1]

qk+1 [n� k]

�
: (5)

From (4) and (5) we see that�
n+ 1
k + 1

�
ak =

�
n+ 1
k + 1

�
qn�k [k + 1]

q2k+2 [n� k] [n� k + 1]2

�
�

[k]

qk [n� k + 1] ;
[k + 1]

qk+1 [n� k + 1] ;
[k + 1]

qk+1 [n� k] ; f
�

=
qn�k

q2k+2 [n� k] [n� k + 1]

�
n+ 1
k

�
(6)

�
�

[k]

qk [n� k + 1] ;
[k + 1]

qk+1 [n� k + 1] ;
[k + 1]

qk+1 [n� k] ; f
�
:

Therefore the formula (2) follows from (3) and (6).

The following theorem provides a Stancu-type form of the remainder of the q-BBH approximation
process.

Theorem 7 If f 2 R[0;1) and x 2 [0;1) nf[k] = [n� k + 1] qk : k = 0; 1; :::; ng, then

Hn;q (f ;x)� f (x) = �
xn+1

(1 + qx)
n
q

�
x;
[n]

qn
; f

�
qn(n+1)=2

+
x

(1 + qx)
n
q

n�1X
k=0

�
x;

[k]

[n� k + 1] qk ;
[k + 1]

[n� k] qk+1 ; f
�
q
(k�2)(k+1)

2

[n� k]

�
n+ 1
k

�
xk: (7)

Proof. By the de�nition of Hn;q we have

Hn;q (f ;x)� f (x) =
1

(1 + qx)
n
q

nX
k=0

�
f

�
[k]

qk [n� k + 1]

�
� f (x)

��
n
k

�
qk(k+1)=2xk

= � 1

(1 + qx)
n
q

nX
k=0

�
x� [k]

qk [n� k + 1]

��
x;

[k]

[n� k + 1] qk ; f
� �

n
k

�
qk(k+1)=2xk:

Since
[k]

[n� k + 1]

�
n
k

�
=

�
n

k � 1

�
we have

Hn;q (f ;x)� f (x) = �
1

(1 + qx)
n
q

nX
k=0

�
x;

[k]

[n� k + 1] qk ; f
� �

n
k

�
qk(k+1)=2xk+1

+
1

(1 + qx)
n
q

nX
k=1

�
x;

[k]

[n� k + 1] qk ; f
� �

n
k � 1

�
qk(k�1)=2xk:

6
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Rearranging the above equality, we can write

Hn;q (f ;x)� f (x) = �
xn+1

(1 + qx)
n
q

�
x;
[n]

qn
; f

�
qn(n+1)=2

+
1

(1 + qx)
n
q

n�1X
k=0

��
x;

[k + 1]

[n� k] qk+1 ; f
�
�
�
x;

[k]

[n� k + 1] qk ; f
���

n
k

�
qk(k+1)=2xk+1: (8)

Using the equality

[k + 1]

[n� k] qk+1 �
[k]

[n� k + 1] qk =
[n+ 1]

[n� k] [n� k + 1] qk+1

we have the following formula for divided di¤erences:�
x;

[k + 1]

[n� k] qk+1 ; f
�
�
�
x;

[k]

[n� k + 1] qk ; f
�

=

�
x;

[k]

[n� k + 1] qk ;
[k + 1]

[n� k] qk+1 ; f
�

[n+ 1]

[n� k] [n� k + 1] qk+1 ; (9)

and therefore the formula (7) follows from (8) and (9).

We will focus now on the formula for the second central moment of the Hn;q, which is the
q-analogue of classical formula for q-BBH operators, see [19], [1].

Lemma 8 We have

Hn;q

�
(t� x)2 ;x

�
=

xn+1

(1 + qx)
n
q

qn(n+1)=2
�
x� [n]

qn

�
+

1

(1 + qx)
n
q

n�1X
k=0

1

[n� k]

�
n+ 1
k

�
q(k�2)(k+1)=2xk+1:

Proof. Indeed, with f (t) = (t� x)
�
t� [n]

qn

�
, equation (7) gives

Hn;q

�
(t� x)

�
t� [n]

qn

�
;x

�
=

1

(1 + qx)
n
q

n�1X
k=0

1

[n� k] qk+1

�
n+ 1
k

�
qk(k+1)=2xk+1:

Consequently, we obtain

Hn;q

�
(t� x)2 ;x

�
=

�
[n]

qn
� x
�
(Hn;q (t;x)� x) +Hn;q

�
(t� x)

�
t� [n]

qn

�
;x

�
=

xn+1

(1 + qx)
n
q

qn(n+1)=2
�
x� [n]

qn

�
+

1

(1 + qx)
n
q

n�1X
k=0

1

[n� k] qk+1

�
n+ 1
k

�
qk(k+1)=2xk+1:

It is known that a function f is convex on an interval if and only if all second order divided
di¤erences of f are nonnegative. This property, Theorems 7, 1 and 6 together imply the following
result.

Corollary 9 If f 2 C01+x[0;1) is convex or if f 2 R[0;1) is convex and nonincreasing, then

Hn;q (f ;x) � Hn+1;q (f ;x) � f (x) :

3 Convergence properties

For f 2 C[0; 1]; t > 0, the modulus of continuity !(f; t) of f is de�ned by

!(f; t) = sup
jx�yj�t

jf(x)� f(y)j :

7
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Theorem 10 Let q = qn satis�es 0 < qn < 1 and let qn ! 1 as n ! 1. For any x 2 [0;1) and
for any f 2 C01+x [0;1) the following inequality holds

1

1 + x
jHn;qn (f ;x)� f (x)j � 2!

�
Uf;

p
�n (x)

�
;

where �n (x) =
x

(1 + x)
2

1

[n+ 1]qn
.

Proof. Positivity of Rn+1;qn implies that for any g 2 C [0; 1]

jRn+1;qn (g;x)� g (x)j � Rn+1;qn (jg (t)� g (x)j ;x) : (10)

On the other hand

j(Uf) (t)� (Uf) (x)j

� ! (Uf; jt� xj) � ! (Uf; �)
�
1 +

1

�
jt� xj

�
; � > 0:

This inequality and (10) imply that

jRn+1;qn (Uf ;x)� (Uf) (x)j � ! (Uf; �)
�
1 +

1

�
Rn+1;qn (jt� xj ;x)

�
and

jHn;qn (f ;x)� f (x)j

= (1 + x)

����Rn+1;qn �Uf ; x

1 + x

�
� (Uf)

�
x

1 + x

�����
� (1 + x)! (Uf; �)

�
1 +

1

�
Rn+1;qn

�����t� x

1 + x

���� ; x

1 + x

��

� (1 + x)! (Uf; �)

0@1 + 1
�

 
Rn+1;qn

 ����t� x

1 + x

����2 ; x

1 + x

!!1=21A
= (1 + x)! (Uf; �)

0@1 + 1
�

 
x

1 + x

1

[n+ 1]qn
+

x

1 + x

qnx

1 + qnx

 
1� 1

[n+ 1]qn

!
�
�

x

1 + x

�2!1=21A
� (1 + x)! (Uf; �)

0@1 + 1
�

 
x

1 + x

1

[n+ 1]qn
�
�

x

1 + x

�2
1

[n+ 1]qn

!1=21A
= (1 + x)! (Uf; �)

0@1 + 1
�

 
x

(1 + x)
2

1

[n+ 1]qn

!1=21A ;
where we have used the explicit formula for Rn+1;qn

����t� x
1+x

���2 ; x
1+x

�
, which can be found in [24].

Now by choosing � =
p
�n (x), we obtain desired result.

Corollary 11 Let q = qn satis�es 0 < qn < 1 and let qn ! 1 as n!1. For any f 2 C01+x [0;1)
it holds that

lim
n!1

kHn;qn (f ;x)� f (x)k1+x = 0:

In [24], it is proved that bn;k(q;x) ! b1;k(q;x) uniformly in x 2 [0; 1) as n ! 1. In the next
lemma we give an estimate for

���bn;k(q; x
1+x )� b1;k(q;

x
1+x )

��� for x 2 [0;1).
8
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Lemma 12 Let 0 < q < 1, k � 0; n � 1:For any x 2 [0;1) we have����bn;k(q; x

1 + x
)� b1;k(q;

x

1 + x
)

���� � bn;k(q; x

1 + x
)
xqn

1� q + b1;k(q;
x

1 + x
)
qn�k+1

1� q :

Proof. Standard computations show that����bn;k(q; x

1 + x
)� b1;k(q;

x

1 + x
)

����
=

������
�
n
k

� k�1Y
j=0

qjx

1 + qjx

n�k�1Y
j=0

�
1� qk+jx

1 + qk+jx

�

� 1

(1� q)k [k]!

k�1Y
j=0

qjx

1 + qjx

1Y
j=0

�
1� qk+jx

1 + qk+jx

�������
=

������
�
n
k

� k�1Y
j=0

qjx

1 + qjx

0@n�k�1Y
j=0

�
1� qk+jx

1 + qk+jx

�
�

1Y
j=0

�
1� qk+jx

1 + qk+jx

�1A
+

k�1Y
j=0

qjx

1 + qjx

1Y
j=0

�
1� qk+jx

1 + qk+jx

���
n
k

�
� 1

(1� q)k [k]!

�������
� bn;k(q;

x

1 + x
)

������1�
1Y
j=n

�
1� qjx

1 + qjx

�������+ b1;k(q;
x

1 + x
)

������
nY

j=n�k+1
(1� qj)� 1

������ : (11)

Now using the inequality

1�
kY
j=1

(1� aj) �
kX
j=1

aj ; (a1; a2; :::; ak 2 (0; 1); k = 1; 2; :::;1);

we get from (11) that����bn;k(q; x

1 + x
)� b1;k(q;

x

1 + x
)

���� � bn;k(q; x

1 + x
)

1X
j=n

qjx

1 + qjx
+ b1;k(q;

x

1 + x
)

nX
j=n�k+1

qj

� bn;k(q;
x

1 + x
)
xqn

1� q + b1;k(q;
x

1 + x
)
qn�k+1

1� q :

Using Lemma 12 we prove the following quantitative result for the rate of local convergence of
Hn;q (f ;x) in terms of the �rst modulus of continuity.

Theorem 13 Let 0 < q < 1 and f 2 C01+x [0;1). Then for all 0 � x <1 we have

jHn;q (f ;x)�H1;q (f ;x)j � (1 + x)2
2

1� q!
�
Uf; qn+1

�
:

Proof. Consider

�(x) := Hn;q(f ;x)�H1;q(f ;x) = (V �Rn+1;q � U) (f ;x)� (V �R1;q � U) (f ;x)
= (V � (Rn+1;q �R1;q) � U) (f ;x) = (V � (Rn+1;q �R1;q)) (Uf ;x) :
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Since Hn;q(f ;x) and H1;q(f ;x) possess the end point interpolation property, �(0) = 0. For all
x 2 (0;1) we rewrite � in the following form

�(x) = V �
n+1X
k=0

�
(Uf)

�
[k]

[n+ 1]

�
� (Uf)

�
1� qk

��
bn+1;k(q;x)

+ V �
n+1X
k=0

�
(Uf)

�
1� qk

�
� (Uf) (1)

�
(bn+1;k(q;x)� b1;k(q;x))

� V �
1X

k=n+2

�
(Uf)

�
1� qk

�
� (Uf) (1)

�
b1;k(q;x) =: I1 + I2 + I3:

We start with estimation of I1 and I3. Since

[k]

[n+ 1]
�
�
1� qk

�
=

1� qk
1� qn+1 �

�
1� qk

�
= qn+1

1� qk
1� qn+1 � q

n+1;

0 � 1�
�
1� qk

�
= qk � qn+1; k > n+ 1;

we get

jI1j � (1 + x)!
�
Uf; qn+1

� n+1X
k=0

bn+1;k(q;
x

1 + x
) = (1 + x)!

�
Uf; qn+1

�
; (12)

jI3j � (1 + x)!
�
Uf; qn+1

� 1X
k=n+2

b1;k(q;
x

1 + x
) � (1 + x)!

�
Uf; qn+1

�
: (13)

Finally we estimate I2. Using the property of the modulus of continuity

! (f; �t) � (1 + �)! (f; t) ; � > 0

and Lemma 12 we get

jI2j � (1 + x)
n+1X
k=0

!
�
Uf; qk

� ����bn+1;k(q; x

1 + x
)� b1;k(q;

x

1 + x
)

����
� (1 + x)!

�
Uf; qn+1

� n+1X
k=0

�
1 + qk�n�1

� ����bn+1;k(q; x

1 + x
)� b1;k(q;

x

1 + x
)

����
� 2 (1 + x)!

�
Uf; qn+1

� 1

qn+1

n+1X
k=0

qk
����bn+1;k(q; x

1 + x
)� b1;k(q;

x

1 + x
)

����
� 2 (1 + x)!

�
Uf; qn+1

� 1

qn+1

n+1X
k=0

qk
�
bn+1;k(q;

x

1 + x
)
xqn+1

1� q + b1;k(q;
x

1 + x
)
qn�k+2

1� q

�
� 2 (1 + x)2 1

1� q!
�
Uf; qn+1

�
: (14)

From (12), (13), and (14), we conclude the desired estimation.

Finally we give the following theorem which allows us to reduce the case q 2 (1;1) to the case
q 2 (0; 1). Let f 2 C [0;1]. De�ne

g (x) =

8<: limx!1 f (x) ; if x = 0;
f( 1x ); if 0 < x <1;
f (0) ; if x =1:

Theorem 14 For any q > 0 we have

Hn;1=q(g;
1

x
) =

8<: limx!1Hn;q(f ;x), if x = 0;
Hn;q(f ;x), if 0 < x <1;
f (0), if x =1:
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Proof. It is clear that

Hn;q(f ;x) =
nX
k=0

f

 
[n� k]q

qn�k [k + 1]q

!
hn;n�k (q;x) :

Consider

hn;n�k (q;x) =
1

(1 + qx)
n
q

�
n

n� k

�
q

q(n�k)(n�k+1)=2xn�k

=
1

qn(n+1)=2xn
�
1 + 1

qx

�n
1=q

qn(n+1)=2

q(n�k)(n�k+1)=2qk(k+1)=2

�
n
k

�
1=q

q(n�k)(n�k+1)=2xn�k

=
1�

1 + 1
qx

�n
1=q

�
n
k

�
1=q

�
1

q

�k(k+1)=2�
1

x

�k
= hn;k

�
1

q
;
1

x

�
:

On the other hand,

[n+ 1� k]q
qn+1�k [k]q

=
1� qn+1�k

qn+1�k (1� qk) =
[n� k + 1]1=q
qk [k]1=q

=
1

qk

1�
�
1
q

�n�k+1
1�

�
1
q

�k =
1

qn�k+1
qn�k+1 � 1
qk � 1 :

Therefore

Hn;q(f ;x) =
nX
k=0

f

 
[n+ 1� k]q
qn+1�k [k]q

!
hn;n�k (q;x) =

nX
k=0

f

 
[n� k + 1]1=q
qk [k]1=q

!
hn;k

�
1

q
;
1

x

�

=
nX
k=0

g

 
qk [k]1=q

[n� k + 1]1=q

!
hn;k

�
1

q
;
1

x

�
= Hn;1=q(g;

1

x
):
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[24] S. Ostrovska, On the Lupaş q-analogue of the Bernstein operator, Rocky Mountain Journal of
Mathematics, 36, 1615-1629 (2006).

[25] S. Ostrovska�The �rst decade of the q-Bernstein polynomials: results and perspectives, Journal
of Mathematical Analysis and Approximation Theory, 2, 35-51 (2007).

12

MAHMUDOV, SABANCIGIL: q-PARAMETRIC BBH OPERATORS122



[26] G.M. Phillips, Bernstein polynomials based on the q-integers, Annals of Numerical Mathematics,
4, 511�518 (1997).

[27] T. Trif, Meyer-Konig and Zeller operators based on the q-integers, Revue d�Analyse Numeorie
de l�Approximation, 29, 221�229 (2000).

[28] H. Wang, Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomi-
als for 0 < q < 1, J. Approx. Theory , 145, 182-195 (2007).

[29] V.S. Videnskii, On some classes of q-parametric positive linear operators, Selected topics in
complex analysis, 213�222, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005.

[30] H. Wang, Korovkin-type theorem and application, J. Approx. Theory, 132, 258-264 (2005).

[31] H. Wang Properties of convergence for the q-Meyer-König and Zeller operators. J. Math. Anal.
Appl. 335, 1360-1373 (2007).

13

MAHMUDOV, SABANCIGIL: q-PARAMETRIC BBH OPERATORS 123



A GENERAL COMPOSITE ITERATIVE METHOD FOR

EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS
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Abstract. We introduce a new general composite iterative scheme by the viscos-
ity approximation method for finding a common point of the set of solutions of an
equilibrium problem and the set of fixed points of a nonexpansive mapping in Hilbert
spaces. It is proved that the sequence generated by the iterative scheme converges
strongly to a common point of the set of solutions of an equilibrium problem and
the set of fixed points of a nonexpansive mapping, which is the unique solution of
a ceratin variational inequality. Our results substantially develop and improve the
corresponding results of Jung [J. S. Jung, Strong convergence of composite iterative
methods for equilibrium problems and fixed point problems, Appl. Math. Comput.
213 (2009) 498-505], Plubtieng and Punpaeng [S. Plubtieng and R. Punpaeng, A gen-
eral iterative method for equilibrium problems and fixed point problems in Hilbert
spaces, J. Math. Anal. Appl. 336 (2007) 455–469], Shang et al. [M. Shang, X. Qin,
Y. Su, A general iterative method for equilibrium problems and fixed point problems,
Fixed Point Theory Appl. 2007 (2007), Article ID 64306, 7 pages] and Takahashi
and Takahashi [A. Takahashi and W. Takahashi, Viscosity approximation methods
for equilibrium problems and fixed point problems in Hilbert space, J. Math. Anal.
appl. 333 (2007) 506-515].

AMS Mathematics Subject Classification : 47H09, 47H10, 47J20, 47J25, 49J40,
47N10.

Key words and phrases: Viscosity approximation method; Composite iterative
scheme; Equilibrium problem; Fixed points; Variational inequality; Nonexpansive
mapping; Contraction.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
Recall that a mapping f : C → C is a contraction on C if there exists a constant
k ∈ (0, 1) such that‖f(x)− f(y)‖ ≤ k‖x− y‖, x, y ∈ C. We use ΣC to denote the

This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-
0064444).
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collection of all contractions on C. That is, ΣC = {f : f : C → C a contraction}.
A mapping S : C → C is called nonexpansive if ‖Sx − Sy‖ ≤ ‖x − y‖ x, y ∈ C.
We denote by F (S) the set of fixed points of S; that is, F (S) = {x ∈ C : x = Sx}.
If C ∈ H is a bounded closed convex subset and S is a nonexpansive mapping of C
into itself, then F (S) is nonempty; see [5,15].

Let F be a bifunction of C × C into R, where R is the set of real numbers. The
equilibrium problem for F : C × C → R is to find x ∈ C such that

F (x, y) ≥ 0 for all y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP (F ). Given a mapping T : C →
H, let F (x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then, z ∈ EP (F ) if and only if
〈Tz, y − z〉 ≥ 0 for all y ∈ C, that is, z is a solution of the variational inequality.
Many problems in physics, optimization, and economics reduce to find a solution
of the equilibrium problem (1.1). Some methods have been proposed to solve the
equilibrium problem; see, for instance, [2,4]. In 2005, Combettes and Hirstoaga [2]
introduced an iterative scheme of finding the best approximation to the initial data
when EP (F ) is nonempty and prove a strong convergence theorem.

Let A be a strongly positive bounded linear operator on H: that is, there is a
constant γ > 0 with property

〈Ax, x〉 ≥ γ‖x‖2, for all x ∈ H.

Recently iterative methods for nonexpansive mappings have been applied to solve
convex minimization problem; see, e.g., [3,17,18,20] and the references therein. A
typical problem is to minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping on a real Hilbert space H:

min
x∈F (S)

1
2
〈Ax, x〉 − 〈x, b〉, (1.2)

where b is a given point in H
In 2000, as a method for approximation of fixed points of a nonexpansive map-

ping, the viscosity approximation method of selecting a particular fixed point of
a given nonexpansive mapping was proposed by Moudafi [9]. In 2004, in order to
improve Theorem 2.2 of Moudafi [9], Xu [19] considered the the following explicit
iterative scheme: for S : C → C nonexpansive mapping, f ∈ ΣC and αn ∈ (0, 1),

xn+1 = αnf(xn) + (1− αn)Sxn, n ≥ 1. (1.3)

Moreover, in [19], he also studied the strong convergence of {xn} generated by (1.3)
as n → ∞ in a Hilbert space and showed that the strong limn→∞ xn is the unique
solution of a certain variational inequality.

In 2003, Xu [18] proved that the sequence {xn} generated by the following iter-
ative method with the initial guess x0 ∈ H chosen arbitrarily,

xn+1 = αnb + (I − αnA)Sxn, n ≥ 0,
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converges strongly to the unique solution of the minimization problem (1.2) pro-
vided the sequence {αn} satisfies certain conditions. In 2006, Marino and Xu [8]
introduced a new iterative scheme by the viscosity approximation method:

xn+1 = αnγf(xn) + (I − αnA)Sxn, n ≥ 0, (1.4)

and proved that the sequence {xn} generated by (1.4) converges strongly to the
unique solution x∗ of the variational inequality

〈(γf −A)x∗, x∗ − x〉 ≥ 0, x ∈ F (S),

which is the optimality condition for the minimization problem

min
x∈F (S)

1
2
〈Ax, x〉 − h(x),

where h is a potential function for γf (that is, h′(x) = γf(x) for x ∈ H).
On the other hand, in 2007, using the metric projection, Tada and Takahashi [13]

introduced the an iterative scheme for finding a common point of the set of solu-
tions of the equilibrium problem (1.1) and the set of fixed points of a nonexpansive
mapping in a Hilbert space as follows:





un ∈ C such that F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C,

wn = (1− αn)xn + αnSun,

Cn = {z ∈ H : ‖wn − z‖ ≤ ‖xn − z‖}
Dn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0}
xn+1 = PCn

⋂
Dn

(x), n ≥ 1,

(1.5)

where PK denotes the metric projection from H onto a closed convex subset K of
H. Using an additional projection to calculate at each iteration step, they showed
that the sequence {xn} generated by (1.5) converges strongly to PF (S)∩EP (F )(x)
(see also Tada and Takahashi [12]).

In 2007, without using the metric projection, Takahashi and Takahashi [14] con-
sidered the following iterative scheme by the the viscosity approximation method
for finding a common point of the set of solutions of the equilibrium problem (1.1)
and the set of fixed points of a nonexpansive mapping in a Hilbert space:

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C,

xn+1 = αnf(xn) + (1− αn)Sun, n ≥ 1,
(1.6)

and proved that the sequence {xn} generated by (1.6) strongly converges strongly
to a point in F (S) ∩ EP (F ), provided {αn} and {rn} satisfy

(C1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞ ∑∞
n=1 |αn+1 − αn| < ∞,
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(C2) lim infn→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞.

Their result was connected with Combettes and Hirstoaga’s result [2] and Wittmann’s
result [16].

In 2009, Jung [7] considered the following composite iterative scheme for finding
a common point of the set of solutions of the equilibrium problem (1.1) and the set
of fixed points of a nonexpansive mapping in a Hilbert space:





F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C,

yn = αnf(xn) + (1− αn)Sun,

xn+1 = (1− βn)yn + βnSyn, , n ≥ 1,

(1.7)

and established the strong convergence of {xn} generated by (1.7) to a point in
F (S)∩EP (F ) under conditions (C1) and (C2) on {αn} and {rn} and the following
condition on {βn}:
(C3) limn→∞ βn = 0 and

∑∞
n=1 |βn+1 − βn| < ∞.

In 2007, Plubtieng and Punpaeng [10] (see also Shang et al. [11]) studied the
following iterative scheme by the the viscosity approximation method for finding a
common point of the set of solutions of the equilibrium problem (1.1) and the set
of fixed points of a nonexpansive mapping in a Hilbert space:

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C,

xn+1 = αnγf(xn) + (I − αnA)Sun, n ≥ 1,
(1.8)

where 0 < γ < γ
k , and proved that the sequence {xn} generated by (1.8) strongly

converges strongly to a point in F (S)
⋂

EP (F ) under the conditions (C1) and (C2)
on {αn} and {rn}, which is the unique solution of the following variational inequality

〈γf(q)−Aq, q − p〉 ≥ 0, p ∈ F (S) ∩ EP (F ),

which is also the optimality condition for the minimization problem

min
x∈F (S)∩EP (F )

1
2
〈Ax, x〉 − h(x),

where h is a potential function for γf .
In this paper, motivated by above-mentioned results, we introduce a new com-

posite iterative scheme by viscosity approximation method for finding a common
point of the set of solutions of the equilibrium problem (1.1) and the set of fixed
points of a nonexpansive mapping in a Hilbert space:





F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C,

yn = αnγf(xn) + (I − αnA)Sun,

xn+1 = (1− βn)yn + βnSyn, n ≥ 1.

(IS)
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If βn = 0, then (IS) reduces to (1.8). Then, under the conditions (C1), (C2)
and (C3) on the sequences {αn}, {rn} and {βn}, we show that the sequence {xn}
generated by (IS) converges strongly to a point in F (S) ∩ EP (F ), which is the
unique solution of a certain variational inequality. The main results develop and
improve the corresponding results of Jung [7], Plubtieng and Punpaeng [10], Shang
et al. [11], ands Takahashi and Takahashi [14], as well as Combettes and Hirstoaga
[2], Marino and Xu [8], Moudafi [9], Xu [19], and Wittmann [16]. We point out that
the iterative scheme (IS) is a new method for finding the solutions of the equilibrium
problem (1.1) and the fixed points of nonexpansive mappings.

2. Preliminaries and Lemmas

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. For the
sequence {xn} in H, we write xn ⇀ x to indicate that the sequence {xn} converges
weakly to x. xn → x implies that {xn} converges strongly to x. In a real Hilbert
space H, we have

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ R. Let C be a closed convex subset of H. For every point
x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H to C. It is well known that PC satisfies

〈x− y, PCx− Py〉 ≥ ‖PCx− PCy‖2

for every x, y ∈ H. Moreover, PCx is characterized by the properties: for x ∈ H
and z ∈ C,

z = PCx ⇔ 〈x− z, z − y〉 ≥ 0 for all y ∈ C, (2.1)

We also know that for any sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with x 6= y; we refer [5,15] for more details.
For solving the equilibrium problem for a bifunction F : C × C → R, let us

assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.
The following lemmas were given in [1,2].
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Lemma 2.1 ([1]). Let C be a nonempty closed convex subset of H and let F be a
bifunction of C×C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there
exists z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

Lemma 2.2 ([2]). Assume that F : C×C → R satisfies (A1)–(A4). For r > 0 and
x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) =
{

z ∈ C : F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, for all y ∈ C

}

for all z ∈ H. Then, the following hold:

(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
(3) F (Tr) = EP (F );
(4) EP (F ) is closed and convex.

We also need the following lemmas for the proof of our main results; see also [17]
for the proof of Lemma 2.3.

Lemma 2.3 ([18]). Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− λn)sn + βn, n ≥ 0,

where {λn} and {βn} satisfy the following conditions:
(i) {λn} ⊂ [0, 1] and

∑∞
n=0 λn = ∞ or, equivalently,

∏∞
n=0(1− λn) = 0,

(ii) lim supn→∞
βn

λn
≤ 0 or

∑∞
n=0 |βn| < ∞,

Then limn→∞ sn = 0.

Lemma 2.4 ([5]). (Demicloseness principle) Let H be a real Hilbert space, C a
nonempty closed convex subset of H and T : C → E a nonexpansive mapping.
Then the mapping I − T is demiclosed on C, where I is the identity mapping; that
is, xn ⇀ x in E and (I − T )xn → y imply that x ∈ C and (I − T )x = y.

Lemma 2.5. In a real Hilbert space H, there holds the following inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉,
for all x, y ∈ H

Lemma 2.6 ([8]). Assume that A is a strongly positive linear bounded operator on a
Hilbert space H with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I−ρA‖ ≤ 1−ργ.
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3. Main results

In this section, as the viscosity approximation method, we introduce a new gen-
eral composite iterative scheme for finding a common point of the set of solutions
of the equilibrium problem and the set of fixed points of a nonexpansive mapping
in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction from C×C to R satisfying (A1)–(A4) and S be a nonexpansive
mapping of C into H such that F (S) ∩ EP (F ) 6= ∅. Let A be a strongly positive
linear bounded operator on H with coefficient γ > 0 and let f ∈ ΣH with a coefficient
k (0 < k < 1). Assume that 0 < γ < γ

k . Let {xn} and {un} be sequences generated
by x1 ∈ H and





F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C,

yn = αnγf(xn) + (I − αnA)Sun

xn+1 = (1− βn)yn + βnSyn, n ≥ 1,

(IS)

where {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞). If {αn}, {βn} and {rn} satisfy the
conditions:
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn+1 − αn| < ∞;

(C2) lim infn→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞;
(C3) limn→∞ βn = 0,

∑∞
n=1 |βn+1 − βn| < ∞,

then {xn} and {un} converge strongly to q ∈ F (S) ∩ EP (F ), where q = PF (S)
⋂

EP (F )(γf + (I −A))(q), which is the unique solution of the variational inequality

〈γf(q)−Aq, q − p〉 ≥ 0, p ∈ F (S) ∩ EP (F ).

Proof. By Lemma 2.1, {un} and {xn} are well defined. Since αn → 0 by the
condition (C1), we may assume, with no loss of generality, that αn < ‖A‖−1 for all
n. From Lemma 2.6, we know that if 0 < ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤ 1− ργ. We
will assume that ‖I −A‖ ≤ 1− γ. Let Q = PF (S)∩EP (F ). Then Q(γf + (I −A)) is
a contraction of H into itself. Indeed, for x, y ∈ H, we have

‖Q(γf+(I −A))(x)−Q(γf + (I −A))(y)‖
≤ ‖(γf + (I −A))(x)− (γf + (I −A))(y)‖
≤ γ‖f(x)− f(y)‖+ ‖I −A‖‖x− y‖
≤ γk‖x− y‖+ (1− γ)‖x− y‖
< ‖x− y‖

for some k ∈ [0, 1). Since H is complete, there exists a unique point q ∈ H such
that q = Q(γf + (I − A))(q) = PF (S)∩EP (F )(γf + (I − A))(q). Such a q is a point
of C.
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We proceed with following steps:

Step 1. We show that {xn} and {un} are bounded.
In fact, let v ∈ F (S)

⋂
EP (F ). Then from un = Trnxn, we have

‖un − v‖ = ‖Trnxn − Trnv‖ ≤ ‖xn − v‖, n ≥ 1.

Put M = max{‖x1 − v‖, ‖γf(v)−Av‖
γ−γk }. It is obvious that ‖x1 − v‖ ≤ M . Suppose

that ‖xn − v‖ ≤ M . Then, we have
‖yn − v‖ = ‖αn(γf(xn)−Av) + (I − αnA)(Sun − v)‖

≤ αn‖γf(xn)−Av‖+ ‖I − αnA‖‖un − v‖
≤ αn[γ‖f(xn)− f(v)‖+ ‖γf(v)−Av‖] + (1− αnγ)‖xn − v‖
≤ αnγk‖xn − v‖+ (1− αnγ)‖xn − v‖+ αn‖γf(v)−Av‖
= (1− (γ − γk)αn)‖xn − v‖+ αn(γ − γk)

1
γ − γk

‖γf(v)−Av‖
≤ (1− (γ − γk)αn)M + (γ − γk)αnM = M,

and
‖xn+1 − v‖ = ‖(1− βn)(yn − v) + βn(Syn − v)‖

≤ (1− βn)‖yn − v‖+ βn‖yn − v‖
= ‖yn − v‖ ≤ M.

So, we have that ‖xn−v‖ ≤ M for n ≥ 1 and hence {xn} is bounded. We also obtain
that {un}, {Sun}, {yn}, {f(xn)}, {ASun} and {Syn} are bounded. Moreover, by
condition (C1), we also obtain

‖yn − Sun‖ = αn‖γf(xn)−ASun‖ → 0 (as n →∞). (3.1)

Step 2. We show that limn→∞ ‖xn+1 − xn‖ = 0. From (IS), we have{
yn = αnγf(xn) + (I − αnA)Sun

yn−1 = αn−1γf(xn−1) + (I − αn−1A)Sun−1.

Simple calculations show that
yn − yn−1 = (I − αnA)(Sun − Sun−1)− (αn − αn−1)ASun−1

+ γ[αn(f(xn)− f(xn−1)) + (αn − αn−1)f(xn−1)].
So, we have

‖yn − yn−1‖ = ‖(I − αnA)(Sun − Sun−1)− (αn − αn−1)ASun−1

+ γ[αn(f(xn)− f(xn−1)) + (αn − αn−1)f(xn−1)]‖
≤ (1− αnγ)‖Sun − Sun−1‖+ |αn − αn−1|‖ASun−1‖

+ γ[αnk‖xn − xn−1‖+ |αn − αn−1|‖f(xn−1)‖]
≤ (1− αnγ)‖un − un−1‖+ |αn − αn−1|‖ASun−1‖

+ γ[αnk‖xn − xn−1‖+ |αn − αn−1|‖f(xn−1)‖]
≤ (1− αnγ)‖un − un−1‖+ γαnk‖xn − xn−1‖

+ |αn − αn−1|L1

(3.2)
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for every n ≥ 1, where L1 = sup{γ‖f(xn)‖+ ‖ASun‖ : n ≥ 1}.
On the other hand, from un = Trnxn and un−1 = Trn−1xn−1, we have

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C (3.3)

and

F (un−1, y) +
1

rn−1
〈y − un−1, un−1 − xn−1〉 ≥ 0, for all y ∈ C. (3.4)

Putting y = un−1 in (3.3) and y = un in (3.4), we have

F (un, un−1) +
1
rn
〈un−1 − un, un − xn〉 ≥ 0

and

F (un−1, un) +
1

rn−1
〈un − un−1, un−1 − xn−1〉 ≥ 0.

So, from (A2) we have

〈
un − un−1,

un−1 − xn−1

rn−1
− un − xn

rn

〉
≥ 0

and hence
〈

un − un−1, un−1 − un + un − xn−1 − rn−1

rn
(un − xn)

〉
≥ 0.

Without loss of generality, let us assume that there exists a real number b such that
rn > b > 0 for all n ≥ 1. Then, we have

‖un − un−1‖2

≤
〈

un − un−1, xn − xn−1 +
(

1− rn−1

rn

)
(un − xn)

〉

≤ ‖un − un−1‖
{
‖xn − xn−1‖+

∣∣∣∣1−
rn−1

rn

∣∣∣∣‖un − xn‖
}

and hence

‖un − un−1‖ ≤ ‖xn − xn−1‖+
1
rn
|rn − rn−1|‖un − xn‖

≤ ‖xn − xn−1‖+
1
b
|rn − rn−1|L2,

(3.5)
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where L2 = sup{‖un − xn‖ : n ≥ 1}. So, from (3.2) we have

‖yn − yn−1‖ ≤ (1− αnγ)(‖xn − xn−1‖+
1
b
|rn − rn−1|L2)

+ γαnk‖xn − xn−1‖+ L1|αn − αn−1|
= (1− (γ − γk)αn)‖xn − xn−1‖+ L1|αn − αn−1|

+
1
b
|rn − rn−1|L2.

(3.6)

Also, simple calculations show that

xn+1 − xn = (1− βn)(yn − yn−1) + βn(Syn − Syn−1)

+ (βn − βn−1)(Syn−1 − yn−1).

So, from (3.6) it follows that

‖xn+1 − xn‖
≤ (1− βn)‖yn − yn−1‖+ βn‖Syn − Syn−1‖

+ |βn − βn−1|‖Syn−1 − yn−1‖
≤ (1− βn)‖yn − yn−1‖+ βn‖yn − yn−1‖

+ |βn − βn−1|‖Syn−1 − yn−1‖
≤ ‖yn − yn−1‖+ |βn − βn−1|L3

≤ (1− (γ − γk)αn)‖xn − xn−1‖+ |αn − αn−1|L1 +
1
b
|rn − rn−1|L2

+ |βn − βn−1|L3,

(3.7)

where L3 = sup{‖Syn − yn‖ : n ≥ 1}. From the conditions (C1)-(C3), it is easy to
see that

lim
n→∞

(γ − γk)αn = 0,
∞∑

n=0

(γ − γk)αn = ∞

and ∞∑
n=0

(|αn+1 − αn|L1 +
1
b
|rn+1 − rn|L2 + |βn+1 − βn|L3) < ∞.

Applying Lemma 2.3, to (3.7), we have

‖xn+1 − xn‖ → 0 as n →∞.

Moreover, from (3.5) it follows that ‖un+1 − un‖ → 0 as n →∞. By (3.2), we also
have that

‖yn+1 − yn‖ → 0 as n →∞. (3.8)
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Step 3. We show that limn→∞ ‖xn − yn‖ = 0. Indeed, from (C3) we have

‖xn+1 − yn‖ = βn‖yn − Syn‖ → 0 as n →∞.

So, we have from Step 2

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ → 0 as n →∞.

Step 4. We show that limn→∞ ‖xn − un‖ = 0 and limn→∞ ‖Sun − un‖ = 0. To
this end, let v ∈ F (S) ∩ EP (F ). Then, from (2) in Lemma 2.2 we have

‖un − v‖2 = ‖Trnxn − Trnv‖2
≤ 〈Trnxn − Trnv, xn − v〉
= 〈un − v, xn − v〉
=

1
2
(‖un − v‖2 + ‖xn − v‖2 − ‖xn − un‖2)

and hence
‖un − v‖2 ≤ ‖xn − v‖2 − ‖xn − un‖2.

Therefore, by convexity of ‖ · ‖2, we have

‖yn − v‖2 = ‖αn(γf(xn)−Av) + (I − αnA)(Sun − v)‖2
≤ (αn‖γf(xn)−Av‖+ ‖I − αnA‖‖Sun − v‖)2
≤ (αn‖γf(xn)−Av‖+ (1− αnγ)‖un − v‖)2
≤ αn‖γf(xn)− vA‖2 + (1− αnγ)‖un − v‖2

+ 2αn(1− αnγ)‖γf(xn)−Av‖‖un − v‖
≤ αn‖γf(xn)−Av‖2 + ‖xn − v‖2 − (1− αnγ)‖xn − un‖2

+ 2αn(1− αnγ)‖γf(xn)−Av‖‖un − v‖.

So, we obtain

(1− αnγ)‖xn − un‖2
≤ αn‖γf(xn)−Av‖2 + (‖xn − v‖+ ‖yn − v‖)(‖xn − v‖ − ‖yn − v‖)

+ 2αn(1− αnγ)‖γf(xn)−Av‖‖un − v‖
≤ αn‖γf(xn)−Av‖2 + (‖xn − v‖+ ‖yn − v‖)‖xn − yn‖

+ 2αn(1− αnγ)‖γf(xn)−Av‖‖un − v‖.

Since αn → 0 and ‖xn − yn‖ → 0 by the condition (C1) and Step 3, we have
‖xn − un‖ → 0 as n →∞. Moreover, by (3.9)

‖yn − un‖ ≤ ‖yn − xn‖+ ‖xn − un‖ → 0 as n →∞. (3.9)

134



Jong Soo Jung 12

Since
‖Sun − un‖ ≤ ‖Sun − yn‖+ ‖yn − un‖,

from (3.1) and (3.9) we also have

‖Sun − un‖ → 0 as n →∞. (3.10)

Step 5. We show that lim supn→∞〈γf(q)−Aq, yn−q〉 ≤ 0 for q ∈ F (S)∩EP (F ),
where q = PF (S)∩EP (F )(γf + (I −A))(q) . To this end, choose a subsequence {uni}
of {un} such that

lim sup
n→∞

〈γf(q)−Aq, xn − q〉 = lim
i→∞

〈γf(q)−Aq, xni − q〉.

Since {uni} is bounded, there exists a subsequence {unij
} of {uni} which converges

weakly to z. We may assume without loss of generality that uni ⇀ z. Then we
can obtain z ∈ F (S)

⋂
EP (F ). Indeed, let us first show that z ∈ EP (F ). By

un = Trnxn, we have

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C.

From (A2), we also have

1
rn
〈y − un, un − xn〉 ≥ F (y, un)

and hence 〈
y − uni ,

uni − xni

rni

〉
≥ F (y, uni

).

Since uni
−xni

rni
→ 0 and uni ⇀ z, from (A4) we have

0 ≥ F (y, z) for all y ∈ C.

For 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we have
yt ∈ C and hence F (yt, z) ≤ 0. So, from (A1) and (A4) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, z)

≤ tF (yt, y)

and hence 0 ≤ F (yt, y). From (A3) we have

0 ≤ F (z, y) for all y ∈ C
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and hence z ∈ EP (F ). On the other hand, since ‖Sun − un‖ → 0 by (3.10) and
uni ⇀ z, from Lemma 2.4 we obtain z ∈ F (S). Therefore z ∈ F (S)

⋂
EP (F ). Since

q = PF (S)
⋂

EP (F )(γf + (I −A))(q) and xni ⇀ z by Step 4, from (2.1) we have

lim sup
n→∞

〈γf(q)−Aq, xn − q〉 = lim
i→∞

〈γf(q)−Aq, xni − q〉
= 〈γf(q)−Aq, z − q〉 ≤ 0.

(3.11)

Since ‖xn − yn‖ → 0 by Step 3, from (3.11) we have

lim sup
n→∞

〈γf(q)−Aq, yn − q〉
≤ lim sup

n→∞
〈γf(q)−Aq, yn − xn〉+ lim sup

n→∞
〈γf(q)−Aq, xn − q〉

≤ lim sup
n→∞

‖γf(q)−Aq‖‖yn − xn‖+ lim sup
n→∞

〈γf(q)−Aq, xn − q〉
≤ 0.

Step 6. We show that limn→∞ ‖xn − q‖ = 0 for q ∈ F (S) ∩ EP (F ), where
q = PF (S)∩EP (F ) (γf +(I−A))(q). Indeed, from ‖xn+1−q‖ ≤ ‖yn−q‖, ‖un−q‖ ≤
‖xn − q‖ and yn − q = αn(γf(xn) − Aq) + (I − αnA)(Sun − q), by Lemma 2.5 we
have

‖xn+1 − q‖2
≤ ‖yn − q‖2 = ‖αn(γf(xn)−Aq) + (I − αnA)(Sun − q)‖2
≤ (1− αnγ)2‖Sun − q‖2 + 2αn〈γf(xn)−Aq, yn − q〉
≤ (1− αnγ)2‖un − q‖2 + 2αnγ〈f(xn)− f(q), yn − q〉

+ 2αn〈γf(q)−Aq, yn − q〉)
≤ (1− αnγ)2‖xn − q‖2 + 2αnγk‖xn − q‖‖yn − q‖

+ 2αn〈γf(q)−Aq, yn − q〉
≤ (1− αnγ)2‖xn − q‖2 + 2αnγk‖xn − q‖(‖yn − xn‖+ ‖xn − q‖)

+ 2αn〈γf(q)−Aq, yn − q〉
≤ (1− 2(γ − γk)αn)‖xn − q‖2 + α2

nγ2‖xn − q‖2 + 2αnγk‖yn − xn‖
+ 2αn〈γf(q)−Aq, yn − q〉

= (1− αn)‖xn − q‖2 + αnβn,

where

αn = 2(γ − γk)αn,

βn =
αnγ2

2(γ − γk)
M1 +

γk

γ − γk
‖yn − xn‖+

1
γ − γk

〈γf(q)−Aq, yn − q〉,
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and M1 = sup{‖xn − q‖2 : n ≥ 1}. From (C1), Step 3 and Step 5, it is easily seen
that αn → 0,

∑∞
n=1 αn = ∞, and lim supn→∞ βn ≤ 0. Thus, by Lemma 2.3, we

obtain xn → q. This completes the proof. ¤

As in [10,14], we obtain the following corollaries as immediate consequences of
Theorem 3.1.

Corollary 3.1. ([7, Theorem 3.1]) Let C be a nonempty closed convex subset of a
real Hilbert space H. Let F be a bifunction from C ×C to R satisfying (A1)–(A4)
and let S be a nonexpansive mapping of C into H such that F (S) ∩ EP (F ) 6= ∅.
Let f ∈ ΣH with a coefficient k (0 < k < 1). and let {xn} and {un} be sequences
generated by x1 ∈ H and





F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C,

yn = αnf(xn) + (1− αn)Sun,

xn+1 = (1− βn)yn + βnSyn, n ≥ 1,

where {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞). If {αn}, {βn} and {rn} satisfy the
conditions:
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn+1 − αn| < ∞;

(C2) lim infn→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞;
(C3) limn→∞ βn = 0,

∑∞
n=1 |βn+1 − βn| < ∞,

then {xn} and {un} converge strongly to q ∈ F (S) ∩ EP (F ), where q = PF (S)∩
EP (F )f(q).

Proof. Taking A = I and γ = 1 in Theorem 3.1, we can obtain the desired result.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let S be a nonexpansive mapping of C into H such that F (S) ∩ EP (F ) 6= ∅.
Let A be a strongly positive linear bounded operator on H with coefficient γ > 0 and
let f ∈ ΣH with a coefficient k (0 < k < 1). Assume that 0 < γ < γ

k . Let {xn} be
sequence generated by x1 ∈ H and

{
yn = αnγf(xn) + (I − αnA)SPCxn,

xn+1 = (1− βn)yn + βnSPCyn, n ≥ 1,

where {αn} and {βn} ⊂ [0, 1]. If {αn} and {βn} satisfy the conditions:
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn+1 − αn| < ∞;

(C3) limn→∞ βn = 0,
∑∞

n=1 |βn+1 − βn| < ∞,

then {xn} converge strongly to q ∈ F (S), where q = PF (S)(γf + (I −A))(q).

Proof. Put F (x, y) = 0 for all x, y ∈ C and {rn} = 1 for all n in Theorem 3.1. Then
we have un = PCxn. So the sequence {xn} converges strongly to q ∈ F (S), where
q = PF (S)(γf + (I −A))(q).
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Corollary 3.3. ([7, Corollary 3.1]) Let C be a nonempty closed convex subset of H
and S a nonexpansive mapping of C into H such that F (S) 6= ∅. Let f ∈ ΣH and
let {xn} be sequence generated by x1 ∈ H and

{
yn = αnf(xn) + (1− αn)SPCxn

xn+1 = (1− βn)yn + βnSPCyn, n ≥ 1,

where {αn} and {βn} ⊂ [0, 1]. If {αn} and {βn} satisfy the conditions:
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn+1 − αn| < ∞;

(C3) limn→∞ βn = 0,
∑∞

n=1 |βn+1 − βn| < ∞,

then {xn} converges strongly to q ∈ F (S), where q = PF (S)f(q).

Corollary 3.4. ([10, Corollary 3.4]) Let C be a nonempty closed convex subset of
a real Hilbert space H. Let F be a bifunction from C×C to R satisfying (A1)–(A4)
and EP (F ) 6= ∅. Let A be a strongly positive linear bounded operator on H with
coefficient γ > 0 and let f ∈ ΣH with a coefficient k (0 < k < 1). Assume that
0 < γ < γ

k . Let {xn} and {un} be sequences generated by x1 ∈ H and
{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C,

xn+1 = αnγf(xn) + (I − αnA)un, n ≥ 1,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞). If {αn} and {rn} satisfy the conditions:
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn+1 − αn| < ∞;

(C2) lim infn→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞;
then {xn} and {un} converge strongly to q ∈ EP (F ), where q = PEP (F )(γf + (I −
A))(q), which is the unique solution of the variational inequality

〈γf(q)−Aq, q − p〉 ≥ 0, p ∈ EP (F ).

Proof. Put Sx = x for all x ∈ C in Theorem 3.1. Then, from Theorem 3.1 the
sequence {xn} and {un} generated in Corollary 3.4 converge strongly to q ∈ EP (F ),
where q = PEP (F )(γf + (I −A))(q).

Corollary 3.5. ([7, Corollary 3.2]) Let C be a nonempty closed convex subset of a
real Hilbert space H. Let F be a bifunction from C × C to R satisfying (A1)–(A4)
such that EP (F ) 6= ∅ and f ∈ ΣH . Let {xn} and {un} be sequences generated by
x1 ∈ H and

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ C,

xn+1 = αnf(xn) + (1− αn)un

for every n ≥ 1, where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞). If {αn} and {rn} satisfy
the conditions:
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn+1 − αn| < ∞;

(C2) lim infn→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞,
then {xn} and {un} converge strongly to q ∈ EP (F ), where q = PEP (F )f(q).
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Corollary 3.6. ([8, Theorem 3.4]) Let C be a nonempty closed convex subset of
a real Hilbert space H. Let S be a nonexpansive mapping of C into itself with
F (S) 6= ∅. Let A be a strongly positive linear bounded operator on H with coefficient
γ > 0 and let f ∈ ΣH with a coefficient k (0 < k < 1). Assume that 0 < γ < γ

k . Let
{xn} be sequence generated by x1 ∈ H and

xn+1 = αnγf(xn) + (I − αnA)Sxn, n ≥ 1,

where {αn} ⊂ [0, 1] . If {αn} satisfies the condition:
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn+1 − αn| < ∞;

then {xn} converge strongly to q ∈ F (S), where q = PF (S)(γf + (I −A))(q), which
is the unique solution of the variational inequality

〈γf(q)−Aq, q − p〉 ≥ 0, p ∈ EP (F ).

Proof. Putting F (x, y) = 0 for all x, y ∈ C and rn = 1 for all n in Corollary 3.2, we
get PCxn = xn. So, taking βn = 0 for all n in Corollary 3.2, we obtain the desired
result.

Remark 3.1. (1) Theorem 3.1 and Corollary 3.1 improve the corresponding result
of Plubtieng and Pungaeng [10], Shang et al. [11] and Takahashi and Takahashi [14].
In particular, if βn = 0 for all n ≥ 1, then Theorem 3.1 and Corollary 3.1 reduce to
Theorem 3.3 in [10] (Theorem 3.1 in [11]) and Theorem 3.1 in [14], respectively.

(2) In the case βn = 0 for all n, Corollary 3.2 is just Theorem 4.1 of Shang et al.
[11].

(3) In the case when f(x) = u = x1 for all x ∈ H in Corollary 3.5, We also get
Combettes and Hirstoaga’s theorem [2].

(4) We have Xu’s theorem [18] in the case when f(x) = u = x1 for all x ∈ H in
Corollary 3.6.

(5) We obtain a composite iterative scheme for nonexpansive mapping if S : C →
C and f ∈ ΣC in Corollary 3.3 as follows:





x1 ∈ C

yn = αnf(xn) + (1− αn)Sxn

xn+1 = (1− βn)yn + βnSyn,

(3.12)

(see also [6]). If βn = 0 for all n ≥ 1 and f(x) = u = x1 for all x ∈ C in (3.12), we
obtain Wittmann’s result [16].
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1. Introduction

Throughout this paper we use the following notations. By Zp we denote the ring of p-adic
rational integers, Q denotes the field of rational numbers, Qp denotes the field of p-adic rational
numbers, C denotes the complex number field, and Cp denotes the completion of algebraic
closure of Qp. Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1.
When one talks of q-extension, q is considered in many ways such as an indeterminate, a
complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1.

If q ∈ Cp, we normally assume that |q − 1|p < p
− 1

p−1 so that qx = exp(x log q) for |x|p ≤ 1.

[x]q = [x : q] =
1− qx

1− q
, cf. [1-11] .

Hence, limq→1[x] = x for any x with |x|p ≤ 1 in the present p-adic case. Let d be a fixed
integer and let p be a fixed prime number. For any positive integer N , we set

X = lim
←−
N

(Z/dpNZ), X∗ =
⋃

0<a<dp
(a,p)=1

(a+ dpZp),

a+ dpNZp = {x ∈ X | x ≡ a (mod dpN )},

where a ∈ Z lies in 0 ≤ a < dpN . For any positive integer N ,

µq(a+ dpNZp) =
qa

[dpN ]q

1
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is known to be a distribution on X, cf.[1,2,3, 4, 5, 6,7,8,9,10].
For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function },

the p-adic q-integral was defined by [1-11]

Iq(g) =

∫

Zp

g(x)dµq(x) = lim
N→∞

1

[pN ]

∑

0≤x<pN

g(x)qx.

Let
Tp = ∪m≥1Cpm = lim

m→∞
Cpm ,

where Cpm = {w|wp
m
= 1} is the cyclic group of order pm. For w ∈ Tp, we denote by

φw : Zp → Cp the locally constant function x 7−→ wx. In [8], we introduced analogue of
q-Euler numbers and polynomials, which is called twisted Euler numbers and polynomials.
By using p-adic q-integral, we defined the twisted q-Euler numbers as follows:

En,q,w =

∫

Zp

φw(x)[x]
n
q dµ−q(x), for n ∈ N.

By using the above equation, we have the generating function of twisted q-Euler numbers
En,q,w as follows:

Fq,w(t) = [2]q

∞
∑

n=0

(−1)nqnwne[n]qt =

∞
∑

n=0

En,q,w
tn

n!
.

By using p-adic q-integral, we defined the twisted q-Euler polynomials as follows:

En,q,w(z) =

∫

Zp

φw(x)[x+ z]nq dµ−q(x), for n ∈ N.

Similarly, we have the generating function of twisted q-Euler polynomials En,q,w(z) as follows:

Fq,w(t, z) = [2]q

∞
∑

m=0

(−1)mqmwme[m+z]qt.

see [8], for details.

For h ∈ Z, q ∈ Cp with |1 − p|p ≤ p
− 1

p−1 , the twisted (h, q)-Euler numbers E
(h)
n,q,w are

defined by

E
(h)
n,q,w =

∫

Zp

φw(x)q
x(h−1)[x]nq dµ−q(x). (1.1)

By using p-adic q-integral, we obtain,
∫

Zp

φw(x)q
x(h−1)[x]nq dµ−q(x) = [2]q

(

1

1− q

)n n
∑

l=0

(n

l

)

(−1)l
1

1 + wq(h+l)
. (1.2)

Here is the list of the first the twisted (h, q)-Euler numbers E
(h)
n,q,w.

E
(h)
0,q,w =

(1 + q)

(1 + wqh)
,

E
(h)
1,q,w = −

qh(1 + q)w

(1 + wqh)(1 + wq1+h)
,

E
(h)
2,q,w =

qh(1 + q)w(−1 + wq1+h)

(1 + wqh)(1 + wq1+h)(1 + wq2+h)
,

E
(h)
3,q,w = −

qh(1 + q)w(1− 2wq1+h − 2wq2+h + w2q3+2h)

(1 + wqh)(1 + wq1+h)(1 + wq2+h)(1 + wq3+h)
, · · ·

By (1.1), we have

E
(h)
n,q,w = [2]q

(

1

1− q

)n n
∑

l=0

(n

l

)

(−1)l
1

1 + wq(h+l)
.

2
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We set

F
(h)
q,w(t) =

∞
∑

n=0

E
(h)
n,q,w

tn

n!
.

By using above equation and (1.2), we have

F
(h)
q,w(t) =

∞
∑

n=0

E
(h)
n,q,w

tn

n!

= [2]q

∞
∑

n=0

(

(

1

1− q

)n n
∑

l=0

(n

l

)

(−1)l
1

1 + wqh+1

)

tn

n!

= [2]q

∞
∑

m=0

(−1)mwmqhme[m]qt.

(1.3)

Thus twisted (h, q)-Euler numbers E
(h)
n,q,w are defined by means of the generating function

F
(h)
q,w(t) = [2]q

∞
∑

n=0

(−1)nwnqhne[n]qt. (1.4)

Note that, if h = 1, then F
(h)
q,w(t) = Fq,w(t). By using (1.1), we have

∞
∑

n=0

E
(h)
n,q,w

tn

n!
=

∞
∑

n=0

∫

Zp

φw(x)q
x(h−1)[x]nq dµ−q(x)

tn

n!

=

∫

Zp

φw(x)q
x(h−1)e[x]qtdµ−q(x).

(1.5)

By (1.3), (1.5), we have

∫

Zp

φw(x)q
x(h−1)e[x]qtdµ−q(x) = [2]q

∞
∑

m=0

(−1)mwmqhme[m]qt.

Next, we introduce the twisted (h, q)-Euler polynomials E
(h)
n,q,w(z). The twisted (h, q)-Euler

polynomials E
(h)
n,q,w(z) are defined by

E
(h)
n,q,w(z) =

∫

Zp

φw(x)q
x(h−1)[z + x]nq dµ−q(x). (1.6)

By using p-adic q-integral, we obtain

E
(h)
n,q,w(z) = [2]q

(

1

1− q

)n n
∑

l=0

(n

l

)

(−1)lqzl
1

1 + wq(h+l)
. (1.7)

Here is the list of the first the (h, q)-extension of the q-Euler polynomials E
(h)
n,q(z).

E
(h)
0,q,w(z) =

(1 + q)

(1 + wqh)
,

E
(h)
1,q,w(z) = −

(1 + q)(1− qz + wq1+h − wqh+z)

(−1 + q)(1 + wqh)(1 + wq1+h)
, · · · .

We set

F
(h)
q,w(t, z) =

∞
∑

n=0

E
(h)
n,q,w(z)

tn

n!
. (1.8)

By using (1.7) and (1.8), we obtain

F
(h)
q,w(t, z) =

∞
∑

n=0

E
(h)
n,q,w(z)

tn

n!
= [2]q

∞
∑

m=0

(−1)mqhmwme[m+z]qt.

3
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Similarly, the generating function F
(h)
q,w(t, z) of the q-Euler polynomials E

(h)
n,q,w(z) is defined

analogously as follows:

F
(h)
q,w(t, z) =

∞
∑

n=0

En,q,w(z)
tn

n!
= [2]q

∞
∑

n=0

(−1)nqhnwne[n+z]qt. (1.9)

By using (1.9), we easily see that

∫

Zp

φw(x)q
x(h−1)e[z+x]qtdµ−q(x) = [2]q

∞
∑

n=0

(−1)nwnqhne[n+z]qt.

Since [x+ z]q = [z]q + qz [x]q , we have

∞
∑

n=0

E
(h)
n,q,w(z)

tn

n!
=

∫

Zp

φw(x)q
x(h−1)e[x+z]qtdµ−q(x)

=

∞
∑

n=0

(

n
∑

l=0

(n

l

)

qlz [z]n−lq

∫

Zp

φw(x)q
x(h−1)[x]lqdµ−q(x)

)

tn

n!
.

By using comparing coefficients tn

n!
, we easily see that

E
(h)
n,q,w(z) =

n
∑

l=0

(n

l

)

qlz [z]n−lq E
(h)
n,q,w.

Observe that, if q → 1, w → 1, thenE
(h)
n,q,w(z) → En(z), where En(z) are the Euler polyno-

mials. Note that, if q → 1, then E
(h)
n,q,w(z) → En,w(z), where En,w(z) are the twisted Euler

polynomials.

2. Distribution and Structure of the Zeros

In this section, we investigate the zeros of the twisted (h, q)-Euler polynomials E
(h)
n,q,w(z)

by using computer. We plot the zeros of E
(h)
n,q,w(z), z ∈ C for n = 10, 20, 30, 40, q = 1/2, w =

eπi and h = 2. (Figures 1, 2, 3, and 4). Next, we plot the zeros of E
(h)
n,q,w(z), z ∈ C for
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Figure 1: Zeros of E
(2)
10,q,w
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Figure 2: Zeros of E
(2)
20,q,w

n = 30, h = 5, 10, 15, 20, w = eπi, q = 1/2. (Figures 5, 6, 7, and 8). In Figures 1, 2, 3, 4, 5, 6,

4
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Figure 3: Zeros of E
(2)
30,q,w
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Figure 4: Zeros of E
(2)
30,q,w
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Figure 5: Zeros of E
(5)
30,q,w
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Figure 6: Zeros of E
(10)
30,q,w

7, and 8, E
(h)
n,q,w(z), z ∈ C, has Im(z) = 0 reflection symmetry. This translates to the following

open problem: Prove or disprove that E
(h)
n,q,w(z), z ∈ C, has Im(z) = 0 reflection symmetry.

Our numerical results for numbers of real and complex zeros of E
(h)
n,q,w(z) are displayed in

Table 1. In general, how many roots does E
(h)
n,q,w(z) have ? Prove or disprove: E

(h)
n,q,w(z) has

n distinct solutions. Find the numbers of complex zeros C
E

(h)
n,q,w(z)

of E
(h)
n,q,w(z), Im(z) 6= 0.

Prove or give a counterexample: Conjecture: Since n is the degree of the polynomial E
(h)
n,q,w(z),

the number of real zeros R
E

(h)
n,q,w(z)

lying on the real plane Im(z) = 0 is then R
E

(h)
n,q,w(z)

=

n− C
E

(h)
n,q,w(z)

, where C
E

(h)
n,q,w(z)

denotes complex zeros. See Table 1 for tabulated values of

R
E

(h)
n,q,w(z)

and C
E

(h)
n,q,w(z)

. We calculated an approximate solution satisfying E
(h)
n,q,w(z), q =

1/2, w = eπi, z ∈ R. The results are given in Table 2 and Table 3.
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Figure 7: Zeros of E
(15)
30,q,w
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Figure 8: Zeros of E
(20)
30,q,w

Table 1. Numbers of real and complex zeros of E
(2)
n,q,w(z)

w = eπi w = eπi/3

degree n real zeros complex zeros real zeros complex zeros

1 1 0 0 1
2 0 2 0 2
3 1 2 0 3
4 0 4 0 4
5 1 4 0 5
6 0 6 0 6
7 1 6 0 6
8 0 8 0 8
9 1 8 0 9
10 0 10 0 10
11 1 10 0 11
12 0 12 0 12
13 1 12 0 13

Table 2. Approximate solutions of E
(2)
n,q,w(z) = 0, w = eπi, z ∈ R

degree n z

1 −0.222392

3 −0.425458

5 −0.525835

7 −0.593454

9 −0.641321

11 −0.677809

13 −0.706818

15 −0.730465

17 −0.750137

19 −0.7668

6
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Table 3. Approximate solutions of E
(5)
n,q,w(z) = 0, w = eπi, z ∈ R

degree n z

1 −0.0230836

3 −0.191203

5 −0.281468

7 −0.344607

9 −0.400306

11 −0.446693

13 −0.48419

15 −0.515564

17 −0.542866

19 −0.56714

Finally, we shall consider the more general problems. Find the equation of envelope
curves bounding the real zeros lying on the plane, and the equation of a trajectory curve
running through the complex zeros on any one of the arcs. We can draw a plot of zeros of the

E
(h)
n,q,w(z), respectively (Figures 1, 2, 3, 4, 5, 6, 7, and 8) . These figures give mathematicians
an unbounded capacity to create visual mathematical investigations of the behavior of roots of

the E
(h)
n,q,w(z). Moreover, it is possible to create a new mathematical ideas and analyze them

in ways that generally are not possible by hand. The author has no doubt that investigation
along this line will lead to a new approach employing numerical method in the field of research

of the E
(h)
n,q,w(z) to appear in mathematics and physics. For related topics the interested reader

is referred to [8], [9], [10], [11].
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A numerical computation of the roots of q-Euler polynomials

C. S. Ryoo

1Department of Mathematics, Hannam University, Daejeon 306-791, Korea

Abstract

Recently several authors studied the q-extension of Euler numbers and polynomials(see [1-8]). In
this paper we construct the q-Euler numbers En,q and Polynomials En,q(x). We also observe the
behavior of complex roots of the q-Euler polynomials En,q(x), using numerical investigation. By
means of numerical experiments, we demonstrate a remarkably regular structure of the complex
roots of the q-Euler polynomials En,q(x). Finally, we give a table for the solutions of the q-Euler
polynomials En,q(x).

1. Introduction

In the 21st century, the computing environment would make more and more rapid progress. Using
computer, a realistic study for new analogs of q-Euler numbers and polynomials is very interesting.
It is the aim of this paper to observe an interesting phenomenon of ‘scattering’ of the zeros of the
q-Euler polynomials En,q(x). The outline of this paper is as follows. In Section 2, we study q-
Euler polynomials En,q(x). In Section 3, we describe the beautiful zeros of the q-Euler polynomials
En,q(x) using a numerical investigation. Also we display distribution and structure of the zeros
of the the q-Euler polynomials En,q(x) by using computer. By using the results of our paper the
readers can observe the regular behavior of the roots of the q-Euler polynomials En,q(x). Finally,
we carried out computer experiments for doing demonstrate a remarkably regular structure of the
complex roots of the q-Euler polynomials En,q(x). Throughout this paper we use the following
notations. By Zp we denote the ring of p-adic rational integers, Q denotes the field of rational
numbers. C denotes the complex number field. Let νp be the normalized exponential valuation of
Cp with |p|p = p−νp(p) = p−1. When one talks of q-extension, q is considered in many ways such as
an indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assume
that |q| < 1. If q ∈ Cp, we normally assume that |q − 1|p < p−

1
p−1 so that qx = exp(x log q) for

|x|p ≤ 1.

[x]q = [x : q] =
1− qx

1− q
, cf. [1,4,5] .

Hence, limq→1[x] = x for any x with |x|p ≤ 1 in the present p-adic case. Let d be a fixed integer
and let p be a fixed prime number. For any positive integer N , we set

X = lim←−
N

(Z/dpNZ),

X∗ =
⋃

0<a<dp
(a,p)=1

(a + dpZp),

a + dpNZp = {x ∈ X | x ≡ a (mod dpN )},
where a ∈ Z lies in 0 ≤ a < dpN . For any positive integer N ,

µq(a + dpNZp) =
qa

[dpN ]q

is known to be a distribution on X, cf.[3,4,5]. For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function },
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the p-adic q-integral was defined by [3,5,6]

Iq(g) =
∫

Zp

g(x)dµq(x) = lim
N→∞

1
[pN ]

∑

0≤x<pN

g(x)qx.

Note that
I1(g) = lim

q→1
Iq(g) =

∫

Zp

g(x)dµ1(x) = lim
N→∞

1
pN

∑

0≤x<pN

g(x)

(see [3,5,6]). Now, we consider the case q ∈ (−1, 0) corresponding to q-deformed fermionic certain
and annihilation operators and the literature given therein [3,4,5,6]. The expression for the Iq(g)
remains same, so it is tempting to consider the limit q → −1. That is,

I−1(g) = lim
q→−1

Iq(g) =
∫

Zp

g(x)dµ−1(x) = lim
N→∞

∑

0≤x<pN

g(x)(−1)x. (1.1)

If we take g1(x) = g(x + 1) in (1.1), then we easily see that

I−1(g1) + I−1(g) = 2g(0). (1.2)

First, we introduce the Euler numbers and Euler polynomials. The Euler numbers En are defined
by the generating function:

F (t) =
2

et + 1
=

∞∑
n=0

Gn
tn

n!
, cf. [1,4,5] (1.3)

where we use the technique method notation by replacing En by En(n ≥ 0) symbolically. For x ∈ R
(= the field of real numbers), we consider the Euler polynomials En(x) as follows:

F (x, t) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
. (1.4)

Note that En(x) =
∑n

k=0

(
n
k

)
Ekxn−k. In the special case x = 0, we define En(0) = En.

2. The q-Euler numbers and polynomials

In [5], we defined the q-Euler numbers and polynomials. In this section, we introduce another
q-Euler numbers En,q and polynomials En,q(x) and investigate their properties. In (1.2), if we take
g(x) = qxext, then we easily see that

I−1(qxext) =
∫

Zp

qxextdµ−1(x) =
2

qet + 1
.

Let us define the twisted Euler numbers En,q and polynomials En,q(x) as follows:

I−1(qyeyt) =
∫

Zp

qyeytdµ−1(y) =
∞∑

n=0

En,q
tn

n!
, (2.1)

I−1(qye(y+x)t) =
∫

Zp

qye(x+y)tdµ−1(y) =
∞∑

n=0

En,q(x)
tn

n!
. (2.2)

By (2.1) and (2.2), we obtain the following Witt’s formula.

Theorem 1. For n ∈ N, we have
∫

Zp

qxxndµ−1(x) = En,q,
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∫

Zp

qy(x + y)ndµ−1(y) = En,q(x).

Let q be a complex number with |q| < 1. By the meaning of (1.3) and (1.4), let us define the
q-Euler numbers En,q and polynomials En,q(x) as follows:

Fq(t) =
2

qet + 1
=

∞∑
n=0

En,q
tn

n!
, (2.3)

Fq(x, t) =
2

qet + 1
ext =

∞∑
n=0

En,q(x)
tn

n!
. (2.4)

We have the following remark.

Remark. Note that

(1) En,q(0) = En,q,

(2) If q → 1, then En,q(x) = En(x), En,q = En,

(3) If q → 1, then Fq(x, t) = F (x, t), Fq(t) = F (t).

Here is the list of the first q-Euler numbers En,q.

E0,q =
2

1 + q
, E2,q = − 2q

(1 + q)2
,

E3,q =
2(−1 + q)q
(1 + q)3

,

E3,q = −2q(1− 4q + q2)
(1 + q)4

,

E4,q =
2(−1 + q)q(1− 10q + q2)

(1 + q)5
,

E5,q = −2q(1− 26q + 66q2 − 26q3 + q4)
(1 + q)6

· · · ,

By the above definition, we obtain

∞∑

l=0

El,q(x)
tl

l!
=

2
qet + 1

ext =
∞∑

n=0

En,q
tn

n!

∞∑
m=0

xm tm

m!

=
∞∑

l=0

(
l∑

n=0

En,q
tn

n!
xl−n tl−n

(l − n)!

)

=
∞∑

l=0

(
l∑

n=0

(
l

n

)
En,qx

l−n

)
tl

l!
.

By using comparing coefficients
tl

l!
, we have the following theorem.

Theorem 2. For any positive integer n, we have

En,q(x) =
n∑

k=0

(
n

k

)
Ek,qx

n−k.
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Here is the list of the first q-Euler polynomials En,q(x).

E0,q(x) =
2

1 + q
,

E1,q(x) =
2(−q + x + qx)

(1 + q)2
,

E2,q(x) =
2(−q + q2 − 2qx− 2q2x + x2 + 2qx2 + q2x2)

(1 + q)3
,

E3,q(x) =
2(−q + 4q2 − q3 − 3qx + 3q3x− 3qx2 − 6q2x2 − 3q3x2)

(1 + q)4

+
2(x3 + 3qx3 + 3q2x3 + q3x3)

(1 + q)4
, · · · ,

Because
∂

∂x
Fq(x, t) = tGq(x, t) =

∞∑
n=0

d

dx
En,q(x)

tn

n!
,

it follows the important relation
d

dx
En,q(x) = nEn−1,q(x).

We also obtain the following integral formula
∫ b

a

En−1,q(x)dx =
1
n

(En,q(b)− En,q(a)).

Over five decades ago, Carlitz [1] defined q-extensions of the classical Bernoulli numbers Bn and
Bernoulli polynomials Bn(x) and proved properties analogues to those satisfied by Bn and Bn(x).
Carlitz’s q-Bernoulli numbers βn = βn,q can be determined inductively by [1]

β0 = 1, q(qβ + 1)k − βk =

{
1, if k = 1,

0, if k > 1,

with the usual convention about replacing βk by βk. For the q-Euler numbers, we obtain the following
theorem.

Theorem 3. The q-Euler numbers En,q are defined respectively by

q(Eq + 1)n + En,q =

{
2, if n = 0,

0, if n > 0,

with the usual convention about replacing (Eq)
n by En,q in the binomial expansion.

Proof. From (2.3), we obtain

2
qet + 1

=
∞∑

n=0

En,q
tn

n!
=

∞∑
n=0

(Eq)
n tn

n!
= eEqt

which yields
2 = (qet + 1)eEqt = qe(Eq+1)t + eEqt.

Using Taylor expansion of exponential function, we have

2 =
∞∑

n=0

{q (Eq + 1)n + (Eq)
n} tn

n!

= q (Eq + 1)0 + (Eq)
0 +

∞∑
n=1

{q (Eq + 1)n + (Eq)
n} tn

n!
.
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The result follows by comparing the coefficients.

Since ∞∑

l=0

El,q(x + y)
tl

l!
=

2
qet + 1

e(x+y)t

=
∞∑

n=0

En,q(x)
tn

n!

∞∑
m=0

ym tm

m!

=
∞∑

l=0

(
l∑

n=0

En,q(x)
tn

n!
yl−n tl−n

(l − n)!

)

=
∞∑

l=0

(
l∑

n=0

(
l

n

)
En,q(x)yl−n

)
tl

l!
,

we have the following addition theorem.

Theorem 4. The twisted Euler polynomials En,w(x) satisfies the following relation:

El,q(x + y) =
l∑

n=0

(
l

n

)
En,q(x)yl−n.

It is easy to see that

∞∑
n=0

Gn,q(x)
tn

n!
=

2
qet + 1

ext =
2t

qnemt + 1
ext

m−1∑
a=0

(−1)aqaeat

=
1
m

m−1∑
a=0

(−1)aqa 2m

qmemt + 1
e

 
a + x

m

!
(mt)

=
1
m

m−1∑
a=0

(−1)aqa
∞∑

n=0

En,qm

(
a + x

m

)
(mt)n

n!

=
∞∑

n=0

(
mn−1

m−1∑
a=0

(−1)aqaEn,qm

(
a + x

m

))
tn

n!
.

Hence we have the below theorem.

Theorem 5. For any positive integer m(=odd), we have

En,q(x) = mn−1
m−1∑

i=0

(−1)iqiEn,qm

(
i + x

m

)
, for n ≥ 0.

3. Distribution and Structure of the zeros

In this section, we investigate the zeros of q-Euler polynomials En,q(x) by using computer. Let
q be a complex number with 0 < q < 1. We plot the zeros of En,q(x), x ∈ C for q = 1/2. (Figures 1,
2, 3, and 4). Next, we plot the zeros of E16,q(x), x ∈ C for q = 1/10, 1/50, 1/100, 1/150. (Figures
5, 6, 7, and 8).

In Figures 1-8, En,q(x), x ∈ C, has Im(x) = 0 reflection symmetry. This translates to the
following open problem: Prove or disprove: En,q(x), x ∈ C, has Im(x) = 0 reflection symmetry.

Our numerical results for numbers of real and complex zeros of En,q(x) are displayed in Table
1.
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Figure 1: Zeros of E10,q(x)

-4 -2 0 2 4

ReHxL
-3

-2

-1

0

1

2

3

4

ImHxL

Figure 2: Zeros of E12,q(x)
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Figure 3: Zeros of E14,q(x)
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Figure 4: Zeros of E16,q(x)

Table 1. Numbers of real and complex zeros of En,q(x)

q = 1/2 q = 1/5
degree n real zeros complex zeros real zeros complex zeros

1 1 0 1 0

2 2 0 2 0

3 3 0 3 0

4 2 2 2 2

5 3 2 3 2

6 0 6 0 6

7 3 4 3 4

8 4 4 4 4

9 3 6 5 4

10 4 6 4 6

We shall consider the more general open problem. In general,how many roots does En,q(x) have ?
Prove or disprove: En,q(x) has n distinct solutions. Find the numbers of complex zeros CEn,q(x)
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Figure 5: Zeros of E16,q(x)
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Figure 6: Zeros of E16,q(x)
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Figure 7: Zeros of E16,q(x)
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Figure 8: Zeros of E16,q(x)

of En,q(x), Im(x) 6= 0. Prove or give a counterexample: Conjecture: Since n is the degree of the
polynomial En,q(x), the number of real zeros REn,q(x) lying on the real plane Im(x) = 0 is then
REn,q(x) = n− CEn,q(x), where CEn,q(x) denotes complex zeros. See Table 1 for tabulated values of
REn,q(x) and CEn,q(x). We plot the En,q(x), respectively (Figures 1-9). These figures give mathe-
maticians an unbounded capacity to create visual mathematical investigations of the behavior of the
roots of the En,q(x). Moreover, it is possible to create a new mathematical ideas and analyze them in
ways that generally are not possible by hand. The author has no doubt that investigation along this
line will lead to a new approach employing numerical method in the field of research of the q-Euler
polynomials En,q(x) to appear in mathematics and physics. For related topics the interested reader is
referred to [4], [6], [7]. We calculated an approximate solution satisfying En,q(x), q = 1/2, 1/5, x ∈ R.
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Figure 9: Stacks of zeros En,q(x), q = 1/2 for 1 ≤ n ≤ 16

The results are given in Table 2 and Table 3.

Table 2. Approximate solutions of En,q(x) = 0, q = 1/2

degree n x

1 0.3333

2 −0.13807, 0.8047

3 −0.42060, 0.22004, 1.2006

4 0.6547, 1.5273

5 0.08542, 1.0854, 1.7866

Table 3. Approximate solutions of En,q(x) = 0, q = 1/5

degree n x

1 0.16667

2 −0.20601, 0.53934

3 −0.3009, −0.10220, 0.9031

4 0.24627, 1.2384

5 −0.3717, 0.5951, 1.5439
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1. Introduction and Preliminaries

Recently, Kada, Suzuki and Takahashi [3] introduced the concept of w–distance
on a metric space and proved some fixed point theorems. In the sequel, we state
the definition of w–distance and we state a lemma which we will use in Sections 2
and 3; for more information we refer the reader to [3], [4] and [5].

Definition 1.1. ([3]) Let X be a metric space with metric d. Then a function
p : X ×X −→ [0,∞) is called a w–distance on X if the following are satisfied:

(a) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(b) for any x ∈ X, p(x, .) : X −→ [0,∞) is lower semi-continuous;
(c) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

Lemma 1.2. ([3, 5]) Let X be a metric space with metric d and p be a w–distance
on X. Let {xn} and {yn} be sequences in X, let {αn} and {βn} be sequences in
[0,∞) converging to zero, and let x, y, z ∈ X. Then the following hold:

(1) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular,
if p(x, y) = 0 and p(x, z) = 0, then y = z;

(2) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then d(yn, z) → 0;
(3)if p(xn, xm) ≤ αn for any n, m ∈ N with m > n, then {xn} is a Cauchy

sequence;
(4) if p(y, xn) ≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.

1Corresponding author: Reza Saadati (rsaadati@eml.cc)
Tel :+98 121 2203741, Fax: +98 121 2203726.
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2. Common fixed point theorem for commuting maps

The following theorem is Jungck’s [2] generalization of the contraction principle
for metric spaces.

Theorem 2.1. Let f be a continuous mapping of a complete metric space (X, d)
into itself and let g : X −→ X be a map that satisfy the following conditions:

(a) g(X) ⊆ f(X);
(b) g commutes with f ;
(c) d(g(x), g(y)) ≤ kd(f(x), f(y)) for all x, y ∈ X and for some 0 < k < 1.

Then f and g have a unique common fixed point.

In the next example we show that if the function f is continuous and

p(g(x), g(y)) ≤ kp(f(x), f(y))

for all x, y ∈ X and 0 < k < 1, in general, g may be not continuous.

Example 2.2. Let (R, |.|) be a normed linear space. Then the function p : R2 −→
[0,∞) defined by

p(x, y) = |y| for every x, y ∈ R,

is a w–distance on X(see [3] Example 2). Consider the functions f and g defined
by f(x) = 4 and

g(x) =

{
1, if x ∈ Q,

0, if x ∈ R \Q.

Then

p(g(x), g(y)) = |g(y)| ≤ 1 ≤ (
1
3
)p(f(x), f(y)) =

|f(y)|
3

=
4
3
.

Note that the function f is continuous but g is not.

Theorem 2.3. Let (X, d) be a complete metric space, p a w–distance on X, and
let f, g : X −→ X be maps that satisfy the following conditions:

(a) g(X) ⊆ f(X);
(b) g commutes with f and f, g are continuous;
(c) p(g(x), g(y)) ≤ kp(f(x), f(y)) for all x, y ∈ X and 0 < k < 1.

Then f and g have common fixed point provided f and g commute. Moreover, if
g(v) = g(g(v)) for all v ∈ X, then p(g(v), g(v)) = 0.

Proof. We claim that for every x ∈ X

inf{p(f(x), g(x)) + p(f(x), z) + p(g(x), z) + p(g(x), g(g(x)))} > 0

for every z ∈ X with g(z) 6= g(g(z)). For the moment suppose the claim is true.
Let x0 ∈ X. By (a) we can find x1 such that f(x1) = g(x0). By induction, we can
define a sequence {xn}n such that f(xn) = g(xn−1). By induction again,

p(f(xn), f(xn+1)) = p(g(xn−1), g(xn))
≤ kp(f(xn−1), f(xn))
≤ · · · ≤ knp(f(x0), f(x1))
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for n = 1, 2, · · · , which implies that, for m > n,

p(f(xn), f(xm))
≤ p(f(xm−1, f(xm)) + p(f(xm−2), f(xm−1)) + · · ·+ p(f(xn), f(xn+1))

≤ p(f(x0, f(x1))
m−1∑
j=n

kj ≤ kn

1− k
p(f(x0, f(x1)).

Thus {f(xn)} is a Cauchy sequence. Since X is complete, there exists y ∈ X such
that limn→∞ f(xn) = y. As a result g(xn−1) = f(xn) tends to y, so {g(f(xn))}n

converges to g(y). However, g(f(xn)) = f(g(xn)) by the commutativity of f and
g and so f(g(xn)) converges to f(y). Because limits are unique, f(y) = g(y), so
f(f(y)) = f(g(y)). On the other hand, by lower semi-continuity of p(x, .) we have

p(f(xn), y) ≤ lim inf
m→∞

p(f(xn), f(xm)) ≤ kn

1− k
p(f(x0), f(x1)),

p(g(xn), y) ≤ lim inf
m→∞

p(f(xn+1), f(xm)) ≤ kn+1

1− k
p(f(x0), f(x1)),

and

p(g(xn), g(g(xn))) ≤ kp(f(xn), f(g(xn))
= kp(g(xn−1), g(g(xn−1)))
≤ k2p(f(xn−1), f(g(xn−1)))
= k2p(g(xn−2), g(g(xn−2)))
≤ · · · ≤ knp(f(x1), g(f(x1))).

Now, we show that g(y) = g(g(y)). Suppose g(y) 6= g(g(y))) and since we assume
the claim above we have

0 < inf{p(f(x), g(x)) + p(f(x), y) + p(g(x), y) + p(g(x), g(g(x))) : x ∈ X}
≤ inf{p(f(xn), g(xn)) + p(f(xn), y) + p(g(xn), y) + p(g(xn), g(g(xn))) : n ∈ N}
= inf{p(f(xn), f(xn+1)) + p(f(xn), y) + p(g(xn), y) + p(g(xn), g(g(xn))) : n ∈ N}

≤ inf
n
{knp(f(x0), f(x1)) +

kn

1− k
p(f(x0), f(x1)) +

kn+1

1− k
p(f(x0), f(x1))

+ knp(f(x1), g(f(x1))) : n ∈ N} = 0.

This is a contradiction. Therefore g(y) = g(g(y)). Thus, g(y) = g(g(y)) = f(g(y)),
and so g(y) is a common fixed point of f and g.

Furthermore, if g(y) is a common fixed point of f and g and g(v) = g(g(v)) for
all v ∈ X, then we have

p(g(y), g(y)) = p(g(g(y)), g(g(y)))
≤ kp(f(g(y)), f(g(y)))
= kp(g(y), g(y)),

which implies that, p(g(y), g(y)) = 0.
Now it remains to prove the claim. Assume that there exists y ∈ X with g(y) 6=

g(g(y)) and

inf{p(f(x), g(x)) + p(f(x), y) + p(g(x), y) + p(g(x), g(g(x))) : x ∈ X} = 0.
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Then there exists {xn} such that

lim
n→∞

{p(f(xn), g(xn)) + p(f(xn), y) + p(g(xn), y) + p(g(xn), g(g(xn)))} = 0.

Since p(f(xn), g(xn)) −→ 0 and p(f(xn), y) −→ 0, by Lemma 1.2, we have

(2.1) lim
n→∞

g(xn) = y.

Also, since p(g(xn), y) −→ 0 and p(g(xn), g(g(xn))) −→ 0 by Lemma 1.2, we have

(2.2) lim
n→∞

g(g(xn)) = y.

By (3.1), (3.2) and continuity of g we have

g(y) = g(lim
n

g(xn)) = lim
n

g(g(xn)) = y.

Therefore, g(y) = g(g(y)), which is a contradiction. Hence, if g(y) 6= g(g(y)), then

inf{p(f(x), g(x)) + p(f(x), y) + p(g(x), y) + p(g(x), g(g(x))) : x ∈ X} > 0.

�

3. Common fixed point theorem for four mappings

Definition 3.1. ([1]) Let G be the family of all continuous functions g where
g : [0,∞)5 −→ [0,∞) satisfies the following properties:

(g1) g is non-decreasing in the 1th, 2th and 4th variable;
(g2) If u, v ∈ [0,∞) such that u ≤ g(v, v, u, u + v, 0) or u ≤ g(v, 0, v, u + v, u) or

u ≤ g(v, v, u, 0, u + v, 0), then u < hv where 0 < h < 1 is a given constant;
(g3) If u ∈ [0,∞) such that u ≤ g(u, u, 0, 0, u) or u ≤ g(0, 0, u, u, u) or u ≤

g(u, 0, u, 0, u, u), then u = 0.

Definition 3.2. Let (X, d) be a metric space. Let A and S be mappings from X
into itself and let function p be a w-distance on X. Then A and S are said to be
w-compatible mappings on X if

lim
n−→∞

max[p(ASxn, xn), p(SAxn, xn)] = 0.

Definition 3.3. Let (X, d) be a metric space. Let A and S be mappings from X
into itself and let function p be a w-distance on X. Then A and S are said to be
wR–weakly commuting on X at a (a ∈ X) if given x in X there exists R > 0 such
that

max[p(SAx, a), p(ASx, a)] ≤ R[|p(Ax, a)− p(Sx, a)|].

Let (X, d) be a metric space. Let A,B, S and T be mappings from X into itself
and p be a w-distance on X. Let (A,S) and (B, T ) be wR–weakly commuting pairs
at a of self mappings of a complete metric space (X, d) such that

(3.1) A(X) ⊆ T (X), B(X) ⊆ S(X)

and

(3, 2) max{p(Ax, a), p(By, a)}
≤ g(|p(Sx, a)− p(Ty, a)|, |p(Sx, a)− p(Ax, a)|,max{p(Ty, a), p(By, a)}

, |p(Ax, a)− p(Ty, a)|,max{p(Sx, a), p(By, a)})

for all x, y ∈ X, where g ∈ G.
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Then for an arbitrary point x0 in X, by (3.1), we can choose a point x1 such that
Tx1 = Ax0 and for this point x1, there exists a point x2 in X such that Sx2 = Bx1

and so on. Continuing in this manner, we can find a sequence {yn} in X such that

(3, 3) y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+1, n = 1, 2, 3, ...

Lemma 3.4. Let (X, d) be a metric space. Let p be a w-distance on X and let
A,B, S and T be mappings from X into itself satisfying the conditions (3.1) and
(3.2). Then the sequence {yn} defined by (3.3) is a Cauchy sequence in X.

Proof. From (3.2) we have

max{p(Ax2n, a), p(Bx2n+1, a)}
≤ g(|p(Sx2n, a)− p(Tx2n+1, a)|, |p(Sx2n, a)− p(Ax2n, a)|,

max{p(Tx2n+1, a), p(Bx2n+1, a)}, |p(Ax2n, a)− p(Tx2n+1, a)|,
max{p(Sx2n, a), p(Bx2n+1, a)})

and

max{p(y2n, a), p(y2n+1, a)}
≤ g(|p(y2n−1, a)− p(y2n, a)|, |p(y2n−1, a)− p(y2n, a)|,

max{p(y2n, a), p(y2n+1, a)}, |p(y2n, a)− p(y2n, a)|,
max{p(y2n−1, a), p(y2n+1, a)})

≤ g(max{p(y2n−1, a), p(y2n, a)},max{p(y2n−1, a), p(y2n, a)},
max{p(y2n, a), p(y2n+1, a)}, 0,

max{p(y2n−1, a), p(y2n, a)}+ max{p(y2n, a), p(y2n+1, a)}).

By (g2) of Definition 3.1, we obtain,

max{p(y2n, a), p(y2n+1, a)} < h max{p(y2n−1, a), p(y2n, a)}

in which h ∈]0, 1[. Therefore

max{p(yn, a), p(yn+1, a)} < hmax{p(yn−1, a), p(yn, a)}
< h2 max{p(yn−2, a), p(yn−1, a)}
< hn max{p(y0, a), p(y1, a)}.

Moreover, for every integer m > n, we get

max{p(yn, a), p(ym, a)}
< max{p(yn, a), p(yn+1, a)}+ · · ·+ max{p(ym−1, a), p(ym, a)}

<
hn

1− h
max{p(y0, a), p(y1, a)}.

By Lemma 2 of [6] the sequence {yn} is Cauchy. �

Theorem 3.5. Let (X, d) be a metric space. Let p be a w-distance on X and
let A,B, S and T be mappings from X into itself satisfying the conditions (3.1)
and (3.2). Suppose that (A,S) or (B, T ) is a w-compatible pair of reciprocally
continuous mappings. Then A,B, S and T have a unique common fixed point in
X.
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Proof. By Lemma 3.4, {yn} is a Cauchy sequence in X, Since X is complete.
So there exists a point z in X such that limn−→∞ yn = z, limn−→∞Ax2n =
limn−→∞ Tx2n+1 = z and limn−→∞Bx2n+1 = limn−→∞ Sx2n+2 = z. Suppose
A and S are w-compatible and reciprocally continuous. Then by reciprocally con-
tinuous of A and S, we have limn−→∞ASx2n = Az and limn−→∞ SAx2n = Sz.
Also, by w-compatibility of A and S, Az = Sz, Since A(X) ⊆ T (X), so there exists
a point v in X such that Az = Tv.

max{p(Az, a), p(Bv, a)}
≤ g(|p(Sz, a)− p(Tv, a)|, |p(Sz, a)− p(Az, a)|,max{p(Tv, a), p(Bv, a)}

, |p(Az, a)− p(Tv, a)|,max{p(Sz, a), p(Bv, a)})
≤ g(0, 0,max{p(Az, a), p(Bv, a)}, 0,max{p(Az, a), p(Bv, a)}).

By (g3) of Definition 3.1,

(3.4) max{p(Az, a), p(Bv, a)} = 0

so Az = Bv. Thus Az = Sz = Tv = Bv.
Since A and S are wR-weak commutativity, there exist R > 0 such that

(3.5) max[p(SAz, a), p(ASz, a)] ≤ R[|p(Az, a)− p(Sz, a)|].
It follows that ASz = SAz and AAz = ASz = SAz = SSz. Also, B and T are
τR-weak commutative, so we have BBv = BTv = TBv = TTv.

By (3.4) we have p(Az, a) = 0 and by (3.5) we have p(ASz, a) = p(AAz, a) = 0,
hence AAz = Az. Thus Az is a common fixed point of A and S. Similarly, we can
prove that Bv(= Az) is a common fixed point of B and T .

Finally, in order to prove uniqueness of Az, suppose that Az and Aw, Az 6= Aw,
are common fixed points of A,B, S and T . Then by (3.2), we obtain

max{p(Az, a), p(Aw, a)} = max{p(AAz, a), p(BAw, a)}
≤ g(|p(SAz, a)− p(TAw, a)|, |p(SAz, a)− p(AAz, a)|,

max{p(TAw, a), p(BAw, a)}
, |p(AAz, a)− p(TAw, a)|,max{p(SAz, a), p(BAw, a)})

≤ g(max{p(Az, a), p(Aw, a)}, 0,

max{p(Az, a), p(Aw, a)}, 2 max{p(Az, a), p(Aw, a)},
max{p(Az, a), p(Aw, a)}).

By (g2) of Definition 3.1, max{p(Az, a), p(Aw, a)} = 0 which implies that Az = Aw.
This completes the proof. �
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Abstract

In this paper, by treating Powell-Sabin’s type-1 refined triangulation4PS1 as a triangulated quadrangulation
plus a few triangles near the boundary and treating Powell-Sabin’s type-2 refined triangulation 4PS2

as a triangulated quadrangulation, Lagrange interpolation schemes for both bivariate C1 cubic spline
spaces S1

3(4PS1) and S1
3(4PS2) are respectively constructed and Lagrange interpolation sets are given.

Keywords: bivariate C1 cubic splines; Powell-Sabin’s refined triangulations; Lagrange interpolation
schemes; Lagrange interpolation set

1 Introduction

Let 4 be a regular triangulation of a simply connected polygonal domain Ω in R2, i.e., 4 is a set
of closed triangles whose union coincides with Ω such that the intersection of any two triangles
in 4 is either empty, a common edge or a vertex. For convenience, let V , VI , VB, E, EI , EB and
T denote the set of vertices, interior vertices, boundary vertices, edges, interior edges, boundary
edges and triangles in 4, respectively. It is well-known from Euler Theorem that

|T | = |EI | − |VI |+ 1, |E| = 2|EI | − 3|VI |+ 3, |V | = |EI | − 2|VI |+ 3, (1)

where | · | is the cardinality of the set.

For given integers r and d with 0 ≤ r ≤ d− 1, the space of bivariate splines with degree d and
smoothness order r with respect to 4 is defined by

Sr
d(4) = {s ∈ Cr(Ω) : s|t ∈ Pd,∀t ∈ T} , (2)

where Pd is the space of bivariate polynomials of total degree being at most d.
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There are usually two methods of interpolation by splines, one is the Hermite interpolation
scheme and the other is the Lagrange interpolation scheme. The latter is very useful for the
construction and reconstruction of surfaces and for scattered data fitting. It does not require
knowing or approximating values of derivatives and requires only function values of the Lagrange
interpolation points. This is stands in contrast to Hermite interpolation schemes where derivatives
have to be computed approximately. In [6], Davydov and Nürnberger developed an algorithm for
constructing point sets admissible for Lagrange interpolation by S1

d(4) when d ≥ 4. In [7]-[12],
the authors studied the Lagrange interpolation by bivariate C1 splines of various degrees on either
triangulations or triangulated quadrangulations, all of these results depend on certain colorings of
the triangulations or quadrangulations. Recently, Nürnberger et al. [13] discussed the Lagrange
interpolation by C2 splines of degree seven on triangulations, which is also based on a coloring
algorithm.

In this paper, we will construct two Lagrange interpolation sets, one is for S1
3(4PS1) on Powell-

Sabin’s type-1 refined triangulation and the other is for S1
3(4PS2) on Powell-Sabin’s type-2 refined

triangulation.

2 Preliminaries

Definition 1 Given a triangulation 4 of Ω, splitting each triangle t of 4 into three subtriangles
at the incenter vt of t and then connecting the incenters of any two neighboring triangles, if t is
a triangle with an edge e on the boundary of Ω, connecting the incenter of t to the center of e,
then we will get a Powell-Sabin’s type-1 triangulation (see Fig. 1).

Definition 2 Given a triangulation 4 of Ω, connecting three central lines of each triangle t and
then connecting each midpoint ve, we will obtain a Powell-Sabin’s type-2 triangulation (see Fig.
1).

The Bernstein-Bézier technique (B-net, B-form) plays an important role in the study of both
curves fitting and multivariate spline approximation. In 1980, Farin [1] first used the B-net
technique in the study of bivariate splines. The more details about this technique can be found
in [2], [3] and most of the papers in the references list.

Throughout the paper, let t :=< u, v, w > be a triangle, we denote the three vertices of t in
counterclockwise direction by u, v and w, then every polynomial p ∈ Pd associated with t can be
written uniquely in the B-net representation

p =
∑

i+j+k=d

ct
ijkBd

ijk, (3)

where {Bd
ijk}i+j+k=d is the Bernstein polynomials of degree d on the triangle t, and ct

ijk are called
the B-net coefficients of p associated with the domain points ξt

ijk = (iu + jv + kw)/d.

It is clear that there is a one to one correspondence between the set of domain points D4 :=⋃
t∈4

Dt =
⋃

t∈4
{ξt

ijk : i + j + k = d} and the set of B-net coefficients {cξ}ξ∈D4 for s ∈ S0
d(4). For

each vertex v ∈ V , we define the set

Rm(v) := {points which are distance m from v},

2
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Fig. 1: Powell-Sabin’s type-1 triangulation 4PS1 (left) and type-2 triangulation 4PS2 (right).

and the m-th disk around v defined by

Dm(v) :=
m⋃

i=0

Ri(v).

Let S be a spline space. Following Nürnberger and Zeilfelder [14], a set {z1, ..., zd} in Ω, where
d = dim S, is called a Lagrange interpolation set for S if for any function f ∈ C(Ω), a unique
s ∈ S exists and satisfies

s(zi) = f(zi), i = 1, ..., d. (4)

The following remarks and lemma can be found in Nürnberger et al. [10].

Remark 1 A univariate cubic polynomial s(x) on an interval [a, b] which satisfies s(a) = z0 and
s(b) = z3 can be written in the Bernstein-Bézier form

s(x) =
1

h3
[z0(b− x)3 + 3c1(x− a)(b− x)2 + 3c2(x− a)2(b− x) + z3(x− a)3], (5)

where h = b− a. Then the B-net coefficients c1 and c2 of the unique s(x) that interpolates given
values at the points t1 := a + h/3 and t2 := a + 2h/3, can be determined by solving a 2× 2 linear
system whose matrix is

2

9

(
2 1
1 2

)
(6)

independent of the interval [a, b]. Moreover, if c1 is given, then we can make s(x) to interpolate
a prescribed value z2 at t2 by simply setting

c2 =
27z2 − z0 − 6c1 − 8z3

12
. (7)

Remark 2 Suppose s(x) is a cubic polynomial, and that for a given triangle t we know all of
its B-net coefficients except for the one associated with the domain point ξt

111. If we know the
function value of ξt

111, then we can immediately calculate ct
111 by (3).

3

CHEN, LIU: LANGRANGE INTERPOLATIONS... 165



a4

a3

a2

a1

a8 a7

a6a5

aQ

(a) (b)

v1 v1

v4 v3
v3

v2
v2

vt

Fig. 2: (a) Domain points for S1
3(Σ); (b) The point set P produced by Algorithm 3

Lemma 1 Suppose Σ is the triangulation obtained by inserting both diagonals in a quadrangle
Q :=< v1, v2, v3, v4 >, and suppose ti =< vQ, vi, vi+1 >, i = 1, ..., 4, are the four triangles of Σ.
As shown in Fig. 2(a), let ΓE be the set of 12 domain points situated on the edges of Q, and let

M1 = {a1, a2, a3, a4},
M2 = {a1, a2, a3, aQ},
M3 = {a1, a3, aQ, a8},
M4 = {a1, a2, aQ, a8},
M5 = {a1, aQ, a8, a5}.

Then each of the following five sets

Γl = ΓE

⋃
Ml, l = 1, ..., 5,

is a minimal determining set for S1
3(Σ).

Algorithm 1 Let ♦ be a quadrangulation with all the quadrangles being convex, and ♦+ is the
related triangulated quadrangulation. We construct a point set P for S1

3(♦+) according to the
following steps.

1) For each vertex v of ♦, choose 3 points in D1(v) which are marked by ◦ in Fig. 4. Note that
these points must be chosen on the edges of ♦, and the B-net coefficients associated with these
points can be computed by Remark 1.

2) Beginning with an arbitrary quadrangle Q, we label all the quadrangles Q1, Q2, Q3, ..., where

the quadrangle Qi+1 must share at least one common edge with
i⋃

k=1

Qk. Choose 4 points in the

first quadrangle Q1, see Fig. 3(e), and choose 3 points in the second quadrangle Q2, see Fig. 3(a).

Furthermore, if the quadrangle Qj (j=3, 4,...) shares 1, 2, 3 or 4 common edges with
j−1⋃
k=1

Qk, then

we respectively choose 3, 2, 1 or 0 points in the quadrangle Qj, see white quadrangles in Fig. 3.

Theroem 1 Let P := {ξi}|P |i=1 be a point set constructed by Algorithm 1, then P forms a Lagrange
interpolation set for S1

3(♦+).
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(a)

(c)

(b)

(d)

(e)

Fig. 3: Choice of points in step 2 of Algorithm 1.

Proof We show that for any given data Z := {zi}|P |i=1, there exists a unique s ∈ S1
3(♦+) satisfying

the interpolation condition (4). Suppose s is expressed in B-net representation as described in
the Introduction, we need to show that each of the B-net coefficients of s ∈ S1

3(♦+) is uniquely
determined by the data.

At first, for each domain point ξ lying at a vertex of ♦+, the corresponding B-net coefficient
is equal to the data value associated with that point. Next, for each edge e of ♦, it follows
from step 2) of Algorithm 1 that P includes one or two domain points in the interior of e, the
B-net coefficients associated with those domain points are computed according to Remark 1,
then all B-net coefficients of s in D1(v) are uniquely determined by C1 smoothness conditions.
Finally, we compute B-net coefficients associated with domain points lying inside quadrangles.
According to Algorithm 1, there are 4 points in Q1 belongs to the point set P , see Fig. 4, and
we can apply Remark 1 to compute the B-net coefficients with respect to the domain points a
and c, and the B-net coefficient associated with domain point d can be determined by Remark
2. Lemma 1 ensures that all the B-net coefficients associated with domain points lying inside
the first quadrangle Q1 are determined. Then the B-net coefficient associated with domain point
ξt
111 in triangle t which neighbors on Q1 is computed by C1 smoothness conditions. By repeating

the above steps for Q2, Q3, ..., we can compute all the B-net coefficients of s associated with the
domain points lying inside all quadrangles. Then all the B-net coefficients corresponding to the
domain points of D♦+ are uniquely determined by the data. Finally, from Algorithm 1 and [15],

we know that the cardinality of the point set P is equal to the dimension of spline space S1
3(♦+),

i.e., dim S1
3(♦+) = |P | = 3|V |+ |E|.

3 Lagrange interpolation set

In this section, Lagrange interpolation schemes are constructed for bivariate C1 cubic splines for
S1

3(4PS1) and S1
3(4PS2). Firstly, we construct a Lagrange interpolation set for S1

3(4PS1) by
using Theorem 1.

5
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Fig. 4: A Lagrange interpolation set (◦ and •) for S1
3(♦+) obtained by using Algorithm 1.

Algorithm 2 For Powell-Sabin’s type-1 refined triangulation 4PS1, we construct a point set P
for S1

3(4PS1) according to the following steps.

1) Choose some points from gray part in Fig. 5 according to Algorithm 1.

2) For each boundary edge e of 4, choose two points on e which are marked by ¤ in Fig. 5. If
t is a triangle with two edges on the boundary of Ω, then choose three points in D1(v) which are
marked by ◦ (where v is a vertex linked by these two boundary edges), and choose one point on t
which is marked by ¥ in Fig. 5.

Theroem 2 Let P := {ξi}|P |i=1 be a point set constructed by Algorithm 2, then P forms a Lagrange
interpolation set for S1

3(4PS1).

Proof We show that for any given data Z := {zi}|P |i=1, there exists a unique s ∈ S1
3(4PS1)

satisfying the interpolation condition (4). we suppose s is expressed in B-net form, we need to
show that each of the B-net coefficients of S1

3(4PS1) is uniquely determined by the data. Firstly,
we note that for each domain point ξ lying at a vertex of4PS1, the corresponding B-net coefficient
is equal to the data value associated with that point.

We now show how to compute the remaining B-net coefficients of s, the B-net coefficients
associated with domain points in gray part of Fig. 5 can be computed following Theorem 1, then
the remaining B-net coefficients can be determined by Remark 1, Remark 2 and C1 smoothness
conditions. Furthermore, according to [4], we have

dim S1
3(4PS1) = |P | = 3|V |+ 6|T |+ 2|VB|.

We now prove such P is a Lagrange interpolation set for S1
3(4PS1).

Remark 3 When there is a single triangle t in the original triangulation 4, then Algorithm 2
and Theorem 2 can not construct a Lagrange interpolation set for S1

3(tPS1), and another Algorithm
must be constructed in this situation.
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Fig. 5: A Lagrange interpolation set (◦ and •) for S1
3(4PS1) obtained by using Algorithm 2.
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Fig. 6: A Lagrange interpolation set (◦ and •) for S1
3(4PS2) about Theorem 4.
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Algorithm 3 When4 is a single triangle t, then we construct a point set P for S1
3(tPS1) according

to the following steps.

1) For each vertex v and incenter vt in t, choose three points in D1(v) and D1(vt) which are
marked by ◦ in Fig. 2.

2) For each boundary edges e of t, choose two points on e which are marked by ¤ in Fig. 2.

3) Choose three points in triangle t which are marked by • in Fig. 2.

Theroem 3 Let P := {ξi}21
i=1 be a point set constructed by Algorithm 3, then P forms a Lagrange

interpolation set for S1
3(tPS1).

Proof It follows from [4] that dim S1
3(tPS1) = 21. Given any data Z := {zi}21

i=1, by using Remark
1, Remark 2 and C1 smoothness conditions, each of the B-net coefficients of S1

3(tPS1) is uniquely
determined by the data. This completes the proof of this theorem.

Note that triangulation 4PS2 can be regarded as a triangulated quadrangulation ♦+ if we make
each original vertex v, vt and center ve as the vertex of quadrangle in 4PS2, then we can obtain

Theroem 4 Let P := {ξi}|P |i=1 be a point set constructed by Algorithm 1 on S1
3(4PS2), then P

forms a it Lagrange interpolation set for S1
3(4PS2).

Proof We know dim S1
3(♦+) = 3|V |+ |E|, then

|P | = 3(|V |+ |E|+ |T |) + (3|T |+ 2|E|) = 3|V |+ 5|E|+ 6|T |.

Using Euler’s theorem and [5] we obtain dim S1
3(4PS2) = |P |. Then we can give a similar proof

as we did in the Theorem 1.
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145, Birkhäuser, Basel, 2003, 215–234.

[13] G. Nürnberger, V. Rayevskaya, L. L. Schumaker, and F. Zeilfelder, Local Lagrange interpolation
with C2 splines of degree seven on triangulations, in: M. Neamtu and E. Saff, (Eds.), Advances in
Constructive Approximation, Nashboro Press, Brentwood, TN, 2004, 345-370.

[14] G. Nürnberger and F. Zeilfelder, Developm in bivariate spline interpolation, J. Comp. Appl. Math.,
121, 125-152 (2000).

[15] M. J. Lai, Scattered data interpolation and approximation by using bivariate C1 piecewise cubic
polynomials, Comp. Aided Geom. Design., 13, 81-88 (1996).

9

CHEN, LIU: LANGRANGE INTERPOLATIONS... 171



 
 

Instructions to Contributors 
Journal of Computational Analysis and Applications. 

  A quartely international publication of Eudoxus Press, LLC.  
  

Editor in Chief: George Anastassiou 
Department of Mathematical Sciences,  

University of Memphis 
Memphis, TN 38152-3240, U.S.A. 

 
       

AUTHORS MUST COMPLY EXACTLY WITH THE FOLLOWING 
RULES OR THEIR ARTICLE CANNOT BE CONSIDERED.   

 
       

 
1. Manuscripts,hard copies in triplicate and in English,should be 
submitted to the Editor-in-Chief, mailed un-registered, to: 
 
      Prof.George A. Anastassiou  
      Department of Mathematical Sciences  
      The University of Memphis  
      Memphis,TN 38152-3240, USA. 
 
       
Authors must e-mail a PDF copy of the submission to 
ganastss@memphis.edu.  
 
Authors may want to recommend an associate editor the most related to 
the submission to possibly handle it. 
 
      Also authors may want to submit a list of six possible referees, to be 
used in case we cannot find related referees by ourselves. 
 
2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX,or 
AMS-LaTEX and according to EUDOXUS PRESS, LLC. LATEX 
STYLE FILE. (Click HERE to save a copy of the style file.)They should 
be carefully prepared in all respects. Submitted copies should be 
brightly printed (not dot-matrix), double spaced, in ten point type size, 
on one side high quality paper 8(1/2)x11 inch. Manuscripts should have 
generous margins on all sides and should not exceed 24 pages. 
 
3. Submission is a representation that the manuscript has not been 
published previously in this or any other similar form and is not 
currently under consideration for publication elsewhere. A statement 

172



transferring from the authors(or their employers,if they hold the 
copyright) to Eudoxus Press, LLC, will be required before the 
manuscript can be accepted for publication.The Editor-in-Chief will 
supply the necessary forms for this transfer.Such a written transfer of 
copyright,which previously was assumed to be implicit in the act of 
submitting a manuscript,is necessary under the U.S.Copyright Law in 
order for the publisher to carry through the dissemination of research 
results and reviews as widely and effective as possible. 
 
4. The paper starts with the title of the article, author's name(s) (no 
titles or degrees), author's affiliation(s) and e-mail addresses. The 
affiliation should comprise the department, institution (usually 
university or company), city, state (and/or nation) and mail code. 
 
      The following items, 5 and 6, should be on page no. 1 of the paper. 
 
5. An abstract is to be provided, preferably no longer than 150 words. 
 
6. A list of 5 key words is to be provided directly below the abstract. Key 
words should express the precise content of the manuscript, as they are 
used for indexing purposes. 
 
      The main body of the paper should begin on page no. 1, if possible. 
 
7. All sections should be numbered with Arabic numerals (such as: 1. 
INTRODUCTION) .  
Subsections should be identified with section and subsection numbers 
(such as 6.1. Second-Value Subheading). 
If applicable, an independent single-number system (one for each 
category) should be used to label all theorems, lemmas, propositions, 
corrolaries, definitions, remarks, examples, etc. The label (such as 
Lemma 7) should be typed with paragraph indentation, followed by a 
period and the lemma itself. 
 
8. Mathematical notation must be typeset. Equations should be 
numbered consecutively with Arabic numerals in parentheses placed 
flush right,and should be thusly referred to in the text [such as Eqs.(2) 
and (5)]. The running title must be placed at the top of even numbered 
pages and the first author's name, et al., must be placed at the top of the 
odd numbed pages. 
 
9. Illustrations (photographs, drawings, diagrams, and charts) are to be 
numbered in one consecutive series of Arabic numerals. The captions 
for illustrations should be typed double space. All illustrations, charts, 
tables, etc., must be embedded in the body of the manuscript in proper, 
final, print position. In particular, manuscript, s ource, and PDF file 

173



version must be at camera ready stage for publication or they cannot be 
considered. 
 
    Tables are to be numbered (with Roman numerals) and referred to 
by number in the text. Center the title above the table, and type 
explanatory footnotes (indicated by superscript lowercase letters) below 
the table.  
 
10. List references alphabetically at the end of the paper and number 
them consecutively. Each must be cited in the text by the appropriate 
Arabic numeral in square brackets on the baseline.  
      References should include (in the following order):  
     initials of first and middle name, last name of author(s)  
      title of article,  
      name of publication, volume number, inclusive pages, and year of 
publication.  
 
      Authors should follow these examples: 
 
          Journal Article  
 
          1. H.H.Gonska,Degree of simultaneous approximation of bivariate functions by 
Gordon operators, (journal name in italics) J. Approx. Theory, 62,170-191(1990).  
 
          Book  
 
          2. G.G.Lorentz, (title of book in italics) Bernstein Polynomials (2nd ed.), 
Chelsea,New York,1986.  
 
          Contribution to a Book  
 
          3. M.K.Khan, Approximation properties of beta operators,in(title of book in 
italics) Progress in Approximation Theory (P.Nevai and A.Pinkus,eds.), Academic 
Press, New York,1991,pp.483-495. 
 
     11. All acknowledgements (including those for a grant and financial 
support) should occur in one paragraph that directly precedes the 
References section. 
 
     12. Footnotes should be avoided. When their use is absolutely 
necessary, footnotes should be numbered consecutively using Arabic 
numerals and should be typed at the bottom of the page to which they 
refer. Place a line above the footnote, so that it is set off from the text. 
Use the appropriate superscript numeral for citation in the text. 
 
     13. After each revision is made please again submit three hard copies 
of the revised manuscript, including in the final one. And after a 

174



manuscript has been accepted for publication and with all revisions 
incorporated, manuscripts, including the TEX/LaTex source file and the 
PDF file, are to be submitted to the Editor's Office on a personal-
computer disk, 3.5 inch size. Label the disk with clearly written 
identifying information and properly ship, such as: 
 
       
     Your name, title of article, kind of computer used, kind of software and version 
number, disk format and files names of article, as well as abbreviated journal name. 
 
     Package the disk in a disk mailer or protective cardboard. Make sure contents of 
disks are identical with the ones of final hard copies submitted!  
 
     Note: The Editor's Office cannot accept the disk without the accompanying 
matching hard copies of manuscript. No e-mail final submissions are allowed! The disk 
submission must be used. 
 
 
     14. Effective 1 Nov. 2009 for current journal page charges, contact 
the Editor in Chief. Upon acceptance of the paper an invoice will be sent 
to the contact author. The fee payment will be due one month from the 
invoice date. The article will proceed to publication only after the fee is 
paid. The charges are to be sent, by money order or certified check, in 
US dollars, payable to Eudoxus Press, LLC, to the address shown on the 
homepage of this site.  
 
      No galleys will be sent and the contact author will receive one(1) 
complementary electronic copy of the journal issue in which the article 
appears. 
 
 
     15. This journal will consider for publication only papers that 
contain proofs for their listed results. 

 
       
   
 
   
   

 

175



 

176



TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL ANALYSIS 
AND APPLICATIONS, VOL.12, NO.1-A, 2010 

 

On representability of quasi quadratic, functionals by sesquilinear functionals, Mehmet Açikgöz 
and Aliakbar Goshabulaghi,………………………………………………………………….....7 

Some inequalities equivalent to triangular inequality in normed and 2-normed spaces, Aliakbar 
Goshabulaghi, Mehmet Açikgöz,……………………………………………………………….13 

On Distributions of Order Statistics of Random Vectors, M. Güngör, A. Turan,…………….. 17

A-Equistatistical Convergence of Positive Linear Operators, Hüseyin Aktuglu, Mehmet Ali 
Ozarslan, Halil Gezer,………………………………………………………………………….. 24

Approximating the solution of second order differential equation with retarded argument, A. M. 
Bica, M. Curila,S. Curila,………………………………………………………………………. 37

Rate of Convergence of the Integrated MKZ-Bezier Operators, Bo-Yong Lian,……………….48 

Stability of moving on (2+α) chain, A. P. Buslaev, J. M. Guo, N. J. Wang, M. V. Yashina,…...55 

On convergence of Ishikawa's type iteration to a common fixed point in L-fuzzy metric spaces, 
Yeol Je Cho, Reza Saadati, Bosko Damjanovic,……………………………………………….. 76

Identities of Rogers-Ramanujan type via “±1”, Wenchang Chu, Chenying Wang,……………..83 

Volterra composition operators from mixed norm spaces to Bloch-type spaces, Dinggui Gu,….92 

New KKM type theorems in G-convex spaces with applications, Weiping Guo, Jung Im Kang, 
Yeol Je Cho,……………………………………………………………………………………..100

Some approximation properties of q-parametric BBH operators, Nazim Mahmudov, Pembe 
Sabancigil,……………………………………………………………………………………….111 

A general composite iterative method for equilibrium problems and fixed point problems, Jong 
Soo Jung,………………………………………………………………………………………...124 

On the roots of the twisted (h,q)-Euler polynomials, Cheon Seoung Ryoo,…………………….141 

A numerical computation of the roots of q-Euler polynomials, C. S. Ryoo,……………………148 

Generalized distance and some common fixed point theorems, R. Saadati, S. M. Vaezpour, Lj. B. 
Ciric,……………………………………………………………………………………………..157 

 

177



 

TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL ANALYSIS 
AND APPLICATIONS, VOL.12, NO.1-A, 2010, continues 

 

Lagrange Interpolations by Bivariate C1 Cubic Splines on Powell-Sabin's Triangulations, 
Sunkang Chen, Huanwen Liu, ………………………………………………………………….163 

178



 
 
Volume 12, Number 1-B                                                                    February  2010 
ISSN:1521-1398 PRINT,1572-9206 ONLINE 
 
 
                                                                                                      

 
 

                               Journal of 
      
          Computational 
 
          Analysis and  
 
          Applications 
              EUDOXUS PRESS,LLC 

179



               Journal of Computational Analysis and Applications 
                 ISSNno.’s:1521-1398 PRINT,1572-9206 ONLINE 
                                     SCOPE OF THE JOURNAL 
                     A quarterly international publication of Eudoxus Press, LLC 
                      Editor in Chief: George Anastassiou 
                      Department of Mathematical Sciences,  
                      University of Memphis, Memphis, TN 38152-3240, U.S.A 
                         ganastss@memphis.edu 
 http://www.msci.memphis.edu/~ganastss/jocaaa 
                 The main purpose of "J.Computational Analysis and Applications"  
            is to publish high quality research articles from all subareas of  
            Computational Mathematical Analysis and its many potential  
            applications and connections to other areas of Mathematical  
            Sciences. Any paper whose approach and proofs are computational,using  
            methods from Mathematical Analysis in the broadest sense is suitable  
            and welcome for consideration in our journal, except from Applied  
            Numerical Analysis articles.Also plain word articles without formulas and 
            proofs are excluded. The list of possibly connected  
            mathematical areas with this publication includes, but is not  
            restricted to: Applied Analysis, Applied Functional Analysis,  
            Approximation Theory, Asymptotic Analysis, Difference Equations,  
            Differential Equations, Partial Differential Equations, Fourier  
            Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities,  
            Integral Equations, Measure Theory, Moment Theory, Neural Networks,  
            Numerical Functional Analysis, Potential Theory, Probability Theory,  
            Real and Complex Analysis, Signal Analysis, Special Functions,  
            Splines, Stochastic Analysis, Stochastic Processes, Summability,  
            Tomography, Wavelets, any combination of the above, e.t.c.  
              "J.Computational Analysis and Applications" is a  
            peer-reviewed Journal. See at the end instructions for preparation and submission 
            of articles to JoCAAA.              
                      Webmaster:Ray Clapsadle 
Journal of Computational Analysis and Applications(JoCAAA) is published by 
EUDOXUS PRESS,LLC,1424 Beaver Trail 
Drive,Cordova,TN38016,USA,anastassioug@yahoo.com 
http//:www.eudoxuspress.com.Annual Subscription Prices:For USA and 
Canada,Institutional:Print $470,Electronic $300,Print and Electronic 
$500.Individual:Print $150,Electronic $100,Print &Electronic $200.For any other part 
of the world add $50 more to the above prices for Print.No credit card payments. 
Copyright©2010 by Eudoxus Press,LLCAll rights reserved.JoCAAA is printed in USA.              
JoCAAA is reviewed and abstracted by AMS Mathematical                   
Reviews,MATHSCI,and Zentralblaat MATH. 
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in 
any form and by any means without the written permission of the publisher.It is only 
allowed to educators to Xerox articles for educational purposes.The publisher assumes no 
responsibility for the content of published papers 

180



 
Editorial Board  

Associate Editors  
 

 
 1) George A. Anastassiou 
    Department of Mathematical Sciences 
    The University of Memphis 
    Memphis,TN 38152,U.S.A 
    Tel.901-678-3144 
    e-mail: ganastss@memphis.edu 
    Approximation Theory,Real Analysis, 
    Wavelets, Neural    
    Networks,Probability, 
    Inequalities. 
 
  2) J. Marshall Ash 
   Department of Mathematics 
   De Paul University 
   2219 North Kenmore Ave. 
   Chicago,IL 60614-3504 
   773-325-4216   
   e-mail: mash@math.depaul.edu 
   Real and Harmonic Analysis 
    
  3) Mark J.Balas 
   Department Head and Professor 
   Electrical and Computer Engineering  
   Dept. 
   College of Engineering 
   University of Wyoming 
   1000 E. University Ave. 
   Laramie, WY  82071 
   307-766-5599   
   e-mail: mbalas@uwyo.edu 
   Control Theory,Nonlinear Systems, 
   Neural Networks,Ordinary and  
   Partial Differential Equations, 
   Functional Analysis and Operator  
   Theory 
 
   4) Drumi D.Bainov 
    Department of Mathematics 
    Medical University of Sofia 
    P.O.Box 45,1504 Sofia,Bulgaria 
    e-mail:  
    dbainov@mbox.pharmfac.acad.bg 
    e-mail:drumibainov@yahoo.com 
    Differential Equations/Inequalities 
  
   5) Carlo Bardaro 
   Dipartimento di Matematica e  
   Informatica 
   Universita di Perugia 
   Via Vanvitelli 1 

 
20) Hrushikesh N.Mhaskar 
 Department Of Mathematics 
 California State University 
 Los Angeles,CA 90032 
 626-914-7002   
 e-mail: hmhaska@calstatela.edu 
 Orthogonal Polynomials, 
 Approximation Theory,Splines, 
 Wavelets, Neural Networks 
  
21) M.Zuhair Nashed 
 Department Of Mathematics 
 University of Central Florida 
 PO Box 161364 
 Orlando, FL  32816-1364 
 e-mail: znashed@mail.ucf.edu 
 Inverse and Ill-Posed problems, 
 Numerical Functional Analysis, 
 Integral Equations,Optimization, 
 Signal Analysis 
   
22) Mubenga N.Nkashama 
 Department OF Mathematics 
 University of Alabama at          
 Birmingham 
 Birmingham,AL 35294-1170 
 205-934-2154   
 e-mail: nkashama@math.uab.edu 
 Ordinary Differential Equations, 
 Partial Differential Equations 
   
23) Charles E.M.Pearce 
 Applied Mathematics Department 
 University of Adelaide 
 Adelaide 5005, Australia 
 e-mail:  
 cpearce@maths.adelaide.edu.au 
 Stochastic Processes, Probability  
 Theory, Harmonic Analysis,  
 Measure Theory, 
 Special Functions, Inequalities 
 
24) Josip E. Pecaric 
 Faculty of Textile Technology 
 University of Zagreb 
 Pierottijeva 6,10000 
 Zagreb,Croatia 
 e-mail: pecaric@hazu.hr 
 Inequalities,Convexity 
   

181



   06123 Perugia, ITALY 
   TEL+390755853822 
   +390755855034 
   FAX+390755855024 
   E-mail bardaro@unipg.it 
   Web site:  
   http://www.unipg.it/~bardaro/ 
   Functional Analysis and  
   Approximation  
   Theory,Signal Analysis, Measure  
   Theory,  
   Real Analysis. 
 
  6) Jerry L.Bona 
    Department of Mathematics 
    The University of Illinois at  
    Chicago 
    851 S. Morgan St. CS 249 
    Chicago, IL 60601 
    e-mail:bona@math.uic.edu 
    Partial Differential Equations, 
    Fluid Dynamics 
    
  7) Luis A.Caffarelli 
    Department of Mathematics 
    The University of Texas at Austin 
    Austin,Texas 78712-1082 
    512-471-3160   
    e-mail: caffarel@math.utexas.edu 
    Partial Differential Equations 
   
  8) George Cybenko 
    Thayer School of Engineering 
    Dartmouth College 
    8000 Cummings Hall, 
    Hanover,NH 03755-8000 
    603-646-3843  (x 3546  
    Secr.) 
    e-mail:  
    george.cybenko@dartmouth.edu 
    Approximation Theory and Neural  
    Networks 
   
  9) Ding-Xuan Zhou 
    Department Of Mathematics 
    City University of Hong Kong 
    83 Tat Chee Avenue 
    Kowloon,Hong Kong 
    852-2788 9708,Fax:852-2788 8561 
    e-mail: mazhou@math.cityu.edu.hk 
    Approximation Theory, 
    Spline functions,Wavelets 
 
  10) Sever S.Dragomir 
   School of Computer Science and  
   Mathematics, Victoria University, 

25) Svetlozar T.Rachev 
 Department of Statistics and  
 Applied Probability  
 University of California at Santa  
 Barbara, 
 Santa Barbara,CA 93106-3110 
 805-893-4869   
 e-mail: rachev@pstat.ucsb.edu 
 and Chair of Econometrics,  
 Statistics and Mathematical  
 Finance 
 School of Economics and  
 Business Engineering 
 University of Karlsruhe 
 Kollegium am Schloss, Bau  
 II,20.12, R210 
 Postfach 6980, D-76128,  
 Karlsruhe,GERMANY. 
 Tel   +49-721-608-7535,   
  
 +49-721-608-2042(s)   
  
 Fax +49-721-608-3811 
 Zari.Rachev@wiwi.uni-karlsruhe.de 
 Probability,Stochastic Processes  
 and  
 Statistics,Financial Mathematics, 
 Mathematical Economics. 
 
26) Alexander G. Ramm 
 Mathematics Department  
 Kansas State University 
 Manhattan, KS 66506-2602 
 e-mail: ramm@math.ksu.edu  
 Inverse and Ill-posed  Problems,  
 Scattering 
 Theory, Operator Theory,  
 Theoretical Numerical 
 Analysis, Wave Propagation,  
 Signal Processing and 
 Tomography 
  
27) Ervin Y.Rodin 
 Department of Systems Science and  
 Applied Mathematics 
 Washington University,Campus Box  
 1040 
 One Brookings Dr.,St.Louis,MO  
 63130-4899 
 314-935-6007   
 e-mail: rodin@rodin.wustl.edu 
 Systems Theory,  Semantic  
 Control, 
 Partial Differential Equations, 
 Calculus of  
 Variations,Optimization and  

182



   PO Box 14428, 
   Melbourne City, 
   MC 8001,AUSTRALIA 
   Tel.   +61 3 9688 4437     
    
   Fax  +61 3 9688 4050 
   sever@csm.vu.edu.au 
   Inequalities,Functional Analysis, 
   Numerical Analysis, Approximations, 
   Information Theory, Stochastics. 
 
  11) Saber N.Elaydi 
    Department Of Mathematics 
    Trinity University 
    715 Stadium Dr. 
    San Antonio,TX 78212-7200 
    210-736-8246   
    e-mail: selaydi@trinity.edu 
    Ordinary Differential Equations, 
    Difference Equations 
   
  12) Augustine O.Esogbue 
    School of Industrial and Systems  
    Engineering 
    Georgia Institute of Technology 
    Atlanta,GA 30332 
    404-894-2323   
    e-mail:   
    augustine.esogbue@isye.gatech.edu 
    Control Theory,Fuzzy sets, 
    Mathematical Programming, 
    Dynamic Programming,Optimization 
   
  13) Christodoulos A.Floudas 
    Department of Chemical Engineering 
    Princeton University 
    Princeton,NJ 08544-5263 
    609-258-4595  (x4619  
    assistant) 
    e-mail: floudas@titan.princeton.edu 
    OptimizationTheory&Applications, 
    Global Optimization 
   
  14) J.A.Goldstein 
    Department of Mathematical Sciences 
    The University of Memphis 
    Memphis,TN 38152 
    901-678-3130   
    e-mail:jgoldste@memphis.edu 
    Partial Differential Equations, 
    Semigroups of Operators 
   
  15) H.H.Gonska 
    Department of Mathematics 
    University of Duisburg 
    Duisburg, D-47048 

 Artificial Intelligence,  
 Operations Research, 
 Math.Programming 
 
28) T. E. Simos 
 Department of Computer 
 Science and Technology 
 Faculty of Sciences and  
 Technology 
 University of Peloponnese 
 GR-221 00 Tripolis, Greece 
 Postal Address: 
 26 Menelaou St. 
 Anfithea - Paleon Faliron 
 GR-175 64 Athens, Greece 
 tsimos@mail.ariadne-t.gr 
 Numerical Analysis 
 
29) I. P. Stavroulakis 
 Department of Mathematics 
 University of Ioannina 
 451-10 Ioannina, Greece 
 ipstav@uoi.gr 
 Differential Equations 
 Phone  +3 0651098283 
 
30) Manfred Tasche 
 Department of Mathematics 
 University of Rostock 
 D-18051 Rostock,Germany 
 manfred.tasche@mathematik.uni- 
 rostock.de 
 Numerical Fourier    
 Analysis,Fourier Analysis, 
 Harmonic Analysis,Signal   
 Analysis,   
 Spectral   
 Methods,Wavelets,Splines, 
 Approximation Theory 
   
31) Gilbert G.Walter 
 Department Of Mathematical  
 Sciences 
 University of Wisconsin- 
 Milwaukee,Box 413, 
 Milwaukee,WI 53201-0413 
 414-229-5077   
 e-mail: ggw@csd.uwm.edu 
 Distribution  
 Functions,Generalised Functions, 
 Wavelets 
   
32) Halbert White 
 Department of Economics 
 University of California at San  
 Diego 

183



    Germany 
    011-49-203-379-3542 
    e-mail: 
    gonska@mathematik.uni-duisburg.de 
    Approximation Theory, 
    Computer Aided Geometric Design 
 
 16) Weimin Han 
     Department of Mathematics 
     University of Iowa 
   Iowa City, IA 52242-1419 
   319-335-0770   
   e-mail: whan@math.uiowa.edu 
   Numerical analysis, Finite element  
   method, 
   Numerical PDE, Variational  
   inequalities, 
   Computational mechanics 
 
 17) Christian Houdre 
   School of Mathematics 
   Georgia Institute of Technology 
   Atlanta,Georgia 30332 
   404-894-4398   
   e-mail: houdre@math.gatech.edu 
   Probability,Mathematical  
   Statistics,Wavelets 
 
 18) V. Lakshmikantham 
   Department of Mathematical Sciences 
   Florida Institute of Technology 
   Melbourne, FL 32901 
   e-mail: lakshmik@fit.edu 
   Ordinary and Partial Differential  
   Equations,  
   Hybrid Systems, Nonlinear Analysis 
 
 19) Burkhard Lenze 
   Fachbereich Informatik 
   Fachhochschule Dortmund 
   University of Applied Sciences 
   Postfach 105018 
   D-44047 Dortmund, Germany 
   e-mail: lenze@fh-dortmund.de 
   Real Networks, 
   Fourier Analysis,Approximation  
   Theory 
   
36) Ahmed I. Zayed 
 Department Of Mathematical Sciences 
 DePaul University 
 2320 N. Kenmore Ave. 
 Chicago, IL 60614-3250 
 773-325-7808   
 e-mail: azayed@condor.depaul.edu 

 La Jolla,CA 92093-0508 
 619-534-3502   
 e-mail: hwhite@econ.ucsd.edu 
 Econometric Theory,Approximation  
 Theory, 
 Neural Networks 
    
33) Xin-long Zhou 
 Fachbereich  
 Mathematik,Fachgebiet Informatik 
 Gerhard-Mercator-Universitat  
 Duisburg 
 Lotharstr.65,D-47048  
 Duisburg,Germany 
 e-mail: 
 Xzhou@mathematik.uni-duisburg.de 
 Fourier Analysis,Computer-Aided  
 Geometric Design,  
 Computational Complexity, 
 Multivariate Approximation Theory,  
 Approximation and Interpolation  
 Theory 
   
34) Xiang Ming Yu 
 Department of Mathematical Sciences 
 Southwest Missouri State University 
 Springfield,MO 65804-0094 
 417-836-5931   
 e-mail: xmy944f@missouristate.edu 
 Classical Approximation  
 Theory,Wavelets 
  
35) Lotfi A. Zadeh 
 Professor  in the Graduate School and 
 Director,  
 Computer Initiative, Soft Computing  
 (BISC) 
 Computer Science Division 
 University of California at Berkeley 
 Berkeley, CA 94720 
 Office:  510-642-4959   
 Sec:      510-642-8271   
 Home:  510-526-2569   
 FAX:  510-642-1712 
 e-mail: zadeh@cs.berkeley.edu 
 Fuzzyness, Artificial Intelligence,  
 Natural language processing, Fuzzy  
 logic 
 
 
 Shannon sampling theory, Harmonic  
 analysis  
 and wavelets, Special functions and  
 orthogonal 
 polynomials, Integral transforms. 

 

184



Sums of products of q-Euler numbers

By

Taekyun Kim

Abstract. By using multivariate fermionic p-adic q-integral on Zp, the
author introduced the q-Euler polynomials of higher order (see [1]).
From these q-Euler polynomials of higher order, we derive the for-
mula for the sums of products of the q-Euler polynomials of the form∑

r=i1+···+i`
i1,··· ,i`≥0

∑r−i1
k1=0 · · ·

∑r−i1−i2−···−i`−1

k`−1=0

(
r

i1,··· ,i`

)(
r−i1
k1

)
· · ·

(
r−i1−i2−···−i`−1

k`−1

)
Ek1+i1,q(α1) · · ·

Ek`−1+i`−1,q(α`−1)Ei`,q(α`)(q − 1)k1+···+k`−1 , where Em,q(α) are the m-th
q-Euler polynomials and

(
n

α1,··· ,αn

)
= n!

α1!···αn!
.

2000 Mathematics Subject Classification: 11B68, 11S80
Key Words and Phrases: Fermionic p-adic integral, q-Euler polynomials

§1. Introduction

Let p be a fixed odd prime number. Throughout this paper Z, Zp, Qp and Cp will

respectively, denote the ring of rational integer, the ring of p-adic rational integers, the

field of p-adic rational numbers and the completion of algebraic closure of Qp. Let vp be

the normalized exponential valuation of Cp with |p|p = p−vp(p) = 1/p. When one talks of

q-extension, q is variously considered as an indeterminate, a complex number q ∈ C or a

p-adic number q ∈ Cp, (see [1-6]). If q ∈ Cp, we normally assume |1 − q|p < 1. In this

paper, we use the notations as follows.

[x]q =
1− qx

1− q
, and [x]−q =

1− (−q)x

1 + q
.

Let d be a fixed positive integer with d ≡ 1 (mod 2). Then we set

X = Xd = lim←−
N

Z/dpNZ, X1 = Zp,

X∗ =
⋃

0<a<dp,
(a,p)=1

(a + dpZp),

a + dpNZp = {x ∈ X|x ≡ a (mod dpN)},
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2 Sums of products of q-Euler numbers

where a ∈ Z lies 0 ≤ a < dpN , ( see [1-6]). We say that f is uniformly differential function

at a point a ∈ Zp and denote this property by f ∈ UD(Zp) if the difference quotients

Ff (x, y) =
f(x)− f(y)

x− y
have a limit ` = f ′(a) as (x, y) −→ (a, a). For f ∈ UD(Zp), the

fermionic p-adic q-integral on X is defined as

I−q(f) =

∫
X

f(x)dµ−q(x) = lim
N→∞

1

[dpN ]−q

dpN−1∑
x=0

f(x)(−q)x, (see [1-7]). (1)

The q-Euler numbers (see [6]) are defined by

En,q =

∫
X

[x]nq dµ−q(x) =

∫
Zp

[x]qndµ−q(x) =
[2]q

(1− q)n

n∑
`=0

(
n
`

)
(−1)`

1 + q`+1
, (2)

and the q-Euler polynomials (see [5]) are defined as

En,q(x) =

∫
X

[x + y]nq dµ−q(y) =

∫
Zp

[x + y]nq dµ−q(y) =
[2]q

(1− q)n

n∑
`=0

(
n
`

)
(−1)`q`x

1 + q`+1
.

In this paper, we consider the q-Euler polynomials of higher order using an integral by

the q-analogue of fermionic p-adic invariant measure and give the formula for the sums of

products of the q-Euler polynomials.

§2. q-Euler numbers of higher order

In [2], the m-th q-Euler polynomials in the variable x in Cp with |x|p ≤ 1 are defined

as

Em,q(x) =

∫
Zp

[x + y]mq dµ−q(y) =
[2]q

(1− q)n

m∑
`=0

(
n

`

)
(−1)`

1 + q`+1
q`x.

We use the notation:
m∑

k1,··· ,kn=0

=
m∑

k1=0

m∑
k2=0

· · ·
m∑

kn=0

.

We define the q-Euler numbers of higher order, E
(r)
n,q ∈ Cp, by making use multivariate

fermionic p-adic q-integral on Zp as follows.∫
Zp

· · ·
∫

Zp

[x1 + · · ·+ xr]
n
q dµ−q(x1) · · · dµ−q(xr) = E(r)

n,q. (3)

Note that limq→1 E
(r)
n,q = E

(r)
n , where E

(r)
n are the n-th Euler numbers of order r.
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From (3), we note that

E(r)
n,q =

[2]rq
(1− q)n

n∑
`=0

(
n

`

)
(−1)`

( 1

1 + q`+1

)r

= [2]rq

∞∑
m=0

(
m + r − 1

m

)
(−1)mqm[m]nq .

Let us define the n-th q-Euler polynomials of order r as follows.

E(r)
n,q(x) =

∫
Zp

· · ·
∫

Zp

[x + x1 + · · ·+ xr]
n
q dµ−q(x1) · · · dµ−q(xr). (4)

From (4), we note that

E(r)
n,q(x) =

[2]rq
(1− q)n

n∑
`=0

(
n

`

)
(−1)`

( 1

1 + q`+1

)r
q`x

= [2]rq

∞∑
m=0

(
m + r − 1

m

)
(−1)m[m + x]nq , (cf. [2]).

By (4), we easily see that

E
(r)

n,q−1(r − x) =
(−1)nqn+r

(1− q)n
[2]rq

n∑
`=0

(
n

`

)
(−1)`

( 1

1 + q`+1

)r
q`x

= (−1)nqn+rE(r)
n,q(x),

(5)

and

E
(r)

n,q−1(r) = (−1)nqn+rE(r)
n,q.

The Eq.(5) seems to be interesting and new. If q → 1, then we can derive the following

formula from (5).

E(r)
n (r − x) = (−1)nE(r)

n (x), and E(r)
n (r) = (−1)nE(r)

n .

For d ∈ Z+ with d ≡ 1 (mod 2), it is easy to see that

[d]nq
[2]q
[2]qd

d−1∑
a=0

(−1)aqaEn,qd

(x + a

d

)
= En,q(x). (6)

In the sense of the extension of (6), we consider the following multivariate integral.∫
X

· · ·
∫

X

[x1 + · · ·+ xr + x]nq dµ−q(x1) · · · dµ−q(xr)

=
[d]nq
[d]r−q

d−1∑
a1,··· ,ar=0

(−1)a1+···+arqa1+···+ar

×
∫

Zp

· · ·
∫

Zp

[a1 + · · ·+ ar + x

d
+ x1 + · · ·+ xr

]n

qddµ−qd(x1) · · · dµ−qd(xr).

(7)
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4 Sums of products of q-Euler numbers

From (7) and (4), we note that

E(r)
n,q(x) =

[d]nq
[d]r−q

d−1∑
a1,··· ,ar=0

(−1)a1+···+arqa1+···+arE
(r)

n,qd

(a1 + · · ·+ ar + x

d

)
. (8)

We observe that(1− qα1+···+αm+x1+···+xr

1− q

)n

=
∑

i1,··· ,in≥0,
i1+···+ir=n

(
n

i1, · · · , ir

) i2+···+ir∑
k1=0

(
i2 + · · ·+ ir

k1

)
[x1 + α1]

k1+i1
q

×
i3+···+ir∑

k2=0

(
i3 + · · ·+ ir

k2

)
[x2 + α2]

k2+i2
q · · ·

×
ir∑

kr−1=0

(
ir

kr−1

)
[xr−1 + αr−1]

kr−1+ir−1
q (q − 1)k1+···+kr−1 [xr + αr]

ir
q .

(9)

Thus, we have

[α1 + · · ·+ αr + x1 + · · ·+ xr]
n
q

=
∑

i1,··· ,ir≥0,
i1+···+ir=n

n−i1∑
k1=0

n−i1−i2∑
k2=0

· · ·
n−i1−···−ir−1∑

kr−1=0

(
n

i1, · · · , ir

)(
n− i1

k1

)(
n− i1 − i2

k2

)
· · ·

(
n− i1 − · · · − ir−1

kr−1

)
× (q − 1)k1+···+kr−1 [x1 + α1]

k1+i1
q [x2 + α2]

k2+i2
q · · · [xr−1 + αr−1]

kr−1+ik−1
q [xr + αr]

ir
q .

(10)

From (10), we note that

E(r)
n,q(α1 + · · ·+ αr)

=

∫
Zp

· · ·
∫

Zp

[α1 + · · ·+ αr + x1 + · · ·+ xr]
n
q dµ−q(x1) · · · dµ−q(xr)

=
∑

i1,··· ,ir≥0,
i1+···+ir=n

n−i1∑
k1=0

n−i1−i2∑
k2=0

· · ·
n−i1−···−ir−1∑

kr−1=0

(
n

i1, · · · , ir

)(
n− i1

k1

)(
n− i1 − i2

k2

)
· · ·

(
n− i1 − · · · − ir−1

kr−1

)
Ek1+i1,q(α1)Ek2+i2,q(α2) · · ·Ekr−1+ir−1,q(αr−1)Ekr,q(αr)(q − 1)k1+···+kr−1 ,

where
(

n
i1,··· ,ir

)
= n!

i1!···ir!
.

Therefore, we obtain the following theorem.
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Theorem . For α1, · · · , αr ∈ Cp, n ∈ Z+, and r ∈ N, we have

E(r)
n,q(α1 + · · ·+ αr)

=
∑

i1,··· ,ir≥0,
i1+···+ir=n

n−i1∑
k1=0

n−i1−i2∑
k2=0

· · ·
n−i1−···−ir−1∑

kr−1=0

(
n

i1, · · · , ir

)(
n− i1

k1

)(
n− i1 − i2

k2

)
· · ·

(
n− i1 − · · · − ir−1

kr−1

)
Ek1+i1,q(α1)Ek2+i2,q(α2) · · ·Ekr−1+ir−1,q(αr−1)Ekr,q(αr)(q − 1)k1+···+kr−1 ,

where
(

n
i1,··· ,ir

)
is the multinomial coefficient.

Remark2. By (4), we see that

qE(r)
n,q(x + 1) + E(r)

n,q(x)

=
q[2]rq

(1− q)n

n∑
j=0

(
n

j

)
(−1)j

( 1

1 + qj+1

)r

qj(x+1) +
[2]rq

(1− q)n

n∑
j=0

(
n

j

)
(−1)j

( 1

1 + qj+1

)r

qjx

=
[2]rq

(1− q)n

n∑
j=0

(
n

j

)
(−1)jqjx

( 1

1 + qj+1

)r

(1 + qj+1)

=
[2]rq

(1− q)n

n∑
j=0

(
n

j

)
(−1)jqjx

( 1

1 + qj+1

)r−1

= [2]qE
(r−1)
n,q (x).
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Abstract: In this paper, we are concerned with the existence of periodic solutions to 

nonlinear third order delay differential equation: 

))(())(()())(()( txfrtxgtxtxtx +−′+′′′+′′′ ψ = ))(),(),(),(),(,( txrtxtxrtxtxtp ′′−′′− , 

when ))(),(),(),(),(,( txrtxtxrtxtxtp ′′−′′−  is a periodic function of period T , .0>T  With use 

of Lyapunov’s functional approach, we establish some new sufficient conditions which 

guarantee that there exists a periodic solution of this equation of period T , .0>T  For 

illustrations, an example is also given on the existence of periodic solutions.  

 

1. Introduction 

 

It is well-known that functional differential equations, in particular, delay differential 

equations can be used as models to describe many physical, biological systems, etc. In 

practice, many actual systems have the property aftereffect, i.e. the future states depend not 

only on the present, but also on the past history. Aftereffect is believed to occur in mechanics, 

control theory, physics, chemistry, biology, medicine, economics, atomic energy, information 

theory, etc. Therefore, it is very important to study the qualitative behaviors of solutions of 

delay differential equations or more generally functional differential equations. 

In 1992, Zhu [5] considered the following nonlinear third order differential equation with 

constant delay, r :       

)()())(()()( tpxfrtxtxatx =+−′+′′+′′′ φ ,                                              (1) 

and he discussed the existence of periodic solutions of this equation when  )(tp  is a periodic 

function of period T , .0>T  

In this paper, we consider nonlinear third order differential equation with constant delay:  

))(())(()())(()( txfrtxgtxtxtx +−′+′′′+′′′ ψ  

     = ))(),(),(),(),(,( txrtxtxrtxtxtp ′′−′′− .                                         (2)                         

Obviously, our equation, (2), includes equation (1), and it can be stated as the following 

system: 

),()( tytx =′  ),()( tzty =′  

∫
−

′+−−−=′
t

rt

dsszsygtxftygtztytz )())(())(())(()())(()( ψ         

 + ))(),(),(),(),(,( tzrtytyrtxtxtp −− ,                                                    (3) 

where r  is a positive constant, that is,  r  is constant delay, which will be determined later;  

_________ 

Keywords: Periodic solutions; Nonlinear differential equations with delay; Third order. 

AMS (MOS) Subject Classification: 34K20. 
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the functions ψ , g , f  and p  depend only on the arguments displayed explicitly. It is 

assumed as basic that  )(yψ , )( yg ,  )(xf  and )),(,),(,,( zrtyyrtxxtp −−  are continuous in 

their respective arguments on ℜ , ℜ , ℜ  and  5ℜ×ℜ+ , respectively; 0)0()0( == fg  and 

)),(,),(,,( zrtyyrtxxtp −−  is periodic in t , of period T , rT ≥ , that is, this function satisfies  

)),(,),(,,( zrtyyrtxxTtp −−+ = )),(,),(,,( zrtyyrtxxtp −− . The derivative )()( yg
dy

d
yg ≡′ , 

exists and is also continuous; throughout the paper )(  and  )(   ),( tztytx  are abbreviated as x , 

y  and ,z  respectively. 

It should also be noted that to the best of our knowledge from the literature, so far, the 

existence of periodic solutions of nonlinear third order differential equations with delay has 

only been investigated by three authors; Chukwu [2], Tejumola & Tchegnani [3] and Zhu [5]. 

Perhaps, the possible difficulty raised to this case is due to the construction of Laypuov 

functionals for delay differential equations of higher order. But, here, we would not like the 

details of difficulties. It is also worth mentioning that all the papers afore mentioned, Chukwu 

[2], Tejumola &  Tchegnani [3] and Zhu [5], have been published without including any 

explanatory example on the existence of periodic solutions of equations taken under 

consideration. Here, we will give an example on the topic. Our assumptions and Lyapunov 

functional, which will be introduced, are completely different than that in Chukwu [2], 

Tejumola &  Tchegnani [3]. 

 

2. Preliminaries 

In order to reach the main result of this paper, we will give some basic information for 

general non-autonomous delay periodic differential system. We now consider the delay 

periodic system: 

    ),()( txtftx =& , )( θ+= txxt , 0≤≤− θr , 0≥t ,                               (4) 

where [ ) n

HCf ℜ→×∞ ,0:  is a continuous mapping, ),(),( ϕϕ tfTtf =+  for all C∈ϕ and 

for some constant 0>T . We suppose that f  takes closed bounded sets into bounded sets of 
nℜ . Here ( ) . ,C  is the Banach space of continuous function [ ] nr ℜ→− 0 ,:φ   with 

supremum norm, 0>r ; HC   is the open −H ball in C ; [ ]( ){ }HrCC n

H <ℜ−∈= φφ :  ,0,: .   

 

Definition  1. (See Burton [1].) A continuous function [ ) [ )∞→∞  ,0 ,0:W  with 0)0( =W , 

0)( >sW  if 0>s , and W  strictly increasing is a wedge. (We denote wedges by W  or iW , 

where i  is an integer.) 

Definition  2.  (See Burton [1].)  Let D  be an open set in nℜ  with D∈0 . A function 

[ ) [ )∞→×∞  ,0 ,0: DV  is called positive definite if 0)0,( =tV  and if there is a wedge 1W  with 

)(),( 1 xWxtV ≥ , and is called decrescent if there is a wedge 2W   with )(),( 2 xWxtV ≤ . 

 

Definition 3.  (See Burton [1].)  Let ),( φtV  be a continuous functional defined for 0≥t , 

HC∈φ . The derivative of V  along solutions of (4) will be denoted by V&  and is defined by 

the following relation: 
 

h

txtVtxhtV
tV tht

h

)),(,()),(,(
suplim),( 00

0

φφ
φ

−+
= +

→

& , 
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where ),( 0 φtx  is the solution of (4) with φφ =),( 00
txt . 

 

Theorem 1. (Yoshizawa [4].)  Suppose that )(),( 0 ϕϕ Ctf ∈  and ),( ϕtf  is periodic in t  

of period T , rT ≥ , and consequently for any 0>α  there exists an 0)( >αL  such that 

αϕ C∈  implies  )(),( αϕ Ltf ≤ . Moreover, suppose that there exist a  continuous Lyapunov 

functional ),( ϕtV  defined on It ∈ , ∗∈ Sϕ ,  ∗
S  is the set of C∈ϕ  such that with H≥)0(ϕ  

( H  may be large) , and that ),( ϕtV  satisfies the following conditions: 

(i) There exist continuous increasing functions )(sa  and )(sb , satisfying 0)( >sa , 

0)( >sb  for Hs ≥ , and ∞→)(sa  as ∞→s , such that  
 

)(),())0(( φφφ btVa ≤≤ ,  when H≥)0(ϕ . 

(ii)  There exists a continuous and positive function )(sw  such that  

 

))0((),( ϕφ wtV −≤&   for Hs ≥ . 

 

(iii)  Suppose that there exists an 01 >H , HH >1  such that  

 

HHrL −< 1)( oγ , 

where 0>∗γ  is a constant which is determined in the following way: By the condition on 

),( ϕtV , there exist 0>α , 0>β , 0>γ  such that )()( 1 αaHb ≤ , )()( βα ab ≤ , )()( γβ ab ≤ . 
∗γ  is defined by )()( ∗≤ γγ ab . Under the above conditions, there exists a periodic solution of 

system (4) of period T .  In particular, the relation HHrL −<∗ 1)(γ  can be always satisfied if 

r  is sufficiently small. 

 

3. Main result 

The main result of this paper is the following theorem: 

Theorem 2. We assume that there are positive constants a , b ,  c  ,  m ,  δ , γ  , µ , T  

and L  such that the following conditions hold: 

(i)  0>− cab , 0)0( =f , 0sgn)( >xxf  for all 0≠x ,  cxf =′ )}(sup{  and  

      ∞→xxf sgn)(  as ∞→x .  

(ii)  0)0( =g , b
y

yg
≥

)(
,  ( 0≠y ), and Lyg ≤′ )( , δψ ≤−≤ ay)(0 . 

(iii) )),(,),(,,( zrtyyrtxxtp −−  is periodic in t , of period T  and  

 mzrtyyrtxxtp ≤−− )),(,),(,,( . 

Then equation (2) has a periodic solution of period T  provided  r  is small enough, 







 −

+

−
<

L

cab

Lb

cab
r

µγ
,

)2(
min  

with  
b

cab

2

+
=µ  and )1(

2
µγ +=

L
. 
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Proof. Our main tool for the proof of Theorem 2 is a functional ),,( ttt zyxV  defined by: 

),,( ttt zyxV = ),,(1 ttt zyxV + ),,(2 zyxV +1+ ∫ ∫
− +

0

)( 
r

t

st

dsdzL θθ ,                          (5) 

where 

∫=
x

ttt dfzyxV
0

1 )(),,( ξξµ + yxf )( + ∫
y

d
0

)( ηηηψµ + ∫
y

dg
0

)( ηη  

+ yzµ + 2

2

1
z + ∫ ∫

− +

0

2 )(  
r

t

st

dsdz θθγ ,                                               (6) 

),,(2 zyxV =















≥≤

≤≤

≥≥

≤≥

,  ,1          ,sgn.

  ,1                ,

    ,1    ,sgn.sgn

  ,1        ,sgn

Mzxzx

Mzx
M

xz

Mzxxz

Mzxx
M

z

                                                                (7) 

L , M  ( 1>M ), µ   and γ  are some positive constants; the constants µ   and γ  is defined in 

Theorem 2. 

Now, since 0)0()0( == fg , it is immediate that 0)0,0,0(1 =V . In view of the assumptions 

ay ≥)(ψ , bygy ≥− )(1 , )0( ≠y , 0sgn)( >xxf , )0( ≠x , and  cxf =′ )}(sup{ ,  we see that  

 

∫≥
x

ttt dfzyxV
0

1 )(),,( ξξµ + yxf )( +
2

2

1
ayµ + ∫

y

d
g

0

)(
ηη

η

η
+ yzµ  + 2

2

1
z + ∫ ∫

− +

0

2 )(  
r

t

st

dsdz θθγ  

≥ ∫
x

df
0

)( ξξµ + yxf )( +
2

2

1
ayµ + 2

2
y

b
+ yzµ + 2

2

1
z + ∫ ∫

− +

0

2 )(  
r

t

st

dsdz θθγ  

  = [ ]2
)(

2

1
xfby

b
+ + ∫

x

df
0

)( ξξµ +
2

2

1
ayµ - )(

2

1 2
xf

b
+ yzµ + 2

2

1
z + ∫ ∫

− +

0

2 )(  
r

t

st

dsdz θθγ                                                                

= [ ]2
)(

2

1
xfby

b
+ +

























′−∫ ∫
x y

ddfbf
by

0 0

2
))(()(4

2

1
ξηηξµξ     

+ 2)(
2

1
zy +µ + 2)(

2

1
ya µµ − + ∫ ∫

− +

0

2 )(  
r

t

st

dsdz θθγ .                                            (8) 

Now, by help of the assumptions of Theorem 2, we have  
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µ−a =
b

cab
a

2

+
− = 0

2
>

−

b

cab
,  

)(xfb ′−µ = )(
2

xf
cab

′−
+

=
2

)(2 xfcab ′−+
=

2

)(xfab ′−
≥ 0

2
>

− cab
, 

and  

0)( 

0

2 ≥∫ ∫
− +r

t

st

dsdz θθ .  

 

Hence, one can show from (8) that  

 

),,(1 ttt zyxV ≥ 2

1xD + 2

2 yD + 2

3 zD ≥ )( 222

4 zyxD ++ ,                        (9) 

 

where 4D = { }321 ,,min DDD . 

Next, it is also clear that the function 2V  is continuous and satisfies  

12 ≤V .                                                                                                  (10) 

 

Now, in view of (5), (9) and (10), together, it can be easily seen that the functional 

),,( ttt zyxV  satisfies the first part of condition (i) of Theorem 1. Similarly, making use of the 

assumptions of Theorem 2, it can also be shown that the functional ),,( ttt zyxV  satisfies the 

second part of condition (i) of Theorem 1. 

Let ),,(1 ttt zyxV
dt

d
 denote the time derivative of functional ),,(1 ttt zyxV  along the 

solutions of (3). Then, by a straightforward calculation from (6) and (3), we observe that   

),,(1 ttt zyxV
dt

d
= 2)( yxf ′ + 2zµ - )(yygµ - 2)( zyψ + ∫

−

′+
t

rt

dsszsygzy )())(()(µ  

+ rz 2γ - ∫
−

t

rt

dsz )(2 θγ + )( zy +µ )),(,),(,,( zrtyyrtxxtp −− .                    (11) 

Making use of the assumption Lyg ≤′ )(   and the inequality 
22 2 vuvu +≤ , we have the 

following: 
 

∫
−

′
t

rt

dsszsygy )())((µ ≤
2

Lµ 2ry +
2

Lµ
∫
−

t

rt

dssz )(2
, ∫

−

′
t

rt

dsszsygz )())(( ≤
2

L 2rz +
2

L
∫
−

t

rt

dssz )(2
. 

By using the afore inequalities in (11), we get  

),,(1 ttt zyxV
dt

d
= 2)( yxf ′ + 2zµ - )(yygµ - 2)( zyψ + rz 2γ +

2

Lµ 2ry +
2

L 2rz  

+ 







−+ γ

µ

22

LL
 ∫

−

t

rt

dssz )(2 + )( zy +µ )),(,),(,,( zrtyyrtxxtp −− .         (12) 
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Now, suppose that 0)}(sup{ >=′ cxf , ay ≥)(ψ  and 0>− cab .  Then, (12) implies that  
 

),,(1 ttt zyxV
dt

d
≤ 2

2

)(
yr

L
c

y

yg








−−−

µ
µ 2

2
zrr

L
a 








−−−− γµ  

+ 







−+ γ

µ

22

LL
 ∫

−

t

rt

dz θθ )(2
+ zy +µ )),(,),(,,( zrtyyrtxxtp −− .                                

By use of 
b

cab

2

+
=µ , it follows that               

),,(1 ttt zyxV
dt

d
≤ 2

2

)(
yr

L
c

y

yg








−−−

µ
µ 2)

2
(

2
zr

L

b

cab






+−

−
− γ  

  + 







−+ γ

µ

22

LL
 ∫

−

t

rt

dssz )(2 + )( zy +µ )),(,),(,,( zrtyyrtxxtp −− . 

If we choose 
22

µ
γ

LL
+=  and use the assumption mzrtyyrtxxtp ≤−− )),(,),(,,( , then we 

obtain  

   ),,(1 ttt zyxV
dt

d
≤ 2

2

)(
yr

L
c

y

yg








−−−

µ
µ 2)2(

22
zr

L

b

cab






+−

−
− µ + zmym +µ . (13)          

Now, a direct computation along ),,(2 zyxV  and solution the ))(),(),(( tztytx of system 

(3) yields:  

),,(2 zyxV
dt

d
=

















≥≤

≤≤−−+′+−−−+

≥≥

≤≥−−+′+−−−

∫

∫

−

−

.  ,1  ,sgn.

  ,1 )},),(,),(,,()())(()()()({

    ,1  ,0

  ,1 ,sgn)}),(,),(,,()())(()()()({
1

Mzxzy

Mzxzrtyyrtxxtpdsszsygxfygzy
M

x

M

yz

Mzx

Mzxxzrtyyrtxxtpdsszsygxfygzy
M

t

rt

t

rt

ψ

ψ

 

With help of the assumptions of Theorem 2, one can also obtain the following: 
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),,(2 zyxV
dt

d
≤

















≥≤

≤≤++++++

≥≥

≤≥+++++−

∫

∫

−

−

.  ,1  , 

  ,1 ,)()()(

    ,1  ,0

  ,1 },)()({sgn)(
1

Mzxy

MzxdsszLmygaygy

Mzx

MzxdsszLmygaxxf
M

t

rt

t

rt

δ

δ

 

First, we consider V = ),,( ttt zyxV  in the domain 0}  ,max{ ≥−− MzKy , where the 

constants K  and M  are large enough, which will be determined later. Hence, we have to 

consider the following two cases:  
 

Case :)10 1≥≥ Ky , and x , z  are arbitrary.  Then, we have  

),,(2 zyxV
dt

d
≤ y  + )(yg + a +δ + m + ∫

−

t

rt

dsszL )( .                                                (14) 

Now, by using (5), (13) and (14), we have  

),,( ttt zyxV
dt

d
≤ 2

2
)( yr

L
cyyg 





−−−

µ
µ 2)2(

22
zr

L

b

cab






+−

−
− µ  

                                              + zmym ++  )1(µ  + )(yg + a +δ + m + ∫
−

t

rt

dsszL )( . 

Therefore, one can obtain the following: 

),,( ttt zyxV
dt

d
≤  





+−− 2)

2
()( yr

L
cyyg

µ
µ 2)2(

22
zr

L

b

cab






+−

−
− µ  

+ )(yg + zmym ++  )1(µ + a +δ + m + zLr - ∫
−

t

rt

dsszL )( + ∫
−

t

rt

dsszL )(  

= 















+−−− 2

2
)()( yr

L
cygyyg

µ
µ 2)2(

22
zr

L

b

cab






+−

−
− µ  

+ zmym ++  )1(µ  + a +δ + m + zLr .                                  

Now, we consider the term:  

2

2
)()( yr

L
cygyyg 








+−−

µ
µ . 

Let us define  

1
)(2

3
<

+

+
=

cab

cab
h . 
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Then, there exists a constant 1K , ( 11 >K ), satisfying h
y

≥









−

µ

1
1  for 1Ky ≥ . Therefore, 

when 1Ky ≥ ,  it follows that  

2

2
)()( yr

L
cygyyg 








+−−

µ
µ =

y

yg )(
µ 21

1 y
y 









−

µ
2

2
yr

L
c 








+−

µ
 

≥
b

cab

2

+
b 2

)(2

3
y

cab

cab

+

+ 2

2
yr

L
c 








+−

µ
= 2

24
yr

Lcab








−

− µ
. 

Thus, one can arrive: 

),,( ttt zyxV
dt

d
≤ 2

24
yr

Lcab








−

−
−

µ 2)2(
22

zr
L

b

cab






+−

−
− µ  

 + zLrmym )( )1( +++µ +( a +δ + )m y . 

The above inequality implies  

),,( ttt zyxV
dt

d
≤ )( 22

1 zy +− δ + zLrmym )( )1( +++µ +( a +δ + )m y  

for a positive constant 1δ   provided that 







 −

+

−
<

L

cab

bL

cab
r

µµ 2
,

)2(
min .  

Now, let  

}  ,1max{1 Lrmmam +++++= δµτ . 

Hence, we have 

),,( ttt zyxV
dt

d
≤ )( 22

1 zy +− δ + )(1 zy +τ  

 = )( 
2

221 zy +−
δ














−








−+








−−

2

1

2

1

2

1

1

2

1

11 2 
2 δ

τ

δ

τ

δ

τδ
zy  ≤ )( 

2

221 zy +−
δ

 

provided that   1

11)12( −+≥ δτy . 

Let { }1

1

11   ,)12(max KK −+= δτ . If  Ky ≥ , then we have  

),,( ttt zyxV
dt

d
≤ )( 

2

221 zy +−
δ

. 
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Case :)20 Mz ≥ , and x , y  are arbitrary. Then, clearly, it follows that  

),,(2 zyxV
dt

d
≤ y . 

Next, by following a similar way as afore mentioned, choosing 
22

µ
γ

LL
+=  and taking  







 −

+

−
<

L

cab

bL

cab
r

µµ 2
,

)2(
min , 

one can easily obtain that  

),,( ttt zyxV
dt

d
≤ )( 22

2 zy +− δ + zLrmym )( )1( +++µ  

 ≤ )( 22

2 zy +− δ + )(2 zy +τ ≤ )( 
2

222 zy +−
δ

 

for some positive constants 2δ  and 2τ  provided  that KMz =≥ .  

Finally, we consider V  in 0}  ,max{ ≤−− MzKy . Now, we assume that 1>≥ Hx , 

where the constant H  will be determined later. Then, we obtain  

),,(2 zyxV
dt

d
≤ })({)(maxsgn)(

1
∫
−

≤
+++++−

t

rt
Ky

dsszLmaygxxf
M

δ .           (15) 

Hence, we can conclude from (5), (13) and (15) that  

),,( ttt zyxV
dt

d
≤ 2

22
yr

Lcab






−

−
−

µ 2)2(
22

zr
L

b

cab






+−

−
− µ + zmym +µ                                                                      

 })({)(maxsgn)(
1

∫
−

≤
+++++−

t

rt
Ky

dsszLmaygxxf
M

δ + zLr - ∫
−

t

rt

dsszL )(  

≤ 2

22
yr

Lcab






−

−
−

µ 2)2(
22

zr
L

b

cab






+−

−
− µ  

 )(maxsgn)(
1

ygxxf
M Ky ≤

+− + zmym +µ + )( LMrma +++ δ  

≤ 2

22
yr

Lcab






−

−
−

µ 2)2(
22

zr
L

b

cab






+−

−
− µ  
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Ky

ygxxf
M ≤

+− )(maxsgn)(
1

+ )( mMmKLMrma +++++ µδ . 

Now, since ∞→xxf sgn)(   as ∞→x  and  1>≥ Hx , we can write that  

xxf sgn)( ≥












++++++
≤

mMmKLMrmaygM
Ky

µδ)(max2 . 

Therefore  

M

xxf

2

sgn)(
− + 0)()(max ≤++++++

≤

mMmKLMrmayg
Ky

µδ . 

Now,  in view of the above discussion, we have  

),,( ttt zyxV
dt

d
≤ 2

22
yr

Lcab






−

−
−

µ 2)2(
22

zr
L

b

cab






+−

−
− µ xxf

M
sgn)(

2

1
− . 

Subject to the above discussion, one can that there exists a positive constant R , which is large 

enough, such that  

)(),,( uwzyxV
dt

d
ttt −≤  for 22

Ru ≥ , 

where 2

1

222 )( zyxu ++= .  Therefore,  ),,( ttt zyxV  satisfies all conditions of Theorem 1. 

Thus, the proof of Theorem 2 is now complete.   

Example .  Now, we consider nonlinear third order delay differential equation: 

)(
))((1

1
4)(

2
tx

tx
tx ′′









′+
++′′′ + )(4 rtx −′ + )(sin rtx −′ + )(11 rtx −                                                               

 =
22222 ))(())(())(()()(cos2

1

txrtxtxrtxtxt ′′+−′+′+−+++
                (16) 

with the  associated system  

)(tx′ = )(ty ,  )(ty′ = )(tz , 

)(tz′ = )(
)(1

1
4

2
tz

ty 








+
+− ))(sin)(4( tyty +−  

 )(11 tx− + ∫
−

t

rt

dssy )(11 + ∫
−

+
t

rt

dsszsy )())(cos4(                 

)()()()()(cos2

1
22222

tzrtytyrtxtxt +−++−+++
+ .                   
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Now, one can easily observe the following, respectively: 

21

1
4)(

y
y

+
+=ψ , 14)(0 ≤−≤ yψ , 

4=a , 1=δ , yyyg sin4)( += , 0)0( =g , 

3
sin

4
)(

≥+=
y

y

y

yg
, 3=b , yyg cos4)( +=′ , 

Lyyg =≤+=′ 5cos4)( , 

xxf 11)( = , 0)0( =f , 0sgn11sgn)( >= xxxxf , 

∞→= xxxxf sgn11sgn)(   as ∞→x ,  

11)( =′ xf , 11=c , 01 >=− cab , 

1
46

45

)(2

3
<=

+

+
=

cab

cab
h , 

)),(,),(,,( zrtyyrtxxtp −−  

= m
zrtyyrtxxt

=≤
+−++−+++

1
)()(cos2

1
22222

, 

)),(,),(,,2( zrtyyrtxxtp −−+ π  

=
22222 )()()2cos(2

1

zrtyyrtxxt +−++−++++ π
 

=
22222 )()(cos2

1

zrtyyrtxxt +−++−+++
 

= )),(,),(,,( zrtyyrtxxtp −− , π2=T . 

Thus, all the assumptions of Theorem 2 hold. This fact shows that equation (16) has a 

periodic solution of period T , π2=T . 
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Abstract

We examine the inverse limits generated by inverse sequences on [0, 1] with N−type

bonding maps chose from a four-parameter family of piecewise linear continuous functions.

We analyze the continua generated by these sequences and obtain sufficient conditions for

these sequences to give rise to indecomposable inverse limits.
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§1 Introduction and some basic terminologies

Inverse limits, besides being of intrinsic interest to topologists, can often be used to represent

attractors of dynamical systems. For example, the inverse limit space with a single full unimodal

bonding map is homeomorphic to the attracting set of Smales horseshoe. In a sequence of papers

[1,2,3], Ingram conducted an extensive investigation of inverse limit spaces generated by single

bonding maps chosen from the two-parameter family G={gb,c | 0 ≤ b ≤ 1, 0 < c < 1} where gb,c

is given by

gb,c(x) =

{
1−b

c x + b if x ≤ c
1−x
1−c if x ≥ c

.

Brian Raines [4] considered inverse limits of sequences of functions gbi,ci
from the family G. He

gave several sufficient conditions such that the inverse limit generated by gbi,ci
is indecomposable.

In this paper, we extended the two-parameter family G={gb,c|0 ≤ b ≤ 1, 0 < c < 1} to

four-parameter family G′={ga,b,c,d|0 ≤ a, d ≤ 1, 0 < b < c < 1} where ga,b,c,d is given by

ga,b,c,d(x) =


1−a

b x + a if x ∈ [0, b]
x−c
b−c if x ∈ [b, c]

d
1−c(x− c) if x ∈ [c, 1]

.

∗Project supported by the National Natural Science Foundation of China(10461007 and 10761007) and sup-

ported partly by the Provincial Natural Science Foundation of Jiangxi, China (2008GZS0076 and 2007GZS2051).
†xjhuangxwen@163.com
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We consider inverse limit of sequences of function gai,bi,ci,di
. By looking at the behavior of

certain iterates of these complicated N−type maps on particular subintervals of [0, 1], we can

study the inverse limit generated by these sequences of function and obtain several sufficient

conditions such that the inverse limit generated by gai,bi,ci,di
is indecomposable.

Let X0, X1, · · · be a sequence of metric spaces and f0, f1, · · · be a sequence of maps (contin-

uous functions) such that fi : Xi+1 → Xi for each i ∈ N . Define the inverse limit of the inverse

sequence (Xi, fi) by the following:

lim
←

(Xi, fi) = {x = (x0, x1, · · ·) ∈
∞∏
i=0

Xi|fi(xi+1) = xi, for i = 0, 1, · · ·}

with metric given by d(x, y) =
∞∑
i=0

di(xi,yi)
2i , where di is a metric for Xi bounded by one. Each

map fi is called a bonding map. We denote the projection mapping from Πi∈NXi to Xi by

πi where πi(x1, x2, x3, · · ·) = xi. Often it will be convenient to consider, for j > 1, the map

f j
i = fi ◦ fi+1 ◦ · · · ◦ fj−1 : Xj → Xi. Throughout this paper, a continuum is a nonempty,

compact, connected metric space.

A continuum is decomposable if it is the union of two of its proper subcontinua, otherwise,

it is indecomposable. An inverse sequence, {Xi, fi} is said to satisfy the two− pass condition

provided that for each positive integer i whenever Ai+1 and Bi+1 are subcontinua of Xi+1 such

that Xi+1 = Ai+1 ∪ Bi+1, then fi[Ai+1] = Xi or fi[Bi+1] = Xi. The following theorems are

well-known (see [5]).

Theorem 1.1 Suppose {Xi, fi} is an inverse sequence that satisfies the two−pass condition.

Then lim
←
{Xi, fi} is indecomposable.

Theorem 1.2 (The Subsequence Theorem). Suppose that n1, n2, n3, · · ·is an increasing

sequence of positive integers. Then lim
←
{Xi, fi} is homeomorphic to lim

←
{Xnj , f

nj
ni }.

Later we will use the subsequence theorem to show an inverse limit is indecomposable by

showing that f j
i meets the two− pass condition, for some j > i.

§2 Main results and their proofs

Firstly we assume that fi = gai,bi,ci,di
is a sequence of maps with bi = b, ci = c ∈ (0, 1) for

every i ∈ N . This implies that if p = c
1−b+c then fi(p) = p for every i ∈ N . The fact that

each of these maps share the same fixed point makes determining when they give rise to an

indecomposable inverse limit easier.

Theorem 2.1 Suppose that for every i ∈ N, ai > p > di. Then lim
←
{[0, 1], fi} is decompos-

able.

Proof Notice that fi([0, p]) = [p, 1] and that fi([p, 1]) = [0, p] for every i ∈ N . For n ∈ N

let X2n−1 = Y2n = [0, p] and Y2n−1 = X2n = [p, 1]. Let gi = fi|Xi+1 and hi = fi|Yi+1 . Then

2
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gi(Xi+1) = Xi and hi(Yi+1) = Yi. So lim
←
{Xi, gi} and lim

←
{Yi, hi} are proper subcontinua of

lim
←
{[0, 1], fi} and lim

←
{[0, 1], fi} = lim

←
{Xi, gi}∪ lim

←
{Yi, hi}. Thus lim

←
{[0, 1], fi} is decomposable.

In [6], Morton Brown shows that if lim
i→∞

fi = F at or above a certain rate, then lim
←
{Xi, fi}

is homeomorphic to lim
←
{Xi, F}. In [1], Ingram shows that lim

←
{[0, 1], gb,c} is decomposable

whenever b = p = 1
2−c and in [4] Brian Raines shows that if b′is are converging from below to

1
2−c fast enough then lim

←
{[0, 1], gbi,ci

} is decomposable, even though each bi is less than 1
2−c . As

a result, he give a sufficient conditions for these inverse limits to be indecomposable. Now we

will obtain a similar result for fi.

Theorem 2.2 If one of the following two holds, then lim
←
{[0, 1], fi} is indecomposable.

(1) there is an α < p = c
1−b+c with ai ≤ α for infinitely many i ∈ N ;

(2) there is an β > p = c
1−b+c with di ≥ β for infinitely many i ∈ N .

Proof We only prove the first case, the second case is similar.

First notice that f−1
i (x) ∩ [b, c] = {x(b − c) + c}, for all i ∈ N and x ∈ [0, 1]. Since this is

singleton we will abuse the notation in the future and just write f−1
i (x) ∩ [b, c] = x(b − c) + c.

So if x, y ∈ [0, 1], then |f−1
i (x) ∩ [b, c]− f−1

j (y) ∩ [b, c]| = |b− c| · |y − x|. For a fixed j ∈ N , let

uj
i = f−1

i (uj
i−1) ∩ [b, c], uj

i−1 = b and vj
i = f−1

i (vj
i−1) ∩ [b, c], vj

i−1 = c, for all i ∈ N, i ≥ j. Then

|uj
j+n−1 − p| = |b− c|n|b− p| and |vj

j+n−1 − p| = |b− c|n|c− p|. Since |b− c| < 1, the sequence

uj
j , u

j
j+1, · · · and the sequence vj

j , v
j
j+1, · · · both converges to p.

Let n ∈ N such that |uj
m − p| < |p − α| and |vj

m − p| < |p − α| for all m > n > j. Then

uj
m ∈ (α, 1) and vj

m ∈ (α, 1) for m > n. Notice that since for infinitely many i ∈ N, ai = fi(0) <

α, every point, x, of (α, 1) ⊆ (fi(0), fi(b)) has an inverse image, ix̂. Choose i ∈ N large enough

so that i > n + 1, and ai ≤ α. Then iûj
i and iv̂j

i are both in (0, c), with the interval between

them mapped across [0, 1] under the map f i+1
j . Since fi([b, 1]) = [0, 1] for all i ∈ N, f i+1

j is a

two− pass map, for infinitely many i ∈ N, i > j.

Let A,B be subcontinua of X = lim
←
{[0, 1]} such that A ∪ B = X. Since A and B are

both connected, πi[A] and πi[B] are subintervals of [0, 1] for every i ∈ N . Since A ∪ B =

X, [0, 1] = πi[A] ∪ π[B]. If either πi[A] or πi[B] contains [b, 1] for infinitely many i ∈ N , then,

since fi([b, 1]) = [0, 1] for all i ∈ N , either πi[A] or πi[B] is [0, 1]. This would imply that either

A = X or B = X. So suppose that for some n ∈ N , if m > n then neither πm[A] nor πm[B]

contains [b, 1]. Hence we have that for infinitely many i ∈ N , either πi[A] or πi[B] contains [0, b],

without loss of generality, assume [0, b] ⊆ πi[A] for infinitely many i ∈ N . Let j ∈ N , and define

the sequence of points {iûj
i}i∈N and {iv̂j

i }i∈N as above. Choose n, i ∈ N as was done above,

such that πi[A] contains [0, b]. Then iûj
i and iv̂j

i are both in πi[A], and πj [A] = f i
j(πi[A]) = [0, 1].

Since this is true for any j ∈ N,A = X. Either A or B cannot be a proper subcontinuum of X,

so X is indecomposable.
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However the converse to Theorem 2.2 is not true.

Theorem 2.3 If lim
i→∞

ai = lim
i→∞

di = p but for infinitely many n ∈ N, one of the following

two holds, then lim
←
{[0, 1], fi} is indecomposable.

(1) a2n ≤ p− (c− b)n(p− b);

(2) d2n ≥ p + (c− b)n(c− p).

Proof We only prove the first case, the second case is similar.

Let A and B be proper subcontinua of X = lim
←
{[0, 1], fi} with X = A∪B,X 6= A and X 6= B.

Since A and B are proper subcontinua of X there must be some n ∈ N with πm[A] 6= [0, 1]

and πm[B] 6= [0, 1] for all m > n. Otherwise either A = X or B = X. In fact since each fi

maps [b, 1] across [0, 1], there must be some m ∈ N with πk[A] + [b, 1] and πk[B] + [b, 1] for

all k ≥ m. Choose q ∈ N, q > m such that a2q ≤ p − (c − b)q(p − b). Since neither A nor B

contain [b, 1] in their 2qth projection, one must contain [0, b] in its 2qth projection, without loss

of generality, assure that A is this subcontinuum. Then πq[A] = f2q+1
q (π2q[A]) ⊇ f2q+1

q ([0, b]).

Now building two sequences of pre-images of the critical points treating the qth factor space

as the first. Let uq
i = f−1

i (uq
i−1) ∩ [b, c], uq

q−1 = b and vq
i = f−1

i (vq
i−1) ∩ [b, c], vq

q−1 = c. Using

the notation of the proof to the previous theorem, it is easy to see that both 2qûq
2q and 2qv̂q

2q

are in [0, c] ⊆ π2q[A]. So πq[A] = f2q+1
q (π2q[A]) ⊇ f2q+1

q ([0, c]) = [0, 1]. This contradicts our

observation that, πk[A] + [b, 1] and πk[B] + [b, 1] for all k ≥ m, since A and B are proper

subcontinua of X and q was chosen to be greater than n. Hence X is indecomposable.

So if ai > p or di < p for co-finitely many i ∈ N , or if ai → p or di → p fast enough, then

the inverse limit is decomposable. But if ai < α < p or di > β > p for infinitely many i ∈ N or

if ai → p or di → p slowly, then the inverse limit is indecomposable.

Finally, we present a sufficient condition for sequences of gai,bi,ci,di
maps with varying critical

points to give rise to indecomposable inverse limits.

Theorem 2.4 If for infinitely many i ∈ N , either bi > ai or di > ci. Then lim
←
{[0, 1], fi} is

indecomposable.

Proof Suppose bi > ai for infinitely many i ∈ N . Let {ni}i∈N be a sequence in N such that

ani ≤ bni for all i ∈ N . Define Ani+1 = [0, bni+1] and Bni+1 = [bni+1, 1]. Then fni(Bni+1) = [0, 1]

for all i ∈ N , and fni(Ani+1) = [ani , 1] ⊇ [bni , 1]. Thus fni+1
ni−1 (Ani+1) ⊇ fni−1([bni , 1]) = [0, 1],

and fni+1
ni−1 is a two − pass map. By Theorem 1.1 and the Subsequence Theorem, lim

←
{[0, 1], fi}

is indecomposable.

The case of di > ci for infinitely many i ∈ N is similar, we omit it.
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Abstract: In this paper, we study the weighted composition operators Tψ,ϕf = ψf ◦ ϕ

between µ−Bloch type spaces on the polydisc of Cn. For normal functions µ and ω on [0, 1), we
characterize the boundedness and the compactness of Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) (respectively,
Bµ,0(Dn) −→ Bω,0(Dn)).
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1 Introduction

Let D be the unit disc in the complex plane C, and let Dn = {z = (z1, z2, · · · , zn) ∈ Cn :
zj ∈ D, j = 1, 2, · · · , n} be the polydisc of Cn. H(Dn) and H(Dn,Dn) denote the family of all
holomorphic functions and holomorphic self-mappings on Dn respectively.

A positive continuous function µ on [0, 1) is called normal if there are three constants 0 ≤
δ < 1 and 0 < a < b < ∞ such that

µ(r)
(1− r)a

is decreasing on [δ, 1) and lim
r→1−

µ(r)
(1− r)a

= 0,

µ(r)
(1− r)b

is increasing on [δ, 1) and lim
r→1−

µ(r)
(1− r)b

= ∞.

The normal function µ, as a weight, has been usually used to defined the weighted Bergman space
or mixed norm space. For example, µ(r) = (1 − r2)p with 0 < p < ∞, µ(r) = (1 − r2) log 2

1−r2

and µ(r) = 1/{log log e2(1 − r2)−1} are all normal weights. Given µ we will extend it to D by
µ(z) = µ(|z|). A function f ∈ H(Dn) is said to belong to the µ−Bloch type space Bµ(Dn) if

‖f‖Bµ = sup
z∈Dn

n∑

j=1

µ(zj)

∣∣∣∣∣
∂f

∂zj
(z)

∣∣∣∣∣ < ∞.

It is easy to check that Bµ(Dn) is a Banach space under the norm ‖f‖µ = |f(0)|+‖f‖Bµ . When
µ(r) = 1 − r2 and ω(r) = (1 − r2)1−p with p ∈ (0, 1), two typical normal weights, the induced
spaces Bµ(Dn) are the Bloch space and Lipschitz type space, respectively.
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Notice that lim
z→∂Dn

n∑
j=1

µ(zj)
∣∣∣ ∂f
∂zj

(z)
∣∣∣ = 0 will imply f is a constant when n ≥ 2 as pointed out

by Timoney in [1]. Meanwhile, Bµ(Dn) contains all polynomials in n complex variables. Hence,
instead of using the limit in the above expression we define the little µ−Bloch type space as the
following. The little µ−Bloch type space Bµ,0(Dn) is the closure of all polynomials in n complex
variables in the Banach space Bµ(Dn) . Obvious, Bµ,0(Dn) is a closed subspace of Bµ(Dn), and
Bµ,0(Dn) is a Banach space also.

Let ψ ∈ H(Dn), ϕ(z) = (ϕ1(z), ϕ2(z), · · · , ϕn(z)) ∈ H(Dn,Dn). The weighted composition
operator Tψ,ϕ is defined by

Tψ,ϕf(z) = ψ(z)f(ϕ(z)), f ∈ H(Dn), z ∈ Dn.

It is easy to see that an operator defined in this manner is linear. We can regard this operator as
a generalization of a multiplication operator Mψ and a composition operator Cϕ. In one complex
variable case, the behavior of these operators have been studied extensively in [2-8]. In several
complex variables case, Zhang and Xiao [9] got the characterization on ϕ and ψ for which the
induced weighted composition operator is bounded or compact from Bµ(B) to Bω(B) in the unit
ball. Luo and Ueki [10] discussed the same problems on the Bergman and Hardy spaces. And in
the polydisc, Zhou and Shi [11] and Zhou [12] obtained the sufficient and necessary condition on
ϕ such that Cϕ is bounded or compact on B(1−r2)(Dn) and B(1−r2)p(Dn)(0 < p ≤ 1) respectively.
Hu [13] investigated the same problems between different µ−Bloch type spaces. And also, Xu
and Liu [14] characterized the boundedness and the compactness of Tψ,ϕ between B(1−r2)p(Dn)
and B(1−r2)q(Dn) for 0 ≤ p, q ≤ ∞.

In what follows we always suppose that both of µ and ω are normal functions on [0, 1).
The purpose of this work is to obtain the sufficient and necessary conditions on ψ ∈ H(Dn)
and ϕ(z) ∈ H(Dn,Dn), for which the operator Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) (respectively,
Bµ,0(Dn) −→ Bω,0(Dn)) is bounded or compact. Our work will generalize [5, 7, 11-14], and
main results are the following:

Theorem A Let ψ ∈ H(Dn) and ϕ ∈ H(Dn,Dn). Then
(1) Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is a bounded operator if and only if the following are all

satisfied:

(i) sup
z∈Dn

n∑
j=1

ω(zj)
∣∣∣ ∂ψ
∂zj

(z)
∣∣∣
(

1 +
n∑

k=1

∫ |ϕk(z)|
0

dt
µ(t)

)
< ∞, (1.1)

(ii) sup
z∈Dn

n∑
j,k=1

ω(zj)
µ(ϕk(z))

∣∣∣ψ(z)∂ϕk
∂zj

(z)
∣∣∣ < ∞. (1.2)

(2) Tψ,ϕ : Bµ,0(Dn) −→ Bω,0(Dn) is a bounded operator if and only if (1.1) and (1.2) hold,
and for each multi-index α, ψϕα ∈ Bω,0(Dn).

Theorem B Let ψ ∈ H(Dn), ϕ ∈ H(Dn,Dn) and
∫ 1
0

dt
µ(t) = ∞. Then

(1) Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is a compact operator if and only if the following are all
satisfied:

(i) lim
ϕ(z)→∂Dn

n∑
j=1

ω(zj)
∣∣∣ ∂ψ
∂zj

(z)
∣∣∣
(

1 +
n∑

k=1

∫ |ϕk(z)|
0

dt
µ(t)

)
= 0, (1.3)
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(ii) lim
ϕ(z)→∂Dn

n∑
j,k=1

ω(zj)
µ(ϕk(z))

∣∣∣ψ(z)∂ϕk
∂zj

(z)
∣∣∣ = 0, (1.4)

(iii) ψ ∈ Bω(Dn) and ψϕk ∈ Bω(Dn) for all k = 1, 2, · · · , n.

(2) Tψ,ϕ : Bµ,0(Dn) −→ Bω,0(Dn) is a compact operator if and only if (1.3) and (1.4) hold,
and for each multi-index α, ψϕα ∈ Bω,0(Dn).

Theorem C Let ψ ∈ H(Dn), ϕ ∈ H(Dn,Dn) and
∫ 1
0

dt
µ(t) < ∞. Then

(1) Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is a compact operator if and only if the following are all
satisfied:

(i) lim
|ϕk(z)|→1

n∑
j=1

ω(zj)
µ(ϕk(z))

∣∣∣ψ(z)∂ϕk
∂zj

(z)
∣∣∣ = 0 for all k = 1, 2, · · · , n, (1.5)

(ii) ψ ∈ Bω(Dn) and ψϕk ∈ Bω(Dn) for all k = 1, 2, · · · , n.

(2) Tψ,ϕ : Bµ,0(Dn) −→ Bω,0(Dn) is a compact operator if and only if (1.5) holds, and for
each multi-index α, ψϕα ∈ Bω,0(Dn).

Throughout this paper, C, C1, C2, · · · will stand for positive constants whose value may
change from line to line but not depend on the functions in H(Dn).

2 The boundedness of Tψ,ϕ

Lemma 2.1 Let f ∈ Bµ(Dn). Then for each z ∈ Dn,

|f(z)| ≤

1 +

n∑

j=1

∫ |zj |

0

dt

µ(t)


 ‖f‖µ.

Proof. Since

f(z)− f(0) =
n∑

j=1

[f(0, · · · , 0, zj , · · · , zn)− f(0, · · · , 0, zj+1, · · · , zn)]

=
n∑

j=1

∫ 1

0

d

dt
f(0, · · · , 0, tzj , zj+1, · · · , zn)dt

=
n∑

j=1

zj

∫ 1

0

∂

dwj
f(0, · · · , 0, tzj , zj+1, · · · , zn)dt,

|f(0)| ≤ ‖f‖µ and
∣∣∣ ∂f
∂zj

(z)
∣∣∣ ≤ ‖f‖µ

µ(zj)
, we can obtain the result by direct calculation.

Given a normal function µ, denote k0 = max(0, [log2
1

µ(δ) ]), rk = µ−1( 1
2k ) and nk = [ 1

1−rk
] for

k > k0, where the symbol [x] means the greatest integer not more than x. In what follows, we
set the function g, as in [15], to be

g(z) = 1 +
∞∑

k>k0

2kznk , z ∈ D.

Lemma 2.2 ([15]) Let µ be a normal function, then the function g(z) is holomorphic on
D, g(r) is increasing on [0, 1) and

0 < C1 = inf
r∈[0,1)

µ(r)g(r) ≤ sup
r∈[0,1)

µ(r)g(r) = C2 < ∞.
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Proof of Theorem A. (1) Suppose that (1.1) and (1.2) hold. Then for any f ∈ Bµ(Dn),
by Lemma 2.1 we have

n∑

j=1

ω(zj)

∣∣∣∣∣
∂(ψ · f ◦ ϕ)

∂zj
(z)

∣∣∣∣∣

≤
n∑

j=1

ω(zj)

∣∣∣∣∣
∂ψ

∂zj
(z)

∣∣∣∣∣ |f(ϕ(z))|+
n∑

j,k=1

ω(zj)
∣∣∣∣ψ(z)

∂f

∂wk
(ϕ(z))

∣∣∣∣
∣∣∣∣∣
∂ϕk

∂zj
(z)

∣∣∣∣∣

≤
n∑

j=1

ω(zj)

∣∣∣∣∣
∂ψ

∂zj
(z)

∣∣∣∣∣

(
1 +

n∑

k=1

∫ |ϕk(z)|

0

dt

µ(t)

)
‖f‖µ +

n∑

j,k=1

ω(zj)
µ(ϕk(z))

∣∣∣∣∣ψ(z)
∂ϕk

∂zj
(z)

∣∣∣∣∣ ‖f‖µ

≤ C‖f‖µ. (2.1)

Meanwhile,

|(Tψ,ϕf)(0)| = |ψ(0)||f(ϕ(0))| ≤ |ψ(0)|
(
|f(0)|+ max

|zk|≤|ϕk(0)|,j,k=1,2,···,n

∣∣∣∣∣
∂f

∂zj

∣∣∣∣∣

)
≤ C‖f‖µ. (2.2)

Hence, (2.1) and (2.2) yield that Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is bounded.
Conversely, suppose that Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is bounded. Then ψ ∈ Bω(Dn) and

ψϕk ∈ Bω(Dn), since 1, zk ∈ Bµ(Dn) for all k = 1, 2, · · · , n. So, we obtain

sup
z∈Dn

n∑

j=1

ω(zj)

∣∣∣∣∣ψ(z)
∂ϕk

∂zj
(z)

∣∣∣∣∣ ≤ ‖ψ‖ω + ‖ψϕk‖ω < ∞, k = 1, 2, · · · , n. (2.3)

We claim that, there exist two constants C1 and C2 such that for w ∈ Dn and k = 1, 2, · · · , n,

n∑

j=1

ω(wj)

∣∣∣∣∣
∂ψ

∂zj
(w)

∣∣∣∣∣
∫ |ϕk(w)|

0

dt

µ(t)
≤ C1 (2.4)

and
n∑

j=1

ω(wj)
µ(ϕk(w))

∣∣∣∣∣ψ(w)
∂ϕk

∂zj
(w)

∣∣∣∣∣ ≤ C2. (2.5)

In fact, if |ϕk(w)| ≤ 1
2 , then ψ ∈ Bω(Dn) and (2.3) imply these estimates (2.4) and (2.5). In the

following, we always assume that |ϕk(w)| > 1
2 . First, we prove that (2.5) holds. Take the test

function

f(z) =

∫ ϕk(w)zk
0 g(t)dt

∫ ϕk(w)zk

|ϕk(w)|2 g(t)dt

ϕk(w)
∫ |ϕk(w)|2
0 g(t)dt

.

By the definition of normal weight and Lemma 2.2, we get

∫ |ϕk(w)|

|ϕk(w)|2
g(t)dt ≤ Cg(|ϕk(w)|2)[1− |ϕk(w)|] ≤ C

∫ |ϕk(w)|2

|ϕk(w)|4
g(t)dt.

Then ∫ |ϕk(w)|2

0
g(t)dt ≤

∫ |ϕk(w)|

0
g(t)dt ≤ C

∫ |ϕk(w)|2

0
g(t)dt. (2.6)
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Thus,

n∑

j=1

µ(zj)

∣∣∣∣∣
∂f

∂zj
(z)

∣∣∣∣∣ = µ(zk)|g(zkϕk(w))|

∣∣∣∣
∫ ϕk(w)zk
0 g(t)dt +

∫ ϕk(w)zk

|ϕk(w)|2 g(t)dt

∣∣∣∣
∫ |ϕk(w)|2
0 g(t)dt

≤ C
∫ |ϕk(w)|
0 g(t)dt

∫ |ϕk(w)|2
0 g(t)dt

≤ C.

This means f ∈ Bµ(Dn) and ‖f‖µ ≤ C, where C does not depend on w. By the boundedness

of Tψ,ϕ it is clear that C‖Tψ,ϕ‖ ≥ ‖Tψ,ϕf‖ω ≥
n∑

j=1
ω(zj)

∣∣∣∂(ψ·f◦ϕ)
∂zj

(z)
∣∣∣ . In particular, when z = w

we obtain

C‖Tψ,ϕ‖ ≥
n∑

j=1

ω(wj)

∣∣∣∣∣
∂ψ

∂zj
(w)f(ϕ(w)) + ψ(w)g(|ϕk(w)|2)∂ϕk

∂zj
(w)

∣∣∣∣∣

=
n∑

j=1

ω(wj)|ψ(w)|g(|ϕk(w)|2)
∣∣∣∣∣
∂ϕk

∂zj
(w)

∣∣∣∣∣ . (2.7)

On the other hand, by the definition of normal weight, we always have µ(ϕ2
k(w))

µ(ϕk(w)) ≤ C3. This,
together with (2.7) and Lemma2.2, gives

n∑

j=1

ω(wj)
µ(ϕk(w))

∣∣∣∣∣ψ(w)
∂ϕk

∂zj
(w)

∣∣∣∣∣

=
n∑

j=1

ω(wj)|ψ(w)|g(|ϕk(w)|2)
g(|ϕk(w)|2)µ(ϕ2

k(w))

∣∣∣∣∣
∂ϕk

∂zj
(w)

∣∣∣∣∣
µ(ϕ2

k(w))
µ(ϕk(w))

≤ C
n∑

j=1

ω(wj)|ψ(w)|g(|ϕk(w)|2)
∣∣∣∣∣
∂ϕk

∂zj
(w)

∣∣∣∣∣
≤ C‖Tψ,ϕ‖ < ∞.

This means the estimate (2.5) holds. Now, we prove that (2.4) holds. Take the test function

f(z) =
1

ϕk(w)

∫ ϕk(w)zk

0
g(t)dt.

It is easy to check that ‖f‖µ ≤ C, where C dose not depend on w. Then

C‖Tψ,ϕ‖ ≥ ‖Tψ,ϕf‖ω ≥



n∑

j=1

ω(zj)

∣∣∣∣∣
∂(ψ · f ◦ ϕ)

∂zj
(z)

∣∣∣∣∣




z=w

≥
n∑

j=1

ω(wj)

∣∣∣∣∣
∂ψ

∂zj
(w)

∣∣∣∣∣
1

|ϕk(w)|
∫ |ϕk(w)|2

0
g(t)dt−

n∑

j=1

ω(wj)|ψ(w)|g(|ϕk(w)|2)
∣∣∣∣∣
∂ϕk

∂zj
(w)

∣∣∣∣∣ .

So, by (2.7) we have

n∑

j=1

ω(wj)

∣∣∣∣∣
∂ψ

∂zj
(w)

∣∣∣∣∣
∫ |ϕk(w)|2

0
g(t)dt ≤ C‖Tψ,ϕ‖ < ∞. (2.8)
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It follows from (2.6), (2.8) and Lemma 2.2 that

n∑

j=1

ω(wj)

∣∣∣∣∣
∂ψ

∂zj
(w)

∣∣∣∣∣
∫ |ϕk(w)|

0

dt

µ(t)
≤ C‖Tψ,ϕ‖ < ∞.

This means the estimate (2.4) holds. Therefore, combining (2.4), (2.5) and the fact that ψ ∈
Bω(Dn), (1.1) and (1.2) hold.

(2) Suppose that Tψ,ϕ : Bµ,0(Dn) −→ Bω,0(Dn) is bounded. For each multi-index α, because
zα ∈ Bµ,0(Dn) we have ψϕα = Tψ,ϕzα ∈ Bω,0(Dn). That the boundedness imply (1.1) and
(1.2) can be proved in the same way as that in (1), as all the test functions defined in (1) are
holomorphic on Dn and hence in Bµ,0(Dn).

Conversely, suppose that (1.1) and (1.2) hold. From (1), we know that Tψ,ϕ : Bµ(Dn) −→
Bω(Dn) is bounded. So, we only need to prove that Tψ,ϕf ∈ Bω,0(Dn) whenever f ∈ Bµ,0(Dn).
In fact, for f ∈ Bµ,0(Dn) and any ε > 0, by the definition of Bµ,0(Dn), there exists some
polynomial p such that

‖f − p‖µ <
ε

2‖Tψ,ϕ‖+ 1
.

By the boundedness of Tψ,ϕ,

‖Tψ,ϕf − Tψ,ϕp‖ω ≤ ‖Tψ,ϕ‖ · ‖f − p‖µ <
ε

2
. (2.9)

Since Bµ,0 is a linear space and ψϕα ∈ Bω,0(Dn), we have Tψ,ϕp ∈ Bω,0(Dn). This means we
have another polynomial q such that

‖Tψ,ϕp− q‖ω <
ε

2
.

This and (2.9) yield

‖Tψ,ϕf − q‖ω ≤ ‖Tψ,ϕf − Tψ,ϕp‖ω + ‖Tψ,ϕp− q‖ω < ε.

That is, Tψ,ϕf ∈ Bω,0(Dn). The proof is completed.

3 The compactness of Tψ,ϕ

Lemma 3.1 Let ψ ∈ H(Dn), ϕ(z) ∈ H(Dn,Dn) and Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is a bounded
operator. Then Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is a compact operator if and only if for any bounded
sequence {fm} in Bµ(Dn) which converges to 0 uniformly on any compact subset of Dn, we have
lim

m→∞ ‖Tψ,ϕfm‖ω = 0.

Proof. It can be proved by Montel theorem and Lemma 2.1. The details are omitted here.

Lemma 3.2 ([13]) Suppose µ is normal with
∫ 1
0

1
µ(r)dr < ∞ and {fm} is a bounded

sequence in Bµ(Dn) which converges to 0 uniformly on any compact subset of Dn. Then
lim

m→∞ sup
z∈Dn

|fm(z)| = 0. And, for each ρ ∈ [0, 1) and j = 1, 2, · · · , n, lim
m→∞ sup

z∈Dn,|zj |≤ρ

∣∣∣∂fm

∂zj
(z)

∣∣∣ = 0.

Proof of Theorem B. (1) Suppose that ψ and ϕ satisfy conditions (i)-(iii). Then by
Theorem A, Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is a bounded operator. Let {fm} be any a sequence
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which converges to 0 uniformly on any compact subset of Dn satisfying ‖fm‖µ ≤ 1. We claim
that

‖Tψ,ϕfm‖ω = |ψ(0)| · |fm(ϕ(0))|+ sup
z∈Dn

n∑

j=1

ω(zj)

∣∣∣∣∣
∂(ψ · fm ◦ ϕ)

∂zj
(z)

∣∣∣∣∣ → 0 (m →∞). (3.1)

In fact, for each ε > 0, by (i) there exists some compact subset K ⊂ Dn such that

n∑

j=1

ω(zj)

∣∣∣∣∣
∂ψ

∂zj
(z)

∣∣∣∣∣

(
1 +

n∑

k=1

∫ |ϕk(z)|

0

dt

µ(t)

)
< ε

whenever ϕ(z) ∈ Dn \K. Thus, if ϕ(z) ∈ Dn \K then by Lemma 2.1,

n∑

j=1

ω(zj)

∣∣∣∣∣
∂ψ

∂zj
(z)

∣∣∣∣∣ |fm(ϕ(z))| ≤ ‖fm‖µ

n∑

j=1

ω(zj)

∣∣∣∣∣
∂ψ

∂zj
(z)

∣∣∣∣∣

(
1 +

n∑

k=1

∫ |ϕk(z)|

0

dt

µ(t)

)
< ε. (3.2)

If ϕ(z) ∈ K, because ψ ∈ Bω(Dn) and {fm} converges to 0 uniformly on K we have

n∑

j=1

ω(zj)

∣∣∣∣∣
∂ψ

∂zj
(z)

∣∣∣∣∣ · |fm(ϕ(z))| ≤ ‖ψ‖ω ·max
w∈K

|fm(w)| → 0 (m →∞). (3.3)

On the other hand, for the above ε > 0, by (ii) we have

n∑

j,k=1

ω(zj)|ψ(z)|
∣∣∣∣
∂fm

∂wk
(ϕ(z))

∣∣∣∣
∣∣∣∣∣
∂ϕk

∂zj
(z)

∣∣∣∣∣ ≤ ‖fm‖µ

n∑

j,k=1

ω(zj)|ψ(z)|
µ(ϕk(z))

∣∣∣∣∣
∂ϕk

∂zj
(z)

∣∣∣∣∣ < ε (3.4)

whenever ϕ(z) ∈ Dn \ K. If ϕ(z) ∈ K, because ψ, ψϕk ∈ Bω(Dn) and {fm} converges to 0
uniformly on K we have

n∑

j,k=1

ω(zj)|ψ(z)|
∣∣∣∣
∂fm

∂wk
(ϕ(z))

∣∣∣∣
∣∣∣∣∣
∂ϕk

∂zj
(z)

∣∣∣∣∣

≤ max
w∈K,1≤k≤n

∣∣∣∣
∂fm

∂zk
(w)

∣∣∣∣
n∑

j,k=1

ω(zj)|ψ(z)|
∣∣∣∣∣
∂ϕk

∂zj
(z)

∣∣∣∣∣ → 0 (m →∞). (3.5)

From (3.2)-(3.5) and lim
m→∞ |ψ(0)fm(ϕ(0))| = 0, we can obtain (3.1).

Conversely, suppose that Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is a compact operator, then (iii) is
trivial. Assume that (1.4) fails. Then there exists some ε0 > 0 and some sequence {z(m)} ⊂ Dn

such that ϕ(z(m)) → z0 ∈ ∂Dn(m →∞) and

n∑

j,k=1

ω(z(m)
j )

µ(ϕk(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕk

∂zj
(z(m))

∣∣∣∣∣ ≥ nε0.

Without loss of generality, we may assume that

n∑

j=1

ω(z(m)
j )

µ(ϕ1(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕ1

∂zj
(z(m))

∣∣∣∣∣ ≥ ε0. (3.6)

Set lim
m→∞ |ϕ1(z(m))| = d ≤ 1. The construction of the function fm will be carried out in two

cases.

7

TANG, HU: WEIGHTED COMPOSITION OPERATORS... 213



Case 1. If d = 1, we may assume that |ϕ1(z(m))| > 1
2 , m = 1, 2, · · ·. Take

fm(z) =

∫ ϕ1(z(m))z1

0 g(t)dt
∫ ϕ1(z(m))

2
z2
1

ϕ1(z(m))|ϕ1(z(m))|2z1

g(t)dt

∫ |ϕ1(z(m))|2
0 g(t)dt

.

Then by Lemma 2.2 and (2.6) we obtain
n∑

j=1

µ(zj)

∣∣∣∣∣
∂fm

∂zj
(z)

∣∣∣∣∣

=
µ(z1)

∫ |ϕ1(z(m))|2
0 g(t)dt

∣∣∣∣∣∣
g(ϕ1(z(m))z1)ϕ1(z(m))

∫ ϕ1(z(m))
2
z2
1

ϕ1(z(m))|ϕ1(z(m))|2z1

g(t)dt +
∫ ϕ1(z(m))z1

0
g(t)dt

·
(

g(ϕ1(z(m))
2
z2
1) · 2z1ϕ1(z(m))

2 − g(z1ϕ1(z(m))|ϕ1(z(m))|2)ϕ1(z(m))|ϕ1(z(m))|2
)∣∣∣∣

≤ Cµ(z1)g(|z1|)
∫ |ϕ1(z(m))|2
0 g(t)dt




∣∣∣∣∣∣

∫ ϕ1(z(m))
2
z2
1

ϕ1(z(m))|ϕ1(z(m))|2z1

g(t)dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫ ϕ1(z(m))z1

0
g(t)dt

∣∣∣∣∣∣




≤ C
∫ |ϕ1(z(m))|
0 g(t)dt

∫ |ϕ1(z(m))|2
0 g(t)dt

≤ C.

Because

lim
m→∞

∫ |ϕ1(z(m))|

0
g(t)dt = lim

m→∞

∫ |ϕ1(z(m))|

0

dt

µ(t)
= ∞,

we know that {fm} converges to 0 uniformly on any compact subset of Dn. Hence, from Lemma
3.1, lim

m→∞ ‖Tψ,ϕfm‖ω = 0. But by (3.6), definition of normal weight and Lemma 2.2,

‖Tψ,ϕfm‖ω ≥
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂(ψ · fm ◦ ϕ)

∂zj
(z(m))

∣∣∣∣∣

=
n∑

j=1

ω(z(m)
j )|ψ(z(m))|g(|ϕ1(z(m))|4)|ϕ1(z(m))|3

∣∣∣∣∣
∂ϕ1

∂zj
(z(m))

∣∣∣∣∣

=
n∑

j=1

ω(z(m)
j )|ψ(z(m))|

∣∣∣∂ϕ1

∂zj
(z(m))

∣∣∣
µ(ϕ1(z(m)))

· µ(ϕ1(z(m)))
µ(ϕ4

1(z(m)))
g(|ϕ1(z(m))|4)µ(ϕ4

1(z
(m)))|ϕ1(z(m))|3

≥ C

4b
|ϕ1(z(m))|3

n∑

j=1

ω(z(m)
j )|ψ(z(m))|

∣∣∣∂ϕ1

∂zj
(z(m))

∣∣∣
µ(ϕ1(z(m)))

≥ Cε0.

This leads a contradiction.
Case 2. If d < 1, we have some s(1 < s ≤ n) such that lim

m→∞ |ϕs(z(m))| = 1 since ϕ(z(m)) →
z0 ∈ ∂Dn(m →∞). Similar to that in Case 1 (replace 1 with s there), we can get

lim
m→∞

n∑

j=1

ω(z(m)
j )

µ(ϕs(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕs

∂zj
(z(m))

∣∣∣∣∣ = 0. (3.7)

We may also assume |ϕs(z(m))| > 1
2 , and take

fm(z) =
z1

∫ |ϕs(z(m))|
0 g(t)dt

∫ ϕs(z(m))zs

0
g(t)dt.
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It is easy to check that ‖fm‖µ ≤ C and {fm} converges to 0 uniformly on any compact subset
of Dn. So, lim

m→∞ ‖Tψ,ϕfm‖ω = 0 by Lemma 3.1. Notice that a compact operator is a bounded

operator. Hence, Theorem A and
∫ 1
0

dt
µ(t) = ∞ imply

lim
ϕ(z)→∂Dn

n∑

j=1

ω(zj)

∣∣∣∣∣
∂ψ

∂zj
(z)

∣∣∣∣∣ = 0. (3.8)

But it follows from (2.6), (3.6), (3.7) and (3.8) that

‖Tψ,ϕfm‖ω

≥
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣ψ(z(m))
n∑

k=0

∂fm

∂wk
(ϕ(z(m)))

∂ϕk

∂zj
(z(m)) +

∂ψ

∂zj
(z(m))fm(ϕ(z(m)))

∣∣∣∣∣

=
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣ψ(z(m))
∂fm

∂w1
(ϕ(z(m)))

∂ϕ1

∂zj
(z(m)) + ψ(z(m))

∂fm

∂ws
(ϕ(z(m)))

∂ϕs

∂zj
(z(m))

+
∂ψ

∂zj
(z(m))fm(ϕ(z(m)))

∣∣∣∣∣

≥
n∑

j=1

µ(ϕ1(z(m)))
∣∣∣∣
∂fm

∂w1
(ϕ(z(m)))

∣∣∣∣ ·
ω(z(m)

j )
µ(ϕ1(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕ1

∂zj
(z(m))

∣∣∣∣∣

−
n∑

j=1

µ(ϕs(z(m)))
∣∣∣∣
∂fm

∂ws
(ϕ(z(m)))

∣∣∣∣ ·
ω(z(m)

j )
µ(ϕs(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕs

∂zj
(z(m))

∣∣∣∣∣

−
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂ψ

∂zj
(z(m))

∣∣∣∣∣
|ϕ1(z(m))|

∫ |ϕs(z(m))|
0 g(t)dt

∫ |ϕs(z(m))|2

0
g(t)dt

≥ ε0

[
min

t∈[0, d+1
2

]
µ(t)

] ∫ |ϕs(z(m))|2
0 g(t)dt
∫ |ϕs(z(m))|
0 g(t)dt

− ‖fm‖µ

n∑

j=1

ω(z(m)
j )

µ(ϕs(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕs

∂zj
(z(m))

∣∣∣∣∣

−
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂ψ

∂zj
(z(m))

∣∣∣∣∣

∫ |ϕs(z(m))|2
0 g(t)dt
∫ |ϕs(z(m))|
0 g(t)dt

→ Cε0 (m →∞).

This leads a contradiction. This shows that (1.4) holds.
Now we prove (1.3) holds. By (3.8), we only need to claim that

lim
ϕ(z)→∂Dn

n∑

j=1

ω(zj)

∣∣∣∣∣
∂ψ

∂zj
(z)

∣∣∣∣∣
n∑

k=1

∫ |ϕk(z)|

0

dt

µ(t)
= 0.

Assume this expression fails. Similarly, there exists some ε0 > 0 and some sequence {z(m)} ⊂ Dn

such that ϕ(z(m)) → z0 ∈ ∂Dn(m →∞) and

n∑

j,k=1

ω(zm
j )

∣∣∣∣∣
∂ψ

∂zj
(zm)

∣∣∣∣∣
∫ |ϕk(zm)|

0

dt

µ(t)
≥ nε0.

Without loss of generality, we may assume that

n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂ψ

∂zj
(z(m))

∣∣∣∣∣
∫ |ϕ1(z(m))|

0

dt

µ(t)
≥ ε0.
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Since ϕ(z(m)) → z0 ∈ ∂Dn, by (3.8) we can get

lim
m→∞

n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂ψ

∂zj
(z(m))

∣∣∣∣∣ = 0. (3.9)

If lim
m→∞ |ϕ1(z(m))| = d < 1, then by (3.9)

lim
m→∞

n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂ψ

∂zj
(z(m))

∣∣∣∣∣
∫ |ϕ1(z(m))|

0

dt

µ(t)
= 0.

This contradicts the assumption. If d = 1, we may assume |ϕ1(z(m))| > 1
2 . Take

fm(z) =

(∫ ϕ1(z(m))z1

0 g(t)dt

)2

∫ |ϕ1(z(m))|2
0 g(t)dt

,

then ‖fm‖µ ≤ C and {fm} converges to 0 uniformly on any compact subset of Dn. So
lim

m→∞ ‖Tψ,ϕfm‖ω = 0. But (2.6) and (1.4) imply

‖Tψ,ϕfm‖ω ≥
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂ψ

∂zj
(z(m))

∫ |ϕ1(z(m))|2

0
g(t)dt

∣∣∣∣∣

−
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣ψ(z(m))
∂fm

∂w1
(ϕ(z(m)))

∂ϕ1

∂zj
(z(m))

∣∣∣∣∣

≥ C
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂ψ

∂zj
(z(m))

∫ |ϕ1(z(m))|

0
g(t)dt

∣∣∣∣∣

−
n∑

j=1

µ(ϕ1(z(m)))
∣∣∣∣
∂fm

∂w1
(ϕ(z(m)))

∣∣∣∣ ·
ω(z(m)

j )
µ(ϕ1(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕ1

∂zj
(z(m))

∣∣∣∣∣

≥ Cε0 − ‖fm‖µ

n∑

j=1

ω(z(m)
j )

∣∣∣ψ(z(m))∂ϕ1

∂zj
(z(m))

∣∣∣
µ(ϕ1(z(m)))

→ Cε0 (m →∞).

This leads a contradiction. This means that (1.3) holds.
(2) Notice that all the test function sequences defined in (1) are holomorphic on Dn and

hence in Bµ,0(Dn). Therefore, by proof of (1) and Theorem A, the result (2) holds. The proof
is completed.

Proof of Theorem C. Suppose that ψ, ψϕk ∈ Bω(Dn) and (1.5) holds. Then for each
ε > 0, there exists some η ∈ (0, 1) such that for all k, we have

sup
|ϕk(z)|>η

n∑

j=1

ω(zj)
µ(ϕk(z))

∣∣∣∣∣ψ(z)
∂ϕk

∂zj
(z)

∣∣∣∣∣ < ε. (3.10)

Meanwhile,

sup
|ϕk(z)|≤η

n∑

j=1

ω(zj)
µ(ϕk(z))

∣∣∣∣∣ψ(z)
∂ϕk

∂zj
(z)

∣∣∣∣∣ < C(‖ψ‖ω + ‖ψϕk‖ω). (3.11)

From (3.10), (3.11) and Theorem A, we obtain that Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is bounded.
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Suppose {fm} is a bounded sequence in Bµ(Dn) which converges to 0 uniformly on any
compact subset of Dn. By Lemma 3.2 and ψ ∈ Bω(Dn), we can get

lim
m→∞ sup

z∈Dn

n∑

j=1

ω(zj)

∣∣∣∣∣
∂ψ

∂zj
(z)fm(ϕ(z))

∣∣∣∣∣ = 0. (3.12)

On the other hand, for any ε > 0, from (1.5), we have some ρ ∈ (0, 1) such that for all k

n∑

j=1

ω(zj)
µ(ϕk(z))

∣∣∣∣∣ψ(z)
∂ϕk

∂zj
(z)

∣∣∣∣∣ <
ε

M + 1
, (3.13)

whenever |ϕk(z)| > ρ, where M = sup{‖fm‖µ : m = 1, 2, · · ·}. Set

Ik =
n∑

j=1

ω(zj)

∣∣∣∣∣ψ(z)
∂fm

∂wk
(ϕ(z))

∂ϕk

∂zj
(z)

∣∣∣∣∣ , k = 1, 2, · · · , n.

Then by Lemma 3.2 and ψ, ψϕk ∈ Bω(Dn), we have

sup
|ϕk(z)|≤ρ

Ik ≤ (‖ψ‖ω + ‖ψϕk‖ω) sup
w∈Dn,|wk|<ρ

∣∣∣∣
∂fm

∂wk
(w)

∣∣∣∣ → 0 (m →∞). (3.14)

Thus as m is sufficiently large, from (3.13) and (3.14),

sup
z∈Dn

Ik < sup
|ϕk(z)|≤ρ

Ik + sup
|ϕk(z)|>ρ

Ik < 2ε. (3.15)

Hence, (3.12) and (3.15), together with the fact that lim
m→∞ |ψ(0)fm(ϕ(0))| = 0, yield lim

m→∞ ‖Tψ,ϕfm‖ω =
0. This means Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is compact.

Conversely, we only need to prove that (1.5) holds. If there exists some k such that (1.5) fails.
Then we would have some constant ε0 > 0 and a sequence{z(m)} in Dn such lim

m→∞ |ϕk(z(m))| = 1
and

n∑

j=1

ω(z(m)
j )

µ(ϕk(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕk

∂zj
(z(m))

∣∣∣∣∣ ≥ ε0.

Without loss of generality, we may assume k = 1, that is

n∑

j=1

ω(z(m)
j )

µ(ϕ1(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕ1

∂zj
(z(m))

∣∣∣∣∣ ≥ ε0. (3.16)

Writing ρm = ϕ1(z(m)), we also may assume that

1− 1
(m + 1)2

< |ρm| < 1, lim
m→∞ ρm = ρ0 ∈ ∂D. (3.17)

Take

fm(z) =
1

ρm

∫ ρmz1

0
g(t)dt− 1

|ρm|mρm

∫ |ρm|mρmz1

0
g(t)dt. (3.18)

Then ‖fm‖µ ≤ C. From (3.17) we get

1 > |ρm|2 > |ρm|m+2 >

(
1− 1

m2

)m+2

→ 1 (m →∞). (3.19)
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Hence, for fixed r ∈ (0, 1) and any z ∈ Dn
r ,

|fm(z)| ≤
∣∣∣∣∣

1
ρm

∫ ρmz1

0
g(t)dt− 1

ρm

∫ |ρm|mρmz1

0
g(t)dt

∣∣∣∣∣

+

∣∣∣∣∣
1

ρm

∫ |ρm|mρmz1

0
g(t)dt− 1

|ρm|mρm

∫ |ρm|mρmz1

0
g(t)dt

∣∣∣∣∣

≤ |z1|
[
(1− |ρm|m) + (

1
|ρm|m − 1)

]
max
t∈[0,r]

g(t)

≤ C1

[
1

|ρm|m − |ρm|m
]
,

where Dn
r = {z ∈ Cn; |zj | < r, j = 1, 2, · · · , n} and the constant C1 depends only on r. So, by

(3.19) we obtain
lim

m→∞ max
z∈Dn

r

|fm(z)| = 0.

That is, {fm} converges to 0 uniformly on any compact subset of Dn. By (3.19), we may assume
|ρm|m+1 ≥ 1

2 , then this and the definition of normal weight imply

0 ≤ µ(ρm)
µ(ρm+2

m )
=

µ(ρm)
(1−|ρm|)a(1+|ρm|+···+|ρm|m+1)a

µ(ρm+2
m )

(1−|ρm|m+2)a

≤ 1
(1 + |ρm|+ · · ·+ |ρm|m+1)a

≤
(

2
m + 2

)a

→ 0 (m →∞).

This, together the estimate lim inf
m→∞

µ(ρm)
µ(ρ2

m)
≥ 1

2b , yield

µ(ϕ1(z(m)))
∣∣∣∣
∂fm

∂w1
(ϕ(z(m)))

∣∣∣∣

≥
(

µ(ρ2
m)g(|ρm|2)µ(ρm)

µ(ρ2
m)

− µ(ρm+2
m )g(|ρm|m+2)

µ(ρm)
µ(ρm+2

m )

)

≥ C

2b
− 0 (3.20)

as m is sufficiently large. Because ψ ∈ Bω(Dn) we have

0 <
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂ψ

∂zj
(z(m))fm(ϕ(z(m)))

∣∣∣∣∣ ≤ ‖ψ‖ω|fm(ϕ(z(m)))| → 0 (m →∞). (3.21)

Therefore, (3.16), (3.20) and (3.21) imply

‖Tψ,ϕfm‖ω

≥
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣ψ(z(m))
∂fm

∂w1
(ϕ(z(m)))

∂ϕ1

∂zj
(z(m)) +

∂ψ

∂zj
(z(m))fm(ϕ(z(m)))

∣∣∣∣∣

≥
n∑

j=1

ω(z(m)
j )

µ(ϕ1(z(m)))

∣∣∣∣∣ψ(z(m))
∂ϕ1

∂zj
(z(m))

∣∣∣∣∣ µ(ϕ1(z(m)))
∣∣∣∣
∂fm

∂w1
(ϕ(z(m)))

∣∣∣∣

−
n∑

j=1

ω(z(m)
j )

∣∣∣∣∣
∂ψ

∂zj
(z(m))fm(ϕ(z(m)))

∣∣∣∣∣ ≥ Cε0
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as m is sufficiently large. This contradicts the lim
m→∞ ‖Tψ,ϕfm‖ω = 0.

(2) Suppose that ψϕα ∈ Bω,0(D
n) and (1.5) holds. Then by (3.10), (3.11) and Theorem

A, Tψ,ϕ : Bµ,0(Dn) −→ Bω,0(Dn) is bounded. Hence Tψ,ϕ(Bµ,0(Dn)) ⊂ Bω,0(Dn). From (1)
we know Tψ,ϕ : Bµ(Dn) −→ Bω(Dn) is compact. Because Bω,0(Dn) is a closed subspace of the
Banach space Bω(Dn), we know that Tψ,ϕ : Bµ,0(Dn) −→ Bω,0(Dn) is compact. Conversely, it
is trivial that ψϕα ∈ Bω,0(Dn) for all multi-index α. Assume ψ and ϕ violate (1.5). Then we
only define the test function as (3.18), then fm is holomorphic on Dn and hence in Bµ,0(Dn).
Similar to that in the proof of (1), we can get a contradiction. The proof is completed.

4 Final remarks

Let ∂∗Dn = {z ∈ Cn : |zj | = 1, j = 1, 2, · · · , n} be the Shilov boundary of Dn. Instead of
using the closure of all polynomials in n complex variables under ‖ · ‖µ, we also define the other
little µ−Bloch type space Bµ,∗(Dn) as

Bµ,∗(Dn) =



f ∈ Bµ(Dn) : lim

z→∂∗Dn

n∑

j=1

µ(zj)

∣∣∣∣∣
∂f

∂zj
(z)

∣∣∣∣∣ = 0



 .

It is clear that Bµ,∗(Dn) is a closed subspace of Bµ(Dn). Similarly, we have the following
theorems.

Theorem 4.1 Let ψ ∈ H(Dn) and ϕ ∈ H(Dn,Dn). Then Tψ,ϕ : Bµ,∗(Dn) −→ Bω,∗(Dn) is
bounded if and only if the following conditions are all satisfied:

(1) sup
z∈Dn

n∑
j=1

ω(zj)
∣∣∣ ∂ψ
∂zj

(z)
∣∣∣
(

1 +
n∑

k=1

∫ |ϕk(z)|
0

dt
µ(t)

)
< ∞,

(2) sup
z∈Dn

n∑
j,k=1

ω(zj)
µ(ϕk(z))

∣∣∣ψ(z)∂ϕk
∂zj

(z)
∣∣∣ < ∞,

(3) ψ ∈ Bω,∗(Dn) and ψϕk ∈ Bω,∗(Dn) for all k = 1, 2, · · · , n.

Theorem 4.2 Let ψ ∈ H(Dn), ϕ ∈ H(Dn,Dn) and
∫ 1
0

dt
µ(t) = ∞. Then Tψ,ϕ : Bµ,∗(Dn) −→

Bω,∗(Dn) is compact if and only if the following conditions are all satisfied:

(1) lim
ϕ(z)→∂Dn

n∑
j=1

ω(zj)
∣∣∣ ∂ψ
∂zj

(z)
∣∣∣
(

1 +
n∑

k=1

∫ |ϕk(z)|
0

dt
µ(t)

)
= 0,

(2) lim
ϕ(z)→∂Dn

n∑
j,k=1

ω(zj)
µ(ϕk(z))

∣∣∣ψ(z)∂ϕk
∂zj

(z)
∣∣∣ = 0,

(3) ψ ∈ Bω,∗(Dn) and ψϕk ∈ Bω,∗(Dn) for all k = 1, 2, · · · , n.

Theorem 4.3 Let ψ ∈ H(Dn), ϕ ∈ H(Dn,Dn) and
∫ 1
0

dt
µ(t) < ∞. Then Tψ,ϕ : Bµ,∗(Dn) −→

Bω,∗(Dn) is compact if and only if the following conditions are all satisfied:

(1) lim
|ϕk(z)|→1

n∑
j=1

ω(zj)
µ(ϕk(z))

∣∣∣ψ(z)∂ϕk
∂zj

(z)
∣∣∣ = 0, k = 1, 2, · · · , n,

(2) ψ ∈ Bω,∗(Dn) and ψϕk ∈ Bω,∗(Dn) for all k = 1, 2, · · · , n.

The proof of these theorems goes as the proof of Theorem A, Theorem B and Theorem C
in Sect. 2 and Sect. 3 respectively. We only need to notice that if conditions (1)-(3) hold
in Theorem 4.1, then similar to that in the proof of Theorem 2.3 in [14], we also can obtain
Tψ,ϕf ∈ Bω,∗(Dn) for any f ∈ Bµ,∗(Dn).
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COMPACTNESS OF COMPOSITION OPERATOR IN THE
LIPSCHITZ SPACE OF THE POLYDISC

ZHONG-SHAN FANG AND ZE-HUA ZHOU∗

Abstract. In 1987, Shapiro showed that composition operator induced
by symbol ϕ is compact on the Lipschitz space if and only if the infinity
norm of ϕ is less than 1 by a spectral-theoretic argument, where ϕ is a
holomorphic self-map of the unit disk. In this note, we shall generalize
Shapiro’s result to the n-dimensional case.

1. Introduction

Let Un be the unit polydisc of n-dimensional complex spaces Cn with
boundary ∂Un, the class of all holomorphic functions on domain Un will
be denoted by H(Un). Let ϕ(z) = (ϕ1(z), · · · , ϕn(z)) be a holomorphic
self-map of Un, composition operator is defined by

Cϕ(f)(z) = f(ϕ(z))

for any f ∈ H(Un) and z ∈ Un.
During the past years much effort has been devoted to the research of

such operators on a variety of Banach spaces of holomorphic functions with
the goal of explaining the operator-theoretic behavior of Cϕ, such as bound-
edness and compactness, in terms of the function-theoretic properties of the
symbol ϕ. We recommend the interested readers refer to the books by J. H.
Shapiro [9] and Cowen and MacCluer [2], which are good sources for infor-
mation on much of the developments in the theory of composition operators
up to the middle of last decade, as well as some papers for n-dimensional
case by Zhou et all [4, 11, 12, 13, 14, 15, 16] on the Bloch space in polydiscs
or classical symmetric domains, Gorkin and MacCluer [4] between Hardy
spaces in the unit ball.

To our surprise, by a spectral-theoretic argument, Shapiro [10] obtained
the following fact: Cϕ is compact on the Lipschitz space L1−α(D) if and
only if ||ϕ||∞ < 1. In this paper, we shall generalize Shapiro’s result to the
unit polydisc.

2000 Mathematics Subject Classification. Primary: 47B38; Secondary: 26A16, 32A16,
32A26, 32A30, 32A37, 32A38, 32H02, 47B33.

Key words and phrases. Composition operator, Lipschitz space, Polydiscs, Several
complex variables.

∗Ze-Hua Zhou, corresponding author. Supported in part by the National Natural
Science Foundation of China (Grand Nos. 10671141, 10371091).

1

222JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.1-B, 222-227,2010,COPYRIGHT 2010 EUDOXUS PRESS, LLC



2 Z.S. FANG AND Z.H.ZHOU

2. Notation and background

Throughout the paper, D is the unit disk in one dimensional complex
plane, and |||z||| = max

1≤j≤n
{|zj |} stands for the supremum norm on the unit

polydisc. Define Rf(z) = 〈∇f(z), z̄〉 where z = (z1, · · · , zn) ∈ Un, and
H(Un, D) for the class of the holomorphic mappings from Un to D. For
0 < α < 1, it is well known that the Lipschitz space L1−α(Un) is equivalent
to α−Bloch space, which is defined to be the space of holomorphic functions
f ∈ H(Un) such that

||f ||1−α = sup
z∈Un

n∑

j=1

(1− |zj |2)α| ∂f

∂zj
(z)| < ∞.

Here, Lipschitz space L1−α(Un) is a Banach space with the equivalent norm

||f || = |f(0)|+ ||f ||1−α.

Moreover, one should note that every holomorphic function in Lipschitz
space extends continuously to the closed unit polydisc.

The Kobayashi distance kUn of Un is given by

kUn(z, w) =
1
2

log
1 + |||φz(w)|||
1− |||φz(w)||| ,

where φz : Un → Un is the automorphism of Un given by

φz(w) = (
w1 − z1

1− z1w1
, · · · ,

wn − zn

1− znwn
)

Since the map t → log 1+t
1−t is strictly increasing on [0, 1), it follows that

kUn(z, w) = max
1≤j≤n

{1
2

log
1 + | wj−zj

1−zjwj
|

1− | wj−zj

1−zjwj
|
} = max

1≤j≤n
{ρ(zj , wj)},

where ρ is the Poincaré distance on the unit disk D ⊂ C.
Following [1], the horosphere E(x,R) of center x ∈ ∂Un and radius R and

the Korányi region H(x,M) of vertex x and amplitude M are defined by

E(x,R) = {z ∈ Un : lim sup
w→x

[kUn(z, w)− kUn(0, w)] <
1
2

log R}

and

H(x,M) = {z ∈ Un : lim sup
w→x

[kUn(z, w)− kUn(0, w)] + kUn(0, z) < log M}.

We say that f has K − limit L ∈ C at x if f(z) → L as z → x inside any
Korányi region H(x,M), we shall write K̃ − lim

z→x
f(z) = L.

Let f ∈ H(Un, D) and x ∈ ∂Un. If there is δ such that

lim inf
w→x

1− |f(w)|
1− |||w||| = δ < ∞,
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we call f is δ − Julia at x. If there exists τ ∈ ∂Un such that

f(E(x,R)) ⊆ E(τ, δR)

for all R, we call this τ is the restricted E-limit of f at x.
It should be noticed that δ > 0. In fact,

ρ(0, f(w)) ≤ ρ(0, f(0)) + ρ(f(0), f(w)) ≤ ρ(0, f(0)) + kUn(0, w);

therefore 1−|f(w)|
1−|||w||| ≥

1−|f(0)|
2(1+|f(0)|) > 0.

3. Some Lemmas

Lemma 1. (Julia-Wolff-Carathéodory Theorem, Theorem 4.1 in [1]) Let
f ∈ H(Un, D) be δ − Julia at x ∈ ∂Un, and τ ∈ ∂U be the restricted
E-limit of f at x, then

K̃ − lim
z→x

∂f

∂x
(z) = δτ.

Lemma 2. (Theorem 1 in [11] or Corollary 4.1 in [14]) Composition oper-
ator Cϕ is bounded on the Lipschitz space L1−α(Un) if and only if there is
a constant M > 0 such that

n∑

k,l=1

∣∣∣∣
∂ϕl

∂zk
(z)

∣∣∣∣
(

1− |zk|2
1− |ϕl(z)|2

)α

≤ M

for z ∈ Un.

Lemma 3. (Theorem 2 in [11] or Corollary 4.2 in [14]) Composition oper-
ator Cϕ is compact on the Lipschitz space L1−α(Un) if and only if

lim
δ→0

sup
dist(ϕ(z),∂Un)<δ

n∑

k,l=1

∣∣∣∣
∂ϕl

∂zk
(z)

∣∣∣∣
(1− |zk|2)α

(1− |ϕl(z)|2)α
= 0.

Lemma 4. (Lemma 3.2 in [1]) Let f ∈ H(Un, D) and x ∈ ∂Un. Then

lim inf
w→x

1− |f(w)|
1− |||w||| = lim inf

t→1−

1− |f(ϕx(t))|
1− t

,

where ϕx(t) = tx for any t ∈ [0, 1).

4. Main theorem

Theorem 1. Suppose Cϕ is bounded on L1−α(Un), then for every 1 ≤ l ≤ n
and ξ ∈ ∂Un with |ϕl(ξ)| = 1, ϕl is δ − Julia at ξ.

Proof. For every 1 ≤ l ≤ n and ξ ∈ ∂Un with ϕl(ξ) = η and η = eθ0 , we will
show that ϕl is δ − Julia at ξ according to the following cases.

Case 1: ξ = (ξ1, ξ
′), ξ1 = eθ1 and |||ξ′||| < 1.

First we consider the special case for ξ = e1 = (1, 0, · · · , 0) and η = 1.
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For r ∈ (1/2, 1) , define σ(r) = (r, 0, · · · , 0) = re1 and set g(r) = ϕl(re1),
then g′(r) = ∂ϕl

∂z1
(re1). It follows from Lemma 2 that the boundedness of Cϕ

implies that

h(r) = Rϕl(re1)(
1− r

1− ϕl(re1)
)α = rg′(r)(

1− r

1− g(r)
)α

is bounded.
Putting u(r) = 1−g(r)

1−r , it is easy to see that g′(r) = −(1− r)u′(r) + u(r)
and

h(r) = ru(r)−α[−(1− r)u′(r) + u(r)].
If we write v(r) = u(r)1−α, then

− 1
1− α

(1− r)v′(r) + v(r) =
h(r)

r

the general solution of this differential equation is

v(r) = − 1− α

(1− r)1−α

∫ r

1

h(s)
s(1− s)α

ds +
C

(1− r)1−α
.

Since h is bounded, the first term in the right above is a bounded function
of r, and moreover v(r) is of the order o( 1

(1−r)1−α ) as r → 1−, so we have
C = 0. Hence v, and moreover u is also bounded, according to Lemma 4,
for some δ, ϕl is δ − Julia at e1.

Now we return to the proof in case 1. Considering the mapping ϕ̃l : Un →
Un, where

ϕ̃l(z1, z
′) = e−iθ0 · ϕl(eiθ1z1, φξ′(z′))

for z = (z1, z
′) ∈ Un. It is easy to check that Cϕ̃l

is bounded on L1−α(Un)
and ϕ̃l(e1) = 1.

By the above argument, we get lim inf
t→1−

1−|ϕ̃l(te1)|
1−t = δ < +∞, that is

lim inf
t→1−

1− |ϕl(tξ1, ξ
′))|

1− t
= lim inf

t→1−
lim

r→1−

1− |ϕl(tξ1, rξ
′))|

1− t

≥ lim inf
t→1−

1− |ϕl(tξ1, tξ
′))|

1− t
.

It follows from Lemma 4 that

lim inf
w→ξ

1− |ϕl(ξ)|
1− |||ξ||| = δ < +∞.

Case2: ξ = (ξ1, ξ2, ξ
′), ξ1 = eθ1 , ξ2 = eθ2 and |||ξ′||| < 1.

Now assume ϕl(1, 1, 0, · · · , 0) = 1, and set g(r) = ϕl(r, r, 0, · · · , 0) for
r ∈ (1/2, 1). then g′(r) = ∂ϕl

∂z1
(r, r, 0, · · · , 0) + ∂ϕl

∂z2
(r, r, 0, · · · , 0), and so

Rϕl(r, r, 0, · · · , 0) = rg′(r), we can deal with it as in the case 1, and we can
get u is bounded, furthermore

lim inf
w→ξ

1− |ϕl(ξ)|
1− |||ξ||| = δ < +∞.
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Case 3: For the case ϕl(ξ) = 1 with ξ =
n∑

k=1

βkek, where βk = 0 or 1,

and ek = (0, , 0, · · · , 1, 0, · · · , 0) with the k − th component is 1, otherwise
0; and even more general case, in a similar argument with the cases 1 and
2, we can also show

lim inf
w→ξ

1− |ϕl(ξ)|
1− |||ξ||| = δ < +∞.

This completes the proof of this theorem. ¤
Remark. Here |ϕl(ξ)| = 1 means the continuous extension of ϕl on the
closed unit polydisc, since for each 1 ≤ l ≤ n, ϕl ∈ L1−α(Un). And by
Theorem 3.1 in [1], if ϕl is δ − Julia at ξ, then ϕl has restricted E-limit
τ ∈ ∂Un at ξ. Moreover, ϕl(ξ) = τ as a non-tangential limit.

Theorem 2. Cϕ is compact on L1−α(Un) if and only if ϕl ∈ L1−α(Un) and
||ϕl||∞ < 1 for each l = 1, 2, · · · , n.

Proof. Sufficiency is obvious. Now we just turn to the necessity. Suppose to
the contrary that there exists l (1 ≤ l ≤ n) satisfying |ϕl(ξ)| = 1 for some
ξ ∈ ∂Un. It follows from Theorem 1 that ϕl is δ − Julia at ξ, therefore by
Lemma 1, we have Rϕl(z) has K − limit at ξ. Hence

n∑

k,l=1

|∂ϕl

∂zk
(z)| (1− |zk|2)α

(1− |ϕl(z)|2)α

≥
n∑

k,l=1

|∂ϕl

∂zk
(z)| (1− |||z|||2)α

(1− |ϕl(z)|2)α

≥
n∑

k,l=1

|zk · ∂ϕl

∂zk
(z)| (1− |||z|||2)α

(1− |ϕl(z)|2)α

≥ C
n∑

l=1

|Rϕl(z)| (1− |||z|||)α

(1− |ϕl(z)|)α
≥ Cδ1−α.

as z → ξ inside any Korányi region, where we can take C = 1
2α . It is a

contradiction to the compactness of Cϕ by Lemma 3. Now the proof of
Theorem 2 is completed. ¤
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INTERPOLATION FUNCTIONS OF THE q-GENOCCHI AND
THE q-EULER POLYNOMIALS OF HIGHER ORDER

YOUNG-HEE KIM, KYUNG-WON HWANG, AND TAEKYUN KIM

Abstract Cangul-Ozden-Simsek [1] constructed the q-Genocchi numbers of high order using

a fermionic p-adic integral on Zp, and gave Witt’s formula and the interpolation functions of

these numbers. In this paper, we present the generalization of the higher order q-Euler numbers

and q-Genocchi numbers of Cangul-Ozden-Simsek. We define q-extensions of w-Euler numbers

and polynomials, and w-Genocchi numbers and polynomials of high order using the multivariate

fermionic p-adic integral on Zp. We have the interpolation functions of these numbers and poly-

nomials. We obtain the distribution relations for q-extensions of w-Euler and w-Genocchi poly-

nomials. We also have the interesting relation for q-extensions of these polynomials. We define

(h, q)-extensions of w-Euler and w-Genocchi polynomials of high order. We have the interpolation

functions for (h, q)-extensions of these polynomials. Moreover, we obtain some meaningful results

of (h, q)-extensions of w-Euler and w-Genocchi polynomials.

2000 Mathematics Subject Classification : 11S80, 11B68

Key words and phrases : Genocchi numbers and polynomials, Euler numbers and polyno-

mials, q-Genocchi numbers, q-Euler numbers, fermionic p-adic integral

1. Introduction, Definitions and Notations

Many authors have been studied on the multiple Genocchi and Euler numbers,
and multiple zeta functions (cf. [1-2], [4-6], [9-10], [14], [17], [19], [22], [24]). In
[10], Kim, the first author of this paper, presented a systematic study of some
families of multiple q-Euler numbers and polynomials. By using the q-Volkenborn
integration on Zp, Kim constructed the p-adic q-Euler numbers and polynomials of
higher order, and gave the generating function of these numbers and the Euler q-
ζ-function. In [14], Kim studied some families of multiple q-Genocchi and q-Euler
numbers by using the multivariate p-adic q-Volkenborn integral on Zp, and gave
interesting identities related to these numbers.

Recently, Cangul-Ozden-Simsek [1] constructed the q-Genocchi numbers of high
order by using a fermionic p-adic integral on Zp, and gave Witt’s formula and the
interpolation functions of these numbers. In [17], Kim gave another constructions
of the q-Euler and q-Genocchi numbers, which were different from those of Cangul-
Ozden-Simsek. Kim obtained the interesting relationship between the q-w-Euler
numbers and q-w-Genocchi numbers, and gave the interpolation functions of these
numbers. In this paper, we will present the generalization of the higher order q-
Euler numbers and q-Genocchi numbers of Cangul-Ozden-Simsek approaching as
Kim did in [17].

Let p be a fixed odd prime number. Throughout this paper, the symbols
Zp, Qp, C and Cp denote the ring of p-adic rational integers, the field of p-adic

1
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2 YOUNG-HEE KIM, KYUNG-WON HWANG, AND TAEKYUN KIM

rational numbers, the complex number field and the completion of algebraic clo-
sure of Qp, respectively. Let N be the set of natural numbers and Z+ = N ∪ {0}.
Let vp be the normalized exponential valuation of Cp with |p|p = p−vp(p) = 1

p .
The symbol q can be treated as a complex number, q ∈ C, or as a p-adic number,

q ∈ Cp. If q ∈ C, then we always assume that |q| < 1. If q ∈ Cp, then we usually
assume that |1− q|p < 1.

Now we will recall some q-notations. The q-basic natural numbers are defined by
[n]q = 1−qn

1−q = 1 + q + q2 + · · ·+ qn−1 (n ∈ N), [n]−q = 1−(−q)n

1+q and the q-factorial

by [n]q! = [n]q[n − 1]q · · · [2]q[1]q. In this paper, we use the notation [x]q = 1−qx

1−q

and [x]−q = 1−(−q)x

1+q . Hence lim
q→1

[x]q = x for any x with |x|p ≤ 1 in the present

p-adic case (cf. [1-25]).
The q-shift factorial is given by

(a; q)0 = 1, (a; q)k = (1− a)(1− aq) · · · (1− aqk−1).

We note that lim
q→1

(a; q)k = (1− a)k. It is known that

(a; q)∞ = (1− a)(1− aq)(1− aq2) · · · =
∞∏

i=1

(1− aqi−1) (see [8]).

From the definition of the q-shift factorial, we note that

(a; q)k =
(a; q)∞

(aqk; q)∞
.

Since
(−α

l

)
= (−1)l

(
α+l−1

l

)
, it follows that

1
(1− z)α

= (1− z)−α =
∞∑

l=0

(
−α

l

)
(−z)l =

∞∑
l=0

(
α + l − 1

l

)
zl.

The q-binomial theorem is given by
∞∑

n=0

(a; q)n

(q; q)n
zn =

(az; q)∞
(z; q)∞

,

where z, q ∈ C with |z| < 1, |q| < 1. For the special case, when a = qα(α ∈ C), we
can write as follows:

1
(z; q)α

=
(zqα; q)∞
(z; q)∞

=
∞∑

n=0

(qα; q)n

(q; q)n
zn

=
∞∑

n=0

(1− qα)(1− qα+1) · · · (1− qα+n−1)
(1− q)(1− q2) · · · (1− qn)

zn

=
∞∑

n=0

[α]q[α + 1]q · · · [α + n− 1]q
[1]q[2]q · · · [n]q

zn

=
∞∑

n=0

[α]q[α + 1]q · · · [α + n− 1]q
[n]q!

zn.

The q-binomial coefficients are defined by(
n

k

)
q

=
[n]q!

[k]q![n− k]q!
=

[n]q[n− 1]q · · · [n− k + 1]q
[k]q!

(see [14], [16]).
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Hence it follows that
1

(z; q)α
=

∞∑
n=0

(
n + α− 1

n

)
q

zn,

which converges to 1
(1−z)α =

∞∑
n=0

(
n+α−1

n

)
zn as q → 1.

We say that f is a uniformly differentiable function at a point a ∈ Zp, and write
f ∈ UD(Zp), the set of uniformly differentiable function, if the difference quotients
Fg(x, y) = f(x)−f(y)

x−y have a limit l = f ′(a) as (x, y) → (a, a). For f ∈ UD(Zp), the
q-deformed bosonic p-adic integral is defined as

Iq(f) =
∫

Zp

f(x)dµq(x) = lim
N→∞

pN−1∑
x=0

f(x)
qx

[pN ]q
,

and the q-deformed fermonic p-adic integral is defined by

I−q(f) =
∫

Zp

f(x)dµ−q(x) = lim
N→∞

pN−1∑
x=0

f(x)
(−q)x

[pN ]−q
.

The fermionic p-adic integral on Zp is defined as

I−1(f) = lim
q→1

I−q(f) =
∫

Zp

f(x)dµ−1(x).

It follows that I−1(f1) = −I−1(f) + 2f(0), where f1(x) = f(x + 1) (cf. [4-17]).
The classical Euler polynomials En(x) are defined as

2
et + 1

ext =
∞∑

x=0

En(x)
tn

n!
,

and the Euler numbers En are defined as En = En(0) (cf. [1-25]). The Genocchi
numbers are defined as

2t

et + 1
=

∞∑
n=0

Gn
tn

n!
for |t| < π,

and the Genocchi polynomials Gn(x) are defined as

2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
(see [12], [14], [21]).

It is known that the w-Euler polynomials En,w(x) are defined as

2
wet + 1

ext =
∞∑

x=0

En,w(x)
tn

n!
,

and En,w = En,w(0) are called the w-Euler numbers. The w-Genocchi polynomials
Gn,w(x) are defined as

2t

wet + 1
ext =

∞∑
x=0

Gn,w(x)
tn

n!
,

and Gn,w = Gn,w(0) are called the w-Genocchi numbers (see [1]).
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The w-Euler polynomials E
(r)
n,w(x) of order r are defined as

(
2

wet + 1
)rext =

∞∑
x=0

E(r)
n,w(x)

tn

n!
(see [1]),

and E
(r)
n,w = E

(r)
n,w(0) are called the w-Euler numbers of order r. The w-Genocchi

polynomials G
(r)
n,w(x) of order r are defined as

2t

wet + 1
ext =

∞∑
x=0

G(r)
n,w(x)

tn

n!
(see [1]),

and G
(r)
n,w = G

(r)
n,w(0) are called the w-Euler numbers of order r. When r = 1 and

w = 1, E
(r)
n,w(x) and E

(r)
n,w are the ordinary Euler polynomials and numbers, and

G
(r)
n,w(x) and G

(r)
n,w are the ordinary Genocchi polynomials and numbers, respec-

tively.
In Section 2, we define q-extensions of w-Euler numbers and polynomials of or-

der r and w-Genocchi numbers and polynomials of order r, respectively, using the
multivariate fermionic p-adic integral on Zp. We obtain the interpolation func-
tions of these numbers and polynomials. We have the distribution relations for
q-extensions of w-Euler polynomials and those of w-Genocchi polynomials. We
obtain the interesting relation for q-extensions of these polynomials. We also de-
fine (h, q)-extensions of w-Euler and w-Genocchi polynomials of order r. We have
the interpolation functions for (h, q)-extensions of these polynomials. Moreover,
we obtain some meaningful results of (h, q)-extensions of w-Euler and w-Genocchi
polynomials when h = r − 1.

2. On the extension of the higher order q-Genocchi numbers and
q-Euler numbers of Cangul-Ozden-Simsek

In this section, we assume that w ∈ Cp with |1 − w|p < 1 and q ∈ Cp with
|1− q|p < 1. Recently, Cangul-Ozden-Simsek [1] constructed w-Genocchi numbers
of order r, G

(r)
n,w, as follows:

tr
∫

Zr
p

wx1+···+xret(x1+···+xr)dµ−1(x1) · · · dµ−1(xr)(1)

= 2r(
t

wet + 1
)r =

∞∑
n=0

G(r)
n,w

tn

n!
,

where
∫

Zr
p

=
∫

Zp
· · ·

∫
Zp

(r−times) and r ∈ N. They also consider the q-extension of

G
(r)
n,w as follows:

tr
∫

Zr
p

q

r∑
i=1

(h−i+1)xi

e
t(

r∑
i=1

xi)
dµ−1(x1) · · · dµ−1(xr)(2)

=
2rtr

(qhet + 1) · · · (qh−r+1et + 1)
=

∞∑
n=0

G(h,r)
n,q

tw

n!
.
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From (2), they obtained the following interesting formula:

G
(r−1,r)
n+r,q = 2rr!

(
n + r

r

) ∞∑
v=0

(
r + v − 1

v

)
q

(−1)vvn.(3)

The following similar formula obtains from the above formula. We are very
interested to study the following formula using [v]q instead of v in the (3).

2rr!
(

n + r

r

) ∞∑
v=0

(
r + v − 1

v

)
q

(−1)v[v]nq .

In the viewpoint of the q-extension of (1) using the multivariate p-adic integral on
Zp, we define the q-analogue of w-Euler numbers of order r, E

(r)
n,w,q, as follows:

E(r)
n,w,q =

∫
Zr

p

wx1+···+xr [x1 + · · ·+ xr]nq dµ−1(x1) · · · dµ−1(xr).(4)

From (4), we derive that

E(r)
n,w,q =

2r

(1− q)n

n∑
l=0

(
n

l

)
(−1)l(

1
1 + qlw

)r

=
2r

(1− q)n

n∑
l=0

(
n

l

)
(−1)l

∞∑
m=0

(
m + r − 1

m

)
(−1)mqlmwm

= 2r
∞∑

m=0

(
m + r − 1

m

)
(−1)mwm[m]nq .

Therefore, we obtain the following theorem.

Theorem 1. Let r ∈ N and n ∈ Z+. Then we have

E(r)
n,w,q = 2r

∞∑
m=0

(
m + r − 1

m

)
(−1)mwm[m]nq .(5)

Let F (r)(t, w|q) =
∞∑

n=0
E

(r)
n,w,q

tn

n! . By (4) and (5), we see that

F (r)(t, w|q) =
∫

Zr
p

wx1+···+xret[x1+···+xr]qdµ−1(x1) · · · dµ−1(xr)

= 2r
∞∑

m=0

(
m + r − 1

m

)
(−1)mwmet[m]q .

Thus we obtain the following corollary.

Corollary 2. Let F (r)(t, w|q) =
∞∑

n=0
E

(r)
n,w,q

tn

n! . Then we have

F (r)(t, w|q) = 2r
∞∑

m=0

(
m + r − 1

m

)
(−1)mwmet[m]q .

Let us define the q-extension of w-Euler polynomials of order r as follows:

E(r)
n,w,q(x) =

∫
Zr

p

wx1+···+xr [x + x1 + · · ·+ xr]nq dµ−1(x1) · · · dµ−1(xr).(6)
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By (6), we have that

E(r)
n,w,q(x) =

2r

(1− q)n

n∑
l=0

(
n

l

)
(−1)lqlx(

1
1 + qlw

)r

= 2r
∞∑

m=0

(
m + r − 1

m

)
(−1)mwm[m + x]nq

Therefore, we obtain the following theorem.

Theorem 3. Let r ∈ N and n ∈ Z+. Then we have

E(r)
n,w,q(x) = 2r

∞∑
m=0

(
m + r − 1

m

)
(−1)mwm[m + x]nq .(7)

Let F (r)(t, w, x|q) =
∞∑

n=0
E

(r)
n,w,q(x) tn

n! . By (6) and (7), we have

F (r)(t, w, x|q) =
∫

Zr
p

wx1+···+xret[x+x1+···+xr]qdµ−1(x1) · · · dµ−1(xr)

= 2r
∞∑

m=0

(
m + r − 1

m

)
(−1)mwmet[m+x]q .

Therefore we have the following corollary.

Corollary 4. Let F (r)(t, w, x|q) =
∞∑

n=0
E

(r)
n,w,q(x) tn

n! . Then we have

F (r)(t, w, x|q) = 2r
∞∑

m=0

(
m + r − 1

m

)
(−1)mwmet[m+x]q .(8)

Now we define the q-extension of w-Genocchi polynomials of order r, G
(r)
n,w,q(x),

as follows:

2rtr
∞∑

m=0

(
m + r − 1

m

)
(−1)mwmet[m+x]q =

∞∑
n=0

G(r)
n,w,q(x)

tn

n!
.(9)

Then we have
∞∑

n=0

G(r)
n,w,q(x)

tn

n!
(10)

= tr
∫

Zr
p

wx1+···+xret[x+x1+···+xr]qdµ−1(x1) · · · dµ−1(xr)

=
∞∑

n=0

∫
Zr

p

wx1+···+xr [x + x1 + · · ·+ xr]nq dµ−1(x1) · · · dµ−1(xr)r!
(

n + r

r

)
tn+r

(n + r)!
.

By comparing the coefficients on the both sides of (10), we see that

G
(r)
0,w,q(x) = G

(r)
1,w,q(x) = · · · = G

(r)
r−1,w,q(x) = 0,
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and

G
(r)
n+r,w,q(x)(11)

= r!
(

n + r

r

) ∫
Zr

p

wx1+x2+···+xr [x + x1 + · · ·+ xr]nq dµ−1(x1) · · · dµ−1(xr)

= r!
(

n + r

r

)
E(r)

n,w,q(x).

In the special case of x = 0, G
(r)
n,w,q(0) = G

(r)
n,w,q are called the q-extension of

w-Genocchi numbers of order r. By (11), we have the following theorem.

Theorem 5. Let r ∈ N and n ∈ Z+. Then we have

G
(r)
n+r,w,q(x)

r!
(
n+r

r

) =
∫

Zr
p

wx1+···+xr [x + x1 + · · ·+ xr]nq dµ−1(x1) · · · dµ−1(xr)

= E(r)
n,w,q(x),

and G
(r)
0,w,q(x) = G

(r)
1,w,q(x) = · · · = G

(r)
r−1,w,q(x) = 0.

Now we consider the distribution relation for the q-extension of w-Euler polyno-
mials of order r. For d ∈ N with d ≡ 1 (mod 2), by (8), we see that

F (r)(t, w, x|q)(12)

= 2r
∞∑

m=0

(
m + r − 1

m

)
(−1)mwmet[m+x]q

=
d−1∑

a1,···ar=0

(
r∏

i=1

wai)(−1)a1+···+ar2r
∞∑

m=0

(
m + r − 1

m

)
(−1)mwmdet[d]q [m+

a1+···+ar+x
d ]

qd

=
d−1∑

a1,···ar=0

(
r∏

i=1

wai)(−1)a1+···+arF (r)([d]qt, wd,
a1 + · · ·+ ar + x

d
| qd).

By (12), we obtain the following distribution relations for E
(r)
n,w,q(x) and G

(r)
n+r,w,q(x),

respectively.

Theorem 6. Let r ∈ N, n ∈ Z+ and d ∈ N with d ≡ 1 (mod 2). Then we have

E(r)
n,w,q(x) = [d]nq

d−1∑
a1,···ar=0

(
r∏

i=1

wai)(−1)a1+···+arE
(r)

n,wd,qd(
a1 + · · ·+ ar + x

d
).

Furthermore,

G
(r)
n+r,w,q(x) = [d]nq

d−1∑
a1,···ar=0

(
r∏

i=1

wai)(−1)a1+···+arG
(r)

n+r,wd,qd(
a1 + · · ·+ ar + x

d
).

For the extension of (2), we consider the (h, q)-extension of w-Euler polynomials
of order r. For h ∈ Z, r ∈ N and n ∈ Z+, let us define the (h, q)-extension of
w-Euler polynomial of order r as follows:

INTERPOLATION FUNCTIONS...234



8 YOUNG-HEE KIM, KYUNG-WON HWANG, AND TAEKYUN KIM

E(h,r)
n,w,q(x)(13)

=
∫

Zr
p

wx1+···+xr [x + x1 + · · ·+ xr]nq q

r∑
i=1

(h−i+1)xi

dµ−1(x1) · · · dµ−1(xr).

From (13), we obtain that

E(h,r)
n,w,q(x) =

2r

(1− q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(1 + ql+hw)(1 + ql+h−1w) · · · (1 + ql+h−r+1w)

=
2r

(1− q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(−ql+hw : q−1)r
(14)

=
2r

(1− q)n

n∑
l=0

(
n

l

)
(−1)lqlx

∞∑
m=0

(
m + r − 1

m

)
q−1

(−1)mq(l+h)mwm

= 2r
∞∑

m=0

(
m + r − 1

m

)
q−1

(−1)mqhmwm[m + x]nq .

Therefore, we have the following theorem.

Theorem 7. Let h ∈ Z, r ∈ N and n ∈ Z+. Then we have

E(h,r)
n,w,q(x) =

2r

(1− q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(−ql+hw : q−1)r
(15)

= 2r
∞∑

m=0

(
m + r − 1

m

)
q−1

(−1)mqhmwm[m + x]nq .

We also have the following result.

Corollary 8. Let F (h,r)(t, w, x|q) =
∞∑

n=0
E

(h,r)
n,w,q(x) tn

n! . Then we have

F (h,r)(t, w, x|q) = 2r
∞∑

m=0

(
m + r − 1

m

)
q−1

(−1)mqhmwmet[m+x]q .(16)

Remark 1. In the special case x = 0, E
(h,r)
n,w,q(0) = E

(h,r)
n,w,q are called the (h, q)-

extension of w-Euler numbers of order r.

If we take h = r − 1 in (14), then we have

E(r−1,r)
n,w,q (x) =

2r

(1− q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(1 + ql+r−1w)(1 + ql+r−2w) · · · (1 + qlw)

=
2r

(1− q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(−qlw : q)r
(17)

=
2r

(1− q)n

n∑
l=0

(
n

l

)
(−1)lqlx

∞∑
m=0

(
m + r − 1

m

)
q

(−1)mqlmwm

= 2r
∞∑

m=0

(
m + r − 1

m

)
q

(−1)mwm[m + x]nq .
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Then we have the following theorem.

Theorem 9. Let r ∈ N and n ∈ Z+. Then we have

E(r−1,r)
n,w,q (x) =

2r

(1− q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(−qlw : q)r

= 2r
∞∑

m=0

(
m + r − 1

m

)
q

(−1)mwm[m + x]nq .

We also the following corollary.

Corollary 10. Let F (r−1,r)(t, w, x|q) =
∞∑

n=0
E

(r−1,r)
n,w,q (x) tn

n! . Then we have

F (r−1,r)(t, w, x|q) = 2r
∞∑

m=0

(
m + r − 1

m

)
q

(−1)mwmet[m+x]q .(18)

From (18), we note that

F (r−1,r)(t, w, x|q) = 2r
∞∑

m=0

(
m + r − 1

m

)
q

(−1)mwmet[m+x]q

=
d−1∑

a1,···ar=0

q

r∑
i=0

(r−i)ai

(−1)a1+···+arwa1+···+ar(19)

×2r
∞∑

m=0

(
m + r − 1

m

)
qd

(−1)mwmdet[d]q [m+
a1+···+ar+x

d ]
qd

=
d−1∑

a1,···ar=0

q

r∑
i=0

(r−i)ai

(−1)a1+···+arwa1+···+ar

×F (r−1,r)([d]qt, wd,
a1 + · · ·+ ar + x

d
|qd),

where d ∈ N with d ≡ 1 (mod 2). By (19), we obtain the following the distribution
relation for E

(r−1,r)
n,w,q (x).

Theorem 11. For r ∈ N, n ∈ Z+ and d ∈ N with d ≡ 1 (mod 2). Then we have

E(r−1,r)
n,w,q (x)

= [d]nq
d−1∑

a1,···ar=0

q

∞∑
i=0

(r−i)ai

(−1)a1+···+arwa1+···+arE
(r−1,r)

n,wd,qd(
a1 + · · ·+ ar + x

d
).

Now we define the (h, q)-extension of w-Genocchi polynomials G
(h,r)
n,w,q(x) of order

r as follows:

2rtr
∞∑

m=0

(
m + r − 1

m

)
q−1

(−1)mqhmwmet[m+x]q =
∞∑

n=0

G(h,r)
n,w,q(x)

tn

n!
.(20)
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Then we have
∞∑

n=0

G(h,r)
n,w,q(x)

tn

n!

= tr
∫

Zr
p

q

∞∑
i=0

(h−i+1)xi

wx1+···+xret[x+x1+···+xr]qdµ−1(x1) · · · dµ−1(xr)(21)

=
∞∑

n=0

∫
Zr

p

q

∞∑
i=0

(h−i+1)xi

wx1+···+xr [x + x1 + · · ·+ xr]nq dµ−1(x1) · · · dµ−1(xr)

×r!
(

n + r

r

)
tn+r

(n + r)!
.

From (13) and (21), we derive the following result.

Theorem 12. Let r ∈ N and n ∈ Z+. Then we have

G
(h,r)
n+r,w,q(x)

r!
(
n+r

r

) =
∫

Zr
p

q

∞∑
i=0

(h−i+1)xi

wx1+···+xr [x + x1 + · · ·+ xr]nq dµ−1(x1) · · · dµ−1(xr)

= E(h,r)
n,w,q(x),

and G
(h,r)
0,w,q(x) = G

(h,r)
1,w,q(x) = · · · = G

(h,r)
r−1,w,q(x) = 0.

When h = r − 1 in Theorem 12, we have

G
(r−1,r)
n+r,w,q(x)

r!
(
n+r

r

) =
∫

Zr
p

q

∞∑
i=0

(r−i)xi

wx1+···+xr [x + x1 + · · ·+ xr]nq dµ−1(x1) · · · dµ−1(xr)

= 2r
∞∑

m=0

(
m + r − 1

m

)
q

(−1)mwm[m + x]nq

=
2r

(1− q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(−qlw : q)r

= E(r−1,r)
n,w,q (x).

Remark 2. In the special case x = 0, G
(h,r)
n,w,q(0) = G

(h,r)
n,w,q are called the (h, q)-

extension of w-Genocchi numbers of order r.
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The improved preconditioned AOR method for
irreducible L-matrices ∗
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Abstract

In this paper, we first improve the preconditioned AOR method for irre-
ducible L-matrices considered by Yun and Kim [Convergence of the precon-
ditioned AOR method for irreducible L-matrices, Appl. Math. Comput.,
(2008), doi:10.1016/j.amc.2007.11.045], and then we prove the convergence
of our method. Lastly, numerical experiments to illustrate the theoretical
results are provided. When choosing the approximately optimal parame-
ters, our method has smaller spectral radii of the iterative matrices than
the method provided in Yun and Kim’s, which is shown through numerical
examples.

Keywords: AOR method; Linear system; L-matrix; Preconditioned
AOR method;
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1 Introduction

For solving the linear system

Ax = b, x, b ∈ Rn, (1)
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where A = (ai,j) ∈ Rn×n is a nonsingular matrix. An iteration method is often
considered. For any splitting, A = M − N with det(M) 6= 0, the basic iterative
method for system (1) is

xi+1 = M−1Nxk + M−1b, k = 0, 1, . . . .

For simplicity, without loss of generality, we assume that A has a splitting
of the form A = I − L− U , where I denotes n× n identity matrix, −L and −U
are the strictly lower, and upper triangular parts of A, respectively. In [2], the
AOR iterative method is defined

x(i+1) = (I − rL)−1[(1− ω)I + (ω − r)L + ωU ]x(i) + (I − rL)−1ωb. (2)

Then the iteration matrix of the AOR iterative method is

Trω = (I − rL)−1[(1− ω)I + (ω − r)L + ωU ], (3)

where ω and r are real parameters with ω 6= 0.
We now transform the original linear system (1) into the preconditioned

linear system
PAx = Pb, (4)

where P is called a preconditioner. Then the basic iterative method for solving
the linear system (1) is

xk+1 = M−1
p Npxk + M−1

p Pb, k = 0, 1, . . . , (5)

where x0 is an initial vector and PA = Mp −Np is a splitting of PA.
In this paper, we consider the following two cases where

P = PS1 or P = PS2 .

The preconditioner PS1 is of the form PS1 = I + S1, where

S1 =




0 0 . . . 0
−α2a21 0 . . . 0
−α3a31 0 . . . 0

...
...

...
...

−αnan1 0 . . . 0




.

The preconditioner PS2 is of the form PS2 = I + S2, where

S2 =




0 −α2a12 0 . . . 0
0 0 −α3a23 . . . 0
...

...
...

...
...

0 0 0 . . . −αnan−1,n

0 0 0 . . . 0




.
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Here, αi (i = 2, 3, . . . n) are real parameters and αi > 0 for i = 2, 3, . . . n. Espe-
cially, if αi = 1 (i = 2, 3, . . . n), then the preconditioners are the case in Yun and
Kim [1]. Let

Ã = PS1A, and S1U = D
′
+ L

′
+ U

′
,

where D
′
is a diagonal matrix, L

′
is a strictly lower triangular matrix, and U

′
is

a strictly upper triangular matrix. Then, from S1L = 0 we can obtain

Ã = (I + S1)(I − L− U) = I − L− U + S1 − S1U = D̃ − L̃− Ũ , (6)

where D̃ = I −D
′
, L̃ = L− S1 + L

′
, and Ũ = U + U

′
.

Let A = PS2A and S2L = D∗ + L∗, where D∗ is a diagonal matrix and L∗ is
a strictly lower triangular matrix. Then, we obtains

A = (I + S2)(I − L− U) = I − L− U + S2 − S2L− S2U = D − L− U, (7)

where D = I −D∗, L = L + L∗, and U = U − S2 + S2U .
If we apply the AOR iterative method to the preconditioned linear system

(4), then we get the preconditioned AOR iterative method whose iteration matrix
is

T̃rω = (D̃ − rL̃)−1((1− ω)D̃ + (ω − r)L̃ + ωŨ) if P = PS1 , (8)

or
T rω = (D − rL)−1((1− ω)D + (ω − r)L + ωU) if P = PS2 , (9)

When ω = r, the (preconditioned) AOR iterative method reduces to the

(preconditioned) SOR iterative method [5]. For ω = r, Trω, T̃rω and T rω defined

by (3), (8) and (9) are denoted by Tω, T̃ω and T ω, respectively. That is,

Tω = (I − ωL)−1((1− ω)I + ωU), (10)

T̃ω = (D̃ − ωL̃)−1((1− ω)D̃ + ωŨ), (11)

T ω = (D − ωL)−1((1− ω)D + ωU), (12)

In this paper, first in section 2, we present some notation, definitions and
preliminary results. Next, we discuss the convergence of the preconditioned AOR
iterative method which uses

P = I + S1 or P = I + S2

as a preconditioner in section 3. Furthermore, in section 4, we provide numerical
experiments to illustrate the theoretical results obtained in Section 3, and we find
if we choose the set of parameters then our method has smaller spectral radii of
the iterative matrices than the method provided in [1], which is shown through
numerical examples. Lastly, in section 5, we obtain some conclusions.
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2 Preliminaries

We shall use the following notations and lemmas. A matrix A = (aij) ∈ Rn×n

is called a Z-matrix if aij ≤ 0 for i 6= j, and it is called an L-matrix if A is a
Z-matrix and aii > 0 for i = 1, 2, . . . . For a vector x ∈ Rn, x ≥ 0 (x > 0) denotes
that all components of x are nonnegative (positive). For two vectors x, y ∈ Rn,
x ≥ y (x > y) means that x − y ≥ 0, (x − y > 0). These definitions carry
immediately over to matrices. A(2 : n, 2 : n) denotes the submatrix of A ∈ Rn×n

whose rows are indexed by 2, 3, . . . , n and columns by 2, 3, . . . n. Let ρ(A) denotes
the spectral radius of A, and A is called irreducible if the directed graph of A is
strongly connected [3].

We first refer to the following result which is essentially.

Theorem 2.1 ([3]). Let A ≥ 0 be an irreducible matrix. Then
(a) A has a positive eigenvalue equal to ρ(A);
(b) A has an eigenvector x > 0 corresponding to ρ(A);
(c) ρ(A) is a simple eigenvalue of A.

Theorem 2.2 ([4]). Let A ≥ 0 be a matrix. Then the following hold.
(a) If Ax ≥ βx for a vector x ≥ 0 and x 6= 0, then ρ(A) ≥ β;
(b) If Ax ≤ γx for a vector x > 0, then ρ(A) ≤ γ. Moreover, if A is

irreducible and if βx ≤ Ax ≤ γx, equality excluded, for a vector x ≥ 0 and x 6= 0
and x 6= 0, then β < ρ(A) < γ and x > 0.

3 Main results

Theorem 3.1. Let A = (aij) ∈ Rn×n be an L-matrix and A(2 : n, 2 : n) be an
irreducible submatrix of A. Suppose that there exists a nonempty set β ⊂ N1 =
{2, 3, . . . , n} and real parameters αi > 0 for i = 2, 3, . . . , n such that

{
0 < αia1iai1 < 1, if i ∈ β,
a1iai1 = 0, if i ∈ N1 − β.

Let Trω and T̃rω be defined by (3) and (8). If 0 ≤ r ≤ ω ≤ 1(ω 6= 0, r 6= 1), then

(a) ρ(T̃rω) < ρ(Trω) if ρ(Trω) < 1;

(b) ρ(T̃rω) = ρ(Trω) if ρ(Trω) = 1;

(c) ρ(T̃rω) > ρ(Trω) if ρ(Trω) > 1.

Proof. By (3), Trω can be expressed as

Trω = (1− ω)I + ω(1− r)L + ωU + H, (13)
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where H is a nonnegative matrix. Since A is an L-matrix, L and U are nonneg-
ative. From (13), Trω ≥ 0. Since A(2 : n, 2 : n) is irreducible and a1iai1 6= 0 for
i ∈ β, it is easy to show that A is irreducible. Since ω 6= 0, r 6= 1 and A is irre-
ducible, ω(1− r)L + ωU is irreducible. Hence, Trω is irreducible from (13). From
Theorem 2.1, there exists a vector x > 0 such that Trωx = λx, where λ = ρ(Trω).
Since L is a strictly lower triangular matrix, S1L = 0. From Trωx = λx, one
easily obtains

((1− ω)I + (ω − r)L + ωU)x = λ(I − rL)x,
ωS1Ux = (λ + ω − 1)S1x.

(14)

Using (8) and (14),

T̃rωx− λx = (D̃ − rL̃)−1((1− ω)D̃ + (ω − r)L̃ + ωŨ − λ(D̃ − rL̃))x

= (D̃ − rL̃)−1((1− ω − λ)D̃ + (ω − r + λr)L̃ + ωŨ)x

= (D̃ − rL̃)−1((ω + λ− 1)D
′
+ (ω − r + λr)(L

′ − S1) + ωU
′
)x

= (D̃ − rL̃)−1((λ− 1)D
′
+ (λ− 1)rL

′
+ (r − ω − λr)S1 + ωS1U)x

= (D̃ − rL̃)−1((λ− 1)(D
′
+ rL

′
) + (−λr + λ + r − 1)S1)x

= (λ− 1)(D̃ − rL̃)−1(D
′
+ rL

′
+ (1− r)S1)x.

(15)

Since 0 < αia1iai1 < 1, D
′
, L

′
and S1 are nonnegative. Since Ã = L̃ − Ũ is also

an L-matrix, D̃, L̃ and Ũ are all nonnegative. By simple calculation, T̃rω can be
expressed as

T̃rω = (1− ω)I + ω(1− r)D̃−1L̃ + ωD̃−1Ũ + H̃ =

(
1− ω T̃12

0 T̃22

)
, (16)

where H̃ is a nonnegative matrix, T12 ≥ 0 is an 1× (n− 1) matrix and T̃22 ≥ 0 is

an (n−1)× (n−1) matrix. Since a1i 6= 0 for i ∈ β, T̃12 is a nonzero matrix. Since

A(2 : n, 2 : n) is irreducible, it is easy to show that Ã(2 : n, 2 : n) is irreducible.

Since ω 6= 0 and r 6= 1, from (16) T̃rω(2 : n, 2 : n) = T̃22 is irreducible. Let

y = (D
′
+ rL

′
+ (1− r)S1)x and z = (D̃ − rL̃)−1y. (17)

Since ai1 6= 0 for i ∈ β, r 6= 1 and x > 0, y ≥ 0 is a nonzero vector and the
first component of y is zero. Since (D̃ − rL̃)−1 is a nonnegative lower triangular
matrix, z ≥ 0 is also a nonzero vector and the first component of z is zero. Thus,
we can set

x =

(
x1

x2

)
and z =

(
0
z2

)
, (18)

where x1 ∈ R1 > 0, x2 ∈ Rn−1 > 0, and z2 ∈ Rn−1 ≥ 0 is a nonzero vector. From
(15)-(18), T̃rωx− λx = (λ− 1)z and hence

(1− ω)x1 + T̃12x2 = λ1, (19)
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T̃22x2 − λx2 = (λ− 1)z2. (20)

If λ > 1, then from (20) one obtains

T̃22x2 ≥ λx2 and T̃22x2 6= λx2. (21)

From (20) and Theorem 2.2, ρ(T̃22) > λ. Since 0 ≤ (1−ω) < 1, ρ(T̃rω) = ρ(T̃22) >
λ = ρ(Trω).

If λ < 1, then from (20) one obtains

T̃22x2 ≤ λx2, T̃22x2 6= λx2. (22)

Since T̃22 ≥ 0 is irreducible and x2 > 0, from (22) and Theorem 2.2

ρ(T̃22) < λ. (23)

Since T̃12 ≥ 0 is nonzero and x2 > 0, T̃12x2 > 0. From (19) (1− ω)x1 < λx1 and
thus

(1− ω) < λ. (24)

Since ρ(T̃rω) = max{(1− ω), ρ(T̃22)}, from (23) and (24) ρ(T̃rω) < λ = ρ(Trω).

If λ = 1, from (15) T̃rωx = λx. Hence, from Theorem 2.2 ρ(T̃rω) = λ = ρ(Trω)
is obtained. 2

Corollary 3.2. Let A = (aij) ∈ Rn×n be an L-matrix and A(2 : n, 2 : n)
be an irreducible submatrix of A. Suppose that there exists a nonempty set
β ⊂ N1 = {2, 3, . . . , n} and real parameters αi > 0 for i = 2, 3, . . . , n such
that {

0 < αia1iai1 < 1, if i ∈ β,
a1iai1 = 0, if i ∈ N1 − β.

Let Tω and T̃ω be defined by (10) and (11). If 0 < ω < 1, then

(a) ρ(T̃ω) < ρ(Tω) if ρ(Tω) < 1.

(b) ρ(T̃ω) = ρ(Tω) if ρ(Tω) = 1.

(c) ρ(T̃ω) > ρ(Tω) if ρ(Tω) > 1.

Remark 3.3. If r = ω = 1, then the (preconditioned) AOR method reduces

to the (preconditioned) Gauss-Seidel method. For r = ω = 1, since Trω and T̃22

used in the proof of Theorem 3.1 are not necessarily irreducible, the proof of The-
orem 3.1 does not make sense . Hence, it can not be guaranteed that Corollary
3.2 holds for r = ω = 1. Further work will discuss the case of r = ω = 1 under
the similar assumptions used in Corollary 3.2.
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Lemma 3.4. Let A = (aij) ∈ Rn×n be an L-matrix. Suppose that there ex-
ist a nonempty set γ ⊂ N2 = {1, 2, . . . , n − 1} and real parameters αi > 0 for
i = 2, 3, . . . , n such that αi+1ai,i+1ai+1,i < 1 for all i ∈ N2. Let Trω and T rω be
defined by (3) and (9). If 0 ≤ r ≤ ω ≤ 1(ω 6= 0, r 6= 1) and A is irreducible
even for ai,i+1 set to 0 for every i ∈ γ, then Trω and T rω are nonnegative and
irreducible.

Proof. Since A is irreducible even for ai,i+1 set to zero for every i ∈ γ, A =
I−L−U is irreducible. Hence, Trω is irreducible and nonnegative from (13). Let

A = P2A = (I + S2)A = D − L− U,

where D, L and U are defined as in (7). Since A is an L-matrix and αi+1ai,i+1ai+1,i <
1 for all i ∈ N2, A is also an L-matrix and thus D, L and U are all nonnegative.
Since the nonzero structure of A is the same as that of A with ai,i+1 set to zero for
every i ∈ γ, A is also irreducible by assumption. Note that T rω can be expressed
as

T rω = (1− ω)I + ω(1− r)D
−1

L
−1

+ ωD
−1

U
−1

+ H, (25)

where H is a nonnegative matrix. From (25), T rω is nonnegative. Since ω 6= 0,

r 6= 1 and A is irreducible, ω(1 − r)D
−1

L
−1

+ ωD
−1

U
−1

is irreducible. Hence,
T rω is irreducible from (25). 2

Theorem 3.5. Let A = (aij) ∈ Rn×n be an L-matrix. Suppose that there exists a
nonempty set γ ⊂ N2 = {1, 2, . . . , n−1} such that ai,i+1 6= 0 for all i ∈ γ and real
parameters αi > 0 for i = 2, 3, . . . , n such that αi+1ai,i+1ai+1,i < 1 for all i ∈ N2.
Let Trω and T rω be defined by (3) and (9). If 0 ≤ r ≤ ω ≤ 1(ω 6= 0, r 6= 1) and
A is irreducible even for ai,i+1 set to 0 for every i ∈ γ, then

(a) ρ(T rω) < ρ(Trω) if ρ(Trω) < 1.
(b) ρ(T rω) = ρ(Trω) if ρ(Trω) = 1.
(c) ρ(T rω) > ρ(Trω) if ρ(Trω) > 1.

Proof. From Lemma 3.4, Trω is nonnegative and irreducible. By Theorem 2.1,
there exists a vector x > 0 such that Trωx = λx, where λ = ρ(Trω). From
Trωx = λx, one easily obtains

((1− ω)I + (ω − r)L + ωU)x = λ(I − rL)x,
((λ + ω − I)S2 + (r − ω − λr)S2L)x = ωS2Ux.

(26)
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Using (9) and (26),

T rωx− λx = (D − rL)−1((1− ω)D + (ω − r)L + ωU − λ(D − rL))x
= (D − rL)−1((1− ω − λ)D + (ω − r + λr)L + ωU)x
= (D − rL)−1((ω + λ− 1)D∗ + (ω − r + λr)L∗ + ω(S2U − S2))x
= (D − rL)−1((ω + λ− 1)(D∗ + S2) + (ω − r + λr)(L∗ − S2L)− ωS2)x
= (D − rL)−1((ω + λ− 1)D∗ + (λ− 1)S2 − (ω − r + λr)D∗)x
= (D − rL)−1((−λr + λ + r − 1)D∗ + (λ− 1)S2)x
= (λ− 1)(D − rL)−1((1− r)D∗ + S2)x.

(27)
Since 0 < αia1iai1 < 1, D, D∗, L and S2 are all nonnegative. Let

y = ((1− r)D∗ + S2)x and z = (D − rL)−1y. (28)

Since ai,i+1 6= 0 for i ∈ γ and x > 0, y = (yi) ≥ 0 and yi is nonzero for i ∈ γ.
Since (D− rL)−1 is a nonnegative lower triangular matrix, z = (zi) ≥ 0 and zi is
also nonzero for i ∈ γ. From (27) and (28), one obtains

T rωx− λx = (λ− 1)z. (29)

For the case of λ = 1 and λ > 1, T rωx = λx and T rωx ≥ λx (with T rωx 6= λx)
are obtained directly from Theorem 3.1 and 3.3, respectively. If λ < 1, then
from (29) T rωx ≤ λx and T rωx 6= λx. Since T rω is irreducible from Lemma 3.3,
Theorem 2.2 implies that ρ(T rω) < λ = ρ(Trω). Hence, the theorem follows from
Theorem 2.2. 2

Corollary 3.6. Let A = (aij) ∈ Rn×n be an L-matrix. Suppose that there
exists a nonempty set γ ⊂ N2 = {1, 2, . . . , n− 1} such that ai,i+1 6= 0 for all i ∈ γ
and real parameters αi > 0 for i = 2, 3, . . . , n such that αi+1ai,i+1ai+1,i < 1 for
all i ∈ N2. Let Tω and T ω be defined by (10) and (12). If 0 < ω < 1 and A is
irreducible even for ai,i+1 set to 0 for every i ∈ γ, then

(a) ρ(T ω) < ρ(Tω) if ρ(Tω) < 1.
(b) ρ(T ω) = ρ(Tω) if ρ(Tω) = 1.
(c) ρ(T ω) > ρ(Tω) if ρ(Tω) > 1.

Remark 3.7. If r = ω = 1, then the proof of Theorem 3.4 does not make
sense since it is not generally true that Trω and T rω are irreducible. Hence, it can
not be guaranteed that Corollary 3.6 holds for ω = 1. Further work will discuss
the case of r = ω = 1 under the similar assumptions used in Corollary 3.6.
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4 Numerical experiments

In this section, we provide numerical experiments to illustrate the theoretical
results obtained in Section 3. If we choose the set of parameters, then our method
has smaller spectral radii of the iterative matrices than the method provided in
[1]. All numerical experiments are carried out using MATLAB 7.1. For simplicity
of comparison, suppose that all of αi are equal and let α = αi for i = 2, 3, . . . , n.
Let ρ(T̃rω) and ρ(T rω) denote the spectral radii of the corresponding iteration

matrices for α = 1. Let ρopt(T̃rω) and ρopt(T rω) denote the spectral radii of the
corresponding iteration matrices when using approximately optimal parameters
α(eTrω) and α(T rω), respectively.

Example 4.1.[1] Consider a 4× 4 matrix A of the form

A =




1 0 0 −0.3
−0.3 1 −0.3 −0.3

0 −0.3 1 −0.3
−0.3 0 −0.3 1


 .

It is easy to see that the matrix A satisfies all assumption of Theorems 3.1
and 3.5. Note that β = {4} ⊂ N1 and γ = {2, 3} ⊂ N2. Since the smaller spectral
radius of the iteration matrix is, the faster the convergence rate is, we compare
spectral radii of the iterative matrices in tables 1 and 2 for example 4.1.

Table 1 Spectral radii of the iterative matrices ρ(Trω), ρ(eTrω) and ρ(T rω) with various of r and ω

r ω ρ(Trω) ρ(T̃rω) ρ(T rω) ρopt(T̃rω) α(eTrω) ρ(T rω) α(T rω)

0.9 1 0.3406 0.2937 0.2331 0.1881 4.5 0.1557 2.3
0.8 1 0.3852 0.3377 0.2844 0.2290 4.0 0.2111 2.1
0.7 1 0.4201 0.3721 0.3240 0.2599 3.7 0.2546 2.0
0.7 0.8 0.5361 0.4977 0.4592 0.3662 7.2 0.3679 4.5
0.6 0.8 0.5593 0.5204 0.4854 0.3850 6.0 0.3952 3.7
0.5 0.8 0.5793 0.5400 0.5079 0.3998 5.4 0.4214 3.3
0.5 0.6 0.6845 0.6550 0.6309 0.5297 8.4 0.5562 5.5
0.4 0.6 0.6976 0.6680 0.6458 0.5372 7.2 0.5706 4.8
0.3 0.6 0.7093 0.6795 0.6590 0.5425 6.5 0.5855 4.2
0.3 0.4 0.8062 0.7863 0.7727 0.6844 9.0 0.7209 5.7
0.2 0.4 0.8133 0.7933 0.7807 0.6855 7.9 0.7284 5.6
0.1 0.4 0.8197 0.7997 0.7879 0.6852 7.1 0.7364 4.9
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Table 2 Spectral radii of the iterative matrices ρ(Trω), ρ(eTrω) and ρ(T rω) with various of ω, where r = ω

ω ρ(Trω) ρ(T̃rω) ρ(T rω) ρopt(T̃rω) α(eTrω) ρ(T rω) α(T rω)

0.95 0.3465 0.3018 0.2391 0.2082 4.4 0.1645 2.5
0.9 0.4066 0.3643 0.3098 0.2585 5.5 0.2273 3.2
0.8 0.5081 0.4702 0.4275 0.3521 7.3 0.3416 4.6
0.7 0.5941 0.5604 0.5268 0.4396 8.6 0.4460 5.3
0.6 0.6695 0.6403 0.6140 0.5230 9.5 0.5416 5.4
0.5 0.7371 0.7125 0.6924 0.6036 10.1 0.6301 5.6
0.4 0.7984 0.7786 0.7638 0.6824 10.5 0.7129 5.5
0.3 0.8547 0.8398 0.8295 0.7607 10.5 0.7907 5.6
0.2 0.9066 0.8967 0.8903 0.8382 11.0 0.8641 5.9
0.1 0.9549 0.9499 0.9470 0.9175 10.9 0.9338 5.6

Example 4.2. Consider a n× n matrix A of the form

A =




1 c1 c2 c3 c1 . . .

c3 1 c1 c2
. . . c1

c2 c3
. . . . . . . . . c3

c1
. . . . . . 1 c1 c2

c3
. . . c2 c3 1 c1

. . . c3 c1 c2 c3 1




,

where c1 = −2/n, c2 = 0, c3 = −1/(n + 2). Clearly, the matrix A satisfies all
assumptions of Theorems 3.1 and 3.5. Note that β = {2, 4, 5, 7, 9, 10, . . .} ⊂ N1

and γ = {1, 2, 3, . . . n−1} ⊂ N2. Numerical results for this matrix A are provided
in Tables 3 and 4 for n = 30 and in Tables 5 and 6 for n = 100.

Table 3 Spectral radii of the iterative matrices ρ(Trω), ρ(eTrω) and ρ(T rω) with various of r and ω

r ω ρ(Trω) ρ(T̃rω) ρ(T rω) ρopt(T̃rω) α(eTrω) ρ(T rω) α(T rω)

0.9 1 0.9076 0.9047 0.8966 0.6781 19.0 0.1557 2.3
0.8 1 0.9147 0.9120 0.9054 0.6906 19.3 0.2111 2.1
0.7 1 0.9207 0.9182 0.9128 0.7032 19.6 0.2546 2.0
0.7 0.8 0.9365 0.9345 0.9302 0.7624 19.6 0.3679 4.5
0.6 0.8 0.9407 0.9388 0.9352 0.7712 19.8 0.3952 3.7
0.5 0.8 0.9443 0.9426 0.9395 0.7788 19.9 0.4214 3.3
0.5 0.6 0.9583 0.9569 0.9546 0.8340 19.9 0.5562 5.5
0.4 0.6 0.9607 0.9594 0.9574 0.8395 20.0 0.5706 4.8
0.3 0.6 0.9628 0.9616 0.9599 0.8448 20.1 0.5855 4.2
0.3 0.4 0.9752 0.9744 0.9733 0.8966 20.1 0.7209 5.7
0.2 0.4 0.9765 0.9757 0.9747 0.8999 20.2 0.7284 5.6
0.1 0.4 0.9776 0.9769 0.9761 0.9032 20.3 0.7364 4.9
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Table 4 Spectral radii of the iterative matrices ρ(Trω), ρ(eTrω) and ρ(T rω) with various of ω, where r = ω

ω ρ(Trω) ρ(T̃rω) ρ(T rω) ρopt(T̃rω) α(eTrω) ρ(T rω) α(T rω)

0.95 0.9083 0.9055 0.8969 0.6908 19.0 0.6308 9.8
0.9 0.9168 0.9142 0.9069 0.7109 19.0 0.6812 10.4
0.8 0.9317 0.9296 0.9243 0.7524 19.3 0.7588 11.3
0.7 0.9445 0.9427 0.9389 0.7921 19.6 0.8195 12.1
0.6 0.9555 0.9541 0.9514 0.8284 19.8 0.8622 12.6
0.5 0.9652 0.9641 0.9622 0.8617 19.9 0.8980 13.1
0.4 0.9738 0.9729 0.9716 0.8930 20.0 0.9265 13.5
0.3 0.9814 0.9808 0.9800 0.9224 20.1 0.9493 13.8
0.2 0.9882 0.9878 0.9874 0.9500 20.2 0.9690 14.1
0.1 0.9944 0.9942 0.9940 0.9758 20.3 0.9858 14.4

Table 5 Spectral radii of the iterative matrices ρ(Trω), ρ(eTrω) and ρ(T rω) with various of r and ω

r ω ρ(Trω) ρ(T̃rω) ρ(T rω) ρopt(T̃rω) α(eTrω) ρ(T rω) α(T rω)

0.9 1 0.9705 0.9702 0.9694 0.8208 75.0 0.8576 38.8
0.8 1 0.9729 0.9726 0.9720 0.8228 75.2 0.8981 39.9
0.7 1 0.9749 0.9747 0.9742 0.8296 76.1 0.9210 40.5
0.7 0.8 0.9799 0.9797 0.9793 0.8637 76.1 0.9259 45.4
0.6 0.8 0.9813 0.9812 0.9808 0.8687 76.8 0.9419 45.8
0.5 0.8 0.9826 0.9824 0.9821 0.8735 77.4 0.9524 45.8
0.5 0.6 0.9869 0.9868 0.9866 0.9051 77.4 0.9584 47.9
0.4 0.6 0.9877 0.9876 0.9874 0.9083 77.8 0.9639 48.5
0.3 0.6 0.9884 0.9883 0.9881 0.9115 78.2 0.9676 48.9
0.3 0.4 0.9923 0.9922 0.9921 0.9410 78.2 0.9784 48.9
0.2 0.4 0.9927 0.9926 0.9925 0.9430 78.5 0.9807 49.3
0.1 0.4 0.9931 0.9930 0.9929 0.9449 78.8 0.9824 49.6

Table 6 Spectral radii of the iterative matrices ρ(Trω), ρ(eTrω) and ρ(T rω) with various of ω, where r = ω

ω ρ(Trω) ρ(T̃rω) ρ(T rω) ρopt(T̃rω) α(eTrω) ρ(T rω) α(T rω)

0.95 0.9707 0.9704 0.9696 0.8218 73.5 0.8185 38.8
0.9 0.9735 0.9732 0.9725 0.8342 74.1 0.8532 40.9
0.8 0.9783 0.9781 0.9776 0.8583 75.2 0.8961 44.3
0.7 0.9825 0.9823 0.9819 0.8807 76.1 0.9296 46.0
0.6 0.9860 0.9859 0.9856 0.9015 76.8 0.9507 47.1
0.5 0.9891 0.9890 0.9888 0.9209 77.4 0.9653 47.9
0.4 0.9918 0.9917 0.9916 0.9389 77.8 0.9759 48.5
0.3 0.9942 0.9942 0.9941 0.9558 78.2 0.9838 48.9
0.2 0.9963 0.9963 0.9963 0.9715 78.5 0.9903 49.3
0.1 0.9983 0.9983 0.9982 0.9862 78.8 0.9956 49.6
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Remark 4.3. When α = 1, in this case, the preconditioner is the one in [1].
The above numerical experiments indicate that the spectral radii of iterative ma-
trices with the proposed preconditioners achieve significant improvement over the
spectral radii of iterative matrices with the existing preconditioners in [1].

5 Conclusions

In this paper, we improve the preconditioned AOR method for irreducible
L-matrices and analyze the convergence of our method. When choosing the
various parameters, the spectral radii of the iteration matrices with the proposed
preconditioner is smaller than those in [1], which is shown through numerical
experiments. Particularly, one may discuss how choose the set of parameters in
order to really accelerate the convergence of the considered method. Furthermore,
the optimal choice of this set of parameters is valuably studied.
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SOME RESULTS IN FUZZY COMPACT LINEAR OPERATORS

HAKAN EFE AND CEMIL YILDIZ

Abstract. In this paper we introduce the concept of fuzzy compact oper-
ators between fuzzy n-normed linear spaces in the sense of Narayanan and
Vijayabalaji [12].

1. Introduction

The concept of 2-norm and n-norm on a linear space has been introduced and
developed by Gähler in [5, 6]. After that Misiak [11], Kim and Cho [8] and Malµceski
[10] developed the theory of n-normed space. In [7], Gunawan and Mashadi gave
a simple way to derive an (n-1)-norm from the n-norm and realized that any n-
normed space is an (n-1)-normed space.
In 2003, Bag and Samanta [1] introduced a de�nition of a fuzzy norm and proved

a decomposition theorem of a fuzzy norm into a family of crisp norms. Also they [2,
3] gave some important properties on fuzzy norms. Lael and Nourouzi [9] introduced
the fuzzy compact linear operators between fuzzy normed linear spaces.
Narayanan and Vijayabalaji [12] introduced the concept of fuzzy n-normed linear

space as a generalization of fuzzy normed linear space. In [4], Efe de�ned various
types of continuities of operators and boundedness of linear operators over fuzzy
n-normed linear spaces such as fuzzy continuity, sequential fuzzy continuity, weakly
fuzzy continuity, strongly fuzzy continuity, weakly fuzzy boundedness and strongly
fuzzy boundedness.
In this paper we study on fuzzy compact operator between fuzzy n-normed lin-

ear spaces in the sense of Narayanan and Vijayabalaji [12]. Some de�nitions and
theorems are generalized in fuzzy n-normed linear space.

2. Fuzzy n-normed linear spaces

De�nition 1 ([7]). Let n 2 N and let X be a real vector space of dimension d � n.
(Here we allow d to be in�nite.) A real-valued function jj�; :::; �jj on X � � � � �X| {z }

n

satisfying the following four properties,

(1) jjx1; x2; :::; xnjj = 0 if and only if x1; x2; :::; xn are linearly dependent,
(2) jjx1; x2; :::; xnjj is invariant under any permutation,
(3) jjx1; x2; :::; �xnjj = j�j jjx1; x2; :::; xnjj for any � 2 R,
(4) jjx1; x2; :::; xn�1; y + zjj � jjx1; x2; :::; xn�1; yjj+ jjx1; x2; :::; xn�1; zjj,
is called an n-norm on X and the pair (X; jj�; :::; �jj) is called an n-normed space.

2000 Mathematics Subject Classi�cation. 46A30, 46A70, 54A40.
Key words and phrases. fuzzy n-norms, fuzzy compact operator.
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2 HAKAN EFE AND CEMIL YILDIZ

De�nition 2 ([12]). Let X be a linear space over a real �eld F . A fuzzy subset N
of X � � � � �X| {z }

n

� R (R, set of real numbers) is called a fuzzy n-norm on X if and

only if

(N1) for all t 2 R with t � 0, N(x1; x2; :::; xn; t) = 0,
(N2) for all t 2 R with t > 0, N(x1; x2; :::; xn; t) = 1 if and only if x1; x2; :::; xn

are linearly dependent,
(N3) N(x1; x2; :::; xn; t) is invariant under any permutation of x1; :::; xn,
(N4) for all t 2 R with t > 0, N(x1; x2; :::; cxn; t) = N(x1; x2; :::; xn; t=jcj), if

c 6= 0, c 2 F ,
(N5) for all s; t 2 R,

N(x1; x2; :::; xn + x
0
n; s+ t) � min

�
N(x1; x2; :::; xn; s);
N(x1; x2; :::; x

0
n; t)

�
,

(N6) N(x1; x2; :::; xn; �) is a nondecreasing function of R and

lim
t!1

N(x1; x2; :::; xn; t) = 1.

Then (X;N) is called a fuzzy n-normed linear space or in short f-n-NLS.

Remark 1. From (N3), it follows that in a f-n-NLS,

(N4) for all t 2 R with t > 0,

N(x1; x2; :::; cxi; :::; xn; t) = N(x1; x2; :::; xi; :::; xn; t=jcj),

if c 6= 0,
(N5) for all s; t 2 R,

N(x1; x2; :::; xi + x
0
i; :::; xn; s+ t) � min

�
N(x1; x2; :::; xi; :::; xn; s);
N(x1; x2; :::; x

0
i; :::; xn; t)

�
.

Example 1. Let (X; jj�; �; :::; �jj) be an n-normed space as in De�nition 1. De�ne,

N(x1; x2; :::; xn; t) =

� t
t+jjx1;x2;:::;xnjj if t > 0, t 2 R,

0 if t � 0

for all x1; x2; :::; xn 2 X. Then (X;N) is a f-n-NLS.

Theorem 1 ([12]). Let (X;N) be a f-n-NLS. Assume further those

(N7) N(x1; x2; :::; xn; t) > 0 for all t > 0 implies x1; x2; :::; xn are linearly depen-
dent.

De�ne

jjx1; x2; :::; xnjj� = infft : N(x1; x2; :::; xn; t) � �g, � 2 (0; 1).

Then fjj�; �; :::; �jj� : � 2 (0; 1)g ascending family of n-norms on X. These n-
norms are called ��n-norms on X corresponding to the fuzzy n-norm on X.

(N8) We assume that, for x1; x2; :::; xn are linearly independent,

N(x1; x2; :::; xn; �) is a continuous function of R and strictly increasing on the
subset ft : 0 < N(x1; x2; :::; xn; t) < 1g of R.
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FUZZY n-NORMED LINEAR SPACES 3

De�nition 3 ([4]). Let (X;N) be a f-n-NLS and fx(k)g be a sequence in X. Then
fx(k)g is said to be convergent if there exists a x 2 X such that

lim
k!1

N(x1; x2; :::; xn�1; x(k)� x; t) = 1

for every x1; x2; :::; xn�1; x 2 X and for all t > 0. Then x 2 X called limit of the
sequence fx(k)g and denoted by limx(k) = x or x(k) �! x.

De�nition 4 ([4]). A sequence fx(k)g in (X;N) is called Cauchy sequence, if
lim

k;l!1
N(x1; x2; :::; xn�1; x(k)� x(l); t) = 1

for every x1; x2; :::; xn�1 2 X and for all t > 0, k; l 2 N.

De�nition 5 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS. A mapping T : X �!
Y is said to be fuzzy continuous at z 2 X, if for given " > 0, � 2 (0; 1), there
exists � = �(�; ") > 0, � = �(�; ") 2 (0; 1) such that for all x1; x2; :::; xn�1; y 2 X,
y1; y2; :::; yn�1 2 Y ,

N1(x1; x2; :::; xn�1; y � z; �) > � ) N2(y1; y2; :::; yn�1; T y � Tz; ") > �.
If T is fuzzy continuous at each point of X, then T is said to be fuzzy continuous
on X.

De�nition 6 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS. A mapping T : X �!
Y is said to be strongly fuzzy continuous at z 2 X, if for each " > 0, there exists
� > 0 such that for all x1; x2; :::; xn�1; y 2 X, y1; y2; :::; yn�1 2 Y ,

N2(y1; y2; :::; yn�1; T y � Tz; ") � N1(x1; x2; :::; xn�1; y � z; �).
If T is strongly fuzzy continuous at each point of X, then T is said to be strongly
fuzzy continuous on X.

De�nition 7 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS. A mapping T : X �!
Y is said to be weakly fuzzy continuous at z 2 X, if for a given " > 0, � 2 (0; 1),
there exists � = �(�; ") > 0 such that for all x1; x2; :::; xn�1; y 2 X, y1; y2; :::; yn�1 2
Y ,

N1(x1; x2; :::; xn�1; y � z; �) � �)
N2(y1; y2; :::; yn�1; T y � Tz; ") � �.

If T is weakly fuzzy continuous at each point of X, then T is said to be weakly fuzzy
continuous on X.

De�nition 8 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS. A mapping T : X �!
Y is said to be sequentially fuzzy continuous at z 2 X, if for any sequence fx(k)g
in X with x(k) �! z implies Tx(k) �! Tz, k 2 N. I.e., for all t > 0,

lim
k!1

N1(x1; x2; :::; xn�1; x(k)� z; t) = 1)

lim
k!1

N2(y1; y2; :::; yn�1; Tx(k)� Tz; t) = 1.

for all x1; x2; :::; xn�1; y 2 X, y1; y2; :::; yn�1 2 Y . If T is sequentially fuzzy con-
tinuous at each point of X, then T is said to be sequentially fuzzy continuous on
X.

Remark 2. It is easy to see that if a mapping is strongly fuzzy continuous then it
is weakly fuzzy continuous.
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4 HAKAN EFE AND CEMIL YILDIZ

Theorem 2 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS and T : X �! Y be a
mapping. If T is strongly fuzzy continuous then it is sequentially fuzzy continuous.

Theorem 3 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS and T : X �! Y be a
mapping. Then T is fuzzy continuous i¤ it is sequentially fuzzy continuous.

De�nition 9 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS and T : X �! Y be a
linear operator. T is said to be strongly fuzzy bounded on X i¤ there exists positive
real number M such that for all x1; x2; :::; xn�1; y 2 X, y1; y2; :::; yn�1 2 Y and for
all s 2 R,

N2(y1; y2; :::; yn�1; T y; s) � N1
�
x1; x2; :::; xn�1; y;

s

M

�
.

Let us denote the set of all strongly fuzzy bounded linear operators from a f-n-
NLS (X;N1) to (Y;N2) by F(X;Y ).

Theorem 4. F(X;Y ) is a linear space.

Proof. First note that for T1; T2 2 F(X;Y ) and y 2 X, we have (T1 + T2)(y) =
T1(y) + T2(y) and (�T1)(y) = �T1(y). Since T1 and T2 are strongly fuzzy bounded,
then there exist positive numbers M1and M2 such that

N2(y1; y2; :::; yn�1; T1y; t) � N1

�
x1; x2; :::; xn�1; y;

t

M1

�
and

N2(y1; y2; :::; yn�1; T2y; t) � N1

�
x1; x2; :::; xn;

t

M2

�
for all x1; x2; :::; xn�1; y 2 X and y1; y2; :::; yn�1 2 Y and for all t 2 R. Now for any
scalars �; � and for all x 2 X we have

N2(y1; y2; :::; yn�1; (�T1 + �T2)y; t)

= N2(y1; y2; :::; yn�1; �T1(y) + �T2(y); t)

� min

�
N2
�
y1; y2; :::; yn�1; T1(�y);

t
2

�
;

N2
�
y1; y2; :::; yn�1; T2(�y);

t
2

� �

� min

8<: N1

�
x1; x2; :::; xn�1; �y;

t
2M1

�
;

N1

�
x1; x2; :::; xn�1; �y;

t
2M2

� 9=;
= min

8<: N1

�
x1; x2; :::; xn�1; y;

t
2j�jM1

�
;

N1

�
x1; x2; :::; xn�1; y;

t
2j�jM2

� 9=; .
Choose M = maxf2j�jM1; 2j�jM2g + 1. Thus M � 2j�jM1 and M � 2j�jM2 and
this shows that

t

2j�jM1
� t

M
and

t

2j�jM2
� t

M

for all t � 0. Hence

N1

�
x1; x2; :::; xn�1; y;

t

2j�jM1

�
� N1

�
x1; x2; :::; xn�1; y;

t

M

�
and

N1

�
x1; x2; :::; xn�1; y;

t

2j�jM2

�
� N1

�
x1; x2; :::; xn�1; y;

t

M

�
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which implies

min

8<: N1

�
x1; x2; :::; xn�1; y;

t
2j�jM1

�
;

N1

�
x1; x2; :::; xn�1; y;

t
2j�jM2

� 9=; � N1
�
x1; x2; :::; xn�1; y;

t

M

�
.

Then we have

N2(y1; y2; :::; yn�1; (�T1 + �T2)y; t) � N1
�
x1; x2; :::; xn�1; y;

t

M

�
for all t � 0. If t < 0, then the relation is obvious.
Thus, there exists M > 0 such that

N2(y1; y2; :::; yn�1; (�T1 + �T2)y; t) � N1
�
x1; x2; :::; xn�1; y;

t

M

�
for all x1; x2; :::; xn�1; y 2 X, y1; y2; :::; yn�1 2 Y and for all t 2 R. This implies
that �T1 + �T2 2 F(X;Y ). Hence F(X;Y ) is a linear space. �

De�nition 10 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS and T : X �! Y be
a linear operator. T is said to be weakly fuzzy bounded on X if for any � 2 (0; 1),
there exists M� > 0 such that for all x1; x2; :::; xn�1; y 2 X, y1; y2; :::; yn�1 2 Y
and for all t 2 R,

N1

�
x1; x2; :::; xn�1; y;

t

M�

�
� �) N2(y1; y2; :::; yn�1; T y; t) � �.

Let us denote the set of all weakly fuzzy bounded linear operators from a f-n-NLS
(X;N1) to (Y;N2) by F 0(X;Y ).

Theorem 5. F 0(X;Y ) is a linear space.

Proof. First note that for T1; T2 2 F 0(X;Y ) and y 2 X, we have (T1 + T2)(y) =
T1(y) + T2(y) and (�T1)(y) = �T1(y). Since T1 and T2 are weakly fuzzy bounded,
for all � 2 (0; 1), there exist positive numbers M1

�, M
2
� such that

N1

�
x1; x2; :::; xn�1; y;

t

M1
�

�
� � =) N2 (y1; y2; :::; yn�1; T1(y); t) � �,

N1

�
x1; x2; :::; xn�1; y;

t

M2
�

�
� � =) N2 (y1; y2; :::; yn�1; T2(y); t) � �

for all x1; x2; :::; xn�1; y 2 X, y1; y2; :::; yn�1 2 Y and for all t 2 R.
Let k1 and k2 be any two arbitrary nonzero scalars. Then,

N1

�
x1; x2; :::; xn�1; y;

t

2jk1jM1
�

�
= N1

�
x1; x2; :::; xn�1; k1y;

t

2M1
�

�
� �,

N1

�
x1; x2; :::; xn�1; y;

t

2jk2jM2
�

�
= N1

�
x1; x2; :::; xn�1; k2y;

t

2M2
�

�
� �.

Choose M� = 2jk1jM1
� + 2jk2jM2

�. Then
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6 HAKAN EFE AND CEMIL YILDIZ

N1

�
x1; x2; :::; xn�1; y;

t

M�

�
= N1

�
x1; x2; :::; xn�1; y;

t

2jk1jM1
� + 2jk2jM2

�

�
� �

=)

8<: N1

�
x1; x2; :::; xn�1; y;

t
2jk1jM1

�

�
� �

N1

�
x1; x2; :::; xn�1; y;

t
2jk2jM2

�

�
� �

=)
�
N2
�
y1; y2; :::; yn�1; T1(k1y);

t
2

�
� �

N2
�
y1; y2; :::; yn�1; T2(k2y);

t
2

�
� �

=) N2 (y1; y2; :::; yn�1; (k1T1 + k2T2)y; t) � �
=) k1T1 + k2T2 2 F 0(X;Y ).

If k1 = k2 = 0, obviously k1T1 + k2T2 2 F 0(X;Y ). Hence F 0(X;Y ) is a linear
space. �

Theorem 6 ([4]). Let (X;N1) and (Y;N2) are f-n-NLS and T : X �! Y be a
linear operator. If T is strongly fuzzy bounded then it is weakly fuzzy bounded but
not conversely.

De�nition 11 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS and T : X �! Y be
a linear operator. T is said to be uniformly bounded if there exists M > 0 such that
for all � 2 (0; 1),

jjy1; y2; :::; yn�1; T yjj2� �M jjx1; x2; :::; xn�1; yjj1�
where jj�; �; :::; ; �jj1� and jj�; �; :::; ; �jj2� are �-n-norms of N1 and N2 respectively.

Theorem 7 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS and T : X ! Y be a
linear operator. Then

(i) T is strongly fuzzy continuous everywhere on X if T is strongly fuzzy con-
tinuous at a point z 2 X.

(ii) T is strongly fuzzy continuous i¤ T is strongly fuzzy bounded.

Theorem 8 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS satisfying (N7) and
(N8). Let T : X �! Y be a linear operator. Then T is strongly fuzzy bounded i¤
it is uniformly bounded with respect to �-n-norms of N1 and N2.

Remark 3. If T is strongly fuzzy bounded then it is sequentially fuzzy continuous
on X.

Theorem 9 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS and T : X �! Y be a
linear operator. If T is sequentially fuzzy continuous at a point then it is sequentially
fuzzy continuous on X.

Theorem 10 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS and T : X �! Y be
a linear operator. Then

(i) T is weakly fuzzy continuous everywhere on X if T is weakly fuzzy contin-
uous at a point y0 2 X.

(ii) T is weakly fuzzy continuous i¤ T is weakly fuzzy bounded.

Theorem 11 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS satisfying (N7) and
(N8). Let T : X �! Y be a linear operator. Then T is weakly fuzzy bounded i¤ T
be bounded w.r.t. �-n-norms of N1 and N2, � 2 (0; 1).
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Theorem 12 ([4]). Let (X;N1) and (Y;N2) be two f-n-NLS satisfying (N7) and
(N8). Let T : X �! Y be a linear operator. If X is of �nite dimension then T is
weakly fuzzy bounded.

De�nition 12. Let (X;N) be a fuzzy n-normed linear space. A subset B of X is
said to be the closure of K � X if for any x 2 B, there exists a sequence fx(k)g in
K such that

lim
k!1

N(x1; x2; :::; xn�1; x(k)� x; t) = 1

for all t > 0. We denote the set B by K.

De�nition 13. A subset A of a fuzzy n-normed linear space (X;N) is said to be
bounded i¤ there exist t > 0 and 0 < r < 1 such that

N(x1; x2; :::; xn; t) > 1� r
for all x1; x2; :::; xn 2 A.

De�nition 14. A subset A of a fuzzy n-normed linear space (X;N) is said to be
compact if any sequence fx(k)g in A has a subsequence converging to an element
of A.

3. Main Results

De�nition 15. Let (X;N1) and (Y;N2) be two f-n-NLS. A linear operator T :
X �! Y is called fuzzy compact operator if for every fuzzy bounded subset M of X
the subset of T (M) � Y is relatively compact, i.e., the fuzzy closure of T (M) is a
fuzzy compact set.

Example 2. Let (X; jj�; �; :::; ; �jj1) and (Y; jj�; �; :::; ; �jj2) be two ordinary n-normed
linear spaces, and T : X �! Y be a compact operator. Then T : (X;N1) �!
(Y;N2) is a fuzzy compact operator, where N1 and N2 are the standard fuzzy norms
induced by ordinary norms jj�; �; :::; ; �jj1 and jj�; �; :::; ; �jj2, respectively, i.e.,

N1(x1; x2; :::; xn; t) =

� t
t+jjx1;x2;:::;xnjj1 if t > 0, t 2 R,

0 if t � 0 ,

and

N2(y1; y2; :::; ; yn; t) =

� t
t+jjy1;y2;:::;;ynjj2 if t > 0, t 2 R,

0 if t � 0 .

Theorem 13. Let (X;N1) and (Y;N2) be two f-n-NLS and T : X �! Y be a linear
operator. Then T is fuzzy compact i¤ it maps every fuzzy bounded sequence fx(k)g
in X onto a sequence fTx(k)g in Y which has a fuzzy convergent subsequence.

Proof. Suppose that T be a fuzzy compact operator and fx(k)g be a fuzzy bounded
sequence in X. The fuzzy closure of fTx(k) : k 2 Ng is a fuzzy compact set. So
fTx(k)g has a fuzzy convergent subsequence by de�nition.
Conversely, let A be a fuzzy bounded subset of X. We show that the fuzzy

closure of T (A) is fuzzy compact. Let fx(k)g be a sequence in the closure of
T (A). For given " > 0, k 2 N and t > 0, there exists fy(k)g in T (A) such that
N2(y1; y2; :::; yn�1; x(k) � y(k); t2 ) > 1 � ". Let y(k) = Tz(k), where z(k) 2 A.
Since A is fuzzy bounded set, so is fz(k)g. On the other hand, since T is a fuzzy
compact operator, fT z(k)g has a fuzzy convergent subsequence y(ki) = Tz(ki).
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Let y(ki) �! y for some y 2 Y . Hence N2
�
y1; y2; :::; yn�1; y(ki)� y; t2

�
> 1� " for

all ni > n0. Then we get

N2

�
y1; y2; :::; yn�1; x(ki)� y;

t

2

�
� min

�
N2
�
y1; y2; :::; yn�1; x(ki)� y(ki); t2

�
;

N2
�
y1; y2; :::; yn�1; y(ki)� y; t2

� �
> 1� "

for all ni > n0. Hence fx(ki)g is a fuzzy convergent subsequence of fx(k)g. Thus
the fuzzy closure of T (A) is a fuzzy compact set. �

Lemma 1. Let (X;N) be a fuzzy n-normed space satisfying (N7)and fx(k)g be a
sequence in X. Then

lim
k!1

N (x1; x2; :::; xn�1; x(k)� x; t) = 1 i¤ lim
k!1

jjx1; x2; :::; xn�1; x(k)� xjj� = 0

for all � 2 (0; 1).

Proof. Suppose that x(k) N�! x. Choose � 2 (0; 1) and t > 0. Then there exists
k0 2 N such that

N (x1; x2; :::; xn�1; x(k)� x; t) > 1� �,
for all k � k0. It follows that

jjx1; x2; :::; xn�1; xk � xjj1�� � t

for all k � k0. Thus

jjx1; x2; :::; xn�1; x(k)� xjj1�� ! 0.

Conversely, let

jjx1; x2; :::; xn�1; x(k)� xjj� ! 0

for all � 2 (0; 1). Fix � 2 (0; 1) and t > 0. There exists k0 2 N such that

^fr > 0 : N (x1; x2; :::; xn�1; x(k)� x; t) � 1� �g < t,

for all k � k0. This implies that

N (x1; x2; :::; xn�1; x(k)� x; t) � 1� �

for all k � k0, i.e., x(k)
N�! x. �

De�nition 16. Let (X;N) be a fuzzy n-normed space. We de�ne the following
subset of X:

B�[x; r] = fy 2 X : N (x1; x2; :::; xn�1; x� y; t) � �g

where x1; x2; :::; xn�1; x 2 X, � 2 (0; 1) and r > 0.

Theorem 14. Let (X;N) be a fuzzy n-normed space satisfying (N7)and

N (x1; x2; :::; xn; �) is a continuous function on R. Then X is �nite dimensional
i¤ B�[x; r] is a fuzzy compact set in X, for each � 2 (0; 1) and r > 0.
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Proof. Let
A�[x; r] = fy 2 X : jjx1; x2; :::; xn�1; x� yjj� � rg,

where � 2 (0; 1) and r > 0.
We �rst show that B�[x; r] = A�[x; r]. If y 2 B�[x; r], then

N (x1; x2; :::; xn�1; x� y; t) � �.
Since jjx1; x2; :::; xn�1; x� yjj� � r, then y 2 A�[x; r].
Now if y 2 A�[x; r], then

jjx1; x2; :::; xn�1; x� yjj� � r or ^ ft > 0 : N (x1; x2; :::; xn�1; x� y; t) � �g � r.
If

^ft > 0 : N (x1; x2; :::; xn�1; x� y; t) � �g < r
then

N (x1; x2; :::; xn�1; x� y; t) � �.
Thus y 2 B�[x; r].
If

^ft > 0 : N (x1; x2; :::; xn�1; x� y; t) � �g = r,
there exists a sequence ftkg in R such that tk ! r, andN (x1; x2; :::; xn�1; x� y; tk) �
�. By continuity of N (x1; x2; :::; xn; �) we get

N (x1; x2; :::; xn�1; x� y; r) = lim
k!1

N (x1; x2; :::; xn�1; x� y; tk) � �.

Hence y 2 B�[x; r] and therefore B�[x; r] = A�[x; r].
Now suppose that dimX < 1, x1; x2; :::; xn�1; x 2 X, and r > 0. Choose

the sequence fx(k)g in B�[x; r]. It is clear that A�[x; r] is a compact subset of
(X; jj�; �; :::; ; �jj�). Hence there exists a subsequence fx(ki)g of fx(k)g and v 2
A�[x; r] such that x(ki)

jj�;�;:::;;�jj��! v. Since all norms are equivalent in �nite dimen-

sional spaces, x(ki)
jj�;�;:::;;�jj��! v, for all � 2 (0; 1). Thus, we obtain x(ki)

N�! v by
Lemma 1. Since B�[x; r] = A�[x; r], we have v 2 B�[x; r].
Conversely, let B�[x; r] be fuzzy compact. To show that X is �nite dimensional,

it su¢ ces to prove that A�[x; r] is compact with respect to �-n-norm. Choose
a sequence fx(k)g in A�[x; r]. Since B�[x; r] is fuzzy compact, it has a fuzzy
convergent subsequence fx(ki)g. Lemma 1 implies that fx(ki)g is convergent under
jj�; �; :::; ; �jj�. Thus A�[x; r] is compact in n-normed linear space (X; jj�; �; :::; ; �jj�)
which shows that X is �nite dimensional. �

Lemma 2. Let (X;N1) and (Y;N2) be two f-n-NLS satisfying (N7)and T : X �!
Y be a fuzzy compact operator. Then

T : (X; jj�; �; :::; ; �jj1�)! (Y; jj�; �; :::; ; �jj2�)
is an ordinary compact operator for all � 2 (0; 1).

Proof. We show that for each bounded sequence fx(k)g in (X; jj�; �; :::; ; �jj1�), the
sequence fTx(k)g has a convergent subsequence in (Y; jj�; �; :::; ; �jj2�). Let fx(k)g be
a bounded sequence in (X; jj�; �; :::; ; �jj1�). There exists M > 0 such that

jjx1; x2; :::; xn�1; x(k)jj1� < M
for all k 2 N. Hence

N1 (x1; x2; :::; xn�1; x(k);M) � �
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for all k, that is fx(k)g is fuzzy bounded. Thus fTx(k))g has a fuzzy convergent
subsequence fTx(ki)g. By Lemma 1, fTx(ki)g is convergent under jj�; �; :::; ; �jj2�. �

Theorem 15. Let (X;N1) and (Y;N2) be two f-n-NLS satisfying (N7) and (N8).
Then

(a) Every fuzzy compact operator T : (X;N1) �! (Y;N2) is weakly fuzzy
continuous.

(b) If dimX = 1 then the identity operator I : (X;N1) �! (X;N1) is not a
fuzzy compact operator.

Proof. (a) Choose � 2 (0; 1). Let jj�; �; :::; ; �jj1� and jj�; �; :::; ; �jj2� are �-n-norms on
X and Y corresponding to the fuzzy n-norms N1 and N2, respectively. By Lemma
2,

T : (X; jj�; �; :::; ; �jj1�) �! (Y; jj�; �; :::; ; �jj2�)
is a compact operator. Since compact operator is bounded, there exists M� > 0
such that

jjy1; y2; :::; yn�1; Txjj2� �M�jjx1; x2; :::; xn�1; xjj1�.
Hence T is weakly fuzzy bounded by Theorem 11. Now Theorem 10(ii) implies that
T is weakly fuzzy bounded.
(b) The identity operator I maps B�[0; 1] to itself. Suppose on the contrary that

I is a fuzzy compact operator. Then B�[0; 1] is fuzzy compact for all � 2 (0; 1). Now
B�[0; 1] � A�[0; 1] = B�[0; 1] implies that B�[0; 1] is closed and so fuzzy compact.
Thus X is �nite dimensional by Theorem 14, which is a contradiction. �

Theorem 16. Let (X;N1) and (Y;N2) be two f-n-NLS. Then the set of all fuzzy
compact linear operators from X to Y is a linear subspace of F 0(X;Y ).

Proof. Suppose that T1 and T2 are fuzzy compact linear operators from X to Y
and fx(k)g be any fuzzy bounded sequence in X. Then the sequence fT1x(k)g
has a fuzzy convergent subsequence fT1x(ki)g. The sequence fT2x(ki)g also has
a fuzzy convergent subsequence fT2z(k)g. Hence fT1z(k)g and fT2z(k)g are fuzzy
convergent sequences. Let T1z(k) �! u, and T2z(k) �! v. If t > 0, we have

lim
k!1

N2(y1; y2; :::; yn�1; (T1 + T2)z(k)� u� v; t)

� lim
k!1

min

�
N2
�
y1; y2; :::; yn�1; T1z(k)� u; t2

�
;

N2
�
y1; y2; :::; yn�1; T2z(k)� v; t2

� �
.

for all y1; y2; :::; yn�1 2 Y . Thus, limk!1N2(y1; y2; :::; yn�1; (T1 + T2)z(k) � u �
v; t) = 1, for all t > 0. This implies T1 + T2 is a fuzzy compact operator. Now if
T1x(ki) �! y, then

lim
k!1

N2 (y1; y2; :::; yn�1; �T1x(ki)� �y; t)

= lim
k!1

N2

�
y1; y2; :::; yn�1; T1x(ki)� y;

t

j�j

�
= 1,

for all � 2 Rnf0g, and t > 0. Hence �T1 is also a fuzzy compact operator which
completes the proof. �

Theorem 17. Let (X;N) be a f-n-NLS, T : X �! X be a fuzzy compact linear
operator, and S : X ! X be a strongly fuzzy continuous linear operator. Then ST
and TS are fuzzy compact operators.
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Proof. Let fx(k)g be any fuzzy bounded sequence in X. Then fTx(k)g has a fuzzy
convegent subsequence fTx(ki)g. Let limk!1 Tx(ki) = y. Since S is strongly fuzzy
continuous, by Theorem 2 we have ST (x(ki))! S(y). Hence ST (x(k)) has a fuzzy
convergent subsequence. This proves ST is fuzzy compact.
Next we show that TS is fuzzy compact. Let choose any fuzzy bounded sequence

fx(k)g in X. Then there exist t0 > 0 and r0 2 (0; 1) such that
N1 (x1; x2; :::; xn�1; x(k); t0) > 1� r0

for all k � 1. By Theorem 7(ii) we conclude that the operator S is a strongly fuzzy
bounded linear operator. Thus there exists M > 0 such that

N2 (y1; y2; :::; yn�1; Sx(k)); t0M) > 1� r0
for all k. It follows that fSx(k)g is fuzzy bounded sequence in S(X). Because T is
fuzzy compact, fTSx(k)g has a fuzzy convergent subsequence. This completes the
proof. �

Lemma 3. Let (X;N) be a f-n-NLS satisfying (N7), N (x1; x2; :::; xn; �) be a con-
tinuous function on R and dimX <1. Then each fuzzy bounded sequence fx(k)g
in (X;N) has a fuzzy convergent subsequence.

Proof. Let fx(k)g be a fuzzy bounded sequence in (X;N). There exist t0 > 0 and
r0 2 (0; 1) such that

N (x1; x2; :::; xn�1; x(k); t0) > 1� r0
for all k 2 N. Hence x(k) 2 B1�r0 [0; t0], for all k 2 N. By Theorem 14, B1�r0 [0; t0]
is a fuzzy compact set, so fx(k)g has a fuzzy convergent subsequence. �

Theorem 18. Let (X;N1) and (Y;N2) be two f-n-NLS satisfying (N7) and (N8).
If T : X �! Y is a linear operator where dimX < 1, then T is weakly fuzzy
continuous.

Proof. It is clear from Theorem 12 and Theorem 10(ii). �

Theorem 19. Let (X;N1) and (Y;N2) be two f-n-NLS satisfying (N7) and

N2 (y1; y2; :::; yn; �) is continuous function on R, and T : (X;N1) �! (Y;N2) a
linear operator. Then the following hold:

(a) If T is weakly fuzzy bounded and dimT (X) <1, then T is a fuzzy compact
operator.

(b) In addition if (X;N1) and (Y;N2) satisfying (N8) and dimT (X) <1, then
T is a fuzzy compact operator.

Proof. (a) Let fx(k)g be a fuzzy bounded sequence of (X;N1). There exist t0 > 0
and r0 2 (0; 1) such that

N (x1; x2; :::; xn�1; x(k); t0) > 1� r0
for all k 2 N. Since T is weakly fuzzy bounded, there exists M1�r0 > 0 such that
for all k,

N (x1; x2; :::; xn�1; x(k); t0) � 1� r0 )

N2

�
y1; y2; :::; yn�1; Tx(k);

t0
M1�r0

�
� 1� r0.
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It follows that fTx(k)g is a fuzzy bounded sequence in T (X). Since dimT (X) <1,
the sequence fTx(k)g has a convergent subsequence by Lemma 3. Hence T is fuzzy
compact.
(b) T is weakly fuzzy continuous by Theorem 18. Furthermore Theorem 10(ii)

implies that T is weakly fuzzy bounded. Since dimT (X) < 1, by the (a) we
conclude that T is a fuzzy compact operator. �

References

[1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math.
11 (3) (2003), 687� 705.

[2] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151
(2005), 513� 547.

[3] T. Bag and S. K. Samanta, Product fuzzy normed linear spaces, J. Fuzzy Math. 13 (3) (2005),
545� 565.

[4] H.Efe, Continuous mappings and bounded linear operators in fuzzy n-normed linear spaces,
Ars Combinatoria, accepted.

[5] S. Gähler, Lineare 2-normierte Räume, Math.Nachr. 28 (1964), 1� 43.
[6] S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume, I, Math.Nachr. 40

(1969), 165� 189.
[7] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (10) (2001),

631� 639.
[8] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math. 29

(4) (1996), 739� 744.
[9] F. Lael and K. Nourouzi, Fuzzy compact linear operators, Chaos, Solitons and Fractals, doi:

10:1016=j:chaos:2006:04:055.
[10] R. Malµceski, Strong n-convex n-normed spaces, Mat. Bilten 21 (47) (1997), 81� 102.
[11] A. Misiak, n-inner product spaces, Math.Nachr. 140(1989), 299� 319.
[12] Al. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. Math. Sci.

24(2005), 3963� 3977.

(Hakan Efe), Department of Mathematics, Faculty of Science and Arts, Gazi Univer-
sity, Teknikokullar, 06500 Ankara, Turkey

E-mail address : hakanefe@gazi.edu.tr, hakanefe1972@yahoo.com.tr

(Cemil Yildiz), Department of Mathematics, Faculty of Science and Arts, Gazi Uni-
versity, Teknikokullar, 06500 Ankara, Turkey
E-mail address : cyildiz@gazi.edu.tr

262



A Note on Shape Preserving Weighted
Uniform Approximation ∗

George A. Anastassiou, Sorin G. Gal and Michael I. Ganzburg

Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Department of Mathematics and Computer Science
University of Oradea

Str. Armatei Romane 5
410087 Oradea, ROMANIA

galso@uoradea.ro

and
Department of Mathematics

Hampton University
Hampton, Virginia 23668, USA

michael.ganzburg@hamptonu.edu

Abstract

In this paper, new results concerning shape preserving weighted
uniform approximation on the real line are presented.

∗This paper was written during the 2009 Spring Semester when the second author
was a Visiting Professor at the Department of Mathematical Sciences, The University of
Memphis, TN, U.S.A.

1

263JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.1-B, 263-267,2010,COPYRIGHT 2010 EUDOXUS PRESS, LLC



AMS 2000 Mathematics Subject Classification : 41A10, 41A29,
41A25.

Key words and phrases : Weighted polynomial approximation on the
real line, shape preserving approximation.

1 Introduction

Shape preserving approximation by real polynomials of real variables on
the compact interval [a, b] in the classical non-weighted Lp[a, b]-norms with
0 < p ≤ ∞, is a well developed topic in mathematics (for a comprehensive
treatment of the subject see for example the very recent book [3]).

But papers concerning shape preserving weighted approximation on the
real line seem to be almost nonexistent. In fact, the only paper we found on
the topic is the very recent paper [5].

The aim of this paper is to show that the so-called L-positive approxi-
mation method developed in [1] is powerful enough to produce new results
in shape preserving weighted approximation.

2 Shape Preserving Weighted Uniform Ap-

proximation

For a continuous weight function w : R→ (0, 1], define the weighted space

Cw(R) = {f : R→ R; f − continuous on R and lim
x→±∞

f(x)w(x) = 0}.

It is a linear space endowed with the norm ‖f‖Cw(R) = sup{w(x)|f(x)|; x ∈
R}.

Also, for any r ∈ N⋃{0} define the space

Cr
w(R) = {f : R→ R; f (γ) ∈ Cw(R), for all γ = 0, 1, ..., r},

endowed with the norm ‖f‖Cr
w

= max{‖f (γ)‖Cw(R); γ = 0, 1, ..., r}. Clearly
we have C0

w(R) = Cw(R).
In all what follows we will consider the exponential (Freud) weight

wα(x) = e−|x|
α

, with α ≥ 1.

2
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The general results in [1] will allow us to obtain in an easy way shape
preserving results in weighted approximation. Thus, first we obtain the fol-
lowing results in simultaneous shape preserving weighted approximation.

Theorem 2.1. Let r ≥ 0 be an even number. For any f ∈ Cr
wα

(R)
satisfying f (j)(x) ≥ 0, for all x ∈ R and j = 0, 2, 4, ..., r, there exists a

sequence of polynomials (Pn)n with degree (Pn) ≤ n, such that P
(j)
n (x) ≥ 0,

for all x ∈ R, n ∈ N and j = 0, 2, 4, ..., r and

‖f − Pn‖Cr
wα
≤ CEn(f ; Cr

wα
(R)), for all n ∈ N,

where C > 0 is independent of n and f and

En(f ; Cr
wα

(R)): = inf{‖f − P‖Cr
wα

; P ∈ Pn}.

Proof. If we fix r an even number and in Corollary 2.1 in [1] we take
Lγ(f) = f (γ), γ = 0, 2, 4, ..., r, F = Cr

wα
(R) and define ρ(x) =

∑r
j=0 x2j ∈

Cr
wα

(R), then we immediately obtain the conclusion in the theorem. ¤
As an immediate consequence we obtain the following result.
Corollary 2.2. Let r ≥ 0 be an even number and f ∈ Cr

wα
(R) satisfying

f (j)(x) ≥ 0, for all x ∈ R and j = 0, 2, 4, ..., r. There exists a sequence of
polynomials (Pn)n∈N with degree (Pn) ≤ n, such that for every j = 0, 2, 4, ..., r
we have

lim
n→∞

‖P (j)
n − f (j)‖Cwα (R) = 0 and P (j)

n (x) ≥ 0,∀x ∈ R.

Proof. Taking into account Theorem 2.1, clearly that it is sufficient to
prove that for any fixed even number r, we have

lim
n→∞

En(f ; Cr
wα

(R)) = 0.

For this purpose, let us denote by Qn a polynomial of degree ≤ n attached
to f such that

‖f −Qn‖Cwα (R) ≤ c inf
Q∈Pn

‖f −Q‖Cwα (R),

with a constant c ≥ 1. We clearly have limn→∞ ‖f −Qn‖Cwα (R) = 0.

3
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But according to a classical result of Freud ([2, Theorem 4.1]) (see also
for example [4, p. 90, Theorem 4.1.7]), this immediately will imply that

lim
n→∞

‖f (j) −Q(j)
n ‖Cwα (R) = 0, for all 1 ≤ j ≤ r.

Since
En(f ; Cr

wα
(R)) ≤ max

0≤j≤r
{‖f (j) −Q(j)

n ‖Cwα (R)},
passing to limit with n →∞ we get the desired conclusion. ¤

Remark. Given r ∈ N and f with f (r) ≥ 0 on R and denoting

Er
n(f, Cwα(R)) := inf{‖f − P‖Cwα (R); P ∈ Pn, P (r)(x) ≥ 0},

the main result in [5, Theorem 1] is that we have

lim
n→∞

Er
n(f, Cwα(R)) = 0,

or equivalently, that there exists a sequence of polynomials (Pn)n∈N with
degree (Pn) ≤ n, such that we have

lim
n→∞

‖Pn − f‖Cwα (R) = 0 and P (r)
n (x) ≥ 0,∀x ∈ R.

It is clear that for even r ∈ N, Corollary 2.2 is a simultaneous approxi-
mation-type result corresponding to Theorem 1 in [5].

Now, if for fixed δ ≥ 0 we define as in [1, p. 483] the set Mδ(R) of
all δ-increasing functions, by the set of functions f : R → R satisfying the
property

f(x)− f(γ)

x− γ
≥ 0, for all x, γ ∈ R, |x− γ| ≥ δ, x 6= γ,

applying Corollary 2.2 in [1] we immediately obtain the following.
Theorem 2.2. For any δ > 0, f ∈ Cwα(R)

⋂
Mδ(R), there exists a

sequence of polynomials (Pn)n with degree (Pn) ≤ n such that Pn ∈ Mδ(R)
for all n ∈ N and

‖f − Pn‖wα ≤ CEn(f ; Cwα(R)), for all n ∈ N,

where C > 0 is independent of f and n.
Remarks. 1). Theorem 2.2 is the weighted correspondent of the non-

weighted approximation result in [1, Corollary 3.6].
2) In fact, all the applicative results in the Sections 3 and 4 in [1] can

be re-written in the weighted approximation setting, at least for Freud-type
weights of one or several variables.

4
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STABLE MIXTURE MODEL WITH DEPENDENT STATES FOR
FINANCIAL RETURN SERIES EXHIBITING SHORT HISTORIES

AND PERIODS OF STRONG PASSIVITY

AUDRIUS KABAŠINSKAS, SVETLOZAR T. RACHEV, LEONIDAS SAKALAUSKAS,

WEI SUN, AND IGORIS BELOVAS

Abstract. The paper provides some analysis solutions for financial return

series exhibiting short histories and periods of strong passivity. The mixed-

stable law is used to fit the forex data and the self-similarity analysis is made
as well. The power-corelation measure is used to describe the relation between

the presented series.

1. Introduction

Adequate distributional fitting of empirical financial series for financial risk fac-
tors, such as asset returns, fix income rates, FX-rates, implied volatilities, etc., has
a great influence on forecasting and investment decisions. Gaussian models were
the first to be applied and became the cornerstone of much of financial economic
theory. However, there is no sufficient empirical evidence that the classical Gauss-
ian models adequately describe the behavior of financial series. More specifically,
real-world financial time series are often characterized by skewness, kurtosis, heavy
tails, self-similarity and multifractality. Alternative distributions have been pro-
posed. One distribution supported by empirical evidence, first observed more than
45 years ago by Mandelbrot (1963), is the stable distribution. The advantages of
the stable distribution for modeling financial risk factors are now well documented
(see, for example, Rachev and Mitnik, 2000 and Rachev et al., 2005).

A limitation of the wide spread usage of stable distributions in the financial
industry is that, with the exception of a few special cases, they do not have an-
alytical distribution and density functions. They are however easily described by
their characteristic functions (CF). Today, this limitation is overcome due to the
availability of various numerical methods to estimate the parameters of the stable
distribution (see Rachev and Mitnik, 2000, Stoyanov and Racheva-Iotova, 2004,
and Nolan, 2007).

In this paper, we look at two specific problems associated with the analysis of
the distribution of assets financial risk factors: the short series problem and the
stagnation problem. To overcome the short series problem, the bootstrap method
can be employed (see Hesterberg et al., 2003). Bootstrapping is a method for
estimating the distribution of an estimator or test statistic by treating the data as
if they were the population of interest. That is, the bootstrap method allows one
to “create” from the short series a long enough series such that the series exhibits

Key words and phrases. Passivity, mixed-stable model, forex volatility, power-corelation
measures.
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multifractality and self-similarity, two characteristics that have been often observed
for real-world financial risk factors.

The stagnation problem is due to the fact that a time series for some financial
risk factors exhibit extremely strong passivity. That is, for some time periods, the
financial risk factor does not change because there are no transactions. Assets such
as corporate bonds, real estate, and illiquid stocks exhibit this trait, as well as the
market for foreign exchange (forex). The same is valid for some implied volatility
time series. The stagnation problem, which can also be referred to as the zero
financial return/rate/volatility problems, is potentially more serious than it may
seem. In this paper, we provide a model for dealing with this problem. We do so
by including the following additional condition into the traditional (continuously
distributed random variable modeling) model: The random variable is equal to
zero with a certain (rather high) probability, otherwise it is distributed by the
continuous (normal, stable etc.) law. More formally, we can say that we are
extending a continuous model to the mixed one (probability mixture model).

Our model is applied to various daily FX and implied volatility time series and
the distribution used is the stable distribution. After examining more than 20,000
risk factors of a large Hedge Fund (HF) we were offered the selected 14 time se-
ries that are difficult to be modeled with other classical methods. Those series
are daily implied volatilities and FX-rates. We fit stable distribution using maxi-
mal likelihood method (MLE). Goodness of fit is verified by the Anderson-Darling
distributional adequacy test. The stability is also tested by the homogeneity test,
based on the fundamental property of stable laws. Unfortunately, because of the
high probability of zero value (financial risk factor is equal to zero), continuous
distribution fitting tests (Anderson-Darling, Kolmogorov-Smirnov, etc) are hardly
applicable (they are used only for continuous distributions). Since the mixed-stable
is not a continuous model, in this paper the Koutrouvelis goodness-of-fit, test based
on the empirical characteristic function and modified χ2 (Romanovski) test were
used.

Similarly with emerging stock markets Belov et al. (2006), the data set we are
using exhibits long strings of zeros and heavy tailed distributed values outside the
zero-strings.

Section 2.3 deals with the distributional analysis of constancy period lengths
of zeros. The empirical study of the 14 time series and modeling experiments
have showed that constancy period lengths are distributed by the Hurwitz zeta
distribution instead of the commonly used geometric distribution. Considering
these results an improved mixed-stable model with dependent states of the log-
changes is proposed.

When constructing a portfolio, it is essential to determine relationships between
underlying financial risk factors. In classical economics and statistics (i.e., where
the data have finite first and second moments), the relationship between random
variables (log-volatility changes, log-FX rates, returns etc.) is characterized by co-
variance or correlation. However under the assumption of stability (non-Gaussian
stable models) covariance and correlation (Pearson correlation coefficient) cannot
be applied, since the variance (if the index of stability α < 2) and the mean (if
the index of stability α 6 1) do not exist. In this case, we can apply rank correla-
tion coefficients (ex. Spearman or Kendall [19, 20]) or the contingency coefficient.
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Under the assumption of stability, it is reasonable to apply generalized covariance
coefficients – codifference [33] or power correlation measures [5].

2. Methodology

Quantative analysis methods of financial data (returns, rates, log-volatility changes,
etc.) usually start with its distributional description and empirical parameter es-
timation. But in problematic cases, e.g. some analyzed value repeats numerous
times, and traditional analysis cannot be accomplished. Theoretically, probability
that continuous random variable X is equal to any value a supposed to be equal 0,
i.e. P (X = a)=0, but in practice (in stock and forex markets, computer networks
etc.) this rule is broken [2, 3, 4, 5] and [18]. In such cases none of the continuous
distributions can be used to describe the given data series. This problem is poorly
analyzed in literature, but one approach was proposed by Belovas et al. [2]. In this
paper we borrow the main ideas from [2] applied to the new data of interest to us.

We analyze the following random variables

Xi = logPi+1 − logPi
where Pi is either implied volatility value at day i, or FX-rate at day i.

We start the analysis of our data set of 14 time series with empirical parameters
estimation (mean, standard deviation, skewness, kurtosis etc.) and goodness-of-fit
hypothesis testing1 (Anderson–Darling). Our further analysis includes:

(1) fit alternative non-Gaussian distributions, e.g. alpha-stable, hyperbolic
etc.;
• in case the data are α-stable distributed, with alpha less than 2 (second

moment of the random variable do not exist), relations between series
are discussed;

(2) analyzing the self-similarity and multifractality of our time-series and calcu-
lating Hurst index H. Recall that for Gaussian processes, H = 0.5 indicates
Brownian motion; 0.5 < H < 1 indicates long time memory processes and
”persistent behavior”; 0 < H < 0.5 shows ”anti-persistent behavior”, see
for example [33];

(3) calculating how many times the time series value is equal to zero and fitting
the mixed distribution to the data. We are also analyzing the behavior of
zeros in the series (how they are distributed and occur in the series, are
they random, how they can be simulated, etc.).

2.1. The stable distributions and an overview of their properties. Follow-
ing the well-known definition, see [32, 33], a r.v. X has stable distribution and
denoted

X
d=Sα(σ, β, µ),

where Sα is the probability density function, if X has a characteristic function of
the form:

φ(t) =
{

exp
{
−σα · |t|α ·

(
1− iβsgn(t) tan(πα2 )

)
+ iµt

}
, ifα 6= 1

exp
{
−σ · |t| ·

(
1 + iβsgn(t) 2

π · log |t|
)

+ iµt
}
, ifα = 1 .

Each stable distribution is described by 4 parameters: the first one and most
important is the stability index α ∈ (0; 2], which is essential when characterizing

1Null hypothesis: data are distributed by the normal (Gausian distribution) with the empirical

mean and empirical variance.
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financial data. The others, respectively are: skewness β∈[-1,1], a position µ ∈ R,
the parameter of scale σ > 0.

The probability density function is

p(x) =
1

2π

+∞∫
−∞

φ(t) · exp(−ixt)dt.

In the general case, this function cannot be expressed in closed form. The infinite
polynomial expressions of the density function are well known, but it is not very
useful for Maximal Likelihood Estimation (MLE) because of the error estimation
in the tails, the difficulties with truncating the infinite series, and so on. We use
an integral expression of the PDF in standard parameterization

p(x, α, β, µ, σ) =
1
πσ

∞∫
0

e−t
α

· cos
(
t ·
(
x− µ
σ

)
− βtα tan

(πα
2

))
dt.

Figure 1. Logarithm of the probability density function S1.5(1, 0, 0)

It is important to note that the Fourier integrals are not always convenient to
calculate PDF because the integrated function oscillates (Figure 1). That is why a
new Zolotarev-type formula is proposed which does not have this problem:

p(x, α, β, µ, σ) =


α| x−µσ |

1
α−1

2σ·|α−1|

1∫
−θ
Uα(ϕ, θ) exp

{
−
∣∣x−µ
σ

∣∣ a
α−1Uα(ϕ, θ)

}
dϕ, ifx 6= µ

1
πσ · Γ

(
1 + 1

α

)
· cos

(
1
α arctan

(
β · tan

(
πα
2

)))
, ifx = µ

,

Uα(ϕ, ϑ) =

(
sin
(
π
2α(ϕ+ ϑ)

)
cos
(
πϕ
2

) ) α
1−α

·

(
cos
(
π
2 ((α− 1)ϕ+ αϑ)

)
cos
(
πϕ
2

) )
,

where θ = arctan
(
β tan πα

2

)
2
απ · sgn(x− µ) (for properties see [2, 3]).

If µ=0 and σ=1, then p(x, α, β) = p(−x, α,−β).
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A stable r.v. exhibit two important properties (see [18]):

(1) If X1, X2,. . . , X n are independent r.vs. distributed as Sα(σ, β, µ), then
n∑
i=1

Xi will be distributed as Sα(σ · n1/a, β, µ · n).

(2) If X1, X2,. . . , X n are independent r.vs. distributed as Sα(σ, β, µ), then
n∑
i=1

Xi
d=
{
n1/α ·X1 + µ · (n− n1/α), ifα 6= 1
n ·X1 + 2

π · σ · β · n lnn, ifα = 1
.

Another important property is the following one:
Let X1, X2,. . . ,Xn be independent identically distributed random variables and

ηn =
1
Bn

n∑
k=1

Xk +An,

where Bn > 0 and An are constants of scaling and centering. If Fn(x) is a cu-
mulative distribution function of the r.v. ηn, then the asymptotic distribution of
functions Fn(x), as n → ∞, is stable. Furthermore, for any stable distribution
F (x), there exists a series of random variables ηn, such that their distribution
functions Fn(x) converge to F (x), as n→∞.

The pth moment E|X|p =
∫∞

0
P (|X|p > y)dy of the random variable X exists

and is finite only if 0 < p < α. Otherwise, it does not exist.

2.1.1. Stable processes. A stochastic process {X(t), t ∈ T} is stable if all its finite
dimensional distributions are stable [18, 33].

Let {X(t), t ∈ T} be a stochastic process. {X(t), t ∈ T} is α-stable if and only

if all linear combinations
d∑
k=1

bkX(tk) (here d >1 t1, t2, . . . , td ∈ T, b1, b2,. . . ,bd

– real) are α-stable. A stochastic process {X(t), t ∈ T} is called the (standard)
α-stable Levy motion if:

(1) X(0)=0 (almost surely);
(2) {X(t): t >0} has independent increments;
(3) X(i) − X(s) ∼ Sα((t − s)1/α, β,0), for any 0 6 s < t < ∞ and 0 < α 6

2, −1 6 β 6 1.

Note that the α-stable Levy motion has stationary increments. As α=2, we have
the Brownian motion.

2.1.2. Parameter Estimation Methods. The problem of estimating the parameters
of stable distribution is usually severely hampered by the lack of known closed
form density functions for almost all stable distributions [3]. Most of the methods
in mathematical statistics cannot be used in this case, since these methods depend
on an explicit form of the PDF. However, there are numerical methods that have
been found useful in practice and are described in [31, 34, 35, 36] and [28].

Given a sample x1,. . . ,xn from the stable law, we provide estimates α̂, β̂, µ̂, and
σ̂ of α, β, µ, and σ via

• Method of Moments (empirical CF);
• Regression method.
• MLE method
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2.1.3. Comparison of estimation methods. We simulated a sample of 10 thousand
members with the parameters α = 1.75, β = 0.5, µ = 0 and σ = 1 (see [18]).
Afterwards we estimated the parameters of a stable random variable with different
estimators. All the methods are statistically acceptable, but the maximal likelihood
estimator yields the best results. From the practical point-of-view, MLE is the worst
method, because it is very time-consuming. For large sets (∼10.000 and more) we
suggest using the regression (or moments) method to estimate α, β and σ, then
estimate µ by MLM (optimization only by µ). As a starting point you should choose
α, β, σ and sample mean, if α > 1 and a median, otherwise, for µ. For short time
series, use MLE with any starting points (optimization by all 4 parameters).

2.2. Analysis of process behavior. Examples of stability analysis can be found
in the works of Rachev [6, 17, 37] and Weron [41]. In the latter paper, Weron
analyzed the DJIA index (from 1985-01-02 to 1992-11-30. 2000 data points in all).
The stability analysis was based on the Anderson–Darling criterion and by the
weighted Kolmogorov criterion (D‘Agostino), the parameters of stable distribution
were estimated by the regression method proposed by Koutrouvelis [21]. The author
states that DJIA characteristics perfectly correspond to stable distribution.

We also verify two hypotheses: the first one – H1
0 is that our sample (with

empirical mean µ̂ and empirical variance σ̂) follows Gaussian distribution. The
second – H2

0 is that our sample (with parameters α, β,µ and σ) follows the stable
(non-Gaussian) distribution. Both hypotheses are examined by two criteria: the
Anderson–Darling (A-D) method and Kolmogorov–Smirnov (K-S) method. The
first criterion is more sensitive to the difference between empirical and theoretical
distribution functions in far quantiles (tails), in contrast to the K-S criterion that
is more sensitive to the difference in the central part of distribution.

To prove the stability hypothesis, other researchers [14, 27] applied the method of
infinite variance, because non–Gaussian stable r.vs have infinite variance and thus
the set of empirical variancesS2

n
of the random variable X with infinite variance

diverges.
Let x1,. . .xn be a series of i.i.d.r.vs X. Let n ≤ N <∞ and x̄n be the mean of the

first n observations, S2
n = 1

n

n∑
i=1

(xi − x̄n)2, 1 6 n 6 N . If a distribution has finite

variance, then there exists a finite constant c < ∞ such that 1
n

n∑
i=1

(xi − x̄n)2 → c

(almost surely), as n → ∞. Additionally, if the series is simulated by the non–
Gaussian stable law, then the series S2

n
diverges. Fofack [12] has applied this

assumption to a series with finite variance (standard normal, Gamma) and with
infinite variance (Cauchy and totally skewed stable). In the first case, the series of
variances converged quickly and, in the second case, the series of variances oscillated
with a high frequency, as n→∞. Fofack and Nolan [13] applied this method in the
analysis of distribution of Kenyan shilling and Morocco dirham exchange rates in
the black market. Their results allow us to affirm that the exchange rates of those
currencies in the black market change with infinite variance, and even worse – the
authors state that distributions of parallel exchange rates of some other countries
do not have the mean (α < 1 in the stable case). We present, as an example, a
graphical analysis of the variance process of one of our analyzed series (Figure 2).
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Figure 2. Series of empirical variance of the
USD.NOK.FXO.0.0.10.25C.CP log-volatility changes

The columns in this graph show the variance at different time intervals (5 days
period), and the solid line shows the series of variances S2

n(up to time n). One can
see that, as n increases, i.e. n → ∞, the series of empirical variance S2

n not only
diverges, but also oscillates with a high frequency. The same situation is for mostly
all the data sets we presented (for more see [18]).

2.2.1. Stability by homogeneity of the data series and aggregated series. The third
method to verify the stability hypothesis is based on the following property for sta-
ble iid (independent identically distributed) rv’s. Suppose we have an original finan-
cial series (log-volatility changes and log-FX rates) X1, X2,. . . ,Xn which we assume
are iid and stable distributed. Let us calculate the partial sums Y1,Y2,. . . ,Y[n/d],

where Yk =
k·d∑

i=(k−1)·d+1

Xi, k=1. . . [n/d], and d is the number of sum components

(freely chosen). The stability implies that original Xi and derivative series Yi must
be homogeneous (they must behave similarly and have the same properties). Ho-
mogeneity of original and derivative (aggregated) sums was tested by the Smirnov
and Anderson criteria (ω2).

The accuracy of both methods was tested with generated sets, that were dis-
tributed by the uniform R(-1,1), Gaussian N(0,1/

√
3), Cauchy C(0,1) and stable

S1.75(1, 0.25, 0) distributions. Partial sums were scaled, respectively, by
√
d,
√
d, d,

d1/1.75. The test was repeated for a total 100 times. The results of this modeling
show that the Anderson criterion (with confidence levels 0.01, 0.05 and 0.1) is more
precise than that of Smirnov with the additional confidence level.

It should be noted that these criteria require large samples (of size no less than
200), which is why the original sample must be large enough. The best choice would
be if one could satisfy the condition n/d > 200.
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2.2.2. Self–similarity and multifractality. Often financial time series exhibit frac-
tionallity or self–similarity, see for example [18, 37] and the references therein. The
Hurst indicator (or exponent) is used to characterize fractionallity.

There are a number of equivalent definitions of self-similarity [39]. The standard
one states that a continuous time process Y = {Y (t), t ∈ T} is self-similar, with
the self-similarity parameter H (Hurst index), if it satisfies the condition:

(1) Y (t) d=a−HY (at), ∀t ∈ T, ∀a > 0, 0 6 H < 1,

where the equality is in the sense of finite-dimensional distributions. The canonical
example of such a process is Fractional Brownian Motion (H = 1/2). Since the
process Y satisfying (1) can never be stationary, it is typically assumed to have
stationary increments [9].

Figure 3 shows that stable processes are the product of a class of self-similar
processes and also that of Levy processes [10]. Suppose a Levy process X={X(t),
t >0}. Then X is self-similar if and only if each X(t) is strictly stable. The index
α of stability and the exponent H of self-similarity satisfy α = 1/H.

Figure 3. Self-similar processes and their relation to Levy and
Gaussian processes

Consider the aggregated series X(m), obtained by dividing a given series of length
N into blocks of length m and averaging the series over each block.

X(m)(k) =
1
m

km∑
i=(k−1)m+1

Xi,herek = 1, 2 . . . [N/m].

Self-similarity is often investigated not through the equality of finite-dimensional
distributions, but through the behavior of the absolute moments. Thus, consider

AM (m)(q) = E

∣∣∣∣∣ 1
m

m∑
i=1

X(i)

∣∣∣∣∣
q

=
1
m

m∑
k=1

∣∣∣X(m)(k)− X̄
∣∣∣q
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If X is self-similar, then AM (m)(q) is proportional to mβ(q), which means that
lnAM (m)(q) is linear in lnm for a fixed q:

(2) lnAM (m)(q) = β(q) lnm+ C(q).

In addition, the exponent β(q) is linear with respect to q. In fact, sinceX(m)(i) d=m1−HX(i),
we have

(3) β(q) = q(H − 1)

Thus, the definition of self-similarity is simply that the moments must be propor-
tional as in (2) and that β(q)satisfies (3).

This definition of a self-similar process given above can be generalized to that
of multifractal processes. A non-negative process X(t) is called multifractal if the
logarithms of the absolute moments scale linearly with the logarithm of the ag-
gregation level m. Multifractals are commonly constructed through multiplicative
cascades [11]. If a multifractal can take positive and negative values, then it is re-
ferred to as a signed multifractal (the term “multiaffine” is sometimes used instead
of “signed multifractal”). The key point is that, unlike self-similar processes, the
scaling exponent β(q) in (2) is not required to be linear in q. Thus, signed multi-
fractal processes are a generalization of self-similar processes. To discover whether
a process is (signed) multifractal or self-similar, it is not enough to examine the
second moment properties. One must analyze higher moments as well.

However this method is only graphical and linearity is only visual.

2.2.3. Hurst exponent estimation. There are many methods to evaluate this index,
but in literature the following are usually used [39]:

• Time-domain estimators,
• Frequency-domain/wavelet-domain estimators.

The methods: absolute value method (absolute moments), variance method (ag-
gregate variance), R/S method and variance of residuals are known as time domain
estimators. Estimators of this type are based on investigating the power law rela-
tionship between a specific statistic of the series and the so-called aggregation block
of size m.

The following three methods and their modifications are usually presented as
time-domain estimators:

• Periodogram method;
• PWhittle;
• PAbry-Veitch (AV).

The methods of this type are based on the frequency properties of wavelets.
All Hurst exponent estimates were calculated using SELFIS software, which is

freeware and can be found on the web page http://www.cs.ucr.edu/∼tkarag.

2.3. A mixed stable distribution model. Let Y ∼ B(1,p) and X ∼ Sa [2].
Let a mixed stable r. v. Z take the value 0 with probability 1 if Y = 0, else
Y = 1 and Z = X. Then we can write the distribution function of the mixed stable
distribution as
(4)
P (Z < z) = P (Y = 0)·P (Z < z|Y = 0)+P (Y = 1)·P (Z < z|Y = 1) = p·ε(z)+(1−p)·Sα(z)
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where ε(x) =
{

0, x 6 0
1, x > 0 , is the cumulative distribution function (CDF) of the

degenerate distribution. The PDF of the mixed-stable distribution is

f(x) = p · δ(x) + (1− p) · pα(x),

where δ(x) is the Dirac delta function.

2.3.1. Cumulative density, probability density and characteristic functions of mixed
distribution. For a given set of log-changes {x1, x2, · · · , xn}, let us construct a set of
nonzero values {x̄1, x̄2, · · · , x̄n−k}. The implied log-volatility of USD.CAD.FXO.0.0.7.25C.CP
is given as an example (p = 0.402, see Figure 4). Then the likelihood function is
given by

(5) L(x̄, θ, p) ∼ (1− p)kpn−k
n−k∏
i=1

pα(x̄i, θ)

where θ is the vector of parameters (in the stable case, θ = (α, β, µ, σ)). The
function (1 − p)kpn−k is easily optimized: pmax = n−k

n . So we can write the
optimal CDF as

(6) F (z) =
n− k
n

Sα(z, θmax) +
k

n
ε(z),

Figure 4. CDF of USD.CAD.FXO.0.0.7.25C.CP.

where the vector θmax of parameters is estimated with nonzero data.
The probability density function (see Figure 5)

(7) p(z) =
n− k
n

pα(z, θmax) +
k

n
δ(z).
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Figure 5. PDF and a histogram of USD.CAD.FXO.0.0.7.25C.CP.

Finally we can write down and plot (Figure 6) the characteristic function (CF)
of the mixed distribution.

φmix(t) =
n− k
n
· φ(t) +

k

n

Figure 6. Empirical, Gaussian, Stable mixed, and Stable contin-
uous CF of USD.CAD.FXO.0.0.7.25C.CP

The empirical characteristic function is equal to φ̂(t,X) = 1
n

n∑
j=1

eitXj .

2.3.2. Mixed model adequacy. Since we have a discontinuous distribution function,
the classic methods (Kolmogorov–Smirnov, Anderson-Darling) do not work, and
choose a goodness–of–fit test based on the empirical characteristic function [22, 23],
or use a modified χ2 (Romanovski) method [20].
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The CF-based test of Brown and Saliu [7] is not applicable, since it was devel-
oped for symmetric distributions. A new stability test for asymmetric (skewed)
alpha-stable distribution functions, based on the characteristic function, should be
developed, since the existing tests are not reliable.

A mixed-stable model of risk factor log-changes distribution was proposed in
[2]. Since the goodness-of-fit tests for continuous distribution functions cannot
be implemented, the tests, based on the empirical characteristic function and a
modified χ2 test, are used, see [2].

2.3.3. Modeling of stagnation intervals. We analyzed (see [18]) the following r.vs
Xi = 0 , if Pi+1 = Pi and Xi = 1 , if Pi+1 6= Pi , where {Pi} is a set of exchange
rates and {Xi} is a set of discrete states, following our time series (change=1 or
not=0).
Empirical study of lengths distribution of zero state runs. Theoretically if states
are independent (Bernoulli scheme), then the series of lengths of zero state runs
should be distributed by geometrical law. However, the results of empirical tests do
not corroborate this assumption. We have fitted the series distribution of lengths
of zero state runs by discrete laws (generalized logarithmic, generalized Poisson,
Hurwitz zeta, generalized Hurwitz zeta, and discrete stable). The probability mass
function of Hurwitz zeta law is

P (ξ = k) = νs,q (k + q)−s ,

where νs,q =
( ∞∑
i=0

(i+ q)−s
)−1

, k ∈ N , q > 0, s > 1. The parameters of all discrete

distributions were estimated by the ML-method.
Transformation and distribution fitting. First of all, we will show how financial
data from our data sample are transformed to subsets length of zero state series
and then we will fit each of the discrete distributions mentioned in above section.
Carvalho, Angeja and Navarro have showed that data in network engineering fit
the discrete logarithmic distribution better than the geometrical law. So we intend
to test whether such a property is valid for our financial data.

A set of zeros between two units is called a run. The first run is a set of zeros
before the first unit and the last one after the last unit. The length of the run is
equal to the number of zeros between two units. If there are no zeros between two
units, then an empty set has zero length (Figure 7).

Figure 7. Data transformation
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To transform our data (from the state series, e.g., 010011101011100110) the two
following steps should be taken: (a) extract the zero state runs (e.g., 0.00.0.0.000.0)
from the states series; (b) calculate the length of each run (1,2,0.0.1,1,0.0.3,0.1,).
After the transformation, we estimated the parameters of each discrete distribution
mentioned above and tested the nonparametric χ2 distribution fitting hypothesis.
The mixed stable model with dependent states. Since the runs test rejects the
randomness hypothesis of the sequence of states, the probability of states (zeros and
ones) depends on the position in the sequence. If the lengths of states sequences
are distributed by Hurwitz zeta law, then the probabilities of states are

P (Xn = 1|..., Xn−k−1 = 1, Xn−k = 0, ..., Xn−1 = 0︸ ︷︷ ︸
k

) =
pk

1−
k−1∑
j=0

pj

, n ∈ N, k ∈ Z0,

where pk are probabilities of Hurwitz zeta law; P (X0=1) = p0. It should be noted
that P (Xn = 0|...) = 1− P (Xn = 1|...), n, k ∈ Z0 .

With the probabilities of states and distribution of nonzero data, we can generate
sequences of log-changes (interchanging in the state sequence units with a stable
r.v.) see Figure 8 and [18].

Figure 8. Simulation of passive stable series

So, the mixed-stable modeling with dependent states is more advanced than that
of independent (Bernoulli) states, and it requires parameter estimation by both the
stable (α, β, µ, σ) and Hurwitz zeta (q, s) law.

2.4. Relationship measures. In constructing a financial portfolio, it is essential
to determine relationships between different series [18, 30]. However, under the
assumption of stability (sets of log-volatility changes and log-FX rates are modeled
by stable laws), the classical relationship measures (covariance, correlation) cannot
be applied. Therefore the generalized Markowitz problem is solved by generalized
relationship measures (covariation, codifference).

In the classical economic statistics (when the distributional law has two first
moments, i.e., mean and variance), relations between two random variables are de-
scribed by covariance or correlation. But if we assume that financial data follow
the stable non-Gaussian law (empirical studies corroborate this assumption), co-
variance and especially correlation (Pearson) cannot be calculated. In a case when
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the first (α 6 1) and the second (α < 2) moments do not exist, other correlation
(rank, e.g., Spearman, Kendall, etc. [19]) and contingency coefficients are proposed.
However, in the portfolio selection problem Samorodnitsky and Taqqu [33] suggest
better alternatives, even when mean and variance do not exist. They have proposed
alternative relation measures: covariation and codifference.

2.4.1. Codifference. If X1 and X2 are two symmetric i.d. [33] (with α1 = α2 = α)
stable random variables, then the covariation is equal to

[X1, X2]α =
∫
S2

s1s
〈α−1〉
2 Γ (ds),

where α > 1 , y〈α〉 = |y|αsign (α) and Γ is a spectral measure of (X1, X2).
In such a parameterization, the scale parameter σαX1

of symmetric stable r.v.
can be calculated from [X1, X1]α = σαX1

. If α = 2 (Gaussian distribution),
the covariation is equal to half of the covariance [X1, X2]2 = 1

2Cov (X1, X2) and
[X1, X1]2 = σ2

X1
becomes equal to the variance of X1. However, the covaria-

tion norm of X ∈ Sα (α > 1) can be calculated as ‖X‖ = ([X,X]α)1/α . If
X ∼ Sα (σ, 0, 0) (SαS case), then the norm is equivalent to the scale parameter of
the stable distribution ‖X‖α = σ .

In a general case [29] the codifference is defined through characteristic functions

codX,Y = ln (E exp{i(X − Y ))})− ln (E exp{iX})− ln (E exp{−iY })
= ln

(
E exp{i(X−Y )}

E exp{iX}·E exp{−iY }

)
= ln

(
φX−Y
φX ·φ−Y

)
,

or empirical characteristic functions

codX,Y = ln


n ·

n∑
j=1

ei(Xj−Yj)

n∑
j=1

eiXj ·
n∑
j=1

e−iYj


The codifference of two symmetric (SαS ) r.vs X and Y (0 < α 6 2) can be

expressed through the scale parameters

codX,Y = ‖X‖αα + ‖Y ‖αα − ‖X − Y ‖
α
α

If α = 2, then codX,Y = Cov (X,Y ) .
Samorodnitsky and Taqqu have showed that(

1− 2α−1
)

(‖X‖αα + ‖Y ‖αα) 6 codX,Y 6 ‖X‖αα + ‖Y ‖αα,

here 1 6 α 6 2, and, if we normalize (divide by ‖X‖αα + ‖Y ‖αα ), we will get a
generalized correlation coefficient.

In the general case [29], the following inequalities(
1− 2α−1

)
ln
(

1
E exp{iX}·E exp{−iY }

)
6 codX,Y = ln

(
E exp{i(X−Y )}

E exp{iX}·E exp{−iY }

)
6 ln

(
1

E exp{iX}·E exp{−iY }

)
are proper, and if we divide both sides by ln (E exp{iX} · E exp{−iY }), we will get
the following system of inequalities for the correlation coefficient

(
1− 2α−1

)
6 corrX,Y =

ln
(
E exp{iX}·E exp{−iY }

E exp{i(X−Y )}

)
− ln (E exp{iX} · E exp{−iY })

6 1
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If 0 < α 6 1 this correlation coefficient is only non-negative, and if α = 2, β = 0,
then −1 6 corrX,Y = ρX,Y 6 1 is equivalent to the Pearson correlation coefficient.
Significance of codifference. The significance of the Pearson correlation coefficient
is tested using Fisher statistics and that of the Spearman and Kendall coefficients,
respectively, are tested using Student and Gaussian distributions. But it is likely
that there are no codifference significance tests created. In such a case, we use the
bootstrap method (one of the Monte-Carlo style methods). The following algorithm
to test the codifference significance is proposed:

(1) Estimate stable parameters (α, β, σ and µ) and stagnation probability p
of all equity series;

(2) Estimate relation matrix of measure ρ (covariation or codifference) for every
pair of equities series;

(3) Test the significance of each ρij by the bootstrap method:
(a) generate a pair of two ith and jth mixed-stable (with estimated para-

meters) series, and proceed to the next step;
(b) calculate the kth relation measure ρkij , between the ith and jth series;
(c) repeat (a) and (b) steps for k = 1, ..., N (for example, 10000) times;
(d) construct ordered series of estimates ρ(k)

ij ;

(e) if ρ([N ·0.025])
ij 6 ρij 6 ρ

([N ·0.975])
ij , then the significance of ρij is rejected

with the confidence level 0.05, i.e., it is assumed that ρij = 0 .
(f) repeat 3a—3f steps for each pair of equities i and j.

2.4.2. Generalized power-correlation measures. In [5] the power correlation mea-
sures was introduced, with three standardizations (absolute and median deviation,
and universal).

Definition 1. The power-correlation measure is defined as a function of two ran-
dom variables X and Y

ρ(X,Y ) = 1−

N∑
i=1

∣∣∣Xi−µ̂XŝX
− Yi−µ̂Y

ŝY

∣∣∣γ
N∑
i=1

∣∣∣Xi−µ̂XŝX

∣∣∣γ +
∣∣∣Yi−µ̂YŝY

∣∣∣γ ,
here γ = min(αX , αY ) is an existing moment of r.v., µ̂• and ŝ• are standardization
constants, αX and αY are estimates of stability parameters of random variables X
and Y respectively.

In the general case, µ̂• is the estimate of the location parameter, ŝ• = σ̂• is
the estimate of the scale parameter. Depending on γ three standardizations was
proposed [5]: the universal one (for general case), and two special standardizations:
absolute deviation standardization (for 1 < γ < 2, when the mean exists) and
median standardization (for γ < 1).

Definition 2 (Universal standardization). The centering and normalization con-
stants (µ̂• and ŝ• respectively) are equal to the estimates of the location and scale
parameters respectively.

This standardization method could be applied with every possible stability index.
Note that if γ=2, then µ̂• and ŝ• can be replaced by the mean and the standard
deviation respectively.
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16 A. KABAŠINSKAS, S. RACHEV, L. SAKALAUSKAS, W. SUN, AND I. BELOVAS

Definition 3 (Absolute deviation standardization). In the case when γ ∈ (1; 2),
then the centering and normalization constants (µ̂• and ŝ• respectively) are equal to

the mean µ̄X of underlying series X and the absolute deviation ŝX = 1
n

n∑
i=1

|Xi − µ̄X |

respectively.

Definition 4 (Median standardization). In the case when γ < 1 (as well as in
the general case), then the centering constant µ̂• can be replaced by the median m•
and the normalization constant ŝ• by the following normalization constant ŝX =
median|X −mX |.

The norm of codifference and power correlation measures indicates the strength
and direction of a linear relationship between two random variables. Depending on
the moment γ, these relation measures are bounded [33]:

1− 2γ−1 6 ρ(X,Y ) 6 1.

In the general statistical usage, they refer to the departure of two variables from
independence. However, if ρ(X,Y ) = 0, we cannot say that random variables X
and Y are independent.

3. Description of the data

As we already mentioned in the introduction, a large HF will model and forecast
around 20,000 risk variables such as equity returns, interest rates, bond yields, FX
rates, volatility surfaces, etc. Very often such series exhibit strings of zero values
and heavy tailed distributed values otherwise. An example of such daily time series
selected from those 20,000 was offered to be analyzed and it is given in Table 1.

Table 1. Empirical characteristics of data sets and criterion prob-
abilities of Anderson – Darling

Nr Data set Empirical characteristics Nr. of Nr. of
µ̂ σ̂ γ̂1 γ̂2 Probab.

of A-D
crit.

obs. zero

daily
data

1 CHF.JPY.FXO.0.0.10.25C.CPa 0 0.028 1.176 32.34 - 1439 520

2 CHF.JPY.FXO.0.0.7.ATM.CP -0.0002 0.020 0.642 32.19 - 1439 521

3 EUR.JPY.FXO.0.0.10.25C.CP 0.0001 0.028 2.692 44.12 - 1640 502
4 GBP.NOK.FXO.0.0.3.25C.CP -0.0001 0.013 1.596 24.46 - 1439 69

5 USD.CAD.FXO.0.0.7.25C.CP 0.0004 0.019 2.040 55.45 - 1443 580
6 USD.GBP.FXO.0.0.10.25C.CP 0.0001 0.012 0.807 19.03 - 1443 564
7 USD.JOD.CCY.CP 0 0.001 -0.101 27.25 - 2488 1773

8 USD.MXN.FXO.0.0.5.25C.CP -0.0004 0.014 -1.467 32.17 0.999 1640 672

9 USD.MXN.FXO.0.0.5.ATM.CP -0.0003 0.014 -1.115 31.49 0.999 1640 687
10 USD.NOK.FXO.0.0.10.25C.CP 0.0001 0.021 0.814 16.23 0.999 1443 277

11 USD.NZD.FXO.0.0.3.ATM.CP 0.0004 0.014 6.300 123.1 - 2288 1044
12 USD.NZD.FXO.0.0.7.ATM.CP 0 0.016 -1.45 34.71 0.999 1443 514

13 USD.SEK.FXO.0.0.10.25C.CP 0.0001 0.018 0.695 15.61 0.999 1443 233

14 USD.UAG.CCY.CP. -0.0004 0.009 -4.350 82.39 - 2488 189

a CHF.JPY.FXO.0.0.10.25C.CP means that we analyze JPY/CHF implied volatility of call option,
with a delta equal to 0.25, with 10 days to maturity. The probability of A-D crit. shows the

p probability of Anderson-Darling adequacy test with normal distribution. (-) means that A-D

goodness-of-fit test is completely rejected for any significance level. Here µ̂ is an empirical mean,
σ̂ is a standard deviation, γ̂1 is empirical skewness and γ̂2 is empirical kurtosis.
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In our illustrations, we use a data series for daily foreign exchange rates (series
7 and 14) and option volatilities of foreign exchange rates (other series in Table 1).
The first three symbols are ticker of the first currency; the second three symbols are
ticker of the second currency; the next three symbols FXO means implied volatility
and CCY means the spot exchange rate; the numbers following FXO indicate the
time to maturity of the option in terms of years, months, and days (for example,
0.0.10 would mean option with a time to maturity of 0 years, 0 months and 10 days,
see note of Table 1). “ATM” means an at-the-money call option and “25C” is a call
option with a delta equal to 0.25. We use different pairs of exchange rates with the
length of each series being different and ranging from 1,439 observations to 2,488
observations. The average number of observations is 1,694. Most importantly for
our study, the number of zero daily data differs, from as few as 4.79% to a high
of 71.26% with an average of 33.23% . Information about the data series length is
provided in Table 1.

As Table 1 shows, some of the data series are strongly asymmetric (γ̂1), and the
empirical kurtosis (γ̂2) shows that density functions of the series are more peaked
than that of the Gaussian distribution. Consequently, consistent with the findings
of other studies and Anderson–Darling goodness-of-fit test, we conclude that the
Gaussian models are inappropriate. So we proceed to the stability (non-Gaussian)
analysis of the series.

3.1. Application of mixed-stable model. Since we have found several zeros
(repeating value) in our series (see Table 1) we start with the mixed-stable2 model
parameters estimation (see Section 2.3.1). The results of parameter estimation for
14 forex implied volatility and exchange rate series are given in Table 2.

Table 2. Stability parameters of 14 series.

Nr. Series α β µ σ p

1. CHF.JPY.FXO.0.0.10.25C.CP 1.05 < -0.00387 -4.3E-05 0.001165 0.361

2. CHF.JPY.FXO.0.0.7.ATM.CP 1.255604 0.021663 -0.00181 0.001915 0.362
3. EUR.JPY.FXO.0.0.10.25C.CP 1.146631 -0.47731 -0.03653 0.012211 0.306

4. GBP.NOK.FXO.0.0.3.25C.CP 1.05 < -0.02908 -0.0016 0.003229 0.048

5. USD.CAD.FXO.0.0.7.25C.CP 1.066127 0.047113 0.000873 0.001951 0.402
6. USD.GBP.FXO.0.0.10.25C.CP 1.05 < 0.101149 0.003961 0.002856 0.391

7. USD.JOD.CCY.CP 1.186602 -0.02678 -6.1E-05 9.78E-05 0.713

8. USD.MXN.FXO.0.0.5.25C.CP 1.05 < -0.10462 -0.00289 0.001925 0.410
9. USD.MXN.FXO.0.0.5.ATM.CP 1.05 < 0.120186 0.002893 0.00174 0.419
10. USD.NOK.FXO.0.0.10.25C.CP 1.12673 0.131193 0.002027 0.004701 0.192

11. USD.NZD.FXO.0.0.3.ATM.CP 1.184021 -0.4117 -0.00182 0.001925 0.456
12. USD.NZD.FXO.0.0.7.ATM.CP 1.186487 0.752788 0.031052 0.008517 0.356

13. USD.SEK.FXO.0.0.10.25C.CP 1.199201 -0.06614 -0.00175 0.005031 0.161

14. USD.UAG.CCY.CP 1.475154 0.471805 0.001717 0.001316 0.076

The results of goodness-of-fit test based on the empirical characteristic function
and modified χ2 (Romanovski) methods are similar (match in 9 and 12 cases) and
presented in Table 3. The result shows that in 12 cases out of 14 the goodness-of-fit
hypothesis were not rejected for mixed-stable law. More detailed results of stable-
mixed model fitting are given in Table 4. One can see that when the number of
“zeros” increases, the mixed model fits the empirical data “better”.

2Actually the A-D criterion hypotheses of full series stability were rejected in all cases.
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Table 3. Results of goodness-of-fit tests (accepted/rejected cases)

Fit Method Gaussian Mixed Gaussian Stable Mixed-stable

Modified χ2 0/14 0/14 0/14 9/14

Empirical CF 0/14 0/14 0/14 12/14

Anderson–Darling 0/14 - 0/14 -

Table 4. Mixed model fit dependence on the number of zeros in series

Number of

“zeros”

Number of

such series

Fits mixed

model (χ2, %)

Fits mixed model

(Empirical CF, % )

< 0.1 2 0 100
0.1-0.2 2 50 50

0.2-0.3 0 - -

0.3-0.4 5 60 80
0.4-0.5 4 100 100

0.5-0.6 0 - -

0.6-0.7 0 - -
0.7-0.8 1 100 100

0.8-0.9 0 - -

3.1.1. Analysis of zeros distribution. As mentioned in Section 2.3.3, theoretically
the series of zeros should be distributed by the binomial law and the lengths of
these series should be distributed by the geometrical law, however, from Table 5
we can see that other laws fit our data (12 series) much better. It means that zero
state series from our data are better described by the Hurwitz zeta distribution.

Table 5. Distribution of zero state series

Signif.

level

Hurwitz

zeta

Generalized

Hurwitz
zeta

Generalized

logarithmic

Discrete

stable

Poisson Generalized

Poisson

Geometrical

0.01 92.86% 85.71% 0.00% 21.43% 57.14% 0.00% 0.00%

0.025 92.86% 78.57% 0.00% 7.14% 42.86% 0.00% 0.00%

0.05 78.57% 71.43% 0.00% 7.14% 28.57% 0.00% 0.00%
0.1 71.43% 64.29% 0.00% 7.14% 28.57% 0.00% 0.00%

This result allows us to assume that zero-unit states are not purely independent.
The Wald–Wolfowitz runs test [24] corroborates this assumption for almost all series
from the given Forex list. The inner series dependence was tested by the Hoel [16]
criterion on the order of the Markov chain. It has been concluded that there are
no zero order series or Bernoulli scheme series. 99% of given series are higher than
4th-order Markov chains with φ = 0.1% significance level.

3.2. Analysis of series behavior. There was performed a test described in Sec-
tion 2.2.1. The homogeneity of aggregated and full series was tested only by the An-
derson criterion. Partial series were calculated by summing d=10 and 15 elements
and scaling with d1/α. Following the fundamental stability statement, one may draw
a conclusion that for USD.GBP.FXO.0.0.10.25C.CP and USD.NOK.FXO.0.0.10.
25C.CP the hypothesis on stability is acceptable. However, if we remove the
zeros from the series we will also see that the hypothesis on stability cannot
be rejected for USD.NZD.FXO.0.0.7. ATM.CP, USD.NZD.FXO.0.0.3.ATM.CP,
USD.MXN.FXO.0.0.5.ATM.CP, USD.MXN.FXO.0.0.5.25C.CP, USD.JOD.CCY.CP,
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USD.GBP.FXO.0.0.10.25C.CP, USD.CAD.FXO.0.0.7.25C.CP and CHF.JPY.FXO.0.
0.7.ATM.CP.

Having these results we may then proceed to analysis of multifractality and self-
similarity. Result of absolute moments method for full series and series without
zeros is given in Table 6.

Table 6. Results of multifractality and self-similarity analysis for
full series and series without zeros

Nr. Series Full series Without zeros
Multifractal Self-similar Multifractal Self-similar

1. CHF.JPY.FXO.0.0.10.25C.CP 0 0 0 0

2. CHF.JPY.FXO.0.0.7.ATM.CP 0 0 0 0
3. EUR.JPY.FXO.0.0.10.25C.CP 0 0 0 0

4. GBP.NOK.FXO.0.0.3.25C.CP 1 1 1 1

5. USD.CAD.FXO.0.0.7.25C.CP 1 0 0 0
6. USD.GBP.FXO.0.0.10.25C.CP 1 0 0 0

7. USD.JOD.CCY.CP 1 0 0 0

8. USD.MXN.FXO.0.0.5.25C.CP 1 0 1 0
9. USD.MXN.FXO.0.0.5.ATM.CP 1 1 0 0

10. USD.NOK.FXO.0.0.10.25C.CP 1 0 1 0

11. USD.NZD.FXO.0.0.3.ATM.CP 1 0 0 0
12. USD.NZD.FXO.0.0.7.ATM.CP 0 0 1 1

13. USD.SEK.FXO.0.0.10.25C.CP 1 0 1 0

14. USD.UAG.CCY.CP 1 0 0 0

Total 10 2 5 2

Finally, only 2 indices are self-similar (Table 6): GBP.NOK.FXO.0.0.3.25C.CP
and USD.MXN.FXO.0.0.5.ATM.CP. However if we remove the zeros from the series
GBP.NOK.FXO.0.0.3.25C.CP. and USD.NZD.FXO.0.0.7.ATM.CP are self-similar.

3.3. Relation analysis. In this section tables of following relation measures are
given:

• norm of codifference (Table 7);
• Pearson correlation coefficient (Table 8);
• power-correlation coefficient in universal case (Table 9);
• power-correlation coefficient with absolute deviation standardization (Table

10);
• power-correlation coefficient with median standardization (Table 11);

The first one is used only for alpha-stable distributed data. The second one is
used in case the second moment of an underlying random variable exists. The three
last relation measures may be used for any data, if the highest existing moment
of the series is known. The latest measures (as also the first one) are bounded
1 − 2γ−1 6 ρ(X,Y ) 6 1 (here γ = min(αX , αY ) > 1 is an existing moment), and,
when γ 6 1, these measures gives only a non-negative results.

The risk factor sets of CHF.JPY.FXO.0.0.10.25C.CP, CHF.JPY.FXO.0.0.7.ATM.
CP, and EUR.JPY.FXO.0.0.10.25C.CP have large correlation, USD.MXN.FXO.0.0.
5.25C.CP and USD.MXN.FXO.0.0.5.ATM.CP have large correlation, USD.NOK.
FXO.0.0.10.25C.CP and USD.SEK.FXO.0.0.10.25C.CP have large correlation,
USD.NZD.FXO.0.0.3. ATM.CP and USD.NZD.FXO.0.0.7.ATM.CP have large cor-
relation. The other pairs have small correlation or are uncorrelated. The factors
power-relation measures are given (Tables 9–11).
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20 A. KABAŠINSKAS, S. RACHEV, L. SAKALAUSKAS, W. SUN, AND I. BELOVAS

Table 7. Norm of codifference for 14 series

1a 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1.00 0.66 0.80 0.01 0.00 -0.03 0.00 -0.01 0.00 0.00 0.00 0.05 -0.03 0.00

2 0.66 1.00 0.62 0.05 -0.02 0.05 0.00 0.02 0.04 0.14 0.02 0.05 0.08 0.00

3 0.80 0.62 1.00 0.00 0.01 -0.02 0.00 -0.01 -0.01 0.11 -0.02 0.05 0.10 0.00

4 0.01 0.05 0.00 1.00 -0.01 0.20 0.00 0.10 0.10 0.03 0.11 0.05 0.08 0.00

5 0.00 -0.02 0.01 -0.01 1.00 0.01 0.00 0.03 0.03 0.05 0.01 0.04 0.06 -0.01

6 -0.03 0.05 -0.02 0.20 0.01 1.00 0.00 0.16 0.17 0.10 0.06 0.02 0.07 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 -0.01 0.02 -0.01 0.10 0.03 0.16 0.00 1.00 0.98 0.05 0.11 0.01 0.07 0.00

9 0.00 0.04 -0.01 0.10 0.03 0.17 0.00 0.98 1.00 0.05 0.11 0.01 0.07 0.00

10 0.00 0.14 0.11 0.03 0.05 0.10 0.00 0.05 0.05 1.00 -0.02 0.00 0.86 0.00

11 0.00 0.02 -0.02 0.11 0.01 0.06 0.00 0.11 0.11 -0.02 1.00 0.52 0.00 -0.01

12 0.05 0.05 0.05 0.05 0.04 0.02 0.00 0.01 0.01 0.00 0.52 1.00 0.04 -0.01

13 -0.03 0.08 0.10 0.08 0.06 0.07 0.00 0.07 0.07 0.86 0.00 0.04 1.00 0.00

14 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 1.00

a Note: For numeration see Table 1.

Table 8. Pearson correlation coefficient

1a 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1.00 0.70 0.80 0.02 0.01 -0.05 0.00 -0.02 0.00 -0.01 0.00 0.06 -0.03 -0.02

2 0.70 1.00 0.65 0.06 -0.02 0.06 0.00 0.03 0.05 0.14 0.03 0.05 0.09 -0.02

3 0.80 0.65 1.00 0.00 0.01 -0.03 0.00 -0.02 -0.01 0.12 -0.03 0.06 0.11 -0.02

4 0.02 0.06 0.00 1.00 -0.01 0.20 0.04 0.10 0.10 0.03 0.11 0.05 0.08 -0.01

5 0.01 -0.02 0.01 -0.01 1.00 0.01 0.01 0.03 0.03 0.05 0.01 0.04 0.06 -0.08

6 -0.05 0.06 -0.03 0.20 0.01 1.00 0.01 0.16 0.17 0.13 0.06 0.02 0.09 -0.01

7 0.00 0.00 0.00 0.04 0.01 0.01 1.00 0.01 0.00 0.05 0.02 -0.03 0.05 0.00

8 -0.02 0.03 -0.02 0.10 0.03 0.16 0.01 1.00 0.99 0.06 0.11 0.01 0.08 -0.01

9 0.00 0.05 -0.01 0.10 0.03 0.17 0.00 0.99 1.00 0.06 0.11 0.01 0.08 -0.01

10 -0.01 0.14 0.12 0.03 0.05 0.13 0.05 0.06 0.06 1.00 -0.02 0.00 0.87 -0.01

11 0.00 0.03 -0.03 0.11 0.01 0.06 0.02 0.11 0.11 -0.02 1.00 0.55 0.00 -0.02

12 0.06 0.05 0.06 0.05 0.04 0.02 -0.03 0.01 0.01 0.00 0.55 1.00 0.04 -0.03

13 -0.03 0.09 0.11 0.08 0.06 0.09 0.05 0.08 0.08 0.87 0.00 0.04 1.00 0.01

14 -0.02 -0.02 -0.02 -0.01 -0.08 -0.01 0.00 -0.01 -0.01 -0.01 -0.02 -0.03 0.01 1.00

a Note: For numeration see Table 1.

One can easily compare the traditional relation measures (see Tables 7 and
8) with the presented power-correlation measures (see Tables 9–11). The risk
factors sets of CHF.JPY.FXO.0.0.10.25C.CP, CHF.JPY.FXO.0.0.7.ATM.CP, and
EUR.JPY.FXO.0.0.10.25C.CP have strong relation, USD.MXN.FXO.0.0.5.25C.CP
and USD.MXN.FXO.0.0.5.ATM.CP have strong relation, USD.NOK.FXO.0.0.10.
25C.CP and USD.SEK.FXO.0.0.10.25C.CP have strong relation, USD.NZD.FXO.0.
0.3.ATM.CP and USD.NZD.FXO.0.0.7.ATM.CP have strong relation. The other
pairs have weak relation or are unrelated. This means that it is more correct to use
power-correlation measures for series that are stable distributed instead of Pearson
correlation.

4. Conclusions

Parameter estimation methods and software have been developed for models
with asymmetric stable distributions. The efficiency of estimation methods was
tested by simulating the series. Empirical methods are more effective in time, but
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Table 9. Power-correlation coefficient in universal case

1a 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1.00 0.70 0.78 0.26 0.19 0.15 0.10 0.14 0.14 0.22 0.17 0.16 0.21 0.20

2 0.70 1.00 0.61 0.27 0.22 0.21 0.12 0.19 0.19 0.27 0.21 0.18 0.26 0.22

3 0.78 0.61 1.00 0.26 0.19 0.15 0.10 0.14 0.14 0.24 0.17 0.16 0.24 0.20

4 0.26 0.27 0.26 1.00 0.21 0.21 0.12 0.18 0.18 0.22 0.22 0.18 0.25 0.22

5 0.19 0.22 0.19 0.21 1.00 0.16 0.07 0.14 0.14 0.19 0.14 0.14 0.18 0.11

6 0.15 0.21 0.15 0.21 0.16 1.00 0.04 0.22 0.22 0.26 0.15 0.12 0.20 0.07

7 0.10 0.12 0.10 0.12 0.07 0.04 1.00 0.06 0.06 0.08 0.06 0.03 0.07 0.11

8 0.14 0.19 0.14 0.18 0.14 0.22 0.06 1.00 0.99 0.15 0.15 0.11 0.15 0.07

9 0.14 0.19 0.14 0.18 0.14 0.22 0.06 0.99 1.00 0.15 0.14 0.11 0.15 0.07

10 0.22 0.27 0.24 0.22 0.19 0.26 0.08 0.15 0.15 1.00 0.16 0.14 0.83 0.12

11 0.17 0.21 0.17 0.22 0.14 0.15 0.06 0.15 0.14 0.16 1.00 0.67 0.17 0.08

12 0.16 0.18 0.16 0.18 0.14 0.12 0.03 0.11 0.11 0.14 0.67 1.00 0.15 0.07

13 0.21 0.26 0.24 0.25 0.18 0.20 0.07 0.15 0.15 0.83 0.17 0.15 1.00 0.11

14 0.20 0.22 0.20 0.22 0.11 0.07 0.11 0.07 0.07 0.12 0.08 0.07 0.11 1.00

a Note: For numeration see Table 1.

Table 10. Power-correlation coefficient with absolute deviation standardization

1a 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1.00 0.69 0.76 0.17 0.13 0.16 0.04 0.12 0.13 0.19 0.15 0.15 0.18 0.10

2 0.69 1.00 0.62 0.19 0.14 0.22 0.03 0.17 0.17 0.23 0.18 0.16 0.21 0.11

3 0.76 0.62 1.00 0.16 0.14 0.17 0.03 0.13 0.13 0.23 0.15 0.16 0.23 0.11

4 0.17 0.19 0.16 1.00 0.18 0.27 0.07 0.22 0.21 0.22 0.25 0.20 0.25 0.17

5 0.13 0.14 0.14 0.18 1.00 0.16 0.03 0.13 0.13 0.18 0.13 0.13 0.17 0.06

6 0.16 0.22 0.17 0.27 0.16 1.00 0.03 0.22 0.22 0.27 0.15 0.12 0.20 0.06

7 0.04 0.03 0.03 0.07 0.03 0.03 1.00 0.04 0.04 0.05 0.04 0.02 0.04 0.06

8 0.12 0.17 0.13 0.22 0.13 0.22 0.04 1.00 0.99 0.15 0.15 0.11 0.15 0.05

9 0.13 0.17 0.13 0.21 0.13 0.22 0.04 0.99 1.00 0.15 0.14 0.11 0.15 0.05

10 0.19 0.23 0.23 0.22 0.18 0.27 0.05 0.15 0.15 1.00 0.17 0.14 0.84 0.10

11 0.15 0.18 0.15 0.25 0.13 0.15 0.04 0.15 0.14 0.17 1.00 0.67 0.17 0.06

12 0.15 0.16 0.16 0.20 0.13 0.12 0.02 0.11 0.11 0.14 0.67 1.00 0.14 0.05

13 0.18 0.21 0.23 0.25 0.17 0.20 0.04 0.15 0.15 0.84 0.17 0.14 1.00 0.08

14 0.10 0.11 0.11 0.17 0.06 0.06 0.06 0.05 0.05 0.10 0.06 0.05 0.08 1.00

a Note: For numeration see Table 1.

the maximal likelihood method (MLM) is more effective (for real data) in the sense
of accuracy (Anderson-Darling goodness-of-fit test corroborate that). It should be
noted that MLM is more sensitive to changes of the parameters α and σ.

Empirical parameters of 14 risk factors series have been estimated. Most of the
series are very asymmetric (0.5 < |γ1| < 6), and the empirical kurtosis (γ2 6= 0)
suggests that the probability density function of the series is more peaked and
exhibits fatter tails than the Gaussian one. The normality hypothesis is rejected
by the Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit tests.

An experimental test of the series homogeneity shows that for the stable series
with asymmetry, the Anderson test is more powerful than the Smirnov one. The
Anderson test for the 14 series shows that 2 series are homogeneous with their
aggregated series and 8 series when the zeros are removed are homogeneous with
their aggregate series.

The analysis of self-similarity and multifractality, by the absolute moments
method, indicates that 10 series are multifractal and concurrently 2 of them are
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Table 11. Power-correlation coefficient with median standardization

1a 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1.00 0.72 0.71 0.12 0.12 0.16 0.01 0.09 0.09 0.13 0.09 0.12 0.11 0.06

2 0.72 1.00 0.62 0.16 0.13 0.22 0.01 0.10 0.10 0.17 0.12 0.14 0.15 0.07

3 0.71 0.62 1.00 0.13 0.12 0.17 0.01 0.07 0.07 0.16 0.11 0.14 0.15 0.07

4 0.12 0.16 0.13 1.00 0.14 0.21 0.01 0.06 0.06 0.22 0.24 0.20 0.25 0.16

5 0.12 0.13 0.12 0.14 1.00 0.18 0.01 0.08 0.08 0.13 0.09 0.12 0.12 0.08

6 0.16 0.22 0.17 0.21 0.18 1.00 0.00 0.11 0.11 0.20 0.09 0.11 0.14 0.09

7 0.01 0.01 0.01 0.01 0.01 0.00 1.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01

8 0.09 0.10 0.07 0.06 0.08 0.11 0.01 1.00 0.99 0.03 0.02 0.03 0.02 0.04

9 0.09 0.10 0.07 0.06 0.08 0.11 0.01 0.99 1.00 0.03 0.02 0.03 0.03 0.04

10 0.13 0.17 0.16 0.22 0.13 0.20 0.00 0.03 0.03 1.00 0.16 0.13 0.82 0.13

11 0.09 0.12 0.11 0.24 0.09 0.09 0.00 0.02 0.02 0.16 1.00 0.52 0.17 0.15

12 0.12 0.14 0.14 0.20 0.12 0.11 0.00 0.03 0.03 0.13 0.52 1.00 0.14 0.11

13 0.11 0.15 0.15 0.25 0.12 0.14 0.00 0.02 0.03 0.82 0.17 0.14 1.00 0.14

14 0.06 0.07 0.07 0.16 0.08 0.09 0.01 0.04 0.04 0.13 0.15 0.11 0.14 1.00

a Note: For numeration see Table 1.

self-similar. On the other hand, if we remove the zeros from the series, there remain
only 5 multifractal and 2 self-similar series. This is because the series becomes too
short for multifractality analysis.

A mixed stable model of log-volatility changes and log-FX rates distribution has
been proposed. We introduced the probability density, cumulative density, and the
characteristic functions. Empirical results show that this kind of distribution fits
the empirical data better than any other.

Since goodness-of-tests tests for continuous distribution functions cannot be im-
plemented, the tests, based on the empirical characteristic function (Koutrouvelis)
as well as modified χ2, are used. The experimental tests have shown that, if the
stability parameter α and the number of zeros are increasing, than the validity of
the tests is also increasing.

The statistical analysis of the stagnation intervals has been made. Empirical
studies showed that the length series of the state runs of our financial data are
better described by the Hurwitz zeta distribution, rather than by geometric distri-
bution. Since series of the lengths of each run are not geometrically distributed,
the state series must have some internal dependence (Wald-Wolfowitz runs test cor-
roborates this assumption). A new mixed-stable model with dependent states has
been proposed and the formulas for probabilities of calculating states (zeros and
units) have been obtained. Adequacy tests of this model are hampered by inner
series dependence.

The inner series dependence was tested by the Hoel [16] criterion on the order
of the Markov chain. It has been concluded that there are no zero order series or
Bernoulli scheme series.

When constructing an optimal portfolio, it is essential to determine possible rela-
tionships between different data series. However, under the assumption of stability
traditional relationship measures (covariance, correlation) which cannot be applied,
since (1.26 < α < 1.78). In such a case, codifference and power-correlation mea-
sures are offered. The significance of these measures can be tested by the bootstrap
method.
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Abstract

We prove unique continuation results for the gradient of solutions to second order
elliptic equations with a strict sign condition on the potential. Some information on
the Lebesgue measure of the nodal set of the gradient of solutions is also obtained. Such
results are useful in nonlinear partial differential equations. A counterexample of Hartman
and Wintner suggests that our results are sharp in some sense. Our method of proof is
based in part on Lp-estimates, a “reverse” Caccioppoli’s type inequality derived herein, a
doubling condition established by Garofalo and Lin, and the de Giorgi-Nash-Moser type
iteration procedure.

Keywords: Elliptic equations; Gradient unique continuation; Sign condition; Lp-estimates;
Doubling condition; Iteration procedure.

1 Introduction

Let Ω ⊂ RN , N ≥ 3, be a connected open set. We consider the second order elliptic partial
differential equation

Hu := − div(A(x)∇u) + b(x)·∇u + V (x)u = 0 in Ω, (1)

where |b| ∈ LN
loc(Ω), V ∈ L

N/2
loc (Ω), and A(x) = (aij(x)) is a real symmetric matrix with

(uniformly) Lipschitz continuous entries such that there exists a constant µ ∈ (1,∞) with

µ−1|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ µ|ξ|2 (2)

for all x ∈ Ω and all ξ ∈ RN .
We are interested in studying different types of unique continuation property on the

gradient |∇u| of nontrivial solutions to Eq. (1). We first give some relevant definitions.

By a solution to Eq. (1) we mean a function u ∈ H1
loc(Ω) such that∫

Ω
〈A(x)∇u,∇ϕ〉+

∫
Ω
〈b(x),∇u〉ϕ +

∫
Ω

V (x)uϕ = 0 for all ϕ ∈ C1
0 (Ω). (3)

1
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Note that by the interior regularity properties of (weak) solutions to Eq. (1) (see e.g. [6],
Theorem 8.8, or more precisely [12], Chapter 3, Section 10), it follows that u ∈ H2

loc(Ω).
Actually, it is also known that u ∈ L∞loc(Ω) (see e.g. [12], Chapter 3, Section 14, Theorem
14.1 and Remark 1).

Definition 1 A function v ∈ L2
loc(Ω) vanishes of infinite order at a point x0 ∈ Ω if for each

k ∈ N, ∫
|x−x0|<R

v2 dx = O(Rk) as R → 0. (4)

Definition 2 The operator H has the strong unique continuation property on the gradient
in Ω if the only solution to Hu = 0 such that |∇u| vanishes of infinite order at a point x0 ∈ Ω
is u ≡ 0.

Definition 3 The operator H has the unique continuation property on the gradient in Ω if
the only solution to Hu = 0 such that |∇u| vanishes in a subset of Ω of positive (Lebesgue)
measure is u ≡ 0.

Definition 4 The operator H has the weak unique continuation property on the gradient in
Ω if the only solution to Hu = 0 such that |∇u| vanishes in an open subset of Ω is u ≡ 0.

There is an extensive literature on the unique continuation property of nontrivial solutions,
u, to Eq. (1). Significantly improving upon previous results obtained by Amrein, Berthier
and Georgescu [1], Hörmander [9], Protter [16], Schechter and Simon [17] and others, Jerison
and Kenig [11] proved sharp unique continuation results in Lp-spaces (V ∈ L

N/2
loc (Ω)) for

nontrivial solutions, u, to the Schrödinger operator −∆u + V (x)u. (Also see Jerison [10]
for a simpler proof.) Their result was extended by Stein [21] to the case of the Lorentz
space, V ∈ L

N/2,∞
loc (Ω), with a “small norm” condition. Their method of proof was linked to

Carleman’s type inequalities and the harmonic analysis of the Laplace operator. These results
were shown to be sharp in that context by counterexamples constructed by Wolff [22]. The
variable coefficients case was taken up in Sogge [20] where it is assumed that aij ∈ C∞(Ω)
(also see Hartman and Wintner [8]), and Garofalo and Lin [4, 5] and Hörmander [9] where it is
assumed that the entries aij(x) are (uniformly) Lipschitz continuous, with additional growth
conditions on the potential V and the drift coefficient b in Eq. (1). In an other context, the
(N −1)-dimensional Hausdorff measure of the nodal set of solutions was considered by Hardt
and Simon in [7]. More references may be found in these papers.

However, to our knowledge, very little has been done concerning unique continuation
property on the gradient , |∇u|, of nontrivial solutions to Eq. (1). In [4], Garofalo and Lin
proved that, if b ≡ 0 and V ≡ 0, then the gradient, |∇u|, of a solution cannot vanish of
infinite order at a point, unless u ≡ constant. Since the gradient of the solution was shown
in [5] to be an Aq weight of Muckenhoupt, it cannot vanish on a set of positive (Lebesgue)
measure either, provided u 6≡ constant.

Their approach cannot be extended to problems with lower order terms, i.e. with V 6≡ 0 for
instance. Actually, they mentioned (without references) in [5], p. 352, that these statements
may not be true for V 6≡ 0, even when V ∈ C∞(Ω) and N = 1. It appears to us that this
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fact may have been suggested by a 1955 paper of Hartman and Wintner [8] (see e.g. Sections
1 and 2 in [8]).

For problems with lower order terms, an obvious way to prevent constant functions from
being (local) eigenfunctions of Eq. (1) is to assume that V (x) 6= 0 a.e. in Ω. However, as
suggested by a counterexample in [8], p. 452, this condition may not be sufficient for strong
unique continuation property on the gradient. The counterexample in [8] is of the form
V (x) = u′′(x)/u(x), where u(0) = 1 and u(x) = 1 ± exp(−x−2) for x 6= 0. An analysis of
this counterexample shows that the potential V does not change sign in a neighborhood of
the point x = 0, where the gradient (of the solution) vanishes of infinite order. However, V
does not satisfy a strict sign condition in that neighborhood either. Slightly modifying this
example by considering V (x) = u′′(x)/u(x), where now u(x) = 1 + x exp(−x−2) for x 6= 0, it
is easy to see that V changes sign in every neighborhood of x = 0. In either case, the non-
constant function u satisfies the differential equation −u′′ + V (x)u = 0 and u′(x) vanishes
of infinite order at x = 0. Thus, the strong unique continuation property on the gradient
does not hold. This discussion clearly shows that the problem of unique continuation of the
gradient, |∇u|, has different features than that of unique continuation of the solution, u,
itself.

Therefore, unless otherwise mentioned, we shall assume throughout that the potential V
satisfies the following strict sign condition:

V (x) ≤ −ε a.e. in Ω, (5)

for some real number ε > 0. (The case V (x) ≥ ε a.e. in Ω will be treated in a similar way.)
It is the purpose of this paper to show that this (natural) strict sign condition implies the

(strong) unique continuation property on the gradient of solutions to Eq. (1) (see Section 2).
Furthermore, we obtain some information on the (Lebesgue) measure of the nodal set (the
set of zeros) of the gradient of nontrivial solutions. More precisely, we prove that this set has
(Lebesgue) measure zero (see Section 3). Such results are also useful in nonlinear boundary
value problems (see e.g. Nkashama and Robinson [14, 15] and references therein). The above
counterexample of Hartman and Wintner seems to indicate that our results are sharp in the
sense that a strict sign condition on the potential V is needed for strong unique continuation
property on the gradient.

Let us mention that, in a different setting, namely in scattering theory, a (strict) sign
condition (in some sense) plays an important role in proving the absence of positive eigenva-
lues (that is, eigenvalues embedded in the continuous spectrum) for Schrödinger operators.
The eigenfunctions (and their first order derivatives) associated with such eigenvalues are
rapidly decreasing at infinity in the L2-sense, provided the potential has a certain decaying
behavior at infinity. We refer to Hörmander [9], Section 5, and Simon [18, 19].

Our method of proof is based in part on Lp-estimates, a “reverse” Caccioppoli’s type
inequality derived in Section 2, a doubling condition established by Garofalo and Lin [4, 5],
and the de Giorgi-Nash-Moser type iteration procedure which we use in Section 3.

Furthermore, unless otherwise indicated, we shall assume throughout that the drift coef-
ficient b and the potential V satisfy the following additional growth conditions in the neigh-
borhood of a possible point of singularity (see e.g. Garofalo and Lin [5] and Hörmander
[9]).
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For every x0 ∈ Ω, there exist a constant r0 > 0, an increasing function h : (0, r0) → R+ with∫ r0

0

h(r)
r

dr < ∞,

and a constant C0 > 0 such that

|b(x)| ≤ C0
h(|x− x0|)
|x− x0|

and |V (x)| ≤ C0
h(|x− x0|)
|x− x0|2

(6)

for all x ∈ Br0(x0) ∩Ω, where Br0(x0) = {x ∈ RN : |x− x0| < r0}. (Note that this condition
is in particular satisfied if |b| ∈ L∞loc(Ω) and V ∈ L∞loc(Ω).)

As mentioned above, it is known that, under the above conditions, with the exception
of the sign condition (5), the operator H enjoys all of the above three types of unique
continuation property on the solution u itself. We refer to de Figueiredo and Gossez [3],
Garofalo and Lin [4], [5], Hörmander [9], Jerison [10], Jerison and Kenig [11], Sogge [20] and
references therein.

2 Strong Unique Continuation

We wish to prove the following main result of this section.

Theorem 1 The operator H has the strong unique continuation property on the gradient in
Ω; that is, |∇u| cannot vanish of infinite order at a point, unless u ≡ 0.

The following result is an immediate consequence of Theorem 1.

Corollary 1 The operator H has the weak unique continuation property on the gradient in
Ω.

A more general result than Corollary 1 actually holds. Indeed, it is obvious that the operator
H has the weak unique continuation property on the gradient in Ω if V (x) 6= 0 a.e. in Ω.

The following result will be useful in the proof of Theorem 1. (Note that this result does
not require the growth conditions (6) on b and V .)

Lemma 1 Let u ∈ H1
loc(Ω) be a solution to Eq. (1), and let Br0 ⊂ Ω be an open ball.

Then there exist a positive constant C2, depending on A and V , and a positive constant C3,
depending on u, b, V and Br0, such that for every concentric balls Br and B2r contained in
Br0, we have ∫

Br

u2 ≤ C2

[
1
r2

∫
B2r

|∇u|2 +
∫

B2r

|∇u|2
]

+ C3

(∫
B2r

|∇u|2
)1/2

. (7)

The constants C2 and C3 do not depend on r.
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Proof. Pick ϕ ∈ C∞
0 (Ω) with ϕ ∈ C∞

0 (B2r) such that ϕ ≡ 1 in Br, and |∇ϕ| ≤ 2/r. Using
the function uϕ2 as a test function in the definition (3) by density, we get

−
∫

Ω
V (x)u2ϕ2 =

∫
Ω
〈A(x)∇u,∇u〉ϕ2 + 2

∫
Ω
〈A(x)∇u,∇ϕ〉uϕ +

∫
Ω
〈b(x),∇u〉uϕ2 ;

that is,

−
∫

B2r

V (x)u2ϕ2 =
∫

B2r

〈A(x)∇u,∇u〉ϕ2 + 2
∫

B2r

〈A(x)∇u,∇ϕ〉uϕ +
∫

B2r

〈b(x),∇u〉uϕ2.

Using Cauchy-Schwarz and Young inequalities, it follows that for every δ > 0 there is a
constant Cδ > 0 such that

−
∫

B2r

V (x)u2ϕ2 ≤
∫

B2r

µ|∇u|2ϕ2 + 2δ

∫
B2r

u2ϕ2 + Cδ

∫
B2r

µ2|∇ϕ|2|∇u|2

+ |ϕ2|L∞(Ω)

∫
B2r

(|u||b(x)|)|∇u|;

which, by the inequality (5) and Hölder’s inequality (used twice), implies that

ε

∫
B2r

u2ϕ2 ≤
∫

B2r

(
µϕ2 + µ2Cδ|∇ϕ|2

)
|∇u|2 + 2δ

∫
B2r

u2ϕ2

+ |ϕ2|L∞(Ω)|u|L2∗ (Br0 )|b|LN (Br0 )

(∫
B2r

|∇u|2
)1/2

,

where 2∗ = 2N/(N − 2) is the Sobolev critical exponent, and µ > 0 is the ellipticity constant
appearing in the inequality (2). Therefore, choosing δ sufficiently small such that 2δ < ε,
and taking into account the fact that ϕ ≡ 1 in Br and |∇ϕ| ≤ 2/r in B2r, we deduce that
there exit a constant C2 > 0, depending on A and V , and a constant C3 > 0, depending on
u, b, V and Br0 , such that∫

Br

u2 ≤ C2

r2

∫
B2r

|∇u|2 + C2

∫
B2r

|∇u|2 + C3

(∫
B2r

|∇u|2
)1/2

.

The proof is complete.

Remark 1 An analysis of the proof of Lemma 1 shows that, if |b| ∈ L∞loc(Ω), the third term
in the right hand side of the inequality (7) may be omitted. Thus, the constant appearing in
Lemma 1 would be independent of r and u as well. It suffices to use Young’s inequality on∫
B2r

(uϕ)(ϕ|b(x)||∇u|). In this case the constant C2 > 0 also depends on |b|L∞(Br0 ).

Proof. (Theorem 1) Let u ∈ H1
loc(Ω) be a solution to Eq. (1). If |∇u| vanishes of infinite

order at some point x0, it follows from the definition (4) and the inequality (7) that for k = 3,
we have ∫

|x−x0|<R
u2 dx = O(R3−2) + O(R3) + O(R3/2) = O(R) as R → 0,
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since R ≤ 1. Moreover, for each k ∈ N , k even with k ≥ 4, we have∫
|x−x0|<R

u2 dx = O(Rk−2) + O(Rk) + O(Rk/2) = O(Rk/2) as R → 0,

since R ≤ 1, and k − 2 ≥ k/2 for k ≥ 4.
Thus, the solution u vanishes of infinite order at x0. The conclusion of Theorem 1 then

follows from the results on strong unique continuation property on the solution u. We refer
to Garofalo and Lin [5] and Hörmander [9] (also see Jerison and Kenig [11], and Sogge [20]).
The proof is complete.

Note that if b ≡ 0, then Theorem 1 holds true when aij ∈ C∞(Ω) and V ∈ L
N/2
loc (Ω),

without assuming the growth condition (6) on the potential V . This follows from Remark 1
and the results of Sogge [20]. (Also see Jerison [10], and Jerison and Kenig [11].)

In order to obtain some information on the Lebesgue measure of the set of zeros of the
gradient of nontrivial solutions to Eq. (1), we have, in the spirit of Remark 1, the following
result; which may be thought of as a “reverse” Caccioppoli’s type inequality (see Section 3).
It is motivated by Poincaré and Wirtinger’s type inequalities.

Lemma 2 Let u ∈ H1
loc(Ω) be a solution to Eq. (1), and let Br0 ⊂ Ω be an open ball, where

without loss of generality we assume that r0 ≤ 1. Then there exists a positive constant C4,
depending on u, A, b, V and Br0, such that for every concentric balls Br and B2r contained
in Br0, we have ∫

Br

u2 ≤ C4

r2

∫
B2r

|∇u|2. (8)

The constant C4 does not depend on r.

The proof of Lemma 2 will depend in part on the following doubling condition which was
established in [5].

Lemma 3 [5] Let u ∈ H1
loc(Ω) be a solution to Eq. (1), and let Br0 ⊂ Ω be an open ball,

where without loss of generality r0 is sufficiently small. Then there exists a positive constant
C1, depending on u, N , A, b, V and Br0, such that for every concentric balls BR and B2R

contained in Br0, we have ∫
B2R

u2 ≤ C1

∫
BR

u2. (9)

The constant C1 does not depend on R.

Proof. (Lemma 2) An analysis of the proof of Lemma 1 shows that

ε

∫
B2r

u2ϕ2 ≤
∫

B2r

(
µϕ2 + µ2Cδ|∇ϕ|2

)
|∇u|2 + 2δ

∫
B2r

u2ϕ2

+ |ϕ2|L∞(Ω)|u|L2∗ (B2r)|b|LN (Br0 )

(∫
B2r

|∇u|2
)1/2

.
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By the Sobolev Imbedding Theorem, there is a constant C ′ > 0, which may be chosen
independent of r, such that

ε

∫
B2r

u2ϕ2 ≤
∫

B2r

(
µϕ2 + µ2Cδ|∇ϕ|2

)
|∇u|2 + 2δ

∫
B2r

u2ϕ2 + C ′|ϕ2|L∞(Ω)

∫
B2r

|∇u|2

+ C ′|ϕ2|L∞(Ω)

(
1
r2

∫
B2r

u2

)1/2 (∫
B2r

|∇u|2
)1/2

.

Using Young’s inequality once more and the doubling condition (9), we get

ε

∫
B2r

u2ϕ2 ≤
∫

B2r

(
µϕ2 + µ2Cδ|∇ϕ|2

)
|∇u|2 + 2δ

∫
B2r

u2ϕ2 + C ′|ϕ2|L∞(Ω)

∫
B2r

|∇u|2

+ CγC ′|ϕ2|L∞(Ω)
1
r2

∫
B2r

|∇u|2 + γCC ′|ϕ2|L∞(Ω)

∫
Br

u2.

Therefore, by choosing δ > 0 and γ > 0 sufficiently small such that

2δ + γCC ′|ϕ2|L∞(Ω) < ε/2,

the inequality (8) follows. The proof is complete.

Remark 2 It is easy to see that all the above results hold true if the potential V ∈ L
N/2
loc (Ω)

satisfies the growth condition (6) with V positive; that is, V (x) ≥ ε a.e. in Ω, for some real
number ε > 0. 2

3 Nodal Set of the Gradient

Next, we will be interested in getting some information on the Lebesgue measure of the nodal
set; that is, the zero set of the gradient |∇u| of solutions to Eq. (1). To do so, we assume
that V ∈ L∞loc(Ω) and |b| ∈ LN

loc(Ω). We have the following result.

Proposition 1 Let u ∈ H1
loc(Ω) be a solution to Eq. (1). If |∇u| = 0 on a set S ⊂ Ω of

positive (Lebesgue) measure, then both |∇u| and |u| vanish of infinite order at a.e. point of
S.

As an immediate consequence of Proposition 1 and Theorem 1 we deduce the following main
result of this section.

Theorem 2 The operator H has the unique continuation property on the gradient in Ω; that
is, |∇u| cannot vanish on a set of positive (Lebesgue) measure, unless u ≡ 0.

To prove Proposition 1, we wish to first derive interior estimates of the L2-norm of the
second derivatives of an arbitrary function u ∈ H2

loc(Ω) in terms of the L2-norms of the
functions u, |∇u| and the values of the elliptic operator Hu. For that purpose, let us write
the elliptic operator Hu in the following equivalent form (for u ∈ H2

loc(Ω)):

Hu := −aij(x)Diju + ai(x)Diu + V (x)u,
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where ai(x) = −Dj(aij(x)) + bi(x), Diu = ∂u/∂xi, Diju = ∂2u/∂xi∂xj , etc. . . , and the
summation convention is understood. We have the following interior estimate. (Note that
in obtaining this interior estimate we may assume that V ∈ L

N/2
loc (Ω), |b| ∈ LN

loc(Ω), and the
growth conditions (6) are not required.)

Lemma 4 There exists a constant C > 0 such that for all u ∈ H2
loc(Ω),∫

Ω

N∑
i,j=1

|Diju|2ϕ2 ≤ C

(∫
Ω
(Hu)2ϕ2 +

∫
Ω
|∇ϕ|2|∇u|2 +

∫
Ω
|∇u|2ϕ2

)
+

∫
Ω
(V (x)u)2ϕ2, (10)

where ϕ ∈ C∞
0 (Ω) is any given function. The constant

C = C(µ−1, N, |aij |C0,1(Ω), |b|LN
loc(Ω))

is independent of u and the values of ϕ on its support. (In |b|LN
loc(Ω), the word “loc” refers to

a subset of Ω containing the support of ϕ in Ω.)

Proof. It suffices to prove (10) for all u ∈ C∞(Ω) ∩ H2
loc(Ω), since the inequality (10) for

u ∈ H2
loc(Ω) follows from a density argument (see e.g. Theorem 7.9 in [6], p. 154).

Using the above definition of the operator Hu, we obtain∫
Ω
(Hu)2ϕ2 =

∫
Ω

aij(Diju)akl(Dklu)ϕ2 + 2
∫

Ω
(aijDiju)(akDku + V u)ϕ2

+
∫

Ω
(akDku + V u)2ϕ2.

By twice integrating by parts the first term on the right, we get∫
Ω

aij(Diju)akl(Dklu)ϕ2 = −
∫

Ω

[
aijaklDklju(Diu)ϕ2 + Dj(aijaklϕ

2)DkluDiu
]

=
∫

Ω

[
aijakl(Diku)(Djlu)ϕ2 −Dj(aijaklϕ

2)DkluDiu

+Dk(aijaklϕ
2)DljuDiu

]
. (11)

Using the inequality (7.6) in [12], Chapter 3, Section 7, the first term in the right hand side
of (11) may be estimated by∫

Ω
aijaklDikuDjluϕ2 ≥ µ−2

∫
Ω

N∑
i,j=1

|Diju|2ϕ2.

Therefore,

1
µ2

∫
Ω

N∑
i,j=1

|Diju|2ϕ2 ≤
∫

Ω
(Hu)2ϕ2

+
∫

Ω

[
Dj(aijaklϕ

2)DkluDiu−Dk(aijaklϕ
2)DljuDiu

]
(12)

− 2
∫

Ω
(aijDiju)(akDku + V u)ϕ2 −

∫
Ω
(akDku + V u)2ϕ2.
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Let us consider the terms containing the derivatives of ϕ; that is, part of the second term
in the right hand side of the inequality (12). By Young’s inequality, we have that, for every
δ > 0,∫

Ω
aijakl (DkluDjϕ−DljuDkϕ) 2ϕDiu ≤ δ

∫
Ω

N∑
i,j=1

|Diju|2ϕ2 + δ−1C ′
∫

Ω
|∇ϕ|2|∇u|2,

where the constant C ′ = C ′ (N, |aij |L∞(Ω)

)
> 0. Similarly, the remaining terms of the second

term in the right hand side of the inequality (12) may be estimated by∫
Ω

[Dj(aijakl)ϕDklu−Dk(aijakl)ϕDlju]ϕDiu ≤ δ

∫
Ω

N∑
i,j=1

|Diju|2ϕ2 + δ−1C ′′
∫

Ω
|∇u|2ϕ2,

where the constant C ′′ = C ′′ (N, |aij |C0,1(Ω)

)
> 0.

Now, let us consider the term
∫
Ω a2

k|Dku|2ϕ2 that appears in the third and last terms
in the right hand side of the inequality (12), and let us estimate the term

∫
Ω |bk|2|Dku|2ϕ2

included in it.
Since |b| ∈ LN

loc(Ω) and ϕ has compact support in Ω, it follows from a result of Brézis and
Kato [2], p. 139, Lemma 2.1, that for every δ > 0,∫

Ω
|bk|2|ϕDku|2 ≤ δ

∫
Ω
|∇(ϕDku)|2 + Cδ

∫
Ω
|ϕDku|2,

where the constant Cδ = Cδ

(
N, |bk|LN

loc(Ω)

)
> 0. (In |bk|LN

loc(Ω), the word “loc” refers to a
subset of Ω containing the support of ϕ in Ω.) Thus,∫

Ω
|bk|2|ϕDku|2 ≤ δ

∫
Ω

N∑
i,j=1

|Diju|2ϕ2 + δ

∫
Ω
|∇ϕ|2|Dku|2 + Cδ

∫
Ω
|Dku|2ϕ2.

Finally, collecting all the above estimates (and similar ones), where δ > 0 is chosen
sufficiently small, and using the inequality (12), we have that the inequality (10) follows.
The proof is complete.

Proof. (Proposition 1) For a.e. point x0 ∈ S, let us set

ω0(R) :=
∫

BR

|∇u|2,

where BR = {x ∈ Ω : |x− x0| < R}. We will show that for every k ∈ N,

ω0(R) = O(Rk) as R → 0; (13)

which implies that |∇u| vanishes of infinite order at x0.
Since S is a set of positive (Lebesgue) measure, it is known that a.e. point x0 ∈ S is a

cluster point in measure (also referred to as a point of density of S); that is,

lim
R→0

λ (S ∩BR) /λ(BR) = 1, and henceforth, lim
R→0

λ ([Ω \ S] ∩BR) /λ(BR) = 0,
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where as above BR = {x ∈ Ω : |x − x0| < R}, and λ(BR) denotes the (Lebesgue) measure
of BR. Note that the latter is equivalent to saying that for every η > 0 there exists R0 =
R0(η) > 0 such that

λ ([Ω \ S] ∩BR) ≤ ηλ(BR) for all R ≤ R0. (14)

Without loss of generality, we may asssume that R0 ≤ 1. Using Hölder’s inequality, the
inequality (14), and the Sobolev Imbedding Theorem, we deduce that

ω0(R) ≤ C ′ (ηλ(BR ∩ [Ω \ S]))2/N |∇u|2
L2∗ (BR∩[Ω\S])

≤ C ′′η2/NR2

 1
R2

|∇u|2L2(BR) +
∫

BR

N∑
i,j=1

|Diju|2
 (15)

for all R ≤ R0, since |∇u| = 0 on S. (The constant C ′′ > 0 is also independent of R.)
Moreover, by (local) L2-estimates for elliptic operators; i.e. Lemma 4 where ϕ is picked

as a cut-off function; that is ϕ ∈ C∞
0 (B2R), ϕ ≡ 1 in BR and |∇ϕ| ≤ 2/R, we have∫

BR

N∑
i,j=1

|Diju|2 ≤ C

(
1

R2
|∇u|2L2(B2R) + |∇u|2L2(B2R) + |V u|2L2(B2R)

)
, (16)

where C = C(N,µ−1, |aij |C0,1(BR0
), |b|LN (BR0

)) > 0 is a constant independent of R, as R → 0.
Using the estimate (16) with V ∈ L∞loc(Ω), and the fact that, by Lemma 2,∫

B2R

u2 ≤ C ′

R2

∫
B4R

|∇u|2,

for some constant C ′ > 0 independent of R, as R → 0, we deduce from the inequality (15)
that ω0(R) ≤ K1η

2/Nω0(4R) for all R such that 4R ≤ R0; that is,

ω0(R/4) ≤ K1η
2/Nω0(R) for all R ≤ R0, (17)

where K1 > 0 is a constant independent of R, as R → 0.
Note that the inequality (17) implies that ω0 satisfies the assumptions of Lemma 8.23 in

[6], where τ ∈ (0, 1/4] is any number, γ = K1η
2/N and σ ≡ 0. Therefore, ω0(τR) ≤ γω0(R)

for all R ≤ R0.
Now, we shall use the inequality (17) to prove the assertion (13). To do so, let k ∈ N be

given, and let us pick η > 0 sufficiently small such that (1/4)k ≤ K1η
2/N < 1. (Note that, in

this way, R0 depends on k.) Since τ ≤ 1/4, it follows that, for any β ∈ (0, 1),

τ (1−β)−1k ≤ (1/4)(1−β)−1k < (1/4)k ≤ K1η
2/N = γ,

which immediately implies that

k ≤ (1− β)(log γ/ log τ).
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Therefore, the conclusion of the (short) proof of Lemma 8.23 in [6] (see e.g. [6], p. 202), which
uses the de Giorgi-Nash-Moser type iteration procedure, yields

ω0(R) ≤ 1
γ

ω0(R0)
(

R

R0

)(1−β)(log γ/ log τ)

≤ 1
γ

ω0(R0)
(

R

R0

)k

for all R ≤ R0.

Thus, the assertion (13) follows. Finally, the inequality∫
BR

u2 ≤ C ′

R2

∫
B2R

|∇u|2,

and the assertion (13) imply that for every k ∈ N, k ≥ 3,∫
BR

u2 = O(Rk−2) as R → 0;

which shows that u also vanishes of infinite order at x0. The proof is complete.

Remark 3 It is easy to see that all the above results hold true if the potential V ∈ L∞loc(Ω)
with V positive; that is, V (x) ≥ ε a.e. in Ω, for some real number ε > 0. 2
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COMPOSITION OPERATORS FROM THE HARDY
SPACE TO ZYGMUND-TYPE SPACES ON THE UPPER

HALF-PLANE AND THE UNIT DISC

STEVO STEVIĆ

Abstract. The paper characterizes the boundedness of the composition oper-
ator Cϕf(z) = f(ϕ(z)) from the Hardy space Hp(X), p > 0, where X is the up-
per half-plane Π+ = {z ∈ C : Im z > 0} or the unit disk D = {z ∈ C : |z| < 1}
in the complex plane C, to Zygmund-type spaces, where ϕ is an analytic self-
map of X.

1. Introduction

Let Π+ be the upper half-plane, that is, the set {z ∈ C : Im z > 0}, D the open
unit disc in C, dm(z) the normalized Lebesgue area measure on D, i.e. m(D) = 1,
and H(X) the space of all analytic functions on X which may be Π+ or D.

The Hardy space Hp(Π+), p > 0, consists of all f ∈ H(Π+) such that

‖f‖p
Hp(Π+) = sup

y>0

∫ ∞

−∞
|f(x + iy)|pdx < ∞.

With this norm Hp(Π+) is a Banach space when p ≥ 1, while for p ∈ (0, 1) it
is a Fréchet space with the translation invariant metric d(f, g) = ‖f − g‖p

Hp(Π+),
f, g ∈ Hp(Π+).

The Hardy space Hp(D), p > 0, consists of all f ∈ H(D) such that

‖f‖p
Hp(D) = sup

0<r<1

∫ 2π

0

|f(reiθ)|p dθ

2π
< ∞.

Some information on Hardy’s spaces can be found in [4] and [5].
Let µ(z) be a positive continuous function on X (weight) and n ∈ N0 be fixed.

The n-th weighted-type space on X, denoted by W(n)
µ (X) consists of all f ∈ H(X)

such that
bW(n)

µ (X)
(f) := sup

z∈X
µ(z)|f (n)(z)| < ∞.

For n = 0 the space is called the weighted-type space and denoted by H∞
µ (X),

for n = 1 it is called the Bloch-type space and denoted by Bµ(X), and for n = 2 it
is called the Zygmund-type space and denoted by Zµ(X).

For the special case when X = Π+, µ(z) = Im z and n = 0 is obtained the growth
space A∞(Π+) = A∞, for n = 1 the Bloch space B∞(Π+) = B∞, and for n = 2 the
Zygmund space Z(Π+) = Z, which was introduced in [28]. For Bloch-type spaces
on the unit disk, polydisk or the unit ball, see, e.g., [2, 12, 22, 27, 31, 35, 37] and
the references therein.
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2 STEVO STEVIĆ

The quantity
bZµ(X) := sup

z∈X
µ(z)|f ′′(z)|

is a seminorm on the Zygmund-type space Zµ(X) or a norm on Zµ(X)/P1, where
P1 is the set of all linear polynomials. A natural norm on the Zygmund-type space
can be introduced as follows

‖f‖Zµ(X) = |f(a)|+ |f ′(a)|+ bZµ(X)(f),

where a ∈ X. With this norm the Zygmund-type space becomes a Banach space.
Note that for X = Π+ and µ(z) = y is obtained the space Z(Π+) on which the

following norm can be introduced

‖f‖Z(Π+) := |f(i)|+ |f ′(i)|+ sup
z∈Π+

Im z|f ′′(z)|.

For X = D and µ(z) = 1 − |z|2 is obtained the classical Zygmund space on the
unit disk, on which a norm is introduced as follows

‖f‖Z(D) := |f(0)|+ |f ′(0)|+ sup
z∈D

(1− |z|2)|f ′′(z)|.

For some information on the Zygmund space on the unit disk and some operators
on it, see, for example, [1], [7], [10], [11], [14]. For the Zygmund space on the unit
ball and some operators on it, see, e.g., [15], [16], [30], [37] and [38].

The following results, regarding the cases n = 0, 1, 2 were proved in [20] and [28].

Theorem A. Assume p ≥ 1 and ϕ is a nonconstant holomorphic self-map of Π+.
Then the following statements true hold.
(a) The operator Cϕ : Hp(Π+) → A∞(Π+) is bounded if and only if

sup
z∈Π+

Im z

(Im ϕ(z))
1
p

< ∞.

(b) The operator Cϕ : Hp(Π+) → B∞(Π+) is bounded if and only if

sup
z∈Π+

Im z
|ϕ′(z)|

(Im ϕ(z))1+
1
p

< ∞.

(c) The operator Cϕ : Hp(Π+) → Z(Π+) is bounded if and only if

sup
z∈Π+

Im z
|ϕ′(z)|2

(Im ϕ(z))2+
1
p

< ∞ and sup
z∈Π+

Im z
|ϕ′′(z)|

(Im ϕ(z))1+
1
p

< ∞.

A natural problem is to extend Theorem A for the case p ∈ (0, 1) and with a
general weight µ, as well as to obtain the corresponding results in the setting of
the unit disc. Here we give some answers to these questions by characterizing the
boundedness of the operator Cϕ : Hp(X) → Z(X), where p > 0 and X = Π+ or
X = D. Let X and Y be topological vector spaces whose topologies are given by
translation-invariant metrics dX and dY , respectively, and T : X → Y be a linear
operator. It is said that T is metrically bounded if there is a K > 0 such that
dY (Tf, 0) ≤ KdX(f, 0) for all f ∈ X. When X and Y are Banach spaces, the
metrically boundedness coincides with the usual definition of bounded operators
between Banach spaces. If we say that an operator is bounded it means that it is
metrically bounded.
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Somewhat older results on composition and weighted composition operators can
be found, e.g., in [3], while some recent results can be found, e.g., in [1, 2, 6, 8,
9, 13, 14, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 32, 33, 34, 36, 39] (see also the
related references therein).

Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the other. The notation a ¹ b means that there is
a positive constant C such that a ≤ Cb. Moreover, if both a ¹ b and b ¹ a hold,
then one says that a ³ b.

2. Auxiliary results

This section gives several auxiliary results which are used in the proofs of the
main results of the paper.

Lemma 1. Assume that p > 0, n ∈ N0 and w ∈ Π+. Then the function

fw,n(z) =
(Im w)n+ 1

p

(z − w̄)n+ 2
p

, (1)

belongs to Hp(Π+). Moreover supw∈Π+
‖fw,n‖Hp ≤ π1/p.

Proof. Let z = x + iy and w = u + iv. Then, we have

‖fw,n‖p
Hp = sup

y>0

∫ ∞

−∞
|fw,n(x + iy)|pdx

= (Im w)np+1 sup
y>0

∫ ∞

−∞

dx

|z − w̄|np|z − w̄|2

≤ vnp+1 sup
y>0

∫ ∞

−∞

dx
(
(y + v)2

)np
2

(
(x− u)2 + (y + v)2

)

≤ vnp+1 sup
y>0

1
(y + v)np+1

∫ ∞

−∞

y + v

(x− u)2 + (y + v)2
dx

= sup
y>0

vnp+1

(y + v)np+1

∫ ∞

−∞

dt

t2 + 1
= π,

where we have used the change of variables x = u + t(y + v). ¤

Lemma 2. Assume that p > 0, n ∈ N0 and w ∈ D. Then the function

gw,n(z) =
(1− |w|2)n+ 1

p

(1− w̄z)n+ 2
p

, (2)

belongs to Hp(D). Moreover supw∈D ‖gw,n‖Hp < ∞.

Proof. By [4, p. 65], we have

‖gw,n‖p
Hp = sup

0<r<1

∫ 2π

0

(1− |w|2)np+1

|1− w̄reiθ|np+2

dθ

2π
≤ C sup

0<r<1

(1− |w|2)np+1

(1− |w|r)np+1
= C,

as claimed. ¤

The following lemma is certainly folklore. We will present a proof here for the
completeness and for the benefit of the reader.
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Lemma 3. Assume that p > 0, n ∈ N0 and w ∈ Π+. Then there is a positive
constant C independent of f such that

|f (n)(z)| ≤ C
‖f‖Hp(Π+)

yn+ 1
p

. (3)

Proof. Let z = x + iy ∈ C be fixed. By the subharmonicity of the function |f |p,
p > 0, we have that

|f(z)|p ≤ 4
πy2

∫

D(z,y/2)

|f(w)|pdm(w)

≤ 4
πy2

∫ 3y/2

y/2

∫ x+y/2

x−y/2

|f(ζ + iη)|pdζdη

≤ 4
πy
‖f‖p

Hp(Π+), (4)

where D(z, y/2) = {z ∈ C | |z − w| < y/2}.
From (4) it follows that

sup
|u−z|<y/4

|f(u)| ≤ C

y1/p
‖f‖Hp(Π+). (5)

On the other hand, by the Cauchy’s inequality we have that

|f (n)(z)| ≤ C

yn
sup

|u−z|<y/4

|f(u)|, (6)

for some C independent of f. From (5) and (6) inequality (3) follows. ¤

For the case of the unit disc, we have the following estimate (see, e.g., [5]).

Lemma 4. Assume that p > 0, n ∈ N0 and w ∈ D. Then there is a positive
constant C independent of f such that

|f (n)(z)| ≤ C
‖f‖Hp(D)

(1− |z|)n+ 1
p

. (7)

3. Main results

In this section we formulate and prove our main results.

Theorem 1. Assume p > 0 and ϕ is a nonconstant holomorphic self-map of D.
Then Cϕ : Hp(D) → Zµ(D) is bounded if and only if

sup
z∈D

µ(z)|ϕ′(z)|2
(1− |ϕ(z)|2)2+ 1

p

< ∞ (8)

and

sup
z∈D

µ(z)|ϕ′′(z)|
(1− |ϕ(z)|2)1+ 1

p

< ∞. (9)

Moreover, if the operator Cϕ : Hp(D) → Zµ(D)/P1 is bounded, then

‖Cϕ‖Hp(D)→Zµ(D)/P1 ³ sup
z∈D

µ(z)|ϕ′(z)|2
(1− |ϕ(z)|2)2+ 1

p

+ sup
z∈D

µ(z)|ϕ′′(z)|
(1− |ϕ(z)|2)1+ 1

p

. (10)
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Proof. First assume that the operator Cϕ : Hp(D) → Zµ(D) is bounded.
Using the test function f(z) ≡ z ∈ Hp(D) (note that ‖z‖Hp(D) = 1), we obtain

sup
z∈D

µ(z)|ϕ′′(z)| = ‖Cϕ(z)‖Zµ(D) ≤ ‖Cϕ‖Hp(D)→Zµ(D) < ∞. (11)

By using the test function f(z) ≡ z2 ∈ Hp(D) (note that ‖z2‖Hp(D) = 1), we get

2 sup
z∈D

µ(z)|ϕ(z)ϕ′′(z) + (ϕ′(z))2| = ‖Cϕ(z2)‖Zµ(D) ≤ ‖Cϕ‖Hp(D)→Zµ(D) < ∞. (12)

From (11), (12) and the fact that ‖ϕ‖∞ ≤ 1, it follows that

sup
z∈D

µ(z)|ϕ′(z)|2 ≤ 3
2
‖Cϕ‖Hp(D)→Zµ(D) < ∞. (13)

For w ∈ D, set

fw(z) =
(1− |w|2)2+ 1

p

(1− w̄z)2+
2
p

.

By Lemma 2 (case n = 2) we know that fw ∈ Hp(D) for every w ∈ D. Moreover,
we have that

sup
w∈D

‖fw‖Hp(D) ≤ C. (14)

From (14) and since the operator Cϕ : Hp(D) → Zµ(D) is bounded, for every
w ∈ D, we obtain

sup
z∈D

µ(z)|f ′′w(ϕ(z))(ϕ′(z))2 + f ′w(ϕ(z))ϕ′′(z)| = ‖Cϕ(fw)‖Zµ(D)

≤ C‖Cϕ‖Hp(D)→Zµ(D). (15)

We also have that

f ′w(z) = Cp,1
w̄(1− |w|2)2+ 1

p

(1− w̄z)3+
2
p

and f ′′w(z) = Cp,2
w̄2(1− |w|2)2+ 1

p

(1− w̄z)4+
2
p

, (16)

for some constants Cp,1 and Cp,2.
Replacing (16) in (15) and taking w = ϕ(z) we obtain

µ(z)

∣∣∣∣∣Cp,2
(ϕ′(z))2(ϕ(z))2

(1− |ϕ(z)|2)2+ 1
p

+ Cp,1
ϕ′′(z)ϕ(z)

(1− |ϕ(z)|2)1+ 1
p

∣∣∣∣∣ ≤ C‖Cϕ‖Hp(D)→Zµ(D)

and consequently

Cp,1
µ(z)|ϕ′′(z)||ϕ(z)|
(1− |ϕ(z)|2)1+ 1

p

≤ C‖Cϕ‖Hp(D)→Zµ(D) + Cp,2
µ(z)|ϕ′(z)|2|ϕ(z)|2
(1− |ϕ(z)|2)2+ 1

p

. (17)

Hence if we show that (8) holds then from the last inequality we get

1
2

sup
|ϕ(z)|>1/2

µ(z)|ϕ′′(z)|
(1− |ϕ(z)|2)1+ 1

p

≤ C‖Cϕ‖Hp(D)→Zµ(D) + Cp,2 sup
z∈D

µ(z)|ϕ′(z)|2
(1− |ϕ(z)|2)2+ 1

p

. (18)

From (11) we have that

sup
|ϕ(z)|≤1/2

µ(z)|ϕ′′(z)|
(1− |ϕ(z)|2)1+ 1

p

≤
(4

3

)1+ 1
p

sup
z∈D

µ(z)|ϕ′′(z)| ≤ C‖Cϕ‖Hp(D)→Zµ(D), (19)

which along with (18) implies (9).
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For w ∈ D, set

gw(z) =
(

3 +
2
p

)
(1− |w|2)2+ 1

p

(1− w̄z)2+
2
p

−
(

2 +
2
p

)
(1− |w|2)3+ 1

p

(1− w̄z)3+
2
p

.

Then it is easy to see that

g′w(w) = 0 and g′′w(w) =
Cw̄2

(1− |w|2)2+ 1
p

,

and by Lemma 2 (cases n = 2 and n = 3) it is easy to see that

sup
w∈D

‖gw‖Hp < ∞.

From this, since Cϕ : Hp(D) → Zµ(D) is bounded and by taking w = ϕ(z), it
follows that

C
µ(z)|ϕ′(z)|2|ϕ(z)|2
(1− |ϕ(z)|2)2+ 1

p

≤ ‖Cϕ(gw)‖Zµ(D) ≤ C‖Cϕ‖Hp(D)→Zµ(D), (20)

and consequently

1
4

sup
|ϕ(z)|>1/2

µ(z)|ϕ′(z)|2
(1− |ϕ(z)|2)2+ 1

p

≤ C‖Cϕ‖Hp(D)→Zµ(D). (21)

From (13) it follows that

sup
|ϕ(z)|≤1/2

µ(z)|ϕ′(z)|2
(1− |ϕ(z)|2)2+ 1

p

≤
(4

3

)2+ 1
p

sup
z∈D

µ(z)|ϕ′(z)|2 ≤ C‖Cϕ‖Hp(D)→Zµ(D). (22)

Inequalities (21) and (22) imply (8).
Moreover, from (18), (19), (21) and (22) it follows that

sup
z∈D

µ(z)|ϕ′(z)|2
(1− |ϕ(z)|2)2+ 1

p

+ sup
z∈D

µ(z)|ϕ′′(z)|
(1− |ϕ(z)|2)1+ 1

p

≤ C‖Cϕ‖Hp(D)→Zµ(D). (23)

Now assume that conditions (8) and (9) hold. By Lemma 4, we have

‖Cϕf‖Zµ(D) = |(Cϕf)(0)|+ |(Cϕf)′(0)|+ sup
z∈D

µ(z)|(Cϕf)′′(z)|

= |f(ϕ(0))|+ |f ′(ϕ(0))||ϕ′(0)|+ sup
z∈D

µ(z)|f ′′(ϕ(z))(ϕ′(z))2 + f ′(ϕ(z))ϕ′′(z)|

≤ C‖f‖Hp(D) + C‖f‖Hp(D)

(
sup
z∈D

µ(z)|ϕ′(z)|2
(1− |ϕ(z)|2)2+ 1

p

+ sup
z∈D

µ(z)|ϕ′′(z)|
(1− |ϕ(z)|2)1+ 1

p

)
.

From this and by conditions (8) and (9), it follows that the operator Cϕ :
Hp(D) → Zµ(D) is bounded. Moreover, if we consider the space Zµ(D)/P1, we
have that

‖Cϕ‖Hp(D)→Zµ(D)/P1 ≤ C

(
sup
z∈D

µ(z)|ϕ′(z)|2
(1− |ϕ(z)|2)2+ 1

p

+ sup
z∈D

µ(z)|ϕ′′(z)|
(1− |ϕ(z)|2)1+ 1

p

)
. (24)

From (23) and (24), we obtain asymptotic relation (10). ¤

The following theorem can be proved similar to Theorem 1, and its proof is
somewhat simpler, hence we omit it.
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Theorem 2. Assume p > 0 and ϕ is a nonconstant holomorphic self-map of D.
Then the following statements true hold.
(a) The operator Cϕ : Hp(D) → H∞

µ (D) is bounded if and only if

sup
z∈D

µ(z)

(1− |ϕ(z)|2) 1
p

< ∞.

(b) The operator Cϕ : Hp(D) → Bµ(D) is bounded if and only if

sup
z∈D

µ(z)|ϕ′(z)|
(1− |ϕ(z)|2)1+ 1

p

< ∞.

The next result is an extension of Theorem 1 in [28]. It is proved similarly, and
by using the test functions in Lemma 1. Hence, we also omit its proof.

Theorem 3. Assume p > 0 and ϕ is a nonconstant holomorphic self-map of Π+.
Then the following statements true hold.
(a) The operator Cϕ : Hp(Π+) → H∞

µ (Π+) is bounded if and only if

sup
z∈Π+

µ(z)

(Im ϕ(z))
1
p

< ∞.

(b) The operator Cϕ : Hp(Π+) → Bµ(Π+) is bounded if and only if

sup
z∈Π+

µ(z)|ϕ′(z)|
(Im ϕ(z))1+

1
p

< ∞.

(c) The operator Cϕ : Hp(Π+) → Zµ(Π+) is bounded if and only if

sup
z∈Π+

µ(z)|ϕ′(z)|2
(Im ϕ(z))2+

1
p

< ∞ and sup
z∈Π+

µ(z)|ϕ′′(z)|
(Im ϕ(z))1+

1
p

< ∞.
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ON CARLESON MEASURES AND F (p, q, s) SPACE ON
THE UNIT BALL

STEVO STEVIĆ

Abstract. We characterize Carleson-type measures on the unit ball of Cn in
terms of α-Bloch and F (p, q, s) functions.

1. Introduction

Let z = (z1, . . . , zn) and w = (w1, . . . , wn) be points in the complex vector space
Cn. By 〈z, ω〉 =

∑n
k=1 zkw̄k we denote the complex inner product of z and w, and

|z| =
√
〈z, z〉. Let D denote the open unit disc in the complex plane C, B the open

unit ball in Cn, dV the normalized Lebesgue measure on B (i.e. V (B) = 1), dσ the
normalized surface measure on the boundary ∂B = S of B, and H(B) the class of
all functions analytic on B. By δi,j , i, j ∈ N0 we denote the function equal to one
when i = j and zero if i 6= j. For a ∈ B, let ϕa(z) be the biholomorphic involutive
automorphisms of B taking 0 to a (see, e.g., [14]).

For an f ∈ H(B), the radial derivative <f of f is defined by

<f(z) =
n∑

j=1

zj
∂f

∂zj
(z).

If f(z) =
∑∞

k=0 Pk(z) is the homogeneous polynomial expansion of function f then
it is easy to see that <f(z) =

∑∞
k=0 kPk(z) ([14]).

Let α > 0. The α-Bloch space Bα = Bα(B) is the space of all f ∈ H(B) such
that

bα(f) = sup
z∈B

(1− |z|2)α |<f(z)| < ∞.

It is known that Bα is a normed space under the norm ‖f‖Bα = |f(0)|+ bα(f).
Let Bα

0 = Bα
0 (B) denote the subspace of Bα consisting of those f ∈ Bα for which

lim
|z|→1

(1− |z|2)α|<f(z)| = 0.

This space is called the little α-Bloch space. For α = 1 the α-Bloch space and the
little α-Bloch space become the Bloch space B and the little Bloch space B0. Some
information on Bloch-type spaces on the unit ball can be found, for example, in
[4, 7, 8, 15, 21].

For p ∈ (0,∞), −n−1 < q < ∞, s ≥ 0, and µ a positive measure on B the space
F (p, q, s, µ) = F (p, q, s, µ)(B) is defined as follows

‖f‖p
F (p,q,s,µ) = |f(0)|p + sup

a∈B

∫

B
|<f(z)|p(1− |z|2)q(1− |ϕa(z)|2)sdµ(z) < ∞.

2000 Mathematics Subject Classification. Primary 32A35.
Key words and phrases. Analytic functions, Hadamard gap, F (p, q, s) space, Bloch space, unit

ball.
1

313JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.1-B, 313-320,2010,COPYRIGHT 2010 EUDOXUS PRESS, LLC



2 STEVO STEVIĆ

For dµ(z) = dV (z) we obtain the space F (p, q, s) (see e.g. [9, 22]).
For any ζ ∈ S and r > 0 let

Qr(ζ) = {z ∈ B : |1− 〈z, ζ〉| < r},
be the n-dimensional analogues of Carleson squares in D.

In [20], among others, was proved the following result.

Theorem A. Suppose n + α + 1 > 0 and µ is a positive Borel measure on B. Then
the following conditions are equivalent.

(a) There exists a constant C > 0 such that

µ(Qr(ζ)) ≤ Crn+1+α

for all ζ ∈ S and all r > 0.
(b) For some s > 0 there exists a constant C > 0 such that

∫

B

(1− |z|2)s

|1− 〈z, w〉|n+1+α+s
dµ(w) ≤ C

for all z ∈ B.

Based on Theorem A we introduce the following definition.

Definition 1. Assume that µ is a positive measure on B, and a ∈ (0,∞). We say
that µ is a bounded a-Carleson measure if there exists a constant C > 0 such that

µ(Qr(ζ)) ≤ Cra

for all ζ ∈ S and all r > 0.

Here we characterize a-Carleson measures on the unit ball B in terms of α-Bloch
and F (p, q, s) functions, extending some the one-dimensional results in [13].

In this paper, constants are denoted by C, they are positive and may differ from
one occurrence to the other. The notation a ¹ b means that there is a positive
constant C such that a ≤ Cb. If both a ¹ b and b ¹ a hold, then one says that
a ³ b.

2. Auxiliary results

In order to prove the main results of this paper, we need some auxiliary results
which are incorporated in the lemmas which follow. First lemma is folklore.

Lemma 1. Assume f ∈ H(B), α ∈ (0,∞) and m ∈ N, or α ∈ (1,∞) and m = 0.
Then f ∈ Bα if and only if

sup
z∈B

|<mf(z)|(1− |z|2)α+m−1 < ∞. (1)

Moreover,

sup
z∈B

|<f(z)|(1− |z|2)α ³ |f(0)| δm,0 + sup
z∈B

|<mf(z)|(1− |z|2)α+m−1. (2)
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Lemma 2. ([23]) Let p ∈ (0,∞). If (nk)k∈N is an increasing sequence of positive
integers satisfying nk+1/nk ≥ λ > 1 for all k ∈ N, then there is a positive constant
A depending only on p and λ such that

1
A

( ∞∑

k=1

|ak|2
)1/2

≤
(

1
2π

∫ 2π

0

∣∣∣∣∣
∞∑

k=1

akeinkθ

∣∣∣∣∣

p

dθ

)1/p

≤ A

( ∞∑

k=1

|ak|2
)1/2

for any sequence of numbers (ak)k∈N.

Lemma 3. ([13]) Assume that β ∈ (0,∞), λ ∈ (1,∞) and e−β/λ ≤ r0 < 1. Then
there is a positive constant C, depending only on λ, β and r0, such that

∞∑

k=1

λkλβrλk+1 ≥ C

(1− r2)λβ
,

for all r0 ≤ r < 1.

An analytic function on B with the homogeneous expansion f(z) =
∑∞

k=1 Pnk
(z)

is said to have Hadamard gaps if nk+1/nk ≥ λ > 1 for all k ∈ N. The next result
is a natural generalization of a one-dimensional result by Yamashita from [19] (see,
e.g. [17]). For related results see also [2, 3, 10, 12, 16, 18, 19]).

Theorem B. Assume that α > 0 and f(z) =
∑∞

k=1 Pnk
(z) is an analytic function

on B with Hadamard gaps. Then the following statements hold true
(a) f ∈ Bα if and only if lim supk→∞ ‖Pnk

‖∞n1−α
k < ∞.

(b) f ∈ Bα
0 if and only if limk→∞ ‖Pnk

‖∞n1−α
k = 0.

The following Ryll-Wojtaszczyk-type lemma was proved in [1, Theorem 4].

Lemma 4. There are τ ∈ (0, 1) and k0 ∈ N, depending only on n, and homogeneous
polynomials (P (l)

2k (z))k∈N, l ∈ {1, . . . , k0}, such that

max
1≤l≤k0

max
ζ∈S

|P (l)

2k (ζ)| ≤ 1 and max
1≤l≤k0

min
ζ∈S

|P (l)

2k (ζ)| ≥ τ. (3)

Assume that f ∈ H(B). Let fζ(w) = f(ζw), ζ ∈ S, where ζ is fixed and w ∈ D,
be a slice function. By some calculation we see that

f ′ζ(w) = ζ1
∂f

∂z1
(wζ) + · · ·+ ζn

∂f

∂zn
(wζ) =

1
w
<f(wζ). (4)

Hence <mf(wζ) = w(w(. . . (w(f ′ζ(w))′ . . .)′)′.
On the other hand, if f(z) =

∑∞
k=1 Pnk

(z), we also have that

f ′ζ(w) =
∞∑

k=1

nkPnk
(ζ)wnk−1,

so that

wf ′ζ(w) =
∞∑

k=1

nkPnk
(ζ)wnk =

∞∑

k=1

nkPnk
(wζ),

and consequently

<mf(wζ) = w(w(. . . (w(f ′ζ(w))′ . . .)′)′ =
∞∑

k=1

nm
k Pnk

(ζ)wnk . (5)
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3. Main results

In this section we prove the main results of this paper.

Theorem 1. Assume that µ is a positive measure on B and p ∈ (0,∞). If α ∈
(0,∞) and m ∈ N or α ∈ (1,∞) and m = 0, then

∫

B

dµ(z)
(1− |z|2)αp

< ∞ (6)

if and only if
∫

B
|<mf(z)|p(1− |z|2)p(m−1)dµ(z) ≤ C‖f‖p

Bα , (7)

for every f ∈ Bα (or every f ∈ Bα
0 ), where C is a positive constant independent of

function f .

Proof. Assume that (6) holds. Let

Im =
∫

B
|<mf(z)|p(1− |z|2)p(m−1)dµ(z).

From (2), we have that

Im ≤ C‖f‖p
Bα

∫

B
(1− |z|2)p(m−1)−p(α+m−1)dµ(z) = C‖f‖p

Bα

∫

B

dµ(z)
(1− |z|2)αp

,

that is, (7) holds.
Now assume that (7) holds. Let z = rζ = |z|ζ, ζ ∈ S, and

g(l)
m (z) =

∞∑

k=1

2k(α−1)ρ2k

m P
(l)

2k (z) =
∞∑

k=1

2k(α−1)ρ2k

m r2k

P
(l)

2k (ζ), (8)

for l = 1, . . . , k0, and m ∈ N, where (ρm)m∈N is a positive sequence increasingly
converging to one and (P (l)

2k (z))k∈N, l ∈ {1, . . . , k0}, are from Lemma 4. Then by
Theorem B (b) and (3), we have g

(l)
m ∈ Bα

0 for each m ∈ N and l ∈ {1, . . . , k0}.
On the other hand, by (5), we have that for each m ∈ N and l ∈ {1, . . . , k0}

<mg(l)
m (rζ) =

∞∑

k=1

2k(α−1+m)ρ2k

m r2k

P
(l)

2k (ζ). (9)

Replacing the function f in (7) by the functions

gl,θ
m (z) = g(l)

m (eiθz), l = 1, . . . , k0, m ∈ N, θ ∈ [0, 2π], (10)

summing such obtained inequalities in l from 1 to k0, then integrating it in θ from 0
to 2π, noticing that Ml,1 := supθ∈[0,2π],m∈N ‖gl,θ

m ‖Bα < ∞, for each l ∈ {1, . . . , k0},
applying Fubini’s theorem, Lemma 2 and Lemma 4, and an elementary inequality,
for dµp(z) = (1− |z|2)p(m−1)dµ(z), we obtain
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C

k0∑

l=1

Mp
l,1 ≥

k0∑

l=1

∫

B

( ∫ 2π

0

|<mgl,θ
m (|z|ζeiθ)|pdθ

)
dµp(z)

≥
k0∑

l=1

∫

B

( ∫ 2π

0

∣∣∣∣
∞∑

k=1

2k(α−1+m)ρ2k

m (|z|eiθ)2
k

P
(l)

2k (ζ)
∣∣∣∣
p

dθ

)
dµp(z)

≥ C

k0∑

l=1

∫

B

( ∞∑

k=1

22k(α−1+m)ρ2k+1

m |z|2k+1 |P (l)

2k (ζ)|2
)p/2

dµp(z)

≥ C

∫

B

( ∞∑

k=1

k0∑

l=1

22k(α−1+m)ρ2k+1

m |z|2k+1 |P (l)

2k (ζ)|2
)p/2

dµp(z)

≥ C

∫

B

( ∞∑

k=1

22k(α−1+m)ρ2k+1

m |z|2k+1
max

1≤l≤k0
min
ζ∈S

|P (l)

2k (ζ)|2
)p/2

dµp(z)

≥ Cτp

∫

B

( ∞∑

k=1

22k(α−1+m)ρ2k+1

m |z|2k+1
)p/2

dµp(z). (11)

By Lemma 3, we have that for |z| ∈ [r0, 1) and for some r0 ∈ (0, 1)
∞∑

k=1

22k(α−1+m)ρ2k+1

m |z|2k+1 ≥ C

(1− ρ2
m|z|2)2(α−1+m)

. (12)

From (11) and (12), we have that

∞ >

k0∑

l=1

Mp
l,1 ≥ C

∫

B\B(0,r0)

dµ(z)
(1− ρ2

m|z|2)αp
,

from which along with Fatou’s lemma condition (6) easily follows. ¤

Now we give a necessary condition for a Carleson measure on the Bloch space.

Theorem 2. Assume that

p

√∫

B
|f(z)|pdµ(z) ≤ C1‖f‖B (13)

for every f ∈ B1. Then
∫

B

(
ln

1
1− |z|

)p/2

dµ(z) < ∞. (14)

Proof. Let τ , k0 and (P (l)

2k (z))k∈N, l ∈ {1, . . . , k0}, be as in Lemma 4 and

hl(z) =
∞∑

n=0

P
(l)

2k (z), l = 1, . . . , k0.

Replacing the functions hl,θ(z) = hl(eiθz), l = 1, . . . , k0, into (13), summing such
obtained inequalities in l from 1 to k0, then integrating it in θ from 0 to 2π, noticing
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that Ml,2 := supθ∈[0,2π] ‖hl,θ‖B < ∞, using Fubini’s theorem Lemma 2 and Lemma
4, as in the proof of Theorem 1 we get

C

k0∑

l=1

Mp
l,2 ≥

k0∑

l=1

∫

B

∫ 2π

0

∣∣∣∣
∞∑

k=0

(|z|eiθ)2
n

P
(l)

2k (ζ)
∣∣∣∣
p

dθdµ(z)

≥ Cτp

∫

B

( ∞∑
n=0

|z|2n+1
)p/2

dµ(z)

≥ Cτp

∫

B\B(0,r0)

(
ln

1
1− |z|

)p/2

dµ(z), (15)

since we have that

ln
1

1− |z| =
∞∑

n=1

|z|n
n

=
∞∑

k=1

2k−1∑

l=2k−1

|z|l
l
≤

∞∑

k=1

( 2k−1∑

l=2k−1

1
l

)
|z|2k−1

≤
∞∑

k=1

|z|2k−1
= |z|+

∞∑

k=0

|z|2k+1 ≤ C
∞∑

k=0

|z|2k+1
,

for |z| > 1/2. From (15), inequality (14) easily follows. ¤

Remark 1. One-dimensional case of Theorem 2 was probably proved for the first
time by Limperis in his thesis [11, Theorem 3.1 i)].

Remark 2. Regarding an inverse of Theorem 2, in [6] was proved that if p > 0
and f ∈ B(D) then there is a constant depending only of p such that

∫ 2π

0

|f(reiθ)|pdθ ≤ C‖f‖p
B

(
ln

e

1− r

)p/2

. (16)

By using the functions fζ(w) = f(wζ), w ∈ D, ζ ∈ S, and Proposition 1.4.7 in [14],
from (16) we get that there is a constant depending only of p such that

∫

S

|f(rζ)|pdσ(ζ) ≤ C‖f‖p
B

(
ln

e

1− r

)p/2

, (17)

for every f ∈ B(B). Inequality (17) seems folklore. It appears as Problem 3.19 in
[21], but nor K. Zhu or the present author have the exact reference for inequality
(17). From Theorem 2, inequality (17) and by using polar coordinates we immedi-
ately obtain the following corollary, similar to the corresponding one-dimensional
result (see [11, p. 18]). Hence we omit the details.

Corollary 1. Assume p > 0 and µ is a radially symmetric measure on B. Then
condition (13) holds for every f ∈ B(B), if and only if inequality (14) holds.

Theorem 3. Assume that µ is a positive measure on B and p, α ∈ (0,∞) and
m ∈ N. Then the following conditions are equivalent

(a) µ is a bounded αp-Carleson measure.
(b) <(m−1) : Bα → F (p, p(m− 1), αp, µ) is bounded.
(c) <(m−1) : Bα

0 → F (p, p(m− 1), αp, µ) is bounded.
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Proof. (a) ⇒ (b) By applying Lemma 1, we have that

‖f‖p
F (p,p(m−1),αp,µ) ≤ C‖f‖p

Bα

∫

B

(1− |z|2)p(m−1)

(1− |z|2)p(α+m−1)
(1− |ϕa(z)|2)αpdµ(z)

= C‖f‖p
Bα

∫

B

(1− |a|2)αp

|1− 〈z, a〉|2αp
dµ(z). (18)

From (18) and Theorem A, the boundedness of the operator <(m−1) : Bα →
F (p, p(m− 1), αp, µ) follows.

(b) ⇒ (c) This implication is obvious.

(c) ⇒ (a) By using the functions gl,θ
m , defined in (10) which belong to Bα

0 , similar
to Theorem 1 is obtained

∫

B

(1− |ϕa(z)|2)αp

(1− ρ2
m|z|2)αp

dµ(z) ≤ C

k0∑

l=1

Mp
l,1, m ∈ N. (19)

From (19), by the monotone convergence theorem and Theorem A, the implication
follows, finishing the proof of the theorem. ¤

Added in proofs. After this paper was accepted for publication E. Doubtsov
informed me that some related results can be found in his preprint [5]. Among
others he also obtained Theorem 2 and Corollary 1, but his motivation stemmed
from a paper from 2008 which had rediscovered Limperis’ results. I would also like
to express my thanks to him for clarifying me a detail in Lemma 4.
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[8] S. Li and S. Stević, Riemann-Stieltjes type integral operators on the unit ball in Cn, Complex

Variables Elliptic Equations 52 (6) (2007), 495-517.
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A b s t ra ct

In this pa pe r w e find a me tho d o f so lv ing a sing ula r inte g ro -diffe re ntia l e q ua tio n o f the ty pe

dy

dt
+ a(t)Hy = f(t) (1 )

in the spa c e o f se mi-a lmo st pe rio dic distributio ns w he re a(t) a nd f(t) a re a lmo st pe rio dic func -
tio ns o n the re a l line c o mpo se d o f trig o no me tric po ly no mia ls w ith finite ly ma ny te rms a nd the
o pe ra to r H the o pe ra to r o f H ilbe rt tra nsfo rm. So lutio n to (1 ) w he n a(t), f(t) a re a ny a .p.
func tio n re ma ins a n o pe n pro ble m.

A M S S u b je ct C la s s ifi ca t ion [2 0 0 0 ]: Prima ry : 4 7 G3 0 , 2 6 A 3 0 ; Se c o nda ry : 4 6 F 1 2

Ke yw ord s : A lmo st pe rio dic func tio ns a nd distributio ns, H ilbe rt tra nsfo rm o f a lmo st pe rio dic func tio ns

a nd distributio ns, sing ula r inte g ra l e q ua tio ns

Definitions and P r eliminar ies

The space of almost periodic functions and distributions. Let L be the space of functions
consisting of trigonometric polynomials of the type

∑

k Ake
iλkt consisting of finitely many terms,

λk’s are all real numbers. Let M be the set of all continuous functions defined on IR which are the
uniform limit of a sequence of trigonometric polynomials then the space of functions L ∪ M is the
space of almost periodic functions where an almost periodic function on the real line is defined as
follows: We say that a continuous function f defined on IR is an almost periodic function if, for an
ε > 0, there exists a positive real number ℓ = ℓ(ε) such that in every interval of length ℓ there exists
at least one τ > 0 for which

|f(t+ τ )− f(t)| < ε ∀ t ∈ (−∞,∞).

It was proved by H. Bohr that the space L ∪M , which is also denoted by B, is the space of almost
periodic functions and any almost periodic function defined on IR is an element of L ∪ M . So an
almost periodic function defined on IR is either a trigonometric polynomial with finitely many terms
in it or a uniformly continuous function on the whole real line as a uniform limit of trigonometric
polynomials on the whole real line. Further details about a.p. functions can be looked into [1].

The linear space (system) L is metrized as follows: If:

f(t) =

m
∑

r = 1

Are
iλrt, g(t) =

h
∑

s= 1

Bse
iµst

1
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we define the scalar product of trigonometric polynomials f and g by

〈f, g〉 = lim
T → ∞

1

2T

∫ T

−T

f(t)g(t)dt

= lim
T → ∞

m
∑

r = 1

n
∑

s= 1

ArBs
1

2T

∫ T

−T

eit(λr−µs)dt

=

m
∑

r = 1

n
∑

s= 1

δ(λrµs)ArBs (2)

||f ||2 =
m
∑

r = 1

|Ar|
2 (3)

The norm defined by (3) is actually a norm as can be easily shown. Let B2 be a space obtained by
completing the space L by the norm defined by (3). Then the space B2 is not a separable space and
the space B2 contains the space B. Let f(t) and g(t) be two a.p. functions belonging to the span of

the orthogonal set
{

eλmti
} ∞

m= 1
. It can now be easily shown that if a.p.

f(t) =

∞
∑

m = 1

am eλmti, g(t) =

∞
∑

m= 1

bm eλmti,

then f(t) = g(t) if and only if am = bm ∀ m = 1, 2, 3, . . . .
It is this property that we will make use of in solving the system (1). It is a very difficult problem

to solve the system
dy

dt
+ a(t)Hy = f(t)

in its most general form stated when a(t) and f(t) are any almost periodic functions. The case when
a(t) and f(t) are constant functions has been discussed in [4]. We will therefore consider the cases
when a(t) and f(t) are non-constant a.p. functions. We will take some special cases of a(t) and f(t)
and generate the solutions which may give some clue to solving the general case.

We define, as in [4], the space Bac
ap as the space of infinitely differentiable almost periodic functions

defined on the real line in the sense of H. Bohr. An element φ(t) of Bac
ap has the form

φ(t) =
∞
∑

n = −∞

an eiλnt

such that
∑ ∞

n = −∞
anλ

k
n is absolutely convergent for each k = 0, 1, 2, . . . . Therefore, φ[k](t) =

∑ ∞

n = −∞
an(iλn)

keiλnt and the series representing φ[k](t) is not only an a.p. function but is also
absolutely and uniformly convergent on IR. It is for this reason that the space consisting of functions
like φ(k)(t) is denoted by Bac

ap, the lower suffix ap represents almost periodic and the upper suffix ac
stands for absolutely convergent.

Let us now denote the space Bac
ap by Φ and let Φk stand for the space of almost periodic functions

obtained by differentiating k times each element of Φ. Thus Φ0 will stand for the space Φ or Bac
ap.

Now one can observe that Φ = Φ0 ⊃ Φ1 ⊃ Φ2 ⊃ . . . .
The space Φ is equipped with the topology generated by the sequence of seminorms {γk}

∞

k = 0,
where

γk(φ) =

√

lim
N → ∞

1

2N
(P )

∫ N

−N

|φ[k](t)|2dt. (see [7], p. 8)

2
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A continuous linear functional over Φ is called a semi-almost periodic distribution. A simple function
defined on the real line is said to belong to the space Φ′ if it can be identified as a continuous linear
functional over the space Φ. It has been proved in [4] that the space of almost periodic distribution as
defined by Laurent Schwartz in [6] is contained in the space Φ′ of semi-almost periodic distributions.
Each of the spaces Φi is an incomplete inner product space with inner product defined by

(θ, φ) = lim
N → ∞

1

2N

∫ N

−N

θ(t)φ(t)dt ∀ θ, φ ∈ Φi.

Let us denote the completion of the space Φi with respect to the norm ‖θ‖ by Φ̃i where

||θ|| =

√

lim
N → ∞

1

2n

∫ N

−N

|(θ(t)|2dt ∀ θ ∈ Φi.

It was shown in [4] that a continuous linear functional over the space Φ is a finite linear combination
of finite order generalised derivative (distributional derivatives) of elements of Φ̃0, Φ̃1, Φ̃2 . . . . This
means that if f ∈ Φ′ then

f =
m
∑

i = 0

(−1)ig
(i)
i , gi ∈ Φ̃i.

i.e.

〈f, φ〉 =

〈 m
∑

i= 0

(−1)ig
(i)
i , φ

〉

∀ φ ∈ Φ.

The Hilbert transform of a function f defined on IR is defined by

(Hf)(x) =
1

π
(P )

∫ ∞

−∞

f(t)

x− t
dt

provided the integral exists. It is a well-known fact that if f ∈ Lp(−∞,∞) p > 1, then (Hf)(x)
exists a.e. and ∈ Lp(−∞,∞) and that ||Hf ||p ≤ cp||f ||p, cp is a constant > 0, depending upon p
and not upon f . It is proved in [7] that

H2f = −f a.e.

The Hilbert transform Hf of a generalized function f ∈ (DLp)′, p > 1 is defined by

〈Hf, φ〉 = 〈f,−Hφ〉 ∀ φ ∈ (DLp).

Here Hf is an element of (DLp)′ . From this we get the inversion formula

H2f = −f if f ∈ (DLb)′

and
H2f = −f + c if f ∈ Φ′.

One can see that the Hilbert transform of a constant a.p. distribution is zero.
Motivation for the Hilbert transform of a periodic function and distributions comes from a result

in [9] and [4]. The differentiation of f ∈ Φ′ is defined in the usual way, i.e. 〈Df, φ〉 = 〈f,−Dφ〉 ∀ φ ∈
Φ. Another important result that we have is

d

dt
(Hf) = Hf ′ ∀ f ∈ Φ′.

3
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We now proceed to solve the singular intro-differential equation

dy

dt
+ a(t)Hy = f(t) (4)

in the space of semi-almost periodic distributions when a(t) and f(t) are a.p. functions. So far we
have not been able to find the solution to the general case of (4) for any a.p. functions a(t) and
f(t) and therefore it remains an open problem all by itself. It is also an open problem to describe a
physical situation wherein this differential equation appears. When a(t) is a constant we solved such
problems in [2] and [4] by differentiating both sides of the above equation with respect to t and then
eliminating H from the new resulting singular integro-differential equation and the above singular
integro-differential equation. But in the situation when a(t) is not a constant by eliminating H we
come across an identity such as 0 = 0. So the method of eliminating H does not work in this case.
We therefore take some special cases and solve them, thereby we generate a technique of solving the
general case.

We now present the solutions to some special cases of the integro-differential equation given by
(4). We are taking a case when a(t) is a constant but f(t) is not. In this example we will recall
some techniques used in [4].

Example 1: Solve:

dy

dt
+ kHy = sin(λt) (5)

where k is a constant; in the space of a.p. distributions. We first solve the associated homogeneous
differential equation

dy

dt
+ kHy = 0. (6)

Operating both sides of (5) by H we get

H
dy

dt
+ kH2y = 0

d

dt
(Hy) + k(−y + c) = 0, c is an arbitrary constant

d

dt

(

−
1

k

(

dy

dt

))

− ky + kc = 0

d2y

dt2
+ k2y = k2c.

Therefore, using standard techniques of solving linear d.e. we get

y = A cos kt+B sin kt+ c (7)

It is easily verified that (7) satisfies (6).
It appears that we have three arbitrary constants; but we can reduce the solution to two arbitrary

constants as the system (6) is a homogeneous one. If (7) is the solution to (6) then

y =
1

C
[A cos kt+B sin kt] + 1

is also a solution. Thus the general solution to the associated homogeneous system (6) is

y = a cos kt+ b sin kt+ 1 (8)

4
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a =
A

c
, b =

B

c
.

We now proceed to find a particular solution to (5). The system (5) can be written in the form

dy

dt
+ kHy =

etiλ − e−tiλ

2
. (9)

Therefore, we can guess a form of the p.s. as follows

y = a0 +

∞
∑

n = 1

(ane
iλnt + bne

−inλt). (10)

Eliminating y from (9) and (10) we get,

∞
∑

n = 1

aninλe
iλnt +

∞
∑

n = 1

bninλe
−iλnt + k

[
∞
∑

n = 1

an(−i)eiλnt +

∞
∑

n = 1

bn(−i)(−1)e−inλt

]

=
etλi − e−tλi

2i
.

Equating the coefficients of the like powers of eλti and e−λti we get

a1i · 1λ− ka1i =
1

2i

kb1i− b11 · iλ = −
1

2i

a1 =
1

2(λ− k)i2
= −

1

2(λ− k)

b1 = −
1

2i2(k − λ)
= −

1

2(λ− k)
.

It is assumed that λ �= k. For n > 1 we have

aninλ− kian = 0

an(nλ− k) = 0, n = 2, 3, 4, . . .

bnk = bnnλ

bn(nλ− k) = 0 n = 2, 3, 4, . . .

Assuming that for no integer n ≥ 2 we have nλ = k then

an = 0, bn = 0 ∀ n > 1.

Therefore, a particular solution of the system (9) is

y = −
1

2(λ− k)
eiλt −

1

2(λ− k)
e−iλt + a0 = a0 −

1

λ− k
· cosλt.

Therefore, the general solution to (9) is

y = a cos kt+ b sin kt−
cosλt

λ− k
+ a0 + 1

or

y = a cos kt+ b sin kt−
sinλt

λ− k
+ c, c = a0 + 1

5
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a, b, c are all arbitrary constants and λ �= k.

If for some n = n0, nλ − k = 0 i.e. n0λ − k = 0 then an0
and bn0

are arbitrary constants and
an, bn are all zero for n = 2, 3, 4, . . . , n0 − 1, n0 + 1, . . . then a particular solution is

y =
eiλn0t

2(λ− k)i
−

1

2i(λ− k)
e−iλn0t + a0 −

cosλt

λ− k
=

sin(λn0t)

λ− k
+ a0 −

cosλt

λ− k
.

so the general solution to (9) is

y =
sin(λn0t)

λ− k
−

cos(λt)

λ− k
+ a cos kt+ b sin kt+ c

where a, b, c are arbitrary constants.

Lastly we consider the case λ = k. In this case the differential equation (10) takes the form

dy

dt
+ λHy = sinλt. (11)

The general solution to the associated homogeneous differential equation (11) is

y = A cos(λt) +B sinλt+ C

where A, B, C are arbitrary constants.

We now proceed to find a particular solution to the system (11).

Let us take a particular solution to be of the form

y = a0 +

∞
∑

n = 1

ane
iλnt +

∞
∑

n = 1

bne
−iλnt (12)

Eliminating y from (12) and (11) we get

∞
∑

n = 1

aniλne
iλnt −

∞
∑

n = 1

bniλne
−iλnt + λ

[
∞
∑

n = 1

an(−i)eiλnt +

∞
∑

n = 1

bn(i)e
−iλnt

]

=
eλti − e−λti

2i
.

We arrive at a contradiction 0 = 1
2 by equating the coefficients of eλti and e−λti.

Therefore there does not exist a solution to (11) in the span of 1, e±λti, e±λti, e±3λti, . . . . Assume
that sinλt belongs to the span of 1, e±µ1,ti, e±µ2ti . . . and none of µi = λ then a solution to (11)
exists in the span of 1, e±µ1,ti, e±µ2ti, e±µ3ti, . . . and this solution is given by

y = A cosλt+B sinλt+ C +

∞
∑

n = −∞

−ani

µn − λ sgn(µn)
eµnti [4, p. 207].

It is assumed that

sinλt =

∞
∑

n = −∞

ane
µnti

and none of µn = λ. We have to choose a basis so that none of µn = λ.
Solutions to such S.I.D.E. generally have two arbitrary constants in the space of a.p. functions.

But in the space of semi almost periodic distributions we have three arbitrary constants. This is
because our inversion formula for Hilbert transform in this case is

H2f = −f + c.

6
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So far our method has been very traditional and simple but the method of eliminating H does not
work when a(t) in (9) is not a constant function. So we will make a slight deviation in our technique
to solve (9) in this case. Our technique will be demonstrated by the following example.

Example 2. Solve the following singular integro-differential equation in the space of semi-almost
periodic distributions

dy

dt
+ eiλtHy = eiλt, λ > 0. (13)

We first solve the associated homogeneous integro-differential equation

dy

dt
+ eiλtHy = 0. (14)

We propose the solution to this singular integro-differential equation to be of the form

y =

∞
∑

n = 1

ane
iλnt +

∞
∑

n = 1

bne
−iλnt + a0 (15)

a0, an and bn are all constants to be determined.

Eliminating y from (14) and (15) we get

∞
∑

n = 1

[

anλne
iλnt − ane

iλ(n + 1)t
]

+

∞
∑

n = 1

[

bne
−iλ(n−1)t − bnλne

−iλnt
]

= 0.

Now equating the coefficients of the like powers of eλti we get

a1 = 0, b1 = 0

an + 1λ(n+ 1)− an = 0, n = 1, 2, 3, . . .

bn + 1 − bnλn = 0, n = 1, 2, 3, . . .

Combining these results we get

an = 0, bn = 0 ∀ n = 1, 2, 3, . . .

a0 is an arbitrary constant.

So the solution to (13) in the space of semi-almost periodic distribution is y = a0.

We now find a particular solution to (12). Let us take such a solution to be of the form

y = a0 +

∞
∑

n = 1

ane
iλnt +

∞
∑

n = 1

bne
−iλnt (16)

a0, ai and bi are constants to be determined. Eliminating y from (12) and (14) we get

∞
∑

n = 1

[anλne
iλnt − ane

iλ(n + 1)t] +

∞
∑

n = 1

[bne
−iλ(n−1)t − bnλne

−iλnt] = −ieiλt.

Coefficient of e−iλ0t : b1 = 0

Coefficient of eiλ1t : a1λ1 = −i so a1 =
−i
λ

7
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Coefficient of eiλ(n + 1)t : n = 1, 2, 3 . . . an + 1λ(n+ 1)− an = 0, n = 1, 2, 3, . . .

Coefficient of e−iλ(n)ti : n = 1, 2, 3 . . . bn + 1 − bnλn = 0, n = 1, 2, 3, . . .

Using these recurrence relations we get

b1, b3, bn, . . . zero i.e. b1 = 0 ∀i = 1, 2, 3, . . .

b2 = b1λ1 = 0, b3 = b2λ2 = b1λ
22! = 0

b4 = b3λ3 = b1λ
33! = 0 and so on

so

bn = λn−1(n− 1)!b1 = 0, n = 2, 3, 4, . . .

This relation is also true for n = 1.

an + 1 =
an

λ(n+ 1)

a2 =
a1

λ2
, a3 =

a2

λ3
=

a1

λ23!
=

−i

λ33!
so

an =
−i

λnn!
, n = 1, 2, 3, . . . .

Therefore the solution to the system is

y = a0 −

∞
∑

n = 1

i

λnn!
eiλnt, a0 is an arbitrary constant.

Example 3. Solve

dy

dt
+ sinλtHy = cosλt (17)

in the space of semi-almost periodic distributions. We first solve the associated homogeneous differ-
ential equation

dy

dt
+ sinλtHy = 0.

We can write this S.A.P.D.E. in the form

dy

dt
+

eλti − e−λti

2i
Hy = 0. (18)

Take

y = a0 +

∞
∑

n = 1

ane
iλnt +

∞
∑

n = 1

bne
−iλnt. (19)

Eliminating y from (18) and (19) we get

∞
∑

n = 1

aniλne
iλnt +

∞
∑

n = 1

bn(−iλn)e−iλnt +
eλti − e−λti

2i

[
∞
∑

n = 1

an(−i)eiλnt +
∞
∑

n = 1

bnie
−iλnt

]

= 0

8
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∞
∑

n = 1

aniλne
iλnt −

∞
∑

n = 1

an

2
eiλ(n + 1)t +

∞
∑

n = 1

an

2
eiλ(n−1)t

+

∞
∑

n = 1

bn(−iλn)e−iλ(n)t +

∞
∑

n = 1

bn

2
e−iλ(n−1)t −

∞
∑

n = 1

bn

2
e−iλ(n + 1)t = 0.

Equating the coefficients of the like powers of eλti we get

Coefficient of eλti0:
a1

2
+

b1

2
= 0 so b1 = −a1.

Coefficient of eλti: a1iλ+
a2

2
= 0 a2 = −2a1λi.

Coefficient of e−λti:
b2

2
− ib1λ = 0 b2 = 2ib1λ = −2ia1λ.

Coefficient of eλnti: aniλn+
an + 1

2
−

an−1

2
= 0 an + 1 = an−1 − 2iλnan.

Coefficient of e−λnti: −bniλn+
bn + 1

2
−

bn−1

2
= 0 bn + 1 = bn−1 + 2bninλ.

a3 = a1 − 2iλ2a2 = a1 − 2iλ2(−2a1λi) == a1 + [8λ2i2]a1 = a1(1− 8λ2) = a1(1− 22λ22!)

b3 = b1 + 2b2i2λ = b1 − 2(2ia1λ)i2λ = b1 + 8λ2 = a1[−1 + 222!λ2]

b4 = b2 + 2b3i3λ = 3i 2λ[−1 + 222!λ2]a1 − 2a1λi = iλa1[(−3! + λ2233!)]− 2a1λ

a4 = a2 − 2iλ3a1[−1 + 22λ22!] = − 2a1λi− 2iλ3a1[1 + 22λ22!],

and so on. Therefore, the solution to the associated homogeneous S.I.D.E. (18) is

y = a0 + a1e
λti − 2a1λie

2λti + a1(1− 22λ22!)e3λti + a1[−2λ− 2.3iλ− 23λ33!i]e4λti + · · ·

+ (−a1)e
−λti − 2ia1λe

−2λti + a1(1− 222!λ2)e−3λti + a1[−2λ− 2.3λi− 23λ33!i]e−4λti + · · ·

= f(t) (say).

We now proceed to find a particular solution to (17) of the form

y =
∞
∑

n = 1

ane
iλnt +

∞
∑

n = 1

bne
−iλnt. (20)

Eliminating y from (20) and (17) we get

∞
∑

n = 1

[aniλne
iλnt −

an
2

eiλ(n + 1)t +
an
2

eiλ(n−1)t]

+

∞
∑

n = 1

[ bn

2
e−iλ(n−1)t − bn(−iλn)e−iλnt −

∞
∑

n = 1

bn

2
e−iλ(n + 1)

]

=
eλti + e−λti

2
.

So equating the coefficients of like powers of eλti we get

Coefficient of eλtio:
a1

2
+

b1

2
= 0

Coefficient of eλti: a1iλ+
a2

2
=

1

2
a2 = 1− 2a1iλ

9
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Coefficient of e−λti:
b2

2
− ib1λ =

1

2
, b2 = 1 + 2b1λi = 1− 2a1λi.

Coefficient of eλnti: n ≥ 2 aniλn−
an−1

2
+

an + 1

2
= 0, an + 1 = an−1 − 2aniλn.

Coefficient of e−nλti: −ibnnλ−
bn−1

2
+

bn + 1

2
= 0, bn + 1 = bn−1 + 2ibnnλ

n = 2, a3 = a1 − 2a2iλ2 = a1 − 4a2iλ = a1 − 4iλ[1− 2a1iλ]

b3 = b1 + 2i2b2λ = b1 + 4ib2λ = b1 + 4iλ(1− 2a1iλ) and so on.

Therefore a particular solution to (17) is

y = a0 + a1e
λti + (1− 2a1iλ)e

2λti + · · ·+ a1e
−λti + (1− 2a1iλ)e

−2λti + · · · = g(t)

Here a0 and a1 are arbitrary constants.
Therefore, the general solution to the system (18) is

y = f(t) + g(t).

We can see that the solution to the system involves three arbitrary constants.

Example 4: Solve the integro-differential equation

dy

dt
+ (e2ti + e3ti)Hy = eti + 2e2ti (21)

in the space of semi-almost periodic distributions.

We have discussed such problems in (5) when the coefficient ofHy in (21) has only one exponential
term. We are discussing this problem with two exponential terms in the coefficient of Hy. A more
general case of a(t) can be discussed similarly. Our space in this case is closed with respect to
multiplication by c2ti and e3ti. The space has to be closed with respect to the operator H and the
operator d

dt
of differentiation. The space spanned by 1, eti, e2ti e3ti, · · · will satisfy all our conditions.

There are other spaces such as the space spanned by 1, eti, e2ti e3ti, · · · , e−ti, e−2ti e−3ti, · · · which
also satisfy these conditions. We will find out first solutions to (21) in the span of 1, eti, e2ti, · · · .
In our definition of span we are also taking infinite linear combinations, i.e. our elements of the
span are trigonometric polynomials with infinitely many terms which represent either a.b. functions,
a.b. distributions or semi-almost periodic distributions. We first find solutions of the associated
homogeneous integro-differential equation

dy

dt
+ (e2ti + e3ti)Hy = 0 (22)

in the span of 1, eti, e2ti e3ti, · · · . In the basis of the span, terms such as e−ti, e−2ti e−3ti, · · · are not
included so we take a solution of (21) of the form

y = a0 +

∞
∑

n = 1

ane
int. (23)
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So from (23) and (22) we get

∞
∑

i = 1

an ineint + (e2ti + e3ti)
∞
∑

n = 1

an(−i)eint = 0

∞
∑

n = 1

an n eint −

∞
∑

n = 1

ane
i(n + 2)ti −

∞
∑

n = 1

ane
i(n + 3)t = 0

∞
∑

n = 1

n an eint −
∞
∑

n = 3

an−2e
int −

∞
∑

n = 4

an−3e
int = 0

1a, ei1t + 2a2e
i2t + 3a3e

i3t − a1e
i3t −

[
∞
∑

n = 4

(an−3 + an−2 − nan)

]imt

= 0.

Equating coefficients of the like powers of eti we get

Coefficient of eti: 1a1 = 0 so a1 = 0

Coefficient of e2ti: 2a2 = 0 so a2 = 0

Coefficient of e3ti: 3a3 − a1 = 0 so a3 = 0

Coefficient of eint: n ≥ 4 an−3 + an−2 − n an = 0

an =
an−2 + an−3

n

a4 =
a2 + a1

4
= 0.

Thus an = 0 ∀ n = 1, 2, 3, 4 · · · . Therefore the only solution to (22) is y = a0, a0 is an arbitrary
constant. Now we proceed to find a solution to (22).

Taking the solution of the form

y = a0 +

∞
∑

n = 1

ant
nti

and substituting it in (22) we get

1a, eit + 2a2e
2it + (3a3 − a1)e

3it +

∞
∑

n = 4

(an−2 + an−3 − n an)e
int = eti + 2e2ti.

So equating coefficients of the like powers of eti we get

a1 = 1, a2 = 1, a3 =
1

3
and

an =
an−2 + an−3

n
, n ≥ 4

a4 =
a2 + a1

4
=

1

2

a5 =
a3 + a2

5
=

1 + 1
3

5
=

4

3.5
=

4

15

a6 =
a4 + a3

6
=

(1
3 + 1

2 )

6
=

5

36

a7 =
a4 + a5

7
=

1
2 +

4
15

7
=

23

210
.
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and so on. Thus our solution is

y = a0 + eti + e2ti +
1

3
e3ti +

1

2
e4ti + · · · .

Here a0 is an arbitrary constant.
The series solution we obtained is absolutely convergent. We have only one arbitrary constant.

Normally in such problems we have two arbitrary constants. If we select the larger space of almost
periodic functions or distributions we will get another arbitrary constant in our solutions. To do so
we may find solution in the span of

1, e±ti, e±2ti, e±3ti, e±4ti, · · ·

and we will have to get our solution of the form

y = a0 +

∞
∑

n = 1

ane
nti +

∞
∑

n = 1

bne
−nti.

However calculation in this case will be very complex.
Now substituting for y in (22) we get

∞
∑

n = 1

nane
nti −

∞
∑

n = 1

nbne
−nti + (e2ti + e3ti)

[
∞
∑

n = 1

−ane
nti +

∞
∑

n = 1

bne
−nti

]

= 0

b1e
ti + b2 + b1e

2ti + b2e
ti +

∞
∑

n = 1

[nane
nti − ane

(n + 2)ti − ane
(n + 3)ti]

b3 + b3e
−ti +

[
∞
∑

n = 4

bne
−(n−2)ti +

∞
∑

n = 4

bne
−(n−3)ti −

∞
∑

n = 1

nbne
−nti

]

= 0

Equating coefficients of like powers of eti we get

bn + 2 + bn + 3 − nbn = 0, n ≥ 1

nan − an−2 − an−3 = 0, n ≥ 4

bn + 3 = (nbn − bn + 2), n ≥ 1

a1 + b1 + b2 = 0

b2 + b3 = 0

2a2 + b1 = 0

b2 = −(a1 + b1)

b3 = (a1 + b1)

b4 = 1b1 − b3 = −a1

b5 = 2b2 − b4 = − 2(a1 + b1) + a1 = − 2b1 − a1 = − (a1 + 2b1)

b6 = 3b3 − b5 = a1 + 2b1 + 3(a1 + b1) = 4a1 + 5b1

b7 = 4b4 − b6 = − 4a1 − 4a1 − 5b1 = − 8a1 − 5b1

and so on.

an =
an−2 + an−3

n
, n ≥ 4.
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Also,

a2 = −
b1
2
, 3a3 − a1 = 0, a3 =

a1
3

a4 =
a2 + a1

4
=

− b1
2 + a1

4
=

2a1 − b1

8

a5 =

(

2a1 − 3b1
30

)

and so on.

We now get three arbitrary constants a1, b1 and a0, in solution to the homogeneous part of S.I.D.E.
equation, i.e. of (22).

y = a0 + a1e
ti + a2e

2ti + a3e
3ti + · · ·+ b1e

−ti + b2e
−2ti + b3e

−3ti

y = a0 + a1e
ti −

b1

2
e2ti +

a1

3
e3ti + · · ·+ b1e

−ti − (a1 + b1)e
−2ti + (a1 + b1)e

−3ti + · · ·

Coefficients a0, a1 and b1 give three linearly independent solutions. Sometimes it happens that only
one of the solutions obtained is convergent and the other is not. In this case the divergent series is
either an asymptotic expansion of a solution or it is an almost periodic distribution or a semi-almost
periodic distribution.

Solve:

dy

dt
+ (eti + e

t
2 i + e

t
3 i)Hy = 0 (24)

This S.I.D.E. can be written in the form

dy

dt
+ (e

6t
6 i + e

3t
6 i + e

2t
6 i)Hy = 0. (25)

So the space in which we are looking for a solution has to be closed with respect to the following
operations

(i) The operator H

(ii) The addition operation

(iii) The operator d
dt

of differentiation

(iv) Multiplication by e
1
6 ti.

So we have a solution of the form

y = a0 +

∞
∑

n = 1

ane
nti
6 . (26)

Using (25) and (26) we get

∞
∑

n = 1

anni

6
e

nti
6 − i

(

e
6ti
6 + e

3ti
6 + e

2ti
6

) ∞
∑

n = 1

ane
nti
6 = 0

∞
∑

n = 1

ann

6
e

nti
6 −

(

e
6ti
6 + e

3ti
6 + e

2ti
6

) ∞
∑

n = 1

ane
nti
6 = 0
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∞
∑

n = 1

nan

6
e

n+i
6 −

∞
∑

n = 1

an

[

e
(n+6)ti

6 + e
(n+3)ti

6 + e
(n+2)ti

6

]

= 0

∞
∑

n = 1

nan

6
e

nti
6 −

∞
∑

n = 7

(an−6 + an−3 + an−2)e
nti
6

− a1e
3ti
6 − a2e

4ti
6 − a3e

5ti
6 − a4e

6ti
6 − a1e

4ti
6 − a2e

5ti
6 − a3e

6ti
6 = 0.

Equating the coefficients of the like powers of e
ti

e6 we get

a11

6
= 0,

a22

6
= 0,

a33

6
= a1 so a1 = a2 = a3 = 0

a44

6
= a2 + a1 = 0 so a4 = 0

a55

6
= a2 + a3 = 0 so a5 = 0

a66

6
= a3 + a4 = 0 so a6 = 0

an−6 + an−3 + an−2 =
ann

6
n = 7, 8, 9, 10, . . .

an =
6

n
(an−2 + an−3 + an−6)

a7 =
6

7
(a5 + a4 + a1) = 0 and so on.

an = 0 ∀ n = 1, 2, 3, . . . .

Thus we have y = a0, where a0 is an arbitrary constant. In fact this is the only solution in the space
chosen.

Solve:
dy

dt
+

(

eti + e
ti
2 + e

ti
3

)

Hy = −e
3ti
6 − 2e

4ti
6 +

1

6
e

ti
6 .

Take

y = a0 +

∞
∑

n = 1

ane
nti
6 .

as in the previous example.

∞
∑

n = 1

nan
6

e
nti
6 −

∞
∑

n = 7

(an−6 + an−3 + an−2)e
nti
6

−a1e
3ti
6 − a2e

4ti
6 − a3e

5ti
6 − a4e

6ti
6 − a1e

4ti
6 − a2e

5ti
6 − a3e

6ti
6 = − e

3ti
6 − 2e

4ti
6 +

1

6
e

ti
6

1a1
6

e
1ti
6 +

2a2
6

e
2ti
6 +

(3a3
6

− 1
)

e
3ti
6 +

(4a4
6

− a1 − a2

)

e
4ti
6 +

(5a5
6

− a2 − a3

)

e
5ti
6

+
(6a6

6
− a4 − a3

)

e
6ti
6 −

∞
∑

n = 7

(an−6 + an−3 + an−2)e
nti
6 = − e

3ti
6 − 2e

4ti
6 +

1

6
e

ti
6 .

14

PANDEY, SEIFEDDINE: SINGULAR INTEGRO-D.E.334



a1 = 1,
2a2
6

= 0 so a2 = 0

3a3
6

− a1 = −1,
3a3
6

= 0 so a3 = 0

4a4
6

− a2 − a1 = −2,
4a4
6

= −1 so a4 = −
6

4
5a5
6

− a2 − a3 = 0, so a5 = 0

6a6
6

− a4 − a3 = 0, so a6 = a4 = −
6

4

an =
6

n
(an−2 + an−3 + an−6)

a7 =
6

7
(a5 + a4 + a1) = −

3

7

a8 =
6

8
(a6 + a5 + a2) =

6

8

(

−
6

4
+ 0 + 0

)

= −
9

8

and so on...
Therefore,

y = a0 + 1e
ti
6 −

6

4
e

4ti
6 −

6

4
e

6ti
6 −

3

7
e

7ti
6 −

9

8
e

8ti
6 + · · · . (27)

Solution to the singular integro differential equation

dy

dt
+ (aeλti + beµti)Hy = 0 (28)

will be of the form

y =

∞
∑

q = −∞

∞
∑

p = −∞

apqe
(mλ+ nµ)ti. (29)

Eliminating y from (28) and (29) and equating the coefficients of the like powers of the exponential
terms the values of the coefficients apq can be calculated. This solution can be used to solve

dy

dt
+ (aeλti + beµti)Hy = f(t) (30)

where f(t) is an a.p. function (with two exponential terms) for simplicity.
For the sake of definiteness, let us take f(t) = ecti + edti where c, d are real numbers. We can

find a particular solution to the system (30) by eliminating y from (29) and (30) and then equating
the coefficients of the like powers of the exponential terms.

Let this solution be
y = g(t)

and assume that the solution to the system (28) is

y = h(t)

then the general solution to the system (30) is

y = f(t) + h(t).
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This solution is in the space of semi-almost periodic space of distributions. The details of calculation
is being left to the readers.

Discussions

Solutions that we obtain to the system (1) in the form of a trigonometric series do not always
converge. In the case when it does not converge it may either be an almost periodic distribution
or a semi-almost periodic distribution. We have found solutions to the system (1) only in very
special cases of coefficient a(t) and b(t). The general case needs special consideration and we will
look into that eventually. Laurent Schwartz has proved in [6] that a distribution is an almost
periodic distribution if and only if it can be expressed as the finite linear combination of the finite
order distributional derivative of almost periodic functions. According to this theorem the series
∑ ∞

n = 1 n
2enti though a divergent series is an a.p. distribution as it can be expressed in the form

d4

dt4

[
∞
∑

n = 1

−1

n2
enti

]

.

The series under the differentiation sign is an almost periodic function. The differentiation is being
done in distributional sense.
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Abstract

Intraday Spot Foreign Exchange market is extremely volatile and can-
not be explained by macro fundamentals. Models of market microstruc-
ture have a better forecasting quality, while still cannot fully explain the
exchange rates fluctuations, especially over short term and on high fre-
quency data. In this paper, we construct a new model for explaining forex
market movements on minute data. This model involves price data on two
different time frames, one macro fundamental variable and accounts for
volatility clustering through a GARCH approach. Alpha-stable distri-
butions appropriately describe the behavior of residuals. The model is
constructed in two variants - for market makers observing the orders flow
and for traders who only have the information about the price. In both
cases, the new model outperforms other previously studied models.
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Introduction

Foreign exchange market is different from other financial markets in many re-
spects and specific models are developed to describes its behavior. By definition,
there are no insiders or particularly informed traders on forex. The exchange
rate movements are theoretically defined by a relative state of two countries’
economies, but macro based model still largely fail to explain short term price
movements on forex. Model of market microstructure generally do slightly bet-
ter, while still have low forecasting quality on high frequency data.

The present research develops a new hybrid model based on market mi-
crostructure, but also involving a macro fundamental as an explanatory vari-
able. The model uses price data on two different time frames to account for
both recent changes and longer term trends. The model uses GARCH approach
to mind volatility clustering, and alpha-stable distributions explain the heavy-
tailed behavior of residuals. The model is constructed in two versions, one for
market makers having information about the order flow, another is for traders
only observing price movements. Both models outperform previously studied
macro, micro and hybrid models.

The remainder of the paper is organized as follows. The section 1 gives
an overview of models for market microstructure. Section 2 describes previous
attempts to construct a hybrid model. Section 3 presents and tests the new
proposed model. Section 4 concludes.

1 Models of the Spot Foreign Exchange Market
Microstructure

Micro-based models attempt to describe the behavior of the market, discover
laws of its functioning, short-term reactions. As this analysis is based on early
signs and leading indications, it is closer to technical analysis on one side and
is more used for short term trades. It is for instance not uncommon to have
a long term bullish trend on the market, confirmed by fundamental analysis of
macroeconomic variables, while many investors and traders take advantage of
short term downturns on the market, forecasted based on technical analysis and
short term market movements. As a consequence, this type of analysis is the
most used for intraday trading.

1.1 Orders Flow Model

Evans and Lyons [6] concentrate on the orders flow. They assume that it con-
tains information on relevant fundamentals for two reasons:

• Traders who aim making profit on the foreign exchange market initiate
trades when they believe they have information they can take advantage
of, and
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• Market participants who cover their other activity through forex market
operations, all together, represent the current state and direction of econ-
omy.

Note that it is crucial to take into account the signed orders flow, rather than
unsigned. Imagine a trader approaching a market maker to sell 10 lots of EUR
vs. USD. Another trader comes in the same time with a request to buy 20 lots
of EUR vs. USD. The unsigned order flow merely indicates that the volume of
transactions reached 30 lots. The signed order flow however, will be −10 + 20,
which gives +10 as an outcome, and provides the valuable information to the
market maker that the market expects a rise of the price.

The relevant expectation (that of the market maker):

st = (1− b)
∞∑

i=0

biEm
t ft+i, (1)

where Em
t is the expectation conditioned on market makers’ information at

the start of period t - this difference is crucial, as micro-based models attempt
to explain the process of incorporation of available information into prices. In
practice, the one estimates the model consisting in two independently estimated
equations:

4st+1 = b + axAGG
t + et+1 (2)

and

4st+1 = b +
6∑

j=1

ajx
DIS
j,t + et+1, (3)

where

• xAGG
t is aggregated order flow from six last periods of time,

• xDIS
j,t is the order flow from segment j.

The first equation estimates the forecasting power of the aggregated flow,
then the second detects the input of each of the disaggregated flow individually.

Evans and Lyons [6] compare the true, ex-ante forecasting performance of a
micro-based model against both a standard macro model and a random walk.
The forecasting is examines for a short term period, one day to one month.
Over 3 years of testing, it is shown that the micro-based model consistently
outperform both random walk and the macromodel. This does not imply that
past macro analysis has overlooked key fundamentals: finding consistent with
exchange rate being driven by standard fundamentals.

An important reserve to be put on this models is whether the actual demand
of the market is adequately reflected by the order flow. It is not uncommon to
have a situation when there is an actual demand, but there is no transaction
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generated due to eventual limits on credit lines, trading hours or technical lim-
itations or issues.

One should also analyze of any type of transactions are equally informative
and important for the price formation. The aggregated order flow may come
from many small traders each of which has its own source of information and
beliefs about the market. This same net position can be generated by one
transaction of an institutional client or a small bank - his source of information
may be more reliable on one side, but if it is erroneous, it will generate a more
important distortion on price than that serving retail clients.

Also, an important question to ask, whenever market makers know the iden-
tity of their clients, is whether orders flow generated by corporations, financial
institutional and banks are more susceptible to influence the market makers
perception of the market and thus the price formation.

The last remark is related to the type of orders received by the market
makers. There are two types of orders: market order with immediate execution
and pending orders - revocable or irrevocable, with or without expiration date,
with a prespecified non market price at which the order is placed if the market
hits the target price before the order expired. While it is that the first type of
orders should be taken into account, the answer is less obvious for the pending
orders. Should they be taken into account at all? On one side they do reflect
the traders’ expectation regarding future prices and even provide more details
in the form of a target price. On the other hand, especially if pending orders can
be revoked without financial penalty, these belief’s of traders are not backed by
real money and may simply reflect an attempt of an arbitrage strategy trying to
catch the price ”just in case”. If the answer on the first question is still positive
and pending orders should be taken into account, an important timing question
arises - at which moment these positions have an actual influence on the market?
Does it happen in the moment when the position is placed and the information
about it is already available to the market maker? Or this order should rather
be incorporated in the order flow in the moment of its activation when a trader
commits real money into the operation? The answer on this second question
has more influence if pending orders are allowed to stay active for longer time
periods, eventually several days or even longer.

1.2 Evidence of Orders Flow Model on the Modern For-
eign Exchange Market

To test the model described in the previous section, we take data from the
foreign exchange market for the period from 1st March 2009 till 31st May 2009.
The data reflects the volume of trades going through the dealing desk of a
market maker. For each day of trades, there following data is analyzed:

1. Total number of lots of each currency pair bought by traders through the
company,

2. Total number of lots of each currency pair sold by traders through the
company,

4

SERBINENKO, RACHEV: A NEW HYPRID MODEL...340



3. Average price (quote) of the currency pair for each trading day, calculated
as Open+High+Low+Close

4 .

The analysis was done for seventy available currency pairs. The trades are
taken from a sample with trading hours weekly from Sunday 23.00 till Friday
23.00. For the daily data, Sunday evening data was merged with Monday data,
this providing 25 hours of trading information for Mondays and 23 hours of
trading for Fridays.

Figure 1 shows the plots of daily exchange rate variations vs. scaled order
flow of a market maker.

Several currency pairs were omitted in the experiment due to lack of regular
data. We assume that the current order flow t is already known to the market
maker. We also suspect the volatility clustering, i.e. current change in price
depends on previous changes in price. We thus estimate the improved model 4
for the remaining currency pairs.

4st+1 = b +
6∑

j=0

ajx
DIS
j,t +

6∑

j=0

cj4st−j + et+1, (4)

The estimation process was iterative, whenever a coefficient was not signi-
ficative, the corresponding variable was eliminated. The R2 for the estimated
models are given in the table 1 for each currency pair.

As can be observed, the orders flow model have decent explanatory power of
price changes of actively traded currency pairs. It will be thus admitted as basic
model for further exploration. Its step-by-step analysis is presented below.

Comparison with random walk. We want to know if the suggested model
is any better than a simple random walk. We estimate the equation 5.

4st = a0 + et, (5)

where et ∼ N(µ, σ). The results of this calculation are have shown R2 at
zero for all the currency pairs without exception. In other words, the suggested
orders flow model outperforms the random walk approximation, in average by
15.9% taking into account the currency pairs for which an appropriate orders
flow model was found.

In-sample and out-of-sample data. Orders flow model estimated for the
period 1st March 2009 till 31st May 2009 is now applied to out of sample daily
data from 1st June 2009 till 15th June 2009. R2 for in-sample and out-of-sample
data are compared in the table 2.

As can be observed, for those cases where the model could explain the out-
of-sample variations, the R2 was well comparable for the in-sample data.

High-frequency data. As our primary purpose is to build a model for
intraday trading, higher frequency data is to be analyzed. The same procedure
as described above, is now applied to hourly and minute-by-minute data over
the same three month period of time. For the hourly data, last 6 periods are
taken into account in the model. The number of past periods is increased to 30
for the minute-by-minute data. For each model, variables with non significant
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Figure 1: Daily exchange rate variations vs. orders flow.
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Table 1: R2 of the Orders Flow model estimated on daily data.
Currency
pair

R2, % Currency
pair

R2, %

AUDCAD 20.24 EURZAR 33.87
AUDCHF 45.55 GBPAUD 35.84
AUDJPY 25.69 GBPCAD 25.89
AUDNZD 35.84 GBPCHF 43.89
AUDUSD 24.69 GBPJPY 38.24
CADCHF 29.24 GBPNZD 36.63
CADJPY 34.64 GBPUSD 45.56
CHFJPY 25.15 NOKJPY 46.96
CHFSGD 43.62 NZDCAD 29.79
EURAUD 15.95 NZDCHF 37.22
EURCAD 19.66 NZDJPY 23.39
EURCHF 45.21 NZDUSD 28.63
EURGBP 35.31 USDCAD 31.23
EURJPY 29.22 USDCHF 32.95
EURNZD 25.44 USDJPY 29.48
EURSGD 36.88 USDTRY 40.17
EURTRY 27.48 USDZAR 64.26
EURUSD 43.53
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Table 2: R2 of the Orders Flow model for in-sample and out-of-sample data.

Currency
pair

In-sample Out-of-
sample

Currency
pair

In-sample Out-of-
sample

AUDCAD 20.24 32.59 EURZAR 33.87 12.13
AUDCHF 45.55 0 GBPAUD 35.84 0
AUDJPY 25.69 14.60 GBPCAD 25.89 0
AUDNZD 35.84 0 GBPCHF 43.89 34.64
AUDUSD 24.69 4.66 GBPJPY 38.24 41.32
CADCHF 29.24 0 GBPNZD 36.63 0
CADJPY 34.64 0 GBPUSD 45.56 41.93
CHFJPY 25.15 0 NOKJPY 46.96 0
CHFSGD 43.62 0 NZDCAD 29.79 3.21
EURAUD 15.95 9.18 NZDCHF 37.22 11.81
EURCAD 19.66 0 NZDJPY 23.39 0
EURCHF 45.21 0 NZDUSD 28.63 0
EURGBP 35.31 44.60 USDCAD 31.23 0
EURJPY 29.22 16.90 USDCHF 32.95 39.28
EURNZD 25.44 16.61 USDJPY 29.48 0
EURSGD 36.88 0 USDTRY 40.17 2.40
EURTRY 27.48 0 USDZAR 64.26 0
EURUSD 43.53 1.34
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Table 3: R2 of the Orders Flow model for daily, hourly and minute-by-minute
data.

Currency
pair

Daily
data

Hourly
data

Minute
data

Currency
pair

Daily
data

Hourly
data

Minute
data

AUDCAD 20.24 18.49 10.41 EURZAR 33.87 4.09 -
AUDCHF 45.55 21.91 11.56 GBPAUD 35.84 19.18 15.37
AUDJPY 25.69 20.79 19.06 GBPCAD 25.89 18.49 14.60
AUDNZD 35.84 18.27 7.21 GBPCHF 43.89 27.63 16.84
AUDUSD 24.69 20.83 15.18 GBPJPY 38.24 20.90 22.35
CADCHF 29.24 21.82 9.82 GBPNZD 36.63 22.33 -
CADJPY 34.64 22.34 16.9 GBPUSD 45.56 21.36 19.31
CHFJPY 25.15 22.71 15.88 NOKJPY 46.96 9.60 -
CHFSGD 43.62 19.89 9.96 NZDCAD 29.79 19.75 6.16
EURAUD 15.95 21.09 15.07 NZDCHF 37.22 22.08 7.57
EURCAD 19.66 19.94 12.10 NZDJPY 23.39 22.24 14.57
EURCHF 45.21 26.80 8.71 NZDUSD 28.63 22.46 9.64
EURGBP 35.31 24.80 12.93 USDCAD 31.23 22.77 11.26
EURJPY 29.22 22.49 21.38 USDCHF 32.95 43.59 10.47
EURNZD 25.44 22.54 11.18 USDJPY 29.48 22.44 11.42
EURSGD 36.88 4.98 14.29 USDTRY 40.17 19.76 -
EURTRY 27.48 24.27 - USDZAR 64.26 4.22 1.79
EURUSD 43.53 15.24 14.40

coefficients are iteratively removed. The calculated R2 are shown in the table
3.

The results obtained at this step are indeed interesting. As can be observed,
the coefficient of determination steadily declines as the frequency of the data
increases.

Analyzing the residuals. For each equation, we now calculate the series
of residuals and approximate the distribution of these series

• first by normal distribution,

• then by alpha-stable distribution.

Several residual patterns and their estimated distributions are presented on
the figures 2.

To evaluate quantitatively, which distribution is more appropriate to describe
the data, we will use the Integral of difference [12].

I =
1
2

∫ ∞

−∞
|fX,e(x)− fX,th(x)|dx, (6)

where
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Figure 2: Empirical distribution functions (input) and their approximations
with normal and alpha-stable distributions.
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• fX,e is the empirical frequency,

• fX,th is the estimated, theoretical, probability distribution function.

This integral is always 0 ≤ I ≤ 1 and can be interpreted as a part of the
residuals’ behavior, unexplained by the suggested distribution. In our particular
case, we calculate

In =
1
2

∫ ∞

−∞
|fX,e(x)− fX,normal(x)|dx (7)

Iα =
1
2

∫ ∞

−∞
|fX,e(x)− fX,α−stable(x)|dx (8)

The table 4 shows the values the integrals 7 and 8, for each currency pair,
as well as the residuals distribution selected on the basis of this calculation.

As can be observed, for all series with no exceptions, the α-stable distribu-
tion described the behavior of residuals more appropriately than the respective
normal distribution.

Institutional vs. retail traders. To test whether institutional investors
are better informed than individual traders, or, better to say, if their expecta-
tions are taken into account more seriously by market makers, we re-estimate
the model 2 separately for the following groups of traders:

• Big traders: balance on the trading account exceeding 1 000 000 USD or
equivalent in another currency,

• Medium traders: trading balance between 200 000 and 999 999 USD or
equivalent,

• Retail traders: trading balance below 199 999 USD.

The R2 for each group of clients calculated on the minute data is presented
in the table 5.

Observing the results, we conclude that the predicting power of the order
flow does not change depending on the financial size of traders generating the
this order flow.

Instant execution and pending orders. Finally, in all the previous
analysis pending orders were not taken into account at all until they become an
active order, e.g. until the trader commits real money into a position, following
his estimations of the market evolution. However, pending orders themselves
give additional information to the market makers about the price changes the
trades expect.

We re-estimate the model on the minute data and two variant of order flow
calculation:

• Initially used order flow of instant execution transactions,

• Alternative order flow of both instant execution and pending orders trans-
actions.
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SERBINENKO, RACHEV: A NEW HYPRID MODEL... 347



Table 4: Comparison of normal and α-stable residuals distribution estimation
using the Integral of difference, for minute data.

Currency Integral of difference Better res.
pair Normal α-stable distr.
AUDCAD 0.0814 0.0448 α-stable
AUDCHF 0.0952 0.0555 α-stable
AUDJPY 0.1108 0.0776 α-stable
AUDNZD 0.0874 0.0473 α-stable
AUDUSD 0.1063 0.0545 α-stable
CADCHF 0.1193 0.0519 α-stable
CADJPY 0.1222 0.0783 α-stable
CHFJPY 0.1169 0.0756 α-stable
CHFSGD 0.1206 0.0484 α-stable
EURAUD 0.1033 0.0413 α-stable
EURCAD 0.1096 0.0462 α-stable
EURCHF 0.1947 0.0468 α-stable
EURGBP 0.1399 0.0426 α-stable
EURJPY 0.1304 0.0855 α-stable
EURNZD 0.1286 0.0504 α-stable
EURSGD 0.1075 0.0472 α-stable
EURTRY - - -
EURUSD 0.1481 0.0540 α-stable
EURZAR - - -
GBPAUD 0.0881 0.0564 α-stable
GBPCAD 0.0986 0.0508 α-stable
GBPCHF 0.1342 0.0426 α-stable
GBPJPY 0.1367 0.0937 α-stable
GBPNZD - - -
GBPUSD 0.1483 0.0626 α-stable
NOKJPY - - -
NZDCAD 0.1888 0.0554 α-stable
NZDCHF 0.1338 0.0488 α-stable
NZDJPY 0.1252 0.0803 α-stable
NZDUSD 0.1476 0.0768 α-stable
USDCAD 0.1904 0.0857 α-stable
USDCHF 0.1716 0.0603 α-stable
USDJPY 0.1665 0.0740 α-stable
USDTRY - - -
USDZAR 0.4074 0.2974 α-stable
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Table 5: R2 (%) estimated for big, medium and retail clients, on the minute-
by-minute data. ”-” means transactions data is not available.

Currency
pair

Big Medium Retail Currency
pair

Big Medium Retail

AUDCAD 10.35 10.36 10.42 EURZAR - - -
AUDCHF 11.55 11.55 11.56 GBPAUD 15.39 15.40 15.38
AUDJPY 19.05 19.03 19.06 GBPCAD 14.53 14.57 14.60
AUDNZD 7.24 7.19 7.21 GBPCHF 16.79 16.86 16.83
AUDUSD 15.20 15.20 15.19 GBPJPY 22.35 22.34 22.36
CADCHF 9.83 9.81 9.82 GBPNZD - - -
CADJPY 16.90 16.90 16.90 GBPUSD 19.27 19.29 19.31
CHFJPY 15.89 15.89 16.89 NOKJPY - - -
CHFSGD - 9.93 9.95 NZDCAD 6.10 6.14 6.16
EURAUD - 15.05 15.09 NZDCHF 7.51 - 7.57
EURCAD 12.10 12.07 12.10 NZDJPY 14.56 14.58 14.57
EURCHF 8.72 8.71 8.69 NZDUSD 9.63 9.71 9.62
EURGBP 12.92 12.90 12.93 USDCAD 11.26 11.29 11.26
EURJPY 21.34 21.34 12.38 USDCHF 10.56 10.45 10.46
EURNZD 11.18 11.17 11.18 USDJPY 11.48 11.43 11.42
EURSGD - - 14.29 USDTRY - - -
EURTRY - - - USDZAR - 1.81 1.79
EURUSD 14.17 15.09 14.40
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Using the alternative order flow, we assume that the market makers base
their price estimation taking into account the pending orders. Thus the pend-
ing orders are considered when they are placed and become known to the market
maker, instead of the moment real money are committed into the trading oper-
ation.

The results of the estimation using the alternative order flow gave exactly
the same coefficients and coefficients of determination as the initial model using
the order flow for instant execution positions only.

1.3 Other Models for Forex Market and Special Cases

After having discussed both macro and micro approach to modeling the ex-
change rates dynamics, it is important to note that these two model types are
not incompatible. In is typically assumed for macro approach that all the rele-
vant information is publicly known and is reflected in current market prices. If
any of these assumptions is relaxed, the order flow does explain a part of the
exchange rates variations.

On the other hand, the micro approach does not claim the macro fundamen-
tals do not define exchange rates. It rather says the order flow is more dynamic
and forecasts those fluctuations better. The flow of orders merely reflects the
belief of market participants materialized in form of their real money put into
play.

A core distinction between the two approaches is the role of trades in price
determination.

Fundamentals have little to no importance for intraday trading, and that the
exchange rates are too much more volatile than any fundamental. As a remedy
to that situation, a hybrid model, taking into account both short term and long
term variations, was proposed by [8]. The model has the following form:

δPt = f(i, m, z) + g(X, I, Z) + εt, (9)

where

• f(i,m, z) is the macro component of the model,

• g(X, I, Z) is the micro component of the model,

• i - nominal interest rates,

• m - money supply,

• z - other macro determinants,

• X - order flow,

• I - dealer’s net positions,

• Z - other micro determinants.
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1.4 Portfolio Shifts Model

Macro models are typically estimated on a monthly frequency data and have
the form

4pt = f(4i,4m, ...) + εt, (10)

where

• 4pt is the change in the log nominal exchange rate of the month,

• 4i is the change in domestic and foreign interest rates i,

• 4m is the change of money supply over the month,

• εt is the residual.

In this model, there is no place for the order flow in determining the price,
any of its effects would be absorbed by the residual εt.

Micro approach generally leads to the following form of the model

4pt = g(4x,4I, ...) + νt, (11)

where

• 4pt is the rate change over two transactions,

• 4x is the change in order flow,

• 4I change in the net dealer position,

• νt is the residual.

Lyons and Evans [5] propose a new model which combines both macro and
micro approach:

4pt = f(4i, ...) + g(4x, ...) + ηt. (12)

The main difficulty in using this model is that the macro part of it is usually
estimated based on monthly data, while the micro-part is often determined on
high-frequent values - daily, hourly or even tick-by-tick. A fair and meaningful
trade-off can be using daily data for both macro and micro variables, getting
more frequent data for the first and aggregating the latter.

The two processes assumed in the portfolio shifts models are the following:

• As a portfolio shift occurs, it is not publicly known. It is manifested
in orders on the forex market, the initial volume of which goes through
market makers and then are completed by inter-dealer operations. The
market learns about the shift by observing these operations.

• The shift is important enough to move the market price.
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If the demand is perfectly elastic, then currencies are perfect substitutes
and the Portfolio Shifts model approaches the Portfolio Balance model. But
in the opposite case the portfolio shifts model is different. It has a constant
asset supply and defines demand components - driven by public and non-public
information. The later is reflected by portfolio shifts.

Lyons and Evans [5] estimate the Portfolio Shifts model in the following
form:

4Pt = rt + λ4xt, (13)

or

4Pt = β14(it − t∗t ) + β24xt + ηt (14)

where

• 4Pt is the change of the price between periods t− 1 and t,

• rt is the public information increment,

• λ is a positive constant,

• 4xt is the order flow,

• it is nominal dollar interest rate,

• i∗t is nominal non dollar interest rate,

• β1, β2 are parameters,

• ηt is the residual.

Tests show that this model produces better than random-walk results for
both in-sample and out-of-sample data, the forecasting being more precise over
shorter period of time (39 days) rather than for a longer period of 89 days.

1.5 Evidence of the Portfolio Shifts Model

To test if the Portfolio Shifts Models is applicable to the Foreign Exchange, we
estimate the following equation

4st+1 = b +
6∑

j=0

aj

6∑

i=0

xDIS
j+i,t +

6∑

j=0

cj4st−j + drt + et+1, (15)

Overnight LIBOR rates announced daily, taken from www.dowjonesclose.com/liborrates.html,
state of 29th June 2009, are taken for the values of the public information rt.
The iterative estimation was done in the same way as in the previous chapter.
The table 6 allows for comparison of the R2 between Orders Flow model and
Portfolio Shifts model.

It can be observed that the addition of the macro economic variable does
consistently improve the quality of modeling.
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Table 6: Orders Flow model and Portfolio Shifts model estimated on daily data

Currency
pair

R2 Port-
folio
Shifts, %

R2 Or-
ders
Flow, %

Currency
pair

R2 Port-
folio
Shifts, %

R2 Or-
ders
Flow, %

AUDCAD 22.23 20.24 EURZAR 34.00 33.87
AUDCHF 46.17 45.55 GBPAUD 35.84 35.84
AUDJPY 26.31 25.69 GBPCAD 27.13 25.89
AUDNZD 42.67 35.84 GBPCHF 43.89 43.89
AUDUSD 25.04 24.69 GBPJPY 39.37 38.24
CADCHF 29.25 29.24 GBPNZD 39.51 36.63
CADJPY 35.05 34.64 GBPUSD 46.38 45.56
CHFJPY 25.15 25.15 NOKJPY 46.69 46.96
CHFSGD 43.79 43.62 NZDCAD 31.87 29.79
EURAUD 16.07 15.95 NZDCHF 49.10 37.22
EURCAD 19.85 19.66 NZDJPY 28.17 23.39
EURCHF 49.55 45.21 NZDUSD 31.58 28.63
EURGBP 35.44 35.31 USDCAD 31.44 31.23
EURJPY 30.43 29.22 USDCHF 33.04 32.95
EURNZD 31.84 25.44 USDJPY 29.73 29.48
EURSGD 36.90 36.88 USDTRY 42.71 40.17
EURTRY 27.95 27.48 USDZAR 75.08 64.26
EURUSD 43.73 43.53
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1.6 Hybrid Models

Any of the presented models are not necessarily and strictly used in the pre-
sented form only. They can contribute to one another. For example, Medeiros
[1] suggested a hybrid model by including to the basic Evans-Lyons model [5]
additional variables representing a country-risk premium. Tests performed on
the Brazilian foreign exchange market showed data, showed that the model had
a good R2, which was further improved by a GARCH estimation.

2 New Model for Forex Intraday Trading

As a conclusion of the performed study, a new model is to be presented. It takes
into account every test performed all over the study as a building block towards
an improved model for high frequency foreign exchange modeling.

2.1 Framework

Below is the summary of main the findings made and a description of the frame-
work for the new model.

1. Market participants. While taking into account the activity of all mar-
ket participants, the target ”users” of the developed model are active
traders aiming speculative profit on the foreign exchange market, as well
as brokerage companies and market makers.

2. Trading Mechanisms. It is assumed that no regulatory restrictions
apply to trading. Transactions are done electronically by traders via bro-
kerage companies and market makers. The electronic transmission of in-
formation is assumed to be immediate. No additional delay is present in
case of trading via an intermediary broker.

3. Trade Instructions. Traders use immediate execution and pending or-
ders on any available currency pair. Price for immediate execution has to
be specified, i.e. there are no requests on ”best possible” price.

4. Market Efficiency. The market is not efficient in strong and semi-strong
form. Interest rate parity does not hold at all times. Carry trades are not
consistently profitable. Market showed to be efficient in a weak form on
minute data.

5. Liquidity. No major market crashes are happening. Major and small
news announcements are coming regularly. The market liquidity is high
and does not change depending if regional equity trading sessions is being
active or not. The market liquidity does not change around the news
announcements.

6. Volatility and Risk Premia. Volatility is appropriately measured by
the Expected Tail Loss, as well as by the R-ratio. It changes over time.
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Traders are risk averse. No evidence of hot potato trading was found.
Volatility was found to be increased during the first and the last 30 minutes
of either regional equity trading session. Foreign Exchange Market does
not display fractal properties. Trading short term on higher frequency
information is generally more risk than trading over long term.

7. Trading Costs. Trading costs are not negligible and are supposed to be
incorporated in the spread. No other fee are applied.

8. Technical Analysis. As the market is shown to be efficient in a weak
form, the technical analysis cannot provide consistently accurate predic-
tion.

9. Fundamental Analysis and Trading Psychology. Fundamental anal-
ysis is susceptible to provide correct predictions. Certain industries are
susceptible to move the currency exchange rates. Market prices are influ-
enced by human behavior, in particular the overreactions.

10. Applicability of Equity Market Models to the Foreign Exchange
Market. Equity models are generally not applicable to forex market as
is, but can provide ideas and econometric tools.

11. Macro Based Models. Models based on macro fundamentals alone fail
to explain the forex intraday market movements. The simple intuition
behind is that macro fundamentals do not generally change during the
day, while prices are moving permanently.

12. Models for Forex Market Microstructure. Models for market mi-
crostructure, in particular the model of orders flow, most appropriately
explain the market behavior, comparing to other studied models:

• Introduction of previous values of price changes (adding an AR(n)
part) improves the coefficient of determination.

• Model is appropriate for the out-of-sample forecast.

• Predicting power of the order flow does not change depending on the
financial size of traders generating this order flow.

• α-stable distribution is appropriate to model the behavior of residu-
als.

• Ceteris paribus, the quality of the model decreases as the data fre-
quency increases.

• Addition of macro fundamentals to build a hybrid model improves
the forecasting ability of a model.
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2.2 New model

Taking into account the considerations above, we start the construction of the
new model based on the basic order flow model. In order to account for volatility
clustering, i.e. when periods of high volatility are usually followed by other
periods of high volatility, GARCH approach is to be used.

Next, we have seen that the addition of a macro fundamental improves the
quality of the model. We include the overnight interest rate, as it both reflects
the a macro characteristic of the economy and a part of the trading costs.

The data chosen for modeling should usually match the trading time horizon.
However, as it was shown, the forecasting power of a model decreases as the
data frequency increases. We thus decide to include a lower frequency data
into equation. From the market standpoint, this decision is confirmed by the
practice, when traders usually require that data on several time frames agree on
the expected direction of the market, before they engage in a trading transaction.

Technically, we observed that series showed heavy tails. To account for this
data specification, we admit the residuals follow an α-stable distribution ([9],
[10], [11]).

Finally, for the best fit, instead of a simple linear regression, we a looking
for a more complex relationship in a spline form ([?], [?]).

4Pt+1 = α0 +
k∑

j=0

α1j4Pt−j +
l∑

j=0

α2j4P l
t−j +

m∑

j=0

α3jrt + α4i + εt, (16)

and

σ2
t = β0 +

p∑

j=1

β1jε
2
t−j +

q∑

j=1

β2jσ
2
t−j , (17)

where

• 4Pt price change in the moment t,

• 4P l
t price change in the moment t, on a lower frequency time frame,

• rt order flow,

• i interest rates,

• αi - parameters.

The distribution of residuals, i.e. the unexplained part of the price changes,
can be approximated by an α-stable distribution. Due to extremely high market
liquidity, the model will also stay valid for news announcements periods.

The purpose of the research is not only to develop a model, but also to make
this model usable for everyday live trading. The order flow used in the model
above is not known to most traders on the market such as speculators or hedged
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in interest arbitrageurs. However the order flow is positively correlated with the
market liquidity, which can on its turn be reflected by the number of price ticks
arriving in each particular moment of time. The model suggested for this group
of market participants is the following:

4Pt+1 = α0 +
k∑

j=0

α1j4Pt−j +
l∑

j=0

α2j4P l
t−j +

m∑

j=0

α3jvt + α4i + εt, (18)

and

σ2
t = β0 +

p∑

j=1

β1jε
2
t−j +

q∑

j=1

β2jσ
2
t−j , (19)

where vt is the number of price ticks in the period t

2.3 Evidence of the New Model

The new model is being estimated in three steps:

1. Apply the Multivariate Adaptive Regression Splines (MARS) to the first
equation of the model.

2. Estimate the residuals using GARCH(p, q).

3. Estimate the parameters of α-stable distribution of residual errors using
McCulloch or any other method.

The ”market makers’ model” is estimated on the minute data over the last
three months from 1st March 2009 till 31st May 2009. As a lower frequency time
frame, hourly data is selected. To demonstrate that the model keeps the R2 on
the same level also for the out-of-sample data, tick-by-tick data between 1st
and 15th of June 2009 is used. Same estimations are repeated for the ”traders’
model” with the same results in terms of quality of modeling.

There are three very positive results out of testing this model:

• The model for market makers having the private information about the
order flow is as good as the model for traders observing the price volatility.

• This model outperforms all the previously tested models on the minute
data.

• The out-of-sample performance of the model is as good as its in-sample
performace.

One more observation about the model worth being mentioned here. As the
equation was estimated, the MARS regression provides the analysis of impact
of each independent variable on the dependent variable. Several typical charts
describing this impact are presented on the figure 3.
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Figure 3: Influence of independent variables on the dependent variable in the
new model for intraday trading.
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Table 7: R2 of the estimated new ”market makers’” models, in-sample and
out-of-sample data, in %.
Currency
pair

R2,
in-sample

R2, out-
of-sample

Currency
pair

R2,
in-sample

R2, out-
of-sample

AUDCAD 10.96 13.04 EURZAR - -
AUDCHF 13.48 16.97 GBPAUD 15.37 17.20
AUDJPY 20.08 20.52 GBPCAD 13.98 16.71
AUDNZD 7.59 7.81 GBPCHF 18.64 19.02
AUDUSD 16.53 17.80 GBPJPY 23.35 22.18
CADCHF 12.67 15.67 GBPNZD - -
CADJPY 18.28 20.59 GBPUSD 21.17 19.81
CHFJPY 17.29 18.34 NOKJPY - -
CHFSGD 9.48 11.97 NZDCAD 18.18 1.78
EURAUD 16.11 16.04 NZDCHF 10.39 8.69
EURCAD 14.20 15.36 NZDJPY 15.58 17.18
EURCHF 13.37 15.56 NZDUSD 10.14 11.98
EURGBP 14.83 15.32 USDCAD 14.15 18.81
EURJPY 22.48 21.95 USDCHF 15.88 22.19
EURNZD 12.10 14.23 USDJPY 15.79 8.66
EURSGD 13.70 15.82 USDTRY - -
EURTRY - - USDZAR 64.26
EURUSD 18.89 23.70

As can be observed, the previous changes in price have the influence on the
current change in price most of time only in their second part. In other words,
increases in previous changes in price have more impact on the present change
in price, than the decreases of them. This relationship has not been explored in
details so far, but it is definitely another interesting research topic.

3 Concluding remarks

Step-by-step exploring and testing different aspects of the spot foreign exchange
market, this research proposed a new model describing exchange rates, intended
for intraday trading.

Two variants of this model were developed: one for market makers observing
the order flow, one for traders who do not have this information. Both variants
of the model have the same modeling quality, which is as good in-sample as
out-of-sample. The R2 of this model is higher than the R2 of any other model
tested here on the minute data.

Finally, some open questions provide room and ideas for further researched.
In particular, the predicting power of the model can be further improved. Also,
the observed asymetric influence in positive and negative changes in previous
observed price innovations is to be explored further.

23

SERBINENKO, RACHEV: A NEW HYPRID MODEL... 359



References

[1] De Medeiros O.R (2005), ”Order Flow and Exchange Rate dy-
namics in Brazil”, Finance 0503019, EconWPA, available at SSRN:
http://ssrn.com/abstract=638641.

[2] Evans L., Kenc T. (2001), ”Foreign Exchange Risk Premia in a Stochastic
Small Open Economy Model”, EFMA 2001 Lugano Meetings, available at
SSRN: http://ssrn.com/abstract=264767.

[3] Evans M., Lyons R.(1999), ”Order flow and exchange-rate dynamics”, Jour-
nal of Political Economy.

[4] Evans M.D.D., Lyons R.K. (2001), ”Order Flow and Exchange Rate Dy-
namics”, 5th Annual Brookings-Wharton Papers on Financial Services
Conference, January 2001.

[5] Evans M.D.D., Lyons R. (2002), ”Time varying liquidity in foreign ex-
change”, Journal of Monetary Economics 49, 1025-1051.

[6] Evans M.D.D., Lyons R.K. (2003), ”Are Different-Currency Assets Imper-
fect Substitutes?”, CESifo Working Paper No.978, Category 6: Monetary
Policy and International Finance, July 2003.

[7] Lyons R.K. (2002), ”The Future of the Foreign Exchange Market”, 5th An-
nual Brookings-Wharton Papers on Financial Services Conference, January
2002.

[8] Lyons R.K. (2001), ”Foreign Exchange: Macro Puzzles, Micro Tools”, De-
cember 2001.

[9] Rachev, S., Martin D., Racheva-Iotova B. and Stoyanov S. (2006), ”Sta-
ble ETL optimal portfolios and extreme risk management, forthcoming in
Decisions in Banking and Finance”, Springer/Physika, 2007.

[10] Rachev, S., Menn C., Fabozzi F. (2005), ”Fat-Tailed and Skewed Asset Re-
turn Distributions: Implications for Risk Management, Portfolio selection,
and Option Pricing”, John Wiley, Finance, 2005.

[11] Rachev S.T., Stoyanov S., Fabozzi F.J. (2007), ”Advanced Stochastic Mod-
els, Risk Assessment, and Portfolio Optimization: The Ideal Risk, Uncer-
tainty, and Performance Measures”, Wiley, July 2007.

[12] Serbinenko A., Emmeneger J.-F. (2007), ”Returns of Eastern European fi-
nancial markets: alpha-stable distributions, measures of risk”, in ”PAMM”,
Special Issue: Sixth International Congress on Industrial Applied Mathe-
matics (ICIAM07) and GAMM Annual Meeting, Wiley, Zürich, 2007.
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FIXED POINT RESULTS FOR MAPPINGS SATISFYING A
GENERAL CONTRACTIVE CONDITION OF OPERATOR TYPE

IN DISLOCATED FUZZY QUASI-METRIC SPACES

CIHANGIR ALACA

Abstract. In this paper, we de�ne the notion of dislocated fuzzy quasi-metric
spaces with the help of Hitzler and Seda [18] in the sense of Kramosil and
Michalek [19] and also George and Veeramani [14]. Further, we give some �xed
point results for coincidentally bi-commuting mappings satisfying a general
contractive condition of operator type in dislocated fuzzy quasi-metric spaces.

1. Introduction

Zadeh�s introduction [29] of the notion of fuzzy sets laid down the foundation
of fuzzy mathematics. Many authors have introduced the fundamental concepts of
fuzzy metric space and its �xed point theorems in di¤erent ways [1, 4, 10, 11, 12,
14, 15, 16, 19, 21, 22, 25, 26]. Furthermore, many authors obtained di¤erent �xed
point results for mappings satisfying a general contractive condition of operator
type and integral type in metric spaces [2, 3, 5, 6, 8, 9, 23, 24, 28].
Recently, the following de�nition of dislocated metric space and it�s fundamental

properties was given by Hitzler and Seda [18].

De�nition 1. Let X be a set and let % : X � X ! R+0 be a function, called a
distance function. Consider the following conditions:

(D-i) For all x 2 X, %(x; x) = 0, (D-ii) For all x, y 2 X, if %(x; y) = 0, then
x = y, (D-iii) For all x, y 2 X, %(x; y) = %(y; x), (D-iv) For all x, y, z 2 X,
%(x; y) � %(x; z)+%(z; y), (D-v)For all x, y, z 2 X, %(x; y) � max f%(x; z), %(z; y)g.
If % satis�es conditions (D-i) to (D-iv), then it is called a metric. If it satis�es
conditions (D-i), (D-iii) and (D-iv), it is called a pseudo-metric. If it satis�es (D-
ii), (D-iii) and (D-iv), we will call it a dislocated metric (or simply d-metric). If a
(pseudo-, d-) metric satis�es the strong triangle inequality (D-iv0), then it is called
a (pseudo-, d-) ultrametric.
The study of partial metric spaces and generalized ultrametric spaces have appli-

cations in theoretical computer science had beeen studied by Matthews [20]. Hitzler
and Seda [18] introduced the concept of dislocated metric space as a generalization
of metrics where self-distances need not be zero. They also proved a generalized
version of Banach contraction mapping principle which was applied to obtain �xed
point semantics for logic programs. Zeyada et al. [30] gave �xed point theorems for
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2 CIHANGIR ALACA

a multivalued function in complete dislocated metric spaces and complete partial
metric space. Later afterwards, George and Khan [13] introduced the concept of
dislocated fuzzy metric space and studied the fuzzy topology associated with it.
In the present paper, we de�ne the notion of dislocated fuzzy quasi-metric spaces

with the help of Hitzler and Seda [18] in the sense of Kramosil and Michalek [19]
and also George and Veeramani [14]. Further, we give some �xed point results for
coincidentally bi-commuting mappings satisfying a general contractive condition of
operator type in dislocated fuzzy quasi-metric spaces.

2. On dislocated fuzzy quasi-metric spaces

De�nition 2 ([27]). A binary operation ? : [0; 1] � [0; 1] ! [0; 1] is continuous t-
norm if ([0; 1]; ?) is a topological monoid with unit 1 such that a?b � c?d whenever
a � c and b � d, and a; b; c; d 2 [0; 1].
Now, we de�ne the notion of dislocated fuzzy quasi-metric spaces in the sense of

Kramosil and Michalek [19].

De�nition 3. A 3-tuple (X;M; ?) is said to be a dislocated fuzzy quasi-metric
spaces in the sense of Kramosil and Michalek (in shortly DKM -FqM-spaces) if X
is an arbitrary set, ? is a continuous t-norm and M is a fuzzy set on X2 � [0;1)
satisfying the following conditions: For all x; y; z 2 X and s; t 2 [0;1),

(D-FqM-1) M(x; y; 0) = 0,
(D-FqM-2) M(x; y; t) =M(y; x; t) = 1; then x = y,
(D-FqM-3) M(x; y; t) ? M(y; z; s) �M(x; z; t+ s),
(D-FqM-4) M(x; y; :) : [0;1)! [0; 1] is left continuous,
(D-FqM-5) lim

t!1
M(x; y; t) = 1:

Remark 1. If we add the condition M(x; y; t) = M(y; x; t) to De�nition 3, then
we obtain the de�nition of DKM -FM-spaces given by George and Khan [13].

Now, we de�ne the notion of dislocated fuzzy quasi-metric spaces in the sense of
George and Veeramani [14].

De�nition 4. A 3-tuple (X;M; ?) is said to be a D-FqM-spaces in the sense of
George and Veeramani (in shortly DGV -FqM-spaces) if X is an arbitrary set, ? is
a continuous t-norm and M is a fuzzy set in X2 � (0;1) satisfying the following
conditions: For all x; y; z 2 X and s; t 2 (0;1),

(D-FqM-1) M(x; y; t) > 0,
(D-FqM-2) M(x; y; t) =M(y; x; t) = 1; then x = y,
(D-FqM-3) M(x; y; t) ? M(y; z; s) �M(x; z; t+ s),
(D-FqM-4) M(x; y; :) : (0;1)! (0; 1] is continuous.

Remark 2. Given a D-FqM-space (X;M; ?) we de�ne the open ball BM (x; r; t), for
x 2 X, 0 < r < 1, and t > 0, as the set BM (x; r; t) = fy 2 X :M(x; y; t) > 1� rg.
Obviously, x 2 BM (x; r; t). For each x 2 X, 0 < r1 < r2 < 1 and 0 < t1 < t2 < 1,
we have BM (x; r1; t1) � BM (x; r2; t2). Consequently, we may de�ne a topology �M
on X as

�M = fA � X : for each x 2 A there are r 2 (0; 1), t > 0, with BM (x; r; t) � Ag :
Moreover, for each x 2 X the collection of open balls

�
BM (x;

1
n ;

1
n ) : n = 2; 3; ::

	
; is

a local base at x with respect to �M : The topology �M is called the topology generated
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DISLOCATED FUZZY QUASI-METRIC SPACES 3

by D-FqM-space (X;M; ?). It is clear that each open ball BM (x; r; t) is an open set
for the topology �M .

Remark 3. If (M;?) is DGV -FqM on X, then (M�1; ?) is also a DGV -FqM on
X, where M�1 is the fuzzy set X2 � (0;1) de�ned by M�1(x; y; t) = M(y; x; t).
Moreover, if we denote by Mz the fuzzy set in X2 � (0;1) given by Mz(x; y; t) =
min

�
M(x; y; t);M�1(x; y; t)

	
; then (Mz; ?) is a DGV -FqM on X. We can give

similar this case for DKM -FqM-spaces.

Example 1. Let (X; d) be a dislocated (quasi-)metric space, let ? be any continuous
t-norm and let Md be the function de�ned on X2 � (0;1) by Md =

t
t+d(x;y) . Then

(X;Md; ?) is a DGV -FqM-space called standard DGV -FqM and (Md; ?) is the D-
FqM induced by d. Furthermore, it is easy to check that (Md)

�1 = Md�1 and
(Md)

z =Mds ; and the topology �d; generates by d, coincides with the topology �Md

generated by the induced DGV -FqM (M;?).

As in Grabiec [15], the following de�nition can be given.

De�nition 5. Let (X;M; ?) be a DKM -FqM-space. A sequence fxng in X is
said to be (i) a bi-convergent to a point x 2 X (denoted by lim

n!1
xn = x) if

lim
n!1

Mz(xn; x; t) = 1, for all t > 0, (ii) a bi-Cauchy sequence if lim
n!1

Mz(xn+p; xn; t) =

1, for all t > 0, p > 0, (iii) a bi-complete DKM -FqM-space in which every bi-
Cauchy sequence converges to a point in it.

As in George and Veeramani [14], the following de�nition can be given.

De�nition 6. (i) A sequence fxng in a DGV -FqM-space (X;M; ?) bi-converges to
x 2 X i¤, for any " 2 (0; 1); t > 0; there exists n0 2 N such that Mz(xn; x; t) >
1 � " for all n � n0. (ii) A sequence fxng in a DGV -FqM-space (X;M; ?) is a
bi-Cauchy sequence i¤ for each " 2 (0; 1); t > 0 there exists n0 2 N such that
Mz(xn; xm; t) > 1 � " for all n;m � n0. (iii) A DGV -FqM-space (X;M; ?) in
which every bi-Cauchy sequence in X is called bi-complete DGV -FqM-space.

De�nition 7. Let (X;M; ?) be a D-FqM-space, f and g be self maps of X. f and
g are said to be bi-commute at x 2 X, i¤ Mz(fgx; gfx; t) = 1 for all t 2 [0;1). If
f and g bi-commute at all x 2 X, then we say that f and g are bi-commuting on
X.

De�nition 8. Mappings f and g are said to be coincidentally bi-commuting i¤ they
bi-commute at all the coincidence points of f and g.

Remark 4. There exists mappings f and g which bi-commutes at some coincidence
points but do not bi-commute at all coincidence points of f and g.

3. Fixed point results for dislocated fuzzy quasi-metric spaces

Now in this section, we prove a fuzzy version of Banach contraction mapping
principle for coincidentally bi-commuting mappings satisfying a general contractive
condition of operator type in dislocated fuzzy quasi-metric spaces.
Similar results for the following concept of O (' ; :) and its similar examples was

given by Altun and Turkoglu [7].
Let �([0;1)) be class of all function ' : [0;1)! [0;1] and let � be class of all

operators
O (�; :) : �([0;1))! �([0;1)), '! O (' ; :)
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satisfying the following conditions:
(i) O (' ; t) > 0 for t > 0 and O ('; 0) = 0;
(ii) O (' ; t) � O (' ; s) for t � s;
(iii) lim

n!1
O ('; tn) = O

�
' ; lim

n!1
tn

�
;

(iv) O (' ;maxft; sg) = maxfO (' ; t) ; O (' ; s)g for some ' 2 �([0; 1)).
Example 2. If ' : [0;1)! [0;1] is a Lebesque integrable mapping which is �nite
integral on each compact subset of [0;1), non-negative and such that for each t > 0,R t
0
'(s)ds > 0, then the operator de�ned by

O (' ; t) =

Z t

0

'(s)ds

satis�es the conditions (i)-(iv).

Example 3. If ' : [0;1) ! [0;1) non-decreasing, continuous function such that
'(0) = 0 and '(t) > 0 for t > 0, then the operator de�ned by

O (' ; t) =
'(t)

1 + '(t)

satis�es the conditions (i)-(iv).

Example 4. If ' : [0;1) ! [0;1) non-decreasing, continuous function such that
'(0) = 0 and '(t) > 0 for t > 0, then the operator de�ned by

O (' ; t) =
'(t)

1 + ln (1 + '(t))

satis�es the conditions (i)-(iv).

Theorem 1. Let (X;Mz; ?) be a D-FqM-space and let f , g : X ! X be mappings
that satisfy the following conditions:

(4.1) f(X) � g(X),
(4.2) one of f(X) or g(X) is bi-complete,
(4.3)

O
�
' ; 1�Mz(fx; fy; t)

�
� �O

�
' ; 1�Mz(gx; gy; t)

�
where O (�; :) 2 �. Then f and g have a coincidence point. Further if f and g
bi-commute at some coincidence point, then f and g have a unique common �xed
point.

Proof. Let x0 2 X. Since f(X) � g(X), choose x1 2 X such that y1 = fx0 = gx1.
By induction we can form the sequence fyng such that yn+1 = fxn = gxn+1, n = 0,
1, 2,... and y0 = gx0. For 0 < � < 1 and t 2 [0;1) we have

O
�
' ; 1�Mz(y1; y2; t)

�
= O

�
' ; 1�Mz(fx0; fx1; t)

�
� �O

�
' ; 1�Mz(gx0; gx1; t)

�
= O

�
' ; 1�Mz(y0; y1; t)

�
and

O
�
' ; 1�Mz(y2; y3; t)

�
= O

�
' ; 1�Mz(fx1; fx2; t)

�
� �O

�
' ; 1�Mz(gx1; gx2; t)

�
= O

�
' ; 1�Mz(y1; y2; t)

�
:
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Thus we have

O
�
' ; 1�Mz(y2; y3; t)

�
� �2O

�
' ; 1�Mz(y0; y1; t)

�
:

Proceeding this way and from (4.3), we have

(4.4) O
�
' ; 1�Mz(yn; yn+1; t)

�
� �nO

�
' ; 1�Mz(y0; y1; t)

�
:

Taking the limit of (4.4), as n!1, gives

lim
n!1

O
�
' ; 1�Mz(yn; yn+1; t)

�
= 0;

which, from (i), implies that

lim
n!1

�
1�Mz(yn; yn+1; t)

�
= 0:

That is, we have lim
n!1

Mz(yn; yn+1; t) = 1. Now we show that fyng is a bi-Cauchy
sequence. Suppose that it is not. Then there exists an " > 0 and subsequences
fm(v)g and fn(v)g such that m(v) < n(v) < m(v + 1) with

(4.5) 1�Mz(ym(v); yn(v); t1 + t2) � ", 1�Mz(ym(v); yn(v)�1; t1 + t2) < "

Since lim
n!1

Mz(yn; yn+1; t) = 1, we have

lim
v!1

Mz(yn(v)�1; yn(v); t) = lim
v!1

Mz(ym(v)�1; ym(v); t) = 1:

Using (D-FqM-3), we have

Mz(ym(v)�1; yn(v)�1; t1 + t2) � Mz(ym(v)�1; ym(v); t1) ? M
z(ym(v); yn(v)�1; t2)

> Mz(ym(v)�1; ym(v); t1) ? 1� "

or 1�Mz(ym(v)�1; yn(v)�1; t1 + t2) < " as v !1. Therefore, from (4.3), we get

�O
�
' ; 1�Mz(ym(v)�1; yn(v)�1; t1 + t2)

�
� O

�
' ; 1�Mz(ym(v); yn(v); t1 + t2)

�
� O (' ; ")

which implies �O (' ; ") � O (' ; ") as v !1 a contradiction, since 0 < � < 1 and
" > 0. Therefore, fyng is a bi-Cauchy sequence in X. From (4.2), since g(X) is
bi-complete. Then there exists u 2 g(X) such that lim

n!1
fxn = lim

n!1
gxn+1 = u =

lim
n!1

yn+1. Since u 2 g(X) therefore, there exists a point p 2 X such that gp = u.

Now we show that fp = gp = u. If possible fp 6= gp, by inequality (4.3), we have

O
�
' ; 1�Mz(fp; gp; t)

�
= �O

�
' ; 1�Mz(fp; fxn; t)

�
for each x; y 2 X, 0 � � < 1: Letting n!1; we have

O
�
' ; 1�Mz(fp; gp; t)

�
= O

�
' ; 1� lim

n!1
Mz(fp; fxn; t)

�
� �O

�
' ; 1� lim

n!1
Mz(gp; gxn; t)

�
= �O

�
' ; 1� lim

n!1
Mz(u; gxn; t)

�
Proceeding this way from (4.1) and (4.3), we have

(4.6) O
�
' ; 1�Mz(fp; gp; t)

�
� �nO

�
' ; 1� lim

n!1
Mz(u; gxn; t)

�
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Taking the limit of (4.6), as n!1, gives

lim
n!1

O
�
' ; 1�Mz(fp; gp; t)

�
= 0;

which, from (i), implies that

lim
n!1

�
1�Mz(fp; gp; t)

�
= 0:

That is, we have lim
n!1

Mz(fp; gp; t) = 1. Therefore from (D-FqM-2), we have fp =

gp i.e. f and g bi-commute at some coincidence point say z, i.e. Mz(fgz; gfz; t) = 1
8t > 0 ) fgz = gfz by (D-FqM-2). Let fz = gz = k. Then we get

O
�
' ; 1�Mz(fk; k; t)

�
� O

�
' ; 1�Mz(fk; fz; t)

�
� O

�
' ; 1�Mz(gk; gz; t)

�
= O

�
' ; 1�Mz(gfz; fz; t)

�
= O

�
' ; 1�Mz(fgz; fz; t)

�
� �O

�
' ; 1�Mz(gk; gz; t)

�
� � �

� �nO
�
' ; 1�Mz(gk; gz; t)

�
:

Then we get

(4.7) O
�
' ; 1�Mz(fk; k; t)

�
� �nO

�
' ; 1�Mz(gk; gz; t)

�
:

Taking the limit of (4.7), as n!1, gives

lim
n!1

O
�
' ; 1�Mz(fk; k; t)

�
= 0;

which, from (i), implies that

lim
n!1

�
1�Mz(fk; k; t)

�
= 0:

That is, we have lim
n!1

Mz(fk; k; t) = 1. Therefore from (D-FqM-2), we have fk = k.

Similarly we can show that gk = k. That is k is a common �xed point of f and g.
A similarly proof follows if f(X) is bi-complete.
Uniqueness: Suppose w is another common �xed point of f and g. Then we

have

O
�
' ; 1�Mz(k;w; t)

�
= O

�
' ; 1�Mz(fk; fw; t)

�
� �O

�
' ; 1�Mz(gk; gw; t)

�
� �O

�
' ; 1�Mz(k;w; t)

�
= �O

�
' ; 1�Mz(fk; fw; t)

�
� �2O

�
' ; 1�Mz(gk; gw; t)

�
= �2O

�
' ; 1�Mz(k;w; t)

�
� � �

� �nO
�
' ; 1�Mz(k;w; t)

�
:

Then we get

(4.8) O
�
' ; 1�Mz(k;w; t)

�
� �nO

�
' ; 1�Mz(k;w; t)

�
:

Taking the limit of (4.8), as n!1, gives

lim
n!1

O
�
' ; 1�Mz(k;w; t)

�
= 0;
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which, from (i), implies that

lim
n!1

�
1�Mz(k;w; t)

�
= 0:

That is, we have lim
n!1

Mz(k;w; t) = 1. Therefore from (D-FqM-2), we have k = w.

Hence the common �xed point is unique. �

In Theorem 1, if we take g = IX , the identity mapping on X, then we have the
following.

Theorem 2. Let (X;Mz; ?) be a D-FqM-space and let f : X ! X be mappings
that satisfy the following conditions:

(i) f(X) is bi-complete,
(ii) For each x, y 2 X, 0 � � < 1, t 2 [0;1)

O
�
' ; 1�Mz(fx; fy; t)

�
� �O

�
' ; 1�Mz(x; y; t)

�
where O (�; :) 2 �. Then f has a unique �xed point.

Remark 5. It is clear that Theorem 1 is a generalization of Theorem 3.1 in [13].

Remark 6. We can have new result, if we combine Theorem 1 and some examples
for O (f ; :).

Remark 7. If we combine Example 2 and Theorem 1, then we obtain a new gen-
eralized fuzzy version of Banach contraction mapping principle satisfying a general
contractive condition of operator type or integral type in D-FqM-spaces.

Conclusion. The notion of dislocated metric is useful in the context of electronic
engineering (see [17]). In this work we prove a common �xed point for coinciden-
tally bi-commuting mappings satisfying a general contractive condition of operator
type in D-FqM-spaces. A few applications of dislocated metrics and in particular
of the generalized Banach conraction mapping principle, are known in Theoretical
Computer Science, it is at this stage unclear, with investigating whether or not
other applications can be found and where else in Fuzzy Mathematics these spaces
appear. The scientists who went to study in this area can investigate the results of
the �xed point theory for another types of contraction mappings.

Acknowledgement. The author would like to thank Prof. M. S. Khan who
informed the author about his study [13].
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Department of Mathematics and Computer Science

University of Oradea
str. Universitatii nr. 1, 410087 Oradea, Romania

dalb@uoradea.ro

Abstract

In the present paper we define a new operator, by means of convolution product between Ruscheweyh
operator and the multiplier transformation I (m,λ, l). For functions f belonging to the class A we define the
differential operator IRmλ,l : A → A, IRmλ,lf (z) := (I (m,λ, l) ∗Rm) f (z) where An = {f ∈ H(U) : f(z) =
z + an+1z

n+1 + . . . , z ∈ U} is the class of normalized analytic functions with A1 = A. We study certain
differential subordinations regarding the operator IRmλ,l.

Keywords: differential subordination, convex function, best dominant, differential operator, convolution prod-
uct.
2000 Mathematical Subject Classification: 30C45, 30A20, 34A40.

1 Introduction

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and H(U) the space of holomorphic
functions in U .
Let

A (p, n) = {f ∈ H(U) : f(z) = zp +
∞P

j=p+n
ajz

j , z ∈ U},

with A (1, n) = An and A (1, 1) = A1 = A, where p, n ∈ N.
Denote by

K =

½
f ∈ A : Re zf

00(z)

f 0(z)
+ 1 > 0, z ∈ U

¾
the class of normalized convex functions in U .
If f and g are analytic functions in U , we say that f is subordinate to g, written f ≺ g, if there is a function

w analytic in U , with w(0) = 0, |w(z)| < 1, for all z ∈ U such that f(z) = g(w(z)) for all z ∈ U . If g is
univalent, then f ≺ g if and only if f(0) = g(0) and f(U) ⊆ g(U).
Let ψ : C3 × U → C and h an univalent function in U . If p is analytic in U and satisfies the (second-order)

differential subordination
ψ(p(z), zp0(z), z2p00(z); z) ≺ h(z), for z ∈ U, (1)

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the
solutions of the differential subordination, or more simply a dominant, if p ≺ q for all p satisfying (1).
A dominant eq that satisfies eq ≺ q for all dominants q of (1) is said to be the best dominant of (1). The best

dominant is unique up to a rotation of U .
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Definition 1 [4] For f ∈ A(p, n), p, n ∈ N, m ∈ N∪ {0}, λ, l ≥ 0, the operator Ip (m,λ, l) f(z) is defined by the
following infinite series

Ip (m,λ, l) f(z) := z
p +

∞P
j=p+n

µ
p+ λ (j − 1) + l

p+ l

¶m
ajz

j .

Remark 1 It follows from the above definition that

Ip (0,λ, l) f(z) = f(z),

(p+ l) Ip (m+ 1,λ, l) f(z) = [p(1− λ) + l] Ip (m,λ, l) f(z) + λz (Ip (m,λ, l) f(z))
0 , for z ∈ U.

Remark 2 If p = 1, n = 1, we have A(1, 1) = A1 = A, I1 (m,λ, l) f(z) = I (m,λ, l) and

(l + 1) I (m+ 1,λ, l) f(z) = [l + 1− λ] I (m,λ, l) f(z) + λz (I (m,λ, l) f(z))
0 , for z ∈ U.

Remark 3 If f ∈ A, f(z) = z +
P∞
j=2 ajz

j, then I (m,λ, l) f (z) = z +
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
ajz

j, for z ∈ U .

Remark 4 For l = 0, λ ≥ 0, the operator Dm
λ = I (m,λ, 0) was introduced and studied by Al-Oboudi , which

reduced to the Sălăgean differential operator Sm = I (m, 1, 0) for λ = 1.

Definition 2 (Ruscheweyh [6]) For f ∈ A, m ∈ N the operator Rm is defined by Rm : A→ A,

R0f (z) = f (z)

R1f (z) = zf 0 (z)

...

(m+ 1)Rm+1f (z) = z (Rmf (z))
0
+mRmf (z) , for z ∈ U.

Remark 5 If f ∈ A, f(z) = z +
P∞
j=2 ajz

j, then Rmf (z) = z +
P∞
j=2C

m
m+j−1ajz

j, for z ∈ U .

Lemma 3 (Miller and Mocanu [5]) Let g be a convex function in U and let

h(z) = g(z) + nαzg0(z), for z ∈ U,

where α > 0 and n is a positive integer.
If

p(z) = g(0) + pnz
n + pn+1z

n+1 + . . . , for z ∈ U

is holomorphic in U and
p(z) + αzp0(z) ≺ h(z), for z ∈ U

then
p(z) ≺ g(z)

and this result is sharp.

2 Main Results

Definition 4 Let m,λ, l ∈ N. Denote by IRmλ,l the operator given by the Hadamard product (the convolution
product) of the operator I (m,λ, l) and the Ruscheweyh operator Rm, IRmλ,l : A→ A,

IRmλ,lf (z) = (I (m,λ, l) ∗Rm) f (z) .

Remark 6 If f ∈ A, f(z) = z +
P∞
j=2 ajz

j, then IRmλ,lf (z) = z +
P∞

j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1a

2
jz
j , for

z ∈ U.
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Remark 7 For l = 0, λ ≥ 0, we obtain the Hadamard product DRnλ [2] of the generalized Sălăgean operator
Dn
λ and Ruscheweyh operator R

n.
For l = 0 and λ = 1, we obtain the Hadamard product SRn [1] of the Sălăgean operator Sn and Ruscheweyh

operator Rn.

Theorem 5 Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z) + zg0 (z), for
z ∈ U . If m,λ, l ∈ N, f ∈ A and the differential subordination

1

z

µ
m+ 1

λ
IRm+1λ,l f (z)−

m− 2
λ

IRmλ,lf (z)

¶
+

λ (m− 1)− (l + 1)
λ (l + 1)

¡
IRmλ,lf (z)

¢0
+

µ
1− m− 1

l + 1
− 2

λ

¶
− 2 (l + 1) (m− 1)− 2λm

λ (l + 1)

Z z

0

IRmλ,lf (t)− t
t2

dt ≺ h (z) , for z ∈ U (2)

holds, then ¡
IRmλ,lf (z)

¢0 ≺ g (z) , for z ∈ U

and this result is sharp.

Proof. With notation p (z) =
³
IRmλ,lf (z)

´0
= 1 +

P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1ja

2
jz
j−1 and p (0) = 1, we

obtain for f(z) = z +
P∞
j=2 ajz

j ,

p (z) + zp0 (z) = 1+
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1ja

2
jz
j−1+

P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1j (j − 1) a2jzj−1 =

1 +
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1j

2a2jz
j−1 =

1
z

µ
z +

P∞
j=2

³
1+λ(j−1)+l

l+1

´m+1
Cm+1m+j

m+1
λ a2jz

j −
P∞

j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1

λ(m−1)−(l+1)
λ(l+1) ja2jz

j−P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1

m−2
λ a2jz

j −
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1

1
j−1

2(l+1)(m−1)−2λm
λ(l+1) a2jz

j
´
=

1
z

∙
m+1
λ

µ
z +

P∞
j=2

³
1+λ(j−1)+l

l+1

´m+1
Cm+1m+j a

2
jz
j

¶
− m−2

λ

³
z +

P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1a

2
jz
j
´i
+¡

1− m+1
λ − m−2

λ

¢
+
³
1 +

P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1a

2
jjz

j−1
´

λ(m−1)−(l+1)

λ(l+1) −
λ(m−1)−(l+1)

λ(l+1) −
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1

1
j−1

2(l+1)(m−1)−2λm
λ(l+1) a2jz

j−1 =

1
z

³
m+1
λ IRm+1λ,l f (z)− m−2

λ IRmλ,lf (z)
´
+ λ(m−1)−(l+1)

λ(l+1)

³
IRmλ,lf (z)

´0
+

λl−λm+2λ−2l−2
λ(l+1) − 2(l+1)(m−1)−2λm

λ(l+1)

P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1

1
j−1a

2
jz
j−1 =

1
z

³
m+1
λ IRm+1λ,l f (z)− m−2

λ IRmλ,lf (z)
´
+ λ(m−1)−(l+1)

λ(l+1)

³
IRmλ,lf (z)

´0
+
³
1− m−1

l+1 −
2
λ

´
−

2(l+1)(m−1)−2λm
λ(l+1)

R z
0

IRmλ,lf(t)−t
t2 dt.

We have p (z) + zp0 (z) ≺ h (z) = g (z) + zg0 (z), for z ∈ U . By using Lemma 3 we obtain p (z) ≺ g (z), for
z ∈ U , i.e.

³
IRmλ,lf (z)

´0
≺ g (z), for z ∈ U and this result is sharp.

Corollary 6 ([2]) Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z)+zg0 (z),
for z ∈ U . If λ ≥ 0, n ∈ N, f ∈ A and the differential subordination

n+ 1

λz
DRn+1λ f (z)− n (1− λ)

λz
DRnλf (z)−

µ
n− 1 + 1

λ

¶
(DRnλf (z))

0 ≺ h (z) , for z ∈ U (3)

holds, then
(DRnλf (z))

0 ≺ g (z) , for z ∈ U

and this result is sharp.

3
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Corollary 7 ([1]) Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z)+zg0 (z),
for z ∈ U . If n ∈ N, f ∈ A and the differential subordination

1

z
SRn+1f (z) +

n

n+ 1
z (SRnf (z))00 ≺ h (z) , for z ∈ U (4)

holds, then
(SRnf (z))0 ≺ g (z) , for z ∈ U

and this result is sharp.

Theorem 8 Let g be a convex function, g (0) = 1 and let h be the function h (z) = g (z) + zg0 (z), for z ∈ U .
If m,λ, l ∈ N, f ∈ A and verifies the differential subordination¡

IRmλ,lf (z)
¢0 ≺ h (z) , for z ∈ U, (5)

then
IRmλ,lf (z)

z
≺ g (z) , for z ∈ U

and this result is sharp.

Proof. For f ∈ A, f(z) = z +
P∞
j=2 ajz

j we have IRmλ,lf (z) = z +
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1a

2
jz
j , for

z ∈ U .
Consider p (z) =

IRmλ,lf(z)

z =
z+
P∞

j=2(
1+λ(j−1)+l

l+1 )
m
Cm
m+j−1a

2
jz

j

z = 1 +
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1a

2
jz
j−1.

We have p (z) + zp0 (z) =
³
IRmλ,lf (z)

´0
, for z ∈ U .

Then
³
IRmλ,lf (z)

´0
≺ h (z), for z ∈ U becomes p (z) + zp0 (z) ≺ h (z) = g (z) + zg0 (z), for z ∈ U . By using

Lemma 3 we obtain p (z) ≺ g (z), for z ∈ U , i.e. IR
m
λ,lf(z)

z ≺ g (z), for z ∈ U.

Corollary 9 ([2]) Let g be a convex function, g (0) = 1 and let h be the function h (z) = g (z) + zg0 (z), for
z ∈ U . If n ∈ N, f ∈ A and verifies the differential subordination

(DRnλf (z))
0 ≺ h (z) , for z ∈ U, (6)

then
DRnλf (z)

z
≺ g (z) , for z ∈ U

and this result is sharp.

Corollary 10 ([1]) Let g be a convex function, g (0) = 1 and let h be the function h (z) = g (z) + zg0 (z), for
z ∈ U . If n ∈ N, f ∈ A and verifies the differential subordination

(SRnf (z))
0 ≺ h (z) , for z ∈ U, (7)

then
SRnf (z)

z
≺ g (z) , for z ∈ U

and this result is sharp.

Theorem 11 Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z) + zg0 (z),
for z ∈ U . If m,λ, l ∈ N, f ∈ A and verifies the differential subordinationÃ

zIRm+1λ,l f (z)

IRmλ,lf (z)

!0
≺ h (z) , for z ∈ U, (8)

then
IRm+1λ,l f (z)

IRmλ,lf (z)
≺ g (z) , for z ∈ U

and this result is sharp.
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Proof. For f ∈ A, f(z) = z +
P∞
j=2 ajz

j we have IRmλ,lf (z) = z +
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
Cmm+j−1a

2
jz
j , for

z ∈ U .
Consider p (z) =

IRm+1
λ,l f(z)

IRm
λ,lf(z)

=
z+
P∞

j=2(
1+λ(j−1)+l

l+1 )
m+1

Cm+1
m+j a

2
jz

j

z+
P∞

j=2(
1+λ(j−1)+l

l+1 )
m
Cm
m+j−1a

2
jz

j
=

1+
P∞

j=2(
1+λ(j−1)+l

l+1 )
m+1

Cm+1
m+j a

2
jz

j−1

1+
P∞

j=2(
1+λ(j−1)+l

l+1 )
m
Cm
m+j−1a

2
jz

j−1 .

We have p0 (z) = (IRm+1
λ,l f(z))

0

IRmλ,lf(z)
− p (z) · (IR

m
λ,lf(z))

0

IRm
λ,lf(z)

.

Then p (z) + zp0 (z) =
µ
zIRm+1

λ,l f(z)

IRmλ,lf(z)

¶0
.

Relation (8) becomes p (z) + zp0 (z) ≺ h (z) = g (z) + zg0 (z), for z ∈ U and by using Lemma 3 we obtain

p (z) ≺ g (z), for z ∈ U , i.e. IR
m+1
λ,l f(z)

IRm
λ,lf(z)

≺ g (z), for z ∈ U.

Corollary 12 ([2]) Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z)+zg0 (z),
for z ∈ U . If n ∈ N, f ∈ A and verifies the differential subordinationµ

zDRn+1λ f (z)

DRnλf (z)

¶0
≺ h (z) , for z ∈ U, (9)

then
DRn+1λ f (z)

DRnλf (z)
≺ g (z) , for z ∈ U

and this result is sharp.

Corollary 13 ([1]) Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z)+zg0 (z),
for z ∈ U . If n ∈ N, f ∈ A and verifies the differential subordinationµ

zSRn+1f (z)

SRnf (z)

¶0
≺ h (z) , for z ∈ U, (10)

then
SRn+1f (z)

SRnf (z)
≺ g (z) , for z ∈ U

and this result is sharp.
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A special comprehensive class of analytic functions defined by
multiplier transformation

Alina Alb Lupaş
Department of Mathematics and Computer Science

University of Oradea
str. Universitatii nr. 1, 410087 Oradea, Romania

dalb@uoradea.ro

Abstract

For functions belonging to the class Sm (δ,α) , δ ∈ [0, 1), α ≥ 0 and m ∈ N, of normalized analytic
functions in the open unit disc U, which are investigated in this paper, the author derives several interesting
differential subordination results. These subordinations are established by means of a special case of the
multiplier transformations Ip (m,λ, l) f(z) namely

Ip (m,λ, l) f(z) := z
p +

∞P
j=p+n

µ
p+ λ (j − 1) + l

p+ l

¶m
ajz

j ,

where p, n ∈ N, m ∈ N∪ {0}, λ, l ≥ 0 and f ∈ A(p, n),

A (p, n) = {f ∈ H(U) : f(z) = zp +
∞P

j=p+n

ajz
j , z ∈ U}.

A number of interesting consequences of some of these subordination results are discussed. Relevant
connections of some of the new results obtained in this paper with those in earlier works are also provided.

Keywords: differential subordination, convex function, best dominant, differential operator.
2000 Mathematical Subject Classification: 30C45, 30A20, 34A40.

1 Introduction

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and H(U) the space of holomorphic
functions in U .
Let

A (p, n) = {f ∈ H(U) : f(z) = zp +
∞P

j=p+n
ajz

j , z ∈ U},

with A (1, n) = An, A (1, 1) = A1 = A and

H[a, n] = {f ∈ H(U) : f(z) = a+ anzn + an+1zn+1 + . . . , z ∈ U},

where p, n ∈ N, a ∈ C.
Denote by

K =

½
f ∈ A : Re zf

00(z)

f 0(z)
+ 1 > 0, z ∈ U

¾
the class of normalized convex functions in U .
If f and g are analytic functions in U , we say that f is subordinate to g, written f ≺ g, if there is a function

w analytic in U , with w(0) = 0, |w(z)| < 1, for all z ∈ U such that f(z) = g(w(z)) for all z ∈ U . If g is
univalent, then f ≺ g if and only if f(0) = g(0) and f(U) ⊆ g(U).

1
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Let ψ : C3 × U → C and h an univalent function in U . If p is analytic in U and satisfies the (second-order)
differential subordination

ψ(p(z), zp0(z), z2p00(z); z) ≺ h(z), for z ∈ U, (1)

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the
solutions of the differential subordination, or more simply a dominant, if p ≺ q for all p satisfying (1).
A dominant eq that satisfies eq ≺ q for all dominants q of (1) is said to be the best dominant of (1). The best

dominant is unique up to a rotation of U .

Definition 1.1. [4] For f ∈ A(p, n), p, n ∈ N, m ∈ N∪ {0}, λ, l ≥ 0, the operator Ip (m,λ, l) f(z) is defined by
the following infinite series

Ip (m,λ, l) f(z) := z
p +

∞P
j=p+n

µ
p+ λ (j − 1) + l

p+ l

¶m
ajz

j .

Remark 1.2. It follows from the above definition that

Ip (0,λ, l) f(z) = f(z),

(p+ l) Ip (m+ 1,λ, l) f(z) = [p(1− λ) + l] Ip (m,λ, l) f(z) + λz (Ip (m,λ, l) f(z))
0 ,

for z ∈ U.
Remark 1.3. If p = 1, n = 1, we have A(1, 1) = A1 = A, I1 (m,λ, l) f(z) = I (m,λ, l) and

(l + 1) I (m+ 1,λ, l) f(z) = [l + 1− λ] I (m,λ, l) f(z) + λz (I (m,λ, l) f(z))0 ,

for z ∈ U.
Remark 1.4. If f ∈ A, f(z) = z +

P∞
j=2 ajz

j, then

I (m,λ, l) f (z) = z +
∞P
j=2

µ
1 + λ (j − 1) + l

l + 1

¶m
ajz

j ,

for z ∈ U .
Remark 1.5. For l = 0, λ ≥ 0, the operator Dm

λ = I (m,λ, 0) was introduced and studied by Al-Oboudi , which
reduced to the Sălăgean differential operator Sm = I (m, 1, 0) for λ = 1.

Lemma 1.6. (Hallenbeck and Ruscheweyh [5, Th. 3.1.6, p. 71]) Let h be a convex function with h(0) = a, and
let γ ∈ C∗ be a complex number with Re γ ≥ 0. If p ∈ H[a, n] and

p(z) +
1

γ
zp0(z) ≺ h(z), for z ∈ U,

then
p(z) ≺ g(z) ≺ h(z), for z ∈ U,

where

g(z) =
γ

nzγ/n

Z z

0

h(t)tγ/n−1dt, for z ∈ U.

Lemma 1.7. (Miller and Mocanu [6]) Let g be a convex function in U and let

h(z) = g(z) + nαzg0(z), for z ∈ U,

where α > 0 and n is a positive integer.
If

p(z) = g(0) + pnz
n + pn+1z

n+1 + . . . , for z ∈ U
is holomorphic in U and

p(z) + αzp0(z) ≺ h(z), for z ∈ U,
then

p(z) ≺ g(z)
and this result is sharp.
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2 Main results

Definition 2.1. Let δ ∈ [0, 1), α ≥ 0 and m ∈ N. A function f ∈ A is said to be in the class Sm (δ,α) if it
satisfies the inequality

Re (I (m,λ, l) f (z))
0
> δ, for z ∈ U. (2)

Theorem 2.2. The set Sm (δ,α) is convex.

Proof. Let the functions

fj (z) = z +
∞P
j=2

ajkz
j , for k = 1, 2, z ∈ U,

be in the class Sm (δ,α). It is sufficient to show that the function

h (z) = η1f1 (z) + η2f2 (z)

is in the class Sm (δ,α) , with η1 and η2 nonnegative such that η1 + η2 = 1.

Since

h (z) = z +
∞P
j=2

(η1aj1 + η2aj2) z
j , for z ∈ U,

then

I (m,λ, l)h (z) = z +
∞P
j=2

µ
1 + λ (j − 1) + l

l + 1

¶m
(η1aj1 + η2aj2) z

j , for z ∈ U. (3)

Differentiating (3) we obtain

(I (m,λ, l)h (z))0 = 1 +
∞P
j=2

µ
1 + λ (j − 1) + l

l + 1

¶m
(η1aj1 + η2aj2) jz

j−1, for z ∈ U.

Hence

Re (I (m,λ, l)h (z))0 = 1 +Re

Ã
η1
∞P
j=2

j

µ
1 + λ (j − 1) + l

l + 1

¶m
aj1z

j−1

!
(4)

+Re

Ã
η2
∞P
j=2

j

µ
1 + λ (j − 1) + l

l + 1

¶m
aj2z

j−1

!
.

Taking into account that f1, f2 ∈ Sm (δ,α) we deduce

Re

Ã
ηk
∞P
j=2

j

µ
1 + λ (j − 1) + l

l + 1

¶m
ajkz

j−1

!
> ηk (δ − 1) , for k = 1, 2. (5)

Using (5) we get from (4)

Re (I (m,λ, l)h (z))0 > 1 + η1 (δ − 1) + η2 (δ − 1) , for z ∈ U,

that is
Re (I (m,λ, l)h (z))

0
> δ, for z ∈ U,

which is equivalent that Sm (δ,α) is convex.

Theorem 2.3. Let g be a convex function in U and let

h (z) = g (z) +
1

c+ 2
zg0 (z) , where z ∈ U, c > 0. (6)

If f ∈ Sm (δ,α) and F (z) = Ic (f) (z), where

F (z) = Ic (f) (z) =
c+ 2

zc+1

Z z

0

tcf (t) dt, for z ∈ U, (7)

3
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then
(I (m,λ, l) f (z))0 ≺ h (z) , for z ∈ U, (8)

implies
(I (m,λ, l)F (z))0 ≺ g (z) , for z ∈ U

and this result is sharp.

Proof. We deduce from (7)

zc+1F (z) = (c+ 2)

Z z

0

tcf (t) dt. (9)

Differentiating (9), with respect to z, we obtain

(c+ 1)F (z) + zF 0 (z) = (c+ 2) f (z) (10)

and
(c+ 1) I (m,λ, l)F (z) + z (I (m,λ, l)F (z))

0
= (c+ 2) I (m,λ, l) f (z) , for z ∈ U. (11)

Differentiating (11) we have

(I (m,λ, l)F (z))
0
+

1

c+ 2
z (I (m,λ, l)F (z))

00
= (I (m,λ, l) f (z))

0 , for z ∈ U. (12)

Using (12), the differential subordination (8) becomes

(I (m,λ, l)F (z))0 +
1

c+ 2
z (I (m,λ, l)F (z))00 ≺ g (z) + 1

c+ 2
zg0 (z) . (13)

If we denote
p (z) = (I (m,λ, l)F (z))0 , (14)

then p ∈ H [1, 1] .
Replacing (14) in (13) we obtain

p (z) +
1

c+ 2
zp0 (z) ≺ g (z) + 1

c+ 2
zg0 (z) , for z ∈ U.

Using Lemma 1.7 we have
p (z) ≺ g (z) ,

that is
(I (m,λ, l)F (z))0 ≺ g (z) , for z ∈ U

and g is the best dominant.

Example 2.4. If f ∈ S1
¡
1, 12

¢
then

f 0 (z) + zf 00 (z) ≺ 3− 2z
3 (1− z)2

,

implies

F 0 (z) + zF 00 (z) ≺ 1

1− z ,

where F (z) = 3
z2

R z
0
tf (t) dt.

4
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Theorem 2.5. Let

h (z) =
1 + (2δ − 1) z

1 + z
, (15)

with δ ∈ [0, 1) and c > 0.
If α ≥ 0, m ∈ N and Ic is given by (7) then

Ic [Sm (δ,α)] ⊂ Sm (δ∗,α) , (16)

where
δ∗ = 2δ − 1 + (c+ 2) (2− 2δ)β (c) (17)

and

β (x) =

Z 1

0

tx+1

t+ 1
dt. (18)

Proof. If we consider the function h given in (15) then h is convex and using the same steps as in the proof of
Theorem 2.3 we get from the hypothesis of Theorem 2.5 that

p (z) +
1

c+ 2
zp0 (z) ≺ h (z) ,

where p (z) is defined in (14).
Using Lemma 1.6 we deduce that

p (z) ≺ g (z) ≺ h (z) ,

that is
(I (m,λ, l)F (z))

0 ≺ g (z) ≺ h (z) ,

where

g (z) =
c+ 2

zc+2

Z z

0

tc+1
1 + (2δ − 1) t

1 + t
dt =

2δ − 1 + (c+ 2) (2− 2δ)
zc+2

Z z

0

tc+1

t+ 1
dt.

Since g is convex and g (U) is symmetric with respect to the real axis, we deduce

Re (I (m,λ, l)F (z))0 ≥ min
|z|=1

Re g (z) = Re g (1) = δ∗ = (19)

2δ − 1 + (c+ 2) (2− 2δ)β (c) ,

where β is given in (18).
From (19) we deduce inclusion (16).

Theorem 2.6. Let g be a convex function, g(0) = 1 and let h be the function

h(z) = g(z) + zg0(z), for z ∈ U.

If α ≥ 0, m ∈ N, f ∈ A and verifies the differential subordination

(I (m,λ, l) f (z))
0 ≺ h(z), for z ∈ U, (20)

then
I (m,λ, l) f (z)

z
≺ g(z), for z ∈ U

and this result is sharp.

5
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Proof. Consider

p(z) =
I (m,λ, l) f(z)

z
=
z +

P∞
j=2

³
1+λ(j−1)+l

l+1

´m
ajz

j

z

= 1 + p1z + p2z
2 + ..., for z ∈ U.

We deduce that p ∈ H[1, 1].
Let

I (m,λ, l) f(z) = zp(z), for z ∈ U.

Differentiating we obtain

(I (m,λ, l) f(z))
0
= p(z) + zp0(z), for z ∈ U.

Then (20) becomes
p(z) + zp0(z) ≺ h(z) = g(z) + zg0(z), for z ∈ U.

By using Lemma 1.7, we have
p(z) ≺ g(z), for z ∈ U,

i.e.
I (m,λ, l) f(z)

z
≺ g(z), for z ∈ U.

Theorem 2.7. Let h be an holomorphic function which verifies the inequality
Re

³
1 + zh00(z)

h0(z)

´
> −12 , for z ∈ U and h (0) = 1.

If α ≥ 0, m ∈ N, f ∈ A and verifies the differential subordination

(I (m,λ, l) f (z))0 ≺ h(z), for z ∈ U, (21)

then
I (m,λ, l) f (z)

z
≺ q(z), for z ∈ U,

where

q(z) =
1

z

Z z

0

h(t)dt.

The function q is convex and it is the best dominant.

Proof. Let

p(z) =
I (m,λ, l) f(z)

z
=
z +

P∞
j=2

³
1+λ(j−1)+l

l+1

´m
ajz

j

z

= 1 +
∞X
j=2

µ
1 + λ (j − 1) + l

l + 1

¶m
ajz

j−1 = 1 + z +
∞X
j=2

pjz
j−1,

where z ∈ U , p ∈ H[1, 1].
Differentiating, we obtain

(I (m,λ, l) f(z))
0
= p(z) + zp0(z), for z ∈ U

and (21) becomes
p(z) + zp0(z) ≺ h(z), for z ∈ U.

6
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Using Lemma 1.6, we have

p(z) ≺ q(z) = 1

z

Z z

0

h(t)dt, for z ∈ U,

i.e.
I (m,λ, l) f(z)

z
≺ q(z) = 1

z

Z z

0

h(t)dt, for z ∈ U

and q is the best dominant.

Theorem 2.8. Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z) + zg0 (z),
for z ∈ U .
If α ≥ 0, m ∈ N, f ∈ A and the differential subordinationµ

zI (m+ 1,λ, l) f (z)

I (m,λ, l) f (z)

¶0
≺ h (z) , for z ∈ U (22)

holds, then
I (m+ 1,λ, l) f (z)

I (m,λ, l) f (z)
≺ g (z) , for z ∈ U

and this result is sharp.

Proof. Consider

p(z) =
I (m+ 1,λ, l) f(z)

I (m,λ, l) f (z)
=
z +

P∞
j=2

³
1+λ(j−1)+l

l+1

´m+1
ajz

j

z +
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
ajzj

.

We have p0 (z) = (I(m+1,λ,l)f(z))0

I(m,λ,l)f(z) − p (z) · (I(m,λ,l)f(z))
0

I(m,λ,l)f(z) and we obtain

p (z) + z · p0 (z) =
³
zI(m+1,λ,l)f(z)
I(m,λ,l)f(z)

´0
.

Relation (22) becomes
p(z) + zp0(z) ≺ h(z) = g(z) + zg0(z), for z ∈ U.

By using Lemma 1.7, we have
p(z) ≺ g(z), for z ∈ U,

i.e.
I (m+ 1,λ, l) f(z)

I (m,λ, l) f (z)
≺ g(z), for z ∈ U.

Theorem 2.9. Let g be a convex function such that g(0) = 1 and let h be the function

h(z) = g(z) + zg0(z), for z ∈ U.

If α ≥ 0, m ∈ N, f ∈ A and the differential subordination

l + 1

λ
I (m+ 1,λ, l) f (z) +

µ
2− l + 1

λ

¶
I (m,λ, l) f (z) ≺ h(z), for z ∈ U (23)

holds, then
[I (m,λ, l) f(z)]0 ≺ g(z), for z ∈ U.

This result is sharp.

7
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Proof. Let
p(z) = (I (m,λ, l) f(z))0 (24)

= 1 +
∞X
j=2

µ
1 + λ (j − 1) + l

l + 1

¶m
jajz

j−1 = 1 + p1z + p2z
2 + ....

We deduce that p ∈ H[1, 1].
We obtain p (z) + z · p0 (z) = I (m,λ, l) f (z) + z (I (m,λ, l) f (z))0 =

I (m,λ, l) f (z) + (l+1)I(m+1,λ,l)f(z)−(l+1−λ)I(m,λ,l)f(z)
λ =

l+1
λ I (m+ 1,λ, l) f (z) +

¡
2− l+1

λ

¢
I (m,λ, l) f (z)

Using the notation in (24), the differential subordination becomes

p(z) + zp0(z) ≺ h(z) = g(z) + zg0(z).

By using Lemma 1.7, we have
p(z) ≺ g(z), for z ∈ U,

i.e.
(I (m,λ, l) f(z))

0 ≺ g(z), for z ∈ U
and this result is sharp.

Example 2.10. If n = 1, α = 1, f ∈ A, we deduce that

f 0(z) + 3zf 00(z) + z2f 000(z) ≺ g(z) + zg0(z),

which yields that
f 0(z) + zf 00(z) ≺ g(z), for z ∈ U.

Theorem 2.11. Let

h(z) =
1 + (2β − 1)z

1 + z
,

a convex function in U , 0 ≤ β < 1.
If α ≥ 0, m ∈ N, f ∈ A and verifies the differential subordination

l + 1

λ
I (m+ 1,λ, l) f (z) +

µ
2− l + 1

λ

¶
I (m,λ, l) f (z) ≺ h(z), for z ∈ U, (25)

then
[I (m,λ, l) f(z)]0 ≺ q(z), for z ∈ U,

where q is given by

q(z) = 2β − 1 + 2(1− β)
ln(1 + z)

z
, for z ∈ U.

The function q is convex and it is the best dominant.

Proof. Following the same steps as in the proof of Theorem 2.9 and considering p(z) = (I (m,λ, l) f (z))0, the
differential subordination (25) becomes

p(z) + zp0(z) ≺ h(z) = 1 + (2β − 1)z
1 + z

, for z ∈ U.

By using Lemma 1.6 for γ = 1 and n = 1, we have p(z) ≺ q(z), i.e.,

(I (m,λ, l) f(z))
0 ≺ q(z) =

1

z

Z z

0

h(t)dt =
1

z

Z z

0

1 + (2β − 1)t
1 + t

dt

=
1

z

Z z

0

µ
2β − 1 + 2(1− β)

1 + t

¶
dt = 2β − 1 + 2(1− β)

1

z
ln(z + 1),

for z ∈ U.

8
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Theorem 2.12. Let h be an holomorphic function which verifies the inequality
Re

h
1 + zh00(z)

h0(z)

i
> −12 , for z ∈ U and h (0) = 1.

If α ≥ 0, m ∈ N, f ∈ A and satisfies the differential subordination
l + 1

λ
I (m+ 1,λ, l) f (z) +

µ
2− l + 1

λ

¶
I (m,λ, l) f (z) ≺ h(z), for z ∈ U, (26)

then
[I (m,λ, l) f(z)]0 ≺ q(z), for z ∈ U,

where q is given by

q(z) =
1

z

Z z

0

h(t)dt.

The function q is convex and it is the best dominant.

Proof. Using the properties of operator I (m,λ, l) and considering p (z) = (I (m,λ, l) f (z))0, we obtain

p(z) + zp0(z) =
l + 1

λ
I (m+ 1,λ, l) f (z) +

µ
2− l + 1

λ

¶
I (m,λ, l) f (z) , for z ∈ U.

Then (26) becomes
p(z) + zp0(z) ≺ h(z), for z ∈ U.

Since p ∈ H[1, 1], using Lemma 1.6, we deduce

p(z) ≺ q(z), for z ∈ U,

where

q(z) =
1

z

Z z

0

h(t)dt, for z ∈ U,

i.e.

(I (m,λ, l) f(z))
0 ≺ q(z) = 1

z

Z z

0

h(t)dt, for z ∈ U,

and q is the best dominant.
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Inequalities and Applications, (to appear).

[3] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Ind. J. Math. Math.
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Abstract

The aim of this note is that by using the so-called max-product method,
to associate to the Cardaliaguet-Euvrard linear operator, a nonlinear neu-
ral network operator for which a Jackson-type approximation order is
obtained. In some classes of functions, the order of approximation is es-
sentially better than the order of approximation of the linear operator.
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1 Introduction

Based on the Open Problem 5.5.4, pp. 324-326 in Gal [7], in a series of re-
cent papers submitted for publication we have introduced and studied the so-
called max-product operators attached to the Bernstein polynomials and to
other linear Bernstein-type operators, like those of Favard-Szász-Mirakjan op-
erators (truncated and nontruncated case), Baskakov operators (truncated and
nontruncated case), Meyer-König and Zeller operators and Bleimann-Butzer-
Hahn operators.

This idea applied, for example, to the linear Bernstein operators Bn(f)(x) =∑n
k=0 pn,k(x)f(k/n), where pn,k(x) =

(
n
k

)
xk(1− x)n−k, works as follows. Writ-

1
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ing in the equivalent form Bn(f)(x) =
∑n

k=0 pn,k(x)f(k/n)∑n
k=0 pn,k(x) and then replacing

the sum operator Σ by the maximum operator
∨

, one obtains the nonlinear
Bernstein operator of max-product kind

B(M)
n (f)(x) =

n∨

k=0

pn,k(x)f
(

k
n

)

n∨

k=0

pn,k(x)

,

where the notation
∨n

k=0 pn,k(x) means max{pn,k(x); k ∈ {0, ..., n}} and simi-
larly for the numerator.

For this max-product operator nice approximation and shape preserving
properties were found in e.g. Bede, Coroianu & Gal [5].

For example, it is proved that for some classes of functions (like those of
concave functions), the order of approximation given by the max-product Bern-
stein operators, are essentially better than the approximation order of their
linear counterparts.

The aim of the present paper is to use the same idea to the neural networks
of Cardaliaguet-Euvrard-type introduced and studied in e.g. Cardaliaguet &
Euvrard [6], Anastassiou [1]-[3], Zhang, Cao, & Xu [8] (see also the references
cited there). We will obtain that in the class of Lipschitz functions with posi-
tive values, the new obtained nonlinear neural network operator has essentially
better approximation property than its linear counterpart.

Thus, by following Cardaliaguet & Euvrard [6], for b : R → R+ a cen-
tered bell-shaped function (that is, nondecreasing on (−∞, 0], nonincreasing
on [0,+∞) ), with compact support [−T, T ], T > 0 (that is b(x) > 0 for all
x ∈ (−T, T )) and therefore such that I =

∫ T

−T
b(x)dx > 0, the Cardaliaguet-

Euvrard neural network is defined by

Cn,α(f)(x) =
n2∑

k=−n2

f(k/n)
I · n1−α

· b
(

n1−α

(
x− k

n

))
,

where 0 < α < 1, n ∈ N and f : R→ R is continuous and bounded or uniformly
continuous on R

Denoting by CB(R) the space of all real-valued continuous and bounded
functions on R and CB+(R) = {f : R → [0,∞); f ∈ CB(R)}, applying the
max-product method as in the above case of Bernstein polynomials, the corre-
sponding max-product Cardaliaguet-Euvrard network operator will be formally
given by

C(M)
n,α (f)(x) =

n2∨

k=−n2

b
[
n1−α

(
x− k

n

)]
f

(
k
n

)

n2∨

k=−n2

b
[
n1−α

(
x− k

n

)]
, x ∈ R, f ∈ CB+(R).
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Remark. For any x ∈ R, denoting JT,n(x) = {k ∈ Z;−n2 ≤ k ≤ n2, n1−α(x−
k/n) ∈ (−T, T )}, then we can write as a well defined operator

C(M)
n,α (f)(x) =

∨

k∈JT,n(x)

b
[
n1−α

(
x− k

n

)]
f

(
k
n

)

∨

k∈JT,n(x)

b
[
n1−α

(
x− k

n

)] , x ∈ R, n > max{T +|x|, T−1/α},

(1)
where JT,n(x) 6= ∅, for all x ∈ R and n > max{T + |x|, T−1/α}. Indeed, we have

∨

k∈JT,n(x)

b

[
n1−α

(
x− k

n

)]
> 0, for all x ∈ R and n > max{T + |x|, T−1/α},

because by e.g. Anastassiou [1], relationships (2)-(4), pp. 238-239, if n ≥ T + |x|
then −n2 ≤ nx−Tnα ≤ nx + Tnα ≤ n2, while n1−α|x− k/n| < T is equivalent
to nx− Tnα < k < nx + Tnα. This implies that if (nx + Tnα)− (nx− Tnα) =
2Tnα > 2 and n ≥ T + |x|, then JT,n(x) 6= ∅, which proves our assertion.

The plan of the paper goes as follows : in Section 2 we present some aux-
iliary results, in Section 3 we obtain the main approximation result, while in
Section 4 we compare the approximation result in Section 3 with that for the
corresponding linear neural Cardaliaguet-Euvrard network operator.

2 Auxiliary Results

Remark. From the consideration in the last Remark of Section 1, it is clear that
C

(M)
n,α (f)(x) is a well-defined function for all x ∈ R and n > max{T + |x|, T−1/α}

and it is continuous on R if b is continuous on R.
In addition, C

(M)
n,α (e0)(x) = 1, where e0(x) = 1, for all x ∈ R and n >

max{T + |x|, T−1/α}.
In what follows we will see that for f ∈ CB+(R), the C

(M)
n,α operator fulfils

similar properties with those of the B
(M)
n (f) operator in Bede & Gal [4].

Lemma 2.1. Let b(x) be a centered bell-shaped function, continuous and
with compact support [−T, T ], T > 0, 0 < α < 1 and C

(M)
n,α be defined as in

Section 1.
(i) If |f(x)| ≤ c for all x ∈ R then |C(M)

n,α (f)(x)| ≤ c, for all x ∈ R and
n > {T + |x|, T−1/α} and C

(M)
n,α (f)(x) is continuous at any point x ∈ R, for all

n > max{T + |x|, T−1/α};
(ii) If f, g ∈ CB+(R) satisfy f(x) ≤ g(x) for all x ∈ R, then C

(M)
n,α (f)(x) ≤

C
(M)
n,α (g)(x) for all x ∈ R and n > max{T + |x|, T−1/α} ;

(iii) C
(M)
n,α (f + g)(x) ≤ C

(M)
n,α (f)(x) + C

(M)
n,α (g)(x) for all f, g ∈ CB+(R),

x ∈ R and n > max{T + |x|, T−1/α} ;
(iv) For all f, g ∈ CB+(R), x ∈ R and n > max{T + |x|, T−1/α}, we have

|C(M)
n,α (f)(x)− C(M)

n,α (g)(x)| ≤ C(M)
n,α (|f − g|)(x);

3
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(v) C
(M)
n,α is positive homogenous, that is C

(M)
n,α (λf)(x) = λC

(M)
n,α (f)(x) for

all λ ≥ 0, x ∈ R, n > max{T + |x|, T−1/α} and f ∈ CB+(R).
Proof. (i) Immediate by the formula of definition for C

(M)
n,α in (1).

(ii) Let f, g ∈ CB+(R) be with f ≤ g and fix x ∈ R, n > max{T +
|x|, T−1/α}. Since JT,n(x) is independent of f and g, by (1) we immediately get
the conclusion.

(iii) By (1) and by the sublinearity of
∨

, it is immediate.
(iv) Let f, g ∈ CB+(R). We have f = f − g + g ≤ |f − g| + g, which by

(i) − (iii) successively implies C
(M)
n,α (f)(x) ≤ C

(M)
n,α (|f − g|)(x) + C

(M)
n,α (g)(x),

that is C
(M)
n,α (f)(x) − C

(M)
n,α (g)(x) ≤ C

(M)
n,α (|f − g|)(x), for all x ∈ R and n >

max{T + |x|, T−1/α}.
Writing now g = g− f + f ≤ |f − g|+ f and applying the above reasonings,

it follows C
(M)
n,α (g)(x) − C

(M)
n,α (f)(x) ≤ C

(M)
n,α (|f − g|)(x), which combined with

the above inequality gives |C(M)
n,α (f)(x) − C

(M)
n,α (g)(x)| ≤ C

(M)
n,α (|f − g|)(x), for

all x ∈ R and n > max{T + |x|, T−1/α}.
(v) By (1) it is immediate. ¤
Remark. By (1) it is easy to see that instead of (ii), C

(M)
n,α satisfies the

stronger condition

Cn,α(f ∨ g)(x) = Cn,α(f)(x) ∨ Cn,α(g)(x),

for all f, g ∈ CB+(R), x ∈ R, n > max{T + |x|, T−1/α}.
Corollary 2.2. For all f ∈ CB+(R), 0 < α < 1, b(x) as in the statement

of Lemma 2.1, x ∈ R and n > max{T + |x|, T−1/α}, we have

|f(x)− C(M)
n,α (f)(x)| ≤

[
1
δ
C(M)

n,α (Φx)(x) + 1
]

ω1(f ; δ)R,

where δ > 0, Φx(u) = |x − u| for all x, u ∈ R, and ω1(f ; δ)R = max{|f(x) −
f(y)|; x, y ∈ R, |x− y| ≤ δ}.

Proof. Indeed, denoting e0(x) = 1, from the identity valid for all x ∈ R and
n > max{T + |x|, T−1/α},
C(M)

n,α (f)(x)−f(x) = [C(M)
n,α (f)(x)−f(x) ·C(M)

n,α (e0)(x)]+f(x)[C(M)
n,α (e0)(x)−1],

by Lemma 2.1 it easily follows

|f(x)− C(M)
n,α (f)(x)| ≤

|C(M)
n,α (f(x))(x)− C(M)

n,α (f(u))(x)|+ |f(x)| · |C(M)
n,α (e0)(x)− 1| ≤

C(M)
n,α (|f(u)− f(x)|)(x) + |f(x)| · |C(M)

n,α (e0)(x)− 1|.
Now, since for all u, x ∈ R we have

|f(u)− f(x)| ≤ ω1(f ; |u− x|)R ≤
[
1
δ
|u− x|+ 1

]
ω1(f ; δ)R,

4
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replacing above and taking into account that C
(M)
n,α (e0) = 1, we immediately

obtain the estimate in the statement. ¤
Remark. Therefore, to get an approximation property for C

(M)
n,α , it is

enough to obtain a good estimate for

En,α(x) = C(M)
n,α (Φx)(x) =

∨
k∈JT,n(x) b

[
n1−α

(
x− k

n

)] |x− k/n|
∨

k∈JT,n(x) b
[
n1−α

(
x− k

n

)] ,

for all x ∈ R and n > max{T + |x|, T−1/α}.

3 Approximation Results

In this section we obtain an approximation result for the operator C
(M)
n,α (f). For

this purpose, first of all we need to calculate the denominators of C
(M)
n,α (f)(x)

and of En,α(x), that is we will exactly calculate the expression

∨

k∈JT,n(x)

b

[
n1−α

(
x− k

n

)]
=

n2∨

k=−n2

b

[
n1−α

(
x− k

n

)]
.

In this sense, we present the following.
Lemma 3.1. Let b(x) be a centered bell-shaped function, continuous and

with compact support [−T, T ], T > 0 and 0 < α < 1.
Then for any j ∈ Z with −n2 ≤ j ≤ n2, all x ∈ [j/n, (j + 1)/n] and

n > max{T + |x|, T−1/α}, we have

n2∨

k=−n2

b

[
n1−α

(
x− k

n

)]
=

max
{

b

[
n1−α

(
x− j

n

)]
, b

[
n1−α

(
x− j + 1

n

)]}
> 0.

Proof. Let j ∈ Z with −n2 ≤ j ≤ n2, x ∈ [j/n, (j + 1)/n] and n >
max{T + |x|, T−1/α}. We can write

n2∨

k=−n2

b

[
n1−α

(
x− k

n

)]
=

max





j∨

k=−n2

b

[
n1−α

(
x− k

n

)]
,

n2∨

k=j+1

b

[
n1−α

(
x− k

n

)]

 .

We observe that for k ∈ {−n2, ..., j} we have n1−α(x−k/n) ≥ n1−α(x−j/n) ≥ 0
and since b is nonincreasing on [0,+∞), it easily follows that

j∨

k=−n2

b

[
n1−α

(
x− k

n

)]
= b

[
n1−α

(
x− j

n

)]
.

5

ANASTASSIOU et al: APPROXIMATION BY NEURAL NETWORK OPERATORS400



Similarly, observing that for k ∈ {j + 1, ..., n2} we have n1−α(x − k/n) ≤
n1−α(x−(j +1)/n) ≤ 0, since b(x) is nondecreasing on (−∞, 0], it easily follows
that

n2∨

k=j+1

b

[
n1−α

(
x− k

n

)]
= b

[
n1−α

(
x− j + 1

n

)]
.

It remains to prove that for x ∈ [j/n, (j + 1)/n] and n > max{T + |x|, T−1/α}
we have j, j + 1 ∈ JT,n(x). Indeed, since x ∈ [j/n, (j + 1)/n] is equivalent to
j ≤ nx ≤ j + 1, we evidently get j < nx + Tnα ≤ n2, for all n ≥ T + |x| and
j +1 ≤ nx+1 < nx+Tnα ≤ n2, for all n > max{T + |x|, T−1/α}. Also, because
−n2 ≤ nx− Tnα ≤ j + 1− Tnα < j < j + 1, for all n > max{T + |x|, T−1/α},
we get that j, j +1 ∈ JT,n(x) for all n > max{T + |x|, T−1/α}, which proves the
lemma. ¤

Remark. The formula in the statement of Lema 3.1 is valid for all x ∈
[−n, +n] only. Indeed, since in Lemma 3.1 we suppose that n > |x| + T , it
follows that we cannot have the complementary possibilities for x, x ∈ (n, +∞)
or x ∈ (−∞,−n), because in both cases this would imply the contradiction
|x| > n > |x|+ T .

Theorem 3.2. Let b(x) be a centered bell-shaped function, continuous and
with compact support [−T, T ], T > 0 and 0 < α < 1. In addition, suppose that
the following requirements are fulfilled:

(i) There exist 0 < m1 ≤ M1 < ∞ such that m1(T − x) ≤ b(x) ≤
M1(T − x) for all x ∈ [0, T ];

(ii) There exist 0 < m2 ≤ M2 < ∞ such that m2(x + T ) ≤ b(x) ≤
M2(x + T ) for all x ∈ [−T, 0].

Then for all f ∈ CB+(R), x ∈ R and for all n ∈ N satisfying n > max{T +
|x| , (2/T )1/α}, we have the estimate

|f(x)− C(M)
n,α (f)(x)| ≤ cω1

(
f ;nα−1

)
R ,

where

c = 2
(

max
{

TM2

2m2
,
TM1

2m1

}
+ 1

)
.

Proof. Let x ∈ R and let j ∈ Z with −n2 ≤ j ≤ n2 − 1 such that
x ∈ [j/n, (j + 1)/n]. Also, let kx ∈ JT,n(x) be such that

∨

k∈JT,n(x)

b

[
n1−α

(
x− k

n

)]
|x− k

n
| = b

[
n1−α

(
x− kx

n

)] ∣∣∣∣x−
kx

n

∣∣∣∣ .

It follows that

En,α(x) =
b
[
n1−α

(
x− kx

n

)] |x− kx

n |∨
k∈JT,n(x) b

[
n1−α

(
x− k

n

)] .

Tacking into account Lemma 3.1 we immediately obtain

En,α(x) = min

{
b
[
n1−α

(
x− kx

n

)] |x− kx

n |
b
[
n1−α

(
x− j

n

)] ,
b
[
n1−α

(
x− kx

n

)] |x− kx

n |
b
[
n1−α

(
x− j+1

n

)]
}

,

6
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for all n > max{T + |x|, T−1/α}.
In order to prove the estimate in the theorem we distinguish the following

two cases: 1) kx > j and 2) kx ≤ j.
Case 1) Taking into account condition (ii), since kx ∈ JT,n(x) and j + 1 ∈

JT,n(x), by x− kx/n ≤ 0 and x− (j + 1)/n ≤ 0, we immediately get

En,α(x) ≤ b
[
n1−α

(
x− kx

n

)]
(kx

n − x)

b
[
n1−α

(
x− j+1

n

)] ≤ M2

m2
· [T + n1−α

(
x− kx

n

)
](kx

n − x)

T + n1−α
(
x− j+1

n

)

≤ M2

m2
· [T + n1−α

(
x− kx

n

)
](kx

n − x)
T + n1−α

(−1
n

)

=
M2

m2
· nα[T + n1−α

(
x− kx

n

)
](kx

n − x)
Tnα − 1

.

Since [T +n1−α
(
x− kx

n

)
](kx

n −x) = −n1−α
(

kx

n − x− T
2n1−α

)2
+ T 2

4n1−α ≤ T 2

4n1−α ,
it easily follows that

En,α(x) ≤ M2

4m2
· T 2n2α−1

Tnα − 1
=

M2

4m2
· T 2nα

Tnα − 1
· nα−1.

Supposing, in addition, that n > (2/T )1/α (where clearly (2/T )1/α > T−1/α),
it follows that

nα

Tnα − 1
=

1
T

(
1 +

1/T

nα − 1/T

)
≤ 1

T

(
1 +

1/T

2/T − 1/T

)
=

2
T

,

which implies

En,α(x) ≤ TM2

2m2
· nα−1,

for all n > max{T + |x| , (2/T )1/α}.
Case 2) Taking into account condition (i), since kx ∈ JT,n(x) and j ∈

JT,n(x), by x− kx/n ≥ 0 and x− j/n ≥ 0, we immediately get

En,α(x) ≤ b
[
n1−α

(
x− kx

n

)]
(x− kx

n )

b
[
n1−α

(
x− j

n

)] ≤ M1

m1
· [T − n1−α

(
x− kx

n

)
](x− kx

n )

T − n1−α
(
x− j

n

)

≤ M1

m1
· [T − n1−α

(
x− kx

n

)
](x− kx

n )
T − n1−α

(
1
n

)

=
M1

m1
· nα[T − n1−α

(
x− kx

n

)
](x− kx

n )
Tnα − 1

.

Since [T−n1−α
(
x− kx

n

)
](x− kx

n ) = −n1−α
(
x− kx

n − T
2n1−α

)2
+ T 2

4n1−α ≤ T 2

4n1−α ,
reasoning exactly as in the Case 1), we obtain

En,α(x) ≤ TM1

2m1
· nα−1,

7
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for all n > max{T + |x| , (2/T )1/α}.
Now, applying Corollary 2.2 for δ = max{TM2

2m2
·n1−α, TM1

2m1
·n1−α} and from

the property ω1(f, λδ)R ≤ (λ+1)ω1(f, δ)R, we obtain the desired conclusion. ¤
Corollary 3.3. Let b(x) be a centered bell-shaped function, continuous and

with compact support [−T, T ], T > 0 and 0 < α < 1. If 0 < lim
x↗T

b(x)
T−x < ∞

and 0 < lim
x↘−T

b(x)
T+x < ∞ then for all f ∈ CB+(R), x ∈ R and for all all n ∈ N

satisfying n > max{T + |x| , (2/T )1/α} there exists c ∈ R+ independent of n
and f such that

|f(x)− C(M)
n,α (f)(x)| ≤ cω1

(
f ;nα−1

)
R .

Proof. Let us consider the function g : [0, T ] → R, g(x) = b(x)
T−x if x ∈

[0, T ) and g(T ) = lim
x↗T

b(x)
T−x . From our assumptions we get that g is continuous

and strictly positive. By the Weierstrass’ theorem it follows that g attains its
minimum and maximum. Hence there exist 0 < m1 ≤ M1 < ∞ such that m1 ≤
g(x) ≤ M1 for all x ∈ [0, T ]. It follows that m1(T − x) ≤ b(x) ≤ M1(T − x) for
all x ∈ [0, T ). Since b(T ) = 0 we easily get that m1(T − x) ≤ b(x) ≤ M1(T − x)
for all x ∈ [0, T ].

Now, let us consider the function h : [−T, 0], h(x) = b(x)
T+x if x ∈ (−T, 0] and

h(−T ) = lim
x↘−T

b(x)
T+x Again, it is easy to prove that there exist 0 < m2 ≤ M2 <

∞ such that m2(x + T ) ≤ b(x) ≤ M2(x + T ) for all x ∈ [−T, 0].
From the above considerations, applying Theorem 3.2 we easily obtain the

desired conclusion. ¤
In what follows, we will give some examples of bell-shaped functions for

which we can apply Theorem 3.2.
Example 1. Let us consider b : R→ [0,∞), b(x) = 1 + x if x ∈ [−1, 0],

b(x) = 1 − x if x ∈ [0, 1], b(x) = 0 elsewhere. Using the same notations as
in Theorem 3.2 we have T = 1 and m1 = M1 = m2 = M2 = 1. By Theorem
3.2, it follows that for all f ∈ CB+(R), x ∈ R and for all n ∈ N satisfying
n > max{T + |x| , (2/T )1/α}, we have the estimate

|f(x)− C(M)
n,α (f)(x)| ≤ 3ω1

(
f ; nα−1

)
R .

Example 2. Let us consider b : R→ [0,∞), b(x) = 1 − x2 if x ∈ [−1, 1],
b(x) = 0 elsewhere. We have T = 1, m1 = m2 = 1, M1 = M2 = 2. By Theorem
3.2, it follows that for all f ∈ CB+(R), x ∈ R and for all n ∈ N satisfying
n > max{T + |x| , (2/T )1/α}, we have the estimate

|f(x)− C(M)
n,α (f)(x)| ≤ 4ω1

(
f ; nα−1

)
R .

Example 3. Let us consider b : R→ [0,∞), b(x) = cos x if x ∈ [−π/2, π/2],
b(x) = 0 elsewhere. Since for t ∈ [0, π/2] we have 2t/π ≤ sin t ≤ t it follows
that (2/π)(π/2 − x) ≤ sin(π/2 − x) = cos x ≤ π/2 − x for all x ∈ [0, π/2] and
(2/π)(π/2+x) ≤ sin(π/2+x) = cos x ≤ π/2+x for all x ∈ [−π/2, 0]. From the

8
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above inequalities it follows that T = π/2, m1 = m2 = 2/π and M1 = M2 = 1.
Applying Theorem 3.2, we obtain

|f(x)− C(M)
n,α (f)(x)| ≤ 7ω1

(
f ; nα−1

)
R .

Remark. In what follows we will prove that in general, if the bell-shaped
function b satisfies the hypothesis of Theorem 3.2, then the order of approxi-
mation of the expression En,α(x) in Theorem 3.2. cannot be improved. Firstly,
let us notice that from the conclusion of Theorem 3.2 it suffices to prove that
we cannot improve the order of approximation of the expression En,α(x) for the
case when b(x) = T + x if x ∈ [−T, 0], b(x) = T − x if x ∈ [0, T ], b(x) = 0 else-
where. Without any loss of generality we may assume that T = 1. For n ∈ N,
n > (2/T )1/α, take xn = 1/2n. It is easy to check that for all n ≥ 2, we have
n > max{T + |xn| , (2/T )1/α}. Since xn ∈ (0, 1/n),by Lemma 3.1, it follows

that
k=n2∨

k=−n2
b
[
n1−α

(
xn − k

n

)]
= max

{
b(n1−αxn), b

[
n1−α

(
xn − 1

n

)]}
. Through

simple calculus we get

n2∨

k=−n2

b

[
n1−α

(
xn − k

n

)]
=

2nα − 1
2nα

.

This, immediately implies

En,α(xn) =

k=n2∨
k=−n2

b
[
n1−α

(
xn − k

n

)] |xn − k
n |

(2nα − 1)/2nα
.

From the above equality it follows that for all k ∈ Z, −n2 ≤ k ≤ n2, we have

En,α(xn) ≥ b
[
n1−α

(
xn − k

n

)] |xn − k
n |

(2nα − 1)/2nα
. (2)

Let us take kn = [ 5nα+3
6 ]− 1. It is easy to check that −n2 ≤ kn ≤ n2. Also, for

n sufficiently large we have xn ≤ kn/n. Then,

b

[
n1−α

(
xn − kn

n

)]
|xn − kn

n
|

= [1 + n1−α

(
1
2n

− kn

n

)
](

kn

n
− xn) = −n1−α

(
kn

n
− 1

2n
− 1

2n1−α

)2

+
1

4n1−α

= −n1−α

(
2kn − 1

2n
− 1

2n1−α

)2

+
1

4n1−α
.

Since
2kn − 1

2n
− 1

2n1−α

=
2

(
[ 5nα+3

6 ]− 1
)− 1

2n
− 1

2n1−α
≥ 2

(
5nα+3

6 − 2
)− 1

2n
− 1

2n1−α
=

1
3n1−α

− 2
n

,

9
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it follows that for n ≥ 61/α we have 2kn−1
2n − 1

2n1−α ≥ 0. Therefore, for n ≥ 61/α

we have

− n1−α

(
2kn − 1

2n
− 1

2n1−α

)2

+
1

4n1−α

= −n1−α

(
2

(
[ 5nα+3

6 ]− 1
)− 1

2n
− 1

2n1−α

)2

+
1

4n1−α

≥ −n1−α

(
2 · 5nα+3

6 − 1
2n

− 1
2n1−α

)2

+
1

4n1−α
=

5
36
· nα−1.

Taking into account relation (2) and the above inequality, we get

En,α(xn) ≥ b
[
n1−α

(
xn − kn

n

)] |xn − kn

n |
(2nα − 1)/2nα

=
−n1−α

(
2kn−1

2n − 1
2n1−α

)2
+ 1

4n1−α

(2nα − 1)/2nα

≥
5
36 · nα−1

(2nα − 1)/2nα
=

5nα

18(2nα − 1)
· nα−1.

Since lim
n→∞

5nα

18(2nα−1) = 5
36 , it follows that for n sufficiently large we get

En,α(xn) ≥ 1
8
· nα−1,

which implies the desired conclusion.

4 Conclusion

The linear Cardaliaguet-Euvrard operators Cn,α(f)(x) were introduced in Carda-
liaguet & Euvrard [6], were it is proved the convergence on compacta to the ap-
proximated function. The results were of qualitative type. The first quantitative
type estimates in the approximation by Cn,α(f)(x) was obtained in Anastassiou
[1]-[3] and then improved in Zhang, Cao, & Xu [8], where at the page 1164 the
following type of quantitative estimate is obtained :

|Cn,α(f)(x)− f(x)| ≤ C1

nα
+ C2ω1

(
f ;nα−1

)
R ,

for all n > max{T + |x|, T−1/α}, where C1, C2 > 0 are constants independent
on n but depending on b and f .

If we suppose now that f is a Lipschitz function on R, that is there exists
L > 0 such that |f(x)−f(y)| ≤ L|x−y|, for all x, y ∈ R, from the above estimate
we get the following order of approximation by the linear Cardaliaguet-Euvrard
operator :

|Cn,α(f)(x)−f(x)| = O
(

1
nα

)
+O

(
1

n1−α

)
, for all n > max{T + |x|, T−1/α}.
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On the other hand, for f ∈ CB+(R) a Lipschitz function, in the case of
max-product Cardaliaguet-Euvrard operator, by Theorem 3.2 we get the order
of approximation

|C(M)
n,α (f)(x)− f(x)| = O

(
1

n1−α

)
, for all n > max{T + |x|, (2/T )1/α}.

It is clear that for 1
2 ≤ α < 1, we get the same order of approximation O (

1
n1−α

)

for both operators Cn,α(f)(x) and C
(M)
n,α (f)(x), while for 0 < α < 1

2 , the approx-
imation order obtained by the max-product operator C

(M)
n,α (f)(x) is essentially

better than that obtained by the linear operator Cn,α(f)(x).
This shows the advantage we can have by using the max-product Cardaliaguet-

Euvrard operator introduced by this paper.
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1. Introduction 

   
Arnold et al.[1] considered several identities and recurrence relations in terms of 

distribution function(df) of single and several order statistics of independent and identically 

distributed(iid) random variables. 

Balakrishnan[2] considered recent developments on order statistics arising from 

independent and not necessarily identically distributed(innid) random variables based 

primarily on the theory of permanents.  

Balasubramanian and Beg[3] defined linear identities for distribution functions of order 

statistics from an iid sample. 

Balasubramanian et al.[4] established identities satisfied by distributions of order 

statistics from non- independent non-identical variables through operator methods based on 

difference and differential operators.  

Bapat and Beg[5] expressed the joint df of order statistics of innid random variables in 

terms of the df of the random variables using permanents.  

Beg[6] obtained several recurrence relations and identities for product moments of order 

statistics of innid random variables using permanents. 

Cao and West[7] obtained recurrence relationships among the distribution functions of 

order statistics arising from innid random variables.  
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Childs and Balakrishnan[8] obtained, using multinomial arguments, the probability 

density function(pdf) of  
1:nrX  (1 r n+1) if another independent random variable with df 

iF  and pdf 
if   (i=1,2,…,n) is added to the original n variables .,...,, 21 nXXX  

Corley[9] defined a multivariate generalization of classical order statistics for random 

samples from a continuous multivariate distribution.  

David[10] considered the fundamental distribution theory of order statistics.  

Gan and Bain[11] obtained the joint probability function(pf) of any k order statistics and 

also conditional distributions of discrete order statistics from a general discrete parent by “tie-

runs”. 

Goldie and Maller[12] derived expressions for generalized joint densities of order 

statistics of innid random variables in terms of Radon-Nikodym derivatives with respect to 

product measures based on df.  

Guilbaud[13] expressed probability of the functions of innid random vectors as a linear  

combination of probabilities of the functions of  iid  random vectors and thus also for order 

statistics of random variables.  

Khatri[14] examined the pf  and  df  of a single order statistics, the joint pf  and df  of any 

two order statistics and joint df  of any three order statistics of iid random variables from a 

discrete parent.  

Reiss[15] considered the joint pdf, marginal pdf and df of any k order statistics of iid 

random variables under a continuous df and discontinuous df. He also considered pdf of 

bivariate order statistics by marginal ordering of bivariate iid random vectors with a 

continuous df  by means of multinomial probabilities of appropriate “cell frequency vectors”, 

defining multivariate order statistics by marginal ordering of iid random vectors with a 

continuous df. 

Vaughan and Venables[16] denoted the joint pdf  and marginal pdf  of order statistics of 

innid random variables by means of permanents.  

From now on, the subscripts and superscripts are defined in the first place in which they 

are used and these definitions will be valid unless they are redefined.  

If ,...a,a 21 are defined as column vectors, then the matrix obtained by taking 1m  copies 

1a , 2m  copies 2a ,… can be denoted as  

[
1

1a
m

 
2

2a
m

 …] 
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and perA denotes the permanent of a square matrix A, which is defined as similar to 

determinants except that all terms in the expansion have a positive sign.  

 Consider x ),...,,( )()2()1( bxxx and y ),...,,( )()2()1( byyy , then it can be written as x y if 

)()( vv yx  (v=1, 2, …, b) and x y ),...,,( )()()2()2()1()1( bb yxyxyx . 

Let 
i ),...,,( )()2()1( b

iii
 (i=1, 2, …, n) be innid continuous random vectors which 

components of  
i
 are independent. The expression 

(:

)(

: nr

v

nr ZX ),...,, )()(

2

)(

1

v

n

vv                                                                                                  (1.1) 

is stated as the rth order statistic of the vth components of  
1
,

2
, …, 

n
.  

From (1.1), the ordered values of the vth components of 1 , 2 , …, 
n
 are expressed as  

.... )(

:

)(

:2

)(

:1

v

nn

v

n

v

n XXX                                                                                                           (1.2) 

From (1.2), we can write 

),...,,(X )(

:

)2(

:

)1(

::

b

nrnrnrnr XXX  ( nr1 ). 

Also, ),...,,(x )()2()1( b

wwww xxx , Rx v

w

)(  (w=1, 2, …, d; d=1, 2,…,n).  

Let 
iF  and 

if  be df and pdf  of )(v

i , respectively. Moreover, sv

nn

sv

n

sv

n XXX ),(

:

),(

:2

),(

:1 ,...,,  are 

order statistics of iid random variables with df sF and pdf sf ,  respectively, defined by  

si

i

s

s F
n

F
1

                                                                                                                        (1.3) 

and 

si

i

s

s f
n

f
1

.                                                                                                                        (1.4) 

Here, s is a non-empty subset of the integers {1, 2,…, n} with sn 1 elements. /.)A[s  is the 

matrix obtained from A by taking rows whose indices are in s. 

In this study, the df  and pdf  of nrnrnr d ::: X,...,X,X
21

 ( 1 nrrr d...21 ) will be given. 

Let ),...,,(X )(

:

)(

:

)(

:

)(

21

v

nr

v

nr

v

nr

v

d
XXX  and ),...,,(x )()(

2

)(

1

)( v

d

vvv xxx . For notational convenience we 

write , 
23

12

,,...,

,,...,

mmn

mmmd

, 
23

12

,,...,

,,...,

mmn

tttd

and 
1,1,...,

,,...,

23

12

rrn

tttd

instead of 
sn

n n
n

n1 !
)1( , 

n

rm

m

rm

m

rmdd

3

22

2

11

... , 

n

mt

m

mt

m

mtdd

3

22

2

11

...  and   
n

rt

r

rt

r

rtdd

1 13

22

2

11

...  in   the expressions   below,   respectively. 
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2. Theorems for distribution function 

 

In this section, the theorems related to df  of  nrnrnr d ::: X,...,X,X
21

  are given. The theorems 

connect the df of order statistics of innid random vectors to that of order statistics of  iid 

random vectors using (1.3).  

 

Theorem 2.1.  

)x,...,x,x( 21:,...,, 21 dnrrr d
F

d

w ww

ww
tmmmn

ttt

b

v

mmn

mmm mt

mm
C

d

w

ww

dd 1

1
)(,,...,

,,...,1

,,...,

,,...,

1

123

12

23

12

)1({  

  

                   , .)}/][)(F ... )(F    )(F[)!(.
111213112

)()(

2

)(

1 sxxxpermt
ddddds

ttmn

v

d
ttmm

v

mtm

v

mtnn

dd  
dx...xx 21

,   (2.1)                                      

where ))(),...,(),(()(F )()(

2

)(

1

)( v

wn

v

w

v

w

v

w xFxFxFx is column vector, ,]!)([ 1
1

1

1

d

w

ww mmC 00m ,  

nmd 1
  and

10 mt . 

 

Proof. It can be written 

}xX,...,xX,xX{)x,...,x,x( :2:1:21:,...,, 2121 dnrnrnrdnrrr dd
PF .                                             (2.2) 

(2.2) can be expressed as 

}xX,...,xX,xX{  )x,...,x,x( )()()2()2()1()1(

21:,...,, 21

bb

dnrrr PF
d

                                                                                                                                    

                                     
b

v

vvP
1

)()( }xX{                                                                              

                                     },...,,{
1

)()(

:

)(

2

)(

:

)(

1

)(

: 21

b

v

v

d

v

nr

vv

nr

vv

nr xXxXxXP
d

                                                                    

                                     
b

v

mmn

mmm

Cper
d1

,,...,

,,...,

A
23

12

,                                                                         (2.3)                                                                                                                                                                                                                                                  

 where A=
1

)(F[ )(

1
m

vx   
12

)(F)(F )(

1

)(

2
mm

vv xx … ])(F1 )(

dmn

v

dx  is matrix, 

1),+,…1,2,=(w ))()(),...,()(),()(()(F)(F )(

1

)()(

12

)(

2

)(

11

)(

1

)(

1

)( dxFxFxFxFxFxFxx v

wn

v

wn

v

w

v

w

v

w

v

w

v

w

v

w

 

0)( )(

0

v

i xF   and  1)( )(

1

v

di xF . Using properties of permanent, we can write 

 

Aper ])(F1   )(F)(F ... )(F)(F   )(F)(F   )(F[ )()(

1

)()(

2

)(

3

)(

1

)(

2

)(

1

123121 ddd mn

v

d
mm

v

d

v

d
mm

vv

mm

vv

m

v xxxxxxxxper   

        

12

1

112

23

2

223

0 1

12

0 2

23

0

)1()1(...)1(
mm

t

tmm
mm

t

tmm
mn

t d

dtmn

t

mm

t

mm

t

mnd

d

dd     
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                                                                                             .
1122312

)](F   1 ... )(F   )(F[ )()(

2

)(

1

ddd
d ttmn

v

d
tttmm

v

tm

v xxxper   

ds ddd

d

w

wd

d tnn ttmn

v

d
ttmm

v

tm

v

d

d

w w

ww
tmnmn

t

mm

t

mm

t

sxxxpert
t

mm
.)/[)](F ... )(F   )(F[!)1(...

1122312

1

123

2

12

1

)()(

2

)(

1

1

1

0 0 0

 

d

w tmnn

dd

ww

ww
n

mt

m

mt

m

mt

tm

ddsdd

d

w

ww

mt
mt

mm

1

1
)(

)!()1(...
3

22

2

11

1

1

 

                                                                          . .)/][)(F ... )(F   )(F[
111213112

)()(

2

)(

1 sxxxper
ddd ttmn

v

d
ttmm

v

mtm

v ,    (2.4)       

where )(1 1,1,...,1 . 

Using (2.4) in (2.3), (2.1) is obtained. 
 

Theorem 2.2.  
b

v

mvs
mmn

mmm

dnrrr xFCnF
d

d

1

)(

1

,,...,

,,...,

21:,...,,
1

23

12

21
)]([!{)x,...,x,x(  

                                          .
1

2

)(

1

)(

1

1
})]([])([)1( 1

1

d

w

tmv

w

smt
m

mt

v

w

s

w

wwtm ww

w

w

w xFxF
mt

mm
,       (2.5) 

where .1)( )(

1

v

d

s xF  

 

Proof. From (2.3), we can write 

},...,,{)x,...,x,x(
1

)(),(

:

)(

2

),(

:

)(

1

),(

:21:,...,, 2121

b

v

v

d

sv

nr

vsv

nr

vsv

nrdnrrr xXxXxXPF
dd

                     (2.6) 

(2.6) is expressed as  

b

v

mmn

mmm

d

w

mmv

w

sv

w

s

dnrrr

d

ww

d
xFxFCnF

1

,,...,

,,...,

1

1

)(

1

)(

21:,...,,

23

12

1

21
})]()([!{  )x,...,x,x(  

                                   ,})]()([)]([!{
1

1

2

)(

1

)()(

1

,,...,

,,...,

11

23

12

b

v

d

w

mmv

w

sv

w

smvs
mmn

mmm

ww

d

xFxFxFCn   (2.7)               

where 0)( )(

0

vs xF . 

Using binomial expansion in (2.7), (2.5) is obtained. 
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Theorem 2.3.  

.)/][)(F[)!()1(
)!(!

1
  )(: sxpermt

mt

mn

mnm
xF

mtnmtnn

n

rm

n

mt

tn

nr

s

 

             = mtns
n

mt

tn
n

rm

xF
mt

mn

m

n
)]([)1( .                                                         (2.8) 

 

Proof. In (2.1) and (2.5), if 1b ,  1d , (2.8) is obtained. 
 

Theorem 2.4.  

 .)/][)(F[!)1(
!

1
1)(

0

:1 sxpert
t

n

n
xF

tntnn

n

t

tn

n

s

 

            = })]([)1(1{
0

tns
n

t

tn xF
t

n
.                                                                        (2.9)  

                                                                                              

Proof. In (2.8), if  1r , (2.9) is obtained. 

 

Theorem 2.5.  

 ])(F[
!

1
)(:

n
nn xper

n
xF  

      
ns xF )]([ .                                                                                                    (2.10) 

 

Proof. In (2.8), if  nr , (2.10) is obtained. 

 

3. Theorems for probability density function 

 

In this section, the theorems related to pdf  of  nrnrnr d ::: X,...,X,X
21

 are given. The theorems 

connect the pdf  of order statistics of  innid random vectors to that of order statistics of  iid 

random vectors using (1.3) and (1.4).  

 

Theorem 3.1.  

)x,...,x,x( 21:,...,, 21 dnrrr d
f

d

w ww

ww
trdrrn

ttt

b

v rt

rr
D

w

d

w

w

d 1

1
)(1,1,...,

,,...,1

1
)1({ 1

123

12

           

           .
112 2

)(

1 )(F[)!(
trr

v

trnn

dd xperrt
dds

 
1213 1

)(

2 )(F
ttrr

vx …
11

)(F )(

ddd ttrn

v

dx
1

)(

1 )(f vx
1

)(

2 )(f vx … ])(f
1

)(v

dx .)}/[s ,  (3.1) 
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where  ))(),...,(),(()(f )()(

2

)(

1

)( v

wn

v

w

v

w

v

w xfxfxfx ,  1
1

1

1 ])!1([
d

w

ww rrD , 00r , 11 nrd
, 

and 110 rt . 

 

Proof.  Consider the event  

1 21 : 1 1 2 : 2 2 :{x X x δx , x X x δx ,..., x X x δx }
dr n r n d r n d d . 

It can be written 

1 21 : 1 1 2 : 2 2 :{x X x δx , x X x δx ,..., x X x δx }
dr n r n d r n d dP  

(1) (1) (1) (1) (2) (2) (2) (2) (b) (b) (b) (b){x X x δx ,x X x δx ,..., x X x δx }P  

(v) (v) (v) (v)

1

{x X x δx }
b

v

P                                                                              

1 2 d

(v) (v) (v) (v) (v) (v) (v) (v) (v) (v) (v) (v)

1 r : 1 1 2 r : 2 2 d r : d d

1

{ , ,..., }
b

n n n

v

P x X x x x X x x x X x x  ,         (3.2) 

where (1) (2) ( )δx ( , ,..., )b

w w w wx x x and ( ) ( ) ( ) ( )

1 2δx ( , ,..., )v v v v

dx x x . 

Dividing (3.2) by ( )

1 1

b d
v

w

v w

x  and then letting ( ) ( ) ( )

1 2, ,...,v v v

dx x x  tend to zero, we obtain  

b

v

dnrrr Dperf
d

1

21:,...,, B)x,...,x,x(
21

,                                                                                      (3.3)                                    

where  B=
1

)(

1

1

)(F[
r

vx  
1

)(

1 )(f vx  
1

)(

1

)(

2

12

)(F)(F
rr

vv xx  
1

)(

2 )(f vx … 
1

)( )(f v

dx   ])(F1 )(

drn

v

dx   is  matrix. 

Using properties of permanent, we can write 

])(F1   )(f ... )(f   )(F)(F   )(f   )(F[B )(

1

)(

1

)(

2
1

)(

1

)(

2
1

)(

1
1

)(

1

121 drn

v

d

v

d

v

rr

vvv

r

v xxxxxxxperper  

1

0 1

121
1

0 2

231

0

12

1

112

23

2

223
1

)1(
1

)1(...)1(
rr

t

trr
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t

trr
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t d

dtrn

t
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t
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d

dd  

                                            . ])(F1   )(f ... )(f   )(F)(F   )(f   )(F[
1122312

)(

1

)(

1

)(

2
1

)(

1

)(

2
1

)(

1
2

)(

1

ddd ttrn

v

d

v

d

v

ttrr

vvv

tr

v xxxxxxxper            

d

w w

ww
tdrnrn

t

rr

t

rr

t t

rr
d
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d 1

1
1

0

1

0

1
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1
)1(... 1

123

2

12

1

 

                                      .)/][)(f ... )(f   )(f   )(F ... )(F   )(F[!.
1
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1

)(

2
1

)(

1

)(

1

)(
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1122312
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n

rt

r

rt

r

rt

d

w ww

ww
trd

dd

w

d

w

w

rt

rr1 1

1

1
)(3

22

2

11

1

1 1
)1(...  

               . .)/][)(f ... )(f   )(f   )(F ... )(F   )(F[)!(
1

)(

1

)(

2
1

)(

1

)(

1

)(

2
2

)(

1

111213112

sxxxxxxperrt v

d

vv

ttrn

v

d
ttrr

v

trr

v

trnn

dd

ddddds

.  (3.4)           

Using (3.4) in (3.3), (3.1) is obtained.        
 

Theorem 3.2. 

1)(

1

1

21:,...,,
1

21
)]([!{)x,...,x,x(

rvs
b

v

dnrrr xFDnf
d

 

                           .
1

2 1

)(
1

)(1)(

1

1

11
})(])([)]([

1
)1( 1

1

d

w

d

w

v

w

srt
r

rt

v

w

strv

w

s

w

wwtr
xfxFxF

rt

rr
w

w

w

ww .  (3.5) 

 

Proof. (3.2) can be expressed as 
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Using binomial expansion in (3.7), (3.5) is obtained. 
 

Theorem 3.3.  
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Proof. In (3.1) and (3.5), if  1b ,  1d , (3.8) is obtained. 
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Theorem 3.4.  
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Proof. In (3.8), if 1r , (3.9) is obtained. 
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Proof. In (3.8), if nr , (3.10) is obtained. 
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Proof. In (3.1) and (3.5), if  1b ,  2d  and 11r ,  nr2 , (3.11) is obtained. 
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Proof. In (3.1) and (3.5), if  kd  and 11r , 22r ,…, krk , (3.12) is obtained. 
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A new result on absolute summability factors
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Abstract

In the present paper, a known result of Mazhar [5] on | N̄ , pn |k summability has been

generalized for | N̄ , pn, θn |k summability factors. Some new results have also been obtained.

1 Introduction

Let
∑

an be a given infinite series with partial sums (sn). Let (pn) be a sequence of

positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (1)

The sequence-to-sequence transformation

σn =
1
Pn

n∑

v=0

pvsv (2)

defines the sequence (σn) of the (N̄ , pn) mean of the sequence (sn), generated by the

sequence of coefficients (pn) .The series
∑

an is said to be summable | N̄ , pn |k, k ≥ 1, if

(see [1])
∞∑

n=1

(Pn/pn)k−1 | ∆σn−1 |k< ∞, (3)

where

∆σn−1 = − pn

PnPn−1

n∑

v=1

Pv−1av, n ≥ 1. (4)
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In the special case pn = 1 for all values of n, | N̄ , pn |k summability is the same as | C, 1 |k
(see [4]) summability. Let (θn) be any sequence of positive constants. The series

∑
an is

said to be summable | N̄ , pn, θn |k, k ≥ 1, if (see [6])

∞∑

n=1

θk−1
n | ∆σn−1 |k< ∞. (5)

If we take θn = Pn
pn

, then | N̄ , pn, θn |k summability reduces to | N̄ , pn |k summability.

Also, if we take θn = n and pn = 1 for all values of n, then we get | C, 1 |k summabil-

ity.Furthermore , if we take θn = n, then | N̄ , pn, θn |k summability reduces to | R, pn |k
(see [2]) summability.

2. Known result. Mazhar [5] has proved the following theorem .

Theorem A. If
∞∑

n=1

pn

Pn
| snλn |k< ∞, (6)

and
∞∑

n=1

| sn || ∆λn |< ∞, (7)

then the series
∑

anλn is summable | N̄ , pn |k, k ≥ 1.

3. Main result. The aim of this paper is to generalize Theorem A for | N̄ , pn, θn |k
summability. Now we shall prove the following theorem.

Theorem. Let
(

θnpn

Pn

)
be a non-increasing sequence. If the conditions of Theorem A are

satisfied with the condition (6) replaced by:

∞∑

n=1

θk−1
n

(
pn

Pn

)k

| snλn |k< ∞, (8)

then the series
∑

anλn is summable | N̄ , pn, θn |k, k ≥ 1. If we take θn = Pn
pn

, then we get

Theorem A. In this case condition (8) reduces to condition (6) and the condition
(

θnpn

Pn

)

which is a non-increasing sequence is automatically satisfied.

4. Proof of the Theorem. Let (Tn) be the sequence of (N̄ , pn) mean of the series
∑

anλn. Then, by definition, we have

Tn =
1
Pn

n∑

v=0

pv

v∑

r=1

arλr. (9)

2
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Then , using Abel’s transformation, we get

Tn − Tn−1 = − pn

PnPn−1

n−1∑

v=1

pvsvλv +
pn

PnPn−1

n−1∑

v=1

Pvsv∆λv +
pn

Pn
snλn

= Tn,1 + Tn,2 + Tn,3, say.

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that
∞∑

n=1

θk−1
n | Tn,r |k< ∞, for r = 1, 2, 3. (10)

Firstly , by using Hölder’s inequality, we have that

m+1∑

n=2

θk−1
n | Tn,1 |k =

m+1∑

n=2

θk−1
n | pn

PnPn−1

n−1∑

v=1

pvsvλv |k

≤
m+1∑

n=2

θk−1
n

(
pn

Pn

)k 1
Pn−1

n−1∑

v=1

pv | svλv |k

×
{

1
Pn−1

n−1∑

v=1

pv

}k−1

= O(1)
m∑

v=1

pv | svλv |k
(

θvpv

Pv

)k−1 m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

pv | svλv |k
(

θvpv

Pv

)k−1 1
Pv

= O(1)
m∑

v=1

θk−1
v

(
pv

Pv

)k

| svλv |k= O(1) as m →∞,

in view of (8). Also , we get that

m+1∑

n=2

θk−1
n | Tn,2 |k =

m+1∑

n=2

θk−1
n | pn

PnPn−1

n−1∑

v=1

Pvsv∆λv |k

≤
m+1∑

n=2

θk−1
n

(
pn

Pn

)k 1
Pn−1

n−1∑

v=1

Pv | sv || ∆λv | ×
{

1
Pn−1

n−1∑

v=1

Pv | sv || ∆λv |
}k−1

= O(1)
m∑

v=1

Pv | sv || ∆λv |
(

θvpv

Pv

)k−1 m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

| sv || ∆λv |
(

θvpv

Pv

)k−1

= O(1)
(

θ1p1

P1

)k−1 m∑

v=1

| sv || ∆λv |

3
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= O(1)
m∑

v=1

| sv || ∆λv |= O(1) as m →∞,

in view of (7). Finally, we have that
m∑

n=1

θk−1
n | Tn,3 |k =

m∑

n=1

θk−1
n

(
pn

Pn

)k

| snλn |k= O(1) as m →∞,

in view of (8). Therefore we get that
m∑

n=1

θk−1
n | Tn,r |k= O(1) as m →∞, for r = 1, 2, 3.

This completes the proof of the Theorem. If we take pn = 1 for all values of n and θn = n,

then we get a result for | C, 1 |k summability factors. Also, if we take pn = 1 for all values

of n, then we have a new result for | C, 1, θn |k summability factors. Furthermore , if we

take θn = n, then we have another new result for | R, pn |k summability factors.
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STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES IN
TOPOLOGICAL GROUPS

H. ÇAKALLI AND E. SAVAŞ

Abstract. The idea of statistical convergence of double sequences was first

introduced by Mursaleen and Edeley [12]) while the idea of statistical conver-

gence of single sequences was first studied by Fast [7] and the rapid develop-
ments were started after the papers of Salat [14] and Fridy [8]. Nowadays it has

become one of the most active area of research in the field of summability. In

this paper, we give an extension of statistical convergence of double sequences
to topological groups and give theorems in this general setting.

1. Introduction

Looking through historically to statistical convergence of single sequences, we
recall that the concept of statistical convergence of sequences was first introduced
by Fast [7] as an extension of the usual concept of sequential limits and also in-
dependently by Buck [1]. Schoenberg [15] gave some basic properties of statistical
convergence and also studied the concept as a summability method. Over the years
statistical convergence has been examined in trigonometric series in [16], studied by
J.Connor [3], J.S.Connor [4], Salat [14], and Fridy [8]. Most of the existing works
on statistical convergence have been restricted to real or complex sequences except
the works of Kolk, Maddox and Çakallı. This notion was used by Kolk in [9] to ex-
tend statistical convergence to normed spaces and Maddox [11] extended to locally
convex Hausdorff topological linear spaces giving a representation of statistical con-
vergence in terms of strong summability by using a modulus function, introduced in
[10]; and also in [5] and [6], Çakallı extended this notation to topological Hausdorff
groups.

Recall that for a subset M of N the asymptotic density of M , denoted by δ(M),
is given by

δ(M) = lim
n→∞

1
n
|{k ≤ n : k ∈M}|,

if this limit exists, where |{k ≤ n : k ∈ M}| denotes the cardinality of the set
{k ≤ n : k ∈M}. A sequence x = (xn) is statistically convergent to ` if

δ({n : |xn − `| ≥ ε}) = 0,

for every ε > 0. In this case ` is called the statistical limit of x.
A sequence (xk) of points in a topological group X, is called statistically con-

vergent to an element ` of X if δ(MU ) = 0 where MU = {k : xk − ` /∈ U} for every

Date: April 13, 2009.

2000 Mathematics Subject Classification. Primary: 40J05; Secondary:22A05.
Key words and phrases. Statistical convergence; Statistically Cauchy sequence; Double se-

quence; Double natural density .

1

421JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.2, 421-426,2010,COPYRIGHT 2010 EUDOXUS PRESS, LLC



2 H. ÇAKALLI AND E. SAVAŞ

neighborhood U of 0, i.e.

δ(MU ) = lim
n→∞

1
n
|{k ≤ n : xk − ` /∈ U}| = 0,

for every neighbourhood U of 0 and a sequence (xk) of points in a topological group
X, is called statistically Cauchy if for every neighbourhood U of 0 there exists a
number N = N(ε) such that

lim
n→∞

1
n
|{k ≤ n : xk − xN /∈ U}| = 0.

The concept of statistical convergence of double sequences was first introduced by
Mursaleen and Edeley [12] who have given main definition for double sequences x =
(xjk) and proved some related results supporting by some interesting examples. By
the convergence of a double sequence we mean the convergence in Pringsheims sense
[13]. A double sequence x = (xjk)∞j,k=0 is said to be convergent in the Pringsheims
sense if for every ε > 0 there exists N ∈ N such that |xjk − L| < ε whenever
j, k ≥ N . L is called the Pringsheim limit of x. A double sequence x = (xjk)
is said to be Cauchy sequence if for every ε > 0 there exists N ∈ N such that
|xpq − xjk| < ε for all p ≥ j ≥ N and q ≥ k ≥ N .

In a topological group X, the above definitions become as in the following: a
double sequence x = (xjk)∞j,k=0 of points in X is said to be convergent to a point `
in X in the Pringsheims sense if for every neighbourhood U of 0 there exists N ∈ N
such that xjk − ` ∈ U whenever j, k ≥ N . ` is called the Pringsheim limit of x.
A double sequence x = (xjk) of points in X is said to be a Cauchy sequence if for
every neighbourhood U of 0 there exists N ∈ N such that xpq − xjk ∈ U for all
p ≥ j ≥ N and q ≥ k ≥ N .

The purpose of this paper is to study statistical convergence of double sequences
in topological groups and to give some important theorems.

2. Definitions and Notation

By X, we will denote an abelian topological Hausdorff group, written additively,
which satisfies the first axiom of countability. For a subset A of X, s(A) will denote
the set of all sequences (xn) such that xn is in A for n = 1, 2, ...; c(X) will denote
the set of all convergent sequences.

In [6], a sequence (xn) in X is called to be statistically convergent to an element
` of X if for each neighbourhood U of 0,

lim
n→∞

1
n
|{k ≤ n : xk − ` /∈ U}| = 0,

and is called statistically Cauchy in X if for each neighbourhood U of 0 there exists
a positive integer n0(U), depending on the nighbourhood U , such that

lim
n→∞

1
n
|{k ≤ n : xk − xn0(U) /∈ U}| = 0,

where the vertical bars indicate the number of elements in the enclosed set. The
set of all statistically convergent sequences in X is denoted by st(X) and the set
of all statistically Cauchy sequences in X is denoted by stC(X). It is known that
stC(X) = st(X) when X is complete. By the convergence of a double sequence in
a topological group X we mean the convergence in Pringsheims sense. A double
sequence x = (xjk)∞j,k=0 is said to be convergent in the Pringsheims sense if for
every neighbourhood U of 0 there exists N ∈ N such that xjk − ` ∈ U whenever
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j, k ≥ N . ` is called the Pringsheim limit of x. A double sequence x = (xjk)∞j,k=0 is
said to be a Cauchy sequence if for every neighbourhood U of 0 there exists N ∈ N
such that xpq − xjk ∈ U whenever p ≥ j ≥ N and q ≥ k ≥ N .

3. Statistical convergence

Let K ⊂ NxN be a two-dimensional set of positive integers and let K(n,m) be
the numbers of (i, j) in K such that i ≤ n and j ≤ m. Then the two-dimensional
analogue of natural density can be defined as follows. The lower asymptotic density
of a set K ⊂ NxN is defined as

δ2(K) = lim inf
n,m

K(n,m)
nm

In case the sequence (K(n,m)
nm ) has a limit in Pringsheims sense then we say that

K has a double natural density and is defined as

δ2(K) = lim
n,m

K(n,m)
nm

For example, let K = {(i2, j2) : i, j ∈ N}. Then

δ2(K) = lim
n,m

K(n,m)
nm

≤ limn,m

√
n
√
m

nm
= 0

i.e., the set K has double natural density zero, while the set {(i, 2j) : i, j ∈ N}
has double natural density 1/2. Note that, if we set n = m, we have a two-
dimensional natural density considered by Christopher [2]. Mursaleen and Edely
called a real double sequence x = (xjk) statistically convergent to the number `
if for each ε > 0, the set {(j, k), j ≤ n and k ≤ m : |xjk − `| ≥ ε} has double
natural density zero. In this case we write st2 − limj,kxjk = ` and we denote the
set of all statistically convergent double sequences by st2. Now we give definition of
statistical convergence of double sequences x = (xjk)∞j,k=0 of points in a topological
group in the following.

In a topological group, double sequence x = (xjk) is called statistically conver-
gent to a point ` of X if for each neighbourhoud U of 0 the set

{(j, k), j ≤ n; and; k ≤ m : xjk − ` /∈ U}

has double natural density zero. In this case we write st2(X)− limj,kxjk = ` and
we denote the set of all statistically convergent double sequences by st2(X).

If x is a convergent double sequence of points in X, then it is also statistically
convergent to the same point. Since there are only a finite number of bounded
(unbounded) rows and/or columns,

K(n,m) ≤ s1n+ s2m

where s1 and s2 are finite numbers,which we can conclude that x is statistically
convergent.

A statistically convergent double sequence has a unique limit, i.e. if x is statis-
tically convergent to elements `1 and `2 of X, then `1 = `2.

If x is statistically convergent, then x need not be convergent. For example, let
x = (xjk) be defined as xjk = jkz , if j and k are squares; z, otherwise where z
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4 H. ÇAKALLI AND E. SAVAŞ

is a fixed non-zero element of X. It is easy to see that st2 − limxjk = z, since the
cardinality of the set {(j, k) : xjk − z /∈ U} satisfies the inequality

|{(j, k) : xjk − z /∈ U}| ≤
√
j
√
k

for every neighborhood U of 0. But x is not convergent.
For a subset A of X, s2(A) will denote the set of all double sequences (xnm) of

points in A; c2(X) will denote the set of all convergent double sequence of points
in X.
Theorem 1. A double sequence x = (xjk) of points in X is statistically convergent
to ` if and only if there exists a subset K ⊂ NxN such that δ2(K) = 1 and
limn,k→∞xjk = ` where limit is being taken over the set K, i.e., (j, k) ∈ K.

Proof. Let x be statistically convergent to `, and (Ur) be a base of nested closed
neighbourhoods of 0. Write

Kr = {(j, k) ∈ NxN : xjk − ` /∈ Ur}

Mr = {(j, k) ∈ NxN : xjk − ` ∈ Ur} (r = 1, 2, , ...).

Then δ2(Kr) = 0 and

(1) M1 ⊃M2... ⊃Mi ⊃Mi+1 ⊃ ...
and

(2) δ2(Mr) = 1, r = 1, 2, ... .

Now we will show that for (j, k) ∈ Mr, (xjk) is convergent to `. Suppose that
(xjk) is not convergent to ` so that there is a neighbourhood U of 0 such that

xjk − ` /∈ U

for infinitely many terms. Let Ur ⊂ U (r = 1, 2, ...) and MU = {(j, k) : xjk−` ∈ U}.
Then

δ2(MU ) = 0,

and by (1), Mr ⊂ MU . Hence δ2(Mr) = 0 which is a contradiction to (2). Thus
(xjk) is convergent to `.

Conversely, suppose that there exists a subset K = {(j, k)} ⊆ NxN such that
δ2(K) = 1 and limj,k xjk = `, i.e. there exists an no ∈ N such that for each
neighbourhood U of 0,

xjk − ` ∈ Ufor every j, k ≥ no

Now

KU = {(j, k) : xjk − ` /∈ U} ⊆ NxN\{(jno+1, kno+1), (jno+2, kno+2), ...}

Hence
δ2(KU ) ≤ 1− 1 = 0

It follows that x is statistically convergent to `. �

Corollary 2. If a double sequence (xjk) is statistically convergent to a point `, then
there exists a sequence (yjk) such that limj,kyjk = ` and δ2{(j, k) : xjk = yjk} = 1,
i.e., xjk = yjk for almost all j, k.
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4. Statisticallly Cauchy double sequences in topological groups

In a topological group, double sequence x = (xjk) is called statistically Cauchy
if for each neighbourhoud U of 0 there exists N = N(U) and M = M(U) such
that for all j, p ≥ N, k, p ≥ M the set {(j, k) j ≤ n, k ≤ m : xjk − xpq /∈ U}
has double natural density zero. In this case we denote the set of all statistically
Cauchy double sequences by st2C(X).
Theorem 3. Let X be complete. A double sequence x = (xjk) of points in a X is
statistically convergent if and only if x is statistically Cauchy.

Proof. Take any statistically convergent double sequence x = (xjk) with statistical
limit `. Let U be any neighbourhood of 0. Then we may choose a symmetric
neighbourhood W of 0 such that

W +W ⊂ U.

Then for this neighbourhood W of 0, the set

{(j, k) : j ≤ n, k ≤ m and xjk − ` ∈W}

has double natural density 0. For each nighbourhood U of 0, the set
{(j, k) j ≤ n, k ≤ m : xjk − ` /∈ U} has double natural density zero. Then we may
choose numbers M and N such that xNM − ` /∈ U . Now write

AU = {(j, k) j ≤ n, k ≤ m : xjk − xNM /∈ U}

BW = {(j, k) j ≤ n, k ≤ m : xjk − ` /∈W}

CW = {(j, k) j = N ≤ n, k = M ≤ m : xNM − ` /∈W}.

Then AU ⊂ BW

⋃
CW and hence δ2(AU ) ≤ δ2(BW ) + δ2(CW ) = 0. Therefore we

get that x is statistically Cauchy.
To prove the converse suppose that there is a statistically Cauchy sequence x

which is not statistically convergent. Then we may find natural numbers N and M
such that the set AU has double natural density zero. It follows from this that the
set

EU = {(j, k) j ≤ n, k ≤ m : xjk − xNM ∈ U}

has double natural density 1. We may choose a neighborhood W of 0 such that
W + W ⊂ U . Now take any fixed non-zero element ` of X. Write xjk − xNM =
xjk− `+ `−xNM . It follows from this equality that xjk−xNM ∈ U if xjk− ` ∈W .
Since x is not statistically convergent to `, the set BW has double natural density
1., i.e., the set {(j, k) j ≤ n, k ≤ m : xjk − ` /∈ W} has double natural density 0.
Hence the set {(j, k) j ≤ n, k ≤ m : xjk−xNM ∈ U} has double natural density 0,
i.e. the set AU has double natural density 1 which is a contradiction. Hence this
completes the proof. �

Finally from theorems 1 and 3 we can state the following theorem and the proof
is easy and omitted.
Theorem 4. If X is complete, then the following conditions are equivalent:

(a) x is statistically convergent to `;
(b) x is statistically Cauchy;
(c) there exists a subsequence y of x such that limj,kyjk = `.
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E-mail address: hcakalli@maltepe.edu.tr

426



Approximately left derivations: An alternative fixed point
approach

A. Ebadian and S. Shams

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

e-mail: ebadian.ali@gmail.com, sa40shams@yahoo.com

Abstract. Using fixed point methods, we investigate the generalized Hyers–Ulam–Rassias
stability of left derivations and left Jordan derivations on Banach algebras associated with
the following generalized Cauchy–Jensen type functional equation

µf(
x + y

2
+ z) + µf(

x− y

2
+ z) = f(µx) + 2f(µz) (µ ∈ T).

1. Introduction

The stability of functional equations was first introduced by S. M. Ulam [21] in 1940. More
precisely, he proposed the following problem: Given a group G1, a metric group (G2, d) and
a positive number ε, does there exist a δ > 0 such that if a function f : G1 −→ G2 satisfies
the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
T : G1 → G2 such that d(f(x), T (x)) < ε for all x ∈ G1? As mentioned above, when this
problem has a solution, we say that the homomorphisms from G1 to G2 are stable. In 1941,
D. H. Hyers [10] gave a partial solution of Ulam,s problem for the case of approximate
additive mappings under the assumption that G1 and G2 are Banach spaces. In 1978, Th.
M. Rassias [18] generalized the theorem of Hyers by considering the stability problem with
unbounded Cauchy differences.

This phenomenon of stability that was introduced by Th. M. Rassias [18] is called the
Hyers–Ulam–Rassias stability. According to Th. M. Rassias theorem:
Theorem 1.1. Let f : E −→ E′ be a mapping from a norm vector space E into a Banach
space E′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique
additive mapping T : E −→ E′ such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. If p < 0 then inequality (1.3) holds for all x, y 6= 0, and (1.4) for x 6= 0. Also,
if the function t 7→ f(tx) from R into E′ is continuous for each fixed x ∈ E, then T is linear.

During the last decades several stability problems of functional equations have been in-
vestigated by many mathematicians. A large list of references concerning the stability of
functional equations can be found in [7, 11, 14, 19].
Approximate derivations was first investigated by K.-W. Jun and D.-W. Park [13]. Recently,

02000 Mathematics Subject Classification. Primary 39B52; Secondary 39B82; 46HXX.
0Keywords: Alternative fixed point; generalized Hyers–Ulam–Rassias stability; left deriva-

tion; Jordan left derivation
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2 A. Ebadian and S. Shams

the stability of derivations have been investigated by some authors; see [1, 12, 13, 15] and
references therein.

On the other hand Cădariu and Radu applied the fixed point method to the investigation
of the functional equations. (see also [4, 5, 6, 16, 17, 20]).

Let A be an algebra and let X be a Banach left A−module. Note that a linear map
D : A → X is called a left derivation (left Jordan derivation) if

D(ab) = aD(b) + bD(a) (D(a2) = 2aD(a))

for all a, b ∈ A. In this paper, we will adopt the fixed point alternative of Cădariu and
Radu to prove the generalized Hyers–Ulam–Rassias stability of left derivations and Jordan
left derivations on Banach algebras associated with the following generalized Cauchy–Jensen
type functional equation

µf(
x + y

2
+ z) + µf(

x− y

2
+ z) = f(µx) + 2f(µz) (µ ∈ T).

Throughout this paper assume that A is a Banach algebra and X is a left Banach
A−module.

2. Left derivations

Before proceeding to the main results, we will state the following theorem.

Theorem 2.1. (The alternative of fixed point [3]). Suppose that we are given a complete
generalized metric space (Ω, d) and a strictly contractive mapping T : Ω → Ω with Lipschitz
constant L. Then for each given x ∈ Ω, either

d(T mx, T m+1x) = ∞ for all m ≥ 0,
or other exists a natural number m0 such that

d(T mx, T m+1x) < ∞ for all m ≥ m0;

the sequence {T mx} is convergent to a fixed point y∗ of T ;

y∗is the unique fixed point of T in the set Λ = {y ∈ Ω : d(T m0x, y) < ∞};

d(y, y∗) ≤ 1
1−L

d(y, Ty) for all y ∈ Λ.

By a following similar way as in [16], we obtain the next theorem.

Theorem 2.2. Let f : A → X be a mapping for which there exists a function φ : A5 → [0,∞)
such that

‖µf(
x + y

2
+ z) + µf(

x− y

2
+ z)− f(µx)− 2f(µz) + f(ab)− af(b)− bf(a)‖ ≤ φ(x, y, z, a, b),

(2.1)
for all µ ∈ T and all x, y, z, a, b ∈ A. If there exists an L < 1 such that φ(x, y, z, a, b) ≤
2Lφ(x

2
, y

2
, y

2
, a

2
, b

2
) for all x, y, z, a, b ∈ A, then there exists a unique left derivation D : A → X

such that

‖f(x)−D(x)‖ ≤ L

1− L
φ(x, 0, 0, 0, 0) (2.2)

for all x ∈ A.
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Approximately left derivations... 3

Proof. It follows from φ(x, y, z, a, b) ≤ 2Lφ(x
2
, y

2
, z

2
, a

2
, b

2
) that

limj2
−jφ(2jx, 2jy, 2jz, 2ja, 2jb) = 0 (2.3)

for all x, y, z, a, b ∈ A.
Put µ = 1, y = z = a = b = 0 in (2.1) to obtain

‖2f(
x

2
)− f(x)‖ ≤ φ(x, 0, 0, 0, 0) (2.4)

for all x ∈ A. Hence,

‖1

2
f(2x)− f(x)‖ ≤ 1

2
φ(2x, 0, 0, 0, 0) ≤ Lφ(x, 0, 0, 0, 0) (2.5)

for all x ∈ A.
Consider the set X := {g | g : A → B} and introduce the generalized metric on X:

d(h, g) := inf{C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cφ(x, 0, 0, 0, 0)∀x ∈ A}.

It is easy to show that (X, d) is complete. Now we define the linear mapping J : X → X by

J(h)(x) =
1

2
h(2x)

for all x ∈ A. By Theorem 3.1 of [3],

d(J(g), J(h)) ≤ Ld(g, h)

for all g, h ∈ X.
It follows from (2.5) that

d(f, J(f)) ≤ L.

By Theorem 2.1, J has a unique fixed point in the set X1 := {h ∈ X : d(f, h) < ∞}. Let D
be the fixed point of J . D is the unique mapping with

D(2x) = 2D(x)

for all x ∈ A satisfying there exists C ∈ (0,∞) such that

‖D(x)− f(x)‖ ≤ Cφ(x, 0, 0, 0, 0)

for all x ∈ A. On the other hand we have limnd(Jn(f), D) = 0. It follows that

limn
1

2n
f(2nx) = D(x) (2.6)

for all x ∈ A. It follows from d(f, D) ≤ 1
1−L

d(f, J(f)), that

d(f, D) ≤ L

1− L
.

This implies the inequality (2.2). It follows from (2.1), (2.3) and (2.6) that

‖D(
x + y

2
+ z) + D(

x− y

2
+ z)−D(x)− 2D(z)‖

= limn
1

2n
‖f(2n−1(x + y) + 2nz) + f(2n−1(x− y) + 2nz)− f(2nx)− 2f(2nz)‖

≤ limn
1

2n
φ(2nx, 2ny, 2nz, 0, 0)

= 0

for all x, y ∈ A. So

D(
x + y

2
+ z) + D(

x− y

2
+ z) = D(x) + 2D(z)
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4 A. Ebadian and S. Shams

for all x, y, z ∈ A. By Lemma 2.1 of [2], the mapping D : A → A is Cauchy additive. By
putting y = x, z = a = 0 in (2.1), we have

‖µf(
2x

2
)− f(µx)‖ ≤ φ(x, x, 0, 0, 0)

for all x ∈ A. It follows that

‖D(2µx)− 2µD(x)‖ = limm
1

2m
‖f(2µ2mx)− 2µf(2mx)‖ ≤ limm

1

2m
φ(2mx, 2mx, 0, 0, 0) = 0

for all µ ∈ T, and all x ∈ A. One can show that the mapping D : A → X is C−linear. By
putting x = y = z = 0 in (2.1) it follows that

‖D(ab)− aD(b)− bD(a)‖

= limn‖
1

4n
f((4nab)− 1

2n
af(2nb)− 1

2n
bf(2na)‖

≤ limn
1

4n
φ(0, 0, 0, 2na, 2nb) ≤ limn

1

2n
φ(0, 0, 0, 2na, 2nb)

= 0

for all a ∈ A. This means that D : A → X is a left derivation satisfying (2.2), as desired. �

We prove the following Hyers–Ulam–Rassias stability problem for left derivations on Ba-
nach algebras.

Corollary 2.3. Let p ∈ (0, 1), θ ∈ [0,∞) be real numbers. Suppose f : A → X satisfies

‖µf(
x + y

2
+ z) + µf(

x− y

2
+ z)− f(µx)− 2f(µz) + f(ab)− af(b)− bf(a)‖

≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖a‖p + ‖b‖p),

for all µ ∈ T and all x, y, a, b ∈ A. Then there exists a unique left derivation D : A → X
such that

‖f(x)−D(x)‖ ≤ 2pθ

2− 2p
‖x‖p

for all x ∈ A.

Proof. It follows from Theorem 2.2, by putting φ(x, y, a, b) := θ(‖x‖p +‖y‖p +‖z‖p +‖a‖p +
‖b‖p) all x, y, z, a, b ∈ A and L = 2p−1. �

Theorem 2.4. Let f : A → X be an odd mapping for which there exists a function φ : A5 →
[0,∞) such that

‖µf(
x + y

2
+ z) + µf(

x− y

2
+ z)− f(µx)− 2f(µz) + f(ab)− af(b)− bf(a)‖ ≤ φ(x, y, z, a, b),

(2.7)
for all µ ∈ T and all x, y, z, a, b ∈ A. If there exists an L < 1 such that φ(x, 3x, z, a, b) ≤
2Lφ(x

2
, 3x

2
, z

2
, a

2
, b

2
) for all x, y, a, b ∈ A, then there exists a unique left derivation D : A → X

such that

‖f(x)−D(x)‖ ≤ 1

2− 2L
φ(x, 3x, 0, 0, 0) (2.8)

for all x ∈ A.
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Proof. Putting µ = 1, y = 3x, z = a = b = 0 in (2.7), it follows by oddness of f that

‖f(2x)− 2f(x)‖ ≤ φ(x, 3x, 0, 0, 0)

for all x ∈ A. Hence,

‖1

2
f(2x)− f(x)‖ ≤ 1

2
φ(x, 3x, 0, 0, 0) ≤ Lφ(x, 3x, 0, 0, 0) (2.9)

for all x ∈ A.
Consider the set X := {g | g : A → B} and introduce the generalized metric on X:

d(h, g) := inf{C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cφ(x, 0, 0, 0, 0)∀x ∈ A}.

It is easy to show that (X, d) is complete. Now we define the linear mapping J : X → X by

J(h)(x) =
1

2
h(2x)

for all x ∈ A. By Theorem 3.1 of [3],

d(J(g), J(h)) ≤ Ld(g, h)

for all g, h ∈ X.
It follows from (2.12) that

d(f, J(f)) ≤ L.

By Theorem 2.1, J has a unique fixed point in the set X1 := {h ∈ X : d(f, h) < ∞}. Let D
be the fixed point of J . D is the unique mapping with

D(2x) = 2D(x)

for all x ∈ A satisfying there exists C ∈ (0,∞) such that

‖D(x)− f(x)‖ ≤ Cφ(x, 3x, 0, 0, 0)

for all x ∈ A. On the other hand we have limnd(Jn(f), D) = 0. It follows that

limn
1

2n
f(2nx) = D(x)

for all x ∈ A. It follows from d(f, D) ≤ 1
1−L

d(f, J(f)), which implies that

d(f, D) ≤ 1

2− 2L
.

This implies the inequality (2.8). The rest of proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let 0 < r < 1
2
, θ ∈ [0,∞) be real numbers. Suppose f : A → X satisfies

‖µf(
x + y

2
+ z) + µf(

x− y

2
+ z)− f(µx)− 2f(µz) + f(ab)− af(b)− bf(a)‖

≤ θ(‖x‖r‖y‖r + ‖z‖r + ‖a‖2r + ‖b‖2r),

for all µ ∈ T and all x, y, z, a, b ∈ A. Then there exists a unique n–Jordan derivation D :
A → X such that

‖f(x)−D(x)‖ ≤ 3rθ

2− 2r
‖x‖2r

for all x ∈ A.

Proof. It follows from Theorem 2.3, by putting φ(x, y, z, a, b) := θ(‖x‖r‖y‖r +‖z‖r +‖a‖2r +
‖b‖2r) all x, y, z, a, b ∈ A and L = 22r−1. �
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6 A. Ebadian and S. Shams

3. Jordan Left derivations

In this section we establish the stability of Jordan left derivations.

Theorem 3.1. Let f : A → X be a mapping for which there exists a function φ : A4 → [0,∞)
such that

‖µf(
x + y

2
+ z) + µf(

x− y

2
+ z)− f(µx)− 2f(µz) + f(a2)− 2af(a)‖ ≤ φ(x, y, z, a), (3.1)

for all µ ∈ T and all x, y, z, a ∈ A. If there exists an L < 1 such that φ(x, y, z, a) ≤
2Lφ(x

2
, y

2
, z

2
, a

2
) for all x, y, z, a ∈ A, then there exists a unique left derivation D : A → X

such that

‖f(x)−D(x)‖ ≤ L

1− L
φ(x, 0, 0) (3.2)

for all x ∈ A.

Proof. By hypothesis, we can show that

limj2
−jφ(2jx, 2jy, 2jz, 2ja) = 0 (3.3)

for all x, y, z, a ∈ A.
Put µ = 1, z = y = a = 0 in (3.1) to obtain

‖2f(
x

2
)− f(x)‖ ≤ φ(x, 0, 0, 0) (3.4)

for all x ∈ A. Hence,

‖1

2
f(2x)− f(x)‖ ≤ 1

2
φ(2x, 0, 0, 0) ≤ Lφ(x, 0, 0, 0) (3.5)

for all x ∈ A.

Consider the set X := {g | g : A → B} and introduce the generalized metric on X:

d(h, g) := inf{C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cφ(x, 0, 0, 0)∀x ∈ A}.
It is easy to show that (X, d) is complete. Now we define the linear mapping J : X → X by

J(h)(x) =
1

2
h(2x)

for all x ∈ A. By Theorem 3.1 of [3],

d(J(g), J(h)) ≤ Ld(g, h)

for all g, h ∈ X.
It follows from (3.5) that

d(f, J(f)) ≤ L.

By Theorem 2.1, J has a unique fixed point in the set X1 := {h ∈ X : d(f, h) < ∞}. Let D
be the fixed point of J .

By a same reasoning as proof of Theorem 2.2, one can show that the mapping D : A → X
is C−linear which satisfies (3.2). By putting x = y = z = 0 in (3.1) it follows that

‖D(a2)− 2aD(a)‖

= limn‖
1

4n
f((4na2)− 1

2n−1
af(2na)‖ ≤

limn
1

4n
φ(0, 0, 2na) ≤ limn

1

2n
φ(0, 0, 2na)

= 0
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for all a ∈ A. This means that D : A → X is a Jordan left derivation satisfying (3.2), as
desired. �

We prove the following Hyers–Ulam–Rassias stability problem for left derivations on Ba-
nach algebras.

Corollary 3.2. Let p ∈ (0, 1), θ ∈ [0,∞) be real numbers. Suppose f : A → X satisfies

‖µf(
x + y

2
+z)+µf(

x− y

2
+z)−f(µx)−2f(µz)+f(a2)−2af(a)‖ ≤ θ(‖x‖p+‖y‖p+‖z‖p+‖a‖p),

for all µ ∈ T and all x, y, z, a ∈ A. Then there exists a unique left derivation D : A → X
such that

‖f(x)−D(x)‖ ≤ 2pθ

2− 2p
‖x‖p

for all x ∈ A.

Proof. It follows from Theorem 3.1, by putting φ(x, y, z, a) := θ(‖x‖p + ‖y‖p + ‖z‖p + ‖a‖p)
all x, y, a ∈ A and L = 2p−1. �

Theorem 3.3. Let f : A → X be an odd mapping for which there exists a function φ : A3 →
[0,∞) such that

‖µf(
x + y

2
+ z) + µf(

x− y

2
+ z)− f(µx)− 2f(µz) + f(a2)− 2af(a)‖ ≤ φ(x, y, z, a), (3.6)

for all µ ∈ T and all x, y, z, a ∈ A. If there exists an L < 1 such that φ(x, 3x, z, a) ≤
2Lφ(x

2
, 3x

2
, z

2
, a

2
) for all x, y, z, a ∈ A, then there exists a unique left derivation D : A → X

such that

‖f(x)−D(x)‖ ≤ 1

2− 2L
φ(x, 3x, 0, 0) (3.7)

for all x ∈ A.

Proof. Putting µ = 1, y = 3x, z = a = 0 in (3.6), it follows by oddness of f that

‖f(2x)− 2f(x)‖ ≤ φ(x, 3x, 0, 0)

for all x ∈ A. Hence,

‖1

2
f(2x)− f(x)‖ ≤ 1

2
φ(x, 3x, 0, 0) ≤ Lφ(x, 3x, 0, 0) (3.8)

for all x ∈ A.
Consider the set X := {g | g : A → B} and introduce the generalized metric on X:

d(h, g) := inf{C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cφ(x, 0, 0, 0)∀x ∈ A}.

It is easy to show that (X, d) is complete. Now we define the linear mapping J : X → X by

J(h)(x) =
1

2
h(2x)

for all x ∈ A. By Theorem 3.1 of [3],

d(J(g), J(h)) ≤ Ld(g, h)

for all g, h ∈ X.
It follows from (3.8) that

d(f, J(f)) ≤ L.
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By Theorem 2.1, J has a unique fixed point in the set X1 := {h ∈ X : d(f, h) < ∞}. Let D
be the fixed point of J . D is the unique mapping with

D(2x) = 2D(x)

for all x ∈ A satisfying there exists C ∈ (0,∞) such that

‖D(x)− f(x)‖ ≤ Cφ(x, 3x, 0, 0)

for all x ∈ A. On the other hand we have limnd(Jn(f), D) = 0. It follows that

limn
1

2n
f(2nx) = D(x)

for all x ∈ A. It follows from d(f, D) ≤ 1
1−L

d(f, J(f)), which implies that

d(f, D) ≤ 1

2− 2L
.

This implies the inequality (3.7). The rest of proof is similar to the proof of Theorem 3.1. �

Corollary 3.4. Let 0 < r < 1
2
, θ ∈ [0,∞) be real numbers. Suppose f : A → X satisfies

‖µf(
x + y

2
+z)+µf(

x− y

2
+z)−f(µx)−2f(µz)+f(a2)−2af(a)‖ ≤ θ(‖x‖r‖y‖r+‖z‖r+‖a‖2r),

for all µ ∈ T and all x, y, z, a ∈ A. Then there exists a unique Jordan left derivation D :
A → X such that

‖f(x)−D(x)‖ ≤ 3rθ

2− 2r
‖x‖2r

for all x ∈ A.

Proof. It follows from Theorem 2.3, by putting φ(x, y, z, a) := θ(‖x‖r‖y‖r + ‖z‖r + ‖a‖2r)
all x, y, a ∈ A and L = 22r−1. �
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ON THE CATEGORY OF INTUITIONISTIC FUZZY METRIC
SPACES

HAKAN EFE, SERKAN GÜMÜŞ, AND CEMIL YILDIZ

Abstract. The aim of this paper to give the category of intuitionistic fuzzy
metric spaces with the objects are complete intuitionistic fuzzy metric spaces
de�ned in the sense of Alaca et.al. Furthermore, the existence of solution for
domain equation in these intutionistic fuzzy settings by de�ning a categorical
contraction mapping in the sense of Alaca et.al. is investigated.

1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [17] in 1965, many
authors have introduced the fuzzy metric spaces in di¤erent ways [4,5,7,8]. Gra-
biec [5] extends two �xed point theorems of Banach and Edelstein to contractive
mappings of complete and compact fuzzy metric spaces, respectively.
In [2,3], Alessi et.al, have studied on solution of metric domain equation in the

categories of complete metric spaces. In their papers, a new method for solving
domain equations in categories of metric spaces is studied. Ra� [12] introduced the
category of fuzzy metric spaces with the objects are complete fuzzy metric spaces
de�ned in the sense of Kramosil and Michalek [8]. As an application, he investigate
the existence of solution for domain equation in these fuzzy settings by de�ning
a categorical contraction mapping in the sense of Grabiec [5]. Recently, Ra� [13]
studied on probabilistic nonexpansive mappings between probabilistic metric spaces
and proved a �xed point theorem in category of probabilistic metric spaces.
Park [11] using the idea of intuitionistic fuzzy sets, de�ned the notion of intu-

itionistic fuzzy (brie�y, IF ) metric spaces with the help of continuous t-norm and
continuous t-conorm as a generalization of fuzzy metric space due to George and
Veeramani [4]. Alaca et. al. [1] using the idea of IF -sets, de�ned the notion of
IF -metric space as Park [11] with the help of continuous t-norms and continuous t-
conorms as a generalization of fuzzy metric space due to Kramosil and Michalek [8].
Further, they introduced the notion of Cauchy sequences in an IF -metric spaces
and proved the well-known �xed point theorems of Banach and Edelstein extended
to IF -metric spaces with the help of Grabiec [5]. Many authors studied on �xed
point theorems in IF -metric spaces [6,10,15].
In this paper, we give the category of IF -metric spaces with the objects are

complete IF -metric spaces and morphisms are (" � �)-IF -adjoint pairs de�ned in
the sense of Alaca et.al [1]. Furthermore, we investigate the existence of solution for
domain equation in these IF settings by de�ning a categorical contraction mapping
in the sense of Alaca et.al [1].

1991 Mathematics Subject Classi�cation. 47H10, 03E75, 46S40, 46M15,
Key words and phrases. Intuitionistic fuzzy metric spaces, category of intuitionistic fuzzy met-

ric space, intuitionistic fuzzy metric adjoint pair, �xed point.
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2 HAKAN EFE, SERKAN GÜMÜŞ, AND CEMIL YILDIZ

2. Preliminaries and Some Results

De�nition 1 ([16]). A category C consist of
(i) A class of objects
(ii) For every ordered pair of objects X and Y , a set hom(X;Y ) of morphisms

with domain X and range Y ; if f 2 hom(X;Y ); we write f : X �! Y or
f

X �! Y .
(iii) For every ordered triple of objects X;Y and Z; a function associating to a

pair of morphisims f : X �! Y and g : Y �! Z their composite,

gf = g � f : X �! Z

these satisfy the following two axioms:
Associativity: If f : X �! Y , g : Y �! Z and h : Z �!W; then

h � (g � f) : (h � g) � f : X �!W

Identity: For every object Y there is a morphisim idY : Y �! Y such that if
f : X �! Y; then idY � f = f; and if h : Y �! Z and h � idY = h.

For example; the category of topological spaces and continuous maps or category
of groups and homomorphisims.

De�nition 2 ([16]). Let C and D be categories. A covariant functor (or con-
travariant functor) T from C to D consist of an oject function which assings to
every object X of C an object T (X) of D and a morphisim function which assings
to every morphism f : X �! Y of C a morphism T (f) : T (X) �! T (Y ) [or
T (f) : T (Y ) �! T (X)] of D such that,
(i) T (1X) = 1T (X),
(ii) T (g � f) = T (g) � T (f) [or T (g � f) = T (f) � T (g)]

For example; there is a covariant functor from the category of topological spaces
and continuous maps to the category of sets and functions which assings to every
topological space its underlying set.

De�nition 3 ([14]). A binary operation � : [0; 1]� [0; 1] �! [0; 1] is a continuous
t-norm if it satis�es the following conditions: (i) � is associative and commutative;
(ii) � is continuous; (iii) a�1 = a for all a 2 [0; 1]; (iv) a� b � c�d whenever a � c
and b � d; for each a; b; c; d 2 [0; 1].

De�nition 4 ([14]). A binary operation � : [0; 1]�[0; 1] �! [0; 1] is a continuous t-
conorm if it satis�es the following conditions: (i) � is associative and commutative;
(ii) � is continuous; (iii) a�0 = a for all a 2 [0; 1]; (iv) a�b � c�d whenever a � c
and b � d; for each a; b; c; d 2 [0; 1] .

De�nition 5 ([1]). A 5-tuple (X;M;N; �;�) is said to be an IF -metric space if X
is an arbitrary set,� is a continuous t-norm, � is a continuous t-conorm and M;N
are fuzzy sets on X2� [0;1) satisfying the following conditions: for all x; y; z 2 X
, s; t > 0
(i) M(x; y; t) +N(x; y; t) � 1,
(ii) M(x; y; 0) = 0,
(iii) M(x; y; t) = 1 for all t > 0 if and only if x = y,
(iv) M(x; y; t) =M(y; x; t),
(v) M(x; y; t) �M(y; z; s) �M(x; z; t+ s) for all x; y; z 2 X, s; t > 0
(vi) M(x; y; �) : [0;1) �! [0; 1] is left continuous,
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(vii) lim
t�!1

M(x; y; t) = 1 for all x; y in X

(viii) N(x; y; 0) = 1,
(ix) N(x; y; t) = 0 for all t > 0 if and only if x = y,
(x) N(x; y; t) = N(y; x; t),
(xi) N(x; y; t)�N(y; z; s) � N(x; z; t+ s) for all x; y; z 2 X, s; t > 0,
(xii) M(x; y; �) : [0;1) �! [0; 1] is right continuous,
(xiii) lim

t�!1
N(x; y; t) = 0 for all x; y in X.

Then (M;N) is called an IF -metric on X. The functionsM(x; y; t) and N(x; y; t)
denote the degree of nearness and the degree of non-nearness between x and y with
respect to t, respectively.

Remark 1. Every fuzzy metric space (X;M; �) is an IF -metric space of the form
(X;M; 1 � M; �;�) such that t-norm � and t-conorm � are associated [9], i.e.
x�y = 1� ((1� x) � (1� y)) for any x; y 2 X.

Remark 2. In IF -metric space X, M(x; y; �) is non-decreasing and N(x; y; �) is
non-increasing for all x; y 2 X.

De�nition 6 ([1]). Let (X;M;N; �;�) be a IF -metric space. Then
(a) a sequence fxng in X is said to be Cauchy sequence if for each t > 0 and

p > 0,
lim

n�!1
M(xn+p; xn; t) = 1 and lim

n�!1
N(xn+p; xn; t) = 0

(b) a sequence fxng in X is converging to x in X if for each t > 0,

lim
n�!1

M(xn; x; t) = 1 and lim
n�!1

N(xn; x; t) = 0

(Since � and � are continuous, the limit is uniquely determined from (v) and
(xi).)

A IF -metric space is said to be complete if and only if every Cauchy sequence
is convergent.
Now, we de�ne the basic notion of ("� �)-IF -adjoint and ("� �)-IF -isometry.

De�nition 7. Let (X;M1; N1; �;�) and (Y;M2; N2; �;�) be IF -metric spaces un-
der the same t-norm � and t-conorm �. A mapping f : X �! Y is called IF -non-
expansive if for all x; x0 2 X and t > 0 the following conditions hold:

M2(fx; fx
0; t) �M1(x; x

0; t) and N2(fx; fx0; t) � N1(x; x0; t).

Lemma 1. Let FXY = ff : X �! Y j f is IF -non-expansiveg

MXY (f; g; t) = inf
x2X

M2(fx; gx; t) and NXY (f; g; t) = sup
x2X

N2(fx; gx; t)

for every f; g 2 FXY . Then, (FXY ;MXY ;NXY ; �;�) is an IF -metric space if and
only if (Y;M2; N2; �;�) is an IF -metric space.

De�nition 8. Let (X;M1; N1; �;�) and (Y;M2; N2; �;�) be IF -metric spaces.
(i) A mapping f 2 FXY is called IF -mapping if there exists a k 2 (0; 1) such

that for all x; x0 2 Xand for all t > 0,

M2(fx; fx
0; kt) �M1(x; x

0; t) and N2(fx; fx0; kt) � N1(x; x0; t).

k is called the contractive constant of f .
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(ii) A mapping f 2 FXY is called IF -isometric embedding if for all x; x0 2 X
and for all t > 0,

M2(fx; fx
0; t) =M1(x; x

0; t) and N2(fx; fx0; t) = N1(x; x0; t).

If f is bijection then it is an IF -isometry.

De�nition 9. For r1; r2; r01; r
0
2; "; � 2 [0; 1] where "+ � � 1, let

r1 � " r2 () r1 � r2 � " and
r01 � � r

0
2 () r01�r02 � �.

De�nition 10. Let (X;M1; N1; �;�) and (Y;M2; N2; �;�) be IF -metric spaces.
Two IF -non-expansive mappings f : X �! Y and g : Y �! X are said to be
("� �)-IF -adjoint if for all x 2 X; y 2 Y; t > 0 ,

M2(fx; y; t) �" M1(x; gy; t) and N2(fx; y; t) �� N1(x; gy; t).
If f and g are (1; 0)-IF -adjoint, then hf; gi is called a proper IF -adjoint pair.

De�nition 11. Let (X;M1; N1; �;�) and (Y;M2; N2; �;�) be IF -metric spaces.
Two IF -non-expansive mappings f : X �! Y and g : Y �! X ,

=(f; g; t) = minfMXX(idx; g � f; t);MY Y (f � g; idY ; t)g and
@(f; g; t) = maxfNXX(idx; g � f; t);NY Y (f � g; idY ; t)g.

De�nition 12. Let (X;M1; N1; �;�) and (Y;M2; N2; �;�) be IF -metric spaces. A
pair of non-expansive mappings f : X �! Y and g : Y �! X with =(f; g; t) �" 1
and @(f; g; t) �� 0 is called an ("� �)-IF -isometry where "; � 2 [0; 1] and "+ � � 1.

Note that by de�nition, any pair hf; gi of IF -non-expansive mappings is an
("� �)-IF -isometry, for " = =(f; g; t) and � = @(f; g; t).
The above de�nition can be justi�ed by observation that (1; 0)-IF -isometries

satisfy idX = g�f and f �g = idY for all t > 0 (from de�nition 5) and consequently
f (and also g ) is an isometry.
Under some strict condition on the t-norm and t-conorm, we have the following

equivalence of mappings.

Theorem 1. Let (X;M1; N1; �;�) and (Y;M2; N2; �;�) be IF -metric spaces under
the same t-norm � and t-conorm � such that a�b = minfa; bg and a�b = maxfa; bg
and let "; � 2 [0; 1] where " + � � 1. For all non-expansive mappings f : X �! Y
and g : Y �! X . hf; gi is an ("� �)-IF -adjoint if and only if hf; gi is an ("� �)-
IF -isometry.

Proof. Let f and g are ("� �)-IF -adjoint. Then for any x 2 X ,

M1(x; g � f(x); t) � "M2(f(x); f(x); t) = 1 and

N1(x; g � f(x); t) � �N2(f(x); f(x); t) = 0.

Thus,MXX(idx; g�f; t) �" 1 and NXX(idx; g�f; t) �� 0. Similarly, for any y 2 Y ,
M2(f � g(y); y; t) � "M1(g(y); g(y); t) = 1 and

N2(f � g(y); y; t) � �N1(g(y); g(y); t) = 0

which mean MY Y (f � g; idY ; t) �" 1 and NY Y (f � g; idY ; t) �� 0. Hence,
=(f; g; t) �" 1 and @(f; g; t) �� 0. We conclude that hf; gi is an ("��)-IF -isometry.
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Conversely, suppose that =(f; g; t) �" 1 and @(f; g; t) �� 0: For all x 2 X, y 2 Y;
and k > 1, we have

M1(x; g(y); t) � M1(x; g � f(x); (1� k)t) �M1(g � f(x); g(y); kt)
� " �M1(g � f(x); g(y); kt)
� minf";M1(g � f(x); g(y); kt)g
� minf";M2(f(x); y; kt)g.

Similarly,

M2(f(x); y; t) � M2(f(x); f � g(x); kt) �M2(f � g(y); y; (1� k)t)
� M2(f(x); f � g(y); kt) � "
� minf M1(x; g(y); kt); "g.

Hence,

min

�
M1(x; g(y); t);
M2(f(x); y; t)

�
� minf";M1(x; g(y); kt);M2(f(x); y; kt)g � "

i.e., M1(x; g(y); t) �M2(f(x); y; t) � "; which implies
(2.1) M2(f � g(y); y; t) �" M1(g(y); g(y); t).

On the other hand for all x 2 X, y 2 Y; and k > 1, we have
N1(x; g(y); t) � N1(x; g � f(x); (1� k)t)�N1(g � f(x); g(y); kt)

� ��N1(g � f(x); g(y); kt)
� maxf�;N1(g � f(x); g(y); kt)g
� maxf�;N2(f(x); y; kt)g.

Similarly,

N2(f(x); y; t) � N2(f(x); f � g(x); kt)�M2(f � g(y); y; (1� k)t)
� N2(f(x); f � g(y); kt)��
� maxf N1(x; g(y); kt); �g.

Hence,

max

�
N1(x; g(y); t);
N2(f(x); y; t)

�
� maxf�;N1(x; g(y); kt); N2(f(x); y; kt)g � �

i.e., N1(x; g(y); t)�N2(f(x); y; t) � �; which implies
(2.2) N2(f � g(y); y; t) �� N1(g(y); g(y); t).
Therefore from 2.1 and 2.2 hf; gi is an ("� �)-IF -adjoint. �

3. The Category of IF -Metric Spaces

De�nition 13. Let IFMS� denote the category of IF -metric spaces that has
nonempty complete IF -metric spaces as objects and (" � �)-IF -adjoint pairs as
morphisms. The composition of a pair of morphisms

h1 = hf1; g1i : (X;M1; N1; �;�) �! (Y;M2; N2; �;�) and
h2 = hf2; g2i : (Y;M2; N2; �;�) �! (Z;M3; N3; �;�)

is de�ned as

h2 � h1 = hf2 � f1; g1 � g2i : (X;M1; N1; �;�) �! (Z;M3; N3; �;�):
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De�nition 14. Let IFMS� be a category.
(i) An IF -tower in IFMS� is a sequence f(Xn;Mn; Nn; �;�); hngn of objects

and morphisms such that for all n 2 N,

hn : (Xn;Mn; Nn; �;�) �! (Xn+1;Mn+1; Nn+1; �;�):

(ii) A tower f(Xn;Mn; Nn; �;�); hngn in IFMS�, with hn = hfn; gni, is called a
Cauchy if for

lim
n�!1

=(hn;n+p; t) = 1 and lim
n�!1

@(hn;n+p; t) = 0

for each n 2 N and p; t > 0, where hn;n+p = hn+p�1 � hn+p�2 � � � � � hn.

De�nition 15. Let f(Xn;Mn; Nn; �;�); hngn be a Cauchy tower in IFMS�, where
hn = hfn; gni. The direct limit of f(Xn;Mn; Nn; �;�); hngn is a fuzzy cone
((Xn;Mn; Nn; �;�); fngn), where n = (�n; �n), which is de�ned as follows:
(i) The IF -metric space (X;M;N; �;�) is given by

X = ffxngn : 8n 2 N, xn 2 Xn and xn = gn(xn+1)g

and

M(fxngn; fx0ngn; t) = inf
n2N

Mn(xn; x
0
n; t) and

N(fxngn; fx0ngn; t) = sup
n2N

Nn(xn; x
0
n; t).

(ii) Morphisms n = (�n; �n) : Xn �! X are de�ned as follows:
� �n : Xn �! X where �n(xn) = fxkgk with xk = lim

r�!1
gkr � fnr(x)

� �n : X �! Xn where �n(fxkgk) = xn.

The notion of initial object of a category can be de�ned as follows:

De�nition 16. An initial object of a category IFMS� is an object (#;M#; N#; �;�)
in IFMS� such that for every object (X;M;N; �;�) in IFMS�, there exists a
unique morphism � : (#;M#; N#; �;�) �! (X;M;N; �;�).

Lemma 2. If lim
n�!1

=(n; t) = 1 and lim
n�!1

@(n; t) = 0, then ((X;M;N; �;�); fngn)
with n = (�n; �n) will be the initial cone of the Cauchy tower f(Xn;Mn; Nn; �;�); hngn.

Proof. Let ((X 0;M 0; N 0; �;�); f0ngn) with 0n = (�0n; �
0
n) be another cone for

f(Xn;Mn; Nn; �;�); hngn. We show that there exists a unique morphism
� : (X;M;N; �;�) �! (X 0;M 0; N 0; �;�) such that for all n 2 N, 0n = � � �n. Note
that f�0n ��ng and f�n ��0ng are Cauchy sequence, since f(Xn;Mn; Nn; �;�); hngn
is a Cauchy sequence. Furthermore, the objects of IFMS� are complete, so we
can de�ne lim

n�!1
(�0n � �n) = i and lim

n�!1
(�n � �0n) = j. Obviously, this de�nes

a morphism � = (i; j) : (X;M;N; �;�) �! (X 0;M 0; N 0; �;�). It follows from the
facts that lim

n�!1
=(�n; t) = 1 and lim

n�!1
@(n; t) = 0 that 0n = � � �n, � is the

unique morphism with this property. This proves that ((X;M;N; �;�); fngn) is
the initial cone of the tower f(Xn;Mn; Nn; �;�); hngn. �

As a consequence of the above lemma, we have

Corollary 1. The direct limit of a Cauchy tower is an initial cone for that tower.
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Remark 3. We note that if ((X 0;M 0; N 0; �;�); f0ngn) with 0n = (�0n; �0n) be an-
other initial cone for the Cauchy tower f(Xn;Mn; Nn; �;�); hngn, then by the above
corollary, we have (X;M;N; �;�) ' (X 0;M 0; N 0; �;�). Thus, we have

lim
n�!1

=(n; t) = lim
n�!1

=(0n; t) = 1 and

lim
n�!1

@(n; t) = lim
n�!1

@(0n; t) = 0.

Lemma 3. (Initiality Lemma) Let f(Xn;Mn; Nn; �;�); hngn be an IF -Cauchy
tower in IFMS� and let ((X;M;N; �;�); fngn), with n = (�n; �n) be a cone.
Then ((X;M;N; �;�); fngn) is an initial cone if and only if lim

n�!1
=(n; t) = 1

and lim
n�!1

@(n; t) = 0.

Proof. It follows by Lemma 2 and the Remark 3. �

4. An Application to Fixed Point Theory

In this section, we give a �xed point theorem in category of complete IF -metric
spaces. Before we prove the �xed point theorem in the category IFMS�, we state
the following IF -Banach contraction theorem due to Alaca, [1].

Theorem 2 ([1]). (IF -Banach contraction theorem). Let (X;M;N; �;�) be a com-
plete IF -metric space and T : X �! X be a mapping satisfying

M(Tx; Ty; kt) �M(x; y; t) and N(Tx; Ty; kt) � N(x; y; t)
for all x; y in X, 0 < k < 1. Then T has a unique �xed point.

In category IFMS�, we have the following de�nition.

De�nition 17. A functor T : IFMS� �! IFMS� is called CAT�-contraction,
if there exists a k 2 (0; 1) such that for each morphism � : (X1;M1; N1; �;�) �!
(X2;M2; N2; �;�),

=(T�; kt) � =(� ; t) and @(T�; kt) � @(� ; t)
where T� = (Tf; Tg) for � = (f; g).

By the Initiality Lemma, a CAT�-contraction functor preserves Cauchy tower
and the initial cones, in a similar way as IF -contracting functions preserves Cauchy
sequence and their limits.
We prove the following theorem which shows the existence of �xed points for

contracting functors on the category IFMS�.

Theorem 3. Let T : IFMS� �! IFMS� be a CAT�-contraction functor. Then,
T has a �xed point, i.e., there exists a complete IF -metric space (X;M;N; �;�)
such that (X;M;N; �;�) ' (TX;M;N; �;�).
Proof. Let (X0;M0; N0; �;�) be a complete IF -metric space in IFMS� and let f0 :
X0 �! �X0 be any morphism. Consider the IF -tower f(TnX0;M0; N0; �;�); Tnf0gn.
Since T is a CAT�-contraction functor, it is a Cauchy tower in IFMS�. Thus, it
has a direct limit, ((X;M;N; �;�); fngn), which is an initial cone for the tower.
Hence, we conclude that (X;M;N; �;�) ' (TX;M;N; �;�). �
As given in the Remark 3.9 of [2], the contractiveness is not a necessary condition

in order that a functor has �xed points. As an example, the identity functor is not
contracting.
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(Serkan Gümüş), Turkish Military Academy, Çankaya, 06580, Ankara, Turkey
E-mail address : serkangumus06@yahoo.com

(Cemil Y¬ld¬z), Department of Mathematics, Faculty of Science and Arts, Gazi Uni-
versity, Teknikokullar, 06500 Ankara, Turkey
E-mail address : cyildiz@gazi.edu.tr

443



A note on the oscillation of second order differential equations
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Abstract

We present some new oscillation criteria for the second order nonlinear differential

equation with damping of the form

(r(t)ψ(x(t))K(x′(t)))′ + p(t)K(x′(t)) + q(t)x = 0.

Our results generalize and extend some known oscillation criteria in the literature.

Key words : Oscillatory, second order differential equations.

AMS (MOS) Subject Classification: 34A30, 34C10.

1 Introduction

We shall be concerned here with the oscillatory properties for the second order nonlinear

differential equation with damping term

(
r(t)ψ(x(t))K(x′(t))

)′ + p(t)K(x′(t)) + q(t)x = 0, t ≥ t0 > 0, (1.1)

where r : [t0,∞) → (0,∞), p, q : [t0,∞) → R = (−∞,∞),K : R → R and ψ : R → R+ =

(0,∞) are continuous functions. Throughout this paper we shall also assume that

1
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(i) 0 < c ≤ ψ(x) ≤ c1 for all x ∈ R;

(ii) γ > 0 and K2(y) ≤ γyK(y) for all y 6= 0, where c, c1 and γ are constants.

The oscillatory character is considered in the usual sense, i.e., a solution of (1.1) is said

to be oscillatory if it has arbitrarily large zeros, otherwise it is said to be nonoscillatory.

Equation (1.1) is called oscillatory if all its solutions are oscillatory.

The oscillation problem of solutions for various classes of second order differential equa-

tions have been widely discussed in the literature (see, for example, [1-15] and the references

quoted therein ). There is a great number of papers dealing with particular cases of equation

(1.1) such as the linear equations

x′′ + p(t)x′ + q(t)x = 0, t ≥ t0 > 0, (1.2)

x′′ + q(t)x = 0, t ≥ t0 > 0 (1.3)

and
(
r(t)x′

)′ + q(t)x = 0, t ≥ t0 > 0, (1.4)

Actually, equation (1.2) can be reduced via suitable Sturm-Liouville transformation to the

undamped equation. Here an additional assumption is added on p(t), namely p(t) assumed

to be continuously differentiable. By Sturm-Liouville transformation

y(t) = x(t) exp


1

2

t∫

t0

p(s)ds


 (1.5)

reduces equation (1.2) to

y′′ +
(

q(t)− p2(t)
4

− p′(t)
2

)
y = 0, t ≥ t0 > 0 (1.6)

which is in the form (1.3). Although (1.2) can be put in the form (1.3), there are advantages

in obtaining direct oscillation theorems for (1.2). Oscillation criteria of (1.2)-(1.4) have

been extensively studied by many authors. Many of these criteria involve the integral of the

coefficients. Downstairs is a list of some well known oscillation criteria for equation (1.3)

that exist in the literature

lim
t→∞Q(t) = lim

t→∞

t∫

t0

q(s)ds (1.7)

2
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(Fite-Winter-Leighton [4,5,7]);

lim
t→∞

1
t

t∫

t0

Q(s)ds = ∞ (1.8)

(Wintner [5]);

lim sup
t→∞

1
ta

t∫

t0

(t− s)a−1Q(s)ds = ∞, for some a > 1 (1.9)

(Kamenev [6]).

Even though (1.5) is an oscillation-preserving transformation under the additional that

p(t) is differentiable or at least p(t) is absolutely continuous so that p′(t) is defined. But this

superfluous condition was not assumed in Sobol’s paper (see [12]). By using polar coordinates

transformation, he proved that

lim
t→∞G(t) = lim

t→∞


Q(t)− p(t)

2
− 1

4

t∫

t0

p2(s)ds


 = ∞ (1.10)

was sufficient for equation (1.2) to be oscillatory. Wong [3] noticed this point and gave

several oscillation criteria for equation (1.2), which generalized the results due to Wintner

and Kamenev.

More recently, Zheng and Liu [1] established oscillation criteria for equation (1.2) and the

main results are as follows.

They assume that g(t) ∈ C2 ([t0,∞) ; (0,∞)) is a given functions, f(t) = − g′(t)
2g(t) and

Φ(t) = −1
2
g(t)p(t) +

t∫

t0

g(s)
[
q(s)− f(s)p(s) + f2(s)− f ′(s)− p2(s)

4

]
ds.

Theorem A. Suppose that
∞∫

g−1(s)ds = ∞ (1.11)

holds. Then equation (1.2) is oscillatory provided

lim
t→∞Φ(t) = ∞. (1.12)

3
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Theorem B. Suppose that

∞∫

t0




t∫

t0

g(τ)dτ



−1

ds = ∞ (1.13)

holds. Then equation (1.2) is oscillatory provided

lim
t→∞

1
t

t∫

t0

Φ(s)ds = ∞. (1.14)

Theorem C. Suppose that there exists a constant a > 1 such that

lim sup
t→∞

1
ta

t∫

t0

[
(t− s)a−1Φ(s)− a

4
g(s)(t− s)a−2

]
ds = ∞. (1.15)

Then equation (1.2) is oscillatory.

In this article, by using generalized Riccati transformation, we establish some oscillation

criteria for equation (1.1) without any restriction on the sign p(t) and q(t). Our results extend

the oscillation criteria in [1].

2 Main Results

In order to prove our theorems, we assume that g(t) ∈ C1 ([t0,∞) ; (0,∞)) is a given function

and

Γ(t) =

t∫

t0

[
q(s)g(s)− (γg(s)p(s)− γg′(s)r(s)ψ(x(s)))2

4γg(s)r(s)ψ(x(s))

]
ds− γg(t)p(t)− γg′(t)r(t)ψ(x(t))

2

Our results are as follows:

Theorem 2.1. In addition to the basic assumptions imposed on the functions r, p, q, g,

ψ and K, suppose the following assumptions are valid:

(i)
∞∫

t0

ds

g(s)r(s)
= ∞, (2.1)

4

TUNC: OSCILLATION OF SECOND ORDER D.E. 447



(ii)

lim
t→∞Γ(t) = ∞. (2.2)

Then equation (1.1) is oscillatory

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, we may

assume that x(t) > 0 for t ≥ t0. Furthermore, we put

w(t) = g(t)
r(t)ψ(x(t))K(x′(t))

x(t)
, t ≥ t0,

and using (ii), then it follows (1.1) that

w′(t) +
1

γg(t)r(t)ψ(x(t))
[
w2(t) + (γg(t)p(t)− γg′(t)r(t)ψ(x(t))w

]
+ q(t)g(t) ≤ 0.

By completing the square we have

w′(t) + 1
γg(t)r(t)ψ(x(t))

[(
w(t) + γg(t)p(t)−γg′(t)r(t)ψ(x(t))

2

)2
− (γg(t)p(t)−γg′(t)r(t)ψ(x(t))2

4

]

+q(t)g(t) ≤ 0
(2.3)

Define u(t) = w(t) + γg(t)p(t)−γg′(t)r(t)ψ(x(t))
2 , rewrite (2.3), and integrate from t0 to t ≥ t0, we

obtain

u(t) +

t∫

t0

u2(s)
γg(s)r(s)ψ(x(s))

ds + Γ(t) ≤ w(t0). (2.4)

From (2.2), we can choose t1 sufficiently large so that

u(t) +

t∫

t0

u2(s)
γg(s)r(s)ψ(x(s))

ds ≤ 0, t ≥ t1. (2.5)

Set V (t) =
t∫

t0

u2(s)
γg(s)r(s)ψ(x(s))ds. By (2.5), We get

V 2(t) =

(
t∫

t0

u2(s)
γg(s)r(s)ψ(x(s))ds

)2

≤ u2(t) = γg(t)r(t)ψ(x(t))V ′(t)

≤ γc1g(t)r(t)V ′(t),for t ≥ t1.

(2.6)

Dividing (2.6) through by V 2(t) and integrating from t1 to t, we find

t∫

t1

ds

g(s)r(s)
≤ γc1

V (t1)
− γc1

V (t)
, (2.7)

5
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due to V (t) > 0, we have
t∫

t1

ds

g(s)r(s)
≤ γc1

V (t1)
, (2.8)

which gives a desired contradiction with (2.1) as t →∞. This completes the proof.

Theorem 2.2. In addition to the basic assumptions imposed on the functions r, p, q, g,

ψ and K, suppose the following assumptions are valid:

(i)
∞∫

t0




s∫

t0

g(τ)r(τ)dτ



−1

ds = ∞, (2.9)

(ii)

lim
t→∞

1
t

t∫

t0

Γ(s)ds = ∞. (2.10)

Then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, we may

assume that x(t) > 0 for t ≥ t0. Follows the proof of theorem 2.1, we obtain (2.4). Afterwards,

Integrate (2.4) from t0 to t and divide through by t to obtain

1
t

t∫

t0

u(s)ds +
1
t

t∫

t0

V (s)ds +
1
t

t∫

t0

Γ(s)ds ≤ w(t0). (2.11)

From (2.9), we can choose t1 sufficiently large so that t ≥ t1

t∫

t0

u(s)ds +

t∫

t0

V (s)ds ≤ 0 (2.12)

6
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Let A(t) =
t∫

t0

V (s)ds. Using Hölder inequality, we find

A2(t) ≤
(

t∫
t0

u(s)ds

)2

=

(
t∫

t0

√
γg(s)r(s)ψ(x(s)) u(s)√

γg(s)r(s)ψ(x(s))
ds

)2

≤
(

t∫
t0

γg(s)r(s)ψ(x(s))ds

)(
t∫

t0

u2(s)
γg(s)r(s)ψ(x(s))ds

)

= V (t)

(
t∫

t0

γg(s)r(s)ψ(x(s))ds

)
= A′(t)

(
t∫

t0

γg(s)r(s)ψ(x(s))ds

)

≤ γc1A
′(t)

(
t∫

t0

g(s)r(s)ds

)

(2.13)

Dividing (2.13) through by A2(t) and integrating from t1 to t, we obtain

t∫

t1




s∫

t0

g(τ)r(τ)dτ



−1

ds ≤ γc1

A(t1)
− γc1

A(t)
≤ γc1

A(t1)
. (2.14)

But (2.14) incompatible with (2.9) as t →∞. Hence the Theorem.

Theorem 2.3. Assume that there exists a constant a > 1 such that

lim sup
t→∞

1
ta

t∫

t0

[
(t− s)a−1 Γ(s)− a

4
γg(s)r(s)ψ(x(s)) (t− s)a−2

]
ds = ∞. (2.15)

Then equation (1.1) is oscillatory.

Proof. As in the proof of Theorem 2.1, (2.4) holds. Multiplying (2.4) through by

(t− s)a−1, integrating t0 to t and dividing through by ta,we obtain

1
ta

{
t∫

t0

(t− s)a−1 u(s) +
t∫

t0

(t− s)a−1
s∫

t0

u2(τ)
γg(τ)r(τ)ψ(x(τ))dτds +

t∫
t0

(t− s)a−1 Γ(s)ds

}

≤ a−1w(t0)

(2.16)

Denote R(s) =
s∫

t0

u2(τ)
γg(τ)r(τ)ψ(x(τ))dτ . Integrating the second integral in (2.16) by parts, we

obtain
t∫

t0

(t− s)a−1 R(s)ds =
1
a

t∫

t0

(t− s)a u2(s)
γg(s)r(s)ψ(x(s))

ds (2.17)

7
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Puting (2.17) into (2.16) and completing squares in u(s), we acquire

1
ata

t∫
t0

[
(t−s)a/2u(s)√
γg(s)r(s)ψ(x(s))

+ a
√

γg(s)r(s)ψ(x(s))(t−s)(a−2)/2

2

]2

ds

+ 1
ta

t∫
t0

[
(t− s)a−1 Γ(s)− a

4γg(s)r(s)ψ(x(s)) (t− s)a−2
]
ds

≤ a−1w(t0).

Therefore, we have

1
ta

t∫

t0

[
(t− s)a−1 Γ(s)− a

4
γg(s)r(s)ψ(x(s)) (t− s)a−2

]
ds ≤ a−1w(t0).

Taking the upper limit as t →∞, we obtain a contradiction with (2.15). This completes the

proof of Theorem 2.3.

Corollary 2.1. If there exists a constant a > 1 such that

lim sup
t→∞

1
ta

t∫

t0

γg(s)r(s)ψ(x(s)) (t− s)a−2 ds < ∞

and

lim sup
t→∞

1
ta

t∫

t0

(t− s)a−1 Γ(s)ds = ∞,

then equation (1.1) is oscillatory.

Remarks.

1. Let r(t) = 1, ψ(x(t)) = 1 and K(x′(t)) = x′(t) in equation (1.1). Then our equa-

tion (1.1) reduces to equation (1.2) which is same as in [1]. In spite of the condition

g(t) ∈ C2 ([t0,∞) ; (0,∞)) is given in Theorems A, B and C, our results depend on g(t) ∈
C1 ([t0,∞) ; (0,∞)) in Theorems 2.1, 2.2 and 2.3.

2. Theorems 2.1, 2.2 and 2.3 generalize and extend Theorems A, B and C to the nonlinear

differential equation (1.1).

3. Let ψ(x(t)) = 1, K(x′(t)) = x′(t) and q(t)x = q(t)f(x). Then the equation (1.1)

reduces to
(
r(t)x′

)′ + p(t)x′ + q(t)f(x) = 0,

8
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which considered in [9]. In this situation, the conditions of Theorem 2.1 and Theorem 2.2 are

compatible with Theorem 2.1 and Theorem 2.5 of [9], respectively. But, our Theorem 2.3 is

not mentioned in [9].
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Abstract. In this paper, we establish generalized Hyres-Ulam-Rassias stability of the mixed
type additive and quadratic functional equation

f(3x+ y) + f(3x− y) = f(x+ y) + f(x− y) + 2f(3x)− 2f(x)

in non-Archimedean spaces.

1. Introduction

In 1897, Hensel [14] has introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications [19, 28].

A non-Archimedean field is a field K equipped with a function (valuation) | . | from K
into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r+s| ≤ max{|r|, |s|} for all
r, s ∈ K. Clearly |1| = |−1| = 1 and |n| ≤ 1 for all n ∈ N. An example of a non-Archimedean
valuation is the mapping | . | taking everything but 0 into 1 and |0| = 0. This valuation is
called trivial.
Definition 1.1. Let X be a vector space over a scalar field K with a non–Archimedean
non-trivial valuation | . |. A function ‖ . ‖ : X → R is a non–Archimedean norm (valuation)
if it satisfies the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0;

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

(NA3) ‖x+ y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X (the strong triangle inequality).

Then (X, ‖ . ‖) is called a non–Archimedean space.

Remark 1.2. Thanks to the inequality

‖xm − xl‖ ≤ max{‖x+1 − x‖ : l ≤  ≤ m− 1} (m > l)

a sequence {xm} is Cauchy if and only if {xm+1−xm} converges to zero in a non–Archimedean
space. By a complete non–Archimedean space we mean one in which every Cauchy sequence
is convergent.

The most important examples of non–Archimedean spaces are p–adic numbers. A key
property of p–adic numbers is that they do not satisfy the Archimedean axiom: ”for x, y > 0,
there exists n ∈ N such that x < ny.”

02000 Mathematics Subject Classification: 39B52, 39B82, 46S40, 54E40.
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2 M. Eshaghi Gordji, M. Bavand Savadkouhi and M. Bidkham

Example 1.3. Let p be a prime number. For any nonzero rational number x = a
b
pnx such

that a and b are integers not divisible by p, define the p–adic absolute value |x|p := p−nx .
Then | . | is a non-Archimedean norm on Q. The completion of Q with respect to | . | is
denoted by Qp which is called the p–adic number field.

Note that if p > 3, then |2n| = 1 in for each integer n.

The stability problem of functional equations originated from a question of Ulam[27] in
1940, concerning the stability of group homomorphisms. Let (G1, .) be a group and let
(G2, ∗, d) be a metric group with the metric d(., .). Given ε > 0, dose there exist a δ > 0,
such that if a mapping h : G1 → G2 satisfies the inequality d(h(x.y), h(x) ∗ h(y)) < δ for
all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for
all x ∈ G1? In the other words, Under what condition dose there exists a homomorphism
near an approximate homomorphism? The concept of stability for functional equation arises
when we replace the functional equation by an inequality which acts as a perturbation of the
equation. In 1941, D. H. Hyers[16] gave a first affirmative answer to the question of Ulam
for Banach spaces. Let f : E → E′ be a mapping between Banach spaces such that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ

for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping T : E → E′

such that

‖f(x)− T (x)‖ ≤ δ

for all x ∈ E. Moreover if f(tx) is continuous in t ∈ R for each fixed x ∈ E, then T is linear.
In 1978, Th. M. Rassias[23] provided a generalization of Hyers’ Theorem which allows the
Cauchy difference to be unbounded. In 1991, Z. Gajda[11] answered the question for the
case p > 1, which was rased by Rassias. This new concept is known as Hyers-Ulam-Rassias
stability of functional equations (see [1, 2, 5],[12, 15, 17] and [24]). The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (1.1)

is related to symmetric bi-additive function. It is natural that this equation is called a
quadratic functional equation. In particular, every solution of the quadratic equation (1.1)
is said to be a quadratic function. It is well known that a function f between real vector
spaces is quadratic if and only if there exits a unique symmetric bi-additive function B such
that f(x) = B(x, x) for all x (see [1, 18]). The bi-additive function B is given by

B(x, y) =
1

4
(f(x+ y)− f(x− y)) (1.2)

Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.1) was proved
by Skof for functions f : A → B, where A is normed space and B Banach space (see
[26, 6, 7, 13]). Borelli and Forti [4] generalized the stability result of quadratic functional
equations as follows (cf. [21, 22]): Let G be an Abelian group, and X a Banach space.
Assume that a mapping f : G→ X satisfies the functional inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G, and ϕ : G×G→ [0,∞) is a function such that

Φ(x, y) :=

∞∑
i=0

1

4i+1
ϕ(2ix, 2iy) <∞

for all x, y ∈ G. Then there exists a unique quadratic mapping Q : G→ X with the property

‖f(x)−Q(x)‖ ≤ Φ(x, x)
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for all x ∈ G.

Arriola and Beyer [3] investigated stability of approximate additive mappings f : Qp → R.
They showed that if f : Qp → R is a continuous mapping for which there exists a fixed ε :

|f(x+ y)− f(x)− f(y)| ≤ ε

for all x, y ∈ Qp, then there exists a unique additive mapping T : Qp → R such that

|f(x)− T (x)| ≤ ε

for all x ∈ Qp. Additionally in 2007, Moslehian and Rassias [20] proved the generalized Hyers–
Ulam stability of the Cauchy functional equation and the quadratic functional equation in
non–Archimedean normed spaces (see also [8]).

In this paper, we establish the stability of the additive–quadratic functional equation

f(3x+ y) + f(3x− y) = f(x+ y) + f(x− y) + 2f(3x)− 2f(x) (1.3)

in non-Archimedean space. The function f(x) = x+x2 satisfies the functional equation (1.3),
which explains why it is called additive–quadratic functional equation. For more detailed
definitions of mixed type functional equations, we can refer to [9] and [10].

2. Main Results

Throughout this section, we assume that G is an additive group and X is a complete non-
Archimedean space. Now before taking up the main subject, for a given function f : G→ X,
we define the difference operator

Df(x, y) = f(3x+ y) + f(3x− y)− f(x+ y)− f(x− y)− 2f(3x) + 2f(x)

for all x, y ∈ G. we consider the following function inequality:

‖Df(x, y)‖ ≤ ϕ(x, y)

for an upper bound ϕ : G×G→ [0,∞).

Theorem 2.1. Let ϕ : G×G→ [0,∞) be a function such that

lim
n→∞

ϕ(2nx, 2ny)

|2|n = 0, (2.1)

lim
n→∞

1

|2n| max{max{ϕ(
2nx

4
,
2nx

4
), ϕ(

2nx

4
,
3.2nx

4
)},max{ϕ(

2nx

4
,
2nx

4
), ϕ(

2nx

4
,
5.2nx

4
)}} = 0

(2.2)
for all x, y ∈ G, and let for each x ∈ G the limit

lim
n→∞

max{ 1

|2j | max{max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
3.2jx

4
)}

,max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
5.2jx

4
)}} : 0 ≤ j < n}, (2.3)

denoted by ϕ̃A(x), exists. Suppose that f : G→ X is an odd function satisfying

‖Df(x, y)‖ ≤ ϕ(x, y) (2.4)

for all x, y ∈ G. Then there exists an additive function A : G→ X such that

‖A(x)− f(x)‖ ≤ 1

|2| ϕ̃A(x) (2.5)
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for all x ∈ G, if moreover

lim
i→∞

lim
n→∞

max{ 1

|2j | max{max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
3.2jx

4
)}

,max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
5.2jx

4
)}} : i ≤ j < n+ i} = 0,

then A is the unique additive function satisfying (2.5).

Proof. Setting y = x in (2.4), we get

‖f(4x)− 2f(3x) + 2f(x)‖ ≤ ϕ(x, x) (2.6)

for all x ∈ G. If we let y = 3x in (2.4), we get by the oddness of f,

‖f(6x)− 2f(3x)− f(4x) + 2f(x) + f(2x)‖ ≤ ϕ(x, 3x) (2.7)

for all x ∈ G. It follows from (2.6) and (2.7) that

‖f(6x)− 2f(4x) + f(2x)‖ ≤ max{ϕ(x, x), ϕ(x, 3x)} (2.8)

for all x ∈ G. Once again, by letting y = 5x in (2.4), we get by the oddness of f,

‖f(8x)− f(2x)− f(6x) + f(4x)− 2f(3x) + 2f(x)‖ ≤ ϕ(x, 5x) (2.9)

for all x ∈ G. By (2.6) and (2.9), we get

‖f(8x)− f(6x)− f(2x)‖ ≤ max{ϕ(x, x), ϕ(x, 5x)} (2.10)

for all x ∈ G. By (2.8) and (2.10), we obtain

‖f(8x)− 2f(4x)‖ ≤ max{max{ϕ(x, x), ϕ(x, 3x)},max{ϕ(x, x), ϕ(x, 5x)}} (2.11)

for all x ∈ G. If we replace x by x
4

in (2.11), and divide both sides of (2.11) by 2, we get that

‖1

2
f(2x)− f(x)‖ ≤ 1

|2| max{max{ϕ(
x

4
,
x

4
), ϕ(

x

4
,
3x

4
)},max{ϕ(

x

4
,
x

4
), ϕ(

x

4
,
5x

4
)}} (2.12)

for all x ∈ G. Replacing x by 2n−1x in (2.12), we obtain

‖ 1

2n
f(2nx)− 1

2(n−1)
f(2n−1x)‖ ≤ 1

|2n| max{max{ϕ(
2n−1x

4
,
2n−1x

4
), ϕ(

2n−1x

4
,
3.2n−1x

4
)}

,max{ϕ(
2n−1x

4
,
2n−1x

4
), ϕ(

2n−1x

4
,
5.2n−1x

4
)}}

(2.13)

for all x ∈ G. It follows from (2.2) and (2.13) that the sequence { f(2nx)
2n } is Cauchy. Since

X is complete, we conclude that { f(2nx)
2n } is convergent. Set A(x) := limn→∞

f(2nx)
2n .

By using induction one can show that

‖f(2nx)

2n
− f(x)‖ ≤ 1

|2| max{ 1

|2i| max{max{ϕ(
2ix

4
,
2ix

4
), ϕ(

2ix

4
,
3.2ix

4
)}

,max{ϕ(
2ix

4
,
2ix

4
), ϕ(

2ix

4
,
5.2ix

4
)}} : 0 ≤ i < n}

(2.14)

for all n ∈ N and all x ∈ G. By taking n to approach infinity in (2.14) and using (2.3) one
obtains (2.5). By (2.1) and (2.4), we get

‖DA(x, y)‖ = lim
n→∞

1

|2n| ‖f(2nx, 2ny)‖ ≤ lim
n→∞

ϕ(2nx, 2ny)

|2|n = 0
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for all x, y ∈ G. Therefore the function A : G → X satisfies (1.3). If A
′

is another additive
function satisfying (2.5), then

‖A(x)−A
′
(x)‖ = lim

i→∞
|2|−i‖A(2ix)−A

′
(2ix)‖

≤ lim
i→∞

|2|−i max{ ‖A(2ix)− f(2ix)‖, ‖f(2ix)−A
′
(2ix)‖ }

≤ 1

|2| lim
i→∞

lim
n→∞

max{ 1

|2j | max{max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
3.2jx

4
)}

,max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
5.2jx

4
)}} : i ≤ j < n+ i}

= 0.

for all x ∈ G. Therefore A = A
′
. This completes the proof of the uniqueness of A. �

Theorem 2.2. Let ϕ : G×G→ [0,∞) be a function such that

lim
n→∞

ϕ(2nx, 2ny)

|2|2n
= 0 (2.15)

lim
n→∞

1

|22n| max{ϕ(
2nx

4
,
2nx

4
),max{ϕ(

2nx

4
,
5.2nx

4
), ϕ(

2nx

4
,
−3.2nx

4
)}} = 0 (2.16)

for all x, y ∈ G and let for each x ∈ G the limit

lim
n→∞

max{ 1

|22j | max{ϕ(
2jx

4
,
2jx

4
),max{ϕ(

2jx

4
,
5.2jx

4
), ϕ(

2jx

4
,
−3.2jx

4
)}} : 0 ≤ j < n},

(2.17)
denoted by ϕ̃Q(x), exists. Suppose that f : G→ X is an even function satisfying

‖Df(x, y)‖ ≤ ϕ(x, y) (2.18)

for all x, y ∈ G. Then there exists a quadratic function Q : G→ X such that

‖Q(x)− f(x)‖ ≤ 1

|4| ϕ̃Q(x) (2.19)

for all x ∈ G, if moreover

lim
i→∞

lim
n→∞

max{ 1

|22j | max{ϕ(
2jx

4
,
2jx

4
)

,max{ϕ(
2jx

4
,
5.2jx

4
), ϕ(

2jx

4
,
−3.2jx

4
)}} : i ≤ j < n+ i} = 0,

then Q is the unique quadratic function satisfying (2.19).

Proof. Replacing y by x+ y in (2.18) to get

‖f(4x+ y) + f(2x− y)− f(2x+ y)− f(y)− 2f(3x) + 2f(x)‖ ≤ ϕ(x, x+ y) (2.20)

for all x, y ∈ G. If we Replace y by −y in (2.20), we obtain

‖f(4x− y) + f(2x+ y)− f(2x− y)− f(y)− 2f(3x) + 2f(x)‖ ≤ ϕ(x, x− y) (2.21)

for all x, y ∈ G. If we add (2.20) to (2.21), we have

‖f(4x+ y) + f(4x− y)− 2f(y)− 4f(3x) + 4f(x)‖ ≤ max{ϕ(x, x+ y), ϕ(x, x− y)}. (2.22)

Letting y = 0 in (2.22), we get the inequality

‖2f(4x)− 4f(3x) + 4f(x)‖ ≤ ϕ(x, x) (2.23)
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for all x ∈ G. Once again By letting y = 4x in (2.22), we get the inequality

‖f(8x)− 2f(4x)− 4f(3x) + 4f(x)‖ ≤ max{ϕ(x, 5x), ϕ(x,−3x)} (2.24)

for all x ∈ G. By (2.23) and (2.24), we get

‖f(8x)− 4f(4x)‖ ≤ max{ϕ(x, x),max{ϕ(x, 5x), ϕ(x,−3x)}} (2.25)

for all x ∈ G. If we replace x in (2.25) by x
4

and divide both sides of (2.25) by 4, we lead to

‖1

4
f(2x)− f(x)‖ ≤ 1

|4| max{ϕ(
x

4
,
x

4
),max{ϕ(

x

4
,
5x

4
), ϕ(

x

4
,
−3x

4
)}} (2.26)

for all x ∈ G. Replacing x by 2n−1x in (2.26), we get

‖ 1

22n
f(2nx)− 1

22(n−1)
f(2n−1x)‖ ≤ 1

|22n| max{ϕ(
2n−1x

4
,
2n−1x

4
)

,max{ϕ(
2n−1x

4
,
5.2n−1x

4
), ϕ(

2n−1x

4
,
−3.2n−1x

4
)}}

(2.27)

for all x ∈ G. By (2.16) and (2.27), it follows that the sequence { f(2nx)

22n } is Cauchy. Since

X is complete, we conclude that { f(2nx)

22n } is convergent. Set Q(x) := limn→∞
f(2nx)

22n for all
x ∈ X.
Using induction one can show that

‖f(2nx)

22n
− f(x)‖ ≤ 1

|22| max{ 1

|22i| max{ϕ(
2ix

4
,
2ix

4
),max{ϕ(

2ix

4
,
5.2ix

4
)

, ϕ(
2ix

4
,
−3.2ix

4
)}} : 0 ≤ i < n} (2.28)

for all n ∈ N and all x ∈ G. Letting n→∞ in (2.28) and using (2.17) one can obtain (2.19).
By (2.15) and (2.18), we get

‖DQ(x, y)‖ = lim
n→∞

1

|22n| ‖f(2nx, 2ny)‖ ≤ lim
n→∞

ϕ(2nx, 2ny)

|2|2n
= 0

for all x, y ∈ G. Therefore the function Q : G → X satisfies (1.3). To prove the uniqueness

property of Q, let Q
′

be another quadratic function satisfying (2.19), then

‖Q(x)−Q
′
(x)‖ = lim

i→∞
|2|−2i‖Q(2ix)−Q

′
(2ix)‖

≤ lim
i→∞

|2|−2i max{ ‖Q(2ix)− f(2ix)‖, ‖f(2ix)−Q
′
(2ix)‖ }

≤ 1

|22| lim
i→∞

lim
n→∞

max{ 1

|22j | max{ϕ(
2jx

4
,
2jx

4
)

,max{ϕ(
2jx

4
,
5.2jx

4
), ϕ(

2jx

4
,
−3.2jx

4
)}} : i ≤ j < n+ i}.

for all x ∈ G. It follows from hypothesis that Q = Q
′
. �

Theorem 2.3. Let ϕ : G×G→ [0,∞) be a function such that

lim
n→∞

ϕ(2nx, 2ny)

|2|n = lim
n→∞

ϕ(2nx, 2ny)

|2|2n
= 0 (2.29)

for all x, y ∈ G and let for each x ∈ G the limit

lim
n→∞

max{ 1

|2j | max{max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
3.2jx

4
)}
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,max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
5.2jx

4
)}} : 0 ≤ j < n},

denoted by ϕ̃A(x), and

lim
n→∞

max{ 1

|22j | max{ϕ(
2jx

4
,
2jx

4
),max{ϕ(

2jx

4
,
5.2jx

4
), ϕ(

2jx

4
,
−3.2jx

4
)}} : 0 ≤ j < n},

denoted by ϕ̃Q(x), exist. Suppose that f : G→ X is a function satisfying

‖Df(x, y)‖ ≤ ϕ(x, y) (2.30)

for all x, y ∈ G. Then there exist an additive function A : X → Y and a quadratic function
Q : G→ X such that

‖f(x)−A(x)−Q(x)‖ ≤ 1

|22| max{max{ϕ̃A(x), ϕ̃A(−x)}, 1

|2| max{ϕ̃Q(x), ϕ̃Q(−x)}}

(2.31)

for all x ∈ G, if

lim
i→∞

lim
n→∞

max{ 1

|2j | max{max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
3.2jx

4
)}

,max{ϕ(
2jx

4
,
2jx

4
), ϕ(

2jx

4
,
5.2jx

4
)}} : i ≤ j < n+ i} = 0,

lim
i→∞

lim
n→∞

max{ 1

|22j | max{ϕ(
2jx

4
,
2jx

4
)

,max{ϕ(
2jx

4
,
5.2jx

4
), ϕ(

2jx

4
,
−3.2jx

4
)}} : i ≤ j < n+ i} = 0

then A is the unique additive function and Q is the unique quadratic function satisfying
(2.31).

Proof. Let fo(x) = 1
2
[f(x)− f(−x)] for all x ∈ G. Then fo(0) = 0, fo(−x) = −fo(x), and

‖Dfo(x, y)‖ ≤
1

|2| max{ϕ(x, y), ϕ(−x,−y)}

for all x, y ∈ G. From Theorem 2.1, it follows that there exists a unique additive function
A : G→ X satisfying

‖fo(x)−A(x)‖ ≤ 1

|22| max{ϕ̃A(x), ϕ̃A(−x)} (2.32)

for all x ∈ G.
Let fe(x) = 1

2
[f(x) + f(−x)] for all x ∈ G. Then fe(0) = 0, fe(−x) = fe(x), and

‖Dfe(x, y)‖ ≤
1

|2| max{ϕ(x, y), ϕ(−x,−y)}

for all x, y ∈ G. From Theorem 2.2, it follows that there exists a unique quadratic function
Q : G→ X satisfying

‖fe(x)−Q(x)‖ ≤ 1

|23| max{ϕ̃Q(x), ϕ̃Q(−x)} (2.33)

for all x ∈ G.
Hence, (3.31) follows from (3.32) and (3.33). �
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Abstract. We say a functional equation (ξ) is stable if any function g satisfying the equa-
tion (ξ) approximately is near to true solution of (ξ). In this paper, we prove the Generalized
Hyers–Ulam stability of ternary Jordan ∗−derivations in C∗−ternary algebras for the fol-
lowing generalized Cauchy–Jensen additive mapping:

rf(
s
∑p

j=1 xj + t
∑d

j=1 xj

r
) = s

p∑
j=1

f(xj) + t

d∑
j=1

f(xj).

1. Introduction

A C∗−ternary algebra is a complex Banach space A, equipped with a ternary product
(x, y, z) 7−→ [x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear
in the middle variable, and associative in the sense that [x, y, [z, u, v]] = [x, [u, z, y], v] =
[[x, y, z], u, v], and satisfies ‖[x, y, z]‖ ≤ ‖x‖.‖y‖.‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [1, 3, 5, 11, 22, 24, 25]).
If a C∗-ternary algebra (A, [., ., .]) has an identity, i.e., an element e ∈ A such that x =
[x, e, e] = [e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with xoy := [x, e, y]
and x∗ := [e, x, e], is a unital C∗−algebra. Conversely, if (A, o) is a unital C∗− algebra, then
[x, y, z] := xoy∗oz makes A into a C∗−ternary algebra.

Let (A, [ ]) be a ∗−ternary algebra over a scalar field R or C. A linear mapping D :
(A, [ ]) → (A, [ ]) is called a ternary Jordan ∗−derivation, if

D([xxx]) = [D(x)xx] + [xD(x)x] + [xxD(x)], D(x∗) = (D(x))∗

for all x ∈ A.
We say a functional equation (ξ) is stable if any function g satisfying the equation (ξ)
approximately is near to true solution of (ξ). We say that a functional equation is superstable
if every approximately solution is an exact solution of it.

02000 Mathematics Subject Classification: Primary 39B52; Secondary 39B82; 46B99;
17A40

0Keywords: Generalized Hyers–Ulam stability; C∗−ternary algebra; ternary Jordan
∗−derivation
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The stability of functional equations was first introduced by S. M. Ulam [23] in 1940. More
precisely, he proposed the following problem: Given a group G1, a metric group (G2, d) and
a positive number ε, does there exist a δ > 0 such that if a function f : G1 −→ G2 satisfies
the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
T : G1 → G2 such that d(f(x), T (x)) < ε for all x ∈ G1. As mentioned above, when this
problem has a solution, we say that the homomorphisms from G1 to G2 are stable. In
1941, D. H. Hyers [8] gave a partial solution of Ulam,s problem for the case of approximate
additive mappings under the assumption that G1 and G2 are Banach spaces. In 1950, T.
Aoki [2] was the second author to treat this problem for additive mappings. In 1978, Th.
M. Rassias [21] generalized the theorem of Hyers by considering the stability problem with
unbounded Cauchy differences.

On the other hand J. M. Rassias proved the Hyers stability result by presenting another
condition controlled by a product of different powers of norms. According to J. M. Rassias
Theorem (see [18,19,20]):
Theorem 1.1. If it is assumed that there exist constants Θ ≥ 0 and p1, p2 ∈ R such that

p = p1 + p2 6= 1, and f : E → E
′

is a map from a norm space E into a Banach space E
′

such that the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε‖x‖p1‖y‖p2

for all x, y ∈ E, then there exists a unique additive mapping T : E → E
′
such that

‖f(x)− T (x)‖ ≤ Θ

2− 2p
‖x‖p,

for all x ∈ E. If in addition for every x ∈ E, f(tx) is continuous in real t for each fixed x,
then T is linear .

During the last decades several stability problems for various functional equations have
been investigated by many mathematicians; we refer the reader to the monographs [4, 6, 7,
9, 10, 13, 14, 16, 17].

2. Stability

Let A be a C∗−ternary algebra. For a given mapping f : A −→ A, we define

∆µf(x1, ..., xp, y1, ..., yd) := rf(
s
∑p

j=1 µxj + t
∑d

j=1 µyj

r
)− s

p∑
j=1

µf(xj)− t

d∑
j=1

µf(yj)

for all µ ∈ T1 := {λ ∈ C : |λ| = 1} and all x1, ..., xp, y1, ..., yd ∈ A, and let

∆f(x, y) = f([x, x, x])− [f(x), x, x]− [x, f(x), x]− [x, x, f(x)] + f(y∗)− (f(y))∗

for all x, y ∈ A.
One can easily show that a mapping f : A −→ A satisfies

∆µf(x1, ..., xp, y1, ..., yd) = 0

for all µ ∈ T1 and all x1, ..., xp, y1, ..., yd ∈ A if and only if

f(µx+ λy) = µf(x) + λf(y)

for all µ, λ ∈ T1 and all x, y ∈ A.
We will use the following lemma in the proof of our main theorem:

Lemma 2.1. [15] Let f : A −→ A be an additive mapping such that f(µx) = µf(x) for all
x ∈ A and all µ ∈ T1. Then the mapping f is C-linear.
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Theorem 2.2. Let r,θ be non-negative real numbers such that r ∈ (−∞, 1) ∪ (3,+∞), and
let f : A −→ A be a mapping such that

‖∆µf(x1, ..., xp, y1, ..., yd)‖ ≤ θ(

p∑
j=1

‖xj‖r +

d∑
j=1

‖yj‖r) (2.1)

and that

‖∆f(x, y)‖ ≤ 3θ(‖x‖r + ‖y‖r) (2.2)

for all x ∈ A. Then there exists a unique ternary Jordan ∗−derivation δ : A −→ A such that

‖f(x)− δ(x)‖ ≤ 2r(p+ d)

|2(p+ 2d)r − (p+ 2d)2r|θ‖x‖
r (2.3)

for all x ∈ A.

Proof. Letting µ = 1 and x1 = ... = xp = y1, ..., yd = x and s = 1, t = 2 in (2.1), we get

‖f((p+ 2d)x)− (p+ 2d)f(x)‖ ≤ (p+ d)θ‖x‖r

for all x ∈ A. So

‖f(x)− (p+ 2d)f(
x

p+ 2d
)‖ ≤ (p+ d)θ

2r(p+ 2d)r
‖x‖r

for all x ∈ A. Hence, one can show that

‖(p+ 2d)lf(
x

(p+ 2d)l
− (p+ 2d)mf(

x

(p+ 2d)m
‖ ≤

m−1∑
j=l

‖(p+ 2d)jf(
x

(p+ 2d)j
)

− (p+ 2d)j+1f(
x

(p+ 2d)j+1
)‖ ≤ θ

2r

m−1∑
j=l

(p+ 2d)j

(p+ 2d)rj
‖x‖r (2.4)

for all non-negative integers m and l with m > l and all x ∈ A. It follows from (2.4) that
the sequence {(p+2d)nf( x

(p+2d)n )} is a Cauchy sequence for all x ∈ A. Since A is complete,

the sequence {(p + 2d)nf( x
(p+2d)n )} converges. So one can define the mapping δ : A −→ A

by

δ(x) := lim
n−→∞

(p+ 2d)nf(
x

(p+ 2d)n
)

for all x ∈ A.
Moreover letting l = 0 and passing the limit m −→∞ in (2.4), we get (2.3). It follows from
(2.1) that

‖rδ( (p+ 2d)x

r
)− (p+ 2d)δ(x)‖ ≤ lim

n−→∞
(p+ 2d)n‖rf(

x

(p+ 2d)n−1
)

− (p+ 2d)f(
x

(p+ 2d)n
)‖ ≤ lim

n−→∞

(p+ 2d)n

(p+ 2d)nr
(3θ‖x‖r)

= 0

for all x ∈ A. So

rδ(
s
∑p

j=1 xj + t
∑d

j=1 yj

r
) = s

p∑
j=1

δ(xj) + t

d∑
j=1

δ(yj)
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for all x ∈ A. By Lemma 2.1, the mapping δ : A −→ A is Cauchy additive. By the same
reasoning as in the proof of Theorem 2.1 of [15], the mapping δ : A −→ A is C−linear.
Setting y = 0 in (2.2), then we have

‖δ([x, x, x])− [δ(x), x, x]− [x, δ(x), x]− [x, x, δ(x)]‖

= lim
n−→∞

(p+ 2d)(p+d)n‖f(
[x, x, x]

(p+ 2d)(p+d)n
)− [f(

x

(p+ 2d)(p+d)n
),

x

(p+ 2d)n
]

− [
x

(p+ 2d)n
, f(

x

(p+ 2d)n
),

x

(p+ 2d)n
]− [

x

(p+ 2d)n
,

x

(p+ 2d)n
, f(

x

(p+ 2d)n
)]‖

≤ lim
n−→∞

(p+ 2d)(p+d)n

(p+ 2d)nr
(3θ‖x‖r) = 0

for all x ∈ A. So

δ([x, x, x]) = [δ(x), x, x] + [x, δ(x), x] + [x, x, δ(x)]

for all x ∈ A.
Put x = 0 in (2.2), we lead to

‖δ(x∗)− (δ(y))∗‖

= lim
n−→∞

(p+ 2d)(p+d)n‖f(
y∗

(p+ 2d)(p+d)n
)− (p+ 2d)(p+d)n(f(

y

(p+ 2d)(p+d)n
))∗‖

≤ lim
n−→∞

(p+ 2d)(p+d)n

(p+ 2d)nr
(3θ‖y‖r) = 0

for all y ∈ A. This means that δ is ∗−preserving. Now, let T : A −→ A be another
Cauchy–Jensen additive mapping satisfying (2.2). Then we have

‖δ(x)− T (x)‖ = (p+ 2d)n‖δ( x

(p+ 2d)n
)− T (

x

(p+ 2d)n
)‖

≤ (p+ 2d)n(‖δ( x

(p+ 2d)n
)− f(

x

(p+ 2d)n
)‖+ ‖T (

x

(p+ 2d)n
)− f(x(p+ 2d)n)‖)

≤ 3(p+ 2d)nθ

(2r − 2)(p+ 2d)nr
‖x‖r

which tends to zero as n −→ ∞ for all x ∈ A. This proves the uniqueness property of δ.
Thus the mapping δ : A −→ A is unique ternary Jordan ∗−derivation satisfying (2.3). �

Theorem 2.3. Let r, θ be non–negative real numbers such that r ∈ (−∞, 1
p+d

) ∪ (1,+∞),

and let f : A −→ A be a mapping such that

‖∆µf(x1, ..., xp, y1, ..., yd)‖ ≤ θ

p∏
j=1

‖xj‖r ·
d∏

j=1

‖yj‖r (2.5)

for all µ ∈ T1 and all x, x1, ..., xp, y1, ..., yd ∈ A, and

‖∆f(x, y)‖ ≤ θ‖x‖3r (2.6)

for all x ∈ A. Then there exists a unique ternary Jordan ∗−derivation δ : A −→ A such that

‖f(x)− δ(x)‖ ≤ 2(p+d)r

|2(p+ 2d)(p+d)r − (p+ 2d)2(p+d)r|
θ‖x‖(p+d)r (2.7)
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for all x ∈ A.

Proof. Letting µ = 1 and x1 = ... = xp = y1, ..., yd = x and s = 1, t = 2 in (2.5), we get

‖f((p+ 2d)x)− (p+ 2d)f(x)‖ ≤ (p+ d)θ‖x‖3r (2.8)

for all x ∈ A. So

‖f(x)− (p+ 2d)f(
x

p+ 2d
)‖ ≤ θ

(p+ 2d)(p+d)r
‖x‖(p+d)r

for all x ∈ A. Hence,

‖(p+ 2d)lf(
x

(p+ 2d)l
− (p+ 2d)mf(

x

(p+ 2d)m
‖

≤
m−1∑
j=l

‖(p+ 2d)jf(
x

(p+ 2d)j
)− (p+ 2d)j+1f(

x

(p+ 2d)j+1
)‖

≤ θ

(p+ 2d)(p+d)r

m−1∑
j=l

(p+ 2d)j

(p+ 2d)(p+d)rj
‖x‖(p+d)r (2.9)

for all non–negative integers m and l with m > l and all x ∈ A. It follows from (2.9) that
the sequence {(p+2d)nf( x

(p+2d)n )} is a Cauchy sequence for all x ∈ A. Since A is complete,

the sequence {(p + 2d)nf( x
(p+2d)n )} converges. So one can define the mapping δ : A −→ A

by

δ(x) := lim
n−→∞

(p+ 2d)nf(
x

(p+ 2d)n
)

for all x ∈ A.
Moreover letting l = 0 and passing the limit m −→ ∞ in (2.9), it follows from (2.6) that
δ is a ternary Jordan derivation. The rest of the proof is similar to the proof of Theorem
2.2. �

Now, we investigate superstability of ternary Jordan homomorphisms in C∗−ternary
algebras associated with the functional equation ∆µf(x1, ..., xp, y1, ..., yd) = 0.

Theorem 2.4. Let t ∈ {−1, 1}, and let ϕ : A(p+d) −→ [0,∞) and ψ : A3 −→ [0,∞) be
mappings such that

ϕ̃(x) :=

∞∑
n=0

γ−tnϕ(γtnx, ..., γtnx) <∞, (2.10)

lim
n−→∞

γ−tnϕ(γtnx1, ..., γ
tnxp, γ

tny1, ..., γ
tnyd) = 0, (2.11)

lim
n−→∞

γ−3tnψ(γtnx, γtnx, γtnx) = 0, lim
n−→∞

γ−2tnψ(γtnx, γtnx, x) = 0 (2.12)

for all x, x1, ..., xp, y1, ..., yd ∈ A where γ = p+2d
2

. Suppose that f : A −→ A is a mapping
satisfying

‖∆µf(x1, ..., xp, y1, ..., yd)‖A ≤ ϕ(x1, ..., xp, y1, ..., yd), (2.13)

‖∆f(x, y)‖ ≤ ψ(x, x, x) (2.14)

for all µ ∈ T1 and all x, x1, ..., xp, y1, ..., yd ∈ A. Then the mapping f : A −→ A is a ternary
Jordan ∗−derivation.
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Proof. By the same reasoning as the proof of Theorem 3.3 of [12], the sequence { 1
γtn f(γtnx)}

is converges. Thus one can define the mapping δ : A −→ A by

δ(x) := lim
n−→∞

1

γtn
f(γtnx)

for all x ∈ A moreover, δ(λx + µy) = λδ(x) + µδ(y) for all λ, µ ∈ T1 and all x, y ∈ A.
Therefore, by Lemma 2.1 the mapping δ : A −→ A is C-linear.
It follows from (2.11) and (2.14) that

‖∆δ(x, x, x)‖ = lim
n−→∞

1

γ3tn
‖∆f(γtnx, γtnx, γtnx)‖ ≤ lim

n−→∞

1

γ3tn
ψ(γtnx, γtnx, γtnx) = 0

for all x ∈ A. Hence

δ([x, x, x]) = [δ(x), x, x] + [x, δ(x), x] + [x, x, δ(x)] (2.15)

for all x ∈ A. So the mapping δ : A −→ A is a C∗−ternary Jordan derivation. It follows
from (2.12) and (2.14)

‖δ[x, x, x]− [δ(x), x, x]− [x, δ(x), x]− [x, x, f(x)]‖

= lim
n−→∞

1

γ2tn
‖f [γtnx, γtnx, x]− [f(γtnx), γtnx, x]

− [γtnx, f(γtnx), x]− [γtnx, γtnx, f(x)]‖

≤ lim
n−→∞

1

γ2tn
ψ(γtnx, γtnx, x) = 0

for all x ∈ A. This means that

δ[x, x, x] = [δ(x), x, x] + [x, δ(x), x] + [x, x, f(x)] (2.16)

for all x ∈ A. Hence we get from (2.15) and (2.16) that

[x, x, δ(x)] = [x, x, f(x)] (2.17)

for all x ∈ A. Letting x = f(x)− δ(x) in (2.17), we get

‖f(x)− δ(x)‖3 = ‖[f(x)− δ(x), f(x)− δ(x), f(x)− δ(x)]‖ = 0

for all x ∈ A. Hence f(x) = δ(x) for all x ∈ A. So the mapping f : A −→ A is a C∗−ternary
Jordan derivation, as desired. �

Corollary 2.5. Let r < 1, s < 2 and θ be non-negative real numbers, and let f : A −→ A be
a mapping satisfying (2.1) and

‖∆f(x, y)‖ ≤ 3θ‖x‖s (2.18)

for all x ∈ A. Then the mapping f : A −→ A is a C∗−ternary Jordan derivation.

Proof. It follows from Theorem 2.4 by putting t = 1,

ϕ(x1, ..., xp, y1, ..., yd) = θ(

p∑
j=1

‖xj‖r
A +

d∑
j=1

‖yj‖r)

and

ψ(x, x, x) = 3θ‖x‖s

for all x, x1, ..., xp, y1, ..., yd ∈ A. �
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Corollary 2.6. Let r, s and θ be non-negative real numbers such that s, r(p + d) < 1, and
let f : A −→ A be a mapping satisfying (2.5) and

‖∆f(x, y)‖ ≤ ‖x‖3s (2.19)

for all x ∈ A. Then the mapping f : A −→ A is a C∗−ternary Jordan derivation.

Proof. It follows from Theorem 2.4 by putting t = 1,

ϕ(x1, ..., xp, y1, ..., yd) = θ

p∏
j=1

‖xj‖r
A

d∏
j=1

‖yj‖r

and
ψ(x, x, x) = θ‖x‖3s

for all x, x1, ..., xp, y1, ..., yd ∈ A. �

Similarly by putting t = −1 in Theorem 2.4,we can prove the following corollary.

Corollary 2.7. Let r, s and θ be non-negative real numbers such that s, r(p + d) > 1, and
let f : A −→ A be a mapping satisfying (2.5) and (2.19). Then the mapping f : A −→ A is
a C∗−ternary Jordan derivation.
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Abstract

We study the dependance of the second moment of the rational Bern-
stein functions on the weight numbers. For the second degree rational
Bernstein functions we prove that the minimal value of the second mo-
ment uniform on [0, 1] is attained when all weight numbers are equal.
At the end we present a quantitative variant of Voronovskaja’s Theorem.
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1 Introduction and main results

The NURBS (”non-uniform” rational B-splines) play an important role in
Computer Aided Geometric Design (CAGD). The standart source on this
method is is the book of Piegl and Tiller [4]. Special cases of NURBS curves
are the famous Schoenberg spline curve and rational Bernstein-Bézier curves.
Adapted to the context of approximation of functions the latter was general-
ized by H.Gonska in [1] as follows:

Rn(f ; x) :=

n∑
k=0

ωk · f( k
n
) · pn,k(x)

n∑
k=0

ωk · pn,k(x)
, (1.1)

1
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where ωk > 0, 0 ≤ k ≤ n are the so-called weight numbers and

pn,k(x) =

(
n

k

)
xk(1− x)n−k

are the basic Bernstein polynomials of degree n. Suppose that ωk = ω, 0 ≤
k ≤ n. Then

Rn(f ; x) := Bn(f ; x) =
n∑

k=0

f(
k

n
) · pn,k(x),

i.e. the rational Bernstein function (1.1) reduces to the Bernstein polynomial of
degree n. We consider Rn(f ; x) as a linear positive operator (rational Bernstein
operator), acting on the space of continuous functions f ∈ C[0, 1]. Some
properties of Rn(f ; x) are:

• (i) Rn(f ; x) is a positive linear operator reproducing constant functions.

• (ii) One has Rn(f ; 0) = f(0) and Rn(f ; 1) = f(1).

• (iii) The following representation of the first moment of Rn(f ; x) was
established in [1]-(see Proposition 3 ):

Rn(f ; x)− x = x(1− x) · 1

N
·

n−1∑
k=0

(ωk+1 − ωk)pn−1,k(x), (1.2)

where

N =
n∑

k=0

ωkpn,k(x).

As far as we know the exact presentation of the second moment of Rn(f ; x),
namely Rn((t−x)2; x) in a form, similar to (1.2) is still missing. From (1.2) it
follows also that the operator Rn(f ; x) reproduces linear functions if and only
if all weight numbers ωk are equal. With several examples it was shown in [1]
that even when not all weights ωk are equal, by an appropriate choice of the
numbers ωk pointwise convergence

Rn(f ; x) → f(x)

and also uniform convergence

‖Rn(f)− f‖C[0,1] → 0

when n →∞ is possible.

2
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From the viewpoint of quantitative approximation theory an essential role
play the estimates of the first and of the second moments of the operator
Rn(f ; x):

Rn((t− x)2; x) :=

n∑
k=0

ωk(
k
n
− x)2pn,k(x)

n∑
k=0

ωk · pn,k(x)
. (1.3)

It is known that Bernstein operator reproduces linear functions and that

Bn((t− x)2; x) =
x(1− x)

n
, (1.4)

for all n ∈ N -the set of natural numbers and x ∈ [0, 1]. Our first result con-
cerns the second moment of R2(f ; x) when n = 2 is:

Theorem 1. Let n = 2 and ωk > 0, k = 0, 1, 2. Then for all x ∈ [0, 1]

min
ωk, 0≤k≤2

R2((t− x)2; x) =
x(1− x)

2
(1.5)

and min is attained exactly when ω0 = ω1 = ω2.

It is natural to suppose the following

Conjecture. Let n > 2. Then for all x ∈ (0, 1) it holds

min
ωk, 0≤k≤2

Rn((t− x)2; x) <
x(1− x)

n
. (1.6)

As far as we know neither the proof of this Conjecture is available, nor the
counterexample is proved, i.e. the min in (1.6) is attained if and only if all
weights ωk are equal, which is the case n = 2. If the Conjecture is not true, this
means that the classical Bernstein operator is best possible among all rational
Bernstein operators Rn(f). Concerning the value of the second moment we
consider the infinite sequence of positive weight numbers ω0, ω1, . . . , ωn, . . .
and the sequence of rational Bernstein operators {Rn(f)}∞n=1. We define

ρn,1 :=
max

k
|ωk+1 − ωk|

min
k

ωk

, (1.7)

where the max and min is taken for 0 ≤ k ≤ n. Also let

ρn,2 :=
max

k
ωk

min
k

ωk

. (1.8)

3
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Our second result is :

Theorem 2. Let f ∈ C2[0, 1],

ρn,1 ≤
1

nα
, α > 1

and ρn,2 ≤ A for all natural numbers n. Then the following uniform with
respect to x ∈ [0, 1] convergence holds:

lim
n→∞

n · [Rn(f ; x)− f(x)− 1

2
Rn((t− x)2; x) · f ′′(x)] = 0. (1.9)

In Section 2 we prove Theorems 1 and 2. Some examples are included
to show the impact of the choice of weights ωk on the value of the second
moment and on the rate of the uniform convergence in Theorem 2. This paper
was motivated by the talk, given by prof. H.Gonska at the International
Conference ”Constructive Theory of Functions” in Varna,2005.

2 Proofs and examples

Proof of Theorem 1. Let us suppose that it is possible to define positive
numbers ω0, ω1, ω2 such that (1.6) is true for all x ∈ [0, 1]. Without losing of
generality let ω0 = 1. Simple calculations show that the left side of (1.6) is
equal to x(1− x)F (ω1, ω2, x) where

F (ω1, ω2, x) =
x(1− x) + 2ω1(

1
2
− x)2 + ω2x(1− x)

(1− x)2 + 2ω1x(1− x) + ω2x2
.

Hence

F (ω1, ω2, x) <
1

2

should be fulfilled for all x ∈ [0, 1]. Consequently

x2(−1 + 2ω1 − ω2) + x(1− 2ω1 + ω2) +
ω1

2
<

<
1

2
· [x2(1− 2ω1 + ω2) + x(−2 + 2ω1) + 1].

The last is equivalent to

g(x) := 3x2(1− 2ω1 + ω2) + x(−4− 2ω2 + 6ω1) + 1− ω1 > 0. (2.1)

When x → 0 we get
g(0) = 1− ω1 > 0. (2.2)

4
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When x → 1 we get
g(1) = −ω1 + ω2 > 0. (2.3)

Obviously the coefficient in front of x2 should be positive due to (2.2) and
(2.3), while

1− 2ω1 + ω2 = ω2 − ω1 + 1− ω1.

Next we calculate the discriminant of the quadratic inequality (2.1)

∆ = (−2− ω2 + 3ω1)
2 − 3(1− ω1)(1− 2ω1 + ω2) =

= 3ω2
1 + ω2

2 − 3ω1ω2 − 3ω1 + ω2 + 1 := f(ω1, ω2).

Our next step is to show that

min
ω1,ω2

f(ω1, ω2) = f(1, 1) = 0. (2.4)

We calculate
∂f

∂ω1

= 6ω1 − 3ω2 − 3 = 0.

∂f

∂ω2

= 2ω2 − 3ω1 + 1 = 0.

The solution of the last system is ω1 = ω2 = 1. Also

∂2f

∂ω2
1

= 6,
∂2f

∂ω2
2

= 2,
∂2f

∂ω1∂ω2

= −3.

We verify that

det


∂2f
∂ω2

1

∂2f
∂ω1∂ω2

∂2f
∂ω1∂ω2

∂2f
∂ω2

2

 > 0.

The proof of (2.4) is completed. Let x1 and x2 be the zeros of g(x) = 0. In
order to have g(x) > 0 for all x ∈ [0, 1] we have two possible cases:

x1 < x2 < 0,

or
1 < x1 < x2.

In the first case we should have x1+x2

2
< 0. Hence

−−4− 2ω2 + 6ω1

6(1− 2ω1 + ω2)
< 0,

or equivalently
4 + 2ω2 − 6ω1 < 0.

5
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But the last inequality is a contradiction to (2.3) and (2.2). Similarly we
proceed in the second case. Now we would have

1 <
x1 + x2

2
= −−4− 2ω2 + 6ω1

6(1− 2ω1 + ω2)
.

Consequently
6(1− 2ω1 + ω2) < 4 + 2ω2 − 6ω1,

6ω1 − 4ω2 − 2 > 0.

The last inequality again is a contradiction to (2.2) and (2.3).
Our supposition at the beginning of the proof is not valid. This completes

the proof of Theorem 1. 2

Example 1 Let ωk = 1 − k
nα , k = 0, 1, . . . , n and α > 1, n > 1. To

calculate the first moment of Rn(f ; x) we apply (1.2) and obtain

Rn((t− x); x) = x(1− x)
1

N

(
− 1

nα

)
, (2.5)

where

N =
n∑

k=0

ωkpn,k(x) = 1− x

nα−1
. (2.6)

From Taylor formula it follows

t2 = x2 + (t− x)2x + (t− x)2 (2.7)

We apply the operator Rn(f) to the both sides of (2.7) and (2.5) yields

Rn((t− x)2; x) = Rn(t2; x)− x2 +
2x · x(1− x)

1− x
nα−1

· 1

nα
. (2.8)

To compute Rn(t2; x) we proceed as follows:

Rn(t2; x) =

n∑
k=0

(1− k
nα )( k

n
)2 · pn,k(x)

1− x
nα−1

=

=
x2 + x(1−x)

n
− 1

nα−1 ·Bn(t3; x)

1− x
nα−1

. (2.9)

It is known that for all x ∈ [0, 1]

Bn((t− x)3; x) =
x(1− x)(1− 2x)

n2
.

6
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Therefore

Bn(t3; x)− 3Bn(t2; x)x + 3x3 − x3 =
x(1− x)(1− 2x)

n2
.

Bn(t3; x)− 3x(x2 +
x(1− x)

n
) + 2x3 =

x(1− x)(1− 2x)

n2
.

Bn(t3; x) = x3 +
3x2(1− x)

n
+

x(1− x)(1− 2x)

n2
.

From the last presentation, (2.8) and (2.9) we calculate

Rn((t− x)2; x) =
1

N
·
[
x2 +

x(1− x)

n
− 1

nα−1
· x3 − 3x2(1− x)

nα
−

−x(1− x)(1− 2x)

nα+1
− x2 +

x3

nα−1
+

2x2(1− x)

nα
=

=
1

N
· x(1− x)

n
·
[
1− x

nα−1
− 1− 2x

nα

]
,

with N , defined in (2.6). Hence

Rn((t− x)2; x) =
x(1− x)

n
·
[
1 +

2x− 1

nα − xn

]
. (2.10)

From (2.10) we conclude that the statement in our Conjecture with this choice
of the weights is true, but only for x ∈ (0, 1

2
). In a similar way we consider the

next example.

Example 2. Let ωk = 1 + k
nα , k = 0, 1, . . . , n and α > 1, n > 1. Then

Rn((t− x)2; x) <
x(1− x)

n
,

for x ∈ (1
2
, 1).

Example 3. Let ωk = 1 + (−1)k

nα , k = 0, 1, . . . , n, α > 1. Then

ρn,1 =
2

nα(1− 1
nα )

=
2

nα − 1
≈ 0, n →∞.

ρn,2 = ρn,1 + 1 ≈ 1. (2.11)

Proof of Theorem2. We apply the following quantitative variant of
Voronovskaja’s Theorem for linear positive oeprators L, established very re-
cently by H.Gonska in [3]-see Example 4.3 on p.108:

|L(f ; x)− f(x)− L((t− x)2; x) · f ′(x)− 1

2
L((t− x)2; x) · f ′′(x)| ≤

7
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≤ 1

2
· L((t− x)2; x) · ω̃

(
f ′′;

1

3
· L(|t− x|3; x)

L((t− x)2; x)

)
, (2.12)

where ω̃(f ; ε) is the least concave majorant of the modulus of continuity of f
and ε > 0 is its argument. We replace L by Rn in (2.12) and observe that

Rn(|t− x|3; x)

Rn((t− x)2; x)
≤ ρn,2 ·

Bn(|t− x|3; x)

Bn((t− x)2; x)
≤

≤ ρn,2 · 3
√

1

n2
+

x(1− x)

n
, (2.13)

for all x ∈ [0, 1]. In the last inequality we have applied Theorem 5.1 in [3]. We
also have

Rn((t− x)2; x) ≤ ρn,2 ·
x(1− x)

n
. (2.14)

From (2.12) and assumptions made for ρn,1, ρn,2 we verify that

|Rn(f ; x)− f(x)− 1

2
Rn((t− x)2; x) · f ′′(x)| ≤

≤ x(1− x)
1

nα
· |f ′(x)|+ 1

2
A

x(1− x)

n
· ω̃

f ′′; A

√
1

n2
+

x(1− x)

n

 . (2.15)

We multiply the both sides of (2.15) by n and complete the proof of Theorem
2. 2

Corollary 1. Under the conditions made in Theorem 2 the following upper
bound for the error of approximation by the rational Bernstein operator Rn(f)
holds true for all f ∈ C2[0, 1]:

‖Rn(f)− f‖C[0,1] ≤
1

4nα
· ‖f ′‖C[0,1] +

A

4n
· ‖f ′′‖C[0,1]. (2.16)

Similar estimates to (2.16) are fulfilled with weights ωk, described in Examples

1, 2 and 3. In all these examples the weight numbers satisfy the restrictions,
formulated in Theorem 2.

At the end let us define two other variants of numbers ωk, namely

Example 4.

ωk =

[
k

n
(1− k

n
) +

δ

n

]α

, 0 ≤ k ≤ n, (2.17)

for α > 0, δ ≥ 0.

Example 5.

ωk = |k
n
− 1

2
|α +

δ

n
, 0 ≤ k ≤ n, (2.18)

8
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for α > 0, δ ≥ 0.Numerical experiments made for α = 0.5, 1, 3, 4 and n =

50, δ = 0, 0.5, 1 show that close to the ends of [0, 1] we have (1.6) with ωk from
(2.18) and when x is near to 1

2
, (1.6) holds true with ωk from (2.17). But

neither (2.17) nor (2.18) are solutions of our Conjecture. So the statement of
the Conjecture remains as an open problem-nonlinear optimization problem,
according to the choice of weight numbers.

Acknowledgment. This work was done during my stay in January-
February 2008 as DAAD fellow by prof. H.Gonska at the University of Duisburg-
Essen.
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PROPERTIES OF PARAMETER-VARYING DYNAMIC LINEAR SYSTEMS WITH 

PARAMETRIZED  PERTURBATIONS. APPLICATIONS TO DELAYED DYNAMICS 

 
M. De la Sen, Institute for Research and Development of Processes 

Department of Electricity and Electronics. Faculty of Science and Technology. Campus of Leioa (Bizkaia). 

Aptdo. 644 de Bilbao. 48080-Bilbao. SPAIN 

 
Abstract. This paper deals with a unifying approach to the problems of computing the admissible sets of 

parametrical multi perturbations in appropriate bounded sets such that some fundamental properties of 

parameter-varying linear dynamic systems are maintained provided that the so-called (i.e. perturbation-free) 

nominal system possesses such properties. The sets of parametrical multi perturbations include any 

combinations of parametrical multi perturbations in the matrix of dynamics as well as in the control, output 

and input-output interconnection matrices which belong to some prescribed bounded domain in the complex 

space. The various properties which are investigated are controllability, observability, output controllability, 

stabilizability and detectability as well as the existence of minimal state-space realizations together with the 

associate existence or not of associate decoupling, transmission and invariant zeros. All the matrices of 

parameters including the nominal and the disturbed ones which parameterize the dynamic system may be real 

or complex. The obtained results are then applied to systems subject to a finite number of discrete internal 

delays and parametrical multi perturbations by comparing the state- space descriptions of such systems with 

the general descriptions previously investigated. In particular, the contributions of the delays to the spectral 

descriptions are assimilated to the contributions of a set of varying parameters in a domain for the general 

description. 

 
Keywords: Parameter-varying systems, Controllability, Observability, Zeros, Multi- parametrical 

perturbations. 

 
1. Introduction 

The problem of robust stability of dynamic systems has received important attention in the last two decades, 

[1-3]. The related investigations require in general ad-hoc mathematical tools from Mathematical and 

Functional Analysis, [1-4]. Recently, the notion of stability radius has been used for related investigations, [5-

7]. The stability radius of a linear dynamic system is a positive real number which defines the minimum size, 

in terms of norm, of a parametrical perturbation, belonging to an admissible class,  such that the resulting 

system becomes unstable or critically stable provided that the nominal (i.e. perturbation-free) system is stable 

. Such a characterization has been used successfully in [5-7] to investigate the maximum size of both 

structured and unstructured multi parametrical (in general, complex) perturbations so that positive systems 

are maintained stable provided that its nominal part is stable. Further advantages of focusing the robust 

stability problem in that way are that the robust stability of wide classes of parameter-varying dynamic 
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systems, including some described by functional equations, may be studied in a unified way, [5-9]. The 

purpose of this paper is to study the fundamental properties of  controllability, observability, stabilizability 

and detectability of parameter-varying linear systems, in a way  inspired in the ideas developed in [5-7]. 

However, some variations are that the parameter-varying systems  under ( in general complex) parametrical 

multi perturbations are not necessarily positive and that  spectral stability radii are not involved since the 

problem at hand is not that of robust stabilization. The main idea is to maintain the Popov-Belevitch-Hautus 

matrix functions [1] for the investigated properties being full rank for all multi perturbations  provided that 

the matrix of the nominal system is also full rank. The multi perturbations are of a given structured class on a 

certain domain where the varying parameters belong to. The worst case of the admissible perturbations 

establishes the robustness degree of the property. The extension to unstructured perturbations is not discussed 

since it is direct, and even more simple, than that for structured ones. The study is addressed in a unified way 

for all the properties. In particular, it has direct interest in realization theory since the size of the disturbances 

which maintain a minimal state-space realization of the system may be characterized, provided that the 

nominal realization is minimal. To this end, the best of the two worst cases of losing either controllability or 

observability by the perturbed system of a nominally controllable and observable system ensures that the 

state-space realization is still minimal. A direct extension is that if the nominal system is stabilizable and 

detectable, the best of the two worst cases of losing some of both properties for some multi perturbation in the 

given class still guarantees that any eventual zero-pole cancellation in the transfer matrix is stable. The 

technical mechanism employed to investigate the various properties is the construction of square auxiliary 

matrix functions which are symmetrical positive definite (or Hermitian in the complex case). If their associate 

minimum singular value becomes zero, or equivalently, if their determinants become zero for some 

perturbation while their counterparts of the nominal system are positive then the investigated property is lost. 

One takes advantage that the functions characterizing the singular values and the determinant of a complex 

continuous matrix function are continuous functions on the definition domain of such a matrix function. The 

results are easily extendable to parameter-varying dynamic linear internal and external delays under multi – 

perturbations. There is an important background on time-delay systems, [10-34] including models of neural 

networks including delays, [25-27]. Controllability, observability and stability are very basic properties of 

dynamic systems which make possible a wide range of applications in non-uniform sampling, classical and 

adaptive control, estimation etc. [30], [34], [37-29], [41-43].  Output controllability of the output vector is  a 

property with a close sense to the standard controllability of the state vector, [44]. In particular, the study of 

stability of time-delay systems has received attention in [10-11], [15], [19-24], [30-34], the positivity and 

periodicity of the trajectory-solutions have being investigated in [13-14], [27-29], [32], [35-36] and the state-

trajectory solutions under impulsive controls in  [12-13], [15-17] including the case of singular systems, [13]. 

Sufficiency–type conditions for the robust characterization of those properties follows directly from the 

general study based on the fact that time-delay systems might be characterized as nD- systems [8-9], [21]. 

Refinements of the conditions either allowing to derive results dependent on the delay sizes or guaranteeing 

that the properties hold for some cases not included in the nD- system characterizations are also investigated. 
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This is addressed by further considering the spectral characterization of linear delay systems under quasi-

polynomials.  

 
2. Notation  

Subsets of the complex and real fields R  and C are: 

  
( ){ }0≥∈=+ rRe:r:0 RR , ( ){ }0>∈=+ rRe:r: RR , ( ){ }0<∈=− rRe:r: RR  

( ){ }0rRe:r:0 ≥∈=+ CC , ( ){ }0>∈=+ rRe:r: CC , ( ){ }0<∈=− rRe:r: CC  

which stand for nonnegative, positive and negative real numbers or complex numbers of nonnegative, 

positive and negative real abscissas, respectively. { }1z:z:1 =∈= CC  is the unit circumference in the 

complex plane.   

 
( ) ( )p

0
q ,C KR +  and ( ) ( )p

0
q ,CP KR +  with C=K or R=K denote, respectively, real or complex 

vector functions of class 0≥q  and those of class 1−q (if 1≥q ) whose q-th derivative is continuously 

differentiable with piecewise continuous q -th derivative on the definition domain 

0+R . ( ) ( )p
0 ,CP KR +

0  denotes the class of piecewise continuous p-vector functions with domain 

0+R and range pK . 

 
nI  denotes the n-th identity matrix. The superscript ´´*´´ denotes the transpose conjugate of a complex 

matrix resulting in the usual transpose for real matrices (denoted with the superscript ´´T´´), Mdet and 

( ) ( ){ }0MIdet::M n =−∈= λλσ C  denote the determinant of the matrix M and its spectrum, 

respectively. Subsets of  ( )Mσ  are ( ) ( ){ }0Re:M:M >∈=+ λσλσ , 

( ) ( ){ }0Re:M:M0 ≥∈=+ λσλσ , ( ) ( ){ }0Re:M:M <∈=− λσλσ and ( ) ( ){ }0Re:M:M0 ≤∈=− λσλσ . 

The spectral radius and spectral abscissa of M are denoted, respectively, by 

( ) ( ){ }M:max:M σλλρ ∈=  and ( ) ( ){ }M:Remax:M σλλμ ∈= . The singular values of M are 

the positive squares of the eigenvalues of any of the matrix products *MM  and M*M  provided that they 

exist which are real and satisfy ( ) ( ) 0≥≥ MM σσ  where ( )Mσ and ( )Mσ are the maximum and 

minimum singular value of M, respectively. Note that at least one of the matrix products *MM  and M*M  

always exist. The spectral (or 2l ) vector norm and associated induced matrix norm are denoted by 2. .  

The interior, boundary (frontier) and closure of a set K  are denoted as 0K , rFK , and   Kcl , 

respectively. 
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( ) ( )( )tfLap:sf̂ = , ( ) ( )( )sfLap:tf 1−=  is a pair of Laplace transform and Laplace anti-transform 

provided that such an anti-transform exists. 

 
The Kronecker (or direct) product of the matrices ( )jiaA =  and B is denoted by ( )BaBA ji=⊗  and 

for such a matrix A, ( ) ( )**
n

** a,,a,aAvec L21=  with *

i
a  being the i-th row of A,  i.e. 

( )n
* a,...,a,aA 21= . The boundary (or frontier) of a set Q is denoted as FrQ . 

 
The complex unit is 1−=i . 

 
3.     The parameter-varying system and associate fundamental properties: controllability, 

observability, minimal realizability, stabilizability and detectability 

 
The parameter-varying linear time-invariant dynamic system to be considered is  

 
( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )tuzB~zBt,zxzA~zAt,zx BBAA +++=&                                      (1) 

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )tuzD~zDt,zxzC~zCt,zy CDCC +++=                                  (2) 

 
, { }0∪=∈∀ ++ RR :t 0 , with { }0>∈=+ r:s: RR , subject to  initial conditions 

( ) ( ) nzx,zx C∈= 00 , where nCX ⊂ , pCY ⊂  and mCY ⊂  are, respectively,  the state, output and 

input linear spaces, and ( ) ( )X,Cx 0
q

+×∈ RC1  , ( ) ( )Y,Cy 0
q

+×∈ RC0  and 

( ) ( )U,CPu 0
q

+×∈ RC0 are, the everywhere continuously time-differentiable n-vector state trajectory 

solution, the piecewise continuous p-vector output-trajectory solution, and the piecewise continuous m-vector 

control input, respectively, with nmp <≤  and 4++++= DCBA qqqq:q , and 

nnq A:A ×+ → CC 1 , mnqB:B ×+ → CC 1 , npqC:C ×+ →CC 1 and mpqD:D ×+ →CC 1 ; and 

nnq A:A~ ×+ → CC 1 , mnqB:B~ ×+ → CC 1 , npqC:C~ ×+ →CC 1 and mpqD:D~ ×+ → CC 1 are,  

respectively, the (so-called) nominal and perturbation (complex-valued) matrices of dynamics, control, output 

and input-output interconnections whose parameter-varying arguments are defined by the respective 

complex-valued ( )1+Aq , ( )1+Bq , ( )1+Cq  and ( )1+Dq - tuples: 

 
( ) ( ) ( ) ( )( ) { } 1

21 11 +⊂×∈= AA
A

qqA
q,....,

A
,

AA zzz,:z CC  , ( ) ( ) ( ) ( )( ) { } 1
21 11 +⊂×∈= BB

B

qqB
q,....,

B
,

BB zzz,:z CC     

                                                                                                                                                       (3) 
( ) ( ) ( ) ( )( ) { } 1qqC

q,....,C
2,C

1
C CC

C
1zzz,1:z +⊂×∈= CC  , ( ) ( ) ( ) ( )( ) { } 1

21 11 +⊂×∈= DD
D

qqD
q,....,

D
,

DD zzz,:z CC   

                                                                                                                                                      (4) 
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The (so-called) nominal system is affine parameter-varying defined from (1)-(2) with 

 
( )( ) ( )∑

=
=

Aq

0i
i

A
i

A Az:zA , ( )( ) ( )∑=
=

Bq

i
i

B
i

B Bz:zB
0

, ( )( ) ( )∑=
=

Cq

i
i

C
i

C Cz:zC
0

, ( )( ) ( )∑=
=

Dq

i
i

D
i

D Dz:zD
0

 

                                                                                                                                                      (5) 

where ( ) ( ) ( ) ( ) 1D
0

C
0

B
0

A
0 zzzz ==== , ( )( ) 0=AzA~ , ( )( ) 0=BzB~ , ( )( ) 0=CzC~ and ( )( ) 0=DzD~ , and 

nn
i :A ×→CC ( )0

Aqi∈ , mn
i :B ×→CC ( )0

Bqi∈ , np
i :C ×→CC ( )0

Cqi∈ , mp
i :D ×→ CC ( )0

Dqi∈  

                                                                                                                                                      (6) 

with { }0n:n 0 ∪= , { }n,...,,:n 21= . The nominal system is the (unperturbed) reference one 

to then establish the known nominal bounded domain (i.e. a connected open set) qC C⊂0α  where the 

nominal system fulfills the various investigated properties for all 
( ) ( ) ( ) ( )( ) 0αCz,z,z,z:z DCBA ∈= and also the bounded domain 0αα CC ⊂  where a class of systems 

(1)-(2), eventually submitted to perturbations, still maintain the particular property under investigation kept 

by the nominal one on 0αC . The class of systems (1)-(2), which include the nominal system as particular 

case, are defined via (3)-(6) for parametrical multi perturbations in a 

set qqqqq
DCBA

DCBAPPPP:P CCCCC ≡×××⊂×××= ++++ 1111  of the form: 

( )( ) ( ) ( )∑ ∑=∑=
= ==

A AA q

i

)A(
n

j

)A(
ji

)A(
ji

A
i

q

i
i

A
i

A EDzA~z:zA~
0 10

Δ , ( )( ) ( ) ( )∑ ∑=∑=
= ==

B BB q

i

)B(
n

j

)B(
ji

)B(
ji

B
i

q

i
i

B
i

B EDzB~z:zB~
0 10

Δ  

( )( ) ( ) ( )∑ ∑=∑=
= ==

C CC q

i

)C(
n

j

)C(
ji

)C(
ji

C
i

q

i
i

C
i

C EDzC~z:zC~
0 10

Δ , ( )( ) ( ) ( )∑ ∑=∑=
= ==

D DD q

i

)D(
n

j

)D(
ji

)D(
ji

D
i

q

i
i

D
i

D EDzD~z:zD~
0 10

Δ  

                                                                                                                                                         (7) 

where nn
A

q P:A~ A ×+ ⊂→ CC 1 , mn
B

q P:B~ B ×+ ⊂→ CC 1 , np
C

q P:C~ C ×+ ⊂→ CC 1 and 

mp
D

q P:D~ D ×+ ⊂→ CC 1  with 

  
nn

i :A~ ×→ CC ( )0
Aqi∈ , mn

i :B~ ×→ CC ( )0
Bqi∈ , np

i :C~ ×→ CC ( )0
Cqi∈ , mp

i :D~ ×→ CC ( )0
Dqi∈  

                                                                                                                                                          (8) 

are defined by )A(
n

j

)A(
ji

)A(
jii ED:A~

A

∑=
=1

Δ ( )0
Aqi∈ , )B(

n

j

)B(
ji

)B(
jii ED:B~

B

∑=
=1

Δ ( )0
B

qi∈ , 

)C(n

j

)C(
ji

)C(
jii ED:C~

C
∑
=

=
1

Δ ( )0
Cqi∈  and )D(n

j

)D(
ji

)D(
jii ED:D~

D
∑
=

=
1

Δ ( )0
Aqi∈ ,  where 

 

( ) AA
n)A(

ji nqj,i,:D
)A(

ji ×∈→
× 0lCC ;  ( ) BB

n)B(
ji nqj,i,:D

)B(
ji ×∈→

× 0lCC  
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( ) CC
p)C(

ji nqj,i,:D
)C(

ji ×∈∀→
× 0lCC ;  ( ) DD

p)D(
ji nqj,i,:D

)D(
ji ×∈∀→

× 0lCC  

                                                                                                                                                           (9) 

( ) AA
)A(

ji nqj,i,:
)A()A(

ji ×∈∀→
× 0ll

CCΔ ;  ( ) BB
)B(

ji nqj,i,:
)B()B(

ji ×∈∀→
× 0ll

CCΔ  

( ) CC
)C(

ji nqj,i,:
)C()C(

ji ×∈∀→
× 0ll

CCΔ ;  ( ) DD
)D(

ji nqj,i,:
)D()D(

ji ×∈∀→
× 0ll

CCΔ  

                                                                                                                                                               (10) 

n)A(
)A(

f:E
×

→
l

CC ; 
m)B(

)B(
f:E

×
→

l
CC ; n)C(

)C(
f:E ×

→
lCC ; 

m)D(
)D(

f:E
×

→
l

CC      (11) 

 

The parametrical multi perturbations in the dynamic system (1)-(2) are defined by the matrices (7), subject to 

(8)-(11), dependent on the argument ( ) ( ) ( ) ( )( )DCBA z,z,z,z:z = which takes values in some domain 

αC of qC . The matrices (11) are scaling matrices common to all the output components being independent 

of the various subscripts (i, j). The matrices in (9) are also scaling matrices of the state versus state 

components, state versus input component, output versus state component s and output versus input 

components.  The matrices in (10) are specific parametrical perturbations which become weighted by the 

contribution of the corresponding component of z in αC through the global parametrical perturbations (7)-

(8). Note by direct inspection that if all the perturbation matrices in (10) are zero then, the dynamic system 

(1)-(2) becomes the nominal one. Note also that an extension of the parametrical perturbations consisting of 

considering the scaling matrices Eqs. 11 to be dependent on the indices (i, j) would not become more general 

than that given in view of the whole structure of the multi perturbations (7)-(8). The following matrices are 

defined for each system (1)-(2) (see [1-3], [8-9]): 

 
Definitions 

3.1 The spectral controllability matrix function is defined by:  
( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )BBAA

n
BA

C zB~zBzA~zAIs:z,z,sZ +−−= M  

with that of the nominal system being ( ) ( )( ) ( )( ) ( )( )( )BA
n

BA
0C zBzAIs:z,z,sZ M−= . 

 
3.2 The spectral observability matrix function is defined by: 

 
( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )*C*C*A*A*

n
CA

O zC~zCzA~zAIs:z,z,sZ +−−= M  

with that of the nominal system being ( ) ( )( ) ( )( ) ( )( )( )*C*A*
n

BA
O zCzAIs:z,z,sZ M−=0 . 

 
3.3 The spectral output controllability matrix function is defined by:  
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( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )DDBBAA
n

CC
CO zD~zDzB~zBzA~zAIszC~zC:z,sZ +++−−+= M  

with that of the nominal system being ( ) ( )( ) ( )( ) ( )( )( )BA
n

BA
0CO zBzAIs:z,z,sZ M−= . 

 
3.4 The system matrix function is defined by : 

( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++

−−−−
=

DDCC

BBAA
n

zD~zDzC~zC

zB~zBzA~zAIs
:z,sS

M

LLLLLLLLLLL

M

 

with that of the nominal system being ( )
( )( ) ( )( )

( )( ) ( )( ) ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −−
=

DC

BA
n

zDzC

zBzAIs
:z,sS

M

LLLLLLL

M

0 .                    

Note by direct inspection that these matrices depend on the nominal system and the parametrical 

perturbations as follows 

 
( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )( )BABA

C
BA

C zB~zA~z,z,sZz,z,sZ M−+= 0                                                      (12) 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )( )*C*A*CA
O

CA
O zC~zA~z,z,sZz,z,sZ M−+= 0                                          (13) 

( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )DBBAA
n

CBAC
COCO zD~zB~zBzA~zAIszC~zB~zA~zCz,sZz,sZ ++−−+−+= MM0  

                                                                                                                                                         (14) 

( ) ( )
( )( ) ( )( )

( )( ) ( )( ) ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −−
+=

DC

BA
n

zD~zC~

zB~zA~Is
z,sS:z,sS

M

LLLLLLL

M

0                                                                 (15) 

Related to Definitions 3.1-3-4 are the following ones: 

 
Definitions 

   3.5  C∈0s  is an input-decoupling zero of (1)-(2) for a given ( ) ( )( ) 2++∈ BA qqBA z,z C  if 

( ) ( )( ) nz,z,sZrank BA
C <0 . 

    3.6  C∈0s  is an output-decoupling zero of (1)-(2) for a given ( ) ( )( ) 2++∈ CA qqCA z,z C  if 

( ) ( )( ) nz,z,sZrank CA
O <0 . 

    3.7 C∈0s  is an input/output-decoupling zero of (1)-(2) for a given qz C∈ if 

( ) ( )( ) ( ) ( )( )( ) nz,z,sZrank,z,z,sZrankmax CA
O

BA
C <00 . 

    3.8 C∈0s  is an external input-decoupling zero of (1)-(2) for a given qz C∈ if ( ) pz,sZrank CO <0 . 

    3.9  C∈0s  is an invariant zero of (1)-(2) for a given qz C∈  if ( ) ( )p,mminnz,sSrank +<0 . 
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    3.10 C∈0s  is a transmission zero of (1)-(2) for a given qz C∈  if it is an invariant zero which is not an 

input-decoupling or output-decoupling zero; i.e. ( ) ( )p,mminnz,sSrank +<0  and 

( ) ( )( ) ( ) ( )( ) nz,z,sZrankz,z,sZrank CA
O

BA
C == 00 .                                                             

 
It is well-known that the system (1)-(2) is controllable (respectively, observable) for a certain qz C∈  if it 

has no input- decoupling zero (respectively, no output-decoupling zero). Invariant zeros which are not 

decoupling zeros are transmission zeros in the sense that if C∈0s  is a transmission zero for a certain 

qz C∈  then 0≡y  if ( ) ts
u eKtu 0=  for any R∈uK  if 00 =x  (input-output transmission blocking 

property) and  

 
( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )DDBBA

n zD~zDB~zBzA~zAIszC~zCz,sĜ
A

+++−−+= −1  

 
is the transfer matrix of the system (1)-(2) defined as ( ) ( ) ( )z,sû/z,sŷ:z,sĜ =  for 00 =x . Note that 

decoupling zeros are poles of the system transfer matrix. The transmission zeros are zeros of ( )z,sĜ  which 

are not poles of (1)-(2), i.e. which are not eigenvalues of ( ) ( )zA~zA + . Note also that if the system is 

controllable and observable all invariant zero, if any, is a transmission zero. Input/output decupling zeros are 

poles cancelled by zeros in the transfer function so that they are not transmission zeros. Finally, note that 

input/output-decoupling zeros are invariant zeros since  

 
( ) ( )( ) ( ) ( )( )( ) nz,z,sZrank,z,z,sZrankmax CA

O
BA

C <00 ( ) ( )p,mminnz,sSrank +<⇒ 0  

 
However, input-decoupling zeros (respectively, output-decoupling zeros) which are not output-decoupling 

zeros (respectively, input-decoupling zeros) are not invariant zeros since 

 
( ) ( )( ) nz,z,sZrank BA

C <0  may imply ( ) mnz,sSrank +=0  for mp >  

( ) ( )( ) nz,z,sZrank CA
O <0  may imply ( ) pnz,sSrank +=0  for pm>  

 
The system (1)-(2) is said to be controllable if there is a control vector function on [ ]T,0  such that the state 

takes any prescribed finite value at any finite prescribed time T. It is said to be observable if any bounded 

initial can be computed from measures of the output vector on any finite time interval [ ]T,0 . Those 

properties coincide in the linear-time-invariant case with the respective properties of spectral 

controllability/spectral observability which hold if and only if the spectral controllability/spectral 

observability matrix functions are full rank ( ) αCz,s ×∈∀ C and adopt very interesting particular forms 

for the the case of positive dynamic systems, [37]. Thus, spectral controllability/ observability properties will 

DE LA SEN: ABOUT DYNAMIC LINEAR SYSTEMS 487



 9

be referred to in the following simply as controllability/observability. Definitions 3.5 to 3.10 combined with 

Popov- Belevitch- Hautus controllability and observability tests [1] lead to the subsequent result which 

considers bounded sets where the varying parameters belong to defined by { } Aq)A( 1C C×⊂α , 

{ } Bq)B( 1C C×⊂α , { } Cq)C( 1C C×⊂α and { } Dq)D( 1C C×⊂α : 

 
Theorem 3.11. The following properties hold: 

  
(i)      The system (1)-(2) is controllable in a bounded domain 2qq)B()A()B,A( BACC:C ++⊂×= Cααα , 

if and only if it has no input-decoupling zero in )B,A(C α , and equivalently, if and only if 

                 ( ) ( )( ) ( ) ( )( ) ( ) 3++⊂×∈∀= BA qq)B,A(
f

BABA
C CsImz,z,s,nz,z,sZrank Cα   

 where the  discrete function fs  is defined as ( ) ( )( ) ( )( )( )AAA
f zA~zAC:s +→σα . 

 
(ii) The system (1)-(2) is observable in a bounded domain 

2++⊂×= CA qq)C()A()C,A( CC:C Cααα if and only if it has no output-decoupling zero in )C,A(C α , and 

equivalently, if and only if  

             ( ) ( )( ) ( ) ( )( ) ( ) 3qq)C,A(
f

CACA
O

CACsImz,z,s,nz,z,sZrank ++⊂×∈∀= Cα . 

 
(iii) The system (1)-(2) is controllable and observable in  a bounded 

domain 3qqq)C()B()A()C,B,A( CBACCC:C +++⊂××= Cαααα if and only if it has no input-decoupling zero 

in )B()A( CC αα ×  and no output-decoupling zero in )C()A( CC αα × , and equivalently, if and only if 

( ) ( )( ) ( ) ( )( ) nz,z,sZrankz,z,sZrank CA
O

BA
C == ,

( ) ( ) ( )( ) ( ) 3+++⊂×∈∀ CBA qqq)C,B,A(
f

CBA CsImz,z,z,s Cα . As a  result, The system (1)-(2) is 

controllable and observable in )C,B,A(C α ⇔ ∃¬ a system (1)- (2) with ( )( ) ntxdim <  for some αCz∈  

and transfer matrix 

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )DDBBA
n zD~zDB~zBzA~zAIszC~zCz,sĜ

A
+++⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛−−+= −1   

 
(iv) The system (1)-(2) is output controllable in a bounded domain 

)D()C()B()A( CCCC:C ααααα ×××= if and only if it has no external input-decoupling zero in αC , and 

equivalently, if and only if 

( ) ( ) ( ) ( )( ) pz,z,z,z,sZrank DCBA
CO = , ( ) ( ) ( ) ( )( ) 5qqqqDCBA DCBACz,z,z,z,s ++++⊂×∈∀ CC α .  
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If ( ) ( )( ) pzC~zCrank =+ in )C()B()A( CCC ααα ×× then the system (1)-(2) is output controllable if and only if 

( ) ( ) ( )( ) pz,z,z,sZrank CBA
CO =  

, ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 3+++⊂×××∈∀ CBA qqqCBA
f

CBA CCCsImz,z,z,s Cααα  

 
Proof: (i) The continuous vector function ( ) ( )( ) ( )( )( )AAA

f zA~zAC:s +→σα  exists on ( )AC α  since the 

eigenvalues of the square matrix function ( )( ) ( )( )A
zA~zA A +  exist and are bounded continuous functions on 

the bounded domain ( )AC α  . Define the  graph of fs  on its definition domain 

as ( ) ( )( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧ ∈=

A
ff C:s,:sG αωωω  . Taking Laplace transforms in (1) gives the equivalent 

algebraic linear equation  

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) 0xz,z,sûz,z,sx̂z,z,sZ *BA*BA*BA

C =−M  

for any bounded initial conditions ( ) ( )( ) 00 xz,z,x BA = .Take a linear state-feedback control of Laplace 

transform ( ) ( )( ) ( ) ( )( ) ( ) ( )( )BABABA z,z,sx̂z,z,sKz,z,sû = for some 

( ) ( ) ( ) nmqqBA KrangeCC:K BA ×⊂→××⊂×× CCCCC αα  is a matrix function of order nm × . 

Combining the above equations, one gets the linear algebraic system: 

 
( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )BABA*BA*

n
BA

C z,z,xz,z,sx̂z,z,sKIz,z,sZ 0=−M  

 
Since ( ) ( )( ) nz,z,sZrank BA

C =  then the generic rank of the square n-matrix function 

( ) ( )( ) ( ) ( )( )( )*BA*
n

BA
C z,z,sKIz,z,sZ −M , considered as a function of the feedback matrix 

( ) ( )( )BA z,z,sK , is n  everywhere in ( )B,AC α×C  so that the above algebraic linear system may be full 

rank at any point of the domain of ( ) ( )( )BA z,z,sK  if its range is (pointwise) chosen appropriately. As a 

result,  

 
( ) ( )( ) ( ) ( )( )( )[ ] nz,z,sKIz,z,sZrank *BA*

n
BA

C <−M  

 ( )( ) ( )( ) ( )( ) ( )( )( ) ( ) ( )( )( ) 0=+−−−⇔ BABBAA
n z,z,sKzB~zBzA~zAIsdet  

 
at arbitrarily fixed complex points ( ) ( )( )BA z,zs  in ( )B,AC α  since any C∈s  may be chosen not to be an 

eigenvalue of the matrix  
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( )( ) ( )( ) ( )( ) ( )( )( ) ( ) ( )( )BABBAA z,z,sKzB~zBzA~zA +++  

 
 everywhere in ( )B,AC α . Since the eigenvalues are arbitrarily assignable by linear state- feedback  the 

system (1)-(2) is controllable if ( ) ( )( ) nz,z,sZrank BA
C =  what proves sufficiency. To prove necessity, 

proceed by contradiction by assuming that  ( ) ( )( ) nz,z,sZrank BA
C < . Then, there exists a vector 

nq C∈≠0 for each point in ( )B,AC α  such that : 

( ) ( )( ) 0=BA
C

* z,z,sZq ( )( ) ( )( )( ) ( )( ) ( )( )( ) 0=+=−−⇔ BB*AA
n

* zB~zBq,zA~zAIsq  

 
i.e. q is a nonzero eigenvector of ( )( ) ( )( )AA zA~zA +  ,with associate eigenvalue qλ , which is orthogonal 

to the matrix ( )( ) ( )( )BB zB~zB + .  Direct calculation with (1)-(2) yields that a state trajectory solution 

satisfies ( ) ( )( ) ( ) ( )( )BA
q

BA z,z,txz,z,tx λ=&  with associate state trajectory solution 

( ) ( )( ) q
t

ez,z,tx qBA λ
= irrespective of the control, 0+∈∀ Rt . It is obvious that such a trajectory cannot 

reach any point ( ) ( )( ) q
T

ez,z,Txx qBA λ
≠= at any finite arbitrary time 0>T . Thus, the system is not 

controllable in ( )B,AC α which proves necessity. Thus, the system (1)-(2) is controllable for any ( )B,ACz α∈ if 

and only if 

 
      ( ) ( )( ) nz,z,sZrank BA

C = , ( ) ( )( ) ( )B,ABA Cz,z,s α×∈∀ C  

     ( ) ( )( ) nz,z,sZrank BA
C =⇔ , ( ) ( )( ) ( ) ( )B

f
BA CsGz,z,s α×∈∀   

       ( ) ( )( ) nz,z,Zrank BA
C =⇔ ω , ( ) ( )( ) ( ) ( )B,A

f
BA CsImz,z,s α×∈∀   

since loss of rank in some point of ( )B,AC α×C is only possible for ( )( ) ( )( )( )AA zA~zAs +∈σ  , which is 

( )fsIm , from Popov- Belevitch- Hautus rank controllability test. Equivalently, the system (1)-(2) is 

controllable if and only if it has no input-decoupling zero in ( )B,AC α  from Definition 3.5.  

 
(ii) The proof is similar from the Popov-Belevitch-Hautus observability rank test 

( ) ( )( ) nz,z,sZrank CA
O = , ( ) ( )( ) ( ) ( )C

f
CA CsGz,z,s α×∈∀ , 

 and , equivalently , ( ) ( )( ) ( ) ( )C,A
f

CA CsImz,z,s α×∈∀  , since observability is a dual property to 

controllability through the replacements *AA → , *CB → . 

  

DE LA SEN: ABOUT DYNAMIC LINEAR SYSTEMS490



 12

(iii) The first part follows by combining the proofs of Properties (i)-(ii). The second part is now proven. 

Assume that there is at least a transmission zero C∈0s  and 

( ) ( ) ( )( ) 00 =TTT su,sx̂z,sS ⇒ ( ) nz,sSrank <0  for some ( ) ( )( ) ( ) mnTTT ,z,sû,z,sx̂ +∈≠ R0000  and 

some αCz∈ since  C∈0s  is neither an input-decoupling or and output decoupling zero of (1)-(2). Since 

( ) ( )( )zA~zAs +∉σ0   

( ) ( )( ) ( )( )( )( )n
AA

n IzA~zAIsdiagdetz,sSdet M−−= 00  

                          

( )( ) ( )( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

0

1
0

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++

+−−−
×

−

DDCC

BBAA
nn

zD~zDzC~zC

zB~zBzA~zAIsI
det

M

LLL

M

 

               

⇔ ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 00 =+++−−+ DDBBAA
n

CC zD~zDzB~zBzA~zAIsAdjzC~zC  

⇔ ( ) 00 ≡z,sŷ  for some ( ) mz,sû R∈≠ 00 and some αCz∈  if 00 =x  and the system possesses the 

input-output transmission blocking property at the transmission zero 0ss =  for some ( )C,B,ACz α∈ . Since 

( ) ( )( )zA~zAs +∉σ0 , ( )z,sĜ  has no zero-pole cancellation at 0ss =  so that there is no system (1)-(2) 

with state dimension less than n which possess the input-output transmission blocking property for some 

( )C,B,ACz α∈ . 

 
(iv) Its proof is similar to those of (i)-(ii) from the Popov- Belevitch- Hautus output controllability rank test, 

namely, ( ) ( ) ( ) ( )( ) pz,z,z,z,sZrank DCBA
CO = , αCs ×∈∀ C .                               

 
Note that Theorem 3.11 also holds if αC is a closed domain.  In this case, ( )fsG  is closed since there is a 

finite number of eigenvalues of each matrix ( )( ) ( )( )AA zA~zA +  in ( )AC α . As a result, all pairs in the set 

( )fsG  conform a closed set since ( )AC α  is closed. The subsequent results is a direct consequence of 

Theorem 3.11. It is of interest to formulate the various properties for the system (1)-(2) under parametrical 

multi perturbations belonging to a certain  domain  in an easy testable form provided that provided that they 

hold for the nominal system in an easy testable form. Note also that Theorem 3.11 is not directly applicable to 

time-varying parameters but to varying parameterizations within some appropriate domains. 

 
Corollary 3.12. The following properties hold: 

 
   (i)       The system (1)-(2) is controllable in ( )B,AC α  if and only if 

                       ( ) ( )( ) ( ) ( )( ) ( )B,ABABA
C Cz,z,s,z,z,sẐdet α×∈∀> C0    
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                            ( ) ( )( )( ) ( ) ( )( ) ( )( ) 0>×∈⇔ B,ABABA
C Cz,z,s:z,z,sZInf ασ C  

where ( ) ( )( ) ( ) ( )( ) ( ) ( )( )BA*
C

BA
C

BA
C z,z,sZz,z,sZ:z,z,sẐ = and, equivalently, if and  only if 

                       ( )( ) ( )( ) ( ) ( )B
f

BB
C CsGz,s,z,sẐdet α×∈∀> 0    

                             ( ) ( )( )( ) ( )( ) ( ) ( )( ) 0>×∈⇔ B
f

BBA
C CsGz,s:z,z,sZInf ασ .  

     (ii)      The system (1)-(2) is observable in αC  if and only if 

                     ( ) ( )( ) ( ) ( )( ) ( )C,ACACA
O Cz,z,s,0z,z,sẐdet α×∈∀> C    

                              ( ) ( )( )( ) ( ) ( )( ) ( )( ) 0Cz,z,s:z,z,sZInf C,ACACA
O >×∈⇔ ασ C  

where ( ) ( )( ) ( ) ( )( ) ( ) ( )( )CA
O

CA*
O

CA
O z,z,sZz,z,sZ:z,z,sẐ = and, equivalently, if and  only if  

                     ( ) ( )( ) ( )( ) ( ) ( )C
f

CCA
O CsGz,s,z,z,sẐdet α×∈∀> 0    

                             ( ) ( )( )( ) ( )( ) ( ) ( )( ) 0>×∈⇔ C
f

CCA
O CsGz,s:z,z,sZInf ασ . 

(iii) The system (1)-(2) is controllable and observable in ( )C,B,AC α if and only if 

 
              ( ) ( )( ) ( ) ( )( ) 0>CA

O
BA

C z,z,sẐdetz,z,sẐdet . ( ) ( )( )( ) ( ) ( )( )( ) 0>⇔ CA
O

BA
C z,z,sZz,z,sZ .σσ  

                 , ( ) ( )( ) ( ) ( )C,B
f

CB CsGz,z,s α×∈∀ . 

(iv) The system (1)-(2) is output controllable in αC if and only if ( )z,sZ CO  has no zero  

singular value αCz∈∀  and, equivalently, if and only if ( ) 0>z,sẐdet CO , ( ) αCz,s ×∈∀ C  , where 

( ) ( ) ( )z,sZz,sZ:z,sẐ *
COCOCO = . 

 
Proof: (i) Note that ( ) ( )( )BA

C z,z,sẐ is a (n+m)- square matrix which is normal by construction. Thus, its 

eigenvalues are nonnegative and real being the squares of the singular values of ( ) ( )( )BA
C z,z,sZ . 

Consider again the function ( ) ( )( ) ( )( )( )AAA
f zA~zAC:s +→σα  of Theorem 3.11. Thus, the system (1)-(2) 

is controllable from Theorem 3.11(i) if and only if  

 
          ( ) ( )( ) ( ) ( )( ) ( )B,ABABA

C Cz,z,s,nz,z,sZrank α×∈∀= C  

                    ( )( ) ( )( ) ( ) ( )B
f

BB
C CsGz,s,nz,sZrank α×∈∀=⇔  

                   ( ) ( )( ) ( ) ( )( ) ( )B,ABABA
C Cz,z,s,nz,z,sẐrank α×∈∀=⇔ C  

                   ( ) ( )( ) ( ) ( )( ) ( )B,ABABA
C Cz,z,s,0z,z,sẐdet α×∈∀>⇔ C  
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                   ( )( ) ( )( ) ( ) ( )B
f

BB
C CsGz,,nz,Ẑrank αωω ×∈∀=⇔  

                   ( )( ) ( )( ) ( ) ( )B
f

BB
C CsGz,,0z,Ẑdet αωω ×∈∀>⇔  

                   ( ) ( )( )( ) ( ) ( )( ) ( )B,ABABA
C Cz,z,s,z,z,sZ ασ ×∈∀>⇔ C0  

                   ( )( )( ) ( )( ) ( ) ( )B
f

BB
C CsGz,,z,Z αωωσ ×∈∀>⇔ 0  

     
what proves Property (i). The proofs of (ii)-(iv) are similar from the parallel properties of Theorem 3.11 and 

are then omitted.                                                                                                              

 
Remark 3.13. Since controllability is lost in αC if and only if ( )( )B

C z,sZ is rank defective for some 

( )( ) ( ) ( )B
f

B CsGz,s α×∈ [Theorem 3.11 (i)], it turns out that controllability in αC  holds if and only if 

( )( )( ) ( )( ) ( ) ( )B
f

BB
C CsGz,s,z,sZ ασ ×∈∀> 0  and, equivalently, if and only if 

( )( ) ( )( ) ( ) ( )B
f

BB
C CsGz,s,z,sẐdet α×∈∀> 0 . As a result, the tests of Corollary 3.12 (i) have 

only to be performed for ( ) ( )( )zA~zAs +∈σ  for each ( ) ( )( ) ( )B,ABA Cz,z α∈ . Similar considerations apply 

to Corollary 3.12 [(ii)-(iv)].                                                                                                                  

 
Theorem 3.11 and Corollary 3.12 are directly extendable to stabilizability and detectability as follows. First, 

define ( ) ( )( ) ( )( )( ) 0
00

+
++ ∩+→ CAA
ff zA~zAsDom:s σ  of graph 

( ) ( )( ) ( ){ }000 +++ ∈= fff sDom:s,:sG ωωω where 

( ) ( ) ( ) ( ){ }0
00

+
++ ∈∈=⊃ Cωω αα f

A
f

A s:C:sDomC  

Note that ( ) ( )ff sGsG ⊂+0  since ( ) ( ) ( )A
ff CsDomsDom α≡⊂+0 and there is a natural projection 

function ( ) ( ) ( ) ( )fffff sImsImsImpDom:p ⊂→≡ +++ 000 .  

 
Corollary 3. 14. 

(i) The system (1)-(2) is stabilizable in a bounded domain αC if and only any of the following equivalent   

properties hold:  

      (i.1)   All the input-decoupling zeros in )B,A(C α , if any, have negative real parts 

      (i.2) ( ) ( )( ) ( ) ( )( ) ( ) ( )B,A0
f

BABA
C CsImz,z,s,nz,z,sZrank α×∈∀= +  

      (i.3) ( ) ( )( ) ( ) ( )( ) ( )B,A
0

BABA
C Cz,z,s,nz,z,sZrank α×∈∀= +C  
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     (i.4) ( )( ) ( )( ) ( ) ( )B0
f

BB
C CsGz,s,0z,sẐdet α×∈∀> +    

     (i.5) ( )( )( )( ) ( )( ) ( ) ( )B0
f

BB
C CsGz,s,0z,sGZ ασ ×∈∀> +  

 
(ii) The system (1)-(2) is detectable in αC  if and only any of the following equivalent    

       properties hold:  

       (ii.1) All the output-decoupling zeros in )C,A(C α , if any, have negative real parts 

    (ii.2) ( ) ( )( ) ( ) ( )( ) ( )C,A
0

CACA
O Cz,z,s,nz,z,sZrank α×∈∀= +C . 

     (ii.3) ( ) ( )( ) ( ) ( )( ) ( ) ( )C,A0
f

CACA
O CsImz,z,s,nz,z,sZrank α×∈∀= + . 

     (ii.4) ( )( ) ( )( ) ( ) ( )C0
f

CC
O CsGz,s,0z,sẐdet α×∈∀> +    

     (ii.5) ( )( )( )( ) ( )( ) ( ) ( )C0
f

CC
C CsGz,s,0z,sGZ ασ ×∈∀> +                                           

 
Remarks 3.15. The system (1)-(2) is said to be stabilizable if there is no input-decoupling zero in +0C . If 

the system (1)-(2) is stabilizable then there exists some state-feedback control law UX:u →×+0R such that 

the system (1)-(2) is globally asymptotically Lyapunov´s stable under such a law. The system (1)-(2) is said 

to be detectable if there is no output-decoupling zero in 0+C . From Theorem 3.12 and Corollaries 3.12 and 

3.14, it turns out that if the system (1)-(2) is controllable (respectively, observable) in αC  then it is 

stabilizable (respectively, detectable) in αC .  Also, if the unforced system (1)-(2) is globally asymptotically 

stable in the Lyapunov´s sense on αC  (i.e. the matrix ( )( ) ( )( )AA zA~zA +  has all its eigenvalues with 

negative real parts for all ( ) ( )AA Cz α∈   then it is also stabilizable (even if it is not controllable) and 

detectable (even if it is not observable) since the spectral controllability, respectively, observability matrices 

are jointly full rank on ( )B,A
0 C α×+C , respectively,  ( )B,A

0 C α×+C .                                 

 

 
Remarks 3.16. Note that the conditions implying the corresponding determinants or minimum singular 

values to be positive to guarantee each of the controllability, stabilizability, observability and detectability  

properties in Theorem 3.11 and Corollaries 3.13 and 3.14 is sufficient in a bounded domain. However, the 

boundedness of determinants and maximum singular values is also needed to guarantee each property in an 

unbounded domain.                                 

 

 

4. Maintenance of the properties from those of the nominal system 
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In this section, attention is paid to the normal matrix ( ) ( )( ) ( ) ( )( ) ( ) ( )( )BA*
C

BA
C

BA
C z,z,sZz,z,sZz,z,sẐ =  

to obtain conditions for maintaining or loosing controllability under parametrical multi perturbations of a 

certain size provided  that the nominal system is controllable. In the analysis, it is taken advantage of the fact 

that such a matrix is square and nonsingular if the system  is controllable. Furthermore, if the matrix  
( )( ) ( )( ) ( )( ) ( )( )( )BBAA zB~zBzA~zA ++ M  is Hermitian, so that ( )( ) ( )( )( ) ( )( ) ( )( )( )BBAA

n zB~zBzA~zAIs ++− M  is 

also Hermitian, then the eventual loss of rank of ( ) ( )( )BA
C z,z,sẐ  for some ( ) ( )( )BA z,z  only occurs for 

C∈s  being some singular value of   ( ) ( )( )BA
C z,z,sZ , i.e. for some  eigenvalue of ( )( ) ( )( )AA zA~zA + . In 

the general case, the loss of rank can occur also for eigenvalues of ( )( ) ( )( )A*A* zA~zA + . A close 

discussion is directly applicable to stabilizability and direct extensions, by modifying accordingly the 

matrices, are also applicable to observability, detectability and output controllability. Using (12), 

 
( ) ( )( ) ( ) ( )( )BA

0C
BA

C z,z,sẐz,z,sẐ =     

  ( ) ( )( ) ( ) ( )( )( )( ( )( ) ( )( )( ) ( )( ) ( )( )( )( *BABA1BA*
0C

BA
0Cn zB~zA~zB~zA~z,z,sZz,z,sZI MM −−+× −  

     ( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( ) ( ) ( )( ) )BA*
C

BA*BABA
C z,z,sZzB~zA~zB~zA~z,z,sZ 00 MM −+−+       (16) 

 
provided that ( ) ( )( ) ( ) ( )( ) ( ) ( )( )BA*

C
BA

C
BA

C z,z,sZ.z,z,sZ:z,z,sẐ 000 =  is nonsingular, i.e. its 

minimum  singular value is positive , that is, there is no zero-input decoupling zero of ( ) ( )( )BA
C z,z,sZ 0 . 

Expanding the first identity of (7), one gets: 

 
( )( ) ( )( )( ) ( ) ( )( ) ( )BA

n
B

n
ABA IzIzzB~zA~ ΔMM −=−                                                                         (17) 

 
with 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )A**A
jq

*A
j

*A
j

n

j

A
jq

A
j

A
j

BA E...D...DDdiagdiag:
A

A

A
ΔΔΔΔ MMMMMM 10

1
10⎜

⎜
⎝

⎛
= ∑

=
 

                         ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
⎟
⎟

⎠

⎞
∑
=

B
*

*B
jq

*B
j

*B
j

n

j

B
jq

B
j

B
j E...D...DDdiag

B

B

B
ΔΔΔ MMMMMMM 10

1
10          (18)   

Eq. 16 may be rewritten under (17)-(18) as 

 
( ) ( )( ) ( ) ( )( )BA

C
BA

C z,z,sẐz,z,sẐ 0= ( ) ( )( )( 1
0

−+ BA
Cn z,z,sẐI  

                            ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )BA*
C

BA
*

n
B

n
A

*
BABA

C z,z,sZIzIzz,z,sZ 00 ΔΔ +
⎜
⎜
⎝

⎛
−× M      
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                           ( ) ( )( ) ( ) ( ) ( ) ( )( ) ⎟
⎠

⎞−−+
*

n
B

n
ABABA

n
B

n
A IzIzIzIz

*
MM ΔΔ                         (19)  

A direct result follows: 

 
Theorem 4.1. The following properties hold: 

 (i) Assume that the nominal system (1)-(2) is controllable in a bounded domain 2
0

++⊂ BA qq
CC C . Then, 

there exist parametrical multi perturbations ( )( ) ( )( )( )BA zB~zA~ M−  satisfying (17)-(18), defined by maps 

( )mnn
BACC PPCC +×⊂×→⊂ C0  such that the perturbed systems (1)-(2) are also controllable, and 

equivalently they have no input-decoupling zeros in C , within each given bounded domain 0CC CC ⊂ . 

All those multi perturbations are subject to a computable norm upper-bound depending on CC . 

 (ii) Assume that there is some nonzero vector 
2n

Qv C∈  which is some linear combination of the columns 

of the matrix 

( ) ( )( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗−= ∑ ∑∑ ∑

= == =

B BA A q

i

n

j

*B)B(
ji

)B(
i

q

i

n

j

*A)A(
ji

)A(
i

BA EDzEDz:z,zQ
0 10 1

M  

for some given 0CC CC ⊂ . Then, there is a parametrical multi perturbation within the class (7) which 

violates the norm upper-bound referred to in Property (i) such that the system is uncontrollable in CC . 

 (iii) Assume that the nominal system (1)-(2) is controllable in 2qq
0C

BAC ++≡C and that the scaling 

matrices ( )AE and ( )BE are both full rank. Then, there exist parametrical multi perturbations 

( )( ) ( )( )( )BA zB~zA~ M−  satisfying (17)-(18), defined by maps ( )mnn
BA

2qq PPBA +×++ ⊂×→ CC  such 

that the perturbed systems (1)-(2) is not controllable in 2qq BA ++C . 

(iv) Properties (i) and (iii) also hold “mutatis-mutandis” for stabilizability with the modification that the 

perturbed system is stabilizable in Property (i) if and only if it has no input-decoupling zeros in 0+C  . 

 (v) Properties (i) -(iii) also hold for observability by replacing 2qq2qq CABA ++++ →CC ,  

( ) ( )( ) ( ) ( )( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗−=→ ∑ ∑∑ ∑

= == =

C CA A q

0i

n

1j

B*)C(
ji

)C(
i

q

0i

n

1j

A*)A(
ji

*)A(
i

BA´BA EDzEDz:z,zQz,zQ M  

( )( ) ( )( )( ) ( )( ) ( )( )( )*C*ABA zC~zA~zB~zA~ MM −→−  and the modification that the perturbed system is 

observable in Property (i) if and only if it has no output-decoupling zeros in C . Properties (i) and (iii) also 

hold “mutatis-mutandis” for detectability with the changes 2qq2qq CABA ++++ →CC , 
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( ) ( )( ) ( ) ( )( )BA´BA z,zQz,zQ → , ( )( ) ( )( )( ) ( )( ) ( )( )( )*C*ABA zC~zA~zB~zA~ MM −→−  and 0+→CC  in Property 

(i). 

Proof: (i) Since the nominal system (1)-(2) is controllable in 0CC , 

( ) ( )( ) ( )( )( ) ( ) ( )( ) ⎟
⎠
⎞⎜

⎝
⎛ ∈σ∈≤ε< 0C

BAA
2

BA
0C0C Cz,z,zAs:z,z,sẐsup0  

       ( ) ( )( )( ) ( )( )( ) ( ) ( )( )( ) ∞<δ≤∈σ∈λ= 0C
Fr

0C
BAABA

0Cmax Cz,z,zAs:z,z,sẐsup        (2O) 

 
where ( ) ( )( ) ( ) ( )( ) ( ) ( )( )BA*

0C
BA

0C
BA

0C z,z,sZz,z,sZ:z,z,sẐ = . Inequalities (20) hold since 

the maximum eigenvalue is bounded positive real and equalizes the 2l -norm because ( ) ( )( )BA
0C z,z,sẐ  

is (at least) positive semidefinite in 0CC  and since the maximum  eigenvalue, as being a continuous function 

on its definition domain 0CC ,  reaches its maximum on the boundary of such a domain. Equation (20) 

implies that 

( ) ( )( ) ( )( )( ) ( ) ( )( ) ∞<ε≤⎟
⎠

⎞
⎜
⎝

⎛ ∈σ∈∈≤δ< −−− 1
0C

Fr
0C

BAA
2

BA1
0C

1
0C Cz,z,zAss:z,z,sẐsup0     (21)     

Since the nominal system (1)-(2) is controllable in 0CC , so that ( ) ( )( )BA
C z,z,sẐ 0  is positive definite in 

0CC×C , then ( ) ( )( )BA
C z,z,sẐ  is positive definite in 0CC CC ×⊂× CC  from (19)-(21) with the domain 

CC  defined such that  ( )δδδε +> −
0

1
0 21 CC  and 

( ) ( )( ) ( ) ( ) ( )( )( ) δΔ <∈− C
BABA

n
B

n
A Cz,z:IzIzsup 2M for each 0CC CC ⊂ from Banach´s 

Perturbation Lemma, [40]. Thus, CC  exists defined by ( )( )BADom Δ∪  of all the parametrical multi 

perturbations ( ) ( )mnn
BA

BA P +×∩∈ 2CΔΔ with:  

  
( ) ( )( ) ( ) ( ) ( )( ) ( ){ 2

BA
n

B
n

Amnn2BABA
BA IzIzsup:Dom::P ΔΔΔΔ M−→= +×C  

                           ( ) ( )( )( ) }0C0C
2

0CC
BA :Cz,z: δεδδ −+=<∈  

 
where BAPΔ  depends on CC  and is formed by all the parametrical perturbations ( )

BA
BA PΔΔ ∈ which 

satisfy: 

 

 ( )( ) ( ) ( ) ( ) ( ) ( )( )( )c
BA2

2
B2

2
A

2
BABA Czz:zzsup/: ∈+<= MδΔΔσ  
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Thus, the system is controllable within prefixed bounded open domain 0CC CC ⊂ for all parametrical multi 

perturbations in the set: 

 
( )( ) ( )( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ){ }BA

BA
C

BABA
n

B
n

ABA
BA P,Cz,z:IzIzzB~zA~:PP ΔΔΔ ∈∈≡=× MM  

 

(ii) Parametrical perturbations ( )( ) ( )( )( )BA zB~zA~ M   with the structure 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑
==

)B(n

1j

)B(
j0

)B(
j0

)A(n

1j

)A(
j0

)A(
j0 EDED

AA
ΔΔ M  lie in BA PP ×  from (7). Note that the linear 

algebraic equation ( ) ( )( ) QQ
BA vxz,zQ =  has at least a solution for Qv  being of the given form and 

( ) ( )( ) ( ) ( )( )( )T
BB

AT
AA

AT nqj,i:Dvec,nqj,i:Dvec:
jiji

×∈×∈= 00
Q x  

Direct calculations in (19) yield that ( ) ( )( ) 0z,z,sẐdet BA
C = , since 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )( )( ) nzB~zA~z,z,sZrankz,z,sZrank BABA
0C

BA
C <−+= M  for some 

( )( ) C
)A()A( Cz,z,s ×∈C  since there exists a nonzero Qv  such that  

( ) ( )( ) ( ) ( )( )( ) 0x
Q0 =⊗+⊗ Q
*BA

n
BA

C vz,zQIz,z,sZ   

and the proof of Property (ii) is complete. 

 
(iii) Since the nominal system is controllable, ( ) ( )( ) ∞<≤≤< 2

BA
0C1 z,z,sẐdet0 εε  so that 

( ) ( )( ) ∞<≤≤< −− 1

1
BA

0C
1

2
z,z,sẐdet0 εε , ( ) ( )( ) 2qqBA BAz,z,s ++×∈∀ CC . Then, from (19), 

it follows that: 

 
1.  There are infinitely many parametrical multi perturbations ( )( ) ( )( )( )BA zB~zA~ M− , defined by a map 

( )mnn
BA

2qq PP:d BA +×++ ⊂×→ CC  satisfying (17)-(18)  and fulfilling that 

( ) ( )( ) ( ) nIzIzrank BA
n

B
n

A =− ΔM . Note that such parametrical perturbations always exist from (17)-

(18) since ( )AE and ( )BE are full rank. 

 

2. There exist continuous functions CC →××++
BA

2qq
1 PP:g BA and 

0BA
2qq

2 PP:g BA
+

++ →×× CC  from (19) satisfying: 

( ) ( ) ( )( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛=

iBABABA
i O,z,zg ΔΔ for i =1, 2 ;  ( ) ( )( ) 2qqBA BAz,z ++∈∀ C   
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( ) ( ) ( )( ) 0z,zg BABA
2 >Δ  if  ( ) ( )( ) 0z,z BA ≠ . 

Then, 
( ) ( )( ) ( ) ( )( )1

133
1BA

C otrace1z,z,sẐdet 1

12

−− ++≥ − εεεεε  

     ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ∞→−× BA
1

BA
2

BABA z,zgz,zgz,zz,z  

for some R∈3ε  as ( ) ( )( ) ∞→∋++ BA2qq z,zBAC (the infinity point in 2qq BA ++C ) and then the 

perturbed system (1)-(2) is not controllable (see Remark 3.16) what is a contradiction. The proof of Property 

(iii) is complete.       

 
(iv)-(v) Their proofs are similar to those of properties (i)-(iii) with the given modifications and the 

replacements ( ) ( )( ) ( ) ( )( )CA
OO

CA
OC z,z,sẐz,z,sẐ → , ( ) ( )( ) ( ) ( )( )CA

O
CA

C z,z,sẐz,z,sẐ → .  

 
Remarks 4.2.  The extension of Theorem 4.1 to output controllability is immediate by invoking Definition 

3.3 and Theorem 3.11 (iv). Also, note that if the state-space realization of the nominal system (1)-(2) is 

minimal in a certain domain, then Theorem 4.1 provides testable conditions to guarantee that the realization is 

maintained minimal for a set of parametrical perturbations (17)-(18) in a certain domain included in the above 

one if controllability and observability hold jointly in such a domain.                                 

 

 
Remarks 4.3.  The various properties might also be investigated by the nominal system defined at some 

( ) ( ) ( ) ( )( ) qD
0

C
0

B
0

A
00 z,z,z,zz C∈=  where the corresponding property holds. For this purpose, the  

replacements below are used to apply Theorem 4.1: 

 
( )( ) ( )( ) ( )( ) ( )( ) ( )( )A

0
AAAA zAzAzA~:zA~zA~ −+=→ , ( )( ) ( )( ) ( )( ) ( )( ) ( )( )B

0
BBBB zBzBzB~:zB~zB~ −+=→  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )C
0

CCCC zCzCzC~:zC~zC~ −+=→ , ( )( ) ( )( ) ( )( ) ( )( ) ( )( )D
0

DDDD zDzDzD~:zD~zD~ −+=→  

by redefining the parametrical perturbations in certain domains of qC  containing z and 0z  and 

( ) ( ) ( ) ( )( )DCBA z,z,z,zz =  as ( )( )AzA~ , ( )( )BzB~ , ( )( )CzC~  and  ( )( )DzD~ .   Then, domains 

where the studied property is kept from the nominal system may be obtained in this way.                      

 
5. Application to time-delay systems with point internal and external delays  

Now, consider the following extension of the dynamic system (1)-(2) including discrete ( point) delays: 

 

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )tuzB~zBt,zxzA~zAt,zx BBAA +++=&                                   
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( )( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )∑ ∑
η

=

κ

=

−++−++
1 1j

´
j

dB
j

dB
j

j
j

dA
j

dA
j ht,zuzB~zBht,zxzA~zA

    

                                                                                                                                                                (22)            

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )tuzD~zDt,zxzC~zCt,zy CDCC +++=                           (23) 

 
fully described by (1)-(2), subject to parametrical multi perturbations (17)-(18), η  internal (i.e. in the state) 

pair-wise distinct point delays [ ) 0jj h,0h +⊂∈ R , η∈∀ j  and κ  external (i.e. in the input) pair-

wise distinct point delays 00 +⊂⎟
⎠
⎞

⎢⎣
⎡∈ R´h,h j

´
j , κ∈∀ j . The intervals ( )[ ).h,0  and ( ) ⎟⎠

⎞
⎢⎣
⎡ ´h, .0  are 

the admissibility domains of the corresponding internal and external delays, respectively. The external delays 

could be considered to act on the output instead of on the input with no loss in generality. The initial 

conditions are defined by any bounded piecewise absolutely continuous vector function with eventual 

isolated discontinuities [ ] n0,h: C→−φ  where ( )j
j1

hMax:h
η≤≤

= . If ( ) ( )U,CPu 0
q

+×∈ RC0  then a 

unique solution exists on +R  for each given [ ] n0,h: C→−φ , [8], [10], [12]. To set an appropriate 

framework related to that of the preceding sections, consider q̂ - tuples z and ϕẑ in q̂C with 

dBdADCBAdBdA qq4qqqqqqq:q̂ ++++++=++= :  

 
( ) ( ) ( ) ( ) ( ) ( )( )dBdADCBA z,z,z,z,z,z:z =  ;   ( ) ( ) ( ) ( ) ( ) ( )( )dBdADCBA

´´ẑ,ẑ,z,z,z,z:ẑ
ϕϕϕ =

ρρρ           (24) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛=

ηη ϕηϕϕϕηϕϕϕ ρρρρρρ
pppppp LLL dA

q
dA

q
dA

q
dAdAdAdA

dAdAdA
z,,z,z,,z,,z,z:ẑ

2121 2112111ρ

 
                                                                                                                                                         (25) 
( ) ( ) ( ) ( ) ( ) ( ) ( )

⎟
⎠
⎞⎜

⎝
⎛= ´´z,,´´z,´z,,´´z,,´´z,´z:ẑ dB

q
dB

q´dB
q

dBdB´dAdB
dBdBdB κκ ϕκϕϕϕκϕϕϕ ρρρρρρ pppppp LLL

2121 2112111´´ρ  

                                                                                                                                                          (26) 
and q̂ - tuples being complex vector functions from  q̂CC × to q̂C  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )sz,sz,z,z,z,z:sz dBdADCBA
h´h´hh

=                                                                 (27) 

where ( )ηh,...,h,h: 21=h  and ( )´´´´ h,...,h,h: κ21=h  are tuples formed with the sets of   internal and 

external delays, respectively, and 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

⎟
⎠
⎞⎜

⎝
⎛= −−−−−− shdA

q
shdA

q
shdA

q
shdAshdAshdAdA ez,,ez,ez,,ez,,ez,ez:sz

dAdAdA

ηη LLL 2121
111h      

                                                                                                                                                             (28) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−−−−−− s´hdB
q

s´hdB
q

s´hdB
q

s´hdBs´hdBs´hdAdB ez,,ez,ez,,ez,,ez,ez:sz
dBdBdB

κκ LLL 21
1

2
1

1
1´h

 

                                                                                                                                                              (29) 

[ )π∈ϕϕ∀ 20 ,´,j l , +∈ρρ∀ R´,j l
, ( )κ∈η∈ l,j  where ( )θθγγ θ sinicos: +=p  is a 

circumference of radius γ  centered at zero in the complex plane. The dynamic system (22)-(23) may be 

equivalently described through an algebraic linear system by taking Laplace transforms with zero initial 

conditions as follows:  

( )( ) ( )( ) ( )( ) ( )( )( ) ( )s,zx̂ezA~zAzA~zAIs
j

shdA
j

dA
j

AA
n

j
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+− ∑

=

−η

1
   

            ( )( ) ( )( ) ( )( ) ( )( )( ) ( ) 0
1

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−+− ∑

=

−
sû

´
ezA~zAzB~zB

j

sjhdA
j

dA
j

BB κ
      (30)            

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )sûzD~zDs,zx̂zC~zCs,zŷ CDCC +++=                       (31) 

 
Note by direct inspection that there exist surjective mapping of the set of  tuples (28) to the set of tuples (26) 

and from the set of tuples (29) to the set of tuples (27) by considering them as functions from C  to 

[ ) [ ) [ )πη
η 2000 0

2
1 ,h,...h, ××××× +RR  and to [ ) [ ) [ )πκ

η 2000 0
2

1 ,h,...h, ××××× +RR , respectively, by associating 

ω=ϕ=ρ→ω+σ= σ−
kk

h
k h,eis k ; η∈∀k  and  ωϕρωσ

σ ´
k

´h

k k
k h,e´is ==→+=

−
; κ∈∀k , 

respectively. However, those mappings are not one-to-one, in general, for all the admissible sets of delays, 

since the inverse maps: 

 

 [ ) [ ) [ ) CRRR →⊂××××× +
+

2
0

2
1 2000 ηη

η π,h,...h, and [ ) CRRR´´ →⊂×××⎟
⎠
⎞

⎢⎣
⎡××⎟

⎠
⎞

⎢⎣
⎡ +

+
2

0
2

1 2000 κκ
κ π,h,h, L  

 
do not have the same definition domain as the respective ranges of the original mappings. The first inverse 

mapping only exists if and only if  
k

k
h

ln ρ  are identical and real , η∈∀k and also if 
k

k
h
ϕ  are identical, real 

and belong to [ )π20 , , η∈∀k . The second inverse mapping only exists if and only if R∈= K´h

´ln

k

k
ρ

, 

[ )π
ϕ

20 ,K´h

´

k

k ∈= ´ , κ∈∀k . The simultaneous existence of both inverse mappings require the fulfillment 

of joint constraints: 
 

R∈== K´h

´ln
h

ln

k

k

j

j ρρ
, [ )π

ϕϕ
20 ,K´h

´

h
k

k

j

j ∈== ´ ; η∈∀j  , κ∈∀k                               (32) 
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Remark 5.1. The properties of controllability, observability, stabilizability and detectability of the system 

(30)-(31) in a domain may be directly tested by extending directly Theorem 3.11, Corollaries 3.12 and 3.14 

and Theorem 4.1 under the subsequent guidelines. It turns out that if the constraints (32) are not invoked, 

only sufficient conditions may be obtained by extending the results of the preceding sections for each tested 

property by considering the tuples (24)-(26) in the tests. If, in addition, the constraints (32), associated with 

(27)-(29), are required for given sets of internal and external delays then necessary and sufficient conditions 

may be obtained by extending such tests from the delay-free case. If the tests fail only for certain sets of q̂ - 

tuples (24)-(26) in some given domain, which do not fulfill (32) for given sets of delays, then the system 

fulfills the tested property for that set of delays. The property is also lost for the sets of delays which do not 

fulfill the test for the tuples (24)-(26) which have a solution under the constraints (32). If the test does not fail 

for any tuple (24)–(26) in some domain then the system fulfills the tested property independent of the delays 

in such a domain.  In summary, replace q̂q→ , ( ) ( )( )dA)A(A ẑ,zz ϕρ→ , ( ) ( )( )dB
´´

)B(B ẑ,zz
ϕρ

→  and 

extend Definitions 3.1-3.4 to the system (30)-(31) to then generalize the various results in  Theorem 3.11, 

Corollaries 3.12 and 3.14 and Theorem 4.1 to the system (30) –(31) subject to delays. Then,  

 
1. If any investigated  property (namely, controllability, observability, stabilizability or detectability)  

holds for all z (defined in (24)) in a domain then the property holds within such a domain independent of the 

delays,  i.e. for all sets of η  internal delays and κ  external delays ranging from zero to infinity. 

2. Assume that two sets of internal and external delays are given and assume also that the investigated 

property holds for all z except at isolated points in a certain domain. Then, if some of the constraints (32) fails 

for the given sets of delays for all those all points in the domain then the system possesses the investigated 

property for the given sets of delays. If no sets of delays are specified, then the investigated property except 

holds for all delays in the admissibility domain except for those where some of the joint constraints (32) fails.   

3. If the investigated property fails at some z only for sets of delays which fulfill (32) then the system 

maintains such a property for all delays in their admissibility domains except for those which fulfill (32).  

 
The following technical result is useful for testing the controllability of the time-delay nominal system. The 

perturbed system is guaranteed to maintain controllability if the nominal one is controllable by incorporating 

extended sufficiency-type conditions from “ad –hoc” extended versions of Theorem 3.11, Corollaries 3.12 

and 3.14 and Theorem 4.1 (see Remark 5.1). For the remaining properties of observability, stabilizability and 

detectability, the result is extendable “mutatis-mutandis” with the corresponding changes.  

 
Theorem 5.2 Assume that ( ) ( ) ( ) ( ) ( ) Cq̂dBdABAd,B,A CCCC:C C⊂×××= 00000 ααααα  is bounded where 

2++++= dBdABAC qqqq:q̂ . Then, the following properties hold: 

 (i) The nominal system with delays (22)-(23) is controllable independent of the delays on ( )d,B,AC 0α if  
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( )( ) 00 >≥ δσ z,ˆẐdet C , ( ) [ ) ( )B,AC,z,ˆ 0
11 20 α

κηκη πσ ××∈∀ ++++R  

 where  

( ) [ ) 11´´
2

´
121

´´
2

´
121 2,0,...,,,,...,,,,...,,,...,,,:ˆ ++++ ×∈= κηκη

κηκη πϕϕϕϕϕϕωρρρρρρσσ R  

which satisfies all the constraints ´
j

´
j

i

i

h

ln
h

ln ρρ
σ −=−= , ´

j

´
j

i

i

h

cosarc
h
cosarc ϕϕ

ω == , 

( ) kj,i ×∈∀ η  for any two sets of distinct nonnegative real numbers { }ηh,...,h,h 21 , 

{ }´´´ h,...,h,h
κ21

. 

 (ii) The nominal system with delays (22)-(23) is controllable on ( )d,B,AC 0α  for a set of η  positive distinct 

internal delays { }ηh,...,h,h 21  and a set of κ  positive distinct external delays { }´´´ h,...,h,h
κ21

 

provided that  

( )( ) 0z,ˆẐdet 0C >≥ δσ , ( ) [ ) ( )d,B,AC,z,ˆ 0
11 20 α

κηκη πσ ××∈∀ ++++R  

where  

( ) [ ) 11´´
2

´
121

´´
2

´
121 2,0,...,,,,...,,,,...,,,...,,,:ˆ ++++ ×∈= κηκη

κηκη πϕϕϕϕϕϕωρρρρρρσσ R  

satisfies ´
j

´
j

i

i

h

ln
h

ln ρρ
σ −=−= , ´

j

´
j

i

i

h

cosarc
h
cosarc ϕϕ

ω == , ( ) kj,i ×∈∀ η . 

(iii) Finite covers of ( )d,B,AC 0α can be constructed such that sufficient-type  conditions of controllability of 

Properties (i)-(ii) of the nominal system (22)-(23) on ( )B,AC 0α  may be constructed involving  a finite numbers 

of  computations. 

 
 Proof: (i)-(ii). The proofs of (i)-(ii) follow directly from the structure of the delay system (22)-(23) and 

Remark 5.1  

(iii) It is organized in a very technical way. Note that the matrix function ( ) ( )( )BA
0C z,z,sẐ  is Hermitian 

(and thus normal) by construction even if the various matrix functions defining the system (1)-(2) are not 

Hermitian. Assume that RC  is a bounded open or closed circle of finite radius R centred at the origin of C  

and that 2
RR  is a circle of the same radius centred at the origin of  2R which is open if RC  and closed if 

RC  is closed . Then, there is a natural mapping from ( )B,A
R CC 0α×  to ( )d,B,A

R CR 0
2

α×  associating each 

matrix ( ) ( )( )BA
0C z,z,sẐ  in ( )d,B,AC 0α×C  to a matrix ( ) ( )( )BA

0C z,z,,Ẑ ωσ  in ( )d,B,A
R CR 0
2

α×  

where sRe=σ  and ( )sIm=ω . Both matrices have the same spectrum which consists of a set of 

DE LA SEN: ABOUT DYNAMIC LINEAR SYSTEMS 503



 25

( )mn +≤υ  real vector functions ( ) ( )υλ α ∈→× + iCR: d,B,A
Ri 00
2 R  of multiplicities ( )υυ ∈ii  

which satisfy mn
1i

i +=∑
=

υ
υ . The numbers  ( )υλ ∈ii , υ , ( )υυ ∈ii  depend on each tuple in 

( )B,A
R C 0α×C , equivalently, on each tuple in ( )d,B,A

R CR 0α× . If each element of the spectrum ( )υλ ∈ii   

of multiplicity ( )υυ ∈ii  is considered as iυ  identical elements, then there is a bijective mapping from a 

continuous vector function ( ) ( )mnd,B,A
R CC: +

+→× 00 Rλ C α  to another one ( ) ( )mnd,B,A
R CR: +

+→× 00
2 Rλ 2R α . 

Since the images are identical, it is not made distinction between  Cλ  and 2Rλ  by using simply the 

notation λ  for both vector functions in their definition domains. It is obvious that controllability of the 

nominal system (1)-(2) over ( )d,B,AC 0α holds if and only if ( ) ( )mnd,B,A
R CR: +

+→× Rλ 0
2

α  . Now, if  

( )d,B,AC 0α  is simply connected, closed and bounded, then can be covered by a finite cover from Heine-Borel 

covering theorem. First, assume that  ( )d,B,AC 0α  is connected, closed and bounded and 2
RR is closed then a 

finite cover ( )d,B,AoC 0α  exists for ( )d,B,A
R CR 0
2

α× , since ( )d,B,A
R CR 0
2

α×  is bounded and closed. 

( )d,B,AoC 0α  is the union of finite covers for each of its L connected components ( )d,B,A
R CR 0
2

α×  ( )L∈l  

with ∞<L since ( )d,B,AC 0α  is bounded, Then, ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

=
×= d,B,A

R
Ld,B,A CRoC l
l

U 0
2

10 αα . Subsequently, 

assume that ( )d,B,AC 0α  is not closed (for instance, open or semi-open) with identical remaining hypotheses as 

above. Then, there is an open bounded set ( ) ⊃d,B,AooC 0α  ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

=
×=× d,B,A

R
Ld,B,A

R CRCR l
l

U 0
2

10
2

αα  . 

Thus, a denumerable cover exists for ( )d,B,AoC 0α  from Lindel ο&& ff covering theorem but it still exists a 

finite cover ( )d,B,AoC 0α  of ( )B,A
R CR 0
2

α×  satisfying the set inclusion chain:  

( ) ( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

=
⎟
⎠
⎞

⎜
⎝
⎛

=
×=⊃×= d,B,A

R
Ld,B,Ad,B,A

R
Ld,B,A CRcoCcCRoC l

l
l

l
lUlU 0

2
1000

2
10 αααα  

 ( ) ( ) ( ) ( )d,B,A
R

d,B,A
R

Ld,B,Ad,B,A
R

L
CRCRoCCRc 0

2
0

2
100

2
1 αααα ×=×⊃⊃××= ⎟

⎠
⎞

⎜
⎝
⎛

=
⎟
⎠
⎞

⎜
⎝
⎛

= l
l

l
l

UlU   

 
from Heine- Borel covering theorem for ( )d,B,AooCc 0αl ( which is bounded and closed) where  

( ) ( )d,B,Ad,B,A CC ll 000 αα ⊃  ( )L∈l  is a finite collection of open bounded sets. As a result, a finite cover 

( )d,B,AoC 0α  of ( )B,A
R CR 0
2

α×  always exists if ( )d,B,AC 0α  is bounded and connected. The finite cover : 
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( )( ) U
BqAqj,jLji i,,...i

B,A
q

Ĥ:CĤ
+∈∈ +

=
210α   

for some prefixed small  real +∈R0ε  is a finite union of disjoint hyper-rectangles defined by   

 
( ) ( ){ ( ) ( )

( )
U

ωσ
α ωσωσ

LLk,j
kj:d,B,A

Ri,,...i zH,CRz,,:Ĥ
q ×∈

∈×∈=
+ 0

2
21

 

( )
⎭
⎬
⎫

+∈∀++−<<+−= ∑ ∑
−

= =
+

1i

1
BA0

i

1
BAjBAqq21

j j

BA
qqj,RzR,z,...,z,zz

l l
ll εεε  

jj Li ∈∀ , BA qqj +∈∀  where BAR  is bounded positive large real number, where 

 
( ) ( ) ( ){ d,B,A

Rkj CRz,,:zH 0
2

αωσ ×∈=  

⎪⎭

⎪
⎬
⎫

++−<<+−++−<<+− ∑ ∑ ∑∑
−

=

−

= ==

1

1

1

1
0

1
0

1

j k k
RR

j
RR: RR,RR

l l l
ll

l
ll εεωεεεσε ωωσσ  

( )d,B,ACz 0α∈∀ , σLj∈∀ , ωLk∈∀  . Then, ( )( )U
ωσ LLk,j kj zH

×∈
 is a finite cover composed of open 

rectangles over a large open square in 2R  for each z in ( )d,B,AC 0α . It is quite obvious that, since any 

characteristic zeros of the nominal system (1)-(2) are at a finite distance from the origin if the characteristic 

equation has a principal term and the characteristic quasi-polynomial is monic in the Laplace argument s then 

the stability may be tested for any z over the union of ( )zH kj , for ∞<∈ σLj  and over ( )( )d,B,ACĤ 0α  for 

any parameterization in ( )d,B,AC 0α . If the nominal system is controllable then the open rectangles ( )zH kj  

for any ( ) ( )( ) ( )d,B,ABA Cz,zz 0α∈=  are constructed as follows. Define: 

( ) ( )( ) ( ) ( )( )( )BA
OC

BA z,z,,Ẑdet:z,z,,f ωσωσ =0  

Since the above function is analytic everywhere in its definition domain then for given strictly increasing real 

sequences { }∞0iσ ,{ }∞0iω ,{ }∞0ijz  ( )BA qqj +∈  and for any real numbers ( )1ii , +∈ σσσ , 

( )1ii , +∈ ωωω , ( )1i,jijj z,zz +∈ , BA qqj +∈∀  being the components of ( ) ( )( )BA z,zz = : 

  
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )BA

ii
´
0i

iBiA
ii0i

BA
0 z,z,,fz,z,,fz,z,,f ωσσσωσωσ σ−−≥

( ) ( ) ( )( ) ( ) ( ) ( )( ) 0z,z,,fzzz,z,,f i
BqAq

1j

BA´
jz0ijj

BA
ii

´
0i >≥−−−− ∑

+

=
δωσωσωω ω  

provided that  the above strictly increasing sequences are chosen subject to 

( ) ( )d,B,A
Ri,BqAqiii CRz,...,z,, 0
2

1 αωσ ×∈+  
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ii1ii εσσσ +<< + , ii1ii εωωω +<< + , iij1i,jij zzz ε+<< + , BA qqj +∈∀  

for any real iε fulfilling ( ) iBA

i
i Mqq 2

0
++

≤<
δ

ε ,  where  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ⎟
⎠
⎞

⎜
⎝
⎛ +∈= BA

BA´
jz0

BA
ii

´
0

BA´
0i qqj,z,z,,f,z,z,,f,z,z,,fmax:M ωσωσωσ ωσ  

which is finite since ( )d,B,A
R CR 0
2

α×  is bounded. Then 

( )( ) ( )d,B,A
R

BqAqj,jLji
i,,...i

d,B,A CRĤ:CĤ
q 0

2
0 21 αα ×⊇=

+∈∈ +
U  is a finite cover of  

( )d,B,A
R CR 0
2

α×  provided that 
2q1 i,,...iĤ

+
 are hyper-rectangles defined  by  

ii1ii εσσσ +<< + , ii1ii εωωω +<< + , iij1i,jij zzz ε+<< + , BA qqj +∈∀  and  

that the real sequence { }∞0iδ  is bounded and positive satisfying δδ ≥i  for some real 0>δ .  As a result, 

the existence of such a finite cover implies the controllability of the nominal  system (1)-(2). If the 

construction of the cover satisfying the condition ( ) iBA

i
i M2qq

0
++

≤<
δ

ε  with 0i >≥δδ  is 

impossible then the nominal system is not controllable. 

 
Remark 5.3. Theorem 5.2 combined with Remark 5.1 yields direct sufficiency type conditions for 

controllability of the system (22)-(23) on some bounded ( ) ( )d,B,Ad,B,A CC 0αα ⊂  independent of or 

dependent on the delays when subject to parametrical multi-perturbations. Note that as alternative to tests on 

determinants, tests on the singular values of ( )z,ˆZ 0C σ , or on the eigenvalues or matrix ranks of 

( )z,ˆẐ 0C σ , may be applied. Extensions  involving input and output decoupling zeros are also direct but 

specific derivation is omitted by space reasons. On the other hand, the remaining properties may be 

investigated as well with simple modifications of Theorem 5.2. In particular,  

 
(1) Stabilizability tests follow from Theorem 5.2 for 0+∈Rσ  only. Output controllability tests follow by 

replacing ( )z,ˆZC σ0  with ( )z,ˆZ CO σ0  in Theorem 5.2. 

(2) Observability tests on some bounded set ( )d,C,AC 0α follow by replacing ( )d,B,AC 0α
with 

( ) ( ) ( ) ( ) ( )dCdACA:d,C,A CCCCC 00000 ααααα ×××= and then using ( )z,ˆẐ O σ0  instead of ( )z,ˆẐ C σ0  in Theorem 

5.2. 

(3) Detectability tests on some bounded set ( )d,C,AC 0α follow by replacing ( )d,B,AC 0α with ( )d,C,AC 0α and then 

using ( )z,ˆẐ O σ0  instead of ( )z,ˆẐ C σ0  in Theorem 5.2 for 0+∈Rσ  only. 
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Theorem 5.2 can also be applied for testing the controllability nominal delay-free system (1)-(2). However, in 

this simple case the conditions may be investigated by testing a finite number of (in general) complex 

eigenvalues of ( )z,ˆẐ C σ0 , or (real) singular values of ( )z,ˆZC σ0 . In this case, the construction of a finite 

subcover is easier than that involved in Theorem 5.2 since the above number of eigenvalues/singular values is 

finite for each point in a bounded set ( )B,AC 0α instead of a finite number o functions with infinitely many 

associated point eigenvalues.                                                                                                                       
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Abstract

Using the second order Taylor expansion of a function f(z) in complex

space, a polynomial p(z) of degree 2 results. We demonstrate that the

smallest root of p(z) is a search direction that always decreases the modulus

of f(z). Using this property, a new algorithm is proposed. We prove that

the algorithm either finds a root or the estimate goes at infinity, without

creating any accumlation points. In the special case of a polynomial, the

algorithm allways finds a root. Numerical examples are also given.

Keywords. Root finding, Global convergence, Complex Numbers, Second Order

Taylor Approximation, Minimum Modulus Root
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1 Introduction

In this paper, we consider functions f(z) such that z and f(z) are complex num-

bers and f(z) has a Taylor expansion. For these functions we have the Minimum

Modulus Theorem, which means that if an holomorphic functional f(z) has no

root inside a neighbourhood of z0, then the minimum of |f(z)| is attained on

the boundary of that neighbourhood. This implies there is no ”local minimum”

of the modulus of f(z). Therefore, it makes sense to try to reduce |f(z)| iteratively.

Let use a second order Taylor expansion as follows, where λ ∈ (0, 1], Re(z) is

the real part of z and h is a number determined later:

f(λh + z) = f(z) + λf ′(z)h +
1
2
λ2f ′′(z)h2 + O(λ3) (1)

f(λh + z) = f(z) + λf ′(z)h +
1
2
λ2f ′′(z)h

2
+ O(λ3). (2)

|f(λh + z)|2 = |f(z)|2 + 2λRe(f(z)f ′(z)h) +

λ2
[
Re(f(z)f ′′(z)h2) + |f ′(z)h|2

]
+ O(λ3). (3)

Let define the following polynomial:

p(z) = f(z) + f ′(z)h +
1
2
f ′′(z)h2 (4)

Assuming f(z) 6= 0 and f ′′(z) 6= 0, let h be the smaller root of the polynomial

p(z). We will demonstrate that we can always find λ such that |f(λh + z)|2 <

|f(z)|2, using equation (3), even if f ′(z) = 0. Using this principle, the paper pro-

poses a new algorithm and it gives numerical examples and convergence analysis.
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Let briefly examine the literature. For polynomials, there are several meth-

ods that are effective [15]. For more general functions, approaches are based

on, for example: Newton related methods, Brent Method [10, 15], Homotopy-

Continuation methods [1], Partitionning methods [6, 15], Fixed point methods

[2], Tensor methods [17]. [6] is a good review of methods. These methods have

various requirements such as non nul first derivative, convexity, an initial estimate

value that is sufficiently close to a root, approximation of the second order deriva-

tive. On the other hand, as a warning, McMullen [12, 13] has shown that there

are no generally convergent purely iterative algorithms for solving polynomials of

degrees 4 or greater, with rational mapping such as Newton method.

As far as we know, no methods use the smaller root principle or an approach

related to the Minimum Modulus Theorem of complex analysis.

The paper is organized as follows: Section 2 presents the foundations of the

algorithm, that is, the properties of the smaller root of a second order polyno-

mial. Section 3 defines the proposed algorithm. Section 4 shows some numerical

experiments. Section 5 gives results about convergence for the algorithm. Section

6 concludes.

2 The Key Smaller Root Property

First, a Lemma demonstrates the properties of the smaller root. Secondly, we

explains how the Lemma is used to reduce |f(z)| using equation (3). To simplify

notations in the following Lemma and referring to equation (4), let denote c =

f(z), b = f ′(z), a = f ′′(z), r1 = h.

3
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Lemma 2.1. (Smaller Root Properties)

Let p(z) = az2 + bz + c where a and c are not null. Let r1 be a root of p(z)

with smallest modulus, and r2 the other root. We have: if b=0 then Re(c̄ a r2
1) <

0. If b 6= 0 then Re(c̄ b r1) < 0. Furthermore, if |b| is sufficiently small then

Re(c̄ b r1) < 0 and Re(c̄ a r2
1) + |br1|2 < 0.

Proof. Case b = 0:

a r2
1 = −c (5)

c̄ a r2
1 = −|c|2 (6)

Re(c̄ a r2
1) = −|c|2 < 0. (7)

Case b 6= 0:

First we have...

r1 + r2 = −b/a (8)

r1 r2 = c/a (9)

r1 6= 0, r2 6= 0 (10)

c̄ b r1 = −a r1 r2 a(r1 + r2) r1 (11)

c̄ b r1 = −|a|2 |r1|2 (r1r̄2 + |r2|2) (12)

4
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Re(c̄ b r1) = −|a|2 |r1|2 ( Re(r1r̄2) + |r2|2 ) (13)

It remains to show that...

Re(r1r̄2) + |r2|2 > 0 (14)

Since r1 is the smaller root, we have...

|r2|2 ≥ |r1| |r2| ≥ −Re(r1 r̄2) (15)

Assume that we have an equality in the equation (15), that is ...

|r2|2 = −Re(r1 r̄2) (16)

Define ...

r1 = |r1|eiθ1 (17)

r2 = |r2|eiθ2 (18)

Then, we have ...

r1 r̄2 = |r1| |r2| ei(θ1−θ2) (19)

−Re(r1 r̄2) = − |r1| |r2| cos(θ1 − θ2) = |r2|2 (20)

− cos(θ1 − θ2) =
|r2|
|r1|

(21)

5

PAQUETTE: THE SMALLER ROOT PRINCIPLE ... 515



This means |r1| = |r2|, θ1 = θ2 + π and r1 = −r2 or r1 + r2 = 0, which

contredicts equation (8) and the assumptions.

To resume, we cannot have equality in equation (15), which proves equation

(14). From equation (14) and (13), we obtain the required result (if b 6= 0):

c̄ b r1 < 0 (22)

The last part of the lemma follows from the fact that if b approaches 0, then

r1 approaches
√
−c/a, Re(c̄ a r2

1) approaches −|c|2 < 0 and |br1| approaches 0.

Note that equation (15) can only be true if we choose the smaller root. The

following theorem applies Lemma 2.1 to equation (3) and shows how |f(z)| is

reduced.

Theorem 2.2. Assume that f(z) is not null and also the second derivative is

not null without consideration of the first derivative, then the smaller root of the

second order Taylor approximation is a direction that can always reduce |f(z)|

using equation (3).

Proof. Let h be the smaller root of p(z) in equation (4). Using Lemma 1.2, with

c = f(z), b = f ′(z), a = 1
2 f ′′(z), we obtain the following. In the case f ′(z) 6= 0,

the dominant term involving λ is negative as Re(f̄(z) f ′(z) h) < 0. In the case

f ′(z) = 0, the dominant term is negative also as Re(f̄(z) f ′′(z) h2) < 0. Therefore,

in both cases, ∃λ ∈ (0, 1] such that |f(λh + z)|2 < |f(z)|2.

3 The Smaller Root Algorithm

Let m be arbitrary small positive number (the floating point precision of the ma-

chine). This algorithm uses zk to represent the current estimate of a root. The

6
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algorithm assumes that |f ′′(zk)| > m . Theorem 2.2 garanties that |f(zk)| can be

reduced.

The Smaller Root Algorithm

1. Choose an arbitrary number z0, k=0

2. Define p(z) using the current estimate zk in equation (4) and compute the

smaller root hk

3. Do a line search on λ ∈ (0, 1] that minimizes |f(zk + λhk)|2. Denote λk the

optimal value of λ. Set zk+1 = zk + λk hk.

4. Set k to k+1. If |f(zk)| is sufficiently small, stop. Otherwise, goto 2.

4 Numerical Experiments

The following paragraphs describes a few numerical experiments. The image in

figure1 shows a convergence map for a complex polynomial with 7 roots. A point

in the image is used as the initial value of z0. The color of the point corresponds to

the color of the root to which the algorithm converges (a randomly selected color).

In Hubbard [8], it is shown that such polynomials has several initial conditions

which fail to converge to a solution with the Newton method (convergence maps

are fractal in nature). With our method, there is no such failures (convergence

map are filled images).

The next example is the following equation where p(z) and q(z) are polynomial

of degree 4:

f(z) = p(z) + sin(q(z)) (23)

7
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Figure 1: Convergence map for a typical polynomial: 7 roots

The values of the polynomials are (r: real part, i: imaginary part):

rp = {0.1, 0.2, 0.3, 0.4, 0.5} (24)

ip = {0.5, 0.4, 0.3, 0.2, 0.1} (25)

rq = {0.3, 0.2, 0.1, 0.5, 0.4} (26)

iq = {0.4, 0.5, 0.1, 0.2, 0.3} (27)

The following table shows some results with different initial points.

Initial Point Iterations Error

(0.1,0.1) 12 0.0000008

(1.3,-0.5) 11 0.0000002

Note that we have used a simple binary search, in these experiments.

8
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5 Convergence Analysis of the Algorithm

The proof of convergence of the proposed algorithm is based on continuity ar-

guments and we prove that the algorithm cannot create an accumulation point

which is not a root. This leads to convergence Corollaries.

Lemma 5.1. In the algorithm, we assume that |f ′′(z)| > m > 0, f(z) has a Taylor

expansion and the line search in the algorithm is exact (see Brent method in [15]).

Also, assume that the algorithm produces an accumulation point u∗. Then, z∗ is

a root of f(z).

Proof. We proceed by contradiction. Assume z∗ is not a root of f(z), that is

f(z∗) 6= 0.

Since u∗ is an accumulation point, there is a subsequence of estimate u used

in the algorithm that converges to u∗. This subsequence has necessarely another

subsequence of estimates u for which the computation of the smaller root h in the

algorithm uses the same sign. This subsequence is denoted as follows:

zj , j = 0, ...,∞ (28)

First observe that, since the sequence zj use the same sign, the smaller roots

hj associated to zj are obtained by a continuous expression with respect to u.

This means there exists a number h∗ such that

lim
j→∞

hj = h∗ (29)

Let define polynomials as follows:

pj(z) = f(uj) + f ′(uj) h + f ′′(uj) h2, j = 1, ...,∞ (30)

9
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p∗(z) = f(u∗) + f ′(u∗) h + f ′′(u∗) h2 (31)

Since the coefficients of pj(z) and of p∗(z) are continuous function of u, we

have that hj is a smaller root of pj(z) and h∗ is a smaller root of p∗(z). This

implies h∗ can be used to reduce |f(u∗)| with step 3 of the algorithm. That is,

there exists λ∗ ∈ (0, 1] and w∗ = z∗ + λ∗ h∗ such that |f(w∗)| < |f(z∗)|.

Define d as follows: d = |f(z∗)−|f(z∗+w∗h∗)| > 0. Next, define the function

e(α) as follows:

e(α) = e(z, h, λ) = f(z + λ h), where α is the vector (z, h, λ) (32)

The function e(α) is differentiable with respect to z, h and λ and therefore con-

tinuous with respect to z, h and λ or α.

Also define ωj as follows, where j0 is the least positive integer such that ω∗ −
1
j0
∈ (0, 1]:

ωj = ω∗ −
1
j
, j = j0, ...,∞ (33)

Note that ...

lim
j→∞

ωj = ω∗ (34)

10
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Now, define αj , j = 1, ...,∞ and β as follows:

αj = (zj , hj , ωj) (35)

β = (z∗, h∗, ω∗) (36)

Since e(α) is continuous, we have:

lim
j→∞

αj = β (37)

lim
j→∞

e(αj) = e(β) (38)

lim
j→∞

|e(αj)| = |e(β)| = |f(z∗ + w∗h∗)| < |f(z∗)| (39)

Therefore, ∃N such that ∀j > N we have:

| |e(αj)| − |e(β)| | < d/2 (40)

That means ...

11
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|e(αj)| < |e(β)|+ d/2 = |f(z∗ + w∗h∗)|+
|f(z∗)| − |f(z∗ + w∗h∗)|

2
=

|f(z∗)|+ |f(z∗ + w∗h∗)|
2

< |f(z∗)| (41)

The last equation (41) is a contradiction for the following reason: first, we

have |f(zj)| > |f(zj+1)| > |f(zj+2)| > ... > |f(z∗)| and we have found ωj ∈ (0, 1)

for which e(αj) = |f(zj + ωjhj)| < |f(z∗)|, which contredicts the fact that the

line search (on λ in the algorithm) finds the minimum of |f(zj +λhj)|, that is the

line search is disfunctional.

We conclude that if there is an accumulation point, then it must be a root.

Theorem 5.2. (Convergence of the Smaller Root Algorithm)

Assume |f ′′(zk)| > m in the algorithm. The algorithm converges to a root, or

|zk| goes at infinity, allways decreasing |f(zk)| without creating an accumulation

point.

Proof. If the algorithm creates an accumulation point, from Lemma 5.1 it must

converge to a root. Otherwise, |zk| must go at infinity without creating an ac-

cumulation point. Theorem 2.2 demonstrates that |f(zk)| is allways decreased

.

Corollary 5.3. ( The case of a polynomial) Assume f(z) is a non constant

polynomial and |f ′′(zk)| > m in the algorithm. Then, the algorithm allways finds

a root.

12
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Proof. As |z| grows to infinity, |f(z)| goes to infinity since the higher order term

eventually dominates. Also, we have seen that for all k in the algorithm, we have

|f(zk)| < |f(z0)|. This means |zk| cannot go at infinity (since |f(zk)| is bounded

by |f(z0)|). From Theorem 5.2, we conclude that it must converge to a solution.

6 Concluding remarks

With one equation, a new algorithm was presented for root finding of a func-

tion. This algorithm requires the second order derivative to be significantly non

nul throughout the algorithm. Some numerical experiments where given together

with convergence results: the algorithm always reduces the modulus of the func-

tion and, if it creates an accumulation point, then a solution is found. Note that

the function ez has no root which means that finding a root might be impossible.

However, in the case of a polynomial, the algorithm always finds a root.

As it was presented, the algorithm requires the second order derivative to be

non null, to simplify proofing. A more general algorithm would requires the first

or second order derivative to be non null.

Obviously, there are many unanswered questions yet to be addressed: rate

of convergence, handling of singularities, enumeration of roots when real roots

are needed, etc. Most importantly, is this approach applicable to a system of

equations?
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In the classical literature of matrix pencils theory, the dual pencils sF −G
and F − ŝG are identified by the homogeneous matrix pencil sF − ŝG, where
s, ŝ are indeterminates. In the present paper, we discuss and we provide a char-
acterization of the nonnegativity (or positivity) of a given homogeneous pencil.
An algorithmic approach for the analytic determination of all the nonnegative
(or positive) homogeneous pencils into a relevant set of indeterminates s, ŝ is
provided. This new approach can be easily transferred into a standard compu-
tational routine by using simple Matlab m-files. Some numerical examples are
also concluded.
Keywords: Matrix Pencil Theory; Nonnegativity (Positivity); Algorithmic Ap-
proach
AMS (classification): 15A22; 65F30; 15A48

1 1. Introduction

Linear descriptor systems are very common in many practical situations in na-
ture like, for instance, transmission problems, communications [4], population
growth models (see for instance the famous Leslie model [12]) and other bio-
logical systems or economical and actuarial dynamic models, see for instance
[1]-[5], [9]-[11], [14]-[16], [18] etc. Those systems may be continuous, discrete,
distributed, and internal (i.e. in the state) or external (i.e. in the input or/and
output).

Thus, the study of problems and structural properties of regular/singular and
extended state space theory may be reduced to the study of linear descriptor
differential (or difference) equations

Fẋ(t) = Gx(t) and Fx(t) = Gẋ(t)

1
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(or Fxk+1 = Gxk and Fxk = Gxk+1). (1)

where x ∈ Rn is the state vector, and F, G ∈ Rm×n (or F, G ∈ Rn×n ) are
real rectangular (or square with det F = 0) matrices. In those cases, the matrix
pencil theory becomes a key tool. Furthermore, to entirely cover the needs, the
matrix pencil theory has to be general enough with a geometric, a dynamic, a
topological, an invariant and a computational dimension.

Now, let (F, G) ∈ Rm×n × Rm×n and (s, ŝ) be a pair of indeterminates.
The polynomial matrices sF − G or F − ŝG (s, ŝ ∈ R) can be defined by the
homogeneous matrix pencil

L (s, ŝ) ∆= sF − ŝG (2)

(or equivalently by a pair (F,−G)), since the existence of the important notion of
duality, the so-called elementary divisor type duality or integrator-differentiator
type duality, has already been demonstrated, see [7] and [8]. Thus,sF −G and
F − ŝG are related by the special type of bilinear transformation: s → 1

ŝ which
clearly transforms the points 0,∞, a 6= 0 of the compactified real plain (R∪{∞})
(or of the Riemann sphere) to the points ∞, 0, 1

a , relatively.
This paper is devoted to the study of the nonnegativity (or positivity) prop-

erty of the pencil (2), which is derived by the singular (or regular) linear de-
scriptor systems subject to constant, in general, rectangular coefficient matrices.
We would like to stress out that this work follows closely the thoughts of Uhlig
for definite and semi-definite matrices in a real symmetric matrix pencil, see
[17]. Thus, similar results to [18] are finally derived, using still elementary geo-
metric framework. Although, in our case, we have to underline that relevant
matricesF,G ∈ Rm×n have not any particular algebraic structure.

The paper is organized as follows. A notation section is considered at the
end of this introductory section. Section 2 is devoted to the main results of the
paper. Thus, an extensive discussion of the nonnegativity (or positivity) of the
homogenous matrix pencils of systems (1) is considered. The results are new
with some interest, since we obtain a characterization when a homogeneous sys-
tem is nonnegative (or positive). Finally, section 3 provides an algorithm and
discusses several examples.

Definition 1 The homogeneous matrix pencil, see [6]

L (s, ŝ) ∈ Lm,n (s, ŝ) ∆=
{
sF − ŝG : F, G ∈ Rm×nand s, ŝ ∈ R}

,

with F = [fij ] i=1,2,...,m
j=1,2,...,n

∈ Rm×n, G = [gij ] i=1,2,...,m
j=1,2,...,n

∈ Rm×n and s, ŝ ∈ R is

called nonnegative (or positive) (n-pencil or p-pencil) if there exists

Ω =
{
(s, ŝ) : sF − ŝG ∈ Lm,n (s, ŝ)

} ⊆ R2 such as ∀ (s, ŝ) ∈ Ω,

Lij (s, ŝ) = fijs− gij ŝ ≥ (>) 0 (3)

for every i = 1, 2, . . . , m and j = 1, 2, . . . , n.

2
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Definition 2 Lm,n (s, ŝ) ∆= {sF − ŝG : F, G ∈ Rm×nands, ŝ ∈ R} is called
nonnegative (or positive) set of homogeneous pencils if for every pair (s, ŝ) ∈ Ω,
L (s, ŝ) ≥ (> O), where O is the zero matrix.

2 Main results

In this section, the main results concerning the investigation of the nonnegativity
(or positivity) of homogeneous matrix pencils are presented and fully discussed.
The next Remark is important; since four different systems of inequalities derive
which provide us with a deeper understanding of nonnegativity (or positivity).

Firstly, we denote the element (i, j) as the (i− 1)n + j -element of the new
system of equations. Consequently,

fij
∆= f(i−1)n+j ,

thus f11
∆= f1, f12

∆= f2, . . ., fmn
∆= f(m−1)n+n. Similarly for the g. Thus, we

obtain the system of inequalities

frs− gr ŝ ≥ 0, for r = 1, 2, . . . , (m− 1) n + n (4)

Remark 1 System 1 might be analyzed to the following (A) - (D) systems
of inequalities:

A) frs− gr ŝ ≥ (>) 0 with fr ≥ 0 and gr ≥ 0, r = 1, 2, . . . , k.

B) frs− gr ŝ ≥ (>) 0 with fr ≥ 0 and gr ≤ 0, r = k + 1, k + 2, . . . , ρ.

C) frs− gr ŝ ≥ (>) 0 with fr ≤ 0 and gr ≥ 0, r = ρ + 1, ρ + 2, . . . , τ.

D) frs− gr ŝ ≥ (>) 0 with fr ≤ 0 and gr ≤ 0, r = τ + 1, τ + 2, . . . ,mn.

The Remark above is simple and rather straightforward when someone con-
siders the notation. Moreover, without lost of generality, we can assume that
the first k-equations follow (A), the second ρ−k-equations follow (B), the third
τ − ρ-equations follow (C) and the last (m− 1)n + n− τ -equations follow (D).

In addition, before we go further with the statement and the proof of Theo-
rem 1, it should be stressed out that the case when gr and fr are simultaneously
zero is not considered, since it fulfils our requirement of nonnegativity. Note
that the following results are also true for positivity if the equality ”=” into our
results is excluded.

Definition 3 Denote with Ω the set where the inequality frs−gr ŝ ≥ 0 holds.

Theorem 1 If we consider that the homogeneous matrix pencil, sF − ŝG is
nonnegative, then the intersection ΩA ∩ ΩB ∩ ΩC ∩ ΩD = ∅.

3
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Figure 1: (A) system of inequalities holds. (B) system of inequalities holds.

Proof. For (A)-(D), consider the equality frs− gr ŝ = 0, then we obtain

ŝ =
{ fr

gr
s, if gr 6= 0

0, if fr = 0
and s =

{ gr

fr
ŝ, if fr 6= 0

0, if gr = 0

• For (A)

Denote that a1 = min
r=1,2,...,k

{fr/gr} and a2 = max
r=1,2,...,k

{fr/gr}, where fr, gr ≥ 0

for r = 1, 2, . . . , mn. (Note that a2 = +∞ and ŝ = 0 for gr = 0.) Hence, the set
, where the nonnegativity exists, is sketched in figure 1 (left part).

Thus, ΩA = {(s, ŝ) : ifs ≥ 0 then ŝ ≤ a1s and if s ≤ 0 then ŝ ≤ a2s}.
• For (B)

Denote that β1 = min
r=k+1,k+2,...,ρ

{fr/gr} and β2 = max
r=k+1,k+2,...,ρ

{fr/gr} where

fr ≥ 0 and gr ≤ 0 for r = 1, 2, . . . , mn. (Note that β1 = −∞, and ŝ = 0 when
gr = 0.) Hence, the set ΩB , where the nonnegativity exists, is sketched also in
figure 1 (right part).

Thus, ΩB = {(s, ŝ) : if s ≥ 0 then ŝ ≥ β2s and if s ≤ 0 then ŝ ≥ β1s}.
• For (C)

Denote that γ1 = min
r=ρ+1,ρ+2,...,τ

{fr/gr} and γ2 = max
r=ρ+1,ρ+2,...,τ

{fr/gr} where

fr ≤ 0 and gr ≥ 0 for r = 1, 2, . . . , mn. (Note that γ1 = −∞ and ŝ = 0, when
gr = 0.) Hence, the set ΩC where the nonnegativity exists is sketched in figure
2 (left part).

Thus, ΩC = {(s, ŝ) : if s ≥ 0 then ŝ ≤ γ1s and if s ≤ 0 then ŝ ≤ γ2s}.
• For (D)

Denote that δ1 = min
r=τ+1,τ+2,...,(m−1)n+n

{fr/gr} and

δ2 = max
r=τ+1,τ+2,...,(m−1)n+n

{fr/gr}, where fr, gr ≥ 0 for r = 1, 2, . . . ,mn. (Note

4
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Figure 2: (C) system of inequalities holds. (D) system of inequalities holds.

that δ2 = +∞ and ŝ = 0 when gr = 0.) Hence, the set ΩD, where the nonneg-
ativity exists, is sketched also in figure 2 (right part).

Thus, ΩD = {(s, ŝ) : if s ≥ 0 then ŝ ≥ δ2s and ifs ≤ 0 then ŝ ≥ δ1s}.
Consequently, it is profound that ΩA ∩ ΩB ∩ ΩC ∩ ΩD = ∅.¤

Corollary 1 If there exists a set Ω for indeterminates s, ŝ ∈ R where the
homogeneous matrix pencil sF − ŝG is nonnegative (or positive), then system
(1) is not analyzed to (A) - (D) sub-systems of inequalities, simultaneously.
Proof. It is a straightforward result of Theorem 1 and Definition 1.¤

On the other hand, we can consider the results of the following Corollary
which describes all the cases of the existence of nonnegativity or positivity.

Corollary 2 There exists a set Ω for indeterminates s, ŝ ∈ R such as the
homogeneous matrix pencil sF − ŝG is nonnegative (or positive), when sys-
tem (1) is analyzed to one of the following possible combinations of systems of
inequalities.

(1) ABC, (2) ABD, (3) ACD, (4) BCD, (5) AB, (6) AC, (7) AD (8) BC,

(9) BD, (10) CD, (11) A, (12) B, (13) C and (14) D.

In the next lines, we examine each case separately.

¦ (1) System (1) is analyzed to (A), (B) and (C) simultaneously.

Thus, we consider that system (A) has k inequalities, system (B) has ρ− k
inequalities, and system (C) has mn− ρ inequalities.
There exists solution if β2 < γ1, see figure 3 (left part).

Then the solution is in the set

ΩABC = {(s, ŝ) : if s ≥ 0 and β2s ≤ ŝ ≤ γ1s} .

5
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Figure 3: ABC system of inequalities holds. ABD system of inequalities holds.

Figure 4: ACD system of inequalities holds. BCD system of inequalities holds.

¦ (2) System (1) is analyzed to (A), (B) and (D) simultaneously.

Thus, we consider that system (A) has k inequalities, system (B) has ρ− k
inequalities, and system (D) has mn− ρ inequalities.
There exists solution if δ2 < α1, see figure 3 (right part).
Then the solution is in the set

ΩABD = {(s, ŝ) : if s ≥ 0 and δ2s ≤ ŝ ≤ α1s} .

¦ (3) System (1) is analyzed to (A), (C) and (D) simultaneously.

Thus, we consider that system (A) has k inequalities, system (C) has τ − k
inequalities, and system (D) has mn − τ inequalities. There exists solution if
α2 < δ1, see figure 4 (left part).

Then the solution is in the set

ΩACD = {(s, ŝ) : if s ≥ 0 and δ1s ≤ ŝ ≤ α2s} .

¦ (4) System (1) is analyzed to (B), (C) and (D) simultaneously.

6
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Figure 5: AB system of inequalities holds. AC system of inequalities holds.

Thus, we consider that system (B) has ρ inequalities, system (C) has τ − ρ
inequalities, and system (D) has mn− τ inequalities.
There exists solution if γ2 < β1, see figure 4 (right part).
Then the solution is in the set

ΩBCD = {(s, ŝ) : if s ≤ 0 and β1s ≤ ŝ ≤ γ2s} .

¦ (5) System (1) is analyzed to (A) and (B) simultaneously.

Thus, we consider that system (A) has k inequalities, and system (B) has
mn− k inequalities. There exists solution, see figure 5 (left part).

Then the solution is in the set

ΩAB = {(s, ŝ) : if s ≥ 0 and β2s ≤ ŝ ≤ a1s} .

¦ (6) System (1) is analyzed to (A) and (C) simultaneously.

Thus, we consider that system (A) has k inequalities, and system (C) has
mn− k inequalities.There exists solution, see figure 5 (right part).
Then the solution is in the set

ΩAC =
{

(s, ŝ) : if ŝ ≤ 0 and
ŝ

a2
≤ s ≤ ŝ

γ1

}
.

¦ (7) System (1) is analyzed to (A) and (D) simultaneously.

Thus, we consider that system (A) has k inequalities, and system (D) has
mn− k inequalities. There exists solution if δ2 < α1, and the solution is in the
set (see figure 3 right part)

ΩAD = {(s, ŝ) : if s ≥ 0 and δ2s ≤ ŝ ≤ α1s} ≡ ΩABD.

¦ (8) System (1) is analyzed to (B) and (C) simultaneously.
Thus, we consider that system (B) has ρ inequalities, and system (C) has mn−ρ

7
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Figure 6: BD system of inequalities holds. CD system of inequalities holds.

inequalities. There exists solution if , and the solution is in the set (see figure 3
left part)

ΩBC = {(s, ŝ) : if s ≥ 0 and β2s ≤ ŝ ≤ γ1s} ≡ ΩABC .

¦ (9) System (1) is analyzed to (B) and (D) simultaneously.

Thus, we consider that system (B) has ρ inequalities, and system (D) has
mn− ρ inequalities. There exists solution, see figure 6 (left part).

Then the solution is in the set

ΩBD =
{

(s, ŝ) : if ŝ ≥ 0 and
ŝ

β1
≤ s ≤ ŝ

δ2

}
.

¦ (10) System (1) is analyzed to (C) and (D) simultaneously.

Thus, we consider that subsystem (C) has τ inequalities, and subsystem (D)
has mn − τ inequalities. There exists solution, see figure 6 (right part). Then
the solution is in the set

ΩCD = {(s, ŝ) : ifs ≤ 0andδ1s ≤ ŝ ≤ γ2s} .

Finally, for the other for cases, see ΩA, ΩB , ΩC and ΩD, respectively.

3 The algorithm for checking the nonnegativity
of homogeneous matrix pencil

In this section, we summarize the results of section 2 into the following algorithm
which is very useful in practice.

Algorithm

8
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Step 1: Inputs: Give the singular system, i.e. matrices F, G.

Step 2: Considering the elements of matrices from step 1, we denote the
number of systems of inequalities:

ABC −− → Go to Step 3, ABD −− → Go to Step 4,
ACD −− → Go to Step 5, BCD −− → Go to Step 6,

AB −− → Go to Step 7, AC −− → Go to Step 8,
AD −− → Go to Step 9, BC −− → Go to Step 10,
BD −− → Go to Step 11, CD −− → Go to Step 12,

A−− → Go to Step 13, B −− → Go to Step 14,
C −− → Go to Step 15, D −− → Go to Step 16.

ABCD −− → Go to Step 17

Step 3: (ABC) If condition β2 ≤ γ1 is satisfied, then the homogeneous ma-
trix pencil sF − ŝG is nonnegative (or positive) for every (s, ŝ) ∈ ΩABC , else if
go to step 18.

Step 4: (ABD) If condition δ2 ≤ α1 is satisfied, then the homogeneous
matrix pencil sF − ŝG is nonnegative (or positive) for every (s, ŝ) ∈ ΩABD, else
if go to step 18.

Step 5: (ACD) If condition α2 ≤ δ1 is satisfied, then the homogeneous
matrix pencil sF − ŝG is nonnegative (or positive) for every (s, ŝ) ∈ ΩACD, else
go to step 18.

Step 6: (BCD) If condition γ2 ≤ β1 is satisfied, then the homogeneous
matrix pencil sF − ŝG is nonnegative (or positive) for every (s, ŝ) ∈ ΩBCD, else
go to step 18.

Step 7: (AB) The homogeneous matrix pencil sF − ŝG is nonnegative (or
positive) for every (s, ŝ) ∈ ΩAB , else go to step 18.

Step 8: (AC) The homogeneous matrix pencil sF − ŝG is nonnegative (or
positive) for every (s, ŝ) ∈ ΩAC , else go to step 18.

Step 9: (AD) If condition δ2 ≤ α1 is satisfied, then the homogeneous matrix
pencil sF − ŝG is nonnegative (or positive) for every (s, ŝ) ∈ ΩAD, else go to
step 18.

Step 10: (BC) If condition β2 ≤ γ1 is satisfied, then the homogeneous ma-
trix pencil sF − ŝG is nonnegative (or positive) for every (s, ŝ) ∈ ΩBC , else go
to step 18.

Step 11: (BD) The homogeneous matrix pencil sF − ŝG is nonnegative (or
positive) for every (s, ŝ) ∈ ΩBD, else go to step 18.
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Step 12: (CD) The homogeneous matrix pencil sF − ŝG is nonnegative (or
positive) for every (s, ŝ) ∈ ΩCD, else go to step 18.

Step 13: (A) The homogeneous matrix pencil sF − ŝG is nonnegative (or
positive) for every (s, ŝ) ∈ ΩA, else go to step 18.

Step 14: (B) The homogeneous matrix pencil sF − ŝG is nonnegative (or
positive) for every (s, ŝ) ∈ ΩB , else go to step 18.

Step 15: (C) The homogeneous matrix pencil sF − ŝG is nonnegative (or
positive) for every (s, ŝ) ∈ ΩC , else go to step 18.

Step 16: (D) The homogeneous matrix pencil sF − ŝG is nonnegative (or
positive) for every (s, ŝ) ∈ ΩD, else go to step 18.

Step 17: (ABCD) The homogeneous matrix pencil sF − ŝG is not nonneg-
ative (or positive) for every (s, ŝ) ∈ R× R.

Step 18: The homogeneous matrix pencil sF − ŝG is not nonnegative (or
positive) for every (s, ŝ) ∈ R× R.

End Algorithm

In order to understand better the results of that paper, some numerical ex-
amples are considered.

Example 3.1 a) Consider the pencil (F,G), where

F =




1 −2 1
1 1 −1
1 −2 1


 and G =



−1 1 1
1 −1 1
1 1 1


 .

It is profound that det F = 0, and the system of inequality ABC is derived.
Considering the results of section 2 and Algorithm above, we should check out
whether or not the condition β2 ≤ γ1 is true. Analytically,

β2 = max
fr≥0,gr≤0

{fr/gr} = max
{

1
−1

,
1
−1

}
= −1

and

γ1 = min
fr≤0,gr≥0

{fr/gr} = min
{−1

1
,
−2
1

,
−2
1

}
= −2

.
Thus, since β2 > γ1 the homogeneous matrix pencil L (s, ŝ) = sF − ŝG can

not contain a nonnegative (or positive) matrix.
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b) Consider now a slightly different to previous pencil (F, G), where

F =




1 −1 1
1 1 −1
1 −1 1


 and G =



−1 1 1
1 −1 1
1 1 1


 .

It is profound that also detF = 0, and the system of inequality ABC is derived.
Considering the results of section 2 and Algorithm above, we obtain

β2 = max
fr≥0,gr≤0

{fr/gr} = −1

and

γ1 = min
fr≤0,gr≥0

{fr/gr} = min
{−1

1
,
−1
1

,
−1
1

}
= −1.

Thus, the homogeneous matrix pencil L (s, ŝ) = sF − ŝG can contain a
nonnegative for every s = −ŝ, i.e.

s (F + G) = s(




1 −1 1
1 1 −1
1 −1 1


+



−1 1 1
1 −1 1
1 1 1


) = s




0 0 2
2 0 0
2 0 2


 ∈ L (s, ŝ) ,

for s > 0.

c) Now, we consider the pencil (F, G), where

F =




3 −1 1
1 2 −1
3 −1 1


 and G =



−1 1 1
1 −1 1
1 1 1


 .

It is profound that det F = 0, and the system of inequality ABC is derived.
Considering the results of section 2 and Algorithm above, we obtain

β2 = max
fr≥0,gr≤0

{fr/gr} = max
{

3
−1

,
2
−1

}
= −2

and
γ1 = min

fr≤0,gr≥0
{fr/gr} = −1.

Thus, since the restriction above is true, the homogeneous matrix pencil L (s, ŝ) =
sF − ŝG is contain a nonnegative pencil for every

(s, ŝ) ∈ ΩABC = {(s, ŝ) : ifs ≥ 0and− 2s ≤ ŝ ≤ −s} ,

i.e. for the pair
(
s, ŝ = − 3

2s
)
, we have

s

(
F +

3
2
G

)
= s(




3 −1 1
1 2 −1
3 −1 1


+

3
2



−1 1 1
1 −1 1
1 1 1


) =

1
2
s




1 1 5
5 1 1
9 1 5


 ∈ L (s, ŝ) ,
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for s ≥ 0.
Moreover, it can be also positive if s > 0 (which is trivial).

d) Finally, we consider the pencil (F, G), where

F =




1 −1 1
1 1 −1
1 −1 1


 and G =



−1 1 1
1 −1 1
1 −1 1


 .

It is profound that det F = 0, and the system of inequality ABCD is derived.
Following the results of section 2, the homogeneous matrix pencil can not contain
non-negative matrix into a set of (s, ŝ).

4 Conclusions - Further Results

In this paper, we present an algorithm to characterize the nonnegativity (or pos-
itivity) of a given homogeneous pencil. Following the thoughts of Uhlig [17] and
by using still an elementary geometric framework, we obtain the desired results.
It should be pointed out that quite similar question whether a given pencil of
real symmetric matrices contains a positive definite matrix was treated by many
mathematicians, such as Hestenes and Mcshane (1935), Finsles (1937), Albert
(1938), Reid (1938), Dines (1941), Calabi (1964), Taussky (1967), Hestenes
(1968), Berman (1970), see [17] for more details. Although, we should stress
out that our matrices have not any particular algebraic structure. This new
algorithmic approach can be transferred into a standard computational routine
by using Matlab m-files. This task is one of our future plans.
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Oscillation of first-order impulsive difference equations with

continuous arguments
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Abstract

In this paper, we present some integral criteria for the oscillation of solutions to the fol-

lowing impulsive delay difference equation involving continuous arguments:











∆ρx(t) +
∑

i∈I

pi(t)x(t− τi) = 0 for t ∈ [t0,∞)\{θn}n∈N

∆x(θn) + qnx(θn) = 0 for n ∈ N,

where t0 ∈ R, ρ ∈ (0,∞), I is a bounded beginning segment of N, pi ∈ C
(

[t0,∞), [0,∞)
)

,

τi ∈ [0,∞) for all i ∈ I, {qn}n∈N ⊂ (−∞, 1), {θn}n∈N ⊂ [t0,∞) is the increasing unbounded

sequence of impulse points, ∆ρ is the forward difference operator with the step size ρ, and ∆

is the jump of the solution at the specified impulse point.

1 Introduction

This paper is concerned with the oscillatory nature of solutions of the following difference equation

with continuous arguments:











∆ρx(t) +
∑

i∈I

pi(t)x(t − τi) = 0 for t ∈ [t0,∞)\{θn}n∈N

∆x(θn) + qnx(θn) = 0 for n ∈ N,

(1)

where t0 ∈ R, ρ ∈ (0,∞), I is a bounded beginning segment of N, pi ∈ C
(

[t0,∞), [0,∞)
)

,

τi ∈ [0,∞) for all i ∈ I, {qn}n∈N ⊂ (−∞, 1) and {θn}n∈N ⊂ (t0,∞) is the increasing unbounded

sequence of impulse points. Here, ∆ρx(t) := x(t + ρ) − x(t) for t ∈ [t0,∞) and ∆x(θn) :=

x(θ+n )−x(θn) for n ∈ N, where x(θ+n ) denotes the right sided limit of x at the impulse point θn for

some n ∈ N, and the left sided limits are defined similarly. It’s a well-known fact that all solutions

of (1) are oscillatory in the absence of a subsequence {θnk
}k∈N such that {qnk

}k∈N ⊂ [1,∞). In

the sequel, for simplicity in the notation, we shall assume that the empty product is the unit.
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In recent papers [8, 9], Wei and Shen studied some oscillation and asymptotic properties of

the impulsive difference equation







∆ρx(t) + p(t)x(t− τ) = 0 for t ∈ [t0,∞)\{θn}n∈N

∆ρx(θn) + qnx(θn) = 0 for n ∈ N,
(2)

where t0, ρ, p, τ (with τ/ρ ∈ N), {qn}n∈N and {θn}n∈N are as mentioned for (1). The method in

those papers are analogues to those applied for the discrete case (for usual difference equations),

this is why the authors consider use the operator ∆ρ in their impulse condition. Different types

of impulse conditions in (1) and (2) indicate that our method employed here will be completely

different from the method in [8, 9] since our results will be more closer to those employed for

differential equations.

We wish to quote the following result from [6], which will be used in the sequel to obtain

comparison results with delay differential equations.

Theorem A ([6, Theorem 1]). Assume that ρ ∈ (0,∞), pi ∈ C([t0,∞), [0,∞)) and τi ∈ [0,∞) for

all i ∈ I, where I is a bounded beginning segment of N. Then, every solution of the nonimpulsive

delay difference equation

∆ρx(t) +
∑

i∈I

pi(t)x(t − τi) = 0 for t ∈ [t0,∞)

is oscillatory if every solution of the following delay differential equation

x′(t) +
1

ρ

∑

i∈I

min
t−2ρ≤ζ≤t−ρ

{

pi(ζ)
}

x(t− τi) = 0 for t ∈ [t0 + 2ρ,∞)

is oscillatory.

Let τmax := max{τi : i ∈ I}. By a solution of (1), we mean a function x : [t0 − τmax,∞) → R

such that x is continuous on (θn, θn+1) for all n ∈ N and satisfies (1), and that x(θ±n ) exists as

a finite constant with x(θ−n ) = x(θn) for all n ∈ N. From now on, to make the definition of the

solution consistent, we shall assume that t 6∈ {θn}n∈N implies t+ρ 6∈ {θn}n∈N and t− τi 6∈ {θn}n∈N

for all i ∈ I. Together with the impulsive delay difference equation (1), it is customary to specify

an initial condition of the form

x = ϕ on [t0 − τmax, t0 + ρ], (3)

where the initial function ϕ is a prescribed continuous real-valued function on the interval [t0 −

τmax, t0 + ρ] satisfying the consistency condition

∆ρx(t0) +
∑

i∈I

pi(t0)x(t0 − τi) = 0. (4)

By the method of steps, one can easily conclude that (1) admits a unique solution x which satisfies

the initial condition (3) and the consistency condition (4). For convenience, we denote this solution

by x = x(t, t0, ϕ). As is customary, a solution x of (1) is called nonoscillatory if it is eventually of

fixed sign, otherwise, it is called oscillatory.
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2 Main results

From now on, for convenience in the results, we shall suppose that there exist positive constants α

and βi for i ∈ I such that
∏

t−ρ≤θk<t(1−qk) ≡ α for all t ∈ [t0+ρ,∞) and
∏

t−τi≤θk<t(1−qk) ≡ βi

for all t ∈ [t0+ τi,∞) and all i ∈ I. Consider the following nonimpulsive delay difference equation:

∆ρx(t) +
∑

i∈I

ατi/ρ

βi
pi(t)x(t− τi) = 0 for t ∈ [t0,∞). (5)

As is customary, a solution of the nonimpulsive equation (5) is a function x ∈ C([t0 − τ,∞),R)

satisfying (5) on [t0,∞).

Theorem 1. If y = y(t, t0, ϕ) is a solution of (5), then x = x(t, t0, ϕ) defined by

x(t) :=
1

αt/ρ

[

∏

t0≤θk<t

(1− qk)

]

y(t) for t ∈ [t0,∞) (6)

is a solution of (1).

Proof. Let y = y(t, t0, ϕ) be the solution of (5), we shall prove that x defined by (6) satisfies (1).

It is obvious that x is continuous on each interval (θn, θn+1) for all n ∈ N. From (6), we get

∆ρy(t) =
αt/ρ+1

∏

t0≤θk<t+ρ(1− qk)
x(t+ ρ)−

αt/ρ

∏

t0≤θk<t(1− qk)
x(t)

=
αt/ρ

∏

t0≤θk<t(1 − qk)
∆ρx(t) (7)

and

y(t− τi) =
αt/ρ

ατi/ρ
∏

t0≤θk<t−τi
(1− qk)

x(t − τi)

=
βiα

t/ρ

ατi/ρ
∏

t0≤θk<t(1− qk)
x(t− τi) (8)

for all t ∈ [t0,∞) and all i ∈ I. Substituting (7) and (8) into (5) and canceling the positive term

αt/ρ/
∏

t0≤θk<t(1 − qk), we see that x defined by (6) solves the former equation in (1). On the

other hand, for all n ∈ N, we have

x(θ+n ) = lim
t→θ+

n

(

1

αt/ρ

[

∏

t0≤θk<t

(1− qk)

]

y(t)

)

=
1

αθn/ρ

[

∏

t0≤θk≤θn

(1− qk)

]

y(θn) = (1− qn)x(θn),

which shows that x satisfies the latter equation in (1) too. The proof is therefore completed.

The following result can be regarded as the converse part of Theorem 1.

Theorem 2. If x = x(t, t0, ϕ) is a solution of (1), then y = y(t, t0, ϕ) defined by

y(t) =
αt/ρ

∏

t0≤θk<t(1− qk)
x(t) for t ∈ [t0,∞) (9)

is a solution of (5).
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Proof. Let x = x(t, t0, ϕ) be a solution of (1). Since y defined by (9) is continuous on the intervals

(θn, θn+1) with y(θ−n ) = y(θn) for all n ∈ N, it follows that

y(θ+n ) = lim
t→θ+

n

(

αt/ρ

∏

t0≤θk<t(1− qk)
x(t)

)

=
αθn/ρ

∏

t0≤θk≤θn
(1− qk)

x(θ+n ) = y(θn)

for all n ∈ N, which implies that x is continuous on [t0,∞). It is not hard to see that y solves (5).

This completes the proof.

Theorem 3. Every solution of (1) oscillates if and only if every solution of (5) oscillates.

Proof. The proof follows from Theorem 1, Theorem 2 and the fact that {qn}n∈N ⊂ (−∞, 1).

Using Theorem A and Theorem 3, we can give the following oscillation result.

Theorem 4. Every solution of (1) oscillates if every solution of the following delay differential

equation

x′(t) +
∑

i∈I

ατi/ρ

ρβi
min

t−2ρ≤ζ≤t−ρ

{

pi(ζ)
}

x(t− τi) = 0 for t ∈ [t0 + 2ρ,∞)

oscillates.

As an immediate consequence of Theorem 4, we have the following corollary.

Corollary 1 (See [1, 2]). Assume that

lim inf
t→∞

∫ t

t−τmin

∑

i∈I

ατi/ρ

ρβi
min

η−2ρ≤ζ≤η−ρ

{

pi(ζ)
}

dη
1

e

or

lim sup
t→∞

∫ t

t−τmin

∑

i∈I

ατi/ρ

ρβi
min

η−2ρ≤ζ≤η−ρ

{

pi(ζ)
}

dη1,

where τmin := min{τi : i ∈ I}. Then, every solution of (1) oscillates.

We give the following example as a simple application of Theorem 4.

Example 1. Let I be a bounded beginning segment of N, ρ(0,∞), q ∈ (−∞, 1), pi ∈ (0,∞) and

τi ∈ N for all i ∈ I, and consider the following autonomous difference equation equation











∆ρx(t) +
∑

i∈I

pix(t − ρτi) = 0 for t ∈ [0,∞)\ρN

∆x(n) + qx(n) = 0 for n ∈ ρN.

(10)

Due to Theorem 4, since α = (1 − q) and βi = (1 − q)τi for all i ∈ I, the associated differential

equation with (10) is

x′(t) +
∑

i∈I

pi
ρ
x(t − ρτi) = 0 for t ∈ [2ρ,∞). (11)

From [1, Theorem 2.2.1], we learn that if

∑

i∈I

piτi
1

e
,

then every solution of (11) oscillates, which implies the same for (10).
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Abstract

The non-polynomial spline method is proposed to solve a non-linear sys-
tem of the second-order boundary value problems (BVPs). Some numerical
results are given to demostrate the validity and applicability of the presented
method. Results obtained by the method indicate the method is simple and
effective.

Keywords: Second-order boundary value problems; non-polynomial spline
method;non-linear system.

1. Introduction

We consider a non-linear system of second-order BVPs of the form [1,2,3,5,6]:

u
′′

+ a1(x)u
′
+ a2(x)u + a3(x)v

′
+ a4(x)v + H1(x, u, v) = f1(x),

v
′′

+ b1(x)v
′
+ b2(x)v + b3(x)u

′
+ b4(x)u + H2(x, u, v) = f2(x),

}

(1)

with the following boundary conditions

u(0) = u(1) = 0, v(0) = v(1) = 0 (2)

where 0 < x < 1, H1, H2 are nonlinear functions of u and v, ai(x), bi(x), f1(x),
and f2(x), are given functions, and ai(x), bi(x) are continuous, i = 1, 2, 3, 4.

The existence and approximations of the solutions to non-linear systems
of second-order BVPs have investigated by many authors[1-6]. In [1] the
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sinc-collocation method is presented for solving second-order systems. Their
method consists of reducing the solution of Eq.(1) to a set of algebric equa-
tions by expanding u(x) and v(x) as sinc functions with unknown coefficients.
New method is presented to solve Eq.(1) used in the form of series in the
reproducing kernel space in [2]. The variation iteration method is applied
for the solution with the assumption that the solutions are unique in [3].
He’s homotopy perturbation method (HPM) is proposed for the solution of
systems in [5]. A new modification of the homotopy analysis method (HAM)
is presented for solving systems of second-order BVPs in [6].

The section of this paper are organized as follows: In the next section we
describe the basic formulation of the spline function required for our subse-
quent development. In section 3 the method are used to analysis to solution
of problem (1) and (2). In section 4 some numerical result, that are illus-
trated using MATLAB 6.5, are given to clarify the method. Section 5 ends
this paper with a brief conclusion. Note that we have computed the numer-
ical results by MATLAB 6.5.

2. Spline method

We divide the interval [a, b] into n equal subintervals using the grid points

xi = a + ih, i = 0, 1, 2, ..., n,

with

a = x0, xn = b, h = (b − a)/n

where n is an arbitrary positive integer.

Let u(x) be the exact solution and ui be an approximation to u(xi) ob-
tained by the non-polynomial cubic Si(x) passing through the points (xi, ui)
and (xi+1, ui+1), we do not only require that Si(x) satisfies interpolatory
conditions at xi and xi+1, but also the continuity of first derivative at the
common nodes (xi, ui) are fulfilled. We write Si(x) in the form:

Si(x) = ai + bi(x−xi)+ cisinτ(x−xi)+ dicosτ(x−xi), i = 0, 1, ..., n− 1 (3)

where ai, bi, ci and di are constants and τ is a free parameter.

2
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A non-polynomial function S(x) of class C2[a, b] interpolates u(x) at the
grid points xi, i = 0, 1, 2, ..., n, depends on a parameter τ , and reduces to
ordinary cubic spline S(x) in [a, b] as τ → 0.

To derive expression for the coefficients of Eq. (3) in term of ui, ui+1, Mi

and Mi+1, we first define:

Si(xi) = ui, Si(xi+1) = ui+1, S
′′
(xi) = Mi, S

′′
(xi+1) = Mi+1. (4)

From algebraic manipulation, we get the following expression:

ai = ui + Mi
τ2 ,

bi = ui+1−ui

h
+ Mi+1−Mi

τθ
,

ci = Micosθ−Mi+1

τ2sinθ
,

di = −Mi

τ2 ,























(5)

where θ=τh and i = 0, 1, 2, ..., n− 1.

Using the continuity of the first derivative at (xi, ui), that is S
′
i−1(xi) =

S
′
i(xi) we obtain the following relations for i=1, ..., n − 1.

αMi+1 + 2βMi + αMi−1 = (1/h2)(ui+1 − 2ui + ui−1) (6a)

It is easy to see that v(x) is written as in the same manner

αNi+1 + 2βNi + αNi−1 = (1/h2)(vi+1 − 2vi + vi−1) (6b)

where α = (−1/θ2 + 1/θ sin θ), β = (1/θ2 − cos θ/θ sin θ) and θ = τh.

The method is fourth-order convergent if 1−2α−2β = 0 and α = 1/12 [4].

3. Analysis of the method

To illustrate the application of the Spline method developed in the pre-
vious section we consider the non-linear system of second-order BVP that is
given in Eq. (1). At the grid point (xi, ui), the proposed non-linear system
of second-order BVP in Eq. (1) may be discretized by

3
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u
′′

+ a1(xi)u
′
+ a2(xi)u + a3(xi)v

′
+ a4(xi)v + H1(x, u, v) = f1(xi),

v
′′

+ b1(xi)v
′
+ b2(xi)v + b3(xi)u

′
+ b4(xi)u + H2(x, u, v) = f2(xi).

}

(7)

Substituting Mi = u
′′

and Ni = v
′′

in equation system (5):

Mi + a1(xi)u
′
i + a2(xi)ui + a3(xi)v

′
i + a4(xi)vi + H1(xi, ui, vi) = f1(xi),

Ni + b1(xi)v
′
i + b2(xi)vi + b3(xi)u

′
i + b4(xi)ui + H2(xi, ui, vi) = f2(xi).

}

(8)

Solving Eq. (8) for Mi and Ni, we get

Mi = −a1(xi)u
′
i − a2(xi)ui − a3(xi)v

′
i − a4(xi)vi − H1(xi, ui, vi) + f1(xi)

Ni = −b1(xi)v
′
i − b2(xi)vi − b3(xi)u

′
i − b4(xi)ui − H2(xi, ui, vi) + f2(xi)

}

(9)

The following approximations for the first-order derivative of u and v in
Eq. (9) can be used

u
′
i
∼= ui+1−ui−1

2h
,

u
′
i+1

∼= 3ui+1−4ui+ui−1

2h
,

u
′
i−1

∼= −ui+1+4ui−3ui−1

2h
,

v
′
i
∼= vi+1−ui−1

2h
,

v
′
i+1

∼= 3vi+1−4vi+vi−1

2h
,

v
′
i−1

∼= −vi+1+4vi−3vi−1

2h
.











































(10)

So Eq. (9) becomes

Mi = −a1(xi)
ui+1−ui−1

2h
− a2(xi)ui − a3(xi)

vi+1−vi−1

2h−a4(xi)vi − H1(xi, ui, vi) + f1(xi)

}

(11a)

Mi+1 = −a1(xi+1)
3ui+1−4ui+ui−1

2h
− a2(xi+1)ui − a3(xi+1)

3vi+1−4vi+vi−1

2h−a4(xi+1)vi − H1(xi+1, ui+1, vi+1) + f1(xi+1)

}

(11b)

Mi−1 = −a1(xi−1)
−ui+1+4ui−3ui−1

2h
− a2(xi−1)ui − a3(xi−1)

−vi+1+4vi−3vi−1

2h−a4(xi−1)vi − H1(xi−1, ui−1, vi−1) + f1(xi−1)

}

(11c)

and
Ni = −b1(xi)

vi+1−vi−1

2h
− b2(xi)vi − b3(xi)

ui+1−ui−1

2h−b4(xi)ui − H2(xi, ui, vi) + f2(xi)

}

(12a)
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Ni+1 = −b1(xi+1)
3vi+1−4vi+vi−1

2h
− b2(xi+1)vi − b3(xi+1)

3ui+1−4ui+ui−1
2h−b4(xi+1)ui − H2(xi+1, ui+1, vi+1) + f2(xi+1)

}

(12b)

Ni−1 = −b1(xi−1)
−vi+1+4vi−3vi−1

2h
− b2(xi−1)vi − b3(xi−1)

−ui+1+4ui−3ui−1

2h−b4(xi−1)ui − H2(xi−1, ui−1, vi−1) + f2(xi−1)

}

(12c)

Substituting Eqs. (11a-11c)-(12a-12c) in Eqs. (6a) and (6b) respectively,
we find the following 2(n − 1) linear algebraic equations in the 2(n + 1) un-
knowns for i = 0, 1, ..., n.

[αa1(xi−1)
2h

− 2βa1(xi)
2h

− 3αa1(xi+1)
2h

− αa2(xi+1) − 1
h2 ]ui+1

+[−4αa1(xi−1)
2h

− 2βa2(xi) + 4αa1(xi+1)
2h

+ 2
h2 ]ui

+[3αa1(xi−1)
2h

− αa2(xi−1) + 2βa1(xi)
2h

− αa1(xi+1)
2h

− 1
h2 ]ui−1

+[αa3(xi−1)
2h

− 2βa3(xi)
2h

− 3αa3(xi+1)
2h

− αa4(xi+1)]vi+1

+[−4αa3(xi−1)
2h

− 2βa4(xi) + 4αa3(xi+1)
2h

]vi

+[3αa3(xi−1)
2h

− αa4(xi−1) + 2βa3(xi)
2h

− αa3(xi+1)
2h

]vi−1

−αH1(xi−1, ui−1, vi−1) − 2βH1(xi, ui, vi) − αH1(xi+1, ui+1, vi+1) =
−αf1(xi−1) − 2βf1(xi) − αf1(xi+1)



































































(13)

and

[αb1(xi−1)
2h

− 2βb1(xi)
2h

− 3αb1(xi+1)
2h

− αb2(xi+1) − 1
h2 ]vi+1

+[−4αb1(xi−1)
2h

− 2βb2(xi) + 4αb1(xi+1)
2h

+ 2
h2 ]vi

+[3αb1(xi−1)
2h

− αb2(xi−1) + 2βb1(xi)
2h

− αb1(xi+1)
2h

− 1
h2 ]vi−1

+[αb3(xi−1)
2h

− 2βb3(xi)
2h

− 3αb3(xi+1)
2h

− αb4(xi+1)]ui+1

+[−4αb3(xi−1)
2h

− 2βb4(xi) + 4αb3(xi+1)
2h

]ui

+[3αb3(xi−1)
2h

− αb4(xi−1) + 2βb3(xi)
2h

− αb3(xi+1)
2h

]ui−1

−αH2(xi−1, ui−1, vi−1) − 2βH2(xi, ui, vi) − αH2(xi+1, ui+1, vi+1) =
−αf2(xi−1) − 2βf2(xi) − αf2(xi+1)



































































(14)

We need four more equations. The four end conditions can be derivated
as follows:

u0 = 0, un = 0, v0 = 0, vn = 0
}

(15)

This leads to the system
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X1i = αa1(xi−1)
2h

− 2βa1(xi)
2h

− 3αa1(xi+1)
2h

− αa2(xi+1) − 1
h2 (16)

Y1i = −4αa1(xi−1)
2h

− 2βa2(xi) + 4αa1(xi+1)
2h

+ 2
h2 (17)

Z1i = 3αa1(xi−1)
2h

− αa2(xi−1) + 2βa1(xi)
2h

− αa1(xi+1)
2h

− 1
h2 (18)

X2i = αa3(xi−1)
2h

− 2βa3(xi)
2h

− 3αa3(xi+1)
2h

− αa4(xi+1) (19)

Y2i = −4αa3(xi−1)
2h

− 2βa4(xi) + 4αa3(xi+1)
2h

(20)

Z2i = 3αa3(xi−1)
2h

− αa4(xi−1) + 2βa3(xi)
2h

− αa3(xi+1)
2h

(21)

gi = a1(xi)
2h

, hi = a2(xi) , ki = a3(xi)
2h

, li = a4(xi) (22)

X1i = αgi−1 − 2βgi − 3αgi+1 − αhi+1 − 1
h2 (23)

Y1i = −4αgi−1 + 4αgi+1 − 2βhi + 2
h2 (24)

Z1i = 3αgi−1 + 2βgi − αgi+1 − αhi−1 − 1
h2 (25)

X2i = αki−1 − 2βki − 3αki+1 − αli+1 (26)

Y2i = −4αki−1 + 4αki+1 − 2βli (27)

Z2i = 3αki−1 + 2βki − αki+1 − αli−1 (28)

X3i = αb3(xi−1)
2h

− 2βb3(xi)
2h

− 3αb3(xi+1)
2h

− αb4(xi+1) (29)

Y3i = −4αb3(xi−1)
2h

− 2βb4(xi) + 4αb3(xi+1)
2h

(30)

Z3i = 3αb3(xi−1)
2h

− αb4(xi−1) + 2βb3(xi)
2h

− αb3(xi+1)
2h

(31)

X4i = αb1(xi−1)
2h

− 2βb1(xi)
2h

− 3αb1(xi+1)
2h

− αb2(xi+1) − 1
h2 (32)

Y4i = −4αb1(xi−1)
2h

− 2βb2(xi) + 4αb1(xi+1)
2h

+ 2
h2 (33)

Z4i = 3αb1(xi−1)
2h

− αb2(xi−1) + 2βb1(xi)
2h

− αb1(xi+1)
2h

− 1
h2 (34)

mi = b1(xi)
2h

, pi = b2(xi), ri = b3(xi)
2h

, si = b4(xi) (35)
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X3i = αri−1 − 2βri − 3αri+1 − αsi+1 (36)

Y3i = −4αri−1 + 4αri+1 − 2βsi (37)

Z3i = 3αri−1 + 2βri − αri+1 − αsi−1 (38)

X4i = αmi−1 − 2βmi − 3αmi+1 − αpi+1 − 1
h2 (39)

Y4i = −4αmi−1 + 4αmi+1 − 2βpi + 2
h2 (40)

Z4i = 3αmi−1 + 2βmi − αmi+1 − αpi−1 − 1
h2 (41)

The method is described in matrix form in the following way for Eqs.
(16)-(41):

A =







A1 | A2

− − −
A3 | A4






, (42)

B=





































































0
-αf1(x0) − 2βf1(x1) − αf1(x2)
-αf1(x1) − 2βf1(x2) − αf1(x3)

.

.

.
-αf1(xn−2) − 2βf1(xn−1) − αf1(xn)

0
0

-αf2(x0) − 2βf2(x1) − αf2(x2)
-αf2(x1) − 2βf2(x2) − αf2(x3)

.

.

.
-αf2(xn−2) − 2βf2(xn−1) − αf2(xn)

0





































































, (43)
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H =





































































0
-αH1(x0, u0, v0) − 2βH1(x1, u1, v1) − αH1(x2, u2, v2)
-αH1(x1, u1, v1) − 2βH1(x2, u2, v2) − αH1(x3, u3, v3)

.

.

.
-αH1(xn−2, un−2, vn−2) − 2βH1(xn−1, un−1, vn−1) − αH1(xn, un, vn)

0
0

-αH2(x0, u0, v0) − 2βH2(x1, u1, v1) − αH2(x2, u2, v2)
-αH2(x1, u1, v1) − 2βH2(x2, u2, v2) − αH2(x3, u3, v3)

.

.

.
-αH2(xn−2, un−2, vn−2) − 2βH2(xn−1, un−1, vn−1) − αH2(xn, un, vn)

0





































































, (44)

U = [u0, u1, ..., un, v0, v1, ..., vn]
′
. (45)

Here the four submatrices A1, A2, A3 and A4 are defined as

A1 =































1 0 0 0 ... 0 0
X11 Y11 Z11 0 ... 0 0
0 X12 Y12 Z12 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .
0 ... 0 0 X1(n−2) Y1(n−2) Z1(n−2)

. . . . 0 0 1































, (46)

A2 =































0 0 0 0 ... 0 0
X21 Y21 Z21 0 ... 0 0
0 X22 Y22 Z22 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .
0 ... 0 0 X2(n−2) Y2(n−2) Z2(n−2)

. . . . 0 0 0































, (47)
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A3 =































0 0 0 0 ... 0 0
X31 Y31 Z31 0 ... 0 0
0 X32 Y32 Z32 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .
0 ... 0 0 X3(n−2) Y3(n−2) Z3(n−2)

. . . . 0 0 0































, (48)

A4 =































1 0 0 0 ... 0 0
X41 Y41 Z41 0 ... 0 0
0 X42 Y42 Z42 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .
0 ... 0 0 X4(n−2) Y4(n−2) Z4(n−2)

. . . . 0 0 1































. (49)

Finally the approximate solution is obtained by solving the nonlinear
system using Levenberg-Marquardt optimization method [7] and Matlab 6.5.

AU + H = B. (50)

4. Numerical examples

In this section, to illustrate our methods we have solved two non-linear
system of second-order BVP . All computations are done by using MATLAB
6.5.

Example 1.

Consider the following equations

u
′′
(x) − xv

′
(x) + u(x) = f1(x)

v
′′
(x) + xu

′
(x) + u(x)v(x) = f2(x)

}

(51)

subject to the boundary conditions

9
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u(0) = u(1) = 0, v(0) = v(1) = 0, (52)

where 0 < x < 1, f1(x) = x3 − 2x2 + 6x and f2(x) = x2 − x.

The exact solutions of u(x) and v(x) are given as x3−x and x2−x respec-
tively. The observed maximum absolute errors of u(x) and v(x) for n = 21
(nodal points) are given in Table 1. The numerical results of u(x) and v(x)
are also illustrated in Figures 1 and 2.

Example 2. We consider the following equations

u
′′
(x) + xu(x) + xu2(x) = f1(x)

v
′′
(x) + xu

′
(x) + v(x) = f2(x)

}

(53)

subject to the boundary conditions

u(0) = u(1) = 0, v(0) = v(1) = 0, (54)

where 0 < x < 1, f1(x) = −π2sin(πx) + xsin(πx)2 + x4 − 3x3 + 2x2 and
f2(x) = πxcos(πx) + x3 − 3x2 + 8x − 6

The exact solutions of u(x) and v(x) are given as sin(πx) and x3−3x2+2x
respectively. The observed maximum absolute errors of u(x) and v(x) for dif-
ferent values of n are given in Table 2. As one clearly observes from Table
2 the magnitude of the errors using higher nodal points (n = 61) becomes
smaller than the lower ones. The numerical results of u(x) and v(x) are also
illustrated in Figures 3 and 4.

Table 1: The maximum absolute errors for u(x) and v(x) from example 1 .

n u of Abs.Error v of Abs.Error
11 1.956115354079246e-005 3.107643821670669e-004
21 4.851275161810165e-006 7.771611006257562e-005
41 1.210374921178925e-006 1.946985010448099e-005
61 5.380403360621955e-007 8.653049506895938e-006
121 1.345825387799593e-007 2.163365648760740e-006
211 4.394366903692770e-008 7.064318330030073e-007
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Table 2: The maximum absolute errors for u(x) and v(x) for different values
of nodal point from example 2 .

n u of Abs.Error v of Abs.Error
11 7.388978904299126e-005 6.124095382239458e-004
21 1.078529634501724e-005 1.593422934084987e-004
41 2.217826760020358e-006 4.012705321820853e-005
61 9.477969471483050e-007 1.787399659253230e-005
121 2.311524547327082e-007 4.471652837373386e-006
211 7.505851140621189e-008 1.460362707594864e-006

5. Conclusions

In this paper, the non-polynomial spline method is developed for the ap-
proximate solution of nonlinear system of the second-order boundary value
problems.The numerical results obtained by using the method described in
this study give acceptable results. We have concluded that numerical results
converge to the exact solution when h goes to zero.The results illustrated in
Figs. 1, 2, 3 and 4 showed that when n was increased, the maximum absolute
error decreased.Use of spline method has show that it is an applicable new
method for solving nonlinear system of BVPs.
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Figure 1: Results for u(x) in example 1 (n = 41 ). Solid line is the exact
solution u(x) = x3 − x.
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Figure 2: Results for v(x) in example 1 (n = 41). Solid line is the exact
solution v(x) = x2 − x.

14

CAGLAR et al: NON-POLYNOMIAL SPLINE METHOD ... 557



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
exact solution
spline solution

Figure 3: Results for u(x) in example 2 (n = 41). Solid line is the exact
solution u(x) = sin(πx).
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Figure 4: Results for v(x) in example 2 (n = 41). Solid line is the exact
solution v(x) = x3 − 3x2 + 2x.
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GENERALIZED HYERS–ULAM STABILITY OF
MULTI-DIMENSIONAL QUADRATIC EQUATIONS ]

HARK-MAHN KIM*, EUNYOUNG SON**, AND JIAE SON***

Abstract. For any fixed n ∈ N with n ≥ 2, we are going to investigate the
general solution of the equation

2f(
n∑

i=1

xi) +
∑

i 6=j

f(xi − xj) = 2n
n∑

i=1

f(xi),

in the class of all functions between quasi-β-normed spaces, and then we are to
prove the generalized Hyers–Ulam stability of the equation by using direct method.

1. Introduction

In 1940 and in 1964 S.M. Ulam [22] proposed the famous Ulam stability problem:
“When is it true that by changing a little the hypotheses of a theorem one can
still assert that the thesis of the theorem remains true or approximately true?” For
very general functional equations, the concept of stability for a functional equation
arises when we replace the functional equation by an inequality which acts as a
perturbation of the equation. Thus the stability question of functional equations is
that how do the solutions of the inequality differ from those of the given functional
equation? If the answer is affirmative, we would say that the equation is stable.

In 1941, the first result concerning the stability of functional equations was pre-
sented by D.H. Hyers [9]. He has answered the question of Ulam for the case where
G1 and G2 are Banach spaces. In 1978, Th.M. Rassias [18] provided a generalization
of Hyers’ Theorem for approximately linear mappings by considering Cauchy differ-
ence to be unbounded. P. Gǎvruta [8] has generalized the Th.M. Rassias theorem
by a general control function of the Cauchy difference.

Let E1 and E2 be vector spaces. A function f : E1 → E2 is called a quadratic
function if and only if f is a solution function of the quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y).(1.1)

It is well known that a function f between real vector spaces is quadratic if and
only if there exists a unique symmetric biadditive function B such that f(x) =

1991 Mathematics Subject Classification. Primary 39B72; Secondary 39B82.
Key words and phrases. Hyers–Ulam stability; multi-dimensional quadratic equations; direct

method.
] This work was supported by National Research Foundation of Korea Grant funded by the

Korean Government(NO. 2009-0070940).
† Corresponding author: H. Kim, hmkim@cnu.ac.kr.

1

571JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, N0.3, 571-580,2010,COPYRIGHT 2010 EUDOXUS PRESS, LLC



2 H. KIM, E. SON, AND E. SON

B(x, x) for all x, where the mapping B is given by B(x, y) = 1
4
(f(x+y)−f(x−y)).

See [1, 11] for the details.
The Hyers–Ulam stability of the quadratic functional equation (1.1) was first

proved by F. Skof [20] for functions f : E1 → E2, where E1 is a normed space and
E2 is a Banach space. P.W. Cholewa [4] demonstrated that Skof’s theorem is also
valid if E1 is replaced by an abelian group. S. Czerwik [5] proved the Hyers–Ulam–
Rassias stability of quadratic functional equation (1.1).

Theorem 1.1. Let E1 and E2 be a real normed space and a real Banach space,
respectively, and let r 6= 2 be a positive constant. If a function f : E1 → E2 satisfies
the inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε(‖x‖r + ‖y‖r)

for some ε > 0 and for all x, y ∈ E1, then there exists a unique quadratic function
q : E1 → E2 such that

‖f(x)− q(x)‖ ≤ 2ε

|4− 2p|‖x‖
r

for all x ∈ E1.

Furthermore, according to the theorem of C. Borelli and G.L. Forti [3], we know
the following generalization of stability theorem for quadratic functional equation.

Theorem 1.2. Let G be an abelian group and E a Banach space, let f : G → E be
a mapping with f(0) = 0 satisfying the inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Assume that one of the series

Φ(x, y) :=

{∑∞
k=0

1
22(k+1) ϕ(2kx, 2ky) < ∞∑∞

k=02
2kϕ( x

2(k+1) ,
y

2(k+1) ) < ∞ ,

then there exists a unique quadratic function Q : G → E such that

‖f(x)−Q(x)‖ ≤ Φ(x, x)

for all x ∈ G.

During the last two decades a number of papers and research monographs have
been published on various generalizations and applications of the generalized Hyers–
Ulam stability to a number of functional equations (see [6, 10, 11, 12, 13]).

Now, we consider some basic concepts concerning quasi-β-normed spaces and some
preliminary results. We fix a real number β with 0 < β ≤ 1 and let K denote either
R or C. Let X be a linear space over K. A quasi-β-norm ‖ · ‖ is a real-valued
function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ|β · ‖x‖ for all λ ∈ K and all x ∈ X.
(3) There is a constant K ≥ 1 such that ‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for all x, y ∈ X.
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The pair (X, ‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm on
X. The smallest possible K is called the modulus of concavity of ‖ · ‖. A quasi-β-
Banach space is a complete quasi-β-normed space. A quasi-β-norm ‖ · ‖ is called a
(β, p)-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-β-Banach space is called a (β, p)-Banach
space. We can refer to ([2, 19]) for the concept of quasi-normed spaces and p-
Banach spaces. Given a p-norm, the formula d(x, y) := ‖x−y‖p gives us a translation
invariant metric on X. By the Aoki–Rolewicz theorem [19] (see also [2]), each quasi-
norm is equivalent to some p-norm. In [21], J. Tabor has investigated a version of
the D.H. Hyers, Th.M. Rassias, Z. Gajda theorem (see [7, 18]) in quasi-Banach
spaces. Recently, S. Lee and C. Park [14] have obtained stability results of isometric
homomorphisms in quasi-Banach algebras and J. Rassias and H. Kim [17] have
obtained stability results of general additive equations in quasi-β-normed spaces.

Concerning the stability of quadratic equation in quasi-β-normed spaces, we in-
troduce a new quadratic functional equation

2f(
n∑

i=1

xi) +
∑

i6=j

f(xi − xj) = 2n
n∑

i=1

f(xi),(1.2)

for any fixed n ∈ N with n ≥ 2. In this paper, we are going to investigate the general
solution of the equation (1.2) and then we are to prove the generalized Hyers–Ulam
stability of the equation (1.2) for mappings from quasi-α-normed spaces to (β, p)-
Banach spaces by using direct method.

2. Generalized Hyers–Ulam Stability of Equation (1.2)

First, we present the general solution of equation (1.2) in the class of all functions
between vector spaces.

Lemma 2.1. If vector spaces X and Y are common domain and range of the func-
tions f in both the functional equations (1.1) and (1.2), then the functional equation
(1.2) is equivalent to the functional equation (1.1).

Proof. Suppose that a function f : X → Y satisfies the equation (1.2) for all
x1, · · · , xn ∈ X. If we replace x1, · · · , xn in (1.2) by 0, then we have

2f(0) + n(n− 1)f(0) = 2n2f(0).

Since n ≥ 2, f(0) = 0. Let x1 = x and xk = 0(k = 2, · · · , n). Then

2f(x) + (n− 1)f(x) + (n− 1)f(−x) = 2nf(x).

Thus f(x) = f(−x) for all x ∈ X. Letting x1 = x, x2 = y and xk = 0 for all
k = 3, · · · , n, we have

2f(x + y) + f(x− y) + (n− 2)f(x) + f(y − x) + (n− 2)f(y)

+f(−x)(n− 2) + f(−y)(n− 2) = 2nf(x) + 2nf(y)
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for all x, y ∈ X. By the evenness of f , we may conclude that

f(x + y) + f(x− y) = 2f(x) + 2f(y).

Thus f is quadratic. Conversely, if f is quadratic, then it is obvious that f satisfies
the equation (1.2). ¤

Throughout this paper, let X be a quasi-α-normed space and let Y be a (β, p)-
Banach space unless we give any specific reference. For notational convenience,
given a mapping f : X → Y , we define the difference operator Df : Xn → Y of the
equation (1.2) by

Df(x1, · · · , xn) := 2f(
n∑

i=1

xi) +
∑

i 6=j

f(xi − xj)− 2n
n∑

i=1

f(xi), n ≥ 2

for all x1, · · · , xn ∈ X, which is called the approximate remainder of the functional
equation (1.2) and acts as a perturbation of the equation. Let ϕ : Xn → R+ :=
[0,∞) be a mapping satisfying one of the conditions

(a) Φ1(x1, · · · , xn) :=
∞∑

j=0

1

n2jpβ
ϕ
(
njx1, · · · , njxn

)p

< ∞,

(b) Φ2(x1, · · · , xn) :=
∞∑

j=1

n2jpβϕ
(x1

nj
, · · · ,

xn

nj

)p

< ∞

for all x1, · · · , xn ∈ X. Now, we are ready to investigate the generalized Hyers–Ulam
stability problem for the functional equation (1.2).

Theorem 2.2. Assume that a function f : X → Y satisfies

‖Df(x1, · · · , xn)‖ ≤ ϕ(x1, · · · , xn)(2.1)

for all x1, · · · , xn ∈ X and ϕ satisfies the condition (a). Then there exists a unique
quadratic function Q : X → Y satisfying

‖f(x)− nf(0)

2(n + 1)
−Q(x)‖ ≤ 1

2βn2β

p
√

Φ1(x, · · · , x)(2.2)

for all x ∈ X, where ‖f(0)‖ ≤ ϕ(0,··· ,0)
(n−1)β(n+2)β . The function Q is given by

Q(x) = lim
k→∞

f(nkx)

n2k

for all x ∈ X.

Proof. Letting x1, · · · , xn by 0 in (2.1), we get ‖(n− 1)(n + 2)f(0)‖ ≤ ϕ(0, · · · , 0),

and so ‖f(0)‖ ≤ ϕ(0,··· ,0)
(n−1)β(n+2)β . Replacing xk by x for all k = 1, · · · , n in (2.1), we

obtain

‖2f(nx) + n(n− 1)f(0)− 2n2f(x)‖ ≤ ϕ(x, · · · , x)(2.3)
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for x ∈ X. Dividing (2.3) by 1
2βn2β , we get

‖ 1

n2
f̄(nx)− f̄(x)‖ ≤ 1

2βn2β
ϕ(x, · · · , x)(2.4)

for x ∈ X where f̄(x) = f(x)− n
2(n+1)

f(0) for x ∈ X. Thus using the formula (2.4)

and triangle inequality we prove by induction that

‖ 1

n2k
f̄(nkx)− f̄(x)‖p ≤

k−1∑
j=0

1

2pβn2(j+1)pβ
ϕ(njx, · · · , njx)p(2.5)

for x ∈ X and for all k ∈ N. Therefore we prove from the inequality (2.5) that for
any integers m, k with m > k ≥ 0

∥∥∥ 1

n2m
f̄(nmx)− 1

n2k
f̄(nkx)

∥∥∥
p

(2.6)

≤ 1

n2kpβ

m−k−1∑
j=0

1

2pβn2(j+1)pβ
ϕ(nj+kx, · · · , nj+kx)p

=
1

2pβn2pβ

m−1∑

j=k

1

2pβn2jpβ
ϕ(njx, · · · , njx)p.

Since the right hand side of (2.6) tends to zero as k →∞, the sequence
{

1
n2k f̄(nkx)

}

is Cauchy for all x ∈ X and thus converges by the completeness of Y . Define
Q : X → Y by

Q(x) = lim
k→∞

1

n2k

(
f(nkx)− n

2(n + 1)
f(0)

)

= lim
k→∞

f(nkx)

n2k
, x ∈ X.

Then, letting xi := nkxi for all i = 1, · · · , n in (2.1), respectively, dividing both sides
by n2kpβ and after then taking the limit as k → ∞ in the resulting inequality, we
have

‖DQ(x1, · · · , xn)‖p = lim
k→∞

‖ 1

n2k
Df(nkx1, · · · , nkxn)‖p

≤ lim
k→∞

1

n2kpβ
ϕ(nkx1, · · · , nkxn)p = 0,

which implies that

2Q(
n∑

i=1

xi) +
∑

i 6=j

Q(xi − xj)− 2n
n∑

i=1

Q(xi) = 0

and so the function Q is quadratic by Lemma 2.1. Taking the limit in (2.5) as
k →∞, we obtain the approximation (2.2) of f by the quadratic mapping Q.

To prove the uniqueness of the quadratic function Q subject to (2.2), let us assume
that there exists a quadratic function Q′ : X → Y which satisfies the inequality (2.2).
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Obviously, we obtain that

Q(x) = n−2kQ(nkx), Q′(x) = n−2kQ′(nkx)

for all x ∈ X. Hence it follows from (2.2) that
∥∥∥Q(x)−Q′(x)

∥∥∥
p

=
1

n2kpβ

∥∥∥Q(nkx)−Q′(nkx)
∥∥∥

p

≤ 1

n2kpβ

[∥∥∥Q(nkx)− f(nkx) +
nf(0)

2(n + 1)

∥∥∥
p

+
∥∥∥f(nkx)− nf(0)

2(n + 1)
−Q′(nkx)

∥∥∥
p]

≤ 1

n2kpβ

2

2pβn2pβ

∞∑
j=0

1

n2jpβ
ϕ(nj+kx, · · · , nj+kx)p

=
2

2pβn2pβ

∞∑

j=k

1

n2jpβ
ϕ(njx, · · · , njx)p

for all k ∈ N. Therefore letting k → ∞, one has Q(x) − Q′(x) = 0 for all x ∈ X,
completing the proof of uniqueness. ¤

Theorem 2.3. Assume that a function f : X → Y satisfies

‖Df(x1, · · · , xn)‖ ≤ ϕ(x1, · · · , xn)

for all x1, · · · , xn ∈ X and ϕ satisfies the condition (b). Then there exists a unique
quadratic function Q : X → Y satisfying

‖f(x)−Q(x)‖ ≤ 1

2βn2β
p
√

Φ2(x, · · · , x)(2.7)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

n2kf
( x

nk

)

for all x ∈ X.

Proof. Since
∑∞

j=0 n2jpβϕ(0, · · · , 0) < ∞ by assumption and so ϕ(0, · · · , 0) = 0, we

get f(0) = 0 in this case. Replacing x by x
n

in (2.3) , we obtain

‖f(x)− n2f(
x

n
)‖ ≤ 1

2β
ϕ(

x

n
, · · · ,

x

n
)(2.8)

for x ∈ X.
An induction argument together with (2.8) implies that

∥∥∥f(x)− n2kf
( x

nk

)∥∥∥
p

≤ 1

2pβn2pβ

k∑
j=1

n2jpβϕ
( x

nj
, · · · ,

x

nj

)p

(2.9)

for x ∈ X and for all k ∈ N.
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Therefore we prove from inequality (2.9) that for any integers m, k with m > k ≥ 0
∥∥∥n2mf

( x

nm

)
− n2kf

( x

nk

)∥∥∥
p

(2.10)

= n2kpβ
∥∥∥n2(m−k)f

( x

nm

)
− f

( x

nk

)∥∥∥
p

≤ n2kpβ

2pβn2pβ

m−k∑
j=1

n2jpβϕ
( x

nj+k
, · · · ,

x

nj+k

)p

=
1

2pβn2pβ

m∑

j=k+1

n2jpβϕ
( x

nj
, · · · ,

x

nj

)p

for all x ∈ X. Since the right hand side of (2.10) tends to zero as k → ∞, the se-
quence

{
n2kf( x

nk )
}

is Cauchy for all x ∈ X, and thus converges by the completeness
of Y . Define Q : X → Y by

Q(x) = lim
k→∞

n2kf
( x

nk

)

for all x ∈ X. Replacing x1, · · · , xn in (2.1) by x1

nk , · · · , xn

nk , respectively, and multi-

plying both sides by n2kpβ and after then taking the limit as k →∞ in the resulting
inequality, we have

‖DQ(x1, · · · , xn)‖p = lim
k→∞

‖n2kDf(
x1

nk
, · · · ,

xn

nk
)‖p

≤ lim
k→∞

n2kpβϕ(
x1

nk
, · · · ,

xn

nk
)p = 0,

which implies that the function Q is quadratic by Lemma 2.1. Taking the limit in
(2.9) as k →∞, we obtain the estimation (2.7) of f by the quadratic mapping Q.

To prove the uniqueness, let Q′ be another quadratic function satisfying (2.7).
Then it is easy to see that the following identities Q(x) = n2kQ( x

nk ) and Q′(x) =

n2kQ′( x
nk ) hold for all x ∈ X. Thus we have

‖Q(x)−Q′(x)‖p = n2kpβ
(∥∥∥Q

( x

nk

)
− f

( x

nk

)∥∥∥
p

+
∥∥∥f

( x

nk

)
−Q′

( x

nk

)∥∥∥
p)

≤ 2n2kpβ

2pβn2pβ

∞∑
j=1

n2jpβϕ
( x

nj+k
, · · · ,

x

nj+k

)p

≤ 1

2pβn2pβ

∞∑

j=k+1

n2jpβϕ
( x

nj
, · · · ,

x

nj

)p

for all x ∈ X and all k ∈ N. Therefore letting k → ∞, one has Q(x) − Q′(x) = 0
for all x ∈ X. ¤

As applications, we obtain the following corollaries concerning the stability of the
equation (1.2).
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Corollary 2.4. Let r be a real number with n2β 6= nrα and let H :

n−times︷ ︸︸ ︷
R+ × · · · × R+ →

R+ be a function such that H(tx1, · · · , txn) ≤ trH(x1, · · · , xn) for all t, x1, · · · , xn ∈
R+. Suppose that a function f : X → Y satisfies the inequality

‖Df(x1, · · · , xn)‖ ≤ H(‖x1‖, · · · , ‖xn‖)(2.11)

for all x1, · · · , xn ∈ X. Then there exists a unique quadratic function Q : X → Y
which satisfies the inequality

‖f(x)− nf(0)

2(n + 1)
−Q(x)‖ ≤





H(1,··· ,1)‖x‖r

2β p
√

n2pβ−nrpα
, if n2β > nrα

H(1,··· ,1)‖x‖r

2β p
√

nrpα−n2pβ
, if n2β < nrα

for all x ∈ X. The function Q is given by

Q(x) =

{
limk→∞

f(nkx)
n2k , if n2β > nrα

limk→∞ n2kf
(

x
nk

)
, if n2β < nrα

for all x ∈ X, where f(0) = 0 if r > 0.

Proof. If r > 0, we put x1, · · · , xn by 0 in (2.11) and we get f(0) = 0 according to
H(0, · · · , 0) = 0. Letting ϕ(x1, · · · , xn) := H(‖x1‖, · · · , ‖xn‖) for all x1, · · · , xn ∈ X
and then applying Theorem 2.2 and Theorem 2.3 we obtain easily the results. ¤

In the following corollary, we have a stability result of the equation (1.2) in the
sense of Th. M. Rassias [18].

Corollary 2.5. Let r, ε be real numbers such that ε ≥ 0, n2β 6= nrα. Assume that a
function f : X → Y satisfies the inequality

‖Df(x1, · · · , xn)‖ ≤ ε(‖x1‖r + · · ·+ ‖xn‖r)(2.12)

for all x1, · · · , xn ∈ X and X \ {0} if r < 0. Then there exists a unique quadratic
function Q : X → Y which satisfies the inequality

‖f(x)− nf(0)

2(n + 1)
−Q(x)‖ ≤





nε‖x‖r

2β p
√

n2pβ−nrpα
, if n2β > nrα

nε‖x‖r

2β p
√

nrpα−n2pβ
, if n2β < nrα

for all x ∈ X and X \ {0} if r < 0. The function Q is given by

Q(x) =

{
limk→∞

f(nkx)
n2k , if n2β > nrα

limk→∞ n2kf
(

x
nk

)
, if n2β < nrα

for all x ∈ X and X \ {0} if r < 0, where f(0) = 0 if r > 0.

Proof. If r > 0, we put x1, · · · , xn by 0 in (2.12) and we get f(0) = 0. Letting
ϕ(x1, · · · , xn) := ε(‖x1‖r + · · · + ‖xn‖r) for all x1, · · · , xn ∈ X and then applying
Theorem 2.2 and Theorem 2.3 we obtain easily the results. ¤

In the next corollary, we get a stability result of the equation (1.2) in the sense of
J. M. Rassias [15, 16].
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Corollary 2.6. Let ε, r1, · · · , rn be real numbers such that ε ≥ 0, n2β 6= nrα, where
r := Σn

i ri. Suppose that a function f : X → Y satisfies

‖Df(x1, · · · , xn)‖ ≤ ε‖x1‖r1‖x2‖r2 · · · ‖xn‖rn

for all x1, · · · , xn ∈ X and X \ {0} if r1, · · · , rn < 0. Then there exists a unique
quadratic function Q : X → Y which satisfies the inequality

‖f(x)− nf(0)

2(n + 1)
−Q(x)‖ ≤





ε‖x‖r

2β p
√

n2pβ−nrpα
, if n2β > nrα

ε‖x‖r

2β p
√

nrpα−n2pβ
, if n2β < nrα

for all x ∈ X and X \ {0} if r1, · · · , rn < 0, where f(0) = 0 if r1, · · · , rn > 0.

Proof. We remark that ϕ(x1, · · · , xn) := ε‖x1‖r1‖x2‖r2 · · · ‖xn‖rn satisfies the condi-
tion (a) or (b) for all x1, · · · , xn ∈ X. By Theorem 2.2 and Theorem 2.3, we get the
results. ¤

As a result, we obtain the following Hyers–Ulam stability result of the equation
(1.2).

Corollary 2.7. Assume that for some θ ≥ 0 a function f : X → Y satisfies the
inequality

‖Df(x1, · · · , xn)‖ ≤ θ

for all x1, · · · , xn ∈ X. Then there exists a unique quadratic function Q : X → Y
which satisfies the inequality

‖f(x)− n

2(n + 1)
f(0)−Q(x)‖ ≤ θ

2β p
√

n2pβ − 1

for all x ∈ X.

Proof. If we put ϕ(x1, · · · , xn) := θ, then ϕ satisfies the condition (a) and so we get
the desired result. ¤
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Abstract

In this paper, a general theorem concerning the ϕ−| C, α |k summability

factors of infinite series, has been proved.

1 Introduction

Let (ϕn) be a sequence of positive real numbers and let
∑

an be a given

infinite series with the sequence of partial sums (sn). We denote by tαn n-th

Cesàro means of order α, with α > −1, of the sequence (nan), i.e.,

tαn =
1

Aα
n

n∑

v=1

Aα−1
n−vvav, (1)

where

Aα
n = O(nα), α > −1, Aα

0 = 1 and Aα
−n = 0 for n > 0. (2)
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The series
∑

an is said to be summable | C, α |k, k ≥ 1 and α > −1, if

(see [1])
∞∑

n=1

1
n
| tαn |k< ∞, (3)

and it is said to be summable ϕ− | C, α |k, k ≥ 1 and α > −1, if (see [3])

∞∑

n=1

ϕk−1
n

nk
| tαn |k< ∞. (4)

If we take α = 1, then ϕ − | C, α |k summability reduces to ϕ − | C, 1 |k
summability.

Özarslan [2] has proved the following theorem for ϕ− | C, 1 |k summability

factors of infinite series.

Theorem A([2]). Let (ϕn) be a sequence of positive real numbers. If

λm = o(1) as m →∞, (5)
m∑

n=1

nlogn | ∆2λn | = O(1), (6)

m∑

v=1

ϕk−1
v

vk
| tv |k= O(logm) as m →∞, (7)

m∑
n=v

ϕk−1
n

nk+1
= O(

ϕk−1
v

vk
), (8)

then the series
∑

anλn is summable ϕ− | C, 1 |k, k ≥ 1.

2. The main result. The aim of this paper is to generalize Theorem A

for ϕ− | C, α |k summability. We shall prove the following theorem.

Theorem. Let (ϕn) be a sequence of positive real numbers and the condi-

tions (5)-(6) of Theorem A are satisfied. If
m∑

v=1

ϕk−1
v

vk
| tαv |k= O(logm) as m →∞, (9)

m+1∑
n=v

ϕk−1
n

nk+α
= O(

ϕk−1
v

vk+α−1
), (10)

2
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then the series
∑

anλn is summable ϕ− | C, α |k, k ≥ 1 and 0 < α ≤ 1.

It should be noted that if we take α = 1 in this theorem, then we get

Theorem A. In this case condition (9) reduces to condition (7) and condition

(10) reduces to condition (8).

Proof of the Theorem. Let Tα
n be the n-th (C, α) means of the sequence

(nanλn), with 0 < α ≤ 1. Then by (1), we have

Tα
n =

1
Aα

n

n∑

v=1

Aα−1
n−vvavλv. (11)

Applying Abel’s transformation, we get that

Tα
n =

1
Aα

n

n−1∑

v=1

∆λv

v∑

p=1

Aα−1
n−ppap +

λn

Aα
n

n∑

v=1

Aα−1
n−vvav

=
1

Aα
n

n−1∑

v=1

Aα
v ∆λvt

α
v + λntαn

= Tα
n,1 + Tα

n,2, say.

Since

| Tα
n,1 + Tα

n,2 |k≤ 2k(| Tα
n,1 |k + | Tα

n,2 |k),

to complete the proof of the Theorem, by (4)it is enough to show that

∞∑

n=1

ϕk−1
n

nk
| Tα

n,r |k< ∞, for r = 1, 2. (12)

Now, when k > 1, applying Hölder’s inequality with indices k and k’, where
1
k + 1

k′ = 1, we get that

m∑

n=2

ϕk−1
n

nk
| Tα

n,1 |k =
m∑

n=2

ϕk−1
n

nk
| 1
Aα

n

n−1∑

v=1

∆λvt
α
v Aα

v |k

= O(1)
m∑

n=2

ϕk−1
n

nk+αk
{

n−1∑

v=1

vα | ∆λv || tαv |}k

3
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= O(1)
m∑

n=2

ϕk−1
n

nk+αk
{

n−1∑

v=1

vα| ∆λv | | tαv |k ×{
n−1∑

v=1

vα | ∆λv |}k−1

= O(1)
m∑

n=2

ϕk−1
n

nk+α
{

n∑

v=1

vα| ∆λv | | tαv |k}

= O(1)
m∑

v=1

vα | ∆λv || tαv |k
m∑

n=v

ϕk−1
n

nk+α

= O(1)
m∑

v=1

v | ∆λv | ϕk−1
v

vk
| tαv |k

= O(1)
m−1∑

v=1

| ∆(v | ∆λv |) |
v∑

r=1

ϕk−1
r

rk
| tαr |k +m | ∆λm |

m∑

r=1

ϕk−1
r

rk
| tαr |k

= O(1)
m−1∑

v=1

| ∆λv | logv +
m−1∑

v=1

v | ∆2λv | logv + m | ∆λm | logm

= O(1) as m →∞,

by virtue of hypotheses of the Theorem. Finally,

m∑

n=1

ϕk−1
n

nk
| Tα

n,2 |k =
m∑

n=1

ϕk−1
n

nk
| λntαn |k

= O(1)
m∑

n=1

ϕk−1
n

nk
| tαn |k|

∞∑
v=n

∆λv |

= O(1)
∞∑

v=1

| ∆λv |
v∑

n=1

ϕk−1
n

nk
| tαn |k

= O(1)
∞∑

v=1

| ∆λv | logv

= O(1) as m →∞,

by virtue of hypotheses of the Theorem. Therefore we get that

∞∑

n=1

ϕk−1
n

nk
| Tα

n,r |k= O(1) as m →∞, for r = 1, 2.

This completes the proof of the Theorem.
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SOME EXTENSIONS OF OPTIMAL HARDY’S INEQUALITY
USING ESTIMATES OF P-LAPLACIAN

AURELIA FLOREA AND IONEL ROVENTA

Abstract. In this paper we establish some extensions of the Hardy’s type in-

equalities using estimates of p−Laplacian. We use also Landau’s inequalities.

1. Preliminaries

Recall here the classical Hardy inequality, which asserts that

(1.1)
∫ ∞
−∞

(
1

2 |x|

∫ |x|
−|x|

f (t) dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
−∞

fp (x) dx, 1 < p <∞

for each positive function f defined on (−∞,∞) .
N. Levinson in [8] proved:

Theorem 1. Let Λ be a nonnegative function, f ∈ C2 (0,∞). If Λ satisfies the
condition

(1.2) Λ (t) Λ” (t) ≥
(

1− 1
p

)
(Λ′ (t))2 , p > 1, t ∈ (0,∞)

then

(1.3)
∫ ∞

0

Λ
(

1
x

∫ x

0

f (t) dt
)
dx ≤

(
p

p− 1

)p ∫ ∞
0

Λ (f (x)) dx,

for f ≥ 0 unless Λ (f) ≡ 0.

Example 1. Different choices of Λ may lead to interesting variants of the Hardy
inequality. We present here three special cases.

(a) The function Λ(t) = tp, p > 1, satisfies (1.2). In this case, (1.3) is the classical
Hardy inequality (1.1).

(b) The function Λ(t) = t−q with q > 0, satisfies (1.2) for every p > 1. Hence
(1.3) has the form∫ ∞

0

(
1
x

∫ x

0

f (t) dt
)−q

dx ≤
(

p

p− 1

)p ∫ ∞
0

f−q (x) dx,

that is, the classical Hardy inequality still works for negative exponents.
(c) The function Λ(t) = et

a

with 0 < a ≤ 1, satisfies (1.2), and thus we have

(1.4)
∫ ∞

0

exp
(

1
x

∫ x

0

f (t) dt
)a

dx ≤
(

p

p− 1

)p ∫ ∞
0

exp (fa (x)) dx.

2000 Mathematics Subject Classification. Primary 26A51; Secondary 26D15.
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2 AURELIA FLOREA AND IONEL ROVENTA

For a = 1, f replaced by ln f and p → ∞, the inequality (1.4) becomes the
well-known Carleman-Knopp inequality

(1.5)
∫ ∞

0

exp
(

1
x

∫ x

0

ln f (t) dt
)
dx ≤ e

∫ ∞
0

f (x) dx;

(1.5) can be considered as the limiting case, for p tending to infinity, of the classical
Hardy inequality for f1/p,∫ ∞

0

(
1
x

∫ x

0

f1/p (t) dt
)p

dx ≤
(

p

p− 1

)p ∫ ∞
0

f (x) dx.

Indeed, the geometrical mean of f,

exp
(

1
x

∫ x

0

ln f (t) dt
)
,

satisfies

lim
p→∞

(
1
x

∫ x

0

f1/p (t) dt
)p

= exp
(

1
x

∫ x

0

ln f (t) dt
)

(see [5], p. 139).

Remark 1. We should easy infer that the function Λ from Theorem 1 is in fact
convex. For some interesting estimates about such functions, see [9]. Moreover, a
generalization of Nash equilibirium, an g − equilibrium has obtained in [10].

2. Main result

Our aim is to obtain a Hardy Littlewood type inequality, using some estimates
of p−Laplacian. As a consequence, we obtain a more general result than Theorem
1.

Consider the natural maximal domain for p − Laplacian in the Banach space
Lp(0,∞). This is

Dp := {f : [0,∞)→ C|f, |f ′|p−2f ′ ∈ AC[0,∞), f ∈ Lp(0,∞),∆pf ∈ Lq(0,∞)}, p > 1,

where ∆pu := div
(
|∇u(x)|p−2∇u(x)

)
and AC denotes the family of absolute con-

tinuous functions. In particular for p = 2, D2 is the standard maximal domain of
f ′′ in the Hilbert space L2(0,∞).

An interesting result for [1] take into account the following Hardy-Littlewood-
type inequality.

Theorem 2. For every f ∈ Dp, there exists a constant K > 0 such that

‖f ′‖pp ≤ K‖f‖p‖∆pf‖q, where
1
p

+
1
q

= 1, p, q > 1.

The inequality from Theorem 2 gives an estimate of the derivative f ′ in Lp(0,∞).
As in the case of Hardy-Littlewood inequality an essential first step in establishing
the inequality is showing that f ′ is indeed an element of this space. In the present
case the required information is provided by the following lemma.

Lemma 1. Let f ∈ Dp. Then f ′ ∈ Lp(0,∞); moreover, limx→∞(|f ′|p−2f ′f)(x) =
0.

Proof. See [1]. �

It is easy to infer the next two additional lemmas. For more details, see [1].
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Lemma 2. Let g : [0,∞) → C be a locally absolutely continuous function and
k > 1. Then |g|k : [0,∞) → [0,∞) is locally absolutely continuous, and (|g|k)′ =
k|g|k−2Re(gg′).

Lemma 3. Let p > 1, k > 0. If a, b > 0 satisfy ap ≤ k(a + b)bp−1, then a ≤ cb,
where 1

c is the unique zero of

f(x) := kxp−1(x+ 1)− 1, (x > 0).

Proof of Theorem 2.
Consider f ∈ Dp. By Lemma 1, f ′ ∈ Lp(0,∞) and limx→∞(|f ′|p−2f ′f)(x) = 0.

Hence using the integration by parts we infer

‖f ′‖pp = −(|f ′|p−2f ′f)(0)−
∫ ∞

0

(∆pf)f ≤ |f ′(0)|p−1|f(0)|+ ‖∆pf‖q‖f‖p.

Thus we need only to estimate the first term on the right-hand side in terms of
the second. By Lemma 2, we have, for x > 0,

|f(0)|p − |f(x)|p ≤ p
∫ x

0

|f |p−2Re(ff ′) ≤ p
∫ x

0

|f |p−1|f ′|

≤ p
(∫ x

0

|f |(p−1)q
)1/q(∫ x

0

|f ′|p
)1/p

≤ p‖f‖p−1
p ‖f ′‖p,

using Holder’s inequality and (p−1)q = p. Considering that lim infx→∞|f(x)|p = 0,
we conclude that

|f(0)|p ≤ p‖f‖p−1
p ‖f ′‖p.

Similarly, by Lemma 2,

|f ′(0)|p − |f ′(x)|p =
∫ x

0

d

dx
(||f ′|p−2f ′|q) ≤ q

∫ x

0

||f ′|p−2f ′|q−2|Re(|f ′|p−2f
′
∆pf)|

q

∫ x

0

|f ′|(p−1)(q−2)+p−1|∆pf | = q

∫ x

0

|f ′||∆pf | ≤ q‖f ′‖q‖∆pf‖q,

and as lim infx→∞|f ′(x)|p = 0 we conclude that

|f ′(0)|p ≤ q‖f ′‖p‖∆pf‖q.

Therefore

(|f ′(0)|p−1|f(0)|)p ≤ p‖f‖p−1
p ‖f ′‖pqp−1‖f ′‖p−1

p ‖∆pf‖p−1
q

≤ pqp−1‖f‖p−1
p ‖∆pf‖p−1

q (|f ′(0)|p−1|f(0)|+ ‖∆pf‖q‖f‖p).

Now apply Lemma 3 with a = |f ′(0)|p−1|f(0)|, b = ‖∆pf‖q‖f‖p and k = pqp−1,
to obtain the desired inequality with K = c+ 1.

The main result of this paper is in the following:

Theorem 3. Let Λ ∈ D2 be a nonnegative real valued function. Then there exists
some p0 > 1 such that for all p > p0 we have

(2.1)
∫ ∞

0

Λ
(

1
x

∫ x

0

f (t) dt
)
dx ≤

(
p

p− 1

)p ∫ ∞
0

Λ (f (x)) dx,

for f ≥ 0 unless Λ (f) ≡ 0.

588



4 AURELIA FLOREA AND IONEL ROVENTA

Proof. The result from Theorem 2, in the case p = 2, asserts that
∫∞
0

(f ′(t))2 dt <
∞. In fact, we should infer that inequality 1.2 is satisfied for a suitable p = K > 0.
If not, we obtain a contradiction with Theorem 2 and with the fact that f ′ ∈
L2(0,∞).

Choosing p0 = K
K−1 , the function f satisfies the condition 1.2 for all p ≥ p0. In

conclusion we should apply Theorem 1 and the proof is done. �

3. Further results

Let us denote, for x ∈ RN , by B (x) the ball
{
y ∈ RN : |y| ≤ |x|

}
and by |B (x)|

its volume. In [2], it is shown that the N -dimensional Hardy operator, HN defined
by

(HNf) (x) =
1

|B (x)|

∫
B(x)

f (y) dy, x ∈ RN

satisfies

(3.1)
∫

RN

|(HNf) (x)|p dx ≤
(

p

p− 1

)p ∫
RN

|f (x)|p dx, 1 < p <∞

the constant
(

p
p−1

)p
being again the best possible.

If we shall considered the bounded intervals, then the Hardy’s inequality can be
deduced from the following lemma (see [9]):

Lemma 4. Let 0 < b <∞ and −∞ ≤ a < c ≤ ∞. If u is a positive convex function
on (a, c) , then

(3.2)
∫ b

0

u

(
1
x

∫ x

0

h (t) dt
)
dx

x
≤
∫ b

0

u (h (x))
(

1− x

b

) dx
x

for all integrable and positive functions h : (0, b)→ (a, c) .

Corollary 1. For u(x) = xp, the result of Lemma 1 can be put in the following
form:

(3.3)
∫ α

0

(
1
x

∫ x

0

f (t) dt
)p

dx ≤
(

p

p− 1

)p ∫ α

0

fp (x)
(

1−
(x
α

)(p−1)/p
)
dx

where α = bp/p−1 and f(x) = h
(
x1−1/p

)
x−1/p. This yields an analogue of Hardy’s

inequality for functions f ∈ Lp (0, α) , where 0 < α < ∞, from which Hardy’s
inequality follows by letting α→∞.

We prove now a generalization of Hardy’s inequality considered on the bounded
intervals:

Theorem 4. Let Λ be a nonnegative function, f ∈ C2 (0,∞). If Λ satisfies the
condition

(3.4) Λ (t) Λ” (t) ≥
(

1− 1
p

)
(Λ′ (t))2 , p > 1 t ∈ (0,∞)

then

(3.5)
∫ α

0

Λ
(

1
x

∫ x

0

f (t) dt
)
dx ≤

(
p

p− 1

)p ∫ α

0

Λ (f (x))
(

1−
(x
α

)(p−1)/p
)
dx,

for α > 0, f ≥ 0 unless Λ (f) ≡ 0.
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Proof. If we denote z (t) = (Λ (t))1/p , then by (3.4) z′′ (t) ≥ 0 and thus z (t) is
convex. By Jensen’s inequality,

(3.6) z
(

1
x

∫ x

0

f (t) dt
)
≤ 1
x

∫ x

0

z (f (t)) dt.

which yields∫ α

0

zp

(
1
x

∫ x

0

(f (t)) dt
)
dx ≤

∫ α

0

(
1
x

∫ x

0

z (f (t)) dt
)p

dx.

By Hardy’s inequality (3.3) applied to z (f (x)) we have
(3.7)∫ α

0

(
1
x

∫ x

0

z (f (t)) dt
)p

dx ≤
(

p

p− 1

)p ∫ α

0

(zp (f (x)))
(

1−
(x
α

)(p−1)/p
)
dx.

Now, (3.5) follows from (3.6) and (3.7) inequalities since Λ = zp. �

Remark 2. The following Landau inequality is well known:

(3.8) ‖Λ′‖∞ ≤ 2
√
‖Λ‖∞ ‖Λ”‖∞,

where Λ is a real function twice differentiable on I, m(I) ≥ 2
√
‖Λ‖∞ / ‖Λ”‖∞, (‖Λ‖∞ =

supx∈I |Λ (x)| and m(I) is the length of I). The constant 2 in the right-hand side
of inequality (3.8) is the best possible.

Remark 3. If Λ : R→ R is a twice differentiable function on R, then (3.8) should
be replaced by

‖Λ′‖∞ ≤
√

2 ‖Λ‖∞ ‖Λ′′‖∞.

Remark 4. Let Λ : (0,∞)→ R be a twice differentiable nonnegative function such
that

(3.9) Λ (t) Λ” (t) ≥
(

1− 1
p

)
(Λ′ (t))2 ,

for some p > 1. Then

‖Λ′‖∞ ≤
√

p

p− 1

√
‖Λ‖∞ ‖Λ′′‖∞

and Landau’s inequality shows that (3.9) holds true at least for p ∈ (1, 4/3].

The last remarks allow us to refer to the min-max inequalities, especially Ky-
Fan’s type inequalities. For, interesting extensions of Ky-Fan inequalities, see [10]
and [11].

Proposition 1. If p ∈ (1, 4/3], then for every function twice differentiable defined
on (0,∞) with ‖Λ‖∞ , ‖Λ′′‖∞ <∞, we have∫ ∞

0

Λ
(

1
x

∫ x

0

f (t) dt
)
dx ≤

(
p

p− 1

)p ∫ ∞
0

Λ (f (x)) dx,

for f ≥ 0 unless Λ (f) ≡ 0.
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Theorem 5. Let Λ : R → R be a twice differentiable nonnegative function, wich
satisfies the condition (3.9) for some p > 1. Then

(3.10)
∫ ∞
−∞

Λ

(
1

2 |x|

∫ |x|
−|x|

f (t) dt

)
dx ≤

(
p

p− 1

)p ∫ ∞
−∞

Λ (f (x)) dx.

Proof. If we denote z (t) = (Λ (t))1/p , then by (3.4) z′′ (t) ≥ 0 and hence z (t) is
convex. Thus by Jensen’s inequality

(3.11) z

(
1

2 |x|

∫ |x|
−|x|

f (t) dt

)
≤ 1

2 |x|

∫ |x|
−|x|

z (f (t)) dt.

and then

(3.12)
∫ ∞
−∞

zp

(
1

2 |x|

∫ |x|
−|x|

f (t) dt

)
dx ≤

∫ ∞
−∞

(
1

2 |x|

∫ |x|
−|x|

z (f (t)) dt

)p
dx.

If we write the inequality (1.1) for z (f (x)) we have

(3.13)
∫ ∞
−∞

(
1

2 |x|

∫ |x|
−|x|

z (f (t)) dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
−∞

zp (f (x)) dx.

Now, (3.10) follows from (3.12) and (3.13) inequalities since Λ = zp. �

Proposition 2. If p ∈ (1, 2], then for every twice differentiable function Λ defined
on R with ‖Λ‖∞ , ‖Λ′′‖∞ <∞, we have

(3.14)
∫ ∞
−∞

Λ

(
1

2 |x|

∫ |x|
−|x|

f (t) dt

)
dx ≤

(
p

p− 1

)p ∫ ∞
−∞

Λ (f (x)) dx,

for f ≥ 0 defined on (−∞,∞) , unless Λ (f) ≡ 0.

Proof. We shall used Remark 3 and the theorem above. �
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[11] C. P. Niculescu and I. Rovenţa, Fan’s inequality in geodesic spaces, Appl. Math. Letters 22
(2009), 1529-1533.
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GENERALIZED DERIVATIONS AND ITS STABILITY

SHEON-YOUNG KANG AND ICK-SOON CHANG*

Abstract. In this article, we are going to examine the generalized Hyers-Ulam stabil-
ity and the superstability of generalized derivations corresponding to the Jensen type
functional equation.

1. Introduction

The concept of stability for a functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. The first study of
stability problems had been formulated by S.M. Ulam [20] during a talk in 1940 : Under
what condition does there exists a homomorphism near an approximate homomorphism ?
In the following year 1941, D.H. Hyers [8] was answered affirmatively the question of Ulam
for Banach spaces, which states that if ε ≥ 0 and f : X → Y is a mapping with X a
normed space, Y a Banach space such that

||f(x + y)− f(x)− f(y)|| ≤ ε (1.1)

for all x, y ∈ X , then there exists a unique additive mapping L : X → Y such that

||f(x)− L(x)|| ≤ ε

for all x ∈ X . This stability phenomenon is called the Hyers-Ulam stability of the additive
functional equation f(x+ y) = f(x)+ f(y). A generalized version of the theorem of Hyers
for approximately additive mappings was given by T. Aoki [1] and for approximately linear
mappings was presented by Th.M. Rassias [15] in 1978 by considering the case when the
inequality (1.1) is unbounded. Due to that fact, the additive functional equation is said
to have the generalized Hyers-Ulam stability or the Hyers-Ulam-Rassias stability property.
Since then, a great deal of work has been done by a number of authors and the problems
concerned with the generalizations and the applications of the stability to a number of
functional equations have been developed as well. The first result on the stability of the
Jensen functional equation 2f(x+y

2 ) = f(x) + f(y) was given by Z. Kominek [12].
A linear mapping d from an algebra A into itself is called a generalized derivation if

the functional equation d(xyz) = d(xy)z − xd(y)z + xd(yz) is valid for all x, y, z ∈ A.
In addition, if A has a unit element and y is a unit, then we will say that d is just an
extended derivation. In fact, a generalized derivation on an algebra A with unit is an
extended derivation. A linear mapping T from a unital normed algebra A into itself is

*Corresponding author
2000 Mathematics Subject Classification : 39B52, 39B72, 39B82, 46H99.
Keywords and phrases : Generalized derivation; Stability; Superstability; Spectrally bounded generalized

derivation. ∗This work was supported by the Korean Research Foundation(KRF) grant funded by the
Korea government(MEST) (No. 2009-0073310).
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2 S.-Y. KANG AND I.-S. CHANG

said to be spectrally bounded if there exists a constant M ≥ 0 such that r(T (x)) ≤ Mr(x)
for all x ∈ A, where r(.) stands for the spectral radius.

The main aim of the present article is to take account of the stability problem for
generalized derivations on Banach algebras corresponding to the following Jensen type
functional equation

f
(x + y

k

)
=

f(x)
k

+
f(y)

k
,

where k is an integer greater than 1. This functional equation is introduced in [2].

2. Main Results

Throughout this article, the element e of an algebra A will denote a unit. We first
establish the generalized Hyers-Ulam stability of additive generalized derivations.

Theorem 2.1. Let A be a Banach algebra. Suppose that f : A → A is a mapping with
f(0) = 0 for which there exists a function ϕ : A5 → [0,∞) such that

lim
n→∞

ϕ(0, 0, knz, w, u)
kn

= 0, (2.1)
∞∑

j=1

1
kj−1

ϕ(kjx, kjy, kjz, kjw, kju) < ∞, (2.2)

∥∥∥f
(x + y

k
+ zwu

)
− f(x)

k
− f(y)

k
− f(zw)u + zf(w)u− zf(wu)

∥∥∥ (2.3)

≤ ϕ(x, y, z, w, u)

for all x, y, z, w, u ∈ A. Then there exists a unique additive generalized derivation d : A →
A satisfying

‖f(x)− d(x)‖ ≤
∞∑

j=1

1
kj−1

ϕ(kjx, 0, 0, 0, 0) (2.4)

for all x ∈ A. Moreover,

x{f(y)− d(y)}z = 0 (2.5)

for all x, y, z ∈ A.

Proof. Substituting z = w = u = 0 in (2.3), we get
∥∥∥f

(x + y

k

)
− f(x)

k
− f(y)

k

∥∥∥ ≤ ϕ(x, y, 0, 0, 0) (2.6)

for all x, y ∈ A. Let us take y = 0 and replace x by kx in the above relation. Then it
follows that ∥∥∥f(x)− f(kx)

k

∥∥∥ ≤ ϕ(kx, 0, 0, 0, 0) (2.7)

for all x ∈ A. An induction implies that
∥∥∥f(knx)

kn
− f(x)

∥∥∥ ≤
n∑

j=1

1
kj−1

ϕ(kjx, 0, 0, 0, 0) (2.8)
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GENERALIZED DERIVATIONS AND ITS STABILITY 3

for all x ∈ A. By virtue of (2.8), one can easily check that for all integers n > m ≥ 0,
∥∥∥f(knx)

kn
− f(kmx)

km

∥∥∥ =
1

km

∥∥∥f(kn−m · kmx)
kn−m

− f(kmx)
∥∥∥

≤
n∑

j=m+1

1
kj−1

ϕ(kjx, 0, 0, 0, 0)

for all x ∈ A. It follows that the sequence {f(knx)/kn} is a Cauchy and so it is convergent,
since A is complete. Let d : A → A be a mapping defined by d(x) := limn→∞

f(knx)
kn for

all x ∈ A. Sending n →∞ in (2.8), we arrive at (2.5).
Now, we assert that d is additive. Replacing x and y by knx and kny in (2.6), respec-

tively, and then dividing both sides by kn, we have
∥∥∥ 1
kn

f
(knx + kny

k

)
− 1

k

f(knx)
kn

− 1
k

f(kny)
kn

∥∥∥ ≤ 1
kn

ϕ(knx, kny, 0, 0, 0).

Taking the limit as n →∞, we obtain

d
(x + y

k

)
=

d(x)
k

+
d(y)
k

. (2.9)

Letting y = 0 in (2.9) yields d(x/k) = d(x)/k. Thus we get d(x + y) = d(x) + d(y) for all
x, y ∈ A.

To verify the uniqueness of the additive mapping d subject to (2.4), assume that
there exists another additive mapping D : A → A satisfying the inequality (2.4). Since
D(knx) = knD(x) and d(knx) = knd(x), we see that

‖D(x)− d(x)‖ =
1
kn
‖D(knx)− d(knx)‖

≤ 1
kn

[ ‖D(knx)− f(knx)‖+ ‖f(knx)− d(knx)‖ ]

≤
∞∑

j=n+1

2
kj−1

ϕ(kjx, 0, 0, 0, 0),

which tends to zero as n →∞ for all x ∈ A. So that D = d.
Next, we are in the position to prove that

d(zwu) = d(zw)u− zd(w)u + zd(wu) (2.10)

for all z, w, u ∈ A. If we take x = y = 0 in (2.3), we have

‖f(zwu)− f(zw)u + zf(w)u− zf(wu)‖ ≤ ϕ(0, 0, z, w, u) (2.11)

for all z, w, u ∈ A. If we replace z, w and u with knz, knw and knu in (2.11), respectively,
and then divide both sides by k3n, we get

∥∥∥f(k3nzwu)
k3n

− f(k2nzw)
k2n

u + z
f(knw)

kn
u− z

f(k2nwu)
k2n

∥∥∥ ≤ 1
k3n

ϕ(0, 0, knz, knw, knu).

Letting n →∞, we obtain the desired result (2.10).
We finally need to show that the formula (2.5) holds. Let ∆ : A3 → A be a mapping

defined by
∆(z, w, u) = f(zwu)− f(zw)u + zf(w)u− zf(wu)
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4 S.-Y. KANG AND I.-S. CHANG

for all z, w, u ∈ A. Since f satisfies the inequality given in (2.11), we have by (2.1)

lim
n→∞

∆(knz, w, u)
kn

= 0

for all z, w, u ∈ A. We note that

d(zwu) = lim
n→∞

f(knzwu)
kn

= lim
n→∞

f((knz)wu)
kn

(2.12)

= lim
n→∞

f(knzw)u− knzf(w)u + knzf(wu) + ∆(knz, w, u)
kn

= lim
n→∞

{f(knzw)
kn

u− zf(w)u + zf(wu)
}

+ lim
n→∞

∆(knz, w, u)
kn

= d(zw)u− zf(w)u + zf(wu)

for all z, w, u ∈ A. Since d is additive, we can rewrite (2.12) as

knd(zw)u− knzf(w)u + knzf(wu)

= d((knz)wu) = d(z(knw)u)

= knd(zw)u− zf(knw)u + zf(knwu),

which implies that

−zf(w)u + zf(wu) = −z
f(knw)

kn
u + z

f(knwu)
kn

.

Letting n →∞, we obtain

−zf(w)u + zf(wu) = −zd(w)u + zd(wu)

for all z, w, u ∈ A. Replace u by knu in the previous part and then divide both sides by
kn to find

−zf(w)u + z
f(knwu)

kn
= −zd(w)u + zd(wu).

Passing the limit as n →∞, we get (2.5). This completes the proof of the theorem. ¤
Using the same method as in the proof of Theorem 2.1, we get the following.

Theorem 2.2. Let A be a Banach algebra and let ϕ : A5 → [0,∞) be a function such
that

lim
n→∞ knϕ

(
0, 0,

z

kn
, w, u

)
= 0, (2.13)

∞∑

j=1

k3jϕ
( x

kj−1
,

y

kj−1
,

z

kj−1
,

w

kj−1
,

u

kj−1

)
< ∞ (2.14)

for all x, y, z, w, u ∈ A. Assume that a mapping f : A → A with f(0) = 0 satisfies (2.3).
Then there exists a unique additive generalized derivation d : A → A satisfying

‖f(x)− d(x)‖ ≤
∞∑

j=1

kjϕ
( x

kj−1
, 0, 0, 0, 0

)

for all x ∈ A and (2.5) holds.

From now on, we assume that A is a unital Banach algebra. We also obtain the
superstability of additive generalized derivations.
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GENERALIZED DERIVATIONS AND ITS STABILITY 5

Corollary 2.3. Suppose that f : A → A is a mapping with f(0) = 0 for which there
exists a function ϕ : A5 → [0,∞) satisfying (2.1), (2.2) and (2.3). Then f is an additive
generalized derivation.

Proof. Letting x = z = e in (2.5) implies f = d, which completes the proof of the
corollary. ¤
Corollary 2.4. Suppose that f : A → A is a mapping with f(0) = 0 for which there
exists a function ϕ : A5 → [0,∞) satisfying (2.13), (2.14) and (2.3). Then f is an additive
generalized derivation.

Proof. The proof is similar to the proof of the corollary 2.3. ¤
By the same way as in the proof of Theorem 2.1 and Corollary 2.3, we lead to the

following.

Corollary 2.5. Suppose that f : A → A is a mapping with f(0) = 0 for which there exists
a function ϕ : A4 → [0,∞) such that

lim
n→∞

ϕ(0, 0, knz, w)
kn

= 0, (2.15)
∞∑

j=1

1
kj−1

ϕ(kjx, kjy, kjz, kjw) < ∞, (2.16)

∥∥∥f
(x + y

k
+ zw

)
− f(x)

k
− f(y)

k
− f(z)w + zf(e)w − zf(w)

∥∥∥ ≤ ϕ(x, y, z, w) (2.17)

for all x, y, z, w ∈ A. Then f is an additive extended derivation.

Employing the same fashion as in the proof of Theorem 2.1 and Corollary 2.4, we obtain
the following.

Corollary 2.6. Let ϕ : A4 → [0,∞) be a function such that

lim
n→∞ knϕ

(
0, 0,

z

kn
, w

)
= 0, (2.18)

∞∑

j=1

k2jϕ
( x

kj−1
,

y

kj−1
,

z

kj−1
,

w

kj−1

)
< ∞ (2.19)

for all x, y, z, w ∈ A. Assume that a mapping f : A → A with f(0) = 0 satisfies (2.17).
Then f is an additive extended derivation.

We now denote by U := {z ∈ C : |z| = 1}. The following theorem is a result for
the superstability of functional equation stemming from spectrally bounded generalized
derivations.

Theorem 2.7. Let f : A → A be a mapping with f(0) = 0 for which there exists a
constant M ≥ 0 such that r(f(x)) ≤ Mr(x) for all x ∈ A. Suppose that ϕ : A5 → [0,∞)
is a function satisfying (2.1), (2.2) and the inequality

∥∥∥f
(αx + βy

k
+ zwu

)
− α

f(x)
k

− β
f(y)

k
− f(zw)u + zf(w)u− zf(wu)

∥∥∥ (2.20)

≤ ϕ(x, y, z, w, u)
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6 S.-Y. KANG AND I.-S. CHANG

for all x, y, z, w, u ∈ A and all α, β ∈ U. Then f = Lf(e) + δ, where Lf(e) is a left
multiplication by f(e) and δ is a derivation. In this case, both Lf(e) and δ are spectrally
bounded.

Proof. We consider α = β = 1 ∈ U in (2.20) and then f satisfies the inequality (2.3). It
follows from the corollary 2.3 that f is an additive generalized derivation, where f(x) :=
limn→∞

f(knx)
kn for all x ∈ A.

Letting z = w = u = 0 in (2.20), we have
∥∥∥f

(αx + βy

k

)
− α

f(x)
k

− β
f(y)

k

∥∥∥ ≤ ϕ(x, y, 0, 0, 0) (2.21)

for all x, y ∈ A and all α, β ∈ U. If we replace x and y with knx and kny in (2.21),
respectively, and then divide both sides by kn, we see that

∥∥∥ 1
kn

f
(αknx + βkny

k

)
− α

1
k

f(knx)
kn

− β
1
k

f(kny)
kn

∥∥∥ ≤ 1
kn

ϕ(knx, kny, 0, 0, 0),

which tends to zero as n →∞. So we get

f
(αx + βy

k

)
= α

f(x)
k

+ β
f(y)

k

for all x, y ∈ A and all α, β ∈ U. From the additivity of f, we find that

f(αx + βy) = αf(x) + βf(y)

for all x, y ∈ A and all α, β ∈ U. As we did in the proof of [10, Theorem 2.3](or [11, Theorem
3.1]), we have that f(λx) = λf(x) for all x ∈ A. Also, it is obvious that f(0x) = 0 = 0f(x)
for all x ∈ A, that is, f is linear. Therefore f is a generalized derivation. So f is an
extended derivation and a spectrally bounded generalized derivation.

We now define a mapping δ : A → A by δ(x) := f(x) − xf(e) for all x ∈ A. So δ is
linear. Note that

δ(xy) = f(xy)− xyf(e) = x(f(y)− yf(e)) + (f(x)− xf(e))y = xδ(y) + δ(x)y

for all x, y ∈ A. Thus δ is a derivation. In particular, setting Lf(e)(x) := xf(e) for all
x ∈ A, we obtain f = Lf(e) + δ. According to the Brešar and and M. Mathieu’s result [7],
both Lf(e) and δ are spectrally bounded. The proof of the theorem is ended. ¤

Now, we compare the following corollary with some results of [2].

Corollary 2.8. Let f : A → A be a mapping with f(0) = 0 for which there exists a
function ϕ : A4 → [0,∞) satisfying (2.15), (2.16) and the inequality

∥∥∥f
(αx + βy

k
+ zw

)
− α

f(x)
k

− β
f(y)

k
− f(z)w + zf(e)w − zf(w)

∥∥∥ (2.22)

≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ A and all α, β ∈ U. Then f is an extended derivation.

Proof. By the same reasoning described in the proof of Theorem 2.7, we find that f is an
extended derivation. The proof of the corollary is complete. ¤
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Theorem 2.9. Let f : A → A be a mapping with f(0) = 0 for which there exists a
constant M ≥ 0 such that r(f(x)) ≤ Mr(x) for all x ∈ A. Suppose that ϕ : A5 → [0,∞)
is a function satisfying (2.1), (2.2) and the inequality (2.20) for all x, y, z, w, u ∈ A and
all α, β = 1, i. If, in addition, f(tx) is continuous in t ∈ R for each fixed x in A, then
f = Lf(e) + δ, where Lf(e) is a left multiplication by f(e) and δ is a derivation. In this
case, both Lf(e) and δ are spectrally bounded.

Proof. Let α = β = 1 in (2.1). Due to the corollary 2.3, we see that f is an additive
generalized derivation f, where f(x) := limn→∞

f(knx)
kn for all x ∈ A. Employing the same

method as in the proof of the main theorem of [15], we see that d is R-linear.
Considering α = i and y = z = w = u = 0 in (2.20), we get

∥∥∥f
( ix

k

)
− i

f(x)
k

∥∥∥ ≤ ϕ(x, 0, 0, 0, 0)

for all x ∈ A. Replacing x by kn+1x in the previous part and then dividing kn on both
sides, we have

∥∥∥f(knix)
kn

− i
f(kn+1x)

kn+1

∥∥∥ ≤ 1
kn

ϕ(kn+1x, 0, 0, 0, 0).

The right-hand side goes to zero as n →∞, so that

f(ix) = lim
n→∞

f(knix)
kn

= lim
n→∞ i

f(kn+1x)
kn+1

= if(x)

for all x ∈ A. Then for all λ = a + ib with a, b ∈ R, one notes

f(λx) = f(ax + ibx) = af(x) + bf(ix)

= af(x) + bif(x) = (a + bi)f(x) = λf(x).

Thus f is linear.
The remaining part of the theorem is similar to the proof of Theorem 2.7. ¤

Corollary 2.10. Let f : A → A be a mapping with f(0) = 0 for which there exists a func-
tion ϕ : A4 → [0,∞) satisfying (2.15), (2.16) and the inequality (2.22) for all x, y, z, w ∈ A
and all α, β = 1, i. If, in addition, f(tx) is continuous in t ∈ R for each fixed x in A, then
f is an extended derivation.

Proof. The proof is similar to the proof of Theorem 2.9. ¤

Remark. Even though, in Theorem 2.7 and Theorem 2.9, we replace (2.1) and (2.2) by
(2.13) and (2.14), the conclusions of Theorem 2.7 and Theorem 2.9 are still true. On the
other hand, in Corollary 2.8 and Corollary 2.10, if we replace (2.15) and (2.16) with (2.18)
and (2.19), then the results of Corollary 2.8 and Corollary 2.10 also hold. Furthermore,
we can remove the assumption f(0) = 0 in the previous facts as just mentioned. Indeed,
we note that

∥∥∥(k − 2i)
k

f(0)
∥∥∥ ≤ ϕ(0, 0, 0, 0, 0),

(∥∥∥(k − 2i)
k

f(0)
∥∥∥ ≤ ϕ(0, 0, 0, 0), respectively

)
.

So, by the assumption of ϕ, we get f(0) = 0.

599



8 S.-Y. KANG AND I.-S. CHANG

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2
(1950), 64–66.

[2] M. Amyari, F. Rahbarnia and Gh. Sadeghi, Some results on stability of extended derivations, J.
Math. Anal. Appl., 329 (2007), 753–758.

[3] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), 589–597.
[4] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (1) (2006), 167–173.
[5] F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, Heidelberg and

Berlin, (1973).
[6] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function

rings, Duke Math. J., 16 (1949), 385–397.
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Abstract. In this paper, we introduce and study a new system of generalized mixed varia-

tional inequality problems with nonlinear mappings in Hilbert spaces. We prove the existence

of the solutions and the convergence of iterative sequences generated by the algorithm for

the system. The results presented in this paper are the generalization and improvement of

recent results.

1. Introduction

It is known variational inequality theory and complementarity problem are
very powerful tools of the current mathematical technology. In recent years,
classical variational inequalities and complementarity problems have been ex-
tended and generalized to study a large variety of problems arising in mechan-
ics, physics, optimization and control, nonlinear programming, economics and
transportation equilibrium and engineering sciences, etc. Standard variational
inequality theory was introduced by Stampacchia [12] in 1964. In 1988, Noor
[10] introduced and studied some new class of general variational inequality.
Also, in 1998, he [11] introduced and studied some new class of variational
inequality. The solvability of the variational inequalities based on some sort of
iterative algorithm much depends on the suitable choice of the mappings and
the proper space setting, as has been the case in most of the computational
analysis.
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Recently, Chang et al. [2], Ding et al. [3], Kim-Kim [6], Kim-Kim ([7], [8])
and Verma ([13]-[17]) introduced some systems of nonlinear strongly mono-
tone variational inequalities and studied the approximate solvability of there
systems based on a system of projection methods.

The purpose of this paper is to consider, based on the resolvent method, the
existence of solutions and approximation solvability of a class of new system of
generalized nonlinear mixed variational inequalities with nonlinear mappings
in Hilbert spaces. The results pretended in this paper generalize, improve and
unify the corresponding results of Chang et al. [2], Ding et al. [3], Kim-Kim
[6], Kim-Kim ([7], [8]), Noor ([10], [11]) and Verma ([13]-[17]).

2. Preliminaries

Throughout this paper, let H be a real Hilbert space with the inner product
〈·, ·〉 and the norm ‖ ·‖ and CB(H) be the family of all bounded closed convex
subset of H. Let U, V : H → CB(H), F,G : H ×H ×H → H, g1, g2 : H → H
be mappings, φ1, φ2 : H → R∪ {+∞} be proper convex lower semicontinuous
functions, and H(·, ·) be the Hausdorff metric on CB(H) defined by

H(A,B) = max
{

sup
x∈A

D(x,B), sup
y∈B

D(A, y)
}

.

We consider the following new systems of generalized nonlinear mixed vari-
ational inequality problem:

Find elements x, y ∈ H, u ∈ U(x) and v ∈ V (y) such that g1(x), g2(y) ∈ H
and 




〈
ρF (x, u, y), z − g1(x)

〉
≥ ρφ1(g1(x))− ρφ1(z),〈

γG(x, v, y), z − g2(y)
〉
≥ γφ2(g2(y))− γφ2(z),

(2.1)

for all z ∈ H and ρ > 0, γ > 0 are two constants.

Special Cases
(I) If φ1(x) = δK01(x), φ2(u) = δK2(u), where δKi is the indicator function

of a nonempty closed convex subset Ki for i = 1, 2, then the problem
(2.1) reduce to finding x, y ∈ H, u ∈ U(x) and v ∈ V (y) such that
gi(x) ∈ Ki for i = 1, 2 and




〈
ρF (x, u, y), z − g1(x)

〉
≥ 0, ∀ z ∈ K1,〈

γG(x, v, y), z − g2(y)
〉
≥ 0, ∀ z ∈ K2,

(2.2)

where ρ > 0, γ > 0 are two constants, which is called the new systems
of generalized nonlinear variational inequality problem which was con-
sidered by Ding et al. [3].
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(II) If F (x, u, y) = T (y, x)+ 1
ρg1(x)− 1

ρg2(y), G(x, v, y) = S(x, y)+ 1
γ g2(y)−

1
γ g1(x), for all x, y, u, v ∈ H, then the problem (2.1) reduced to finding
x, y ∈ H such that g1(x), g2(y) ∈ H and




〈
ρT (y, x) + g1(x)− g2(y), z − g1(x)

〉
≥ ρ(φ1(g1(x))− φ1(z)),〈

γS(x, y) + g2(y)− g1(x), z − g2(y)
〉
≥ γφ2(g2(y))− φ2(z)),

(2.3)

for all z ∈ H, which was considered in Kim-Kim [7].
(III) If φ1(x) = δK1(x), φ2(u) = δK2(u), K1 = K2 = K, g1 = g2 = I(:

identity mapping), F (x, u, y) = T (y, x)+ 1
ρx− 1

ρy, G(x, v, y) = T (x, y)+
1
γ y− 1

γ x for all x, y, u, v ∈ H, then the problem (2.1) reduces to finding
x, y ∈ K such that




〈
ρT (y, x) + x− y, z − x

〉
≥ 0, ∀ z ∈ K,〈

γT (x, y) + y − x, z − y
〉
≥ 0, ∀ z ∈ K,

(2.4)

where ρ > 0, γ > 0 are two constants,which is called the system of non-
linear variational inequality problem considered by Verma [17]. The
special case of problem (2.4) was studied by Verma ([13], [16]).

(IV) If φ1(x) = δK1(x), φ2(u) = δK2(u), g1 = g2 = I(: identity mapping),
F (x, u, y) = S(x, y), G(x, v, y) = T (x, y) for all x, y, u, v ∈ H, then the
problem (2.1) reduce to finding x ∈ K1, y ∈ K2 such that




〈
ρS(x, y), z − x

〉
≥ 0, ∀ z ∈ K1,〈

γT (x, y), z − y
〉
≥ 0, ∀ z ∈ K2,

(2.5)

which is just the problem considered in [5] with S, T being single-valued
mappings.

In the sequel, we give some definitions and lemmas.

Definition 2.1. Let T : H → H be mapping.
(1) The mapping T is said to be monotone if

〈T (x)− T (y), x− y〉 ≥ 0, ∀ x, y ∈ H.

(2) The mapping T is said to be r-strongly monotone if there exists r > 0
such that

〈T (x)− T (y), x− y〉 ≥ r‖x− y‖2, ∀ x, y ∈ H.

This implies that

‖T (x)− T (y)‖ ≥ r‖x− y‖,
that is, T is r-expansive and, when r = 1, it is expansive.
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(3) The mapping T is said to be s-Lipschitz continuous (or Lipschitzian)
if there exists a constant s ≥ 0 such that

‖T (x)− T (y)‖ ≤ s‖x− y‖, ∀ x, y ∈ H.

(4) The mapping T is said to be µ-cocoercive ([4], [13], [16]) if there exists
a constant µ > 0 such that

〈T (x)− T (y), x− y〉 ≥ µ‖T (x)− T (y)‖2, ∀ x, y ∈ H.

Clearly, every µ-cocoercive mapping T is 1
µ -Lipschitz continuous.

(5) The mapping T is said to be relaxed γ-cocoercive if there exists a
constant γ > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−γ)‖T (x)− T (y)‖2, ∀ x, y ∈ H.

(6) The mapping T is said to be relaxed (γ, r)-cocoercive if there exist
constants γ, r > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−γ)‖T (x)− T (y)‖2 + r‖x− y‖2,

for all x, y ∈ H. For γ = 0, T is r-strongly monotone, and for r = 0, T
is relaxed γ-cocoercive. This class of mappings is more general than
the class of strongly monotone mappings.

Remark 2.1. We have the following implications:

the strong monotonicity =⇒ the monotonicity,

the strong monotonicity =⇒ the expansiveness

and

the r-strong monotonicity =⇒ the relaxed (γ, r)-cocoercivity.

Definition 2.2. Let F : X ×X ×X → X be a nonlinear mapping. F is said
to be

(i) α-strongly monotone with respect to the first argument if there exists
some α > 0 such that

〈F (x, ·, ·)− F (y, ·, ·), x− y〉 ≥ α‖x− y‖2, ∀ x, y ∈ X,

(ii) ξ-Lipschitz continuous with respect to the first argument if exists a
constant ξ > 0 such that

‖F (x, ·, ·)− F (y, ·, ·)‖ ≤ ξ‖x− y‖, ∀ x, y ∈ X.

Similarly, we can define the strong monotonocity and Lipschitzian continu-
ity with respect to the second and the third argument of F (·, ·, ·).
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Definition 2.3. ([9]) A mapping U : H → CB(H) is said to be ψ-Lipschitz
continuous if there exists a constant ψ > 0 such that

H(U(v1), U(v2)) ≤ ψ‖v1 − v2‖, ∀ vi ∈ H, i = 1, 2,

where H(·, ·) is a Hausdorff metric on CB(H).

Lemma 2.1. ([1], [18]) For a given u ∈ H, the point z ∈ H satisfies the
following inequality

〈u− z, v − u〉 ≥ ρφ(u)− ρφ(v) ∀ v ∈ H

if and only if
u = Jρ

φ(z),

where Jρ
φ = (I + ρ∂φ)−1 and ∂φ denotes the subdifferential of a proper convex

lower semicontinuous function φ : H → R ∪ {+∞}.
Remark 2.2. It is well known that Jρ

φ is nonexpansive (see [1], [18]).

It is easy to prove that the following lemma is trivial from the Lemma 2.1.

Lemma 2.2. For given x, y ∈ H, u ∈ U(x) and v ∈ V (y), (x, y, u, v) is a
solution of the problem (2.1) if and only if

g1(x) = Jρ
φ1

(
g1(x)− ρF (x, u, y)

)
,

g2(y) = Jγ
φ2

(
g2(y)− γG(x, v, y)

)
,

where ρ, γ > 0 are constants.

3. Existence and Convergence

In this section, we construct some iterative algorithms for the problems
(2.1). We also give the convergence analysis of the iterative sequences gener-
ated by the algorithm.

Now we give the algorithm for solving the problem (2.1) as follows.
Algorithm 3.1. For any given x0, y0 ∈ H, we choose u0 ∈ U(x0), v0 ∈ V (y0)
and let

x1 = x0 − g1(x0) + Jρ
φ1

(
g1(x0)− ρF (x0, u0, y0)

)
,

y1 = y0 − g2(y0) + Jγ
φ2

(
g2(y0)− γG(x0, v0, y0)

)
.

By Nadler [9] there exists u1 ∈ U(x1) and v1 ∈ V (y1) such that

‖u0 − u1‖ ≤ (1 + 1)H(U(x0), U(x1)),

‖v0 − v1‖ ≤ (1 + 1)H(V (y0), V (y1)).
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Let

x2 = x1 − g1(x1) + Jρ
φ1

(
g1(x1)− ρF (x1, u1, y1)

)
,

y2 = y1 − g2(y1) + Jγ
φ2

(
g2(y1)− γG(x1, v1, y1)

)
.

By induction, we obtain the sequence {xn} and {yn} such that





un ∈ U(xn), ‖un − un+1‖ ≤
(
1 +

1
1 + n

)
H(U(xn), U(xn+1)),

vn ∈ V (yn), ‖vn − vn+1‖ ≤
(
1 +

1
1 + n

)
H(V (yn), V (yn+1)),

xn+1 = xn − g1(xn) + Jρ
φ1

(
g1(xn)− ρF (xn, un, yn)

)
,

yn+1 = yn − g2(yn) + Jγ
φ2

(
g2(yn)− γG(xn, vn, yn)

)
.

(3.1)

for i = 0, 1, 2, · · · .

Theorem 3.1. Let gi : H → H be relaxed (γi, ηi)-cocoercive and ξi-Lipschitz
continuous, for i = 1, 2. Let F : H × H × H → H be l1, l2, l3-Lipschitz con-
tinuous with respect to the first, second and third arguments, respectively, and
relaxed (δ, p)-cocoercive with respect to the first argument. Let G : H×H×H →
H be n1, n2, n3-Lipschitz continuous with respect to the first, second and third
arguments, respectively, and relaxed (ε, q)-cocoercive with respect to the third
argument. Suppose U is ϕ-Lipschitz continuous and V is β-Lipschitz contin-
uous. If

2
√

1− 2η1 + (2γ1 + 1)ξ2
1 +

√
1− 2ρp + (2ρδ + ρ2)l21

+ ρl2ϕ + γn1 < 1
(3.2)

and

2
√

1− 2η2 + (2γ2 + 1)ξ2
2 +

√
1− 2γq + (2γε + γ2)n2

3

+ γn2β + ρl3 < 1,
(3.3)

then there exist x, y ∈ H, u ∈ U(x) and v ∈ V (y) which solve problem (2.1).
Moreover, the iterative sequences {xn} and {yn} generated by Algorithm 3.1
converges to x and y, respectively.
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Proof. From (3.1), we have

‖xn+1 − xn‖
=

∥∥∥xn − g1(xn) + Jρ
φ1

(
g1(xn)− ρF (xn, un, yn)

)

−
{

xn−1 − g1(xn−1) + Jρ
φ1

(
g1(xn−1)− ρF (xn−1, un−1, yn−1)

)}∥∥∥

≤
∥∥∥xn − xn−1 −

(
g1(xn)− g1(xn−1)

)∥∥∥

+
∥∥∥g1(xn)− g1(xn−1)− ρ

(
F (xn, un, yn)− F (xn−1, un−1, yn−1)

)∥∥∥.

(3.4)

We can know that

∥∥∥g1(xn)− g1(xn−1)− ρ
(
F (xn, un, yn)− F (xn−1, un−1, yn−1)

)∥∥∥

≤
∥∥∥xn − xn−1 −

(
g1(xn)− g1(xn−1)

)∥∥∥

+
∥∥∥xn − xn−1 − ρ

(
F (xn, un, yn)− F (xn−1, un, yn)

)∥∥∥
+ ρ‖F (xn−1, un, yn)− F (xn−1, un−1, yn)‖
+ ρ‖F (xn−1, un−1, yn)− F (xn−1, un−1, yn−1)‖.

(3.5)

Since g1 is ξ1-Lipschitz continuous and relaxed (γ1, η1)-cocoercive, we have

∥∥∥xn − xn−1 −
(
g1(xn)− g1(xn−1)

)∥∥∥
2

= ‖xn − xn−1‖2 − 2
〈
xn − xn−1, g1(xn)− g1(xn−1)

〉

+ ‖g1(xn)− g1(xn−1)‖2

≤ ‖xn − xn−1‖2 + 2γ1‖g1(xn)− g1(xn−1)‖2

− 2η1‖xn − xn−1‖2 + ‖g1(xn)− g1(xn−1)‖2

≤
(
1− 2η1 + (2γ1 + 1)ξ2

1

)
‖xn − xn−1‖2.

(3.6)
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And also, F is relaxed (δ, p)-cocoercive and l1-Lipschitz continuous with re-
spect to the first argument, we have

∥∥∥xn − xn−1 − ρ
(
F (xn, un, yn)− F (xn−1, un, yn)

)∥∥∥
2

= ‖xn − xn−1‖2 − 2ρ
〈
xn − xn−1, F (xn, un, yn)− F (xn−1, un, yn)

〉

+ ρ2‖F (xn, un, yn)− F (xn−1, un, yn)‖2

≤ ‖xn − xn−1‖2 + 2ρδ‖F (xn, un, yn)− F (xn−1, un, yn)‖2

− 2ρp‖xn − xn−1‖2 + ρ2‖F (xn, un, yn)− F (xn−1, un, yn)‖2

≤
(
1− 2ρp +

(
2ρδ + ρ2

)
l21

)
‖xn − xn−1‖2.

(3.7)

Since F is l2-Lipschitz continuous with respect to the second argument and U
is ϕ-Lipschitz continuous, we obtain

‖F (xn−1, un, yn)− F (xn−1, un−1, yn)‖
≤ l2‖un − un−1‖
≤ l2

(
1 +

1
n

)
H(U(xn), U(xn−1))

≤
(
1 +

1
n

)
l2ϕ‖xn − xn−1‖.

(3.8)

Since F is l3−Lipschitz continuous with respect to the third argument, we
obtain

‖F (xn−1, un−1, yn)− F (xn−1, un−1, yn−1)‖ ≤ l3‖yn − yn−1‖. (3.9)

Substituting (3.6)-(3.9) into (3.5), we have
∥∥∥g1(xn)− g1(xn−1)− ρ

(
F (xn, un, yn)− F (xn−1, un−1, yn−1)

)∥∥∥

≤
√

1− 2η1 + (2γ1 + 1)ξ2
1 ‖xn − xn−1‖

+
√

1− 2ρp + (2ρδ + ρ2)l21 ‖xn − xn−1‖

+ ρl2ϕ
(
1 +

1
n

)
‖xn − xn−1‖+ ρl3‖yn − yn−1‖.

(3.10)

Substituting (3.6) and (3.10) into (3.4), we have

‖xn+1 − xn‖
≤

(
2
√

1− 2η1 + (2γ1 + 1)ξ2
1 +

√
1− 2ρp + (2ρδ + ρ2)l21

+ ρl2ϕ
(
1 +

1
n

))
‖xn − xn−1‖+ ρl3‖yn − yn−1‖.

(3.11)
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Similarly, we have

‖yn+1 − yn‖
≤

(
2
√

1− 2η2 + (2γ2 + 1)ξ2
2 +

√
1− 2γq + (2γε + γ2)n2

3

+ γn2β
(
1 +

1
n

))
‖yn − yn−1‖+ γn1‖xn − xn−1‖.

(3.12)

Now, (3.11) and (3.12) imply

‖xn+1 − xn‖+ ‖yn+1 − yn‖
≤

(
2
√

1− 2η1 + (2γ1 + 1)ξ2
1 +

√
1− 2ρp + (2ρδ + ρ2)l21

+ ρl2ϕ
(
1 +

1
n

)
+ γn1

)
‖xn − xn−1‖

+
(
2
√

1− 2η2 + (2γ2 + 1)ξ2
2 +

√
1− 2γq + (2γε + γ2)n2

3

+ γn2β
(
1 +

1
n

)
+ ρl3

)
‖yn − yn−1‖

≤ θn(‖xn − xn−1‖+ ‖yn − yn−1‖),

(3.13)

where

θn = max
{

2
√

1− 2η1 + (2γ1 + 1)ξ2
1 +

√
1− 2ρp + (2ρδ + ρ2)l21

+ ρl2ϕ
(
1 +

1
n

)
+ γn1,

2
√

1− 2η2 + (2γ2 + 1)ξ2
2 +

√
1− 2γq + (2γε + γ2)n2

3

+ γn2β
(
1 +

1
n

)
+ ρl3

}
.

We know that θn → θ as n →∞, where

θ = max
{

2
√

1− 2η1 + (2γ1 + 1)ξ2
1 +

√
1− 2ρp + (2ρδ + ρ2)l21

+ ρl2ϕ + γn1,

2
√

1− 2η2 + (2γ2 + 1)ξ2
2 +

√
1− 2γq + (2γε + γ2)n2

3

+ γn2β + ρl3

}
.

It follows from (3.2) and (3.3) that 0 ≤ θ < 1. Hence θn < 1 for sufficiently
large n. Thus (3.13) implies that {xn} and {yn} are both Cauchy sequences
in H, and so {xn} converges to x ∈ H, {yn} converges to y ∈ H. From (3.1),
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we have
‖un+1 − un‖ ≤

(
1 +

1
1 + n

)
H(U(xn+1), U(xn))

≤
(
1 +

1
1 + n

)
ϕ‖xn+1 − xn‖,

and
‖vn+1 − vn‖ ≤

(
1 +

1
1 + n

)
H(V (yn+1), V (yn))

≤
(
1 +

1
1 + n

)
β‖yn+1 − yn‖.

Thus, {un} and {vn} are also Cauchy sequences in H. Let {un} converges to u
and {vn} converges to v. Now, we prove that u ∈ U(x) and v ∈ V (y). In fact,

D(u,U(x)) = inf
z∈U(x)

‖u− z‖

≤ ‖u− un‖+ D(un, U(x))

≤ ‖u− un‖+ H(U(xn), U(x))

≤ ‖u− un‖+ ϕ‖xn − x‖.
Letting n →∞, we know that D(u,U(x)) = 0 and so u ∈ U(x). Similarly, we
have v ∈ V (y). Since g1, g2, Jρ

φ1
, Jγ

φ2
, F and G are all continuous, we have

x = x− g1(x) + Jρ
φ1

(
g1(x)− ρF (x, u, y)

)
,

y = y − g2(y) + Jγ
φ2

(
g2(y)− γG(x, v, y)

)
.

The result follows then from Lemma 2.2. This completes the proof. ¤
Remark 3.1. Let ρ > 0, γ > 0 be numbers satisfying the conditions:

l2ϕ < l1, ρl2ϕ < 1− e1 − γn1,

∣∣∣ρ +
δl21 − p + l2ϕ

l21 − (l2ϕ)2

∣∣∣ <

√√√√(e1 + γn1)2 + (δl21−p+l2ϕ)2

l21−(l2ϕ)2

l21 − (l2ϕ)2

and
n2β < n3, γn2β < 1− e2 − ρl3,

∣∣∣γ +
εn2

3 − q + n2β

n2
3 − (n2β)2

∣∣∣ <

√√√√(e2 + ρl3)2 + (εn2
3−q+n2β)2

n2
3−(n2β)2

n2
3 − (n2β)2

,

where

e1 = 2
√

1− 2η1 + (2γ1 + 1)ξ2
1 , e2 = 2

√
1− 2η2 + (2γ2 + 1)ξ2

2 .

Then (3.2) and (3.3) holds.
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Taking γi = 0 (i = 1, 2), δ = 0 and ε = 0, by Definition 2.1–(6), in Theorem
3.1, we can obtain the following theorem.

Theorem 3.2. Let gi : H → H be ηi-strongly monotone and ξi-Lipschitz
continuous, for i = 1, 2. Let F : H ×H ×H → H be l1, l2, l3-Lipschitz contin-
uous with respect to the first, second and third arguments, respectively, and p-
strongly monotone with respect to the first argument. Let G : H×H×H → H
be n1, n2, n3-Lipschitz continuous with respect to the first, second and third
arguments, respectively, and q-strongly monotone with respect to the third ar-
gument. Suppose U is ϕ-Lipschitz continuous and V is β-Lipschitz continuous.
If

2
√

1− 2η1 + ξ2
1 +

√
1− 2ρp + ρ2l21 + ρl2ϕ + γn1 < 1

and

2
√

1− 2η2 + ξ2
2 +

√
1− 2γq + γ2n2

3 + γn2β + ρl3 < 1,

then there exist x, y ∈ H, u ∈ U(x) and v ∈ V (y) which solve problem (2.1).
Moreover, the iterative sequences {xn} and {yn} generated by Algorithm 3.1
converges to x and y, respectively.

Remark 3.2.

(i) Theorem 3.1 and Theorem 3.2 are generalization of the results in
Chang et al. [2], Ding et al. [3], Kim-Kim [6], Kim-Kim ([7], [8]),
Noor ([10], [11]) and Verma ([15], [16]).

(ii) If φi = δKi , where δKi is the indicator function of a nonempty closed
convex subset Ki for i = 1, 2, in Theorem 3.2, then we can obtain the
result of Ding et al. [3].
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Abstract. Strong convergences of the implicit iterative scheme and the explicit it-
erative scheme for nonexpansive semigroup are established in a reflexive and strictly
convex Banach space having a uniformly Gâteuax differentiable norm. Certain dif-
ferent control conditions of the explicit iterative scheme are given.
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1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset of
E. Recall that a mapping f : C → C is a contraction on C if there exists a
constant k ∈ (0, 1) such that‖f(x) − f(y)‖ ≤ k‖x − y‖, x, y ∈ C. We use ΣC

to denote the collection of mappings f verifying the above inequality. That is,
ΣC = {f : C → C | f is a contraction with constant k}. Note that each f ∈ ΣC has
a unique fixed point in C.

Now let T : C → C be a nonexpansive mapping (recall that a mapping T : C → C
is nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ x, y ∈ C) and F (T ) denote the set of fixed
points of T ; that is, F (T ) = {x ∈ C : x = Tx}.

Recall that a family {T (t) : t ≥ 0} of mappings from C into itself is called a
nonexpansive semigroup on C if it satisfies the following conditions:
(1) T (t1 + t2)x = T (t1)T (t2)x for any t1, t2 ∈ R+ and x ∈ C;
(2) T (0)x = x for each x ∈ C;
(3) for each x ∈ C, t 7→ T (t)x is continuous;
(4) ‖T (t)x− T (t)y‖ ≤ ‖x− y‖ for each t ∈ R+ and x, y ∈ C.

This study was supported by research funds from Dong-A University.
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Given a real number t ∈ (0, 1), a contraction f ∈ ΣC and a nonexpasive mapping
T , let a contraction Tt := T f

t : C → C be defined by

Ttz = tf(z) + (1− t)Tz, z ∈ C.

and let zt := zf
t ∈ C be the unique fixed point of Tt. Then zt is the unique solution

of the fixed point equation

zt = tf(zt) + (1− t)Tzt. (1.1)

A special case of (1.1) has been considered by Browder [3] in a Hilbert space as
follows. Fix u ∈ C and define a contraction Gt on C by

Gtx = tu + (1− t)Tx, x ∈ C.

Let xt ∈ C be the unique fixed point of Gt. Thus

xt = tu + (1− t)Txt.

(Such a sequence {xt} is said to be an approximating fixed point of T since it
possesses the property that if {xt} is bounded, then limt→0 ‖Txt − xt‖ = 0.) In
1967, the strong convergence of {xt} as t → 0 for a self-mapping T of a bounded
C was proved in a Hilbert space independently by Browder [3] and Halpern [9]. In
1980, Reich [14] extended the result of Browder [3] to a uniformly smooth Banach
space and showed that the limit defines the (unique) sunny nonexpansive retraction
from C onto F (T ). Takahashi and Ueda [18] improved results of Reich [14] to a
reflexive Banach space with a uniformly Gâteaux differentiable norm (see also Ha
and Jung [8]).

On the other hand, to order to extend Browder’s and Reich’s results to the
nonexpansive semigroup {T (t) : t ≥ 0} case, Shioji-Takahashi [15] introduced in a
Hilbert space the implicit iterative scheme

xn = αnu + (1− αn)σtn(xn), n ≥ 1, (1.2)

where {αn} is a sequence in (0, 1), {tn} is a sequence of positive real number diver-
gent to ∞ and for each t > 0 and x ∈ C, σt(x) is the average given by

σt(x) =
1
t

∫ t

0

T (s)xds.

Under suitable conditions on the sequence {αn} , they proved the strong convergence
of {xn} defined by (1.2) to a point in F :=

⋂
t≥0 F (T (t)). In 2003, Suzuki [16]

introduced firstly in Hilbert space the following implicit iterative scheme:

xn = αnu + (1− αn)T (tn)xn, n ≥ 1 (1.3)
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Iterative schemes for nonexpansive semigroups 3

for the nonexpansive semigroup case and proved strong convergence of the iterative
scheme (1.3) with appropriate conditions imposed upon sequences {αn} and {tn}.
In 2005, Xu [20] proved that Suzuki’s result holds in a uniformly convex Banach
space with a weakly continuous duality mapping.

In 2005, Aleyner and Reich [1] first introduced the following explicit iterative
scheme

xn+1 = αnu + (1− αn)T (tn)xn, n ≥ 0 (1.4)

in a reflexive Banach space having a uniformly Gâteaux differentiable norm such
that each nonempty, bounded, closed and convex subset of E has the fixed point
property for nonexpansive mappings (Note that all these assumptions are fulfilled
whenever E is uniformly smooth). Under the following conditions on {αn} and
{tn};

(i) αn → 0 (n →∞);
∑∞

n=0 αn = ∞;
(ii)

∑∞
n=0 |αn+1 − αn| < ∞;

(iii) t0 < t1 < t2 < · · · < tn < · · · , limn→∞ tn = ∞,

and the uniformly asymptotic regularity on {T (t) : t ≥ 0}, they showed that the
sequence {xn} defined by (1.4) converges strongly to Qu, where Q is the unique
sunny nonexpansive retraction from C onto F :=

⋂
t≥0 F (T (t)), Qu = s−limt→∞ xt

and xt is the unique solution of the following equation:

xt = αtu + (1− αt)T (t)xt, t ∈ (0,∞),

where {αt}t∈(0,∞) is a net in (0,1) such that limt→∞ αt = 0.
Recently, Chang and Yang [4] considered the the following composite iterative

scheme {
yn = βnxn + (1− βn)T (tn)xn

xn+1 = αnu + (1− αn)yn, n ≥ 0

in either a reflexive Banach space having a uniformly Gâteaux differentiable norm
or a uniformly convex Banach space having a weakly sequentially continuous duality
mapping, where {αn} and {tn} ⊂ R+ satisfy the conditions (i)–(iii) and {βn} ⊂
[0, a), for some constant a ∈ (0, 1), satisfies the following condition

(iv)
∑∞

n=0 |βn+1 − βn| < ∞.

On the another hand, the viscosity approximation method of selecting a partic-
ular fixed point of a given nonexpansive mapping was proposed by Moudafi [12].
In 2004, in order to extend Theorem 2.2 of Moudafi [12] to a Banach space set-
ting, Xu [19] consider the the following explicit iterative scheme: for T : C → C
nonexpansive mapping, f ∈ ΣC and αn ∈ (0, 1),

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0.

Moreover, in [19], he also studied the strong convergence of xt defined by (1.1) as
t → 0 in either a Hilbert space or a uniformly smooth Banach space and showed
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that the strong limt→0 zt is the unique solution of certain variational inequality.
This result of Xu [19] also improved Theorem 2.1 of Moudafi [12] as the continuous
version.

In this paper, motivated by above-mentioned results, we consider two iterative
schemes as the viscosity approximation method for nonexpansive semigroup {T (t) :
t ≥ 0} on C; for f ∈ ΣC ,

zt = λtf(zt) + (1− λt)T (t)zt, t ∈ (0,∞) (1.5)

where {λt}t∈(0,∞) is a net in (0,1) such that limt→∞ λt = 0, and

{
yn = βnxn + (1− βn)T (tn)xn

xn+1 = αnf(xn) + (1− αn)yn, n ≥ 0.
(1.6)

where {αn}, {βn} ⊂ (0, 1) and {tn} ⊂ R+. First, by using the uniform asymptotic
regularity on {T (t) : t ≥ 0}, we establish a strong convergence theorem for the
sequence {zt} defined by (1.5) in a reflexive and strictly convex Banach space having
a uniformly Gâteaux differentiable norm. Then, under certain different control
conditions on {αn} and {βn} and the uniform asymptotic regularity on {T (t) :
t ≥ 0}, we prove in the same Banach space that the sequence {xn} generated by
(1.6) converges strongly to a common fixed point of {T (t) : t ≥ 0} which is a
solution of a certain variational inequality. The main results improve and develop
the corresponding results of Aleyner and Reich [1], Chang and Yang [4], Shioji-
Takahashi [15], Suzuki [16] and Xu [21].

2. Preliminaries and Lemmas

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. The value
of f ∈ E∗ at x ∈ E will be denoted by 〈x, f〉. When {xn} is a sequence in E, then
xn → x will denote strong convergence of the sequence {xn}

A Banach space E is called strictly convex if its unit sphere U = {x ∈ E : ‖x‖ =
1} does not contain any linear segment ([6,7]) . This condition is equivalent to the
following:

‖x‖ = ‖y‖ = 1, x 6= y ⇒
∥∥∥∥

x + y

2

∥∥∥∥ < 1.

The (normalized) duality mapping J from E into the family of nonempty (by
Hahn-Banach theorem) weak-star compact subsets of its dual E∗ is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}

for each x ∈ E.
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The norm of E is said to be Gâteaux differentiable (and E is said to be smooth)
if

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to
be uniformly Gâteaux differentiable if for y ∈ U , the limit is attained uniformly
for x ∈ U . The space E is said to have a uniformly Fréchet differentiable norm
(and E is said to be uniformly smooth) if the limit in (2.1) is attained uniformly for
(x, y) ∈ U×U . It is known that E is smooth if and only if each duality mapping J is
single-valued. It is also well-known that if E has a uniformly Gâteaux differentiable
norm, J is uniformly norm to weak∗ continuous on each bounded subsets of E ([5]).

Let C be a nonempty closed convex subset of E. C is said to have the fixed point
property for nonexpansive mappings if every nonexpansive mapping of a bounded
closed convex subset D of C has a fixed point in D ([6]). Let D be a subset of C.
Then a mapping Q : C → D is said to be a retraction from C onto D if Qx = x for
all x ∈ D. A retraction Q : C → D is said to be sunny if Q(Qx + t(x−Qx)) = Qx
for all x ∈ C and t ≥ 0 with Qx + t(x−Qx) ∈ C. A subset D of C is said to be a
sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of
C onto D. In a smooth Banach space E, it is well-known ([7, p. 48]) that Q is a
sunny nonexpansive retraction from C onto D if and only if the following condition
holds:

〈x−Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D. (2.2)

Let LIM be a continuous linear functional on l∞. According to time and cir-
cumstances, we LIM(an) instead of LIM(a) for a = {an} ∈ l∞. LIM is said to be
Banach limit if

LIM(an) = LIM(an+1)

for every a = {an} ∈ l∞. Using the Hahn-Banach theorem, or the Tychonoff fixed
point theorem, we can prove the existence of a Banach limit. We know that if LIM
is a Banach limit, then

lim inf
n→∞

an ≤ LIM(an) ≤ lim sup
n→∞

an

for all a = {an} ∈ l∞.
We need the following lemmas for the proof of our main results. (Lemma 2.1

was also given in [13]. Lemma 2.2 is Lemma 2 of [17] and Lemma 2.3 is essentially
Lemma 2 in [11] (also see [19]). Lemma 2.4 was given in [8, 18], which is essentially
a variant of Lemma 1.2 in [13]). We refer also [5, 6, 7] for Lemmas 2.5 and 2.6.

Lemma 2.1. Let E be a real Banach space and J be the duality mapping. Then,
for any given x, y ∈ E, one has

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉
for all j(x + y) ∈ J(x + y).

617



Jong Soo Jung 6

Lemma 2.2. Let {xn} and {zn} be bounded sequences in a Banach space E and
let {γn} be a sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Suppose that
xn+1 = γnxn + (1− γn)zn, n ≥ 0,

and
lim sup

n→∞
(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then ‖zn − xn‖ = 0.

Lemma 2.3. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnβn + γn, n ≥ 0,

where {λn}, {βn} and {γn} satisfy the following conditions:
(i) {λn} ⊂ [0, 1] and

∑∞
n=0 λn = ∞ or, equivalently,

∏∞
n=0(1− λn) = 0;

(ii) lim supn→∞ βn ≤ 0 or
∑∞

n=1 λnβn < ∞;
(iii) γn ≥ 0 (n ≥ 0),

∑∞
n=0 γn < ∞.

Then limn→∞ sn = 0.

Lemma 2.4. Let C be a nonempty closed convex subset of a Banach space E having
a uniformly Gâteaux differentiable norm and {xn} be a bounded sequence in E. Let
LIM be a Banach limit on l∞ and q ∈ C. Then

LIM‖xn − q‖2 = min
y∈C

LIM‖xn − y‖2

if and only if
LIM〈x− q, J(xn − q)〉 ≤ 0

for all x ∈ C, where J is the duality mapping of E.

Lemma 2.5. Let C be a closed convex of a reflexive and strictly convex Banach
space E. Then Co = {x ∈ E : ‖x‖ = inf{‖y‖ : y ∈ C}} is a singleton.

Lemma 2.6. Let E be a smooth Banach space, C a nonempty closed convex subset
of E and T : C → C a nonexpansive mapping. If J is the duality mapping on E,
then

〈(I − T )(x)− (I − T )(y), J(x− y)〉 ≥ 0, for all x, y ∈ C.

Finally, recall that a nonexpansive semigroup {T (t) : t ≥ 0} on C is said to be
uniformly asymptotically regular (shortly, u.a.r) on bounded subsets of C if

T (s + t)x = T (s)T (t)x
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for all s, t ≥ 0 and x ∈ C and for all bounded subset K of C there holds

lim
t→∞

sup
x∈K

‖T (s)T (t)x− T (t)x‖ = 0, (2.3)

uniformly for all s ≥ 0. Note that both these assumptions hold when the trajectories
of the nonexpansive semigroup {T (t) :≥ 0} converge uniformly on bounded subsets
of E.

3. Main results

First, we study the existence of solutions of certain variational inequality.
For any t ≥ 0, T (t) : C → C is nonexpansive and so, for any λt ∈ (0, 1) and

f ∈ ΣC , λtf + (1 − λt)T (t) : C → C defines a strict contraction mapping. Thus,
by the Banach contraction mapping principle, there exists a unique fixed point xf

t

satisfying
zf
t = λtf(zf

t ) + (1− λt)T (t)zf
t . (A)

For simplicity we will write zt for zf
t provided no confusion occurs.

Now we show that the sequence {zt} defined by (A) converges strongly some
common fixed point of {T (t) : t ≥ 0}.
Theorem 3.1. Let E be a reflexive and strictly convex Banach space having a
uniformly Gâteaux differentiable norm. Let C be a nonempty closed convex subset
of E and {T (t) : t ≥ 0} a u.a.r. nonexpansive semigroup from C into itself with
F :=

⋂
t≥0 F (T (t)) 6= ∅. Let {zt} be defined by (A) and λt ∈ (0, 1) such that

limt→∞ λt = 0. Then as t → ∞, {zt} converges strongly to a point in F . If we
define Q : ΣC → F by

Q(f) := lim
t→∞

zt, f ∈ ΣC , (3.1)

then Q(f) is the unique solution in F of the variational inequality

〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

Proof. Let {ztn} be a subsequence of {zt} such that limn→∞ tn = ∞. Let p ∈ F .
Then ‖ztn − p‖ ≤ λtn‖f(ztn)− p‖+ (1− λtn)‖T (tn)ztn − T (tn)p‖

≤ λtn‖f(ztn)− p‖+ (1− λtn)‖ztn − p‖.
This gives that

‖ztn − p‖ ≤ ‖f(ztn)− p‖ ≤ ‖f(ztn)− f(p)‖+ ‖f(p)− p‖
≤ k‖ztn − p‖+ ‖f(p)− p‖,

and so ‖ztn − p‖ ≤ 1
1−k‖f(p)− p‖. In particular, {ztn} is bounded, so are {f(ztn)}

and {T (tn)ztn}.
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Now define a functional φ on C by

φ(x) = LIM‖ztn − z‖2,

where LIM is a Banach limit on l∞. Since φ is continuous and convex, φ(z) → ∞
as ‖z‖ → ∞, and E is reflexive, φ attains its infimum over C [2, p. 79]. Let

K = {x ∈ C : φ(x) = min
y∈C

φ(y)}.

It is easily seen that K is a nonempty closed convex bounded subset of E. Moreover,
K is invariant under T (r) for any r ≥ 0. In fact, since

‖ztn − T (tn)ztn‖ = λtn‖f(ztn)− T (tn)ztn‖ → 0 (as n →∞)

and for ant r > 0,

‖ztn − T (r)x‖
≤ ‖ztn − T (tn)ztn‖+ ‖T (tn)ztn − T (r)T (tn)ztn‖+ ‖T (r)T (tn)ztn − T (r)x‖
≤ ‖ztn − T (tn)ztn‖+ sup

y∈B
‖T (tn)y − T (r)T (tn)y‖+ ‖T (r)T (tn)ztn − T (r)x‖,

where B is a bounded subset of E containing {ztn}, it follows from (2.3) that for
each x ∈ K

φ(T (r)x) = LIM‖ztn − T (r)x‖2
≤ LIM‖T (r)T (tn)ztn − T (r)x‖2
≤ LIM‖T (tn)ztn − x‖2 = LIM‖ztn − x‖2 = φ(x).

So, K contains a fixed point of {T (r)} for any r > 0. Indeed, define

Ko = {v ∈ K : ‖v − p‖ = min
y∈K

‖y − p‖}.

Then, by Lemma 2.5, Ko is a singleton. Denote such a singleton by z. Then we
have

‖T (r)z − p‖ = ‖T (r)z − T (r)p‖ ≤ ‖z − p‖
and hence T (r)z = z for any r > 0. That is, K contains a common fixed point
of {T (t) : t ≥ 0}. Let q ∈ K ∩ F be a such a common fixed point. Since q is a
minimizer of φ over C, it follows from Lemma 2.4 that for any x ∈ C,

LIM〈x− q, J(ztn − q)〉 ≤ 0. (3.2)

On the other hand, for any p ∈ F ,

ztn − p = (1− λtn)(T (tn)ztn − p) + λtn(f(ztn)− p).
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It follows that

‖ztn − p‖2 =(1− λtn)〈T (tn)ztn − p, J(ztn − p)〉+ λtn〈f(ztn)− p, J(ztn − p)〉
≤(1− λtn)‖ztn − p‖2 + λtn(k‖ztn − p‖2 + 〈f(p)− p, J(ztn − p)〉),

and so
‖ztn − p‖2 ≤ 1

1− k
〈f(p)− p, J(ztn − p)〉. (3.3)

Combining (3.2) and (3.3), we obtain

LIM‖ztn − q‖2 ≤ 0.

Hence there is a subsequence {ztnj
} of {ztn} such that limj→∞ ‖ztnj

− q‖ = 0. As-
sume that there exists another subsequence {ztnk

} of {ztn} such that limk→∞ ‖ztnk
−

q̃‖ = 0, where q̃ ∈ K ∩ F . Then (3.3) implies that

‖q − q̃‖2 ≤ 1
1− k

〈f(q)− q̃, J(q − q̃)〉. (3.4)

Similarly we have

‖q̃ − q‖2 ≤ 1
1− k

〈f(q̃)− q, J(q̃)− q〉. (3.5)

Adding (3.4) and (3.5), we get ‖q − q̃‖2 ≤ 0, that is, q = q̃.
The same argument shows that if tl → ∞, then the subsequence {ztl

} of {zt}
converges strongly to the same limit. Thus, as t →∞, {zt} converges strongly to a
point in F .

If we define Q :
∑

C → F by Q(f) = limt→∞ zt, f ∈ ∑
C , then Q(f) solves the

variational inequality

〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

In fact, since

(I − f)(zt) = −1− λt

λt
(I − T (t))(zt),

by Lemma 2.6, we have for p ∈ F ,

〈(I − f)(zt), J(zt − p)〉 = −1− λt

λt
〈(I − T (t))(zt)− (I − T (t))(p), J(zt − p)〉 ≤ 0.

Noting the fact that J is uniformly continuous on bounded subsets of E from the
strong topology of E to the weak∗ topology of E∗ and taking the limit as t → ∞,
we obtain

〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

¤
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Remark 3.1. If f(x) = u, x ∈ C, is a constant in Theorem 3.1, then

〈Qu− u, J(Qu− p)〉 ≤ 0, u ∈ C, p ∈ F.

Hence by (2.2), Q reduces to the sunny nonexpansive retraction from C to F .

Remark 3.2. (1) Theorem 3.1 improves the corresponding result in Aleyner and
Reich [1] to the viscosity method in the different Banach space.

(2) Theorem 3.1 appears to be independent of the result in Aleyner and Reich
[1]. On the one hand, it is easy to find examples of spaces which satisfy the fixed
point property for nonexpansive mapping, which are not strictly convex. However,
it appears to be unknown whether a reflexive and strictly convex space satisfy the
fixed point property for nonexpansive mappings.

(3) Theorem 3.1 also develops the corresponding result of Shioji and Takahashi
[15], Suzuki [16] and Xu [21] to the viscosity method in more general Banach space.

By using Theorem 3.1, we have the following result.

Theorem 3.2. Let E be a reflexive and strictly convex Banach space having a
uniformly Gâteaux differentiable norm. Let C be a nonempty closed convex subset
of E and {T (t) : t ≥ 0} a u.a.r. nonexpansive semigroup from C into itself with
F :=

⋂
t≥0 F (T (t)) 6= ∅. Let {αn} ⊂ (0, 1), {βn} ⊂ [0, 1] and {tn} ⊂ R+ be

sequences satisfying the following conditions:
(C1) αn → 0 (n →∞);

∑∞
n=0 αn = ∞;

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ β ≤ a < 1 for all n ≥ 0 and for some
constant a ∈ (0, 1);

(C3) 0 ≤ t0 < t1 < t2 < · · · < tn < · · · , limn→∞ tn = ∞.
Let f ∈ ∑

C and x0 ∈ C be chosen arbitrarily. Let {xn} be defined by




x0 = x ∈ C,

yn = βnxn + (1− βn)T (tn)xn,

xn+1 = αnf(xn) + (1− αn)yn

(IS)

Then {xn} converges strongly to Q(f) ∈ F , where Q(f) solves a variational inequal-
ity

〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

Proof. First we note that by Theorem 3.1, there exists a solution Q(f) ∈ F of a
variational inequality

〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F,

where Q(f) = limt→∞ zt and zt is defined by (A).
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We proceed with following steps:

Step 1. We show that ‖xn − p‖ ≤ max{‖x0 − p‖, 1
1−k‖f(p) − p‖} for p ∈ F .

Indeed, let p ∈ F and d = max{‖x0 − p‖, 1
1−k‖f(p)− p‖}. Noting that

‖yn − p‖ ≤ βn‖xn − p‖+ (1− βn)‖T (tn)xn − p‖ ≤ ‖xn − p‖,
we have

‖x1 − p‖ ≤ (1− α0)‖y0 − p‖+ α0‖f(x0)− p‖
≤ (1− α0)‖x0 − p‖+ α0(‖f(x0)− f(p)‖+ ‖f(p)− p‖)
≤ (1− α0)‖x0 − p‖+ α0(k‖x0 − p‖+ ‖f(p)− p‖)
≤ (1− (1− k)α0)‖x0 − p‖+ α0‖f(p)− p‖
≤ (1− (1− k)α0)d + α0(1− k)d = d.

Using an induction, we obtain ‖xn+1 − p‖ ≤ d. Hence {xn} is bounded, and so are
{T (tn)xn}, {f(xn)} and {yn}.

Step 2. We show that limn→∞ ‖xn+1 − xn‖. To this end, set γn = (1 −
αn)βn, n ≥ 0. Then it follow from (C1) and (C2) that

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1. (3.1)

Define
xn+1 = γnxn + (1− γn)zn. (3.2)

Observe that

zn+1 − zn =
xn+2 − γn+1xn+1

1− γn+1
− xn+1 − γnxn

1− γn

=
αn+1f(xn+1) + (1− αn+1)yn+1 − γn+1xn+1

1− γn+1

− αnf(xn) + (1− αn)yn − γnxn

1− γn

=
(

αn+1f(xn+1)
1− γn+1

− αnf(xn)
1− γn

)

− (1− αn)[βnxn + (1− βn)T (tn)xn]− γnxn

1− γn

+
(1− αn+1)[βn+1xn+1 + (1− βn+1)T (tn+1)xn+1]− γn+1xn+1

1− γn+1

=
(

αn+1f(xn+1)
1− γn+1

− αnf(xn)
1− γn

)
+

(1− αn+1)(1− βn+1)T (tn+1)xn+1

1− γn+1

− (1− αn)(1− βn)T (tn)xn

1− γn

(3.3)
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=
(

αn+1f(xn+1)
1− γn+1

− αnf(xn)
1− γn

)
+ (T (tn+1)xn+1 − T (tn)xn)

− αn+1

1− γn+1
T (tn+1)xn+1 +

αn

1− γn
T (tn)xn

=
(

αn+1f(xn+1)
1− γn+1

− αnf(xn)
1− γn

)
+ (T (tn+1)xn+1 − T (tn+1)xn)

+ (T (tn+1 − tn)T (tn)xn − T (tn)xn)

− αn+1

1− γn+1
T (tn+1)xn+1 +

αn

1− γn
T (tn)xn.

It follows from (3.3) and (C3) that

‖zn+1 − zn‖ − ‖xn+1 − xn‖
≤ αn+1

1− γn+1
(‖f(xn+1)‖+ ‖T (tn+1)xn+1‖) +

αn

1− γn
(‖f(xn)‖+ ‖T (tn)xn‖)

+ sup
x∈D

‖T (tn+1 − tn)T (tn)x− T (tn)x‖,
(3.4)

where D = {x ∈ C : ‖x− p‖ ≤ max{‖x0 − p‖, 1
1−k‖f(p)− p‖}}. Since {f(xn)} and

{T (tn)xn} are bounded, by (2.3), (C1), (3.1) and (3.4) we obtain that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence by Lemma 2.2, we have

lim
n→∞

‖zn − xn‖ = 0. (3.5)

It then follows from (3.1) and (3.2) that

lim
n→∞

‖xn+1 − xn‖ = 0.

Step 3. We show that limn →∞ ‖xn − T (tn)xn‖ = 0. Indeed, as a consequence
with control condition (C1), we know

‖xn+1 − yn‖ ≤ αn‖f(xn)− yn‖ ≤ αn(‖f(xn)‖+ ‖yn‖) → 0 (as n →∞). (3.6)

By (IS) we have ‖yn − T (tn)xn‖ = βn‖xn − T (tn)xn‖ and so

‖xn − T (tn)xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − T (tn)xn‖
= ‖xn − xn+1‖+ ‖xn+1 − yn‖+ βn‖xn − T (tn)xn‖.

Simplifying it and using Step 2 and (3.6), we obtain

(1− a)‖xn − T (tn)xn‖ ≤ (1− βn)‖xn − T (tn)xn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ → 0 (as n →∞)
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This implies that
‖xn − T (tn)xn‖ → 0 (as n →∞).

Step 4. We show that limn→∞ ‖T (r)xn−xn‖ = 0 uniformly in r ∈ R+. In fact,
it follows from Step 3 and (2.3) that

‖T (r)xn − xn‖ ≤ ‖T (r)xn − T (r)T (tn)xn‖+ ‖T (r)T (tn)xn − T (tn)xn‖
+ ‖T (tn)xn − xn‖

≤ 2‖xn − T (tn)xn‖+ sup
x∈D

‖T (r)T (tn)x− T (tn)x‖

→ 0 (as n →∞)

uniformly r ∈ R+, where D = {x ∈ C : ‖x− p‖ ≤ max{‖x0 − p‖, 1
1−k‖f(p)− p‖}}.

Step 5. We show that lim supn→∞〈(I − f)(Q(f)), J(Q(f)− xn)〉 ≤ 0. To prove
this, let a subsequence {xnj} of {xn} be such that

lim sup
n→∞

〈(I − f)(Q(f)), J(Q(f)− xn)〉 = lim
j→∞

〈(I − f)(Q(f)), J(Q(f)− xnj )〉

and xnj ⇀ p for some p ∈ C. Now let zt be defined by zt = λtf(zt)+ (1−λt)T (t)zt

for each t ∈ R+ and 0 < λt < 1 with limt→∞ λt = 0. Then we can write

zt − xn = (1− λt)(T (t)zt − xn) + λt(f(zt)− xn).

Applying Lemma 2.1, we have

‖zt − xn‖2 ≤ (1− λt)2‖T (t)zt − xn‖2 + 2λt〈f(zt)− xn, J(zt − xn)〉.
Putting

aj(t) =(1− λt)2‖T (t)xnj − xnj‖
× (2‖zt − xnj‖+ ‖T (t)xnj − xnj‖) → 0 (as j →∞)

by Step 4 and using Lemma 2.1, we obtain

‖zt − xnj‖2 ≤ (1− λt)2‖T (t)zt − xnj‖2 + 2λt〈f(zt)− xnj , J(zt − xnj )〉
≤ (1− λt)2(‖T (t)zt − T (t)xnj‖+ ‖T (t)xnj − xnj‖)2

+ 2λt〈f(zt)− zt, J(zt − xnj )〉+ 2λt‖zt − xnj‖2
≤ (1− λt)2‖zt − xnj‖2 + aj(t)

+ 2λt〈f(zt)− zt, J(zt − xnj )〉+ 2λt‖zt − xnj‖2.
The last inequality implies

〈zt − f(zt), J(zt − xnj )〉 ≤
λt

2
‖zt − xnj‖2 +

1
2λt

aj(t).
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It follows that
lim

j→∞
〈zt − f(zt), J(zt − xnj )〉 ≤

λt

2
M, (3.7)

where M > 0 is a constant such that M ≥ ‖zt − xn‖2 for all n ≥ 0 and λt ∈ (0, 1).
Taking the lim sup as t → ∞ in (3.7) and noticing the fact that the two limits are
interchangeable due to the fact that J is uniformly continuous on bounded subsets
of E from the strong topology of E to the weak∗ topology of E∗, we have

lim sup
j→∞

〈Q(f)− f(Q(f)), J(Q(f)− xnj )〉 ≤ 0.

Indeed, letting t →∞, from (3.7) we have

lim sup
t→∞

lim sup
j→∞

〈zt − f(zt), J(zt − xnj )〉 ≤ 0.

So, for any ε > 0, there exists a positive number δ1 such that for any t > δ1,

lim sup
j→∞

〈zt − f(zt), J(zt − xnj )〉 ≤
ε

2
.

Moreover, since zt → Q(f) as t →∞, the set {zt−xnj} is bounded and the duality
mapping J is norm-to-weak∗ uniformly continuous on bounded subset of E, there
exists δ2 > 0 such that, for any t > δ2,

|〈Q(f)− f(Q(f)), J(Q(f)− xnj )〉 − 〈zt − f(zt), J(zt − xnj )〉|
= |〈Q(f)− f(Q(f)), J(Q(f)− xnj )− J(zt − xnj )〉

+ 〈Q(f)− f(Q(f))− (zt − f(zt)), J(zt − xnj )〉|
≤ |〈Q(f)− f(Q(f)), J(zt − xnj )− J(Q(f)− xnj )〉|

+ ‖Q(f)− f(Q(f))− (zt − f(zt))‖‖zt − xnj‖ <
ε

2
.

Choose δ = max{δ1, δ2}, we have for all t > δ and j ∈ N,

〈Q(f)− f(Q(f)), J(Q(f)− xnj )〉 < 〈zt − f(zt), J(zt − xnj )〉+
ε

2
,

which implies that

lim sup
j→∞

〈Q(f)− f(Q(f)), J(Q(f)− xnj )〉 ≤ lim sup
j→∞

〈zt − f(zt), J(zt − xnj )〉+
ε

2
.

Since lim supj→∞〈zt − f(zt), J(zt − xnj )〉 ≤ ε
2 , we have

lim sup
j→∞

〈Q(f)− f(Q(f)), J(Q(f)− xnj )〉 ≤ ε.
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Since ε is arbitrary, we obtain that

lim sup
j→∞

〈(I − f)(Q(f)), J(Q(f)− xnj )〉 ≤ 0.

Step 6. We show that limn→∞ ‖xn −Q(f)‖ = 0. By using (IS), we have

xn+1 −Q(f) = αn(f(xn)−Q(f)) + (1− αn)(yn −Q(f)).

Applying Lemma 2.1, we obtain

‖xn+1 −Q(f)‖2
≤ (1− αn)2‖yn −Q(f)‖2 + 2αn〈f(xn)−Q(f), J(xn+1 −Q(f))〉
≤ (1− αn)2‖xn −Q(f)‖2 + 2αn〈f(xn)− f(Q(f)), J(xn+1 −Q(f))〉

+ 2αn〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉
≤ (1− αn)2‖xn −Q(f)‖2 + 2kαn‖xn −Q(f)‖‖xn+1 −Q(f)‖

+ 2αn〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉
≤ (1− αn)2‖xn −Q(f)‖2 + kαn(‖xn −Q(f)‖2 + ‖xn+1 −Q(f)‖2)

+ 2αn〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉.
It then follows that

‖xn+1 −Q(f)‖2 ≤ 1− (2− k)αn + α2
n

1− kαn
‖xn −Q(f)‖2

+
2αn

1− kαn
〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉

≤ 1− (2− k)αn

1− kαn
‖xn −Q(f)‖2 +

α2
n

1− kαn
M

+
2αn

1− kαn
〈(I − f)(Q(f)), J(Q(f)− xn+1)〉

(3.7)

where M = supn≥0 ‖xn −Q(f)‖2. Put

λn =
2(1− k)αn

1− kαn
and

δn =
Mαn

2(1− k)
+

1
1− k

〈(I − f)(Q(f)), J(Q(f)− xn+1)〉.

From (C1) and Step 5, it follows that λn → 0,
∑∞

n=0 λn = ∞ and lim supn→∞ δn ≤
0. Since (3.7) reduces to

‖xn+1 −Q(f)‖2 ≤ (1− λn)‖xn −Q(f)‖2 + λnδn,

from Lemma 2.3, we conclude that limn→∞ ‖xn − Q(f)‖ = 0. This completes the
proof. ¤
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Corollary 3.1. Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let {T (t) : t ≥ 0} be a u.a.r.
nonexpansive semigroup from C into itself with F :=

⋂
t≥0 F (T (t)) 6= ∅. Let {αn} ⊂

(0, 1), {βn} ⊂ [0, 1] and {tn} ⊂ R+ be sequences satisfying the conditions (C1)–(C3)
in Theorem 3.2. Let f ∈ ∑

C and x0 ∈ C be chosen arbitrarily . Let {xn} be defined
by 




x0 = x ∈ C,

yn = βnxn + (1− βn)T (tn)xn,

xn+1 = αnf(xn) + (1− αn)yn.

Then {xn} converges strongly to Q(f) ∈ F , where Q(f) solves a variational inequal-
ity

〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

Remark 3.3. (1) Theorem 3.2 improves Theorem 2.1 and Theorem 3.1 of Chang
and Yang [4] to the viscosity method under certain different control conditions in
the different Banach space. In particular, Theorem 3.2 removes the conditions∑∞

n=0 |αn+1 − αn| < ∞ and
∑∞

n=0 |βn+1 − βn| < ∞ imposed on control sequences
{αn} and {βn} in Theorem 2.1 and Theorem 3.1 of [4].

(2) Theorem 3.2 also appears to be independent of Theorem 3.1 in Chang and
Yang [4].

(3) In general, the condition (C2) in Theorem 3.2 and the condition
∑∞

n=0 |βn+1

−βn| < ∞ are not comparable; neither of them implies other.
(4) Theorem 3.2 also develops Theorem 3.1 of Aleyner and Reich [1] to the viscos-

ity method. Moreover, by using iterative scheme (IS), the condition
∑∞

n=0 |αn+1 −
αn| < ∞ imposed on control sequence {αn} was removed.

(5) We point out that our results are applicable to, in particular, in all Lp spaces,
1 < p < ∞.
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A note on the generalized q-Euler numbers (2)

By

Kyoung-Ho Park, Young-Hee Kim, and Taekyun Kim

Abstract. Recently, the new q-Euler numbers and polynomials related to
Frobenius-Euler numbers and polynomials are constructed by Kim (see[3]). In
this paper, we study the generalized q-Euler numbers and polynomials attached to
Dirichlet’s character χ related to the new q-Euler numbers and polynomials which
is constructed in [3]. Finally, we will derive some interesting congruence on the
generalized q-Euler numbers and polynomials attached to χ.
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Key Words and Phrases: q-Euler numbers, q-Euler polynomials.

§1. Introduction

Let Z,R and C denote the ring of integers, the field of real numbers and the complex

number field. and let p be a fixed an odd prime number.Assume that q is an indeterminate

in C with q ∈ C with |q| < 1. As the q-symbol [x]q , we denote [x]q = 1−qx

1−q . Recently,

q-Euler polynomials are defined as

[2]q
qet + 1

ext =
∞∑
n=0

En,q(x)
tn

n!
, for |t+ log q| < π, (see [3]).

In the special case x = 0, En,q = En,q(0) are call the n-th q-Euler numbers (see [3]). These

q-Euler numbers and polynomials are closely related to Frobenius-Euler numbers and

polynomials and these numbers are studied by Simsek-Cangul-Ozden, Cenkci-Kurt and

Can and several authors (see [1-2, 18-26]). In this paper, we study the generalized q-Euler

numbers and polynomials attached to χ related to the q-Euler numbers and polynomials,

En,q(x), which is constructed in [3]. Finally, we will derive some interesting congruence

on the generalized q-Euler numbers and polynomials attached to χ.

§2. Congruence for q-Euler numbers and polynomials
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2 A note on the generalized q-Euler numbers (2)

The ordinary Euler polynomials are defined as

ext
2

et + 1
= eE(x)t =

∞∑
n=0

En(x)
tn

n!
, (see [1− 5]),

where we use the technical method notation by replacing En(x) by En(x)(n ≥ 0), symbol-

ically (see [1-2]). Let us consider the generating function of q-Euler polynomials En,q(x)

as follows:

Fq(x, t) =
[2]q

qet + 1
ext =

∞∑
n=0

En,q(x)
tn

n!
, (1)

and we also note that

∞∑
n=0

En,q(x)
tn

n!
=

[2]q
qet + 1

ext =
1− (−q−1)

et − (−q−1)
ext =

∞∑
n=0

Hn(−q−1, x)
tn

n!
,

where Hn(−q−1, x) are called the n-th Frobenius-Euler polynomials (see [3]). From (1),

we note that

lim
q→1

Fq(x, t) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
. (2)

By (1) and (2), we see that

lim
q→1

En,q(x) = En(x).

In (1), it is easy to show that

∞∑
n=0

En,q(x)
tn

n!
= Fq(x, t) =

[2]q
qet + 1

ext =
∞∑
n=0

( n∑
l=0

(
n

l

)
El,qx

n−l
) tn
n!
.

By comparing the coefficients on the both sides, we have

En,q(x) =
n∑
l=0

(
n

l

)
El,qx

n−l, where El,q are the l-th q-Euler numbers. (3)

Let χ be the Dirichlet’s character with conductor d ≡ 1 (mod 2). Then we define gener-

ating function of the generalized q-Euler numbers attached to χ, En,χ,q as follows:

Fq,χ(t) =
[2]q
∑d−1

l=0 χ(l)ql(−1)lelt

qdedt + 1
=
∞∑
n=0

En,χ,q
tn

n!
. (4)

From (4), we note that

lim
q→1

Fq,χ(t) =
2
∑d−1

a=0 χ(a)(−1)aeat

edt + 1
=
∞∑
n=0

En,χ
tn

n!
, (5)
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where En,χ are the n-th ordinary Euler numbers attached to χ. By (4) and (5), we see

that

lim
q→1

En,χ,q = En,χ.

From (4), we can also derive
∞∑
n=0

En,χ,q
tn

n!
= Fq,χ(t) = [2]q

∞∑
k=0

χ(k)(−q)kekt

=
∞∑
n=0

(
[2]q

∞∑
k=0

χ(k)(−q)kkn
) tn
n!

=
∞∑
n=0

(
dn

d−1∑
a=0

(−q)aχ(a)En,qd(
a

d
)
) tn
n!
.

(6)

By comparing the coefficients on the both sides of (6), we have

En,χ,q = [2]q

∞∑
k=0

χ(k)(−q)kkn = dn
d−1∑
a=0

(−q)aχ(a)En,qd(
a

d
). (7)

Finally, we define the generating function of the generalized q-Euler polynomials attached

to χ, En,χ,q(x) as follows:

Fq,χ(x, t) =
∞∑
n=0

En,χ,q(x)
tn

n!
= [2]q

∞∑
k=0

χ(k)(−q)ke(x+k)t. (8)

By (8), we easily see that
∞∑
n=0

En,χ,q(x)
tn

n!
= Fq,χ(x, t) = [2]q

∞∑
k=0

χ(k)(−q)ke(x+k)t

=
∞∑
n=0

(
[2]q

∞∑
k=0

χ(k)(−q)k(x+ k)n
) tn
n!

=
∞∑
n=0

(
dn

d−1∑
a=0

(−q)aχ(a)En,qd(
a+ x

d
)
) tn
n!
.

(9)

Thus, we have

En,χ,q(x) = dn
d−1∑
a=0

(−q)aχ(a)En,qd(
a+ x

d
) =

n∑
`=0

(
n

`

)
xn−`E`,χ,q = [2]q

∞∑
k=0

χ(k)(−q)k(x+ k)n.

(10)

Let d ∈ N with d ≡ 1 (mod 2). Then, we see that

qdFq,χ(d, t) + Fq,χ(t) = [2]q

∞∑
k=0

χ(k)(−q)ke(d+k)t + [2]q

∞∑
k=0

χ(k)(−q)kekt

= [2]q

d−1∑
k=0

χ(k)(−q)kekt.
(11)
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From (11), we have

∞∑
n=0

(
qdEn,χ,q(d) + En,χ,q

) tn
n!

=
∞∑
n=0

{
[2]q

d−1∑
k=0

χ(k)(−q)kkn
} tn
n!
.

Therefore, we obtain the following theorem.

Theorem 1. For q ∈ C with |q| < 1, n ∈ Z+ and d ∈ N with d ≡ 1 (mod 2), we have

qdEn,χ,q(d) + En,χ,q = [2]q

d−1∑
k=0

χ(k)(−q)kkn.

Let p be a positive odd integer and let N ∈ N. Then we have

[2]q

dpN−1∑
a=0

χ(a)(−q)aan = qdp
N

En,χ,q(dp
N) + En,χ,q

= qdp
N

n∑
j=0

(
n

j

)
(dpN)jEn−j,χ,q + En,χ,q

= qdp
N

n∑
j=1

(
n

j

)
(dpN)jEn−j,χ,q + (qdp

N

+ 1)En,χ,q

≡ 2En,χ,q (mod dpN),

because qndp
N ≡ 1 (mod dpN). Therefore, we obtain the following theorem.

Theorem 2. Let p be a positive odd integer and q ∈ C with |q| < 1 and (q − 1, dp) = 1.

For d ∈ N with d ≡ 1 (mod 2), we have

[2]q

dpN−1∑
a=0

χ(a)(−q)aan ≡ 2En,χ,q (mod dpN).

Remark. Define

LE,q(s, χ|x) = [2]q

∞∑
n=0

(−q)nχ(n)

(n+ x)s
,

where s ∈ C, and x 6= 0,−1,−2, · · · . For k ∈ Z+, we have LE,q(−k, χ|x) = Ek,χ,q(x).
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AN ESTIMATION TO THE SOLUTION OF AN
INITIAL VALUE PROBLEM VIA q�BERNSTEIN

POLYNOMIALS

SONUC ZORLU, HUSEYIN AKTUGLU AND MEHMET AL·I ÖZARSLAN�

Abstract. In the present paper, we give an estimation to the
di¤ererence jBn�1(f ; q;x)�Bn(f ; q;x)j, where Bn(f ; q;x) is the
q�Bernstein Polynomials (see [15]) and then we construct an ap-
proximating sequence for the solution of the initial value problem.

1. Introduction

Let C [0; 1] denotes the set of continuous functions on [0; 1] : In [2],
S. Bernstein introduced the following well-known linear, positive oper-
ators

(1.1) Bn (f ;x) =
nX
k=0

f

�
k

n

��
n
k

�
xk (1� x)n�k

and he showed that if f 2 C [0; 1] ; then Bn (f ;x)� f (x) where �� "
represents the uniform convergence. One can �nd a detailed monograph
about the Bernstein Polynomials in [5].
The q�generalization of the Bernstein Polynomials was introduced

by G. M. Phillips, in [14], by the following way:

(1.2) Bn (f ; q;x) =
nX
r=0

fr

�
n
r

�
xr

n�r�1Y
s=0

(1� qsx);

where an empty product is 1 and fr = f([r]=[n]): In (1.2), the value [r]
denotes the q�integer of r, which is given by

[r] =

8<:
1� qr
1� q ; q 2 R

+ � f1g
r; q = 1

:

Key words and phrases. q-Bernstein Polynomials, Initial Value Problems, .
2000 Mathematics Subject Classi�cation. 41A25, 41A36.
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2 SONUC ZORLU, HUSEYIN AKTUGLU AND MEHMET AL·I ÖZARSLAN�

Also the q�factorial of the number r has the de�nition

[r]! =

�
1[2]:::[r]; r = 1; 2; :::
1; r = 0

;

and the q�binomial coe¢ cient is de�ned by�
n
r

�
=

[n]!

[r]![n� r]! :

It is clear that the operators Bn (f ; q;x) de�ned by (1.2) are the gen-
eralization of the Bernstein polynomials de�ned by (1.1), since

lim
q!1

Bn (f ; q;x) = Bn (f ;x) :

For the q�Bernstein polynomials Bn (f ; q;x) de�ned by (1.2), Phillips
[14] obtained the moments as

Bn (1; q;x) = 1; Bn (t; q;x) = x; Bn
�
t2; q;x

�
= x2 +

x(1� x)
[n]

:

On the other hand, since the operators Bn (f ; q;x) are monotone, using
the well known Bohman-Korovkin theorem, Phillips gave the following
convergence theorem:

Theorem 1.1. (Phillips [14]) Let 0 < q = qn < 1 and qn ! 1 as
n ! 1: Then for any f 2 C[0; 1]; the operators Bn (f ; q;x) converges
uniformly to f(x) on [0; 1]:

In order to give the properties of the derivative, it is convenient to
rewrite the operators Bn (f ; q;x) in the following form (see [14] and
[15])

Bn (f ; q;x) =
nX
r=0

�
n
r

�
�rf0x

r

where the q�di¤erences are de�ned through the following reccurence
formula:

�0fi = fi

for i = 0; 1; :::; n and

�r+1fi = �
rfi+1 � qr�rfi

for k = 0; 1; :::; n � i � 1: One can easily show by indution on r that
q�di¤erences satisfy the relation

�rfi =

rX
j=0

(�1)jqj(j�1)=2
�
r
j

�
fi+r�j:
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In [15], in the examination of the properties of the derivative, Phillips
introduced the following linear positive operators:

B�n�1(f ; q;x) =

n�1X
r=0

f

�
[r]

[n]

��
n� 1
r

�
xr

n�r�2Y
s=0

(1� qsx)

=

n�1X
r=0

�
n� 1
r

�
�rf0x

r: (1.3)

Also it was shown in [15] that, B�n�1(f ; q;x) converges uniformly to
f on [0; 1] as qn ! 1, since

B�n�1(1; q;x) = 1 (n � 1); B�n�1(t; q;x) = x�
qn�1

[n]
x (n � 2);

B�n�1(t
2; q;x) = x2 +

1

q[n]

�
1� 1

[n]

�
+
1

q2

�
1� q2 � 2 + q

[n]
+
1 + q

[n]2

�
x2 (n � 3): (1.4)

Investigation the properties of q�based operators has been an active
research �eld during the last decade ( see [4], [20], [7], [8], [9], [10], [16],
[17], [18], [12], [19], [13]). Detailed review of the results obtained until
2007 and a number of open problems can be found in [11].
In this paper, we obtain an estimation to the di¤erence

jBn�1(f ; q;x)�Bn(f ; q;x)j ;

which is needed in the approximation to a solution of the initial value
problem. Finally, using the q�Bernstein polynomials, we introduce a
sequence which converges to a solution of the initial value problem.

2. An estimation to the difference jBn�1(f ; q;x)�Bn(f ; q;x)j
The aim of this section is to �nd an estimation to the di¤erence

jBn�1(f ; q;x)�Bn(f ; q;x)j where Bn(f ; q;x) is the Generalized Bern-
stein polynomials.
In [[6], p. 10, eq. (3.2) and (3.3)], we have the following equality

Bn�1(f ; q;x)�Bn(f ; q;x) =
n�1X
r=1

�
n
r

�
arx

r

n�r�1Y
s=0

(1� qsx)

where

ar =
[n� r]
[n]

f

�
[r]

[n� 1]

�
+ qn�r

[r]

[n]
f

�
[r � 1]
[n� 1]

�
� f

�
[r]

[n]

�
:
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The following lemma is needed for obtaining an estimation to the dif-
ference jBn�1(f ; q;x)�Bn(f ; q;x)j :

Lemma 2.1. (Cheney and Sharma [3]) Let jf 00j � k; 0 � �; � and
�+ � = 1; then

j�f (x) + �f (y)� f (�x+ �y)j � k

4
(x� y)2 :

Theorem 2.2. Let f : [0; 1]! R is a function such that jf 00j � k; then
we have

jBn�1(f ; q;x)�Bn(f ; q;x)j �
k

4q2[n� 1]2 :

Proof. Choosing

� =
[n� r]
[n]

; � = qn�r
[r]

[n]
; x =

[r]

[n� 1] ; y =
[r � 1]
[n� 1]

one can easily see that �+ � = 1 and �x+ �y =
[r]

[n]
. Therefore using

Lemma 2.1, we obtain that

jBn�1(f ; q;x)�Bn(f ; q;x)j =
n�1X
r=1

�
n
r

�
arx

r

n�r�1Y
s=0

(1� qsx)

� k

4

n�1X
r=1

�
q2r�2

[n� 1]2

��
n
r

�
xr

n�r�1Y
s=0

(1� qsx)

� k

4q2[n� 1]2 :

Whence the result. �

Theorem 2.3. Let yn(x) be de�ned through the following reccurence
relation:

(3.1) y0(x) = y0; yn(x) = y0 +

xZ
0

Bn [f(t; yn�1(t)); qn; s] ds:

where f has continuous partial derivatives of �rst order and 0 < qn � 1
with qn ! 1. Also assume that f and its �rst derivatives have the same
common bound M in the strip 0 � x � 1;�1 < y <1: Then we have

jy0n(x)j �M; jy00n(x)j < 2(M + �)

where � is a positive real number.
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Proof. Since Bn [1; qn;x] = 1; it is obvious that

jy0n(x)j = Bn [f(t; yn�1(t)); qn;x] � sup
0�x�1

f(x; yn�1(x)) �M:

To prove the second inequality, let

B�n�1(f ; qn;x) =
n�1X
r=0

fr

�
n� 1
r

�
xr

n�r�2Y
s=0

(1� qsnx)

=

n�1X
r=0

�
n� 1
r

�
�rf0x

r:

Now, letting F (x) = f(x; yn�1(x)); it can be computed that

y00n(x) = B
0
n (F ; qn;x) = B

�
n�1([n]�Fr; qn;x)

+
n�1X
r=0

�
r + 1

[r + 1]
� 1
��

n� 1
r

�
�r([n]�Fr)x

r:(3.2)

Recalling the inequality ���� r + 1[r + 1]
� 1
���� � 1

3n

given in [15], we get, using (3.2)

y00n(x) �
�
1 +

1

3n

�
B�n�1([n]�Fr; qn;x)

� 2B�n�1([n]�F ; qn;x)

= 2

"
n�1X
r=0

F 0r

�
n� 1
r

�
xr

n�r�2Y
s=0

(1� qsnx)

+

n�1X
r=0

([n]�Fr � F 0r)
�
n� 1
r

�
xr

n�r�2Y
s=0

(1� qsnx)
#
:

Since f has continuous partial derivatives of �rst order , by the mean
value theorem, there exists a real number �(0 < � < 1) such that

F 0r � [n]�Fr = F 0
�
[r]

[n]

�
� qrnF 0

�
[r] + �qrn
[n]

�
:

Since f has continuous partial derivatives and qn ! 1, given any � > 0;
there exists a positive integer N = N(�) such that j[n]�F � F 0rj < �
for 0 � r � n� 1:
Therefore we get

jy00n(x)j < 2(M + �)
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since
B�n�1(F

0
r; q;x) � sup

0�x�1
jF 0rj �M:

�

3. Approximation to a Solution of the Initial Value
Problem

In this section, inspiring from Arama�s theorem [1], it is aimed to
show that the sequence yn(x) given by (3.1) approximates to a solution
of the initial value problem.

Theorem 3.1. The sequence yn(x) de�ned by (3.1) converges uni-
formly to a solution of the initial value problem

y0 = f(x; y); y(0) = y0

for x 2 [0; 1]; provided that f and its �rst two derivatives are bounded
in the strip 0 � x � 1;�1 < y < 1; that f has continuous partial
derivatives of �rst order and that f satis�es

jf(x; y1)� f(x; y2)j � � jy1 � y2j
where � < 1:

Proof. First of all, it will be shown that the series

y0 +
1X
n=1

[yn(x)� yn�1(x)]

converges uniformly in [0; 1]: Let �n(x) = yn(x)� yn�1(x): Then

j�n(x)j �
xZ
0

jBn [f(t; yn�1(t)); q; s]�Bn�1 [f(t; yn�2(t)); q; s]j ds

�
xZ
0

jBn [f(t; yn�1(t)); q; s]�Bn�1 [f(t; yn�1(t)); q; s]j ds

+

xZ
0

jBn�1 [f(t; yn�1(t)); q; s]�Bn�1 [f(t; yn�2(t)); q; s]j ds

= I1 + I2:

Using Theorem 3.2, we can write that

(4.1) I1 �
xZ
0

k

4q2[n� 1]2ds �
k

4q2[n� 1]2
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since x 2 [0; 1]:
Now, let us verify that

k = sup
0�x�1

���� d2dx2f(x; yn(x))
����

is �nite. Since
d2

dx2
f(x; yn(x)) = f11 + (2f12 + f22y

0
n) y

0
n + f2y

00
n

then using Theorem 3.3 and the hypothesses of the theorem, we obtain���� d2dx2f(x; yn(x))
���� < M + (2M +M2)M + 2M(M + �):

On the other hand, using monotonicity, we can write

I2 �
xZ
0

Bn�1 (jf(t; yn�1(t))� f(t; yn�2(t))j ; q; s) ds:

We get, from the hypothessis of the theorem that,

jf(t; yn�1(t))� f(t; yn�2(t))j � � jyn�1(t)� yn�2(t)j = � j�n�1(t)j :
Thus we have

(4.2) I2 � � sup
0�t�1

j�n�1(t)j :

Since

jyn(x)j � jy0j+
xZ
0

jBn [f(t; yn�1(t)); q; s]j ds

� jy0j+M
then

sup
0�x�1

j�n(x)j � 2 (jy0j+M) :

From (4.1) and (4.2), it is obtained that

j�n(x)j � � sup
0�t�1

j�n�1(t)j+O(q�2n [n� 1]�2):

This shows that yn(x) converges to a function y(x) uniformly in [0; 1]:
Now, let us show that y(x) is a solution of the initial value problem.

Di¤erentiating term by term, we get

j�0n(x)j � jBn [f(t; yn�1(t)); q;x]�Bn�1 [f(t; yn�1(t)); q;x]j
+ jBn�1 [f(t; yn�1(t)); q;x]�Bn�1 [f(t; yn�2(t)); q;x]j

� k

4q2[n� 1]2 + � sup0�t�1
j�n�1(t)j :
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Considering that yn(x)! y(x); we conclude that

y0(x) = lim
n!1

y0n(x) = lim
n!1

Bn [f(t; yn�1(t)); q;x] :

Finally, taking

An(x) = Bn [f(t; yn�1(t)); q;x]� f(x; y(x))

and considering the following inequality

jAn(x)j � jBn [f(t; yn�1(t)); q;x]�Bn [f(t; y(t)); q;x]j
+ jBn [f(t; y(t)); q;x]� f(x; y(x))j

completes the proof since, the �rst term at the right hand side does
not exceed

sup
0�t�1

jf(t; yn�1(t))� f(t; y(t))j � � sup
0�t�1

jyn�1(t)� y(t)j

and the second term converges to zero. �
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Direct Integration Preconditioning For Solving  
Optimal Control Problems  

M. El-Kady1 
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B. S. El-desouky, M. Biomy 2 
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, 

SUEZ CANAL University, PORT-SAID, EGYPT 
 

Abstract: In this paper, direct integration preconditioning is proposed 
to solve optimal control problems governed by ordinary differential 
equations.  Legendre approximations are used to reduce the problem to a 
constrained optimization problem. Error estimation for the Legendre 
approximations is derived and a technique that gives an optimal 
approximation of the problems is introduced. Numerical results are 
included to confirm the efficiency and accuracy of the method. 

 

Keywords: Spectral methods; approximation by Legendre polynomials; optimal control  
           problems. 
 

1. Introduction 
Spectral methods using expansion in orthogonal polynomials such as Chebyshev or 

Ultraspherical polynomials have proven successful in the numerical approximation of various 
boundary value problems; see for instance, Canuto et al [1], Gottlib and Orszag [10] and 
Szegö [12]. If these polynomials are used as basis functions, then the rate of decay of the 
expansion coefficients is determined by the smoothness properties of the function being 
expanded. This choice of trial functions is responsible for the superior approximation 
properties of spectral methods when compared with finite difference and finite element 
methods. For spectral and pseudospectral methods, explicit expressions for the expansion 
coefficients of the derivatives in terms of the expansion coefficients of the solution are 
needed. Doha [2] obtained a general formula when the basis functions are the Ultraspherical 
polynomials. In [6], the author introduced a Chebyshev spectral procedure for solving 
ordinary and partial differential equations by transforming them into integral formulae. He 
used El-gendi [3] to obtain an approximation for the finite integrals. 

Optimal control problems governed by ordinary differential equations are discussed by 
many authors, among them Martin [5], [8], [11] and [13]. A variety of numerical methods for 
solving this optimal control problem exists. The most common approach is to replace the 
unknowns of the problem by some approximation function and to determine the unknowns by 
minimizing the resulting constrained optimization problem. Martin [11] consider the problem 
of time-optimal boundary control of a one-dimensional vibrating system subject to a control 
constraint that prescribes an upper bound for the 2L -norm of the image of the control function 
under a Volterra operator. He uses Newton's method to compute the zero of the optimal value 
function of certain parametric auxiliary problems, where the steering time is the parameter. 

                                                 
1E-mail: m_el_kady@hotmail.com  
2E-mail: yousef_eldest@yahoo.com   
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The proposed algorithm describes an alternative technique. The system dynamics, the 
state variables can be obtained by transforming the boundary value problem for ordinary 
differential equations into integral formulas. Start with a Legendre spectral approximation for 
the highest-order derivative and generate approximations to the lowest-order derivatives 
through successive integrations. Therefore, the differential and integral expressions that arise 
in the system dynamics, the performance index, the initial (or boundary) conditions (and even 
for general multipoint boundary conditions) are converted into algebraic equations with 
unknown coefficients. This algorithm is of the finite element type and results in static 
optimization problems with a relatively small number of variables. This approach yields a 
static optimization problem. This means that the optimal control problem is reduced to a 
parameter static optimization problem, which consists of the minimization of an objective 
function, subject to a system of algebraic constraints that are linear in the state variables, 
irrespective of whether the dynamic system itself is linear or nonlinear. In such cases, the 
static optimization problem can be efficiently performed using the penalty partial quadratic 
interpolation technique [4]. They derived error estimation for this approximation, and 
introduced an algorithm that gives an optimal approximation of the integrals. 

The paper is organized as follows: In section 2, optimal control problem formula and 
some useful notations are presented. In section 3, the Legendre pseudospectral integration is 
presented to define an optimal preconditioner. The direct integration preconditioning 
technique is presented in section 4.  In section 5, error estimation of the preconditioning 
Legendre approximations is presented. Two numerical examples of optimal control problems 
are solved in section 6.  

  
2. Optimal control problems with linear terminal constraints  

We consider the problem of finding the control ( )u t  which minimizes the cost 
functional.  

( ) ( )(1) ( 1) (1) ( 1)

0

, ,..., , , ,..., , ,
T

n nJ h x x x T g x x x u dτ τ− −= + ∫ ,  (2.1) 

Subject to  
( )( )(1), ,..., , , 0nF x x x u τ = , T≤τ≤0 ,    (2.2) 

where ( ) ,
r

r
r

d xx
dx

= 1, 2,...,r n= . 

and linear initial constraints, 
( )(1) (2) ( 1)(0), (0), (0),..., (0) 0,nL x x x x − =     (2.3) 

and terminal constraints, 
( )(1) (2) ( 1)( ), ( ), ( ),..., ( ) 0,nM x T x T x T x T− =     (2.4) 

Where, the time T is assumed to be fixed, L  and M  are vector functions of dimension l  and 
m , respectively, with 2n l m n≤ + ≤ . The state variable ( ) Nx Rτ ∈ , the control 
variable ( ) Mu Rτ ∈ , ( ) Ng Rτ ∈  are real valued continuous functions on [0, ]T . 

Before starting to reformulate the optimal control problem, we need to change the time 
interval [ , ]0 Tτ ∈  into [ 1,1]t ∈ −  by substituting               

                             2 1t
T
τ

= −  
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in order to use Legendre polynomials, defined on the interval [ 1,1]− . Hence the optimal 
control problem becomes: Minimize  

( ) ( )
1

(1) ( 1) (1) ( 1)

1

, ,..., ,1 , ,..., , ,
2

n nTJ h x x x g x x x u t dt− −

−

= + ∫    (2.5) 

Subject to  
( )(1)2 2, ( ) ,..., ( ) , , 0nnF x x x u t

T T
  = 
 

, 1 1t− ≤ ≤      (2.6) 

and linear initial and terminal constraints, 
(1) ( )2 2( 1), ( ) ( 1),..., ( ) ( 1) 0,n nL x x x

T T
 − − − = 
 

      (2.7) 

(1) ( )2 2(1), ( ) (1),..., ( ) (1) 0n nM x x x
T T

  = 
 

.      (2.8) 

 
3. Pseudospectral Legendre integration approximations [7] 

We present here the Legendre approximations of any function ( ) [ 1,1]f t C∞∈ − , using ( 1)N +  
Legendre-Gauss-Lobatto (LGL) points as: 2{ : (1 ) ( ) 0, 0,1,..., }i N iit t P t i N′− = = . 

  
j 0

( ) ( ) ,
N

j jf x a P t
=

= ∑        (3.1) 

where 
( )

[ ]2
0 1

( )2 1
( 1) ( )

N
j k k

j
k N k

P t f tja
N N P t= −

+
≅

− ∑ ,    0,1,...,j N= .   (3.2) 

Approximate the integrals of a function )(xf  by interpolating the function with a polynomial 

N fΡ  at Legendre-Gauss-Lobatto (LGL) points.  

The values of the integrals N
1 1 1

( f )( ) ...P....
t t t

n times

t dtdt dt
− − −

−

∫ ∫ ∫  at the same ( 1)N +  points, in fact, be 

expressed as a fixed linear combination of the given function values and the whole 
relationship may be written in matrix form 

  [ ]( )
N

1 1 1

( f )( ) ...P....
t t t

n
N

n times

t dtdt dt B f
− − −

−

 
  = 
  

Ρ∫ ∫ ∫      

 
Setting [ ] [ ]N 0 1f ( ), ( ),..., ( )P T

Nf t f t f t= as the vector consisting of values of )(xf at ( 1)N +  

collocation points, 
0

N N N
1 1 1

( f )( ) ( f )( ) ,..., ( f )( )P P P
N

Tt tt

t dt t dt t dt
− − −

  
=   
    

∫ ∫ ∫  as the values of the 

integrals at the collocation points and ( ) ( ) , , 0,1,...,n n
ijB b i j N= = as the collocation integral 

matrix; 

 
[ ]

[ / 2]
( ) 2 2

2
0 0 1

2 1 ( 2 )!( ) [ ( 1) ]
( 2 )!( 1) ( )

jN
n j j m n j m n

ik m j k i
j m N k

j j mb c P t t
j m nN N P t

− + − +

= = −

+ −
= − − − +− 
∑∑  
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21

1 0

( 1) ( 2 )!
( )! !( 2 )!

j m n r sn r
i

r s

j n t
r s s j m n r

− + −−

= =

− −
− − − + − 
∑∑ ,  0 ,i k N≤ ≤ .    (3.3) 

and 

 
( ) ( )
( 1) (2 2 )!

2 ! 2 ! !

k
n
k n

n kc
n k n k k
− −

=
− −

. 

 
4. Direct integration preconditioning technique 

Legendre spectral approximation is adopted here to approximate the solution of the problem. 
We start with Legendre approximation for the highest-order derivative, ( )nx , and generate 
approximations to the lowest-order derivatives ( 1)nx − ; ( 2)nx − ;… and (0)x , through successive 
integrations of the approximation of the highest-order derivative, as follows: 
Suppose that 

( ) ( ) ( )nx t t= Ψ        (4.1) 

where ( ) N,...,,i,ti 10=Ψ  are some unknowns. By integration, and making use of the given 
conditions, we get  

  ( ) ( ) ( )1
0

1

t
nx t t dt c−

−

= Ψ +∫ , 

( ) ( ) ( )2
0 1

1 1

t t
nx t t dtdt c t c−

− −

= Ψ + +∫ ∫  

  

( ) ( )
1

01 1 1 1

... ...
t t t t n

r
n r

r
n times

x t t dtdt dt c t
−

−
=− − − −

= Ψ +∑∫ ∫ ∫ ∫ .     (4.2) 

Now we apply present Legendre integral approximation, then we have 

                       ( ) ( ) ( )1
0

0

N
n

i ij j
j

x t b t c−

=

= Ψ +∑ , 0,1,...,i N=  

( ) ( ) ( )2 (2)
0 1

0

N
n

i ij j i
j

x t b t c t c−

=

= Ψ + +∑          

  

( ) ( )
1

( )

0 0

N n
n r

i ij j r i
j r

x t b t c t
−

= =

= Ψ +∑ ∑ .      (4.3)  

where the constants rc , 0,1,.., 1r n= −  may be defined from the given conditions. Making use 
of the approximation for the control variable as ( ) ( )i iu t u t= , the optimal control problem 
(2.5)-(2.8) are replaced by the constrained optimization problems  
Minimize  

( ) ( ) ( )
1

(1) ( 1) ( )
0

0 0 0 0

, ,..., ,1 ,..., , ( )
2

N N n N
n n r

Ni ij j r i ij j i
i j r j

TJ h x x x b g b t C t b t C u t
−

−

= = = =

 
= + Ψ + Ψ + 

 
∑ ∑ ∑ ∑ (4.4) 

Subject to  

( ) ( )
1

( ) 1
0

0 0 0

2 2,..., ( ) , ( ) ( ), ( ) 0
N n N

n r n n
ij j r i ij j i i

j r j
F b t C t b t C t u t

T T

−
−

= = =

    
Ψ + Ψ + Ψ =         

∑ ∑ ∑ .   (4.5) 
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The constrained optimization problem is then takes the form: 
Minimize [ ]iJ J= α , 0,...,i N= ,        (4.6)       
Subject to [ ] 0,iF =α 0,1,..., ,i N=         (4.7)  

where [ ]0 1( ) , ( ),..., ( )i Nt t tΨ Ψ Ψ=α .      
Equations (4.6) and (4.7) are solved by using penalty partial quadratic interpolation 

technique [4]. We therefore use either  

1 1 1( , ) ( , )N N N NJ J εγ λ γ λ+ + <−      Or    
1

2
2

2
0

N

i
i

F ε
=

 
 
 

<∑  

or both to decide whether the computed solution in close enough to the optimal solution. 
 

5. Error Estimation of the Preconditioning Legendre Approximations 
Theorem 5.1: 

Let ( )f t  be approximated by Legendre polynomials, then there exists a number 

( ) [ 1,1]tξ ξ= ∈ −  such that: 

( ) ( )
0

N

k k
k

f t a P t
=

= ∑ , 

( )( )

01 1 1
n times

... f ( ) d d ...d  ( , )
it t t N

n
ik k n i

k
t t t t b f t E t ξ

=− − −
−

= +∑∫ ∫ ∫ ,    (5.1) 

where 
(N 1)

i 1
1 1 1 1

n times

( )( , )= ... ( )d d ...d(N 1)!

it t t

n N
N

fE t P t t t tK
ξξ

+

+
+ − − −

−

+ ∫ ∫ ∫     (5.2) 

and     

1
(2 1)!

2 ( 1)! !N N

NK
N N+

+
=

+
. 

Proof: See Ref. [7]. 
 
Theorem 5.2 

 Assume that the optimal control problem (2.5)-(2.8) is approximated by Legendre 
integral method and assuming that ( ) ( )1n Nx t+ +  is bounded i.e. 

                    ( ) ( )1n Nx t D+ + ≤ ,       (5.3) 

 then there exists a number ( ) [ 1,1]tξ ∈ − such that 

1 1( 1)!
1 1 1

( , ) P ( ) .......N

t t ti
D

i NN K

n times

E t t dtdt dtξ
+ ++

− − −
−

≤ ∫ ∫ ∫ ,      (5.4) 

( )F iE t =  
1

( )

0 0
( ) ( , ) ,

N n
n r

ij j n i r i
j r

F b t E t C tξ
−

= =


Ψ + +


∑ ∑

2
( 1)

1
0 0

( )  ( , ) ,
N n

n r
ij j n i r i

j r
b t E t C tξ

−
−

−
= =

Ψ + +∑ ∑   

0 1
0

..., ( )  ( , ) ( ),
N

ij j i i
j

b t C E t u tξ
=


Ψ + + 


∑  
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1 2
( ) ( 1)

0
0 0 0 0 0

( ) , ( ) ,..., ( ) , ( )
N n N n N

n r n r
ij j r i ij j r i ij j i

j r j r j
F b t C t b t C t b t C u t

− −
−

= = = = =

 
− Ψ + Ψ + Ψ + 

 
∑ ∑ ∑ ∑ ∑ .(5.5) 

Proof: 
Firstly, let ( , )iE t ξ  denote the error in approximation ( )ix t  with (4.3), namely  

( ) ( )

01 1 1

( ) ... ( )....
t t t Ni

n
i ij j

j
n times

E t t dtdt dt b t
=− − −

−

= Ψ − Ψ∑∫ ∫ ∫ ,    (5.6) 

 then, making use of (5.1) and (5.2), the error in the approximation (4.3) can be written as: 

 
( 1)

1
1 1 1 1

( )( , ) P ( ) ...( 1)! ....
tN t ti

i N
N

n times

E t t dtdt dtN K
ξξ

+

+
+ − − −

−

Ψ=
+ ∫ ∫ ∫  

 
(n 1) ( )

1
1 1 1 1

P ( ) ...( 1)! ....
t t tiN

N
N

n times

x t dtdt dtN K
ξ+ +

+
+ − − −

−

= + ∫ ∫ ∫  

Thus, making use of (5.3),  
 

1
1 0 0 0

( , ) P ( ) ...( 1)! ....
t t ti

D
i N

N
n times

E t t dtdt dtN Kξ +
+

−

≤ + ∫ ∫ ∫ . 

Secondly, the original constraint (2.6) in view of (4.2) becomes 
 

( ) ( )
1 2

0 00 0 0 0 0 0
( 1)

2 2, ( ) ,..., ( ) ( ), ( ) 0.... ....
t tt t t tn ni i

r r n
r i r i i i

r r
n times n times

F t dt C t t dt C t t u t
T T

− −

= =
− − −

    
    Ψ + Ψ + Ψ =    
    
    

∑ ∑∫ ∫ ∫ ∫ ∫ ∫  

 
Making use of (5.1) then,  
  

 
1

( )

0 0
( )  ( , ) ,

N n
n r

ij j n i r i
j r

F b t E t C tξ
−

= =


Ψ + +


∑ ∑  

 

    1
1 0

0

2 2..., ( ) ( )  ( , ) , ( ) ( ), ( ) 0
N

n n
ij j i j i

j
b t E t C t u t

T T
ξ−

=


Ψ + + Ψ =


∑ .   (5.7) 

Subtracting (4.5) from (5.7), we obtain 

( )F iE t =
1

( )

0 0
( )  ( , ) ,

N n
n r

ij j n i r i
j r

F b t E t C tξ
−

= =


Ψ + +


∑ ∑  

1
1 0

0

2 2..., ( ) ( )  ( , ) , ( ) ( ), ( )
N

n n
ij j i j i

j
b t E t C t u t

T T
ξ−

=


Ψ + + Ψ −


∑  

( ) ( )
1

( ) 1
0

0 0 0

2 2,..., ( ) , ( ) ( ), ( ) .
N n N

n r n n
ij j r i ij j i i

j r j
F b t C t b t C t u t

T T

−
−

= = =

    
Ψ + Ψ + Ψ         

∑ ∑ ∑  

with ( , )n iE t ξ  is defined in (5.2). 
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6. Numerical Examples  
Now, we consider the following problems to show the effectiveness of our technique. 

Example 1:  
Among all piecewise differentiable control variables, find the optimal control ( )tu  which 
minimizes 

( ) ( ) ( )
1

2 2 2

0

0.005J x x u dτ τ τ τ′ = + + ∫ ,     (6.1) 

 subject to ( ) ( ) ( ) 0x x uτ τ τ′′ ′+ − = ,      (6.2)    

( ) ( )28 0.5 0.5 0x τ τ− − + ≤ .      (6.3) 
And 

( ) ( )0 0, 0 1x x′= = − .       (6.4) 
The first step in solving this problem by the proposed method is to transform the time interval 
into t∈[-1, 1]. This will lead to the following problem. 
Minimizes 

( ) ( ) ( )
1

2 2 2

1

1 4 0.005
2

J x t x t u t dt
−

′ = + + ∫ ,    (6.5) 

Subject to ( ) ( ) ( )4 2 0x t x t u t′′ ′+ − = ,      (6.6) 

( ) 22 0.5 0x t t− + ≤ .       (6.7) 
And 

( ) ( )0 0, 0 1x x′= = − .       (6.8) 
We give the approximation (4.1)-(4.3) for the state variable ( )x t  so 
Let ( ) ( )i i ix t t′′ = Ψ = Ψ  

( ) ( ) 1
1

t

x t s ds c
−

′ = Ψ +∫  

( ) ( ) 1 2
1 1

t t

x t s dsds c t c
− −

= Ψ + +∫ ∫ . 

By using Legendre method and condition (6.8), we have 1 2 1c c= = −  then 

( )
0

( ) 1
N

i ik k
k

x t b t
=

′ = Ψ −∑ , 

( ) (2)

0

( ) 1
N

i ik k i
k

x t b t t
=

= Ψ − −∑ . 

We also use one of the approximations, ( )iu t , 0,1,...,i N= for the control variable, and then 
the problem can be converted to the following constrained optimization problem: 
Minimize                       

2 2
(2) 21

2
0 0 0

1 4 1 0.005 ( )
N N N

Ni ik k i ik k i
i k k

J b b t b u t
= = =

    = Ψ − − + Ψ − +         
∑ ∑ ∑ , (6.9) 

 subject to ( )
0

4 1 ( ) 0
N

i ik k i
k

t b u t
=

 
Ψ − Ψ − − =  

∑ .     (6.10) 

 We approximate the inequality constraint by adding a slack variable as we show previously, 
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                (2) 2 2

0
1 2 0.5 0

N

ik k i i N i
k

b t t A +
=

 
Ψ − − − + + = 

 
∑ .     (6.11) 

Solving this problem (6.9)-(6.11) using the proposed method by 9th  order Legendre, we find 
the optimal value to be * 0.71426412J = . The optimal state and the optimal control are shown in 
Figures (1) and (2), respectively. Elnagar [8] used of Cell Averaging Chebyshev method by 9th  
order Chebyshev for solve this example and have * 0.74096103J = .  

 

Fig. (1) state variable x(t) of example (1)
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Fig. (2) control varaible u(t) of example (1)
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Example 2: The Controlled Linear Oscillator 
Consider the optimal control problem of a liner oscillator the performance index 

                      2
01 ( )

2 T
u dJ τ τ

−
= ∫                                                               (6.12) 

is minimized over all admissible control functions ( )u τ . 

Subject to the differential equation 
                      2( ) ( ) ( ),x x uτ ω τ τ+ =  0T τ− ≤ ≤      (6.13) 
with the boundary conditions 

0( ) , (0) 0x T x x− = =  
The first step in solving this problem by the proposed method is to transform the time interval 

into [ 1,1]t∈ −  by 
2

( 1)T tτ = − . This will lead to the following problem: 
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Minimize   
1 2

1
( )

4
TJ u t dt

−
= ∫        (6.14) 

Subject to  
2

2(
4

( ) ( )),T xx t u tω +′′ = −                                  (6.15) 

With the boundary conditions  
0( 1) xx − =  and (1) 0x = .              (6.16) 

For solve the problem let  
( ) ( )i i ix t t′′ = Ψ = Ψ   

and use the approximation Eqs. (4.1)-( 4.3) for the state variable as: 

( ) ( ) 1
1

t

x t s ds c
−

′ = Ψ +∫  

( ) ( ) 1 2
1 1

t t

x t s dsds c t c
− −

= Ψ + +∫ ∫ . 

using Legendre method, we get  

( ) 1
0

( )
N

i ik k
k

x t b t c
=

′ = Ψ +∑ , 

  ( ) (2)
1 2

0
( )

N

i ik k i
k

x t b t c t c
=

= Ψ + +∑  

From the boundary condition Eq. (6.16), 
( ) 1 2 01x c c x− = − + = , 

( ) (2)
1 2

0
1 ( ) 0

N

Nk k
k

x b t c c
=

= Ψ + + =∑   

then, 
(2)

2 0
0

1 ( )
2

N

Nk k
k

c x b t
=

 = − Ψ 
 

∑  and (2)
1 0

0

1 ( )
2

N

Nk k
k

c x b t
=

−  = + Ψ 
 

∑ , 

hence 

( ) (2) (2)
0 0

0 0

1 1( ) (1 ) (1 ) ( )
2 2

N N

i ik k i i Nk k
k k

x t b t x t x t b t
= =

= Ψ + − − + Ψ∑ ∑  

then the problem can be converted to the following constrained optimization problem: 

Minimize  

2

0

( )
4

N

Ni i
i

b u tTJ
=

= ∑                                           (6.17) 

Subject to 
2

2 (2) (2)
0 0

0 0

1 1( ) ( ) (1 ) (1 ) ( )
4 2 2

( ) 0
N N

i ik k i i Nk k i
k k

Tt b t x t x t b t u tω
= =

  Ψ Ψ + − − + Ψ + =  
  

− − ∑ ∑ .  (6.18) 

At 1ω = , 2T =  and 0 0.5x = , we get the optimal results of the cost functional 
* 0.18485854J =  with 18N = . Table (1) has optimal value of the cost functional *J  for 
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different values of N . The optimal state and the optimal control are shown in Figs. (3) and 
(4), respectively. 
 

Table (1): *J of present method with other methods 
 
 

FIG.(3) State varible x(t) of example (2)
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fig. (4) control variable u(t) of example (2)

0

0.1

0.2

0.3

0.4

0.5

0.6

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
time(t)

 
 

7. Conclusion 
 The basic idea of our present method is to transform the optimal control problems 
governed by ordinary differential equations to a constrained optimization problem, by using 
Legendre approximations.  We solve the resulting constrained optimization problem since it is 
easier than solving the original problem. Here we use (PQI) method, which may be more 
suitable in such case, where the number of constraints is increases.  

Methods ,N M  *J  

Van Dooren  [13]
M=4 
M=7 

M=10 

0.18491700 
0.18485854 
0.18485854

Elnagar  [8] M=5 
M=6 

0.18485790 
0.18485854

Present method N=8,10,12 
0.18485851 
0.18485851 
0.18485851
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The major advantages of this method is that, we can deal directly with the highest- 
order derivatives in the differential equation without transforming it to a system of first order, 
and that will reduce the number of the unknowns. In this way, the optimal control problem is 
replaced by a parameter optimization problem which consists of the minimization of the 
performance index subject to algebraic constraints. Finally, the method has been extended to 
the linear and nonlinear optimal control problems.  
 The tables given previously show that the suggested technique is quite reliable. It can 
be successfully applied to both linear and nonlinear ordinary differential problems and related 
optimal control problems. The methods produce an accurate solution at small number of 
nodes. The comparison of the maximum absolute error resulting from the proposed method 
and those obtained by Elnagar [8] and Van Dooren [13] show favorable agreement and 
always it is more accurate than these treatments. 
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Abstract

The numerical solutions of several mathematical models in the financial
economics are arising. Most of the models are based on the Black-Scholes
partial differential equations. In this paper, the Black-Scholes option pric-
ing model which has been used frequently is solved by using the B-spline
functions. The numerical experiments showed that the present method is
an applicable technique and gives an exciting results for European option
pricing.

Keywords: Black-Scholes equation; B-spline method.

1. Introduction

Mathematical modeling and simulation have become essential tools in the
financial industry. Related people spend a lot of time to simulate and predict
the price movements for financial assets like stocks, options and bonds. Much
of the mathematics employed in this area especially in academic research, is
highly sophisticated and spans the fields of analysis, probability, statistics,
differential equations and numerical analysis. During the past years financial
securities have become necessary tools for corporations and investors. The
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movement in stock prices creates a risk, and options can be used to hedge
assets and portfolios to control this risk. In finance and economics in gen-
eral, option pricing theory is one of the major theories. A call (put) option
gives the holder the right to buy (sell) the underlying asset by a certain date
T (expiration date or maturity date) at a certain price (strike price). Op-
tions that can be exercised only on the expiration date known as European
options whereas American options can be exercised at any time up to the
expiration date [1]. Related parties could plan for the financial future with
some certainty regardless of the price of the commodity on the open mar-
ket at the time the option expired. However, the seller of the option incurs
the risk of having to buy or sell an asset at a loss and must be compen-
sated for this risk through the sales price of the option. Determination of
the option value is a major concern of financial engineering. The numerical
solutions of several mathematical models are arising in financial eonomics
for the valuation of both European and American call options on different
types assets are considered in several researches. All the models are based on
the Black- Scholes partial differential equation. The newly developed Least-
Squares Monte Carlo method offers a simple and well-organized technique
for valuing American-type options. Compared to the other valuation tech-
niques, the Least-squares Monte Carlo method does not necessitate advanced
mathematical techniques and has the supplementary advantage of being able
to easily handle multiple and complex stochastic processes concurrently [2].
The methods for valuing options can be divided into analytical and numeri-
cal techniques. The first analytic model for valuing simple financial options
was created by Black and Scholes [3]. After Black and Scholes, the research
has aimed at developing numerical methods capable of dealing with valuing
complex options, such as the American-type options with multiple uncertain
state variables. The most popular numerical techniques for valuing options
are: finite difference method [4], binomial lattice method [5], and Monte
Carlo Simulation by Boyle [6].Finite difference method for option valuation
has been utilized by Courtadon [7] as well. The most significant drawback
of both finite difference and lattice method is that they are impractical for
valuing complex options with multiple uncertain state variables. On the
contrary to both the finite difference and lattice methods, Monte Carlo Sim-
ulation can handle competently with the situations where there are multiple
and complex stochastic variables. Tilley [8] was the primary researcher to
suggest a modification to Monte Carlo Simulation in order to make it appli-
cable for valuing American options. Another research establishes a dual way

2
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to price American options, formed on simulating the paths of the option pay-
off [9]. The method introduced, leads to candidate hedging policies for the
option, and estimates of the risk involved in using them. Monte Carlo Simu-
lation can be applied to asset pricing problems with multiple state variables
and possible path dependencies because convergence of Monte Carlo method
is independent of the number of state variables. Another study relates to
Monte Carlo Simulation to the problem of shaping free exercise boundaries
for pricing American type options [10]. Along with numerical methods for
valuing derivatives, lattice based models like binomial are useful for pricing
American options, but have difficulty with path dependent contracts. Monte
Carlo Simulation is a good way for path dependent problems but computa-
tion time increases harshly when there is more than one stochastic variable.
This problem is handled by a technique introduced by Raymar and Zwecher
[11]. Their method is fast and accurate in basic cases , can be used easily
on much more complex options as well. The biggest problem in assessing its
performance on the most difficult cases is that there are no benchmarks avail-
able for accuracy. Their techniques solve valuation problems that no other
approach can touch and the technique is also applicable to many complex
equity and fixed-income derivatives. In another work a mathematical model
is presented which give the value of the call option in any moment prior to
the expiry date. The main interest of options on assets comes from limiting
the risk due to unexpected fallings of the asset price [12].There are also many
other methods for American option pricing problem like the method of lines
by Meyer and Van der Hoek [13]. Most of the latest literature dealing with
the modeling of financial assets assumes that the essential dynamics of equity
prices follow a jump procedure. Some financial models, capture a number
of main characteristics of the dynamics of stock prices [14]. In this specific
research, the article named Compact Finite Difference Method for American
Option Pricing is the starting point. In that research, three ways of combin-
ing compact finite difference methods for American option price on a single
asset has been developed. All the three methods work for both short term
and long term options [15].

In this paper, we deal with the European put options on shares which
may pay continuous dividends. Consider European put option pricing prob-
lem in the following simple form:

3
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uτ = uxx + g(x, τ) , (1)

where x ∈ (−∞, +∞), τ ∈ (0, (σ2/2)T ),

k1 = 2r/σ2,

k2 = 2(r − D)/σ2 and

g(x, τ) = ek1τ ((k1 − k2)e
x−(k2−1)τ − k1).

This problem has the following the initial and the boundary conditions:

u(x, 0) = max(ex − 1, 0), x ∈ (−∞, +∞), (2)

limx→∞ u(x, τ) = ek1τ (ex−(k2−1)τ − 1), (3)

limx→−∞ u(x, τ) = 1 + ek1τ (ex−(k2−1)τ − 1), (4)

where T is the duration (in years) of the option contract, σ is the stands for
the volatility in return, D is the dividend yield of the asset, and r is the risk
free interest rate.

2. The third-degree B-splines

A detailed description of B-spline functions generated by subdivision can
be found in [16]. Consider equally-spaced knots of a partition π : a =
x0 < x1 < ... < xn = b on [a,b]. Let S3[π] be the space of continuously-
differentiable, piecewise, third-degree polynomials on π. That is, S3[π] is the
space of third-degree splines on π. Consider the B-splines basis in S3[π]. The
third-degree B-splines are defined as

B0(x) = 1
6h3

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x3 0 ≤ x < h
−3x3 + 12hx2 − 12h2x + 4h3 h ≤ x < 2h
3x3 − 24hx2 + 60h2x − 44h3 2h ≤ x < 3h
−x3 + 12hx2 − 48h2x + 64h3 3h ≤ x < 4h

(5)

Bi−1(x) = B0(x − (i − 1)h), i = 2, 3, ...

4
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Table 1: Values of Bi , B′
i and B′′

i

xi xi+1 xi+2 xi+3 xi+4

Bi 0 1 4 1 0
B′

i 0 -3/h 0/h 3/h 0
B′′

i 0 6/h2 -12/h2 6/h2 0

To solve Eq.(1), Bi , B′
i and B′′

i evaluated at the nodal points are needed.
Their coefficients are summarized in Table 1.

3. B-spline solution for the Black-Scholes option pricing model

In this section a spline method for solving option pricing model is out-
lined, which is based on the collocation approach [17]. Let

S(x) =
n−1
∑

j=−3
CjBj(x) (6)

be an approximate solution of Eq.(1), where Ci are unknown real coefficients
and Bj(x) are third-degree B-spline functions. Let x0,x1,...,xn be n+1 grid
points in the interval [a,b], so that

xi = a + ih , i = 0,1,...,n ; x0=a , xn= b , h = (b-a)/n.

Difference schemes for this problem considered as following:

ui+1−ui

Δτ
= uxx + g(x, τ) (7)

−(Δτ)u
′′
i+1 + ui+1 = ui + (Δτ)g(x, τ) (8)

and the initial conditions are given in (2):

u(x, 0) = max(ex − 1, 0), x ∈ (−∞, +∞), (9)

u(x, 0) = u0, (10)

5
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Subsituting (9-10) in (8) then is obtained as follows

t = 0 + Δτ −(Δτ)u
′′
1 + u1 = u0 + (Δτ)g(x, Δτ) (11)

t = 0 + 2Δτ −(Δτ)u
′′
2 + u2 = u1 + (Δτ)g(x, 2Δτ) (12)

. .

. .

. .

t = 0 + nΔτ −(Δτ)u
′′
n + un = un−1 + (Δτ)g(x, nΔτ) (13)

The approximate solution of the equation (11)-(13) are sought in the form
of the B-spline functions S(x), it follows that

t = 0 + Δτ −(Δτ)S
′′
1 + S1 = u0 + (Δτ)g(x, Δτ) (14)

t = 0 + 2Δτ −(Δτ)S
′′
2 + S2 = u1 + (Δτ)g(x, 2Δτ) (15)

. .

. .

. .

t = 0 + nΔτ −(Δτ)S
′′
n + Sn = un−1 + (Δτ)g(x, nΔτ) (16)

and boundary conditions (3)-(4) can be rewritten as follows

n−1
∑

j=−3
CjBj(x) = 1 + ek1τ (ex−(k2−1)τ − 1) for limx→−∞, (17)

n−1
∑

j=−3
CjBj(x) = ek1τ (ex−(k2−1)τ − 1) for limx→∞. (18)

6
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Figure 1: Numerical results for the data set: σ2 = 0.3, D = 0.02, r = 0.04
and n = 111, k = 0.001.

Solving the spline Eq.(14) and using boundary conditions (17)-(18), we
have obtained approximate solution. It is easy to see that, the same approx-
imation is applied the other equations (15)-(16). As an illustration of the
good performance of the above algorithms. We shall present the numerical
results obtained for data set:

x ∈ (−2, 2) , τ ∈ (0, 1),

σ2 = 0.3 ,

D = 0.02 ,

r = 0.04 .
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The time and share value steps have been taken to k=0.001 ,h=1/111 ,in
Fig.1 the computed solutions are shown. All computations were carried out
using MATLAB 6.5.

4. Conclusions

B-spline method has been considered for the numerical solution of Eu-
ropean Black-Scholes option pricing model. As well-known that the Black-
Scholes partial differential equation can be transformed into the heat equation
[18]. In a previous work, we have showed that the proposed method gives
good results for the heat equation [19]. In this paper, we have shown that
the present method is an alternative technique for the solution of the Black-
Scholes model too. The results of numerical testing show that the numerical
method is very effcient and accurate for the Black-Scholes model.
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MULTILATERAL GENERATING FUNCTIONS FOR THE
MULTIPLE LAGUERRE AND MULTIPLE HERMITE

POLYNOMIALS

M. ALI ÖZARSLAN, EMINE ÖZERGIN AND CEM KAANO¼GLU

Abstract. The main object of this paper is to derive several substantially
more general families of bilinear, bilateral, and mixed multilateral �nite-series
relationships and generating functions for the multiple Laguerre and multiple
Hermite polynomials. Some applications of the above statements are also
given.

1. Introduction

Multiple orthogonal polynomials, which are the extension of orthogonal polyno-
mials has been an active research �eld during the last few decades. Their roots
come from Hermite Pade approximation of a system of r functions.
There are two subjects in the theory of multiple orthogonal polynomials: classi-

cal multiple orthogonal polynomials and general multiple orthogonal polynomials.
The classical multiple orthogonal polynomials are those polynomials which have
a Rodrigues formula and there exists a �rst order di¤erential operator such that,
when applied to these multiple orthogonal polynomials, gives another set of mul-
tiple orthogonal polynomials. For the classical multiple orthogonal polynomials,
we refer [3],[15],[10] and for the general multiple orthogonal polynomials, we refer
[7],[8],[16]. Surveys of results on multiple orthogonal polynomials together with an
extensive bibliography on the subject were given in [2].
In this paper we consider the multiple Laguerre polynomials of the �rst and

second kind and multiple Hermite polynomials which are de�ned as follows:
The multiple Laguerre polynomials of the �rst kind are orthogonal on [0;1) with

respect to the r weights wj(x) = x�je�x (j = 1; 2; :::; r); where � < 0;�1; :::; �r >

�1 and �i��j =2 Z whenever i 6= j: The multiple Laguerre I polynomials L(
!
�;�)

!
n

(x);

for the multi-index
!
n = (n1; :::; nr) 2 Nr and

!
� = (�1; :::; �r); are of degree

���!n��� =
n1 + :::+ nr and satisfy the orthogonality conditions

1Z
0

L
(
!
�;�)

!
n

(x)xk+�ie�xdx = 0; k = 0; 1; :::; ni � 1; i = 1; 2; :::; r:

Key words and phrases. Rodrigues formula, Generating function, Multiple Laguerre polyno-
mials, Multiple Hermite polynomials, Finite-series relationship.
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2 M. ALI ÖZARSLAN, EMINE ÖZERGIN AND CEM KAANO ¼GLU

The Rodrigues formula for the multiple Laguerre polynomials of the �rst kind is
given by ( see [10])

L
(
!
�;�)

!
n

(x) = w�1r (wrw
�1
r�1x

nr (:::(w2w
�1
1 xn2(w1x

n1)(n1))(n2):::)(nr�1))(nr):

The multiple Laguerre II polynomials L(�;
!
� )

!
n

(x) are de�ned by ( see [10])

L
(�;

!
� )

!
n

(x) = w�1r (wrw
�1
r�1(:::(w2w

�1
1 (w1x

���!n ���
)(n1))(n2):::)(nr�1))(nr);

where � > �1 and �j < 0 (j = 1; 2; :::; r): They are orthogonal on (0;1) with
respect to the r weights wj(x) = x�e�jx (j = 1; 2; :::; r); �i � �j =2 Z whenever
i 6= j:

The multiple Hermite polynomials H(
!
�;�)

!
n

(x) are de�ned by

H
(�;

!
�)

!
n

(x) = w�1r (wrw
�1
r�1(:::(w2w

�1
1 (w1)

(n1))(n2):::)(nr�1))(nr);

where � < 0 and
!
� = (�1; :::; �r): They are orthogonal on (�1;1) with respect

to the r weights wj(x) = e
�
2x

2+�jx (j = 1; 2; :::; r); �i � �j =2 Z whenever i 6= j:
The Rodrigues formula allows to obtain the di¤erential equations and explicit

expressions of the multiple orthogonal polynomials (see [3],[15]). Recently, using
Rodrigues formulas [10], some generating functions have been obtained for the
multiple Laguerre I polynomials:

G1 (x; t1; :::; tr) =
1X

n1;:::;nr=0

L(�1;:::;�r;�)n1;:::;nr (x)
tn11
n1!

:::
tnrr
nr!

(1)

=

"
rY
i=1

1

(1� ti)�i+1

#
exp

�
�x

�
1

(1� t1) ::: (1� tr)
� 1
��

(jtij < 1; i = 1; 2; :::; r);
for the multiple Laguerre II polynomials:

G2 (x; t1; :::; tr) =
1X

n1;:::;nr=0

L(�;�1;:::;�r)n1;:::;nr (x)
tn11
n1!

:::
tnrr
nr!

(2)

=
1

(1� t1 � :::� tr)�+1
exp

�
�1t1 + :::+ �rtr
1� t1 � :::� tr

x

�
jt1 + t2 + :::+ trj < 1;

and for the multiple Hermite polynomials:

G3 (x; t1; :::; tr) =
1X

n1;:::;nr=0

H(�;�1;:::;�r)
n1;:::;nr (x)

tn11
n1!

:::
tnrr
nr!

(3)

= exp

0@�x rX
i=1

ti +
�

2

 
rX
i=1

ti

!2
+

rX
i=1

�iti

1A :

The main object of this paper is to derive several substantially more general
families of bilinear, bilateral, and mixed multilateral �nite-series relationships and
generating functions for the multiple Laguerre and multiple Hermite polynomials.
Some applications of the above statements are also given.
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2. Main Results

In recent years by making use of the familiar group-theoretic (Lie algebraic)
method some certain mixed trilateral �nite-series relationships have been proved for
orthogonal polynomials (see, for instance, [13]). In this section, we obtain families
of bilinear, bilateral, mixed multilateral �nite-series relationship and generating
functions for the multiple Laguerre and multiple Hermite polynomials, by applying
the similar method as considered in [13],[6] (and recently in [11],[1],[12],[14]), instead
of using group theoretic method.
In the �rst three theorem of this section, we consider the case r = 2: In fact for

r = 2; generating relation (1) turns out to be

G�1 (x; t1; t2) =
1X

n;k=0

L
(�1;�2;�)
n;k (x)

tn1
n!

tk2
k!

(4)

=
1

(1� t1)�1+1 (1� t2)�2+1
exp

�
� (t1 + t2 � t1t2)
(1� t1) (1� t2)

x

�
jt1j < 1; jt2j < 1:

Using (4), we obtain the following theorem at once.

Theorem 2.1. Corresponding to an identically nonvanishing function ��(�1; �2; :::; �s)
of s (real or complex) variables �1; �2; :::; �s (s 2 N = N0 n f0g) and of (complex)
order �, let

�(1)(�1; �2; :::; �s;!) : =
1X
l=0

al��+ l(�1; �2; :::; �s)!
l

al 6= 0:

Suppose also that

�
(1)
n;N1;N2

(x; �1; �2; :::; �s; �; �) : =

h
n
N1

iX
k=0

h
k
N2

iX
l=0

al��+ l(�1; �2; :::; �s)

(n�N2k)! (k �N1l)!

�L(�1+�1l;�2+�2l;�+�3l)n�N2k;k�N1l
(x)�k�l

(n 2 N)

then
1X
n=0

�
(1)
n;N1;N2

�
x; �1; �2; :::; �s;

t2

tN2
1

;


tN1
2

�
tn1

= �(1)

 
�1; �2; :::; �s;



(1� t1)�1 (1� t2)�2
exp

�
�3 (t1 + t2 � t1t2)
(1� t1) (1� t2)

x

�!
G�1 (x; t1; t2)

(5)

jt1j < 1; jt2j < 1;

provided that each member of (5) exists.

The notation [n=q] means the greatest integer less than or equal to n=q:
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Proof. Substituting �(1)n;N1;N2
(x; �1; �2; :::; �s; �; �) into the left hand side of (5), we

get

1X
n=0

�
(1)
n;N1;N2

�
x; �1; �2; :::; �s;

t2

tN2
1

;


tN1
2

�
tn1

=
1X
n=0

h
n
N1

iX
k=0

h
k
N2

iX
l=0

al��+ l(�1; �2; :::; �s)

(n�N2k)! (k �N1l)!

�
t2

tN2
1

�k �


tN1
2

�l
�L(�1+�1l;�2+�2l;�+�3l)n�N2k;k�N1l

(x)tn1 :

Now taking n! n+N2k

1X
n=0

�
(1)
n;N1;N2

�
x; �1; �2; :::; �s;

t2

tN2
1

;


tN1
2

�
tn1

=
1X

n;k=0

h
k
N2

iX
l=0

al��+ l(�1; �2; :::; �s)

n! (k �N1l)!
ltk�N1l

2 L
(�1+�1l;�2+�2l;�+�3l)
n;k�N1l

(x)tn1 :

Writing k ! k +N1l and then using (4), we obtain

1X
n=0

�
(1)
n;N1;N2

�
x; �1; �2; :::; �s;

t2

tN2
1

;


tN1
2

�
tn1 =

1X
n;k;l=0

al��+ l(�1; �2; :::; �s)
l

�L(�1+�1l;�2+�2l;�+�3l)n;k (x)
tn1 t

k
2

n!k!
=

1X
l=0

al��+ l(�1; �2; :::; �s)
l

� 1

(1� t1)�1+�1l+1 (1� t2)�2+�2l+1
exp

�
(� + �3l) (t1 + t2 � t1t2)

(1� t1) (1� t2)
x

�

=
1X
l=0

al��+ l(�1; �2; :::; �s)

 


(1� t1)�1 (1� t2)�2
exp

�
�3 (t1 + t2 � t1t2)
(1� t1) (1� t2)

x

�!l
:

1

(1� t1)�1+1 (1� t2)�2+1
exp

�
� (t1 + t2 � t1t2)
(1� t1) (1� t2)

x

�
= �(1)

 
�1; :::; �s;



(1� t1)�1 (1� t2)�2
exp

�
�3 (t1 + t2 � t1t2)
(1� t1) (1� t2)

x

�!
G�1 (x; t1; t2) :

Whence the result. �

Now we consider r = 2 cases of the generating relations (2) and (3), which are

G�2 (x; t1; t2) =
1X

n;k=0

L
(�;�1;�2)
n;k (x)

tn1
n!

tk2
k!

(6)

=
1

(1� t1 � t2)�+1
exp

�
�1t1 + �2t2
1� t1 � t2

x

�
jt1 + t2j < 1
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and

G�3 (x; t1; t2) =
1X

n;k=0

H
(�;�1;�2)
n;k (x)

tn1
n!

tk2
k!

(7)

= exp

��
�

2

��
t21 + t

2
2

�
+ �1t1 + �2t2 + �x (t1 + t2) + �t1t2

�
:

Applying the similar procedure used in the proof of Theorem 2.1, we get the fol-
lowing theorems for the multiple Laguerre II and multiple Hermite polynomials,
respectively.

Theorem 2.2. Corresponding to an identically nonvanishing function ��(�1; �2; :::; �s)
of s (real or complex) variables �1; �2; :::; �s (s 2 N = N0 n f0g) and of (complex)
order �; let

�(2)(�1; �2; :::; �s;!) : =
1X
l=0

al��+ l(�1; �2; :::; �s)!
l

al 6= 0:

Suppose also that

�
(2)
n;N1;N2

(x; �1; �2; :::; �s; �; �) : =

h
n
N1

iX
k=0

h
k
N2

iX
l=0

al��+ l(�1; �2; :::; �s)

(n�N2k)! (k �N1l)!

�L(�+�1l;�1+�2l;�2+�3l)n�N2k;k�N1l
(x)�k�l

(n 2 N)

then
1X
n=0

�
(2)
n;N1;N2

�
x; �1; �2; :::; �s;

t2

tN2
1

;


tN1
2

�
tn1(8)

= �(2)

 
�1; �2; :::; �s;



(1� t1 � t2)�1
exp

�
�2t1 + �3t2
1� t1 � t2

x

�!
G�2 (x; t1; t2)

provided that each member of (8) exists.

Theorem 2.3. Corresponding to an identically nonvanishing function ��(�1; �2; :::; �s)
of s (real or complex) variables �1; �2; :::; �s (s 2 N = N0 n f0g) and of (complex)
order �; let

�(3)(�1; �2; :::; �s;!) : =
1X
l=0

al��+ l(�1; �2; :::; �s)!
l

al 6= 0:

Suppose also that

�
(3)
n;N1;N2

(x; �1; �2; :::; �s; �; �) : =

h
n
N1

iX
k=0

h
k
N2

iX
l=0

al��+ l(�1; �2; :::; �s)

(n�N2k)! (k �N1l)!

�H(�+�1l;�1+�2l;�2+�3l)
n�N2k;k�N1l

(x)�k�l

(n 2 N)
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then

1X
n=0

�
(3)
n;N1;N2

�
x; �1; �2; :::; �s;

t2

tN2
1

;


tN1
2

�
tn1(9)

= �(3)
�
�1; :::; �s;  exp

��
�1
2

��
t21 + t

2
2

�
+ �2t1 + �3t2 + �1x (t1 + t2) + �1t1t2

��
�G�3 (x; t1; t2)

provided that each member of (9) exists.

In the following three theorem we let r 2 N to be arbitrary. For the multiple
Laguerre I polynomials, we have:

Theorem 2.4. Corresponding to an identically nonvanishing r�tuple function
sequence ��1;:::;�r (�1; �2; :::; �s) of s (real or complex) variables �1; �2; :::; �s (s 2
N = N0 n f0g) and of (complex) orders; let

�
(1)
 1;:::; r;�1;:::;�r

(�1; �2; :::; �s; �1; :::; � r)

:=

1X
k1=0

:::

1X
kr=0

ak1;:::;kr��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s)�
k1
1 :::�

kr
r

ak1;:::;kr 6= 0:

Suppose also that

��;�1;:::;�r; 1;:::; rn1;:::;nr;q1;:::;qr (x; �1; �2; :::; �s; �1; :::; �r)

:=

h
n1
q1

iX
k1=0

:::

[nrqr ]X
kr=0

1

(n1 � q1k1)!::: (nr � qrkr)!
ak1;:::;kr

�L(�1+�1k1;:::;�r+�rkr;�)n1�q1k1;:::;nr�qrkr (x) ��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s)�
k1
1 :::�

kr
r

(n 2 N)

then

1X
n1=0

:::
1X

nr=0

��;�1;:::;�r; 1;:::; rn1;:::;nr;q1;:::;qr

�
x; �1; �2; :::; �s;

�1
tq11
; :::;

�r
tqrr

�
tn11 :::t

nr
r(10)

= �
(1)
 1;:::; r;�1;:::;�r

 
�1; �2; :::; �s;

�1

(1� t1)�1
; :::;

�r

(1� tr)�r

!
G1 (x; t1; :::; tr) ;

jtij < 1; i = 1; 2; :::; r;

provided that each member of (10) exists.
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Proof. Substituting ��;�1;:::;�r; 1;:::; rn1;:::;nr;q1;:::;qr (x; �1; �2; :::; �s; �1:::�r) into the left hand side
of (10), we get

1X
n1=0

:::
1X

nr=0

��;�1;:::;�r; 1;:::; rn1;:::;nr;q1;:::;qr

�
x; �1; �2; :::; �s;

�1
tq11
; :::;

�r
tqrr

�
tn11 :::t

nr
r

=
1X

n1;:::nr=0

h
n1
q1

iX
k1=0

:::

[nrqr ]X
kr=0

1

(n1 � q1k1)!::: (nr � qrkr)!
ak1;:::;krL

(�1+�1k1;:::;�r+�rkr;�)
n1�q1k1;:::;nr�qrkr (x)

���1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s)
�
�1
tq11

�k1
:::

�
�r
tqrr

�kr
tn11 :::t

nr
r :

Taking n1 ! n1 + q1k1; :::; nr ! nr + qrkr; we obtain

1X
n1=0

:::
1X

nr=0

��;�1;:::;�r; 1;:::; rn1;:::;nr;q1;:::;qr

�
x; �1; �2; :::; �s;

�1
tq11
; :::;

�r
tqrr

�
tn11
n1!

:::
tnrr
nr!

=
1X

n1;:::;nr=0

1X
k1=0

:::
1X
kr=0

ak1;:::;krL
(�1+�1k1;:::;�r+�rkr;�)
n1;:::;nr (x)

:��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s) �
k1
1 :::�

kr
r

tn11
n1!

:::
tnrr
nr!

=
1X
k1=0

:::
1X
kr=0

" 1X
n1;:::;nr=0

L(�1+�1k1;:::;�r+�rkr;�)n1;:::;nr (x)
tn11
n1!

:::
tnrr
nr!

#
:ak1;:::;kr��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s) �

k1
1 :::�

kr
r

=

1X
k1=0

:::

1X
kr=0

"
rY
i=1

1

(1� ti)�i+�iki+1

#
exp

�
�x

�
1

(1� t1) ::: (1� tr)
� 1
��

:ak1;:::;kr��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s) �
k1
1 :::�

kr
r

=
1X
k1=0

:::
1X
kr=0

"
rY
i=1

1

(1� ti)�iki

#
ak1;:::;kr��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s) �

k1
1 :::�

kr
r

:

"
rY
i=1

1

(1� ti)�i+1

#
exp

�
�x

�
1

(1� t1) ::: (1� tr)
� 1
��

= �
(1)
 1;:::; r;�1;:::;�r

 
�1; �2; :::; �s;

�1

(1� t1)�1
; :::;

�r

(1� tr)�r

!

:

"
rY
i=1

1

(1� ti)�i+1

#
exp

�
�x

�
1

(1� t1) ::: (1� tr)
� 1
��

:

Whence the result. �

In a similar manner, using (2) and (3), we led fairly easily to:

Theorem 2.5. Corresponding to an identically nonvanising r�tuple function se-
quence ��1;:::;�r (�1; �2; :::; �s) of s (real or complex) variables �1; �2; :::; �s (s 2
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N = N0 n f0g) and of (complex) orders; let

�
(2)
 1;:::; r;�1;:::;�r

(�1; �2; :::; �s; �1; :::; � r)

:=
1X
k1=0

:::
1X
kr=0

ak1;:::;kr ��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s)�
k1
1 :::�

kr
r

ak1;:::;kr 6= 0:

Suppose also that


�;�1;:::;�r; 1;:::; rn1;:::;nr;q1;:::;qr (x; �1; �2; :::; �s; �1:::�r)

:=

h
n1
q1

iX
k1=0

:::

[nrqr ]X
kr=0

1

(n1 � qk1)!::: (nr � qkr)!
ak1;:::;kr

�L(�;�1+�1k1;:::;�r+�rkr)n1�q1k1;:::;nr�qrkr (x) ��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s)�
k1
1 :::�

kr
r

(n 2 N)

then

1X
n1=0

:::

1X
nr=0


�;�1;:::;�r; 1;:::; rn1;:::;nr;q1;:::;qr

�
x; �1; �2; :::; �s;

�1
tq11
; :::;

�r
tqrr

�
tn11 :::t

nr
r(11)

= �
(2)
 1;:::; r;�1;:::;�r

�
�1; �2; :::; �s; �1 exp(

�1t1
1� t1 � :::� tr

); :::; �r exp(
�rtr

1� t1 � :::� tr
)

�
�G2 (x; t1; :::; tr) ;

jt1 + t2 + :::+ trj < 1;

provided that each member of (11) exists.

Theorem 2.6. Corresponding to an identically nonvanishing r�tuple function
sequence ��1;:::;�r (�1; �2; :::; �s) of s (real or complex) variables �1; �2; :::; �s (s 2
N = N0 n f0g) and of (complex) orders; let

�
(3)
 1;:::; r;�1;:::;�r

(�1; �2; :::; �s; �1; :::; � r)

:=
1X
k1=0

:::
1X
kr=0

ak1;:::;kr��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s)�
k1
1 :::�

kr
r

ak1;:::;kr 6= 0:

Suppose also that

	�;�1;:::;�r; 1;:::; rn1;:::;nr;q1;:::;qr (x; �1; �2; :::; �s; �
k1
1 :::�

kr
r ) =

h
n1
q1

iX
k1=0

:::

[nrqr ]X
kr=0

1

(n1 � q1k1)!::: (nr � qrkr)!

�ak1;:::;krH
(�;�1+�1k1;:::;�r+�rkr)
n1�q1k1;:::;nr�qrkr (x) ��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s)�

k1
1 :::�

kr
r

(n 2 N)
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then
1X

n1=0

:::
1X

nr=0

	�;�1;:::;�r; 1;:::; rn1;:::;nr;q1;:::;qr

�
x; �1; �2; :::; �s;

�1
tq11
; :::;

�r
tqrr

�
tn11 :::t

nr
r(12)

= �
(3)
 1;:::; r;�1;:::;�r

(�1; �2; :::; �s; �1e
�1t1 ; :::; �re

�rtr )G3 (x; t1; :::; tr) :

provided that each member of (12) exists.

3. Applications of the main results

When the multivariable function ��+  k(�1; :::; �s)(k 2 N0; s 2 N) (or
��1+ 1k1;:::;�r+ rkr (�1; �2; :::; �s)) can be expressed by means of several simpler func-
tions of one and more variables then one can give further applications of Theorems
2.1, 2.2 and 2.3 (of Theorems 2.4, 2.5 and 2.6). We start with the following illus-
trative example.

Example 3.1. Taking s = 2; �1 = y; �2 = z; � = 0;  = 1;�l (y; z) = g
(�;)
l (y; z) ; al =

1 and �1 = �2 = �3 = 0 in Theorem 2.2 , we have

�(2) (y; z; �) =
1

(1� y�)� (1� z�)

where g(�;)l (y; z) are the Lagrange polynomials (see [9], [5]). Hence, we obtain the
following generating function between the multiple Laguerre II polynomials and the
Lagrange polynomials

1X
n=0

h
n
N1

iX
k=0

h
k
N2

iX
l=0

g
(�;)
l (y; z) L

(�;�1;�2)
n�N2k;k�N1l

(x)

(n�N2k)! (k �N1l)!
� ltn�N2k

1 tk�N1l
2

=
1

(1� y�)� (1� z�)
1

(1� t1 � t2)�+1
exp

�
�1t1 + �2t2
1� t1 � t2

x

�
;

j� j < min
n
jxj�1 ; jyj�1

o
; jt1 + t2j < 1:

It should be noted here that, one should use Theorem 2.2 in order to give bilin-
ear, bilateral, mixed multilateral �nite-series relationship and generating functions
between the polynomials of which contain one summation symbol in its generating
relation and the multiple Laguerre II polynomials.
On the other hand, one can not give any bilinear, bilateral, mixed multilateral

�nite-series relationship and generating functions between the polynomials of which
contain more than one summation symbol in its generating relation and the multiple
Laguerre II polynomials by using Theorem 2.2. But one can use Theorem 2.5 to
achieve this problem.

Example 3.2. Choosing s = 1; �1 = x; �1 = ::: = �r = 0;  1 = ::: =  r =

1;�k1;:::;kr (x) = L
(�1;:::;�r;�)
n1;:::;nr (x) and

ak1;:::;kr =
1

k1!:::kr!
;

we get from (1) that

�
(1)
1;:::;1;0;:::;0(x; �1; :::; � r) =

"
rY
i=1

1

(1� ti)�i+1

#
exp

�
�x

�
1

(1� t1) ::: (1� tr)
� 1
��

;

675



10 M. ALI ÖZARSLAN, EMINE ÖZERGIN AND CEM KAANO ¼GLU

where jtij < 1; i = 1; 2; :::; r: Therefore, as a consequence of Theorem 2.5, we get
following bilateral generating relation between multiple Laguerre I and II polyno-
mials:

1X
n1;:::;nr=0

h
n1
q1

iX
k1=0

:::

[nrqr ]X
kr=0

L
(�;�1+�1k1;:::;�r+�rkr)
n1�q1k1;:::;nr�qrkr (x)L

(�1;:::;�r;�)
k1;:::;kr

(x)

(n1 � q1k1)!::: (nr � qrkr)!k1!:::kr!

rY
i=1

vkii t
ni�qiki
i

=
1

(1� t1 � :::� tr)�+1
exp

�
�1t1 + :::+ �rtr
1� t1 � :::� tr

x

�264 rY
i=1

1�
1� �i exp( �iti

1�t1�:::�tr )
��i+1

375
� exp

0@�x
0@ 1�

1� �1 exp( �1t1
1�t1�:::�tr )

�
:::
�
1� �r exp( �rtr

1�t1�:::�tr )
� � 1

1A1A
jt1 + t2 + :::+ trj < 1; (

�����i exp( �iti
1� t1 � :::� tr

)

���� < 1; i = 1; 2; :::; r):
Moreover, for each suitable choice of the coe¢ cients ak (or ak1;:::;kr ), if the multi-

variable function ��+ k(�1; :::; �s)(k 2 N0; s 2 N) (or ��1+ 1k1;:::;�r+ rkr (�1; :::; �s))
is expressed as an appropriate product of several simpler functions, Theorems 2.1,
2.2 and 2.3 (or Theorems 2.4, 2.5 and 2.6) can be shown to yield various classes
of mixed multilateral generating functions for the multiple Laguerre and multiple
Hermite polynomials.
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Abstract

In this paper is to introduce a new iterative scheme for finding solutions of a variational inequality

for inverse-strongly accretive mappings with a viscosity approximation method in Banach spaces. We

obtain a strong convergence theorem in Banach spaces under some parameters controlling conditions. Our

results extend and improve the recent results of Yan Hao [Iterative algorithms for inverse-strongly accretive

mappings with applications, J. Appl. Math. Comput., 31, 193–202, 2009.], Yeol Je Cho et al., [Strong

convergence of an iterative algorithm for accretive operators in Banach spaces, J. Comput. Anal. and

Appl., vol. 10, no. 1, 113–125, 2008.] and many others.

Keywords: Inverse-strongly accretive mapping; Fixed point; Iteration; Banach space; Variational inequality;
Viscosity approximation method
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1 Introduction

Let E be a real Banach space with norm ‖ · ‖ and inner product 〈·, ·〉, C be a nonempty closed convex subset
of E and A be a monotone operator of C into H. The variational inequality problem, denote by V I(C,A), is
to find x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0,

∗This research was supported by the Faculty of Science KMUTT Research Fund, King Mongkut’s University of Technology

Thonburi, KMUTT Thailand.
†Corresponding author: poom.kum@kmutt.ac.th (P. Kumam)

1

678JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, N0.3, 678-686,2010,COPYRIGHT 2010 EUDOXUS PRESS, LLC



2 P. Katchang, Y. Khamlae and P. Kumam

for all x ∈ C. In the case when C = H, V I(H, A) = A−10 holds, where

A−10 = {x∗ ∈ H : Ax∗ = 0}.

An element of A−10 is called a zero point of A. Recall that a mapping A is said to be β−inverse-strongly
monotone, if there exists a positive real number β > 0 such that

〈Ax−Ay, x− y〉 ≥ β‖Ax−Ay‖2, ∀x, y ∈ C.

Let C be a nonempty closed and convex subset of a Banach space E. An operator A of C into E is said to be
accretive if there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ 0

for all x, y ∈ C. An operator A of C into E is said to be β-inverse strongly accretive if, for any β > 0,

〈Ax−Ay, J(x− y)〉 ≥ β‖Ax−Ay‖2

for all x, y ∈ C. Evidently, the definition of the inverse strongly accretive operator is based on that of the
inverse strongly monotone operator. Recall also that self mapping f : C → C is a contraction on C if there
exists a constant α ∈ (0, 1) and x, y ∈ C such that

‖f(x)− f(y)‖ ≤ α‖x− y‖.

An interesting problem to extend the above results to find a solution of the variational inequality for an
inverse-strongly accretive mappings in Banach spaces. Aoyama et al. [1] introduced the following iteration
scheme for an inverse-strongly accretive operator in Banach spaces E:

{
x1 = x ∈ C,

xn+1 = αnxn + (1− αn)QC(xn − λnAxn),
(1.1)

for all n ≥ 1 where C ⊂ E and QC is a sunny nonexpansive retraction from E onto C. They proved a weak
convergence theorem in Banach spaces. Hao [4] introduced the following iteration scheme for an inverse-strongly
accretive operator in Banach spaces E:

{
x1 = x ∈ C,

xn+1 = αnx + (1− αn)QC(xn − λnAxn),
(1.2)

for all n ≥ 1 where C ⊂ E and QC is a sunny nonexpansive retraction from E onto C. They proved a
strong convergence theorem in Banach spaces. Cho et al. [3] introduced the following iteration scheme for an
inverse-strongly accretive operator in Banach spaces E for any fixed u ∈ C:

{
x0 = u ∈ C,

xn+1 = αnu + βnxn + γnQC(xn − λnAxn),
(1.3)

for all n ≥ 1 where C ⊂ E and QC is a sunny nonexpansive retraction from E onto C. They proved a strong
convergence theorem in Banach spaces.

In this paper, motivated and inspired by the idea of Yan Hao [4] and Yeol Je Cho et al. [3], we will
introduce a viscosity iterative scheme for an inverse-strongly accretive operator in Banach spaces as follows:

xn+1 = αnf(xn) + βnxn + γnQC(xn − λnAxn), (1.4)

we shall prove a strong convergent theorem under some parameters controlling conditions.
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2 Preliminaries

Let D be a subset of C and Q : C → D. Then Q is said to sunny if

Q(Qx + t(x−Qx)) = Qx,

whenever Qx + t(x − Qx) ∈ C for x ∈ C and t ≥ 0. A subset D of C is said to be a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction Q of C onto D. A mapping Q : C → C is called a
retraction if Q2 = Q. If a mapping Q : C → C is a retraction, then Qz = z for all z is in the range of Q.

The following result describes a characterization of sunny nonexpansive retractions on a smooth Banach
space.
Proposition 1([6]) Let E be a smooth Banach space and let C be a nonempty subset of E. Let Q : E → C be
a retraction and let J be the normalized duality mapping on E. Then the following are equivalent:
(i) Q is sunny and nonexpansive;
(ii) ‖Qx−Qy‖2 ≤ 〈x− y, J(Qx−Qy)〉, ∀x, y ∈ E;
(iii) 〈x−Qx, J(y −Qx)〉 ≤ 0, ∀x ∈ E, y ∈ C.

Proposition 2([5]) Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space E and let T be a nonexpansive mapping of C into itself with F (T ) 6= ∅. Then the set F(T) is a
sunny nonexpansive retract of C.

Let E be a Banach space and let E∗ be the dual space of E and 〈·, ·〉 denote the pairing between E and
E∗. For q > 1, the generalized duality mapping Jq : E → 2E∗ is defined by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1}

for all x ∈ E. In particular, if q = 2, the mapping J2 is called the normalized duality mapping and, usually,
write J2 = J . Further, we have the following properties of the generalized duality mapping Jq:
(i) Jq(x) = ‖x‖q−2J2(x) for all x ∈ E with x 6= 0;
(ii) Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞);
(iii) Jq(−x) = −Jq(x) for all x ∈ E.

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to uniformly convex if, for any ε ∈ (0, 2], there
exists δ > 0 such that, for any x, y ∈ U , ‖x− y‖ ≥ ε implies ‖x+y

2 ‖ ≤ 1− δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach space E is
said to be smooth if the limit limt→0

‖x+ty‖−‖x‖
t exists for all x, y ∈ U . It is also said to be uniformly smooth

if the limit is attained uniformly for x, y ∈ U . The modulus of smoothness of E is defined by

ρ(τ) = sup{1
2
(‖x + y‖+ ‖x− y‖)− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ},

where ρ : [0,∞) → [0,∞) is a function. It is known that E is uniformly smooth if and only if limτ→0
ρ(τ)

τ = 0.
Let q be a fixed real number with 1 < q ≤ 2. A Banach space E is said to be q-uniformly smooth if there exists
a constant c > 0 such that ρ(τ) ≤ cτ q for all τ > 0.

Note that typical examples of both uniformly convex and uniformly smooth Banach spaces are Lp, where
p > 1. More precisely, Lp is min{p, 2}-uniformly smooth for every p > 1. Note also that no Banach space is
q-uniformly smooth for q > 2; see [8] for more details.
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We need the following lemmas for proving our main results.

Lemma 2.1. ([8]) Let E be a real 2-uniformly smooth Banach space with the best smooth constant K. Then
the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, Jx〉+ 2‖Ky‖2, ∀x, y ∈ E.

Lemma 2.2. ([7]) Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be a sequence in
[0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0
and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.3. ([9]) Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 αn = ∞

(2) lim supn−→∞
δn

αn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn−→∞ an = 0.

The following Lemma is characterized by the set of solutions of variational inequality by using sunny
nonexpansive retractions.

Lemma 2.4. ([1]) Let C be a nonempty closed convex subset of a smooth Banach space E. Let QC be a sunny
nonexpansive retraction from E onto C and let A be an accretive operator of C into E. Then, for all λ > 0,

V I(C,A) = F (Q(I − λA)).

Lemma 2.5. ([2])Let E be a uniformly convex Banach space, C a nonempty closed convex subset of E and
T : K → K a nonexpansive mapping. Then I-T is demi-closed at zero.

3 Main results

In this section, we prove a strong convergence theorem.

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant
K and C a nonempty closed convex subset of E. Let QC be a sunny nonexpansive retraction from E onto C and
A : C → E be an β-inverse-strongly accretive operator with V I(C,A) 6= ∅. Let f be a contraction of C into
itself with coefficient α ∈ (0, 1). Suppose the sequences {αn}, {βn} and {γn} in (0, 1) satisfy αn + βn + γn = 1,
n ≥ 1 and {λn} is a sequence in [a,b] for some a, b with 0 < a < b < β

K2 . The following conditions are
satisfied:
(i). limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii). limn→∞(λn+1 − λn) = 0;
(iii). 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
For arbitrary given x1 ∈ C, the sequences {xn} generated by (1.4). Then {xn} converges strongly to QV I(C,A)x.
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Proof . First, we observe that I − λnA is nonexpansive. Let x, y ∈ C, from the assumption λn ∈ [a, b] and
Lemma 2.1, we have

‖(I − λnA)x− (I − λnA)y‖2 = ‖(x− y)− λn(Ax−Ay)‖2

≤ ‖x− y‖2 − 2λn〈Ax−Ay, J(x− y)〉+ 2K2λ2
n‖Ax−Ay‖2

≤ ‖x− y‖2 − 2λnβ‖Ax−Ay‖2 + 2K2λ2
n‖Ax−Ay‖2

= ‖x− y‖2 + 2λn(λnK2 − β)‖Ax−Ay‖2

≤ ‖x− y‖2.

Next, we prove that {xn} bounded. Let p ∈ V I(C,A), from Lemma 2.4, we see that p = QC(p− λnAp),
for each n ≥ 1. Put yn = QC(xn − λnAxn), we have

‖yn − p‖ = ‖QC(xn − λnAxn)−QC(p− λnAp)‖
≤ ‖(xn − λnAxn)− (p− λnAp)‖
= ‖(I − λnA)xn − (I − λnA)p‖
≤ ‖xn − p‖.

It follows that

‖xn+1 − p‖ = ‖αnf(xn) + βnxn + γnyn − p‖
≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖yn − p‖
≤ ααn‖xn − p‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn‖xn − p‖
≤ (1− αn + ααn)‖xn − p‖+ αn‖f(p)− p‖
= (1− αn(1− α))‖xn − p‖+ αn(1− α)

‖f(p)− p‖
1− α

≤ max{‖x1 − p‖, ‖f(p)− p‖
1− α

}.

This implies that {xn} bounded, so are {f(xn)} and {yn}.

Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Notice that

‖yn+1 − yn‖ = ‖QC(xn+1 − λn+1Axn+1)−QC(xn − λnAxn)‖
≤ ‖(xn+1 − λn+1Axn+1)− (xn − λnAxn)‖
= ‖(xn+1 − λn+1Axn+1)− (xn − λn+1Axn) + (λn − λn+1)Axn‖
≤ ‖(I − λn+1A)xn+1 − (I − λn+1A)xn‖+ |λn − λn+1‖Axn‖
≤ ‖xn+1 − xn‖+ |λn − λn+1|‖Axn‖,
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6 P. Katchang, Y. Khamlae and P. Kumam

Setting xn+1 = (1− βn)zn + βnxn, we see that zn = xn+1−βnxn

1−βn
, then we have

‖zn+1 − zn‖ = ‖xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn
‖

= ‖αn+1f(xn+1) + βn+1xn+1 + γn+1yn+1 − βn+1xn+1

1− βn+1
− αnf(xn) + βnxn + γnyn − βnxn

1− βn
‖

= ‖αn+1f(xn+1) + γn+1yn+1

1− βn+1
− αn+1f(xn)

1− βn+1
+

αn+1f(xn)
1− βn+1

− γn+1yn

1− βn+1
+

γn+1yn

1− βn+1

−αnf(xn) + γnyn

1− βn
‖

= ‖ αn+1

1− βn+1
(f(xn+1)− f(xn)) +

γn+1

1− βn+1
(yn+1 − yn) + (

αn+1

1− βn+1
− αn

1− βn
)f(xn)

+(
γn+1

1− βn+1
− γn

1− βn
)yn‖

≤ αn+1

1− βn+1
‖f(xn+1)− f(xn)‖+

γn+1

1− βn+1
‖yn+1 − yn‖+ | αn+1

1− βn+1
− αn

1− βn
|‖f(xn)‖

+|1− βn+1 − αn+1

1− βn+1
− 1− βn − αn

1− βn
|‖yn‖

=
ααn+1

1− βn+1
‖xn+1 − xn‖+

γn+1

1− βn+1
‖yn+1 − yn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖+ ‖yn‖)

≤ ααn+1

1− βn+1
‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖+ ‖yn‖) + ‖yn+1 − yn‖

≤ ααn+1

1− βn+1
‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖+ ‖yn‖)

+‖xn+1 − xn‖+ |λn − λn+1|‖Axn‖.

Therefore

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ ααn+1

1− βn+1
‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖+ ‖yn‖)

+|λn − λn+1|‖Axn‖.

It follow from the condition (i), (ii) and (iii), which implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Applying Lemma 2.2, we obtain limn→∞ ‖zn − xn‖ = 0 and also

‖xn+1 − xn‖ = (1− βn)‖zn − xn‖ → 0

as n →∞. Therefore, we have
lim

n→∞
‖xn+1 − xn‖ = 0. (3.1)

On the other hand, we have

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖
= ‖xn − xn+1‖+ ‖αnf(xn) + βnxn + γnyn − yn‖
= ‖xn − xn+1‖+ ‖αnf(xn) + βnxn + (1− αn − βn)yn − yn‖
= ‖xn − xn+1‖+ ‖αn(f(xn)− yn) + βn(xn − yn)‖
≤ ‖xn − xn+1‖+ αn‖f(xn)− yn‖+ βn‖xn − yn‖.
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It follows that

(1− βn)‖xn − yn‖ ≤ ‖xn − xn+1‖+ αn‖f(xn)− yn‖,

and hence

‖xn − yn‖ ≤ 1
(1− βn)

‖xn − xn+1‖+
αn

(1− βn)
‖f(xn)− yn‖.

From the condition (i), (iii) and (3.1), then we obtain that

lim
n→∞

‖xn − yn‖ = 0. (3.2)

Next, we show that lim supn→∞〈(f − I)z, J(xn − z)〉 ≤ 0, where z = QV I(C,A)x, VI(C,A) is a sunny
nonexpansive retraction of C onto VI(C,A). We can choose a sequence {xnk

} of {xn} such that

lim sup
n→∞

〈(f − I)z, J(xn − z)〉 = lim
k→∞

〈(f − I)z, J(xnk
− z)〉. (3.3)

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} which converges weakly to p. Without

loss of generality, we can assume that xnk
⇀ p. Next, we show that p ∈ V I(C, A). From the assumption, we

see that control sequence {λnk
} is bounded. So, there exists a subsequence {λnkj

} converges to λ0. We may
assume, without loss of generality, that λnk

⇀ λ0. Observe that

‖QC(xnk
− λ0Axnk

)− xnk
‖ ≤ ‖QC(xnk

− λ0Axnk
)− ynk

‖+ ‖ynk
− xnk

‖
≤ ‖(xnk

− λ0Axnk
)− (xnk

− λnk
Axnk

)‖+ ‖ynk
− xnk

‖
≤ M‖λnk

− λ0‖+ ‖ynk
− xnk

‖,

where M is as appropriate constant such that M ≥ supn≥1{‖Axn‖}. It follows from (3.2) that

lim
k→∞

‖QC(xnk
− λ0Axnk

)− xnk
‖ = 0.

On the other hand, we know that QC(I − λ0A) is nonexpansive. Indeed, for x, y ∈ C, from Lemma 2.1, we see
that

‖QC(I − λ0A)x−QC(I − λ0A)y‖2 ≤ ‖(I − λ0A)x− (I − λ0A)y‖2

= ‖(x− y)− λ0(Ax−Ay)‖2

≤ ‖x− y‖2 − 2λ0〈Ax−Ay, J(x− y)〉+ 2K2λ2
0‖Ax−Ay‖2

≤ ‖x− y‖2 − 2λ0β‖Ax−Ay‖2 + 2K2λ2
0‖Ax−Ay‖2

= ‖x− y‖2 + 2λ0(λ0K
2 − β)‖Ax−Ay‖2

≤ ‖x− y‖2.

It follows from Lemma 2.5 that p ∈ F (QC(I − λ0A)). By using Lemma 2.4, we can obtain that
p ∈ F (QC(I − λ0A)) = V I(C, A). From (3.3), we have

lim sup
n→∞

〈(f − I)z, J(xn − z)〉 = lim
k→∞

〈(f − I)z, J(xnk
− z)〉

= lim
k→∞

〈(f − I)z, J(p− z)〉 ≤ 0 (3.4)
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Finally, we show that {xn} converges strongly to z = QV I(C,A)x. Observe that

‖xn+1 − z‖2 = 〈xn+1 − z, J(xn+1 − z)〉
= 〈αnf(xn) + βnxn + γnyn − z, J(xn+1 − z)〉
= 〈αn(f(xn)− z) + βn(xn − z) + γn(yn − z), J(xn+1 − z)〉
= αn〈f(xn)− f(z), J(xn+1 − z)〉+ αn〈f(z)− z, J(xn+1 − z)〉+ βn〈xn − z, J(xn+1 − z)〉

+γn〈yn − z, J(xn+1 − z)〉
≤ ααn‖xn − z‖‖xn+1 − z‖+ αn〈f(z)− z, J(xn+1 − z)〉+ βn‖xn − z‖‖xn+1 − z‖

+γn‖xn − z‖‖xn+1 − z‖
=

ααn + βn + γn

2
(‖xn − z‖2 + ‖xn+1 − z‖2) + αn〈f(z)− z, J(xn+1 − z)〉

=
ααn + 1− αn

2
(‖xn − z‖2 + ‖xn+1 − z‖2) + αn〈f(z)− z, J(xn+1 − z)〉

=
1− αn(1− α)

2
(‖xn − z‖2 + ‖xn+1 − z‖2) + αn〈f(z)− z, J(xn+1 − z)〉

≤ 1− αn(1− α)
2

‖xn − z‖2 +
1
2
‖xn+1 − z‖2 + αn〈f(z)− z, J(xn+1 − z)〉,

which implies that

‖xn+1 − z‖2 ≤ (1− αn(1− α))‖xn − z‖2 + 2αn〈f(z)− z, J(xn+1 − z)〉. (3.5)

Now, from (i), (3.4) and applying Lemma 2.3 to (3.5), we get ‖xn − z‖ → 0 as n → ∞. This completes the
proof. ¤

Corollary 3.2. [3, Theorem 3.1,] Let E be a uniformly convex and 2-uniformly smooth Banach space with
the best smooth constant K and C a nonempty closed convex subset of E. Let QC be a sunny nonexpansive
retraction from E onto C and A : C → E be an β-inverse-strongly accretive mapping with V I(C,A) 6= ∅.
Suppose the sequences {αn}, {βn} and {γn} in (0, 1) satisfy αn + βn + γn = 1, n ≥ 1 and {λn} is a sequence
in [a,b] for some a, b with 0 < a < b < β

K2 . The following conditions are satisfied:
(i). limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii). limn→∞(λn+1 − λn) = 0;
(iii). 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
For arbitrary given x1 ∈ C, the sequences {xn} generated by (1.3). Then {xn} converges strongly to QV I(C,A)x.

Proof . Taking f(x) = x1 := u for all x ∈ C in (1.4), we can conclude the desired conclusion easily. This
completes the proof. ¤

Corollary 3.3. [4, Theorem 3.1,] Let E be a uniformly convex and 2-uniformly smooth Banach space with
the best smooth constant K and C a nonempty closed convex subset of E. Let QC be a sunny nonexpansive
retraction from E onto C and A : C → E be an β-inverse-strongly accretive mapping with V I(C,A) 6= ∅.
Suppose the sequences {αn}, {βn} and {γn} in (0, 1) satisfy αn + βn + γn = 1, n ≥ 1 and {λn} is a sequence
in [a,b] for some a, b with 0 < a < b < β

K2 . The following conditions are satisfied:
(i). limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii). limn→∞(λn+1 − λn) = 0;
(iii). 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
For arbitrary given x1 ∈ C, the sequences {xn} generated by (1.2). Then {xn} converges strongly to QV I(C,A)x.
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Proof . Taking f(x) = x1 for all x ∈ C and βn = 0, for all n ∈ N, in (1.4), we can conclude the desired
conclusion easily. This completes the proof. ¤
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Abstract

This paper presents su¢ cient conditions for all solutions as
well as their derivatives up to second order to x

000
+a(t)f(x

0
)x

00
+

b(t; x; x
0
)+c(t)g(x) = e(t; x; x

0
; x

00
) to be bounded. What is more,

it shows that all the solutions are in Lp[0;1) under somewhat
more restrictive conditions.

1 Introduction

In this paper we consider the following non-linear third order di¤erential
equation of the form

x
000
+ a(t)f(x

0
)x

00
+ b(t; x; x

0
) + c(t)g(x) = e(t; x; x

0
; x

00
) (1)

where the functions a, f , b, c, g and e are continuous, besides, the
functions a; f and c are di¤erentiable related to the given arguments.
We discuss the boundedness of solutions of Eq.(1) and whether the

solutions are also in Lp[0;1) with su¢ cent conditions. Incidently, by
Lp-solutions we mean that

Z 1

0

jx(t)jp dt <1:
So far, the boundedness of solutions of various second and third order

non-linear ordinary di¤erential equations have been discussed by many
authors in the literature. The readers can refer to the book of Reissig[20]
as a survey, the papers and the books of [1-33] and the references therein.
By the way, let us say that Liapunov�s second method has been used for
the investigation of the boundedness of solutions of non-linear di¤erential
equations e¤ectively and it is still being used. But, some authors ob-
tained their results about the boundedness of solutions of the mentioned
various order di¤erential equations via non-Liapunov sense, which is not

1

687JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, N0.3, 687-694,2010,COPYRIGHT 2010 EUDOXUS PRESS, LLC



usual (see [6],[9],[13-16],[18],[31] and [32]). Speci�cally, Kroopnick [13-
16] put many valuable studies in second order in this sense. To the best
of our knowledge, in 1972, Kroopnick began to investigate the properties
of solutions of the second order di¤erential equations in the cited [13] by
standart method, integral test. Later, the author has got some results
about the boundedness of solutions of di¤erent types of the second order
di¤erential equations (see [14],[15] and [16]) in the same manner which
looks like simple and usefel but rarely has been encountered in third
order, see Ogundare[19] including the equation of the form

x
000
+ a(t)f(x

0
)x00 + b(t)g(x)x

0
+ c(t; x) = e(t);

where e(t) is square integrable.
Here, the mentioned studies of Kroopnick inspire us to be able to ac-

quire e¤ective results in our work for the third order without considering
Liapunov method.
Therefore, throughout this paper presenting three theorems in su¢ -

cient conditions, �rst we will show the boundedness of all solutions of
Eq.(1) as well as their derivatives up to 2nd order and that the derivatives
are elements of L2[0;1) in �rst theorem. Next, the same results will be
obtained again in second theorem with small but radical changes in as-
sumptions of the �rst theorem. Lastly, under more restrictive conditions,
that all the solutions to Eq.(1) are in Lp[0;1) will be shown.

2 Main Results

Theorem 1 Assume that

i) b(t; x; y)y 1 0, b(t; x; y)z 1 0, je(t; x; y; z)j � q(t) for all t > 0, x,

y, z where
Z t

0

jq(s)j ds <1 and x = x(t); y = x
0
(t) ; z = x

00
(t),

ii) G(x) =
Z x

0

g(s)ds �!1 as jxj �! 1,

iii) c(t) � c0 > 0; c
0
(t) � 0; a(t) > a0 > 0; f(y) > f0 > 0; g(x) >

g0 > 0; y(t) �
R
y2(s)ds; where c0; a0; f0 and g0 are some

constants.

Then all solutions of Eq.(1) are bounded as well as their derivatives
up to 2nd order and the derivatives are elements of L2-solutions.
Proof. First, by standart existence theory, it is obvious that there exist
at least one solution, which is local on [0; t): But global existence of all
solutions may be mentioned in the case we can show the solutions are
bounded.

2
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Upon multiplying Eq.(1) by x
00
(t) and integrating from 0 to t, we

haveZ t

0

x
000
(s)x

00
(s)ds +

Z t

0

a(s)f(x
0
(s))x

00
(s)2ds

+

Z t

0

b(s; x(s); x
0
(s))x

00
(s)ds+

Z t

0

c(s)g(x(s))x
00
(s)ds

=

Z t

0

e(s; x(s); x
0
(s); x

00
(s))x

00
(s)ds.

Using the assumptions in Theorem 1, it follows that

x
00
(t)2

2
+ a0f0

Z t

0

x
00
(s)2ds+

Z t

0

b(s; x(s); x
0
(s))x

00
(s)ds+ c0g0x

0
(t)

�
Z t

0

jq(s)j
���x00(s)��� ds + x00(0)2

2
. (2)

Applying the mean value theorem for integral to the �rst term on the
RHS of (2), we have

x
00
(t)2

2
+ a0f0

Z t

0

x
00
(s)2ds+

Z t

0

b(s; x(s); x
0
(s))x

00
(s)ds+ c0g0x

0
(t)

�
���x00(t�)��� Z t

0

jq(s)j ds + x
00
(0)2

2
,

where 0 < t� < t:
If
��x00(t)�� becomes unbounded, LHS approaches1 faster than RHS ,

which is impossible. So,
��x00(t)��must stay bounded. Evidently, ��x0(t)�� also

must remain bounded. And again from the assumptions of Theorem 1,
the term c0g0x

0
(t) on LHS becomes c0g0

R
x
0
(s)2ds since c0g0

R
x
0
(s)2ds �

c0g0x
0
(t).

Since the terms a0f0

Z t

0

x
00
(s)2ds and c0g0

R
x
0
(s)2ds are bounded by

RHS, x
0
(t) and x

00
(t) are obtained as square integrable.

Now, let us multiply Eq.(1) by x
0
(t) and integrate from 0 to t , then

we have Z t

0

x
000
(s)x

0
(s)ds+

Z t

0

a(s)f(x
0
(s))x

00
(s)x

0
(s)ds

+

Z t

0

b(s; x(s); x
0
(s))x

0
(s)ds+

Z t

0

c(s)g(x(s))x
0
(s)ds

=

Z t

0

e(s; x(s); x
0
(s); x

00
(s))x

0
(s)ds. (3)

3
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And applying the integrating by parts to the �rst and fourth terms on
the LHS of (3), we see that

x
0
(t)x

00
(t) +

Z t

0

a(s)f(x
0
(s))x

00
(s)x

0
(s)ds+

Z t

0

b(s; x(s); x
0
(s))x

0
(s)ds

+c(t)G(x(t))�
Z t

0

c
0
(s)G(x(s))ds

�
Z t

0

jq(s)j
���x0(s)��� ds+ Z t

0

x
00
(s)2ds

+
���x0(0)x00(0)���+ jc(0)G(x(0))j : (4)

Applying the mean value theorem for integral to the �rst term on the
RHS of (4)

x
0
(t)x

00
(t) +

Z t

0

a(s)f(x
0
(s))x

00
(s)x

0
(s)ds

+

Z t

0

b(s; x(s); x
0
(s))x

0
(s)ds+ c(t)G(x(t))�

Z t

0

c
0
(s)G(x(s))ds

�
���x0(t�)��� Z t

0

jq(s)j ds+
Z t

0

x
00
(s)2ds

+
���x0(0)x00(0)���+ jc(0)G(x(0))j ; (5)

where 0 < t� < t:
Since

��x0(t)�� are also bounded and x00(t) is square integrable, the
RHS of (5) is �nite. Therefore, jx(t)j must also remain bounded. This
completes the proof of Theorem 1.

Theorem 2 The hypotheses are the same as Theorem1 except that c0(t) �
0: In addition, a

0
(t) � 0:Then the same results in Theorem 1 are valid.

Proof. First of all, change of the conditions in Theorem 2 makes no
di¤erence for the boundedness and L2-solutions of x

0
(t) and x

00
(t): But,

the boundedness of x(t) may require some more analysis.

Letting F (y) =
Z y

0

uf(u)du , where y = x
0
(t), we have another

integration for the second term on LHS of (5) and taking the RHS of
(5) as K, we have

x
0
(t)x

00
(t) + a(t)F (y(t))�

Z t

0

a
0
(s)F (y(s))ds+

Z t

0

b(s; x(s); x
0
(s))x

0
(s)ds

+c(t)G(x(t))�
Z t

0

c
0
(s)G(x(s))ds

� jKj+ a(0)F (y0): (6)

4
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Speci�cally, the inequality (6) gives that

c(t)G(x(t)) � �+
Z t

0

c
0
(s)G(x(s))ds

where � = jKj +M2 + 3a(0) sup�M�y�M F (y) and M is the bound of��x0(t)�� and ��x00(t)�� on [0;1): Then we can write
c(t)G(x(t)) � �+

Z t

0

c
0
(s)

c(s)
c(s)G(x(s))ds: (7)

By Gronwall-Reid-Bellman inequality, (7) leads

c(t)G(x(t))��(exp
Z t

0

c
0
(s)

c(s)
ds)

c(t)G(x(t))�� c(t)
c(0)

G(x(t))� �

c(0)
:

Since G(x)!1 as jxj ! 1 ; x(t) must stay �nite on [0;1):

Remark 1 Theorem 2 is still true under the assumptions a1 � a(t) �

a0 > 0 and a
0
(t)�L1[0;1) since

����Z t

0

a
0
(s)F (y(s))ds

���� � sup�M�y�M F (y)

Z 1

0

��a0(s)�� ds:
This implies all terms on the LHS of (6) are bounded. And so, the in-
equality (7) still holds even if � will be di¤erent.

Theorem 3 Under hypotheses of Theorem 1, we assume that xg(x) �
N jxjp where N > 0; then

Z 1

0

jx(s)jp ds <1:

Proof. Multiply Eq.(1) by x(t) and integrate from 0 to t where we
integrate by parts the �rst term on LHS, we have

x(t)x
00
(t) +

x
0
(0)2

2
+

Z t

0

a(s)f(x
0
(s))x

00
(s)x(s)ds

+

Z t

0

b(s; x(s); x
0
(s))x(s)ds+

Z t

0

c(s)g(x(s))x(s)ds

�
Z t

0

jq(s)j jx(s)j ds + x
0
(t)2

2
+
���x(0)x00(0)��� : (8)

5
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Applying the mean value theorem for integral to the �rst term on the
RHS of (8), we obtain

x(t)x
00
(t) +

x
0
(0)2

2
+

Z t

0

a(s)f(x
0
(s))x

00
(s)x(s)ds

+

Z t

0

b(s; x(s); x
0
(s))x(s)ds+

Z t

0

c(s)g(x(s))x(s)ds

� jx(t�)j
Z t

0

jq(s)j ds + x
0
(t)2

2
+
���x(0)x00(0)��� (9)

where 0 < t� < t:
Since jx(t)j and

��x0(t)�� are �nite from Theorem 1, the LHS of (9)

is also bounded, that is, so is the term
Z t

0

c(s)g(x(s))x(s)ds: From the

above assumption, we haveZ t

0

c(s)g(x(s))x(s)ds � c0N
Z t

0

jx(s)jp ds � �;

where � is the RHS of (9).
Consequently, x(t) is an element of Lp[0;1).
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1. Introduction and preliminaries

Let p be a fixed prime number. Throughout this paper, the symbol Z, Zp, Qp, and Cp

denote the ring of rational integers, the ring of p-adic integers, the field of p-adic rational
numbers, and the completion of algebraic closure of Qp, respectively. Let N be the set of
natural numbers and Z+ = N∪ {0} . Let νp be the normalized exponential valuation of Cp

with |p|p = p−νp(p) = p−1.
Let UD(Zp) be the space of uniformly differentiable function on Zp. For f ∈ UD(Zp),

the p-adic invariant integral on Zp is defined as

I(f) =
∫

Zp

f(x)dx = lim
N→∞

1
pN

pN−1∑
x=0

f(x). (1.1)

(see [4-5]). From (1.1), we note that

I(f1) = I(f) + f ′(0), (1.2)

where f ′(0) = df(x)
dx |x=0 and f1(x) = f(x + 1). For n ∈ N, let fn(x) = f(x + n). Then we

can derive the following equation from (1.2).

I(fn) = I(f) +
n−1∑
i=0

f ′(i), (see [4-5]). (1.3)

Let d be a fixed positive integer. For n ∈ N, let

X = Xd = lim←−
N

Z/dpNZ, X1 = Zp,

X∗ = ∪
0<a<dp
(a,p)=1

(a + dp Zp),

a + dpNZp = {x ∈ X|x ≡ a (mod dpN )},
1
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where a ∈ Z lies in 0 ≤ a < dpN . It is easy to see that∫
X

f(x)dx =
∫

Zp

f(x)dx, for f ∈ UD(Zp). (1.4)

The ordinary Bernoulli polynomials Bn(x) are defined as

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
,

and the Bernoulli numbers Bn are defined as Bn = Bn(0) (see [1-19]).
For n ∈ N, let Tp be the p-adic locally constant space defined by

Tp = ∪
n≥1

Cpn = lim
n→∞

Cpn ,

where Cpn = {ω|ωpn

= 1} is the cyclic group of order pn. It is well known that the twisted
Bernoulli polynomials are defined as

t

ξet − 1
ext =

∞∑
n=0

Bn,ξ(x)
tn

n!
, ξ ∈ Tp,

and the twisted Bernoulli numbers Bn,ξ are defined as Bn,ξ = Bn,ξ(0) (see [14-18]).
Let χ be the Dirichlet’s character with conductor d ∈ N. Then we have

∫
X

χ(x)ξxextdx =
t
d−1∑
a=0

χ(a)ξaeat

ξdedt − 1
. (1.5)

It is known that the generalized twisted Bernoulli numbers attached to χ, Bn,χ,ξ, are
defined as

t
d−1∑
a=0

χ(a) ξaeat

ξdedt − 1
=
∞∑

n=0

Bn,χ,ξ
tn

n!
, ξ ∈ Tp. (1.6)

The generalized twisted Bernoulli polynomials attached to χ, Bn,χ,ξ(x), are defined as

t
d−1∑
a=0

χ(a) ξaeat

ξdedt − 1
ext =

∞∑
n=0

Bn,χ,ξ(x)
tn

n!
, ξ ∈ Tp, (1.7)

(see [13], [16]). From (1.5), (1.6) and (1.7), we derive that∫
X

χ(x)ξxxndx = Bn,χ,ξ and
∫

X

χ(y)ξy(x + y)ndy = Bn,χ,ξ(x). (1.8)

By (1.3) and (1.4), it is easy to see that for n ∈ N,∫
X

f(x + n)dx =
∫

X

f(x)dx +
n−1∑
i=0

f ′(i), (1.9)

where f ′(i) = df(x)
dx |x=i. From (1.9), it follows that
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1
t
(
∫

X

χ(x) ξnd+xe(nd+x)tdx−
∫

X

χ(x) ξxextdx) (1.10)

=
nd
∫

X
χ(x) ξxextdx∫

X
ξndxendxtdx

=
ξndendt − 1
ξdedt − 1

(
d−1∑
i=0

χ(i) ξieit) =
∞∑

k=0

(
nd−1∑
l=0

χ(l) ξllk)
tk

k!
.

For k ∈ Z+, let us define the p-adic functional Tk,χ,ξ(n) as follows:

Tk,χ,ξ(n) =
n∑

l=0

χ(l)ξllk. (1.11)

Let k, n, d ∈ N. By (1.10) and (1.11), we see that∫
X

χ(x)ξnd+x(nd + x)kdx−
∫

X

χ(x)ξxxkdx = k Tk−1,χ,ξ(nd− 1). (1.12)

From (1.8) and (1.12), we have that

ξndBk,χ,ξ(nd)−Bk,χ,ξ

k
= Tk−1,χ,ξ(nd− 1). (1.13)

For w1, w2, d ∈ N, we note that

d
∫

X

∫
X

χ(x1)χ(x2) ξw1x1+w2x2e(w1x1+w2x2)tdx1dx2∫
X

ξdw1w2xedw1w2xtx
(1.14)

=
t(ξdw1w2edw1w2t − 1)

(ξw1dew1dt − 1)(ξw2dew2dt − 1)
(
d−1∑
a=0

χ(a)ξw1aew1at)(
d−1∑
b=0

χ(b)ξw2bew2bt).

In the next section, we will consider the extension of (1.14) related to the generalized twisted
Bernoulli numbers and polynomials of higher order attached to χ .

The generalized twisted Bernoulli polynomials of order k attached to χ, B
(k)
n,χ,ξ(x), are

defined as  t
d−1∑
a=0

χ(a) ξaeat

ξdedt − 1


k

ext =
∞∑

n=0

B
(k)
n,χ,ξ(x)

tn

n!
, ξ ∈ Tp, (1.15)

and B
(k)
n,χ,ξ = B

(k)
n,χ,ξ(0) are called the generalized twisted Bernoulli numbers of order k

attached to χ. When k = 1, the polynomials and numbers are called the generalized
twisted Bernoulli polynomials and numbers attached to χ, respectively (see [12-22]).

The authors of this paper have studied various identities for the Bernoulli and the Euler
polynomials by the symmetric properties of the p-adic invariant integrals (see [6-8], [10]). T.
Kim [6] established interesting identities by the symmetric properties of the p-adic invariant
integrals and some relationships between the power sums and the Bernoulli polynomials.
In [8], Kim et al. gave some identities of symmetry for the generalized Bernoulli polynomi-
als. The twisted Bernoulli polynomials and numbers are very important in several field of
mathematics and physics, and so have been studied by many authors (cf. [9-22]). Recently,
Kim-Hwang [10] obtained some relations between the power sum polynomials and twisted
Bernoulli polynomials.

In this paper, we extend our results to the generalized twisted Bernoulli numbers and
polynomials of higher order attached to χ. The purpose of this paper is to derive some iden-
tities of the higher order generalized twisted Bernoulli numbers and polynomials attached to
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χ from the properties of the p-adic invariant integral. In Section 2, we give interesting iden-
tities for the power sums and the generalized twisted Bernoulli numbers and polynomials
of higher order using the symmetric properties for the p-adic invariant integral.

2. Some identities of the generalized twisted Bernoulli numbers and
polynomials of higher order

Let w1, w2, d ∈ N. For ξ ∈ Tp, we set

Y (m,χ, ξ|w1, w2)

=


d
∫

Xm(
m∏

i=1

χ(xi))ξ
(

m∑
i=1

xi)w1
e
(

m∑
i=1

xi+w2x)w1t
dx1 · · · dxm∫

X
ξdw1w2xedw1w2xtdx

 (2.1)

×

(∫
Xm

(
m∏

i=1

χ(xi))ξ
(

m∑
i=1

xi)w2
e
(

m∑
i=1

xi+w1y)w2t
dx1 · · · dxm

)
,

where ∫
Xm

f(x1, · · · , xm)dx1 · · · dxm =
∫

X

· · ·
∫

X︸ ︷︷ ︸
m−times

f(x1, · · · , xm)dx1 · · · dxm.

In (2.1), we note that Y (m,χ, ξ;w1, w2) is symmetric in w1, w2. From (2.1), we derive
that

Y (m,χ, ξ|w1, w2)

=

(∫
Xm

(
m∏

i=1

χ(xi))ξ
(

m∑
i=1

xi)w1
e
(

m∑
i=1

xi)w1t
dx1 · · · dxm

)
ew1w2xt (2.2)

×
(

d
∫

X
χ(xm)ξw2xmew2xmtdxm∫

X
ξdw1w2xedw1w2xtdx

)

×

∫
Xm−1

(
m−1∏
i=1

χ(xi))ξ
(
m−1∑
i=1

xi)w2
e
(
m−1∑
i=1

xi)w2t
dx1 · · · dxm−1

 ew1w2yt.

From (1.10) and (1.11), it follows that

dw1

∫
X

χ(x)ξxextdx∫
X

ξdw1xedw1xtdx
=

w1d−1∑
i=0

χ(i)ξieit =
∞∑

k=0

Tk,χ,ξ(w1d− 1)
tk

k!
. (2.3)

By (1.15), we also see that

ew1w2xt

(∫
Xm

(
m∏

i=1

χ(xi))ξ
(

m∑
i=1

xi)w1
e
(

m∑
i=1

xi)w1t
dx1 · · · dxm

)
(2.4)

=

(
w1t

ξdw1edw1t − 1

d−1∑
a=0

χ(a)ξw1aeaw1t

)m

ew1w2xt =
∞∑

n=0

B
(m)
n,χ,ξw1 (w2x)

wn
1 tn

n!
.

RIM et al: GENERALIZED TWISTED BERNOULLI NUMBERS698
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By (2.2), (2.3) and (2.4), we have that

Y (m,χ, ξ|w1, w2) (2.5)

=

( ∞∑
l=0

B
(m)
l,χ,ξw1 (w2x)

wl
1t

l

l!

)(
1
w1

∞∑
k=0

Tk,χ,ξw2 (w1d− 1)
wk

2 tk

k!

)( ∞∑
i=0

B
(m−1)
i,χ,ξw2 (w1y)

wi
2t

i

i!

)

=
∞∑

n=0

 n∑
j=0

(
n

j

)
wj

2w
n−j−1
1 B

(m)
n−j, χ,ξw1 (w2x)

j∑
k=0

(
j

k

)
Tk,χ,ξw2 (w1d− 1)B(m−1)

j−k,χ,ξw2 (w1y)

 tn

n!
.

From the symmetry of Y (m,χ, ξ|w1, w2) in w1 and w2, we see that

Y (m,χ, ξ|w1, w2) (2.6)

=
∞∑

n=0

 n∑
j=0

(
n

j

)
wj

1w
n−j−1
2 B

(m)
n−j,χ,ξw2 (w1x)

j∑
k=0

(
j

k

)
Tk,χ,ξw1 (w2d− 1)B(m−1)

j−k,χ,ξw2 (w2y)

 tn

n!
.

Comparing the coefficients on the both sides of (2.5) and (2.6), we obtain an identity for
the generalized twisted Bernoulli polynomials of higher order as follows.

Theorem 1. Let d, w1, w2 ∈ N. For n ∈ Z+ and m ∈ N, we have
n∑

j=0

(
n

j

)
wj

2w
n−j−1
1 B

(m)
n−j, χ,ξw1 (w2x)

j∑
k=0

(
j

k

)
Tk,χ,ξw2 (w1d− 1)B(m−1)

j−k,χ,ξw2 (w1y)

=
n∑

j=0

(
n

j

)
wj

1w
n−j−1
2 B

(m)
n−j,χ,ξw2 (w1x)

j∑
k=0

(
j

k

)
Tk,χ,ξw1 (w2d− 1)B(m−1)

j−k,χ,ξw1 (w2y).

Remark 1. Taking m = 1 and y = 0 in (2.7) derives the following identity :

n∑
j=0

(
n

j

)
wj

2w
n−j−1
1 Bn−j,χ,ξw1 (w2x)Tj,χ,ξw2 (w1d− 1) (2.7)

=
n∑

j=0

(
n

j

)
wj

1w
n−j−1
2 Bn−j,χ,ξw2 (w1x)Tj,χ,ξw1 (w2d− 1).

Moreover, if we take x = 0 and y = 0 in Theorem 1, then we have the following identity
for the generalized twisted Bernoulli numbers of higher order.

Corollary 2. Let d,w1, w2 ∈ N. For n ∈ Z+ and m ∈ N, we have
n∑

j=0

(
n

j

)
wj

2w
n−j−1
1 B

(m)
n−j, χ,ξw1

j∑
k=0

(
j

k

)
Tk,χ,ξw2 (w1d− 1)B(m−1)

j−k,χ,ξw2

=
n∑

j=0

(
n

j

)
wj

1w
n−j−1
2 B

(m)
n−j,χ,ξw2

j∑
k=0

(
j

k

)
Tk,χ,ξw1 (w2d− 1)B(m−1)

j−k,χ,ξw1 .

We also note that taking m = 1 in Corollary 2 shows the following identity :
n∑

j=0

(
n

j

)
wj

2w
n−j−1
1 Bn−j,χ,ξw1 Tj,χ,ξw2 (w1d− 1) (2.8)

=
n∑

j=0

(
n

j

)
wj

1w
n−j−1
2 Bn−j,χ,ξw2 Tj,χ,ξw1 (w2d− 1).
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Now we will derive another interesting identities for the generalized twisted Bernoulli
numbers and polynomials of higher order. From (1.15), (2.2) and (2.3), we can derive that

Y (m,χ, ξ|w1, w2)

=
1
w1

(
w1d−1∑

i=0

χ(i) ξw2i

∫
Xm

(
m∏

i=1

χ(xi))ξ
(

m∑
i=1

xi)w1
e
(

m∑
i=1

xi+
w2
w1

i+w2x)w1t
dx1 · · · dxm

)
(2.9)

×

∫
Xm−1

(
m−1∏
i=1

χ(xi))ξ
(
m−1∑
i=1

xi)w2
e
(
m−1∑
i=1

xi+w1y)w2t
dx1 · · · dxm−1


=
∞∑

n=0

(
n∑

k=0

(
n

k

)
wk−1

1 wn−k
2 B

(m−1)
n−k,χ,ξw2 (w1y)

w1d−1∑
i=0

χ(i)ξw2iB
(m)
k,χ,ξw1 (w2x +

w2

w1
i)

)
tn

n!
.

From the symmetry property of Y (m,χ, ξ|w1, w2) in w1 and w2, we see that

Y (m,χ, ξ|w1, w2) (2.10)

=
∞∑

n=0

(
n∑

k=0

(
n

k

)
wk−1

2 wn−k
1 B

(m−1)
n−k,χ,ξw1 (w2y)

w2d−1∑
i=0

χ(i)ξw1iB
(m)
k,χ,ξw2 (w1x +

w1

w2
i)

)
tn

n!
.

Comparing the coefficients on the both sides of (2.9) and (2.10), we obtain the following
theorem which shows the relationship between the power sums and the generalized twisted
Bernoulli polynomials.

Theorem 3. Let d, w1, w2 ∈ N. For n ∈ Z+ and m ∈ N, we have
n∑

k=0

(
n

k

)
wk−1

1 wn−k
2 B

(m−1)
n−k,χ,ξw2 (w1y)

w1d−1∑
i=0

χ(i)ξw2iB
(m)
k,χ,ξw1 (w2x +

w2

w1
i)

=
n∑

k=0

(
n

k

)
wk−1

2 wn−k
1 B

(m−1)
n−k,χ,ξw1 (w2y)

w2d−1∑
i=0

χ(i)ξw1iB
(m)
k,χ,ξw2 (w1x +

w1

w2
i).

Remark 2. Let m = 1 and y = 0 in Theorem 3. Then it follows that

wn−1
1

w1d−1∑
i=0

χ(i)Bn,χ,ξw1 (w2x +
w2

w1
i) = wn−1

2

w2d−1∑
i=0

χ(i)Bn,χ,ξw2 (w1x +
w1

w2
i). (2.11)

Moreover, if we take x = 0 and y = 0 in Theorem 3, then we have the following identity
for the generalized twisted Bernoulli numbers of higher order.

Corollary 4. Let d, w1, w2 ∈ N. For n ∈ Z+ and m ∈ N, we have
n∑

k=0

(
n

k

)
wk−1

1 wn−k
2 B

(m−1)
n−k,χ,ξw2

dw1−1∑
i=0

χ(i)ξw2iB
(m)
k,χ,ξw1 (

w2

w1
i)

=
n∑

k=0

(
n

k

)
wk−1

2 wn−k
1 B

(m−1)
n−k,χ,ξw1

dw2−1∑
i=0

χ(i)ξw1iB
(m)
k,χ,ξw2 (

w1

w2
i).

If we take m = 1 in Corollary 4, we derive the identity for the generalized twisted
Bernoulli numbers : for d,w1, w2 ∈ N and n ∈ Z+,

wn−1
1

dw1−1∑
i=0

χ(i)ξw2iBn,χ,ξw1 (
w2

w1
i) = wn−1

2

dw2−1∑
i=0

χ(i)ξw1iBn,χ,ξw2 (
w1

w2
i). (2.12)
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Abstract

We show that (1) a space is a closed L-image of a paracompact locally compact space if

and only if it has a point-countable HPC k-system; (2) a regular space is a closed L-image

of a locally compact metric space if and only if it has a point-countable HPC mk-system if

and only if it is a k′-space with a point-countable compact k-network; (3) a regular space is

a closed image of a locally compact metric space if and only if it is a Fréchet space with a

point-countable weak-compact k-network.

Keywords and phrases: Closed maps; L-maps; k-systems; mk-systems; k′-space;

Fréchet spaces; Compact k-networks; Weak-compact k-networks.

2000 Mathematics Subject Classification: 54C10; 54D20; 54E99.

1. Introduction and definitions

Some characterizations for certain quotient images (or closed images) of paracompact

locally compact spaces are obtained by means of k-systems (see [1,10,11,17,18]). On the

other hand, some characterizations for certain quotient images (or closed images) of locally

compact metric spaces are also obtained by means of mk-systems or compact k-networks (see

[10,15,20,22,24]). In this paper, we introduce the concept of weak-compact k-networks and

give new characterizations for closed images of certain locally compact spaces.
∗The work is supported by the NSF of China (No. 10771056, 10671211), the NSF of Hunan Province in

China (No. 09JJ6005).
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Let P be a cover of a space X. P is called a k-network [5] for X if whenever K ⊂ U with

K compact and U open in X, then K ⊂ ∪ P ′ ⊂ U for some finite P ′ ⊂ P. If P is composed

of compact subsets of X, then P is called a compact k-network [22] for X. If the closure

of each element of P is compact in X, then P is called a weak-compact k-network for X.

P is called a k-cover [21] for X if every compact K ⊂ X is covered by some finite P ′ ⊂ P.

Obviously, every k-network is a k-cover.

X is determined by P if A ⊂ X is closed in X if and only if A ∩ P is relatively closed in

P for every P ∈ P. If each element of P is compact (resp. compact metric) in X, then P is

called a k-system [4] (resp. mk-system [22]) for X.

X is called a k-space (resp. a sequential space) if it is determined by the cover consisting

of all compact (resp. all compact metric) subsets of X. X is called a kω-space if X has a

countable k-system.

Let P be a family of subsets of a space X. P is called closure-preserving if ∪P ′ = ∪{P :

P ∈ P} for each P ′ ⊂ P. P is called HPC (ie. hereditarily closure-preserving) if a family

{H(P ) : P ∈ P} is closure-preserving for each {H(P ) : H(P ) ⊂ P ∈ P}. P is called σ-HPC

if P =
⋃{Pn : n ∈ N} and each Pn is HPC. P is called point-countable HPC (resp.

point-countable σ-HPC) if P is point-countable and HPC (resp. σ-HPC).

X is called a k′-space [1] if x ∈ A ⊂ X, then x ∈ A ∩K for some compact K ⊂ X. X

is called a countably bi-k-space [1] if whenever (Fn) is a decreasing sequence of subsets of

X with a common cluster point x, then there exists a decreasing sequence (An) of subsets

of X such that x ∈ Fn
⋂

An for any n ∈ N , K =
⋂{An : n ∈ N} is compact in X and

each neighborhood of K contains some An. X is called a σ-space if X has a σ-locally finite

network.

Let P be a topology property. X is called a locally P space if for each x ∈ X, there exists

a open neighborhood V of x in X such that the subspace V has property P .

Let f : X → Y be a map. f is called a L-map if for each y ∈ Y , f−1(y) is a Lindelöf

subspace of X. f is called an s-map if for each y ∈ Y , f−1(y) is separable in X. f is called

a countably bi-quotient map if whenever y ∈ Y and U is a countable family of open subsets

of X such that f−1(y) ⊂ ∪U , then y ∈ Int(f(∪U∗)) for some finite U∗ ⊂ U .

Every locally compact space and every Fréchet space are a k′-space. Every k′-space can be

characterized as a pseudo-open image of a paracompact locally compact space, every k′-space

is a k-space. Every locally compact space and every first countable space are a countably

2
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bi-k-space. Every countably bi-k-space can be characterized as a countably bi-quotient image

of a paracompact M -space, every countably bi-k-space is a k-space. Every locally kω-space

with the Lindelöf property is a kω-space.

Open maps and perfect maps are countably bi-quotient, countably bi-quotient maps and

closed map are pseudo-open, and pseudo-open map is quotient.

In this paper, all spaces are assumed to be T2, all maps are assumed to be continuous and

onto. For two familys A and B of subsets of a space X, denote {A ∩B : A ∈ A and B ∈ B}
by A∧B.

2. Closed L-images of paracompact locally compact spaces

Lemma 2.1 [11]. A space is a paracompact locally kω-space if and only if it has a

σ-locally finite k-system.

Theorem 2.2. The following are equivalent for a space X:

(1) X is a closed L-image of a paracompact locally compact space.

(2) X has a point-countable HPC k-system.

(3) X has a point-countable k-system and a HPC k-system.

(4) X is a paracompact, locally kω-, k′-space.

(5) X is a k′-space with a point-countable σ-HPC k-system.

Proof. (1) =⇒ (2). Suppose X is a closed L-image of a paracompact locally compact

space. Let f : Z −→ X is a closed L-map, where Z is a paracompact locally compact space.

By Lemma 1 in [11], Z has a locally finite k-system F . Put P = {f(F ) : F ∈ F}. Since

quotient maps preserve k-systems, then P is a k-system for X. Since f is closed, then P is

HCP . By f is a L-map, P is point-countable in X. Thus X has a point-countable HPC

k-system.

(2) =⇒ (3) is obvious.

(3) =⇒ (4). Suppose X has a point-countable k-system and a HPC k-system. Since

X has a HPC k-system, then X is a closed image of a paracompact locally compact space

by Theorem 2 in [11]. Let f : Z −→ X is a closed map, where Z is a paracompact locally

compact space. Obviously X is a countable bi-k-space. Because X has a point-countable

k-system, then X is a paracompact locally kω-space by Theorem 13 in [9]. Since pseudo-open

images of paracompact locally compact spaces are k′-spaces, then X is a k′-space. Thus X

is a paracompact, locally kω-, k′-space.

3

LI, LI:  ON LOCALLY COMPACT SPACES 705



(4) =⇒ (5) holds by Lemma 2.1.

(5) =⇒ (2). Suppose P is a point-countable σ-HCP k-system for a k′-space X. Let

P =
⋃{Pn : n ∈ N}, where each Pn is HCP in X. We can assume that each Pn ⊂ Pn+1.

For each n ∈ N , set Xn = ∪Pn, then {Xn : n ∈ N} is a rising closed cover of X. Put

F1 = P1,

Fn = {P \Xn−1 : P ∈ Pn} (n > 1),

F = ∪{Fn : n ∈ N}.

As in the proof of Theorem 2 (1) =⇒ (2) in [11], we can prove that F is a HCP k-system

for X. For n > 1 and P ∈ Pn, P \Xn−1 ⊂ P = P . Because P is point-countable in X, then

F is point-countable in X. Thus X has a point-countable HPC k-system.

(2) =⇒ (1). Suppose X has a point-countable HPC k-system for X. Let P is a point-

countable HCP k-system. Put M =
⊕{P : P ∈ P}, the M is a paracompact locally compact

space. Let f : M → X be the natural map. Since P is HCP , then f is closed. Because P is

a point-countable in X, then f is a L-map. Hence X is a closed L-image of a paracompact

locally compact space.

3. Closed L-images of locally compact metric spaces

From the proof of Proposition 2.1 in [19], the following holds.

Lemma 3.1. Suppose that P is a point-countable cover of X. Then P is a mk-system

if and only if X is a k-space and P is a k-cover consisting of compact metric subspaces.

Lemma 3.2 [24]. The following are equivalent for a k′-space X:

(1) X has a σ-locally finite mk-system.

(2) X has a point-countable mk-system.

Lemma 3.3 [24]. The following are equivalent for a k′-space X:

(1) X has a σ-locally finite compact k-network.

(2) X has a point-countable compact k-network.

Theorem 3.4. The following are equivalent for a regular space X:

(1) X is a closed L-image of a locally compact metric space.

(2) X is a pseudo-open L-image of a locally compact metric space.

(3) X is a k′-space with a point-countable mk-system.
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(4) X has a point-countable HPC mk-system.

(5) X is a k′-space with a point-countable compact k-network.

(6) X is a k′-space with a point-countable k-cover consisting of compact metric subspaces.

Proof. (1) =⇒ (2) is clear.

(2) =⇒ (3). Suppose X is the image of a locally compact metric space M under a

pseudo-open L-map f . Since M is locally compact, then there exists compact subset Km of

M such that m ∈ int(Km) for each m ∈ M . By M is paracompact, {int(Km) : m ∈ M} has

a locally finite closed refinement F . Let F = {Fα : α ∈ Λ}. For each α ∈ Λ, Fα ⊂ int(Kmα)

for some mα ∈ M . By Fα ⊂ Kmα , Fα is compact in M . Thus F is a locally finite closed

cover consisting of compact metric subspaces. Put P = {Pα : α ∈ Λ}, here Pα = f(Fα). We

shall show that P is a k-system for X. Suppose A is a subset of X such that A∩Pα is closed

in the subspace Pα for any α ∈ Λ. If A is not closed in X. Since f is quotient, f−1(A) is

not closed in M . By M is a k-space, f−1(A) ∩K is not closed in the subspace K for some

compact K ⊂ M . So f−1(A) ∩K is not closed in M . Because F is locally finite in M , then

K ⊂ ⋃{Fα : α ∈ Λ
′} for some finite Λ

′ ⊂ Λ. Thus f−1(A) ∩ Fα is not closed in M for some

α ∈ Λ
′
. Since f−1(A ∩ Pα) = f−1(A) ∩ Fα, then A ∩ Pα is not closed in X. So A ∩ Pα is not

closed in the subspace Pα, a contradiction. Hence P is a k-system for X. Because continuous

maps preserve compact metric spaces, then P is a mk-system for X. By f is a L-map, P is

point-countable in X. Since pseudo-open maps preserve k′-spaces, thus X is a k′-space with

point-countable mk-system.

(3) =⇒ (4). Suppose X is a k′-space with a point-countable mk-system, then X has

a σ-locally finite mk-system by Lemma 3.2. Let P is a σ-locally finite mk-system for X.

Denote P =
⋃{Pn : n ∈ N}, where each Pn is locally finite in X. We can assume that each

Pn ⊂ Pn+1. For each n ∈ N , set Xn = ∪Pn, then {Xn : n ∈ N} is a rising closed cover of X.

Put

F1 = P1,

Fn = {P \Xn−1 : P ∈ Pn} (n > 1),

F = ∪{Fn : n ∈ N}.

As in the proof of Theorem 2 (1) =⇒ (2) in [11], we can prove that F is a HCP mk-system

for X. Because P is point-countable in X, then F is point-countable in X. Thus X has a

point-countable HPC mk-system.

5
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(4) =⇒ (1). Suppose P is a point-countable HPC mk-system. Put M =
⊕{P : P ∈ P},

the M is a locally compact metric space. Let f : M → X be the natural map, then f is a

closed L-map. Hence X is a closed L-image of a locally compact metric space.

(1) =⇒ (5). Suppose X is the image of a locally compact metric space M under a

closed L-map f . Let B be a σ-locally finite base for M . Since M is locally compact, set

B′ = {B ∈ B : B is compact in M}, then B′ also is a σ-locally finite base for M . Because M

is a locally separable metric space, then there is a family {Mα : α ∈ A} of separable metric

spaces such that M =
⊕{Mα : α ∈ A} (see [6, 4.4F]). For each α ∈ A, Mα is both open and

closed in M , and Mα is a Lindelöf subspace of M . Put

Pα = {Mα ∩B : B ∈ B′},

then Pα is a countable compact k-network for Mα. So P = ∪{Pα : α ∈ A} is a locally-

countable compact k-network for M . Put

F = {f(P ) : P ∈ P}.

Since f is compact-covering and compact-covering maps preserve compact k-networks, F
is a compact k-network for X. By f is a L-map, F is a point-countable in X. Because

pseudo-open maps preserve k′-spaces, then X is a k′-space. Hence X is a k′-space with

point-countable compact k-network.

(3) ⇐⇒ (5) holds by Corollary 1 in [22].

(5) =⇒ (6). Suppose X is a k′-space with a point-countable compact k-network, then

X has a σ-locally finite compact k-network by Lemma 3.3. So X is a σ-space. Let P is a

σ-locally finite compact k-network for X. Obviously P is a point-countable k-cover for X.

Because a countably compact σ-space is metrizable, then any compact subspaces of X are

metrizable. So every element of P is metrizable. Thus X is a k′-space with a point-countable

k-cover consisting of compact metric subspaces.

(6) =⇒ (3) holds by Lemma 3.1.

Corollary 3.5 [20]. A regular space X is a closed s-image of a locally compact metric

space if and only if it is a Fréchet space with a point-countable compact k-network.

4. Closed images of locally compact metric spaces

Lemma 4.1 [15]. A regular space is a closed image of a locally compact metric space

6
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if and only if it is a Fréchet space with a point-countable k-network, and each of its closed

first-countable subspace is locally compact.

Lemma 4.2. For a space X, the following hold.

(1) Let P be a point-countable k-network for X. If a point x in X has a countable

local base, then for each neighborhood U of x, there exists a finite subset F of P such that

x ∈ (∪F)◦ ⊂ ∪F ⊂ U [15].

(2) A countable compact k-space with a point-countable space k-network is compact and

metrizable [8].

(3) Let f : X → Y be a perfect map, let Y be a first-countable space, if each f−1(y) is a

first-countable subset of X, then X is a first-countable space [16].

Lemma 4.3. Suppose X is a k-space with a point-countable k-network, then X has a

point-countable weak-compact k-network if and only if each closed first-countable subspace

of X is locally compact.

Proof. Necessity. Suppose E is a closed first-countable subspace of X. Pick x ∈ E. Let

P be a point-countable weak-compact k-network for X. Put F = {P ∩ E : P ∈ P}, then F
is a point-countable k-network for E. By Lemma 4.2(1), there exists a finite subset R of F
such that x ∈ intE(∪R). So R = {P ∩ E : P ∈ P ′} for some finite subset P ′

of P. Since

∪{P ∩ E : P ∈ P ′} is compact subspace of E and x ∈ intE(∪{P ∩ E : P ∈ P ′}). Hence E is

locally compact.

Sufficiency. With loss of generality we can assume that P is a a point-countable k-network

for X which is closed under finite intersections. Put F = {P ∈ P : P is compact in X }.
Then F is a weak-compact k-network. In fact, let K ⊂ U with K compact and U open in

X. P is a a point-countable k-network for X, by Miščenko’s Lemma ([14, Lemma 3.3.10])

there are at most ω minimal (i.e. not containing proper subcover) finite covers of K by

members of P, say {Bi}. Put Ln =
∧

i≤n Bi, and Ln = ∪Ln for each n ∈ N . Then {Ln}n∈N

is a decreasing set of K in X. For each n ∈ N ,if no Ln is compact in X, thus no Ln is

countable compact in X by Lemma 4.2(2). Thus Ln contains an infinite closed discrete subset

Dn. Define C = K ∪ (∪n∈N Dn), and endow C with the subspace topology of X. Then no

neighborhood of K in C is countable compact. By the compactness of K, C is not locally

countable compact, so C is not locally compact. Let f : C → C/K be a natural quotient

map. Then f is a perfect map and C/K is first-countable (In fact, C/K is a metric space). By

7
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the Lemma 4.2(3), C is first-countable, so C is a non-locally compact, closed first-countable

subset of X, a contradiction. Thus, Lm is compact in X for some m ∈ N . Choose n ≥ m

with K ⊂ Ln ⊂ U . This shows that Ln is a finite subset of F and K ⊂ ∪Ln ⊂ U . Thus F is

a weak-compact k-network for X.

By Lemma 4.1 and Lemma 4.3, the following holds.

Theorem 4.4. A regular space X is a closed image of a locally compact metric space

if and only if X is a Fréchet space with a point-countable weak-compact k-network.

5. Examples

Example 5.1. Open finite-to-one images of paracompact locally compact spaces need

not be closed L-images of paracompact locally compact spaces.

There are a paracompact locally compact space Z and open finite-to-one map f from Z

onto a space X which is not paracompact (see [3, Example 5.11]). Because closed maps pre-

serve paracompact spaces, then X is not a closed L-image of a paracompact locally compact

space.

This example also illustrates:

X is a pseudo-open L-image of a paracompact locally compact space 6⇒ X is a closed

L-image of a paracompact locally compact space.

Example 5.2. Quotient finite-to-one images of locally compact metric spaces need not

be closed L-images of metric spaces.

Let

S =
{

1
n

: n ∈ N

}
∪ {0}, X = [0, 1]× S.

And let

Y = [0, 1]× { 1
n

: n ∈ N}

have the usual Euclidean topology as a subspace of [0, 1]× S. Define a typical neighborhood

of (t, 0) in X to be of the form

{(t, 0)} ∪

 ⋃

k≥n

V (t, 1/k)


 , n ∈ N,

where V (t, 1/k) is a neighborhood of (t, 1/k) in [0, 1]× {1/k}. Put

M = (⊕n∈N [0, 1]× {1/n})⊕ (⊕t∈[0,1]{t} × S),

8
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and define f from M onto X such that f is an obvious map.

Then f is a compact-covering, quotient, two-to-one map from the locally compact metric

space M onto a separable, regular, non-Lindelöf, k-space X (see [12, Example 2.8.16] or [8,

Example 9.3]).

X has no compact-countable k-network. In fact. Suppose P is a compact-countable

k-network for X. Put

F = {{(t, 0)} : t ∈ [0, 1]} ∪ {P ∩ Y : P ∈ P}.

Since [0, 1] × {0} is a closed discrete subspace of X, then F is a k-network for X. But Y is

a σ-compact subspace of X. Thus {P ∩ Y : P ∈ P} is countable, and so F is star-countable.

Since a regular, k-space with a star-countable k-network is an ℵ0-space(see [7]), then X is a

Lindelöf space, a contradiction. Thus X has no compact-countable k-network. So X is not

an ℵ-space. By Theorem 2.7.23 in [12], X is not a closed s-image of a metric space. Hence

X is not a closed L-image of a metric space.

This example also illustrates:

X is a quotient L-image of a locally compact metric space 6⇒ X is a closed L-image of a

locally compact metric space.

Example 5.3. Closed L-images of locally compact metric spaces need not be countably

bi-quotient images of paracompact locally compact spaces. See Example 10.1 in [1].

Example 5.4. Countably bi-quotient images of paracompact locally compact spaces

need not be closed L-images of paracompact locally compact spaces.

Let Q be the rational number set, and endow Q with the usual subspace topology. Since Q

is first-countable and paracompact, then Q is a countably bi-quotient image of a paracompact

locally compact space (see [1]). But Q is a non-kω-space with the Lindelöf property (see

[2, Proposition 20]), then Q is not a locally kω-space. So Q is not a closed L-image of a

paracompact locally compact space by Theorem 2.1.

Two examples above illustrate:

A countably bi-quotient image of a paracompact locally compact space is each other

independent of a closed L-image of a paracompact locally compact space.
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Recurrent points and periodic points of

graph maps∗
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Abstract. Let G be a graph and f ∈ C0(G). It is proved that P (f) = G if

R(f) = G and P (f) 6= ∅. This result generalizes several corresponding results

given in [3] and [10].

1 Introduction

In this paper, let N denote the set of all positive integers. Write Z+ = N ∪ {0},
Nn = {1, 2, · · · , n} and Zn = {0} ∪ Nn for any n ∈ N. Let X be a topological space and

C0(X) the set of all continuous maps from X to X. For any x ∈ X and f ∈ C0(X),

O(x, f) = {fk(x) : k ∈ Z+} is called the orbit of x. The set of periodic points of f ,

the set of recurrent points of f , the set of ω-limit points for some x ∈ X and the set of

non-wandering points of f ( for the definitions see [2] ) are denoted by P (f), R(f), ω(x, f)

and Ω(f) respectively. Write ω(f) = ∪x∈Xω(x, f) and EP (f) = {x : fk(x) ∈ P (f) for

some k ∈ N}, which are called ω-limit set and the set of eventually periodic points of f

respectively. It is well known that P (f) ⊂ R(f) ⊂ ω(f) ⊂ Ω(f). For any A ⊂ X, let

Int(A), ∂A and A be the interior, the boundary and the closure of A respectively. For

any finite subset A ⊂ X, denote by |A| the number of elements of A.

∗Project supported by NNSF of China (10661001,10861002), NSF of Guangxi (0897012, 0832275),NSF

of Guangdong(7301276) and NSF of Guangxi Education Department(200807MS001)
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A space A is called an arc if there is a homeomorphism h : [0, 1] → A. A connected

metric space G is called a graph if there exist finitely many arcs A1, A2, · · · , An in G

such that G =
⋃∞

i=1 Ai and Ai ∩Aj = ∂Ai ∩ ∂Aj for 1 ≤ i < j ≤ n. Let S1 be the unit

circle in the complex plane C. A graph C is called a circle if it is homeomorphic to S1.

A graph T is called a tree if it contains no circle.

Let G be a graph, x ∈ G, and U be a neighborhood of x in G such that the closure U

is a tree. The number of connected components of U−{x}, denoted by valG(x) or val(x),

is called the valence of x in G. x is called an endpoint of G if ValG(x) = 1; x is called

a branch point of G if ValG(x) > 2. Let End(G) and Br(G) be the set of endpoints

and the set of branch points of G respectively. Let V (G) = End(G) ∪ Br(G). Denote by

E(G) the set of all connected components of G − V (G). A finite set D(G) ⊃ V (G) is a

set of vertices of G if for each simple closed curve S of G, S ∩ D(G) = S ∩ V (G) when

|S ∩ V (G)| ≥ 3, and |S ∩D(G)| ≥ 3 when |S ∩ V (G)| < 3, that is, we add some artificial

points with valence 2 as vertices. In this way, each edge ( the closure of some connected

component of G − D(G)) is homeomorphic to [0, 1] and if I and J are two edges of G,

then |I ∩ J | ≤ 1. For some edge I of G and any a, b ∈ I, we use [a, b]I ( or simply [a, b]

if there is no confusion ) to denote the smallest connected closed subset of I containing

{a, b}. Define (x, y] = [x, y]−{x} and (x, y) = (x, y]−{y}. For any x ∈ G and any ε > 0,

write B(x, ε) = {y ∈ G : d(x, y) < ε}.

Let G be a graph. f : G → G is said to be a graph map if f ∈ C0(G). Let f be a

graph map, L be a connected component of G−D(G) and h be a homeomorphism from

L to the open interval (0, 1) ⊂ R. For any x, y ∈ L, we write x <h y (resp. x ≤h y,

x >h y, x ≥h y ) if h(x) < h(y) (resp. h(x) ≤ h(y), h(x) > h(y), h(x) ≥ h(y) ). Let

K = (a, b) ⊂ L. K is said to be free (with respect to f) if no iterate of a point of K

belongs K. K is said to be positive (with respect to f) in the sense of h if K is not free

and whenever x ∈ K and fn(x) ∈ K for some n ≥ 1 then x <h fn(x).

Let (X, d) be a metric space and f ∈ C0(X). f is said to be transitive if for any

non-empty open subsets U and V of X there exists k ∈ N such that fk(U) ∩ V is non-

empty. f is said to be Chaotic in the sense of Deavney if it satisfies the following

three conditions: (i) f is transitive; (ii) P (f) = X; (iii) f is sensitive dependence on initial

conditions. It is interesting to remark that sensitivity dependence on initial conditions is

widely understood as being the central idea in chaos. However, it has been proved that (i)

and (ii) implies (iii)(see [1]). Also, for interval maps, M. Vellekoop and R. Berglund([10])

proved that f is transitive if and only if f is chaotic in the sense of Devaney. For continuous

maps f of the circle, it was shown by E.M. Coven and I. Mulvey that

2
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Theorem A.([3]) For continuous maps of the circle with periodic points, the centre

is closure of the periodic points and the depth of the centre is at most two.

In this paper, we will have a further discussion about on relationship between tran-

sitivity and periodic points of graph maps. Our results generalize several corresponding

results given in [3] and [10].

Theorem 2.8. Let G be a graph and f ∈ C0(G). If R(f) = G and P (f) 6= ∅, then

P (f) = G.

Theorem 2.9. Let G be a graph and f ∈ C0(G). If f is transitive and P (f) 6= ∅,
then the centre is P (f) and P (f) = G.

2 Transitive graph maps with P (f ) 6= ∅

Lemma 2.1. Let G be a graph, f ∈ C0(G), L be a connected component of G−D(G)

and h be a homeomorphism from L to the open interval (0, 1) ⊂ R. If K = (a, b) ⊂ L is

positive in the sense of h, then for every x ∈ K, there exists y ∈ K and n ≥ 1 such that

fn(y) ∈ K and fn(y) >h x.

Proof. Without loss of generality, we suppose that a <h b. Choose any x0 ∈ K

such that fn(x0) ∈ K for some n ≥ 1 and x0 <h fn(x0). We have fn(b) 6∈ K and

(a, x0)∩fn([x0, b]) = ∅ since K is positive in the sense of h. Since fn([x0, b]) is connected,

we have (fn(x0), b) ⊂ fn([x0, b]). Thus for every x ∈ K, there exists y ∈ K and n ≥ 1

such that fn(y) ∈ K and fn(y) >h x. This completes Lemma 2.1. �

Lemma 2.2. Let G be a graph, f ∈ C0(G), L be a connected component of G−D(G)

and h be a homeomorphism from L to the open interval (0, 1) ⊂ R. If K = (a, b) ⊂ L is

positive in the sense of h, a <h x <h y <h b and n ∈ N, then there is j ∈ N such that

f in(x) 6∈ (a, y].

The proof of Lemma 2.2 is easy, so we omitted it. �

Lemma 2.3. Let Y be a connected subset of G. Then | ∂Y | ≤ 3|D(G)|.

Proof. It is obvious | ∂Y ∩ D(G)| ≤ |D(G)|. Set L = {L : L be a connected

component of G−D(G)}. Then | ∂Y ∩L| ≤ 2 for each L ∈ L. Since |L| ≤ |D(G)|. Thus

| ∂Y | ≤ 3|D(G)|. �

Proposition 2.4. Let G be a graph, f ∈ C0(G), L be a connected component of

G − D(G) and h be a homeomorphism from L to the open interval (0, 1) ⊂ R. If K =

3
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(a, b) ⊂ L is positive in the sense of h, a <h c <h b, and for each x ∈ (c, b), there is n ≥ 1

such that fn([c, x]) ∩ [c, x] 6= ∅, then c is an eventually periodic point.

Proof. Since K is positive in the sense of h, there is an x0 ∈ (c, b) such that no

iterate of c lies in (a, x0].

Claim. For all j, k ∈ N, f j(c) 6∈ int(fk([c, x0])) if f j(c) 6∈ V (G).

Proof of Claim. Assume that there are j, k ∈ N such that f j(c) ∈ int(fk([c, x0]))

and f j(c) 6∈ V (G). Then, there exist z and z′ in K such that c <h z <h z′ <h x0 and

f j(c) ∈ int(fk([z, z′])). It follows from the continuity of f that there exists y ∈ (c, z)

such that f i([c, y]) ∩ [c, x0] = ∅ for all 1 ≤ i ≤ j and f j([c, y]) ⊂ int(fk([z, z′])). On the

other hand, by the hypothesis, there is n ∈ N and w such that c <h w <h fn(w) <h y.

Then n > j. Since f j(w) ∈ int(fk([z, z′])), there is a u ∈ [z, z′] such that fk(u) = fn(w).

Therefore, fn−j+k(u) = fn−j(fk(u)) = fn(w) ∈ [c, y], which contradicts the fact that K

is positive in the sense of h. This establishes the claim.

It follows by the claim that, for all j, k ∈ N, f j(c) 6∈ int(fk([c, x0])) if f j(c) 6∈ V (G).

Let n0 = 4|D(G)| + 2 and Y = fn0([c, x0]). Then, by Lemma 2.3, we have that | ∂Y ∪
D(G)| ≤ 4|D(G)| < n0. Since, for all j, k ∈ N, f j(c) 6∈ int(fk([c, x0])) if f j(c) 6∈ V (G),

there is 1 ≤ j < k ≤ n0 such that f j(c) = fk(c). Thus c is an an eventually periodic

point of f . �

Lemma 2.5.([5, Theorem 3.1])Let G be a graph and f ∈ C0(G). Then Ω(f |Ω(f)) =

R(f) and the depth of f is at most 2.

Lemma 2.6.([7, Theorem 2.1]) Let G be a graph and f ∈ C0(G). Then R(f) =

R(f) ∪ P (f).

Lemma 2.7.([7, Lemma 2.2]) Let G be a graph, A ⊂ G be an arc with ∂A = {w,w′},
and f ∈ C0(G). Suppose that Int(A) ∩ V (G) = ∅, A ∩ P (f) = ∅, and there exists

{x, y} ⊂ Int(A) with x ∈ (w, y) and j, k ∈ N such that {f j(x), fk(y)} ⊂ [x, y].

(1) If f j(x) ∈ (x, fk(y)], then f j(w) ∈ Int(A).

(2) If fk(y) ∈ [x, f j(x)), then {f j(w), f j+k(w)} ∩ Int(A) 6= ∅.

Theorem 2.8. Let G be a graph and f ∈ C0(G). If R(f) = G and P (f) 6= ∅, then

P (f) = G.

Proof. Suppose that P (f) 6= G. Then G− P (f) is a nonempty open set. Let U be

a connected component of G − P (f). Write U0 = U − U . Then U0 = U ∩ P (f) 6= ∅. It

follows from Lemma 2.6 that U ⊂ R(f). Thus there exists n ∈ N such that fn(U)∩U 6= ∅.
Let n0 = min{n ∈ N : fn(U) ∩ U 6= ∅}. Obviously, fn0(U) ∩ U is connected, and

4
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fn0(U)∩P (f) = ∅ (if a point of U gets mapped into P (f) then it is not recurrent). Thus,

fn0(U) ⊂ U , and hence fn0(U) ⊂ U . This with fn0(P (f) ) = P (f) implies fn0(U0) ⊂ U0.

Noting that U0 is finite, we have U0 ∩ P (f) 6= ∅. Let v ∈ U0 ∩ P (f) and m be the period

of v. Write g = fmn0 . Then

v ∈ Fix(g), g(U) ⊂ U , g(U) ⊂ U , g(U0) ⊂ U0 and U ⊂ R(g).

Choose an arc K in G and a connected component of G−D(G) such that v ∈ ∂K,

K ⊂ L∩U and K ∩U0 = {v}. Let h be a homeomorphism from L to open interval (0, 1)

such that v >h x for any x ∈ Int(K). Let w ∈ Int(K), write ε0 = 1
2
d(v, w).

Case 1. There exists 0 < ε1 < ε0 such that whenever x ∈ Int(K) ∩ B(v, ε1) and

fn(x) ∈ Int(K)∩B(v, ε1) for some i ≥ 1 then x <h f i(x). Write K1 = Int(K)∩B(v, ε1).

Obviously, there exists i ∈ N such that gi(K1) ∩K1 6= ∅ since K1 ⊂ U ⊂ R(g). Thus, K1

is positive in the sense of h. Let c ∈ K1. Since c ∈ R(g) and K1 is positive in the sense

of h, for any x ∈ (c, v), there is j ≥ 1 such that gj([c, x]) ∩ [c, x] 6= ∅. It follows from

Proposition 2.4 that c is an eventually periodic point, which contradicts c ∈ R(g)−P (g).

Case 2. There exists 0 < ε2 < ε0 such that whenever x ∈ Int(K) ∩ B(v, ε2) and

fn(x) ∈ Int(K)∩B(v, ε2) for some i ≥ 1 then x >h f i(x). Write K2 = Int(K)∩B(v, ε2).

Obviously, there exists i ∈ N such that gi(K2) ∩ K2 6= ∅ since K2 ⊂ U ⊂ R(g). Let

s(y) = 1 − y for any y ∈ (0, 1) and h1 = h ◦ s. Then h1 is a homeomorphism from L to

the open interval (0, 1) and K2 is positive in the sense of h1. Given any c ∈ K2. Since

c ∈ R(g) and K2 is positive in the sense of h1, for any x ∈ K2 with x >h1 c, there is

an j ≥ 1 such that gj([c, x]) ∩ [c, x] 6= ∅. It follows from Proposition 2.4 that c is an

eventually periodic point, which contradicts c ∈ R(g)− P (g).

Case 3. There exist x, y ∈ Int(K) and j, k ∈ N such that x >h gi(x) >h gk(y) >h y. It

follows by Lemma 2.7 that gj(c) ∈ (c, y] for any c ∈ (x, v). By the continuity of gj, we have

gj[v, x] ⊃ [v, x]. Thus there exist x0 = x, x1, x2, · · · ∈ (v, x] such that xi ∈ (xi+1, xi−1)

and gj(xi) = xi−1 for each i ∈ N. Since x ∈ R(g) = R(gj), there exists l ∈ N with l > 3

such that g lj(x) ∈ (x1, g
j(x)). Let a = xl−2, b = gj(x) and d = g lj(x). Then g(l−1)j(a) = b

and g(l−1)j(b) = d. It follows by v 6∈ g(l−1)j([a, b]) that g(l−1)j([a, b]) ⊃ [b, d]. Therefore,

[b, d] ∩ Fix(g(l−1)j) 6= ∅, which contradicts U ⊂ G− P (f) = G− P (g).

Thus, by Case 1-3, we have P (f) = G. The proof of Theorem 2.8 is complete. �

By Theorem 2.8, we have the following Theorem 2.9, which generalizes several cor-

responding results given in [3] and [10].

Theorem 2.9. Let G be a graph and f ∈ C0(G). If f is transitive and P (f) 6= ∅,
then P (f) = G.

5
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Proof. Since f is transitive, we have Ω(f) = G. Thus Ω(f |Ω(f)) = G. It follows by

Lemma 2.5 that R(f) = G. Since P (f) 6= ∅, by Theorem 2.8, we have P (f) = G. �

Combine Theorem 2.9 and [6, Corollary 5.3], we have

Corollary 2.10. Let G be a graph and f ∈ C0(G) be transitive.

(1) If P (f) 6= ∅ then f is chaotic in the sense of Devaney.

(2) If P (f) = ∅ then f is minimal and f is conjugate to an irrational rotation on the

unit circle.

Corollary 2.11. Let G be a graph with Br(G) 6= ∅ and f ∈ C0(G). Then R(f) = G

if and only if P (f) = G.
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DIFFERENTIATION FOLLOWED BY COMPOSITION
FROM BLOCH SPACES TO Qp SPACES

Xiangling Zhu

Abstract

Suppose that ϕ is an analytic self-map of the unit disk D. The
boundedness, compactness and the weak compactness of the operator
CϕDf = f ′(ϕ) from Bloch spaces to Qp spaces on D are studied.

1. Introduction

Let D be the unit disk of complex plane C, and H(D) the class of functions
analytic in D. Recall that an f ∈ H(D) is said to belong to the Bloch space B if

‖f‖b = sup
z∈D

(1− |z|2)|f ′(z)| < ∞.

With the norm ‖f‖B = |f(0)|+ ‖f‖b, B is a Banach space. Let B0 be the space
which consists of all f ∈ B satisfying (1−|z|2)|f ′(z)| → 0 as |z| → 1. This space
is called the little Bloch space.

For a ∈ D, let g(z, a) = log 1
|σa(z)| be the Green function in D, where σa(z) =

(a− z)/(1− az). For p ≥ 0, f ∈ H(D), we say that f belongs to the space Qp if

‖f‖2Qp
= sup

a∈D

∫

D
|f ′(z)|2gp(z, a)dA(z) < ∞, (1)

where dA is the normalized Lebesgue area measure on D. The space Qp,0

(0 < p < ∞) consists of analytic functions f on D for which

lim
|a|→1

∫

D
|f ′(z)|2gp(z, a)dA(z) = 0. (2)

Qp,0 is a closed subspace of Qp and Qp ⊂ B. Qp is a Banach space under the
norm ‖f‖p = |f(0)|+ ‖f‖Qp

. If p = 1, Qp = BMOA. When p = 0, then Qp is
the Dirichlet space D. If p > 1, Qp = B. For more on Qp spaces, see [26].

Let ϕ be an analytic self-map of D. The composition operator Cϕ with the
symbol ϕ is defined by Cϕf = f ◦ ϕ for f ∈ H(D) (see [3]).

2000 Mathematics Subject Classification. Primary 47B38, Secondary 46E15.
Key words. Composition operator, differentiation operator, Bloch space, Qp space.
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Let D be the differentiation operator. The operator CϕD is defined by

CϕDf = f ′(ϕ), f ∈ H(D). (3)

The operator CϕD, and other products of compositions and differentiation op-
erators have been studied in [4, 8, 9, 12, 14, 22, 23, 30]. For some other recently
introduced products see [10, 11, 18, 21]. Composition and weighted composition
operators between Bloch, Qp and some other spaces of analytic functions, have
been studied, e.g., in [2, 5, 7, 13, 16, 19, 20, 24, 25, 27].

Let L : X → Y be a linear operator, where X and Y are Banach spaces.
Then L is said to be weakly compact if for every bounded sequence (xn)n∈N in
X, (L(xn))n∈N has a weakly convergent subsequence, i.e., there is a subsequence
(xnm)m∈N such that for every Λ ∈ Y ∗, Λ(L(xnm))m∈N converges.

Here we study the boundedness, compactness and weak compactness of the
operator CϕD from Bloch spaces B or B0 to the space Qp.

Throughout this paper, constants are denoted by C, they are positive and
may differ from one occurrence to the other. The notation A ³ B means that
there is a positive constant C such that B/C ≤ A ≤ CB.

2. Main results and proofs

Theorem 1. Let p ∈ [0,∞) and ϕ be an analytic self-map of D. Then the
following statements are equivalent:

(i) CϕD : B → Qp is bounded;
(ii) CϕD : B0 → Qp is bounded;
(iii)

sup
a∈D

∫

D

|ϕ′(z)|2
(1− |ϕ(z)|2)4 gp(z, a)dA(z) < ∞. (4)

Proof. (i) ⇒ (ii). This implication is obvious.
(ii) ⇒ (iii). Let f ∈ B. Set fs(z) = f(sz) for 0 < s < 1, then we see that

fs ∈ B0 and ‖fs‖b ≤ ‖f‖b. Thus, by the assumption for all f ∈ B we have

‖CϕDfs‖Qp
≤ ‖CϕD‖‖fs‖b ≤ ‖CϕD‖‖f‖b. (5)

By [15] we know that there exist two Bloch functions f1 and f2 satisfying

1
1− |z|2 ≤ |f ′1(z)|+ |f ′2(z)|, z ∈ D. (6)

We choose h1(z) = f1(z)− zf ′1(0), h2(z) = f2(z)− zf ′2(0). Since (see [29])

(1− |z|2)2|f ′′(z)|+ |f ′(0)| ³ (1− |z|2)|f ′(z)|, (7)

it follows that h1, h2 ∈ B and

(1− |z|2)−2 ≤ |h′′1(z)|+ |h′′2(z)|, z ∈ D. (8)

2
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Replacing f in (5) by h1 and h2 respectively, then
∫

D

|sϕ′(z)|2
(1− |sϕ(z)|2)4 gp(z, a)dA(z)

≤ 2
∫

D

(|h′′1(sϕ(z))|2 + |h′′2(sϕ(z))|2) |sϕ′(z)|2gp(z, a)dA(z)

= 2
∫

D

(|(h′1s ◦ ϕ)′(z)|2 + |(h′2s ◦ ϕ)′(z)|2) gp(z, a)dA(z)

= 2‖CϕDh1s‖2Qp
+ 2‖CϕDh2s‖2Qp

≤ ‖CϕD‖2(‖h1‖2B + ‖h2‖2B) < ∞ (9)

for all a ∈ D and s ∈ (0, 1). This estimate and Fatou’s Lemma give (4).
(iii) ⇒ (i). For any f ∈ B, by the following well-known estimate (1 −

|z|2)2|f ′′(z)| ≤ C‖f‖B, (see, e.g., [29]) the implication follows.

The following lemma is proved as Proposition 3.11 in [3] or Lemma 3 in [17].

Lemma 1. Let p ∈ [0,∞) and ϕ be an analytic self-map of D. Then CϕD : B →
Qp is compact if and only if for every bounded sequence {fn} in B converging
to 0 uniformly on compacts of D as n →∞, limn→∞ ‖CϕDfn‖p = 0.

Lemma 2. Let p ≥ 0 and ϕ be an analytic self-map of D. If CϕD : B(B0) → Qp

is compact, then for any ε > 0 there exists a δ ∈ (0, 1), such that for all f in
BB(or BB0), the unit ball of B ( or B0), and δ < r < 1 holds

sup
a∈D

∫

|ϕ(z)|>r

|f ′′(ϕ(z))|2|ϕ′(z)|2gp(z, a)dA(z) < ε. (10)

Proof. We only give the proof for B0, since the proof for B is similar. For
f ∈ BB0 , let fs(z) = f(sz), 0 < s < 1. Then fs ∈ BB0 and fs → f uniformly
on compact subsets of D as s → 1. Since CϕD is compact,

‖CϕDfs − CϕDf‖Qp → 0 as s → 1.

That is, for given ε > 0 there exists s ∈ (0, 1) such that

sup
a∈D

∫

D

|f ′′s (ϕ(z))− f ′′(ϕ(z))|2 |ϕ′(z)|2gp(z, a)dA(z) < ε. (11)

For 0 < r < 1, using the triangle inequality and (11),

sup
a∈D

∫

|ϕ(z)|>r

|f ′′(ϕ(z))|2|ϕ′(z)|2gp(z, a)dA(z) ≤ ε + ‖f ′′s ‖2∞ sup
a∈D

∫

|ϕ(z)|>r

|ϕ′(z)|2gp(z, a)dA(z).

Set fn(z) = zn ∈ B0. Since CϕD is compact, limn→∞ n2‖ϕn−1‖p = 0. Thus,
for given ε > 0 and ‖f ′′s ‖2∞ > 0 there exists an N ∈ N such that for n ≥ N ,

‖f ′′s ‖2∞ · sup
a∈D

∫

D

n2(n− 1)2|ϕn−2(z)|2|ϕ′(z)|2gp(z, a)dA(z) < ε.

3
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Hence, for 0 < r < 1,

N2(N − 1)2 sup
a∈D

∫

D

|ϕN−2(z)|2|ϕ′(z)|2gp(z, a)dA(z)

≥ N2(N − 1)2r2(N−2) sup
a∈D

∫

|ϕ(z)|>r

|ϕ′(z)|2gp(z, a)dA(z). (12)

Therefore, for r ≥ [N(N − 1)]−
1

N−2 we have

‖f ′′s ‖2∞ · sup
a∈D

∫

|ϕ(z)|>r

|ϕ′(z)|2gp(z, a)dA(z) < ε.

Hence for any ε > 0 and f ∈ BB0 there is a δ = δ(ε, f) such that for δ < r < 1

sup
a∈D

∫

|ϕ(z)|>r

|f ′′(ϕ(z))|2|ϕ′(z)|2gp(z, a)dA(z) < ε.

The rest of the proof can be completed by using the finite covering property
of the set CϕD(BB0) which is relatively compact in Qp (see, e.g., [2, 25]). ¤

The proof of the next lemma is similar to Lemma 4 in [10], so is omitted.

Lemma 3. Assume X = Qp or Qp,0 and ϕ is an analytic self-map of D. Then
CϕD : B0 → X is weakly compact if and only if CϕD : B0 → X is compact.

Theorem 2. Let p ∈ [0,∞) and ϕ be an analytic self-map of D. Then the
following statements are equivalent:

(i) CϕD : B → Qp is compact;
(ii) CϕD : B0 → Qp is compact;
(iii) CϕD : B0 → Qp is weakly compact;
(iv) ϕ ∈ Qp and

lim
r→1

sup
a∈D

∫

|ϕ|>r

|ϕ′(z)|2
(1− |ϕ(z)|2)4 gp(z, a)dA(z) = 0. (13)

Proof. (i) ⇒ (ii). It is obvious.
(ii) ⇔ (iii). It follows from Lemma 3.
(ii) ⇒ (iv). Assume CϕD : B0 → Qp is compact. Choosing f = 1

2z2 ∈ B0,
we obtain ϕ ∈ Qp. Let f(z) = 1

4

∑∞
k=1 z2k

. From [28], we see that f ∈ BB.
Choose a sequence {λn} in D which converges to 1 as n →∞, and let fn(z) =
f(λnz) for n ∈ N. Then, fn ∈ BB0 for all n ∈ N and ‖fn‖B ≤ C. Let
fn,θ(z) = fn(eiθz). Then fn,θ ∈ BB0 . Replace f by fn,θ in (10) and then
integrate both sides with respect to θ. By Fubini’s Theorem, Parseval’s identity
and the inequality 2k(2k − 1) ≥ (2k − 2)2(k > 2), we obtain

4
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ε ≥ 1
2π

∫

|ϕ(z)|>r

( ∫ 2π

0

|f ′′n (eiθϕ(z))|2dθ

)
|ϕ′(z)|2gp(z, a)dA(z)

=
1

32π

∫

|ϕ(z)|>r

∫ 2π

0

∣∣∣∣
∞∑

k=1

2k(2k − 1)(λnϕ(z))2
k−2eiθ(2k−2)

∣∣∣∣
2

dθ|λn|4ϕ′(z)|2gp(z, a)dA(z)

=
1
16

∫

|ϕ(z)|>r

( ∞∑

k=1

[2k(2k − 1)]2|λnϕ(z)|2(2k−2)

)
|λn|4|ϕ′(z)|2gp(z, a)dA(z)

≥ 1
16

∫

|ϕ(z)|>r

( ∞∑

k=1

(2k − 2)4|λnϕ(z)|2(2k−2)

)
|λn|4|ϕ′(z)|2gp(z, a)dA(z).(14)

Let F (r) =
∑∞

k=1(2
k − 2)4r2k+1−4. Since log r ≥ 2(r − 1), r ∈ [ 12 , 1), we have

r2k+1−4 ≥ exp{(2k+2 − 8)(r − 1)}, r ∈ [1/2, 1), so that

F (r) ≥
∞∑

k=1

(2k − 2)4 exp{(2k+2 − 8)(r − 1)}

= (1− r)−4
∞∑

k=1

[(2k − 2)(1− r)]4 exp{−4(2k − 2)(1− r)}. (15)

Let t = (2k − 2)(1 − r). Then the general term in series (15) is s(t) = t4e−4t.
It is easy to see that supt>0 t4e−4t = e−4 is assumed for t = 1 and s(t) = 1

8e−2.
For r ∈ [3/4, 1), we find k so that 1

2 ≤ (2k − 2)(1− r) ≤ 1. For this k, we have

[(2k − 2)(1− r)]4 exp{−4
(
(2k − 2)(1− r)

)} ≥ e−2

8
.

Hence

F (r) ≥ e−2

8
(1− r)−4, r ∈ [

3
4
, 1).

Therefore, for δ < r < 1 and for sufficient large n, (15) gives

sup
a∈D

∫

|ϕ(z)|>r

|λn|4|ϕ′(z)|2
(1− |λnϕ(z)|2)4 gp(z, a)dA(z) < Cε.

By Fatou’s Lemma we get (13).
(iv) ⇒ (i). Assume that ϕ ∈ Qp and (13) holds. Let {fn} be a sequence in

BB which converges to 0 uniformly on compact subsets of D. We need to show
that {Cϕfn} → 0 in Qp space. From (13) for given ε > 0 there is an r ∈ (0, 1),
such that

sup
a∈D

∫

|ϕ(z)|>r

|ϕ′(z)|2
(1− |ϕ(z)|2)4 gp(z, a)dA(z) < ε.

5
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Therefore
∫

D

|(CϕDfn)′(z)|2gp(z, a)dA(z) =
{ ∫

|ϕ(z)|≤r

+
∫

|ϕ(z)|>r

}
|f ′′n (ϕ(z))|2|ϕ′(z)|2gp(z, a)dA(z)

≤ sup
|w|≤r

|f ′′n (w)|2‖ϕ‖2Qp
+ ‖fn‖2Bε. (16)

Since {fn} converges to 0 uniformly on compacts of D, we see that {f ′n} and {f ′′n}
also converges to 0 uniformly on compacts of D by Cauchy’s estimates. Thus
‖CϕDfn‖Qp

→ 0 as n → ∞, and consequently ‖CϕDfn‖p = ‖CϕDfn‖Qp
+

|f ′n(ϕ(0))| → 0, as n →∞. Hence CϕD : B → Qp is compact by Lemma 1. ¤
Theorem 3. Let p ∈ (0,∞) and ϕ be an analytic self-map of D. Then the
following statements are equivalent:

(i) CϕD : B0 → Qp,0 is bounded;
(ii) ϕ ∈ Qp,0 and

sup
a∈D

∫

D

|ϕ′(z)|2
(1− |ϕ(z)|2)4 gp(z, a)dA(z) < ∞. (17)

Proof. (i) ⇒ (ii). If CϕD : B0 → Qp,0 is bounded, then CϕD : B0 → Qp

is bounded. By Theorem 1, (17) holds. Let f(z) = 1
2z2. Then it is easy to see

that ϕ ∈ Qp,0.
(ii) ⇒ (i). Assume that ϕ ∈ Qp,0 and (17) holds. By Theorem 1, we see

that CϕD : B0 → Qp is bounded. To prove that CϕD : B0 → Qp,0 is bounded,
it suffices to prove that CϕDf ∈ Qp,0 for any f ∈ B0. Let f ∈ B0. For every
ε > 0, we can choose ρ ∈ (0, 1) such that |f ′′(w)|(1−|w|2) < ε for all w ∈ D\ρD.
Then,

lim
|a|→1

∫

D

|(CϕDf)′(z)|2gp(z, a)dA(z)

= lim
|a|→1

( ∫

|ϕ(z)|>ρ

+
∫

|ϕ(z)|≤ρ

)
|f ′′(ϕ(z))|2|ϕ′(z)|2gp(z, a)dA(z)

≤ ε lim
|a|→1

∫

|ϕ(z)|>ρ

|ϕ′(z)|2
(1− |ϕ(z)|2)4 gp(z, a)dA(z) +

‖f‖2B
(1− ρ2)4

lim
|a|→1

∫

|ϕ(z)|≤ρ

|ϕ′(z)|2gp(z, a)dA(z).

From the above inequality and by conditions (ii), we get the desired result. ¤
By modifying the proof of Theorem 4.2 of [13], we can prove the following

result. We omit the details.

Lemma 4. Let p ∈ (0,∞) and ϕ be an analytic self-map of D. Then CϕD :
B → Qp,0 is compact if and only if CϕD : B → Qp,0 is bounded and

lim
|a|→1

sup
‖f‖B<1

∫

D
|(CϕDf)′(z)|2gp(z, a)dA(z) = 0. (18)

6
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Theorem 4. Let p ∈ (0,∞) and ϕ be an analytic self-map of D. Then the
following statements are equivalent:

(i) CϕD : B → Qp,0 is bounded;
(ii) CϕD : B → Qp,0 is compact;
(iii) CϕD : B0 → Qp,0 is compact;
(iv) CϕD : B0 → Qp,0 is weakly compact;
(v) CϕD(B) ⊂ Qp,0;
(vi)

I = lim
|a|→1

∫

D

|ϕ′(z)|2
(1− |ϕ(z)|2)4 gp(z, a)dA(z) = 0. (19)

Proof. (iii) ⇔ (ii); (ii) ⇒ (i) ⇒ (v) are obvious. Lemma 3 gives (iii) ⇔ (iv).
(v) ⇒ (vi). Assume that CϕD(B) ⊂ Qp,0. From the proof of Theorem 1, we

can choose functions g1, g2 ∈ B such that

(1− |z|2)−2 ≤ |g′′1 (z)|+ |g′′2 (z)|, z ∈ D.

Then we get CϕDg1, CϕDg2 ∈ Qp,0. Therefore,

I ≤ 2 lim
|a|→1

∫

D

(
|g′′1 (ϕ(z))|2 + |g′′2 (ϕ(z))|2

)
|ϕ′(z)|2gp(z, a)dA(z) = 0.

(vi) ⇒ (ii). Assume that (19) holds. By Theorem 1 we see that CϕD : B →
Qp is bounded. We first prove that CϕD : B → Qp,0 is bounded. It suffices to
prove that CϕDf ∈ Qp,0. For any f ∈ B, we have

∫

D
|(CϕDf)′(z)|2gp(z, a)dA(z) ≤ ‖f‖2B

∫

D

|ϕ′(z)|2
(1− |ϕ(z)|2)4 gp(z, a)dA(z). (20)

Therefore (19) together with (20) imply that CϕD : B → Qp,0 is bounded. Fix
f ∈ BB, the righthand side of (20) tends to 0, as |a| → 1 by (19). From Lemma
4, we see that CϕD : B → Qp,0 is compact.

(iv) ⇒ (v). From Gantmacher’s theorem we know that CϕD : B0 → Qp,0 is
weakly compact if and only if (CϕD)∗∗((B0)∗∗) ⊂ Qp,0. By adopting the proof
of Theorem 2 in [6], and using the facts ((Qp,0)∗)∗ = Qp (0 < p < 2, see [1]),
((B0)∗)∗ = B and (A1)∗ = B we get (CϕD)∗∗(f) = CϕD(f) for every f ∈ B.
Hence (CϕD)∗∗((B0)∗∗) = CϕD(B) ⊂ Qp,0, as desired. ¤
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Abstract

In this paper, by de�ning a cone norm k:kA on E over itself which behaves like the
absolute value norm on R; we construct examples of cone Banach spaces. Namely,
we de�ne the m�Euclidian cone normed space Em; E1 and the space CE(S) of
continuous functions in cones, to generalize the Banach spaces Rm; l1 and C [a; b],
respectively. Some basic lemmas and theorems are also proved to help in the con-
struction and in the proof of completeness of the above mentioned examples of cone
normed spaces.

Key words: Cone metric space, cone normed space, cone Banach space, strongly
minihedral cone, limit point in the sense of cone, A�property, generalized absolute
value property, space Em, space E1.

1 Introduction

In [1], cone metric spaces where introduced by means of a partial ordering
00 �00 on a Banach space (E; k:k) via a cone P; where some �xed point theorems
were proved to generalize the corresponding ones in metric spaces. Then the
authors of this article and in [4], introduced the notion of cone normed space,
where continuous linear operators and bounded linear operators between cone
normed spaces were studied too. Recently, in [2], the authors proved that cone
metric spaces are topological spaces and accordingly cone normed spaces are
also topological spaces. Moreover, compactness, boundedness, closedness, �rst
countability were discussed there.

Preprint submitted to Elsevier Science 16 October 2009
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In this paper we enrich the theory of cone normed spaces by constructing new
examples of cone Banach spaces via a cone norm on E which behaves like the
absolute value in R:

2 Preliminaries on Cone Metric Spaces and Cone Normed Spaces

In this section we review some basic de�nitions and theorems in cone metric
spaces and cone normed spaces. For more details, we may refer the reader to
the articles [1],[2],[4].

De�nition 1 [1] Let E be a real Banach space with norm k:k and P a subset
of E: Then, P is called a cone if and only if

P1) P is closed, nonempty and P 6= f0g

P2) a; b 2 R a; b � 0; x; y 2 P ) ax+ by 2 P

P3) x 2 P and �x 2 P ) x = 0

Given a cone P � E, we de�ne a partial ordering � with respect to P by
x � y if and only if y � x 2 P: We write x < y to indicate that x � y but
x 6= y; while x << y will stand for y�x 2 IntP: (IntP �= interior of P ): The
cone P is called normal if there is a number K > 0; such that for all x; y 2 E;
0 � x � y implies kxk � K kyk ; where K is called the normal constant of
P: The cone P is called regular if every increasing sequence which is bounded
from above is convergent. Equivalently the cone P is called regular if every
decreasing sequence which is bounded from below is convergent [1].

P is called minihedral cone if supfx; yg exists for all x; y 2 E; and strongly
minihedral if every subset of E which is bounded from above has a supremum.
A norm k:k on E is called monotonic if 0 � x � y implies kxk � kyk ; and
semi-monotonic if kxk � K kyk for some K > 0 and all x and y such that
0 � x � y [3]. It is known in [3] that P is normal if and only if k:k is semi-
monotonic.

Throughout, we will assume that our cone P is strongly minihedral and hence
every subset of E which is bounded below has in�mum. Hence, In particular,
every subset of P has in�mum.

Example 2 Let E = R2 and P = f(x; y) : x � 0; y � 0g : It is easy to see
that P is strongly minihedral in which clearly each bounded below subset of E
has in�mum.

De�nition 3 [1] A cone metric space is an ordered pair (X; d), where X any

2
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set and d : X �X ! E is a mapping satisfying:

d1) 0 < d(x; y) for all x; y 2 X; and d(x; y) = 0 if and only if x = y:

d2) d(x; y) = d(y; x) for all x; y 2 X:

d3) d(x; y) � d(x; z) + d(z; y) for all x; y; z 2 X:

De�nition 4 [1] Let (X; d) be a cone metric space, let fxng be a sequence
in X and x 2 X: If for any c 2 E with c >> 0; there is N such that for all
n > N; d(xn; x) << c then fxng is said to be convergent with limit x: [ i.e.
lim
n!1

xn = x or xn ! x as n!1]:

De�nition 5 [1] Let (X; d) be a cone metric space, fxng be a sequence in
X; if for any c 2 E with c >> 0; there is N such that for all n;m > N;
d(xm; xn) << c then fxng is called a Cauchy sequence in X:

De�nition 6 [4] A cone normed space is an ordered pair (X; k:kc) where X
is a vector space over R and k:kc : X ! (E;P; k:k) is a function satisfying:

C1) 0 < kxkc ; for all x 2 X:

C2)kxkc = 0 if and only if x = 0:

C3)k�:xkc =j � j kxkc ; for each x 2 X and � 2 R:

C4)kx+ ykc � kxkc + kykc ; x; y 2 X:

It is easy to see that each cone normed space is cone metric space. Namely,
the cone metric is de�ned by d (x; y) = kx� ykc :

According to what we mentioned above, we say that a sequence fxng of a
cone normed space (X; k:kc) over (E;P; k:k) is said to be convergent, if there
exists x 2 X such that for all c >> 0; c 2 E; there exists n0 such that
kxn � xkc << c for all n � n0: Also, we say that fxng is Cauchy if for each
c >> 0; there exists n0 such that kxm � xnkc << c for all m;n � n0:

De�nition 7 [4] A cone normed space (X; k:kc) is called cone Banach space
if every Cauchy sequence in X is convergent in X:

Lemma 8 Let fxng be a Cauchy sequence in a cone metric space (X; d), such
that lim

n!1
xkn = x: Then lim

n!1
xn = x:

PROOF. Let c >> 0; c 2 E be given. Then by assumption �nd n0 such that
d(xn; xm) <<

c

2
; 8m;n > n0 and d(xkn ; x) <<

c

2
, 8n > n0. Then for n > n0;

3
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d(xn; x) � d(xn; xkn0 ) + d(xkn0 ; x) <<
c

2
+
c

2
= c:

De�nition 9 [2] Let (X; d) be a cone metric space. Then A � X is called
bounded above if there exists c 2 E; c >> 0 such that d(x; y) � c; for all
x; y 2 A, and is called bounded if �(A) = sup fd(x; y) : x; y 2 Ag exists in E:
If the supremum does not exist we say that A is unbounded.

Lemma 10 Every Cauchy sequence of a cone metric space (X; d) over a
strongly minihedral cone, is bounded.

PROOF. For some c >> 0; �nd n0 such that d(xn; xm) � c; 8m;n > n0: Let
c
0
= sup fc; d(xn; xm) : m;n < n0g which exists, since P is strongly minihedral.

That is, d(xn; xm) � c
0 8m;n and P is strongly minihedral implies that

sup fd(xn; xm) : m;n 2 Ng (1)

exists, and hence, fxng is bounded.

3 Main Results

De�nition 11 [4] A cone norm k:kA : E ! E is said to satisfy the A�property
(absolute value property) if : �c � a � c if and only if kakA � c; for all a 2 E
and c >> 0:

Example 12 [4] Let E = R2 and P = f(x; y) 2 R2 : x � 0; y � 0g : Then
the norm k:kA : E ! P de�ned by k(x; y)kA = (j x j; j y j) ; satis�es the A�
property. Indeed a = (x; y) ; satis�es kakA � c = (c1; c2) ; c1; c2 > 0 if and
only if (j x j; j y j) � (c1; c2) if and only if �c = (�c1;�c2) � a = (x; y) �
(c1; c2) = c:

De�nition 13 A cone norm k:kA on E is said to have the generalized absolute
value property if it satis�es:

A1) if there exists k1 > 0 such that 0 � kxkA � c; c >> 0 implies
�k1c � x � k1c ( for all x 2 X):

A2) if there exists �k1 > 0 such that c � x � c; c >> 0 implies
0 � kxkA � k2c ( for all x 2 X):

Example 14 Let E = R2 and P = f(x; y) 2 R2 : x � 0; y � 0g : De�ne the
cone norm k(x; y)kA = (� j x j; � j y j) ; where �; � > 0: Then, one can easily
show that the cone norm k:kA has the generalized absolute value property.
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It is clear that if the k:kA on E satis�es the absolute value property, then it
satis�es the generalized absolute value with k1 = k2 = 1:

De�nition 15 Let S be a subset of E. Then,

a) S is called 00 k:k00 bounded if 9M > 0 such that k x k�M , for all x 2 S:

b) S is called 00 �00 bounded if 9c1; c2 2 E such that c1 � x � c2, for all
x 2 S:

c) S is called 00 k:k00A bounded if sup
x2S

kxkA exists in E:

Remark 16 Let S be a subset of E. Then

(1) If P is normal and S � P then 00 �00 boundedness implies 00 k:k00 bounded-
ness.

(2) Assume k:kA has the generalized absolute value property and P is strongly
minihedral. If S is 00 �00 bounded then it is 00 k:k00A bounded.

(3) If P is strongly minihedral then S � E is 00 k:k00A bounded if and only if
9c >> 0 such that k x kA� c, for all x 2 S:

Corollary 17 Every Cauchy sequence of a cone normed space (X; k:kc) over
a strongly minihedral cone is bounded. In particular every Cauchy sequence in
(E; k:kA) is 00 k:k

00
A bounded.

The proof follows by the Lemma 10 and that every cone normed space is cone
metric space.

De�nition 18 Let fxng be an 00 �00 bounded sequence of E . The assump-
tions on our cone make it possible to de�ne the limit superior of fxng by lim
sup xn = inf

n�1
(sup
k�n
xk) and the limit inferior of fxng by lim inf xn = sup

n�1
(inf
k�n
xk):

From the above de�nition, it follows that

 
sup
k�n
xk

!
#n lim supxn and

�
inf
k�n
xk

�
"n

lim inf xn:Of course, the monotonicity is given by means of the partial ordering
00 �00 :

De�nition 19 An element a 2 E is said to be a limit point in the sense
of cone ( or cluster point ) for a sequence fang in E; if for every n 2 N and
c >> 0; there exists k > n (depending on c and n) such that kxk � x k A << c:

P is called normal with constant � for the cone norm k:kA , if 0 � x � y
implies kxkA � �y; for all x; y 2 E:

5
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Theorem 20 Every monotone increasing 00 �00 bounded sequence fxng of
(E;P; k:kA) where P is strongly minihedral and normal in the cone norm k:kA
with normal constant � is 00 k:k00A convergent (i.e. there exists x 2 E such that
for each c >> 0 there exists n0 such that kxk � x k A << c for all k � n0):
Moreover, if every sequence in E which is bounded below has an in�mum then
every monotone decreasing 00 �00bounded sequence is also 00 k:k00A convergent.

PROOF. Assume fxig is increasing and bounded. Hence, there exists x 2 E
such that x = sup fxi : i 2 Ng : We claim that lim

i!1
xi = x: To prove our claim

let c >> 0; then by the de�nition of supremum, there exists i0 such that
x� c

�
< xi0 � x: Thus, for i > i0 we have 0 � x� xi � x� xi0 <

c

�
, so that

by the normality of P in the cone norm k:kA we have kxi � xkA � �
c

�
= c:

Hence lim
i!1

xi = x: The proof of the other part can be done similarly, but by

using the in�mum de�nition.

Remark 21 One has to note that when P is 00 k:k00 normal with constant K;
then xn �! x in (E; k:kA) if and only if kk xn�x kAk�! 0 as n �!1: This
is clear by Lemma 1 in [1] and that each cone normed space is cone metric
space.

Theorem 22 Let fxng be a sequence in (E; k:kA): Then an element x 2 E
is a limit point in the sense of cone metric space for fxng if and only if there
exists a subsequence fxkng of fxng such that limn!1xkn = x:

PROOF. Assume x is a limit point of fxng : For some �xed c0 >> 0; �nd
k1 such that kxk1 � xkA << c0. Now inductively, if k1; k2; :::; kn have been

selected, then choose kn+1 > kn such that
xkn+1 � xA << c0

n+ 1
: Thus, we

construct a sequence of natural numbers fkng such that k1 < k2 < ::: and

0 << kxkn � xkA <<
c0
n
2 P: Now, if c >> 0 is arbitrary given ( by Lemma

2 in [2] and see also the proof of Lemma 3 in [2]) �nd n0 such that
c0
n0
<< c

and hence, for n > n0; we have kxkn � xkA <<
c0
n
<<

c0
n0
<< c. Therefore,

lim
m!1

xkn = x:

To prove the reverse implication consider a subsequence fxkng of fxng such
that lim

n!1
xkn = x: Let m and c >> 0 be given. It must be shown that there

exists p > m such that kxp � xkA << c: To this end, choose n0 such that
kxkn � xkA << c if n > n0. Pick i0 > max fn0;mg ; and set p = ki0. But,
then p > m ( since ki � i ), and kxp � xkA << c: The proof is �nished.

6
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De�nition 23 Let X be a vector space. A function k:kk : X ! R is called a
k� norm if

k1) 0 � kxkk <1 for all x 2 X:

k2) kxkk = 0 if and only if x = 0:

k3) k�xkk = j�j kxkk for all x 2 X:

k4) kx+ ykk � k(kxkk + kykk) for all x; y 2 X:

Example 24 If P is k:kk normal with constant k and k:kc is a cone norm
on X over (E;P; k:k), then it can be shown easily that k:kk

4
= kk:kck is a k�

norm with constant k:

It is well known that regular cones are normal, for the proof see for exam-
ple [5]. Theorem 20 states conditions under which k:kA�normality implies
k:kA�regularity. Namely, under the above mentioned conditions we proved
that every monotone 00 �00bounded sequence is00 k:k00A convergent and hence,
convergent in the scalar k�norm kk:kAk when our cone is normal.

Theorem 25 If fxng is 00 �00bounded sequence in (E;P; k:kA) ; where we as-
sume that P is strongly minihedral and k:kA has A� property. Then, lim inf xn
and lim supxn are the smallest and largest limit points of fxng in the sense
of cone: In particular, lim inf xn � lim supxn:

PROOF. Let xn be a 00 �00 bounded sequence of E. ( since P is strongly
minihedral cone ) then s = lim sup xn exists. We shall show that s is the
largest limit point in the sense of cone for fxng : The other case can be shown
in a similar manner. We show that s is a limit point in the sense of cone

�rstly. To this end, let m 2 N and c >> 0; c 2 E: Since
(
sup
k�n
xk

)
#n s; there

exists n > m such that s � sup
k�n
xk < s+ c: This implies the existence of some

k � n > m such that s� c < xk < s+ c: Hence, s is a limit point in the sense
of cone for fxng :

To �nish the proof, we show that s is the largest limit point in the sense of
cone. Let x be a limit point of fxng ; and let c >> 0: Then for each n 2 N,
there existsm > n such that k xm�x kA<< c: Since k:kA has the A� property
then x� c << xm << x+ c: It follows that x� c << xm << sup

k�n
xk for each n,

and so, x� c �
 
inf
n�1
sup
k�n
xk

!
= s for each c >> 0: Thus x � s; and the proof

is complete.

7
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Theorem 26 Assume k:kA has the A�property then a 00 �00 bounded sequence
fxng in E is 00 k:k00A convergent if and only if lim supxn = lim inf xn = x: In
this case, lim

n!1
xn = x:

PROOF. We assume lim supxn = lim inf xn = x and show that lim
n!1

xn = x:

Noting that k:kA has the A� property, the inequalities xn�x � sup
k�n
xk� inf

k�n
xk

and x� xn � sup
k�n
xk � inf

k�n
xk imply that

k xn � x kA� sup
k�n
xk � inf

k�n
xk: (2)

Since lim
n!1

 
sup
k�n
xk � inf

k�n
xk

!
= x � x = 0; it follows that lim

n!1
xn = x in the

sense of cone, and the proof is complete.

It is to be noted that Theorem 26 is still valid, even when k:kA has the gen-
eralized absolute value property. It is just a matter of multiplying the right
hand side of inequality (2) by k2:

Lemma 27 Let k:kA be a cone norm on E with the A� property and as-
sume that P is strongly minihedral. Then, every k:kA Cauchy sequence is 00 �00
bounded.

PROOF. Let c >> 0 be �xed and �nd n0 such that

kxn � xmkA << c for all n;m > n0 (3)

Since k:kA has the A� property then (3) is equivalent to

�c � xn � xm � c for all n;m � n0 (4)

From which it follows that

xn � xn0 + c for all n � n0 (5)

and hence xn � b where b = sup fxn0 + c; x1; x2; :::; xn0�1g which exists by
minihedrality of P: The proof is �nished.

Now, as a generalization to the result obtained in [4] in Example 24, we obtain
the following theorem.

8
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Theorem 28 Let k:kA be a cone norm on E over E with the A� property
and assume that P is strongly minihedral. Then, a sequence fxng in E is
00 k:k00A convergent if and only if it is 00 k:k00A Cauchy. That is, (E; k:kA) is a
cone Banach space.

PROOF. Clearly if xn is 00 k:k00A convergent then it is 00 k:k00A Cauchy. Assume
xn is 00 k:k00A Cauchy. Then by Lemma 27 and that P is strongly minihedral we
conclude that x = lim sup xn exists and by Theorem 25 is a limit point in the
sense of cone. Now, let c >> 0 be given and �nd n1 such that k xn�xm kA<<
c

2
for all m;n � n1: By Theorem 22, there exists a subsequence fxkng of fxng

such that lim
n!1

xkn = x: Hence, by Lemma 8, limn!1xn = x:

Remark 29 One can easily infer that Theorem 25, and Lemma 27, are still
valid when the cone norm k:kA has the generalized absolute value property and
hence, Theorem 28, is still valid under the generalized absolute value property
assumption.

De�nition 30 Let (E; k:kA) be a cone normed space over (E;P; k:k) and m
a positive integer. We de�ne the m�Euclidean cone normed space ( or �nite
dimensional cone normed space) by

Em =

(
x = (x1; x2; :::; xm) : xi 2 E; sup

1�i�m
k xi kA exists

)
(6)

where always it is assume that k:kA has A�property ( or more generally, the
generalized absolute value property ). On Em de�ne the following m�Euclidean
cone norm kxke = sup

1�i�m
k xi kA; x = (x1; x2; :::; xm) 2 Em:

The following essential lemma is helpful in proving that (Em; k:ke) is a cone
Banach space.

Lemma 31 If (X; k:kc) is a cone normed space over (E; k:k ; k:kA ; P ) ; where
k:kA has A�property. Then k:kc satis�es the 00 �00 inequality kkxkc � kykckA �
kx� ykc and hence, k:kc is a uniformly continuous function from (X; k:kc) to
(E; k:kA) :

PROOF. For x; y 2 X we have by the triangle inequality kxkc = kx� y + ykc �
kx� ykc + kykc or

kxkc � kykc � kx� ykc (7)

also,

9
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kykc = ky � x+ xkc � ky � xkc + kxkc = kx� ykc + kxkc or

kykc � kxkc � kx� ykc (8)

Since k:kA has theA� property then (7) and (8) implies that kkxkc � kykckA �
kx� ykc :

Remark 32 If in Lemma 31, more generally, the cone norm k:kA has the
generalized absolute value property, then the cone norm k:kc satis�es the in-
equality kkxkc � kykckA � k2 kx� ykc. Hence, k:kc is a uniformly continuous
function from (X; k:kc) to (E; k:kA) :

Theorem 33 (Em; k:ke) is a cone Banach space.

PROOF. Using that k:kA is a cone norm on E; it can be easily seen that
k:ke veri�es the cone norm axioms. To show that (Em; k:ke) is complete, let
xn = (xn1 ; x

n
2 ; :::; x

n
m) be an

00 k:k00e Cauchy sequence. Hence for c � 0; c 2 E;
�nd n0 such that kxn � xkke = sup

1�i�m

xni � xki A << c

2
; (For all k; n � n0) :

Hence, for each 1 � i � m; we have
xni � xki A << c

2
(For all k; n � n0) (9)

This shows that fxni g is a Cauchy sequence in (E; k:kA) for each i = 1; 2; :::;m:
By Theorem 28, for each i = 1; 2; :::;m, �nd zi 2 E such that xni converges to
zi in (E; k:kA). Let z = (z1; z2; :::; zm). We show that z 2 Em and xn ! z in

(E; k:kA) : Lemma 31 and that P is closed lead to kxni � zikA �
c

2
for all k �

n0: Since xk =
�
xk1; x

k
2; :::; x

k
m

�
2 Em; there is ck >> 0 such that

xkj A � ck
for all j = 1; 2; 3; :::;m (i.e. kxkkA exists ). Hence, by the triangle inequality
for each j = 1; 2; 3; :::;m; we have kzjkA �

zj � xkj A + xkj A � c + ck for
all k � n0: The last inequality holds for every j, and the right-hand side does
not involve j and hence, z = (z1; z2; :::; zm) 2 Em: Also, from (9) we obtain

kxk � zke = sup
1�j�m

xkj � zjA � c

2
<< c for all k � n0: This shows that

xn ! z in (Em; k:ke) :

De�nition 34 Let (E; k:kA) be a cone Banach space over (E;P; k:k). Then
the cone normed sequence space E1 is de�ned by

E1 =
�
x = (x1; x2; :::) : sup

i
kxikA exists in E

�
(10)

10

ABDELJAWAD: ON CONE BANACH SPACES748



with the norm kxk1 = sup
i
kxikA : More generally the cone normed space E�

where � is any index set is de�ned by

E� =

(
x = (x�)�2� : x� 2 E; sup

�2�
kx�kA exists in E

)
(11)

Theorem 35 (E1; k:k1) is a cone Banach space.

PROOF. To show that k:k1 is a cone norm is straightforward. Let xn =�
xn1 ; x

n
2 ; :::; x

n
p ; :::

�
be an 00 k:k001 Cauchy sequence in E1: Then for each c >> 0

there exists n0 such that kxn � xkk1 = sup
j

xnj � xkj A � c for all n; k � n0:
Hence, for every �xed j; we havexnj � xkj A � c for all n; k � n0: (12)

From which it follows that, the sequence
�
x1j ; x

2
j ; :::

�
is a Cauchy sequence in

(E; k:kA) for all j = 1; 2:3; ::: : It converges by Theorem 28, say, xnj ! zj 2 E:
De�ne z = (z1; z2; :::) and show that xn ! z in (E1; k:k1) : From (12) and
Lemma 31, with k !1 we havexnj � zjA � c for all n � n0: (13)

Since xn 2 E1; for each n �nd cn >> 0 such that
xnj A � cn for all j: Hence,

by the triangle inequality kzjkA �
zj � xnj A+ xnj A � c+ cn for all n � n0:

This inequality holds for every j; and the right hand-side does not involve j:
Hence, by using that E is strongly minihedral, z = (z1; z2; :::) 2 E1: Also,
from (13) we obtain kxn � zk1 = sup

j

xnj � zjA � c for all n � n0: This

shows that xn ! z in (E1; k:k1) :

Remark 36 As we proved that (E1; k:k1) is a cone Banach, we can also
easily prove that

�
E�; k:k4

�
is cone Banach with the norm kxk4 = sup

�24
kx�kA ;

x = (x�) 2 E4:

Theorem 37 Let S be a subset of a complete cone metric space (X; d) : Then
S is closed if and only if S is complete.

PROOF. It is not di¢ cult to prove that S is closed if and only if whenever
xn 2 S; xn ! x then x 2 S: Now, assume S is closed and let xn 2 S be
a Cauchy sequence. Since (X; d) is complete, �nd x 2 X such that xn ! x:
Since xn 2 S and S is closed then x 2 S: Conversely, assume S is complete
and let xn 2 S with xn ! x:We have to show that x 2 S: Since xn ! x; then

11
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xn is Cauchy sequence in S complete. Hence, �nd y 2 S such that xn ! y:
Since limits are unique in cone metric spaces [4] then x = y 2 S:

Example 38 Let CE be the space of all 00 k:k00A convergent sequences x =
(x1; x2; :::) in (E; k:kA) : This is a subspace of E1; since each 00 k:k

00
A convergent

sequence in E is 00 k:k00A bounded by Lemma 10. To show that (CE; k:k1) is a
cone Banach space, by Theorem 37, it would be enough to prove that CE is a
( sequentially ) closed subspace of E1: Let xn = (xn1 ; x

n
2 ; :::) be a sequence in

CE such that xn ! x = (x1; x2; :::) : To show that x = (x1; x2; :::) is a conver-
gent sequence (i:e: x 2 CE) ; by noting that (E; k:kA) is complete, it would be
enough to prove that x = (x1; x2; :::) is Cauchy sequence in (E; k:kA) : Let c >>
0; c 2 E be given. Find n0 2 N such that kxn � xk1 = sup

j

xnj � xjA << c

3

for all n � n0: In particular,
xn0j � xjA <<

c

3
for all j: Since xn0 =

(xn01 ; x
n0
2 ; :::) 2 CE then it is Cauchy in (E; k:kA) : Hence, �nd n1 2 N such

that
xn0j � xn0k A << c

3
for all j; k � n1: Then the triangle inequality implies

kxj � xkkA �
xj � xn0j A + xn0j � xn0k A + kxn0k � xkkA << c

3
+
c

3
+
c

3
= c:

The proof is �nished.

Theorem 39 If f : (X; d) ! (Y; �) is a continuous function between cone
metric spaces over E and S is a compact subset of X. Then f (S) is compact
in (Y; �) :

The proof is the same as in topological spaces, since cone metric spaces are
topological spaces or can be done directly by using the concept of sequential
compactness in cone metric spaces and that f is sequentially continuous [2].

Remark 40 Note that a subset S of a cone metric space (X; d) over E is
bounded if and only if there exists y0 2 X and c >> 0; c 2 E such that
sup
x2S
d (x; y0) exists in E.

Theorem 41 Let S be a compact subset of a cone metric space (X; d). Then
S is closed and bounded.

PROOF. From [2], we know that compactness is equivalent to sequential
compactness in cone metric spaces and closedness is equivalent to sequential
closedness. Hence, compactness implies closedness easily. Namely, if xn 2 S;
xn ! x; then by compactness of S there exists a subsequence xnk ! y 2 S:
But also xnk ! y: But then by uniqueness of limit in cone metric spaces,
we must have x = y 2 S. Also, this can be proved by using that cone
metric spaces are Hausdor¤ topological spaces. For the other part, assume S
is unbounded. Hence, there exists y0 2 S and c >> 0; c 2 E such that for each
n 2 N there exists xn 2 S such that d (xn; y0) � nc for all n 2 N or d (xn; y0)

12
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is not comparable with nc: This sequence fxng can not have a convergent
subsequence since convergent sequences are bounded.

Recall that in [4] a function f :
�
X; k:kc1

�
!

�
Y; k:kc2

�
between two cone

normed spaces is continuous at x0 2 X if for all c >> 0; there exists b >> 0
such that kf (x)� f (x0)kc2 � c whenever x 2 X; kx� x0kc1 � b:

Given that cone normed spaces are cone metric spaces and cone metric spaces
are topological spaces, it is easy to show that f is continuous at x0 if and only
if f�1 (V ) is open in

�
X; k:kc1

�
for any open V in

�
Y; k:kc2

�
containing f (x0) :

The next example is given to generalize the Banach space C [a; b] of real- valued
continuous functions on [a; b] with the norm kfk = max

x2[a;b]
jf (x)j ; f 2 C [a; b] :

De�nition 42 Let S be a compact subset of (E; k:kA) and fn : S ! E be a
sequence of continuous functions between cone normed spaces over E: We say
that fn converges uniformly to f : S ! E if for all c >> 0; c 2 E there exists
n0 such that

kfn (x)� f (x)kA � c for all n � n0 (14)

Theorem 43 Let S be a compact subset of (E; k:kA) : If fn : (S; k:kA) !
(E; k:kA) is a sequence of continuous functions such that fn converges uni-
formly to f : S ! E: Then f is continuous.

PROOF. Assume fn converges uniformly to f and let x0 2 S and c >>
0; c 2 E be given. Find n0 such that

kfn (x)� f (x)kA �
c

3
for all n � n0; x 2 S (15)

By assumption, the function fn0 is continuous at x0; hence, �nd b >> 0; b 2 E
such that

x 2 S; kx� x0kA � b implies kfn0 (x)� fn0 (x0)kA �
c

3
(16)

Now, for x 2 S and kx� x0kA � b we obtain

kf (x)� f (x0)kA � kf (x)� fn0 (x)kA+kfn0 (x)� fn0 (x0)kA+kfn0 (x0)� f (x0)kA
(17)

Then (15) and (16) give

kf (x)� f (x0)kA �
c

3
+
c

3
+
c

3
= c (18)

13
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Hence, f is continuous at x0 and the proof is �nished.

Example 44 Let CE (S) = ff : (S; k:kA)! (E; k:kA) : f is continuousg ; where
S is a compact subset of (E; k:kA) : Provide CE (S) with the cone norm kfkc =
sup
x;y2S

kf (x)� f (y)kA : By the above theorems kfkc = sup
x;y2S

kf (x)� f (y)kA ex-
ists.

To prove that (CE (S) ; k:kc) is complete, by means of Theorem 37,
it would be enough to show that CE (S) is a (sequential) closed subspace of
the cone Banach space (Es; k:ks) : But (sequential) closedness directly follows
by Theorem 43.

4 Conclusion

When E = R, then k:kA = k:k = j:j ; P = [0;1) and 00 �00 is the usual
ordering "less than or equal". Hence, Em; E1; generalize the normed spaces
Rm and l1 and CE (S) generalizes the space of continuous functions C [S]
where S = [a; b] : Moreover, in this case, the three boundedness de�nitions
given in De�nition 15 coincide and both of the k:kA-convergence and the k:k-
convergence gives the usual convergence in R.

Problem 45 As it is known that compact subsets of �nite dimensional normed
spaces are exactly closed and bounded subsets, it is of sense to ask whether it
is the case in the m�Euclidean cone normed space Em:
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Abstract

In this paper, some sufficient conditions for all solutions of a class of generalized neutral equa-

tions to approach zero as t → ∞ are presented. Based on Lyapunov’s functional approach, some

new stability criteria are derived. Our results improve and include some related results existing in

the literature.

1 Introduction.

In this work, we study two types of neutral differential equations. First, we consider the generalized
neutral differential equations of the form

d

dt
(x(t) + c(t)x(t − τ)) = −p(t)x(t) − q(t)h(x(t))x(t − σ), t ≥ t0, (1.1)

where τ and σ are positive real numbers, c(t), p(t), q(t), h(x(t)) : [t0,∞) → [0,∞) are continuous
functions and c(t) is differentiable with locally bounded derivative. In the investigating of the stability
of the solution of the generalized neutral differential equation (1.1), we follow the way used in the
paper of Agarwal and Grace [6]. It should be noted that, in 2000, Agarwal and Grace [6] proved an
asymptotic stability result for solutions of the following neutral differential equation:

d

dt
(x(t) + c(t)x(t − τ)) = −p(t)x(t) − q(t)x(t − σ), t ≥ t0.

Hence, it is clear that Equation (1.1) includes the equation investigated by Agarwal and Grace [6].
Namely, when h(x(t)) = 1, Equation (1.1) reduces to the equation discussed by Agarwal and Grace [6].
They employed Lyapunov’s functional approach to verify the results established there. We also utilize
the same method.
Second, we investigate the asymptotic behaviors of solutions of the generalized neutral delay equation

d

dt
(x(t) + px(t − τ)) = −h(x(t))x(t) + b tanhx(t − σ), t ≥ t0, (1.2)

where b, τ and σ are positive real numbers, |p| < 1 and h(x(t)) : [t0,∞) → [0,∞) is a continuous
function.
It is worth mentioning that, in 2000, 2004 and 2008, El-Morshedy and Gopalsamy [1] and Park [2, 3]
discussed the convergence and stability of the solutions of the following neutral differential equation:

d

dt
(x(t) + px(t − τ)) = −ax(t) + b tanhx(t − σ), t ≥ t0.

Obviously, Equation (1.2) includes the equation investigated El-Morshedy and Gopalsamy [1] and
Park [2, 3], since they investigated the case h(x(t)) = a in Equation (1.2). In the analyzing the
stability of the solution of this equation, we follow the procedure introduced in El-Morshedy and
Gopalsamy [1] and Park [2, 3].
At the same time, for some papers published on the qualitative behaviors of solutions of various neutral
differential equations, we refer the reader to the papers of [1–6] and the references thereof. These types
of equations are used for the study of dynamic characteristics of neural networks of Hopfield type
(see [4] and references cited therein).
Throughout this article, C([t0 − H, t0], R) denotes the complete space of continuous functions from
[t0 −H, t0] to R. With each solution x(t) of Equations (1.1) and (1.2), we assume the initial condition:

x(s) = φ(s), s ∈ [t0 − H, t0], where H = max{τ, σ}, φ ∈ C([t0 − H, t0], R).

1
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2 Main Results

First, we will study the stability of the neural networks of the generalized neutral type differential
equation (1.1). We assume that there exist nonnegative constants c1, c2, p1, p2, q1, q2, h1 and h2 such
that for t ≥ t0,

p1 ≤ p(t) ≤ p2, q1 ≤ q(t) ≤ q2, c(t) ≤ c1 < 1, |c′(t)| < c2, and h1 ≤ h(x(t)) ≤ h2. (2.1)

Theorem 2.1 Assume that condition (2.1) holds. Beside this, if

p1 + q1h1 > (p2 + q2h2)(c1 + q2h2σ) (2.2)

then every solution x(t) of Equation (1.1) is asymptotically stable.

Proof. Equation (1.1) can be written in the following form

d

dt

(
x(t) + c(t)x(t − τ) −

∫ t

t−σ

q(s + σ)h(x(s + σ))x(s)ds

)
= −p(t)x(t)−q(t+σ)h(x(t+σ))x(t) (2.3)

Define the operator D : C([t0 − H, t0], R) → R as

D(xt) = x(t) + c(t)x(t − τ) −

∫ t

t−σ

q(s + σ)h(x(s + σ))x(s)ds. (2.4)

Consider the Lyapunov functional defined by

V (t) = D
2(xt) +

∫ t

t−σ

[p(s + σ) + q(s + 2σ)h(s + 2σ)]

(∫ t

s

q(u + σ)h(u + σ)x2(u)du

)
ds

+

∫ t

t−τ

[p(s + τ) + q(s + σ + τ)h(s + σ + τ)]c(s + τ)x2(s)ds.

The time derivative of V along solutions of Equation (1.1) is given by

dV (t)

dt
= 2D(xt)D

′(xt)

−[p(t) + q(t + σ)h(x(t + σ))]

∫ t

t−σ

q(u + σ)h(x(u + σ))x2(u)du

+q(t + σ)h(x(t + σ))x2(t)

∫ t

t−σ

[p(s + σ) + q(s + 2σ)h(x(s + 2σ))]ds

+[p(t + τ) + q(t + σ + τ)h(x(t + σ + τ))]c(t + τ)x2(t) − [p(t) + q(t + σ)h(x(t + σ))]c(t)x2(t − τ).

Using the result

2D(xt)D
′(xt) = −2[p(t) + q(t + σ)h(x(t + σ))]x2(t) − 2x(t)x(t − τ)[p(t)c(t) + c(t)q(t + σ)h(x(t + σ))]

+2[p(t) + q(t + σ)h(x(t + σ))]x(t)

∫ t

t−σ

q(s + σ)h(x(s + σ))x(s)ds

and the inequalities −2x(t)x(t − τ) ≤ x
2(t) + x

2(t − τ) and 2x(t)x(s) ≤ x
2(t) + x

2(s), we have

2D(xt)D
′(xt) ≤ [−2(p(t) + q(t + σ)h(x(t + σ))) + p(t)c(t) + c(t)q(t + σ)h(x(t + σ))]x2(t)

+[p(t) + q(t + σ)h(x(t + σ))]x2(t)

∫ t

t−σ

q(s + σ)h(x(s + σ))ds

+[p(t) + q(t + σ)h(x(t + σ))]

∫ t

t−σ

q(s + σ)h(x(s + σ))x2(s)ds

+[p(t)c(t) + c(t)q(t + σ)h(x(t + σ))]x2(t − τ).

2
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Therefore, we obtain

dV (t)

dt
≤ [−2(p(t) + q(t + σ)h(x(t + σ))) + p(t)c(t) + c(t)q(t + σ)h(x(t + σ))]x2(t)

+[p(t) + q(t + σ)h(x(t + σ))]x2(t)

∫ t

t−σ

q(s + σ)h(x(s + σ))ds

+q(t + σ)h(x(t + σ))x2(t)

∫ t

t−σ

[p(s + σ) + q(s + 2σ)h(x(s + 2σ))]ds

+[p(t + τ) + q(t + σ + τ)h(x(t + σ + τ))]c(t + τ)x2(t).

Thereafter, using the inequalities (2.1) and (2.2) we find

dV (t)

dt
≤ −2 [(p1 + q1h1) − (p2 + q2h2)(c1 + q2h2σ)]x2(t) ≤ 0, for t ≥ T ≥ t0. (2.5)

Integrating inequality (2.5) from T to t, we have

V (t) + 2[(p1 + q1h1) − (p2 + q2h2)(c1 + q2h2σ)]

∫ t

T

x
2(s)ds ≤ V (T ) < ∞.

Hence, we see that V (t) is bounded on [T,∞) and x(t) ∈ L
2[T,∞). Since V (t) is bounded on [T,∞),

one can easily see that there exists a constant γ1 ≥ 0,

|x(t)| ≤ γ1 + c1|x(t − τ)| +

∫ t

t−σ

q(s + σ)h(x(s + σ))x(s)ds

≤ γ1 + c1|x(t − τ)| + q2h2σ max
t−H≤s≤t

|x(s)|

≤ γ1 + (c1 + q2h2σ) max
t−H≤s≤t

|x(s)|

But the inequality (2.2) yields that c1 + q2h2σ <
p1+q1h1

p2+q2h2

< 1. The rest of the proof is similar to that

of Theorem 1 in [6].
In order to illustrate to Theorem 1 proved above, we modified Example 1 in [6] as follows.
Example 1. The neutral equation

d

dt

(
x(t) +

1

t
x(t − σ)

)
= −x(t) − (1 + e

2t)

(
1

t
+

1

t2

)
x

2(t)

1 + x2(t)
x(t − σ) t ≥ 2

has a solution x(t) = e
−t → 0 as t → ∞. All conditions of Theorem 1 are satisfied if we take

c1 = 1
2 , c2 = 1

4 , p1 = p2 = 1, q1 = 0, q2 = 3
4 , h1 = 0, h2 = 1, and τ = σ <

2
21 .

Now, we present the following theorem.

Theorem 2.2 Assume that in Theorem 2.1, instead of condition (2.2) if we replace

p1 > (p2 + q2h2)c1 + q2h2 (2.6)

then the conclusion of Theorem 2.1 still holds.

Proof. We use the Lyapunov functional defined by

V (t) = (x(t) + c(t)x(t − τ))2 +

∫ t

t−σ

q(s + σ)h(x(s + σ))(1 + c(s + σ))x2
ds

+

∫ t

t−τ

[p(s + τ) + q(s + τ)h(s + τ)]c(s + τ)x2(s)ds.

Define the operator D : C([t0 − H, t0], R) → R as

D(xt) = x(t) + c(t)x(t − τ).
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The time derivative of V along the solution of Equation (1.1) is given by

dV (t)

dt
= 2D(xt)D

′(xt) + q(t + σ)h(x(t + σ))(1 + c(t + σ))x2(t) − q(t)h(x(t))(1 + c(t))x2(t − σ)

+[p(t + τ) + q(t + τ)h(t + τ)]c(t + τ)x2(t) − [p(t) + q(t)h(t)]c(t)x2(t − τ).

Since,
2D(xt)D

′(xt) = −2(x(t) + c(t)x(t − τ))(p(t)x(t) + q(t)h(x(t))x(t − σ))

= −2p(t)x2(t) − 2p(t)c(t)x(t − τ)x(t) − 2q(t)h(x(t))x(t − σ)x(t) − 2c(t)q(t)h(x(t))x(t − σ)x(t − τ),

then using the inequality −2x(t)y(t) ≤ x
2(t) + y

2(t), we obtain

2D(xt)D
′(xt) ≤ −2p(t)x2(t) + p(t)c(t)x2(t − τ) + p(t)c(t)x2(t) + q(t)h(x(t))x2(t − σ)

+q(t)h(x(t))x2(t) + c(t)q(t)h(x(t))x2(t − σ) + c(t)q(t)h(x(t))x2(t − τ).

Therefore,

dV (t)

dt
= {−2p(t) + p(t)c(t) + q(t)h(x(t)) + q(t + σ)h(x(t + σ))(1 + c(t + σ))

+[p(t + τ) + q(t + τ)h(t + τ)]c(t + τ)}x
2(t)

≤ {−2p1 + p2c1 + q2h2 + q2h2(1 + c1) + [p2 + q2h2]c1}x
2(t).

So that, we have

dV (t)

dt
≤ −2[p1 − (p2 + q2h2)c1 − q2h2]x

2(t) ≤ 0, for t ≥ T ≥ t0. (2.7)

Integrating inequality (2.7) from T to t, we get

V (t) + 2[p1 − (p2 + q2h2)c1 − q2h2]

∫ t

T

x
2(s)ds ≤ V (T ) < ∞.

The rest of the proof is similar to that of Theorem 1.
Now, we are going to investigate the asymptotic stability of generalized neutral differential equation

(1.2). In this investigation we will follow the articles [2, 3]. The results we obtained here generalize
and include the results in the mentioned articles. ∗ represents the elements below the main diagonal
of a symmetric matrix. The notation X > Y , where X and Y are matrices of same dimensions, means
that the matrix X − Y is positive definite.
Equation (1.2) can be written in the form

d

dt
[x(t) + px(t − τ) + b

∫ t

t−σ

tanhx(s)] = −h(x(t))x(t) − b tanhx(t), t ≥ t0. (2.8)

Define the operator D : C([t0 − H, t0], R) → R as

D(xt) = x(t) + px(t − σ) + b

∫ t

t−σ

tanhx(s)ds. (2.9)

Now, we have the following theorem

Theorem 2.3 Assume that

h(x(t)) ≥ a > 0.

For given σ > 0, every solution x(t) of Equation (1.2) satisfies x(t) → 0 as t → ∞, if there exists the

positive scalars α, β and γ such that two linear inequalities hold

Ω1 =




−γa + α −γph(x(t)) γb −γbh(x(t))
∗ −α γbp 0
∗ ∗ −γa + βσ b

2
γ

∗ ∗ ∗ −β

σ


 < 0, (2.10)

Ω1 = |p| − 1 + σb < 0. (2.11)

4
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Proof. Consider the Lyapunov functional defined by

V (t) = γD
2(xt) + α

∫ t

t−τ

x
2(s)ds + β

∫ t

t−σ

(σ − t + s) tanh2
x(s)ds (2.12)

where α, β, and γ are positive scalars to be chosen later.
The derivative of V (t) along the solution of Equation (2.8) is given by

dV

dt
= 2γ

(
x(t) + px(t − τ) + b

∫ t

t−σ

tanhx(s)ds

)
(−h(x(t))x(t) + b tanhx(t)) + αx

2(t) − αx
2(t − τ)

+βσ tanh2
x(t) − β

∫ t

t−σ

tanh2
x(s)ds

= −2γx(t)h(x(t))x(t) − 2pγh(x(t))x(t)x(t − τ) − 2bγh(x(t))x(t)

∫ t

t−σ

tanhx(s)ds + 2bγx(t) tanh x(t)

+2bpγx(t − τ) tanh x(t) + 2b2
γ tanhx(t)

∫ t

t−σ

tanhx(s)ds + αx
2(t) − αx

2(t − τ)

+βσ tanh2
x(t) − β

∫ t

t−σ

tanh2
x(s)ds.

≤ −2aγx
2(t) − 2pγh(x(t))x(t)x(t − τ) − 2bh(x(t))γx(t)

∫ t

t−σ

tanhx(s)ds + 2bγx(t) tanh x(t)

+2bpγx(t − τ) tanh x(t) + 2b2
γ tanhx(t)

∫ t

t−σ

tanhx(s)ds + αx
2(t) − αx

2(t − τ)

+βσ tanh2
x(t) − β

∫ t

t−σ

tanh2
x(s)ds.

Here, for vector function y, using the well-known inequality

[∫ t

t−σ

y(s)ds

]T [∫ t

t−σ

y(s)ds

]
≤ σ

∫ t

t−σ

y
T (s)y(s)ds

we have

−β

∫ t

t−σ

tanh2
x(s)ds ≤ −

β

σ

[∫ t

t−σ

tanhx(s)ds

]2

. (2.13)

Also, by utilizing the relation tanh2
x(t) ≤ x

2(t), we have

−aγx
2(t) ≤ −aγ tanh2

x(t). (2.14)

Substituting the relations (2.13) and (2.14) into the preceding inequality gives that

dV

dt
≤ χ

T (t)Ω1χ(t), (2.15)

where

χ =




x(t)
x(t − τ)
tanhx(t)∫ t

t−σ
tanhx(s)ds


 . (2.16)

Then, the rest of the proof is similar to that of Theorem 1 in [2].
Remark 1. In Theorem 2.1 and Theorem 2.2, if we take h(x(t)) = 1, these theorems reduce to
Theorem 1 and 2 in [6], respectively.
Remark 2. In Theorem 2.3, if we take h(x(t)) = a > 0, this theorem reduce to Theorem 1 in [2].
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Abstract. Wang in [1] solved an open problem described by Farin in [2], he constructed

a C2 quintic spline interpolation scheme on a refined triangulation. In this paper, we would

like to improve Wang’s study by enforcing some additional smoothness conditions across the

interior edges of Wang’s refinement of triangulation4. The results imply that our improvement

interpolation scheme is more effective than other counterparts.

Keywords: Quintic spline; Improvement; B-coefficients; Spline space; Interpolation scheme.

MCS: 65D07; 41A15; 41A63

1 Introduction

Given a regular triangulation 4 of a connected polygonal domain Ω, we denote the set of

vertices in 4 by V , the set of edges by E and the set of triangles by N in 4. Let

Sr
d(4) = {s ∈ Cr(Ω) : s|T ∈ Pd,∀T ∈ N} (1)

be the spline function space of smoothness order r and degree d, where Pd denotes the space

of bivariate polynomials of total degree being at most d.

Bivariate splines are very flexible for approximating known or unknown functions or any

given data sets, they have been playing an important role in surface fitting and computer

aided geometric design (CAGD). Many bivariate C1 and C2 spline interpolation schemes have

∗Corresponding author: sunkang−chen@yahoo.com.cn
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been constructed and used in applications. It is well-known that the dimensions of space

Sr
d(4) with d < 3r + 2 on an arbitrary triangulation are still open. Since the bivariate

spline with lower degrees versus smoothness orders are very important and favorable because

of the simplicity and efficiency in calculation, many bivariate spline interpolation schemes

with lower degrees were constructed on some kinds of special and refined triangulations. For

example, related to C2 quintic spline interpolation scheme, Alfeld in [3] used Clough-Tocher’s

refinement twice to construct a C2 quintic spline interpolation scheme on 4A, where 4A

denotes Alfeld’s refinement of 4 by using double Clough-Tocher’s refinement. Sablonniére in

[4], Lai in [5, 6] and Alfeld in [7] used Powell-Sabin’s refinement to construct a bivariate C2

quintic interpolating spline function in S2
5(4PS) or subspace of S2

5(4PS), where 4PS denotes

Powell-Sabin’s refinement of 4. Wang in [1] subdivided each triangle of 4 into 7 subtriangles

and constructed a bivariate C2 quintic interpolating spline function in S2
5(4W ), where 4W

denotes Wang’s refinement of 4.

Among these C2 quintic spline interpolation schemes, Alfeld’s and Wang’s schemes leads

to more basis functions, this may be a disadvantage for certain applications from the point of

view of efficiency. In this paper, we would like to improve Wang’s study [1] by enforcing some

additional smoothness conditions across the interior edges of Wang’s refinement. The results

imply that our improvement scheme is more advantageous.

2 Notations and Preliminaries

Throughout the paper, let T be a triangle, we denote the three vertices of T in counter clockwise

direction by v0, v1 and v2, then every polynomial s ∈ Pd associated with T can be written

uniquely in the Bernstein-Beźier form

s =
∑

i+j+k=d

cT
ijkBd

ijk, (2)

where {Bd
ijk}i+j+k=d is the Bernstein basis polynomials of degree d on the triangle T , and cT

ijk

are called the B-coefficients of s associated with the domain points ξT
ijk = (iv0 + jv1 + kv2)/d,

i + j + k = d.

For each vertex v ∈ V , we define the usual rings and disks of domain points

Rn(v) := {ξT
ijk : i = d− n},

Dn(v) := {ξT
ijk : i ≥ d− n}.

Let S0
d(4) be the space of continuous splines of d on the triangulation 4, and let Dd,4 be

the union of the sets of domain points associated with each triangle of 4. Then each spline

in S0
d(4) is uniquely determined by its set of B-coefficients {cξ}ξ∈Dd,4 , and the B-coefficients

2
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of the polynomial s |T are precisely {cξ}ξ∈Dd,4
⋃

T . We recall (cf.[8]) that a determining set for

a spline space S ⊆ S0
d(4) is a subset M of domain points Dd,4 such that if s ∈ S and cξ = 0

for all ξ ∈ M, then cη = 0 for all η ∈ Dd,4, i.e., s ≡ 0. M is called a minimal determining

set (MDS) for S if there is no smaller determining set. It is known that M is a MDS for S if

and only if every spline s ∈ S is uniquely determined by its set of B-coefficients {cξ}ξ∈M, and

dim S = M , where M denotes the cardinality of M. Moreover, for each ξ ∈M, let Bξ be the

unique spline in S satisfying

ληBξ = δξ,η, for all η ∈M, (3)

where λη is the linear functional which picks off the B-coefficient cη. Then the set {Bξ}ξ∈M is

a basis for S, we call it the dual basis corresponding to M.

Let T :=< v0, v1, v2 > and T̃ :=< v3, v2, v1 > be two adjacent triangles, they share the

common edge e :=< v1, v2 >, and let cijk and c̃ijk be the B-coefficients of the B-form of sT and

sT̃ , respectively. Following [9], for any 0 ≤ n ≤ m ≤ d, let τn
e,m be the linear functional defined

on S0
d(4) by

τn
e,ms := c̃n,m−n,d−m −

∑

i+j+k=n

ci,j+d−m,k+m−nBn
ijk(v3), (4)

then the condition that s is Cr smooth across the edge e is equivalent to

τn
e,ms = 0, n ≤ m ≤ d, 0 ≤ n ≤ r. (5)

The following lemma [8] shows how this works for computing coefficients on the ring

RT
m(v2) ∪RT̃

m(v2).

Lemma Suppose T and T̃ are two triangles defined as above, and that all B-coefficients

cijk and c̃ijk of the B-form sT and sT̃ are known except for

cν := cν,d−m,m−ν , ν = l + 1, ..., q,

c̃ν := cν,m−ν,d−m, ν = l + 1, ..., q̃,
(6)

for some l,m, q, q̃ with 0 ≤ q, q̃, −1 ≤ l ≤ q, q̃, and q+ q̃−l ≤ m ≤ d. Then these B-coefficients

are uniquely determined by the smoothness conditions (5).

To be more precise about what we are going to study in this paper, following [1], we

introduce some notations and definitions about Wang’s refinement of triangle T .

(1) Take three interior points w1, w2 and w3 in triangle T , where wj = 1
7
vj + 4

7
vj+1 + 2

7
vj+2

and vj+3 = vj, j = 1, 2, 3;

(2) Join vj to wj and vj to wj+1, where wj+3 = wj, j = 1, 2, 3.

By means of the above process, we can get Wang’s refinement TW (Fig.1) of triangle T .

Now we define subtriangles tk (k = 0, 1, · · · , 6) in TW , suppose

to :=< w1, w2, w3 >, t2i−1 :=< vi+1, vi+2, wi >, t2i :=< vi+2, wi+1, wi >,

where i = 1, 2, 3 and vi+3 = vi, wi+3 = wi.

3
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Figure 1: Wang’s refinement TW .

3 The spline space Ŝ2
5(TW )

Given Wang’s refinement TW of triangle T , we denote the edge < wi, wi+1 > by ei for i = 1, 2, 3,

where w4 = w1.

Theorem 1. Let Ŝ2
5(TW ) be the subspace of S2

5(TW ) satisfying the following set of addi-

tional smoothness conditions:

τ 3
ei,3

s = 0, i = 1, 2, 3, (7)

then dim Ŝ2
5(TW ) = 30, and the set MT of the following domain points is a MDS for Ŝ2

5(TW ).

1) ξt2l
ijk, i = 3, 4, 5; i + j + k = 5; l = 1, 2, 3,

2) ξ
t2l−1

122 , ξ
t2l−1

221 , ξ
t2l−1

212 , l = 1, 2, 3.

3) ξt0
221, ξt0

122, ξt0
212.

These domain points are marked by • in Fig.2.

Proof: Firstly, we show that MT is a determining set for Ŝ2
5(TW ). Suppose s is a spline in

Ŝ2
5(TW ) whose B-coefficients corresponding to points in MT are set to prescribed values, then

we show that all of its remaining B-coefficients associated with domain points Tw are uniquely

determined.

©1 The B-coefficients corresponding to points which marked by ◦ in D2(vi) (i = 1, 2, 3) can

be uniquely computed from those corresponding to domain points in item 1) in Theorem 1 by

Lemma.

©2 Item 2) in Theorem 1 and C2 smoothness condition across edge < vi, wi+1 > and <

4
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Figure 2: The MDS for spline space Ŝ2
5(TW ) in Theorem 1.

vi, wi+2 > make the remain B-coefficients associated with 4 domain points which marked by ¥
in R3(vi) to be uniquely computed, where i = 1, 2, 3 and w4 = w1, w5 = w2. This computation

involves solving a non-singular linear system equation.

©3 We now compute the B-coefficients associated with 3 domain points which marked by N
in t6 and t0, by using C2 smoothness condition across the common edge e3 :=< w3, w1 > and

the condition τ 3
e3,3s = 0, we can get





ct0
023 = −1

4
ct0
221 + ct0

122 +
1

4
ct6
221,

ct6
122 = −1

2
ct0
211 + ct0

122 +
1

2
ct6
221,

ct0
320 = −ct6

302 − 8ct0
221 − 4ct0

122 + 2ct6
212,

(8)

then these 3 B-coefficients ct0
023, ct6

122 and ct0
320 can be uniquely computed. Similarly, we can

compute the remain B-coefficients associated with domain points which marked by N in t0, t2

and t4.

©4 Next we use Lemma to compute the B-coefficients associated with 2 domain points which

marked with ¤ in t0 and t2i for i = 1, 2, 3.

©5 Then use Lemma to compute the B-coefficients associated with 2 domain points which

marked by ⊕ in t2i for i = 1, 2, 3.

©6 Use Lemma to compute the B-coefficients associated with 2 domain points which marked

by ª in t1, t3 and t5.

©7 Use Lemma to compute the B-coefficients associated with a domain points which marked

5
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by ¨ on ei for i = 1, 2, 3.

8© Finally, use Lemma to compute the B-coefficients associated with 6 domain points which

marked by ♦ on edge < v1, w3 >, < v2, w1 > and < v3, w2 >.

Following above computation, we conclude that M is a determining set for Ŝ2
5(TW ). Since

spline space Ŝ2
5(TW ) is the subspace of S2

5(TW ) which requires additional 3 conditions, thus

dim S2
5(TW )− 3 ≤ dim Ŝ2

5(TW ) ≤ 30.

Noticing that dim S2
5(TW ) = 33 [1], we conclude thatMT is a MDS for Ŝ2

5(TW ) and dim Ŝ2
5(TW ) =

30. ¥

4 The spline space Ŝ2
5(4W )

Let 4W be a Wang’s refinement of triangulation 4 and Ŝ2
5(4W ) be the subspace of all splines

in S2
5(4W ) satisfying the additional smoothness condition (7) in each TW . In addition, we

denote the perpendicular cross-derivative across the edge e :=< vi, vj > by De, for any 1 ≤ k,

let

ηe
kl :=

(k − l + 1)vi + lvj

k + 1
, l = 1, · · · , k.

Based on above results, we have the following

Theorem 2. dim Ŝ2
5(4W ) = 6V + 3E + 3N , and any element in Ŝ2

5(4W ) is uniquely

determined by the following conditions:

1) the derivatives Dα
xDβ

y s(v) for 0 ≤ α + β ≤ 2 and all v ∈ V ,

2) the derivatives Dk
es(η

e
k1), · · · , Dk

es(η
e
kk) for k = 1, 2 and all e ∈ E ,

3) the derivatives Des(η
e
11) for all e ∈ E0,

where E0 denotes the set of edges of each triangle t0 in 4W and V, E, N denote the number of

vertices, edges, triangles of 4.

Proof: Let MW be the set consisting of the following domain points:

©1 For each vertex v of 4, choose a triangle t of 4W attached to v and include Dt
2(v);

©2 For each edge e =< v1, v2 > of 4, let t =< v1, v2, v3 > be a triangle of 4W containing

the edge e. Then include the points ξt
221, ξ

t
122, ξ

t
212;

©3 For each triangle t0 in 4W , include the points ξt0
221, ξ

t0
122, ξ

t0
212.

Clearly, the cardinality of MW is 6V + 3E + 3N . Similar to the proof of Theorem 1 and

C2 smoothness on two arbitrary adjacent triangle of the triangulation 4W , this theorem can

be easily proved. ¥
In view of Eq. (3) and Theorem 2, we can form a dual basis for Ŝ2

5(4W ). For each ξ ∈MW ,

it is easy to see that the basis function Bξ has local support.

6
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1) If ξ is point as in item ©1 of the proof of Theorem 2, then supp(Bξ) is contained in the

union of all triangles of 4 sharing the vertex v.

2) If ξ is point as in item ©2 of the proof of Theorem 2, then supp(Bξ) is contained in T
⋃

T̃ ,

where T and T̃ are the triangles of 4 sharing the edge e. (If e is a boundary edge of 4, then

there is only one such triangle, and it is the support set).

3) If ξ is point as in item ©3 of the proof of Theorem 2, then supp(Bξ) is is only one triangle

T , where T contains ξ in 4.

We end this paper with the following remarks.

Remark 1. The computation detail of item ©1 and ©2 in the proof of Theorem 1 are

described in [1].

Remark 2. In comparison with Wang’s interpolation scheme in [1], our improvement

method is more efficient. Firstly, the dimension of S2
5(4W ) is bigger than that of Ŝ2

5(4W ), so

our improvement method needs fewer locally supported basis functions. Then, in this paper,

no large linear system needs to be solved as in [1].

Remark 3. For the purpose of comparison, we also list the dimensions of spline spaces

mentioned in §1:

(1) dim S2
5(TA) = 37, see [3];

(2) dim S2
5(TPS) = 31, see [4, 6];

(3) dim S2
5(TPS) = 37, see [5];

(4) dim S2
5(TPS) = 30, see [7];

(5) dim S2
5(TW ) = 33, see [1].

Remark 4. In [4, 5, 6, 7], they all produce an interpolant spline function which is in C3

at all vertices of 4, this may be a disadvantage for certain applications.
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SOME GEOMETRIC AND TOPOLOGICAL PROPERTIES OF
A NEW SEQUENCE SPACE DEFINED BY

DE LA VALLÉE-POUSSIN MEAN

NECİP ŞİMŞEK∗, EKREM SAVAŞ, AND VATAN KARAKAYA

Abstract. The main purpose of this paper is to introduce a new sequence

space by using de la Vallée-Poussin mean and investigate both the modular

structure with some geometric properties and some topological properties with

respect to the Luxemburg norm.

1. Introduction

In summability theory, de la Vallée-Poussin’s mean is first used to define the
(V, λ)-summability by Leindler [9]. Malkowsky and Savaş [14] introduced and stud-
ied some sequence spaces which arise from the notion of generalized de la Vallée-
Poussin mean. Also the (V, λ)-summable sequence spaces have been studied by
many authors including [6] and [21].

Recently, there has been a lot of interest in investigating geometric properties
of several sequence spaces. Some of the recent work on sequence spaces and their
geometrical properties is given in the sequel: Shue [22] first defined the Cesáro
sequence spaces with a norm. In [11], it is shown that the Cesáro sequence spaces
cesp (1 ≤ p < ∞) have Kadec-Klee and Local Uniform Rotundity(LUR) proper-
ties. Cui-Hudzik-Pluciennik [4] showed that Banach-Saks of type p property holds
in these spaces. In [15], Mursaleen et al. studied some geometric properties of
normed Euler sequence space. Karakaya [7] defined a new sequence space involving
lacunary sequence space equipped with the Luxemburg norm and studied Kadec-
Klee(H), rotund(R) properties of this space. Quite recently, Sanhan and Suantai
[19] generalized normed Cesáro sequence spaces to paranormed sequence spaces by
making use of Köthe sequence spaces. They also defined and investigated modular
structure and some geometrical properties of these generalized sequence spaces. In
addition, some related papers on this topic can be found in [1],[2],[5],[16],[17],[20]
and [24].

2000 Mathematics Subject Classification. 46A45, 46B20, 46B45.

Key words and phrases. de la Vallée-Poussin, Cesáro sequence spaces, H-property, Banach-

Saks property, geometrical properties.
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2 NECİP ŞİMŞEK∗, EKREM SAVAŞ, AND VATAN KARAKAYA

In this paper, our purpose is to introduce a new sequence space defined by de la
Vallée-Poussin’s mean and investigate some topological and geometric properties
of this space.

The organization of our paper is as follows: In the first section, we introduce some
definition and concepts that are used throughout the paper. In the second section,
we construct a new paranormed sequence space and investigate some geometrical
properties of this space. Finally, in the third section, we construct the modular
space Vρ(λ; p) which is obtained by paranormed space V (λ; p) and we investigate
the Kadec-Klee property of this space. We also show that the modular space
Vρ(λ; p) is a Banach space under the Luxemburg norm. Also in this section, we
investigate the Banach-Saks of type p property of the space Vp(λ).

2. Preliminaries, Background and Notation

The space of all real sequences x = (x(i))∞i=1 is denoted by `0. Let (X, ‖.‖) (for
the brevity X = (X, ‖.‖) ) be a normed linear space and let S(X) and B(X) be
the unit sphere and unit ball of X, respectively.

A Banach space X which is a subspace of `0 is said to be a Köthe sequence space,
if (see [10]) ;

(i) for any x ∈ `0 and y ∈ X such that |x(i)| ≤ |y(i)| for all i ∈ N, we have
x ∈ X and ‖x‖ ≤ ‖y‖ ,

(ii) there is x ∈ X with x(i) > 0 for all i ∈ N.

We say that x ∈ X is order continuous if for any sequence (xn) in X such
that xn(i) ≤ |x(i)| for each i ∈ N and xn(i) → 0 (n →∞), ‖xn‖ → 0 holds. A
Köthe sequence space X is said to be order continuous if all sequences in X are
order continuous. It is easy to see that x ∈ X is order continuous if and only if
‖(0, 0, ..., 0, x(n + 1), x(n + 2), ...)‖ → 0 as n →∞.

A Banach space X is said to have the Kadec-Klee property (or property (H))
if every weakly convergent sequence on the unit sphere with the weak limit in the
sphere is convergent in norm.

Let 1 < p < ∞. A Banach space is said to have the Banach − Saks type p or
property (BSp), if every weakly null sequence (xk) has a subsequence (xkl

) such
that for some C > 0, ∥∥∥∥∥

n∑
l=0

xkl

∥∥∥∥∥ < C(n + 1)
1
p

for all n ∈ N (see [8]).
For a real vector space X, a functional ρ : X → [0,∞] is called a modular if it

satisfies the following conditions:
i) ρ(x) = 0 ⇔ x = 0,

ii) ρ(αx) = ρ(x) for all α ∈ F with |α| = 1,

iii) ρ(αx+βy) ≤ ρ(x)+ρ(y) for all x, y ∈ X and all α, β ≥ 0 with α+β = 1.
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ON SOME GEOMETRIC AND TOPOLOGICAL PROPERTIES OF SEQUENCE SPACES 3

Further, the modular ρ is called convex if
iv) ρ(αx + βy) ≤ αρ(x) + βρ(y) holds for all x, y ∈ X and all α, β ≥ 0 with

α + β = 1.

If ρ is a modular in X, we define

Xρ =
{
x ∈ X : ρ(λx) → 0 as λ → 0+

}
,

X∗
ρ = {x ∈ X : ρ(λx) < ∞ for some λ > 0} .

It is clear that Xρ ⊆ X∗
ρ . If ρ is a convex modular for x ∈ Xρ, we define

||x||L = inf
{

λ > 0 : ρ(
x

λ
) ≤ 1

}
and

||x||A = inf
λ>0

1
λ

(1 + ρ(λx)) .

If ρ is a convex modular on X, then Xρ = X∗
ρ and both || · ||L and || · ||A is a norm

on Xρ for which Xρ is a Banach space.
The norms || · ||L and || · ||A are called the Luxemburg norm and the Amemiya

norm(Orlicz norm), respectively.
In addition

||x||L ≤ ||x||A ≤ 2||x||L
for all x ∈ Xρ holds (see [18]).

A sequence (xn) of elements of Xρ is called modular convergent to x ∈ Xρ if
there exists a λ > 0 such that ρ(λ(xn − x)) → 0 as n →∞.

Proposition 2.1. Let (xn) ⊂ Xρ. Then ||xn||L → 0 (or equivalently ||x||A → 0)
if and only if ρ(λ(xn)) → 0 as n →∞, for every λ > 0.

Proof. See [18, p.15, Th.1].

Throughout the paper, the sequence p = (pk) is a bounded sequence of positive
real numbers with pk > 1, also H = supk pk and M = max{1,H}.

Besides, we will need the following inequalities in the sequel;

(2.1) |ak + bk|pk ≤ K (|ak|pk + |bk|pk)

(2.2) |ak + bk|tk ≤ |ak|tk + |bk|tk

where tk = pk

M ≤ 1 and K = max{1, 2H−1} with H = supk pk.

Now we begin the construction of a new sequence space.
Let Λ = (λk) be a nondecreasing sequence of positive real numbers tending to

infinity and let λ1 = 1 and λk+1 ≤ λk + 1.

The generalized de la Vallée-Poussin means of a sequence x = (xk) are defined
as follows:

tk(x) =
1
λk

∑
j∈Ik

xj where Ik = [k − λk + 1, k] for k = 1, 2, ... .
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4 NECİP ŞİMŞEK∗, EKREM SAVAŞ, AND VATAN KARAKAYA

We write

[V, λ]0 =

x ∈ `0 : lim
k→∞

1
λk

∑
j∈Ik

|xj | = 0


[V, λ] =

{
x ∈ `0 : x− le ∈ [V, λ]0, for some l ∈ C

}
and

[V, λ]∞ =

x ∈ `0 : sup
k

1
λk

∑
j∈Ik

|xj | < ∞


for the sequence spaces that are strongly summable to zero, strongly summable and
strongly bounded by the de la Vallée-Poussin method (see [9]). In the special case,
if we take λk = k for k = 1, 2, ... the spaces [V, λ]0, [V, λ] and [V, λ]∞ reduce to the
spaces w0, w and w∞ introduced by Maddox [12].

We now define the following new paranormed sequence space:

V (λ; p) :=

x = (xj) ∈ `0 :
∞∑

k=1

 1
λk

∑
j∈Ik

|xj |

pk

< ∞

 .

The space V (λ; p) is reduced to some special sequence spaces corresponding to
special cases of sequence (λk) and (pk). For example: If we take λk = k, we obtain
the space ces(p) defined by [23]. If we take λk = k and pk = p for all k ∈ N, the
space V (λ; p) reduces to the space cesp defined by [22].

3. Some Topological Properties Of The Sequence Space V (λ; p)

In this section, we will give the topological properties of the space V (λ; p). We
begin by obtaining the first main result.

Theorem 3.1. a) The space V (λ; p) is a complete paranormed space with respect
to paranorm defined by

(3.1) h(x) :=

 ∞∑
k=1

 1
λk

∑
j∈Ik

|xj |

pk


1
M

.

b) if pk = p; the space V (λ; p) reduced to Vp(λ) defined by

Vp(λ) :=

x = (xj) ∈ `0 :
∞∑

k=1

 1
λk

∑
j∈Ik

|xj |

p

< ∞

 .

And the space Vp(λ) is a complete normed space defined by

‖x‖Vp(λ) :=

 ∞∑
k=1

 1
λk

∑
j∈Ik

|xj |

p
1
p

(1 < p < ∞).
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Proof. a) The linearity of V (λ; p) with respect to coordinatewise addition and scalar
multiplication follows from the inequality (2.1). Because, for any x, y ∈ V (λ; p) the
following inequalities are satisfied:

 ∞∑
k=1

 1
λk

∑
j∈Ik

|xj + yj |

pk


1
M

≤

 ∞∑
k=1

 1
λk

∑
j∈Ik

|xj |

pk


1
M

(3.2) +

 ∞∑
k=1

 1
λk

∑
j∈Ik

|yj |

pk


1
M

and for any α ∈ R (see [13]) we have

(3.3) |α|pk ≤ max{1, |α|M}.

It is clear that h(θ) = 0 and h(x) = h(−x) for all x ∈ V (λ; p). Again the inequalities
(3.2) and (3.3) yield the subadditivity of h and

h(αx) ≤ max{1, |α|}h(x).

Let (xm) be any sequence of points of the space V (λ; p) such that h(xm−x) → 0 and
(αn) also be any sequence of scalars such that αn → α. Then, since the inequality

h(xm) ≤ h(x) + h(xm − x)

holds by subadditivity of h, the sequence (h(xm))m∈N is bounded and we thus have

h(αmxm − αx) =

 ∞∑
k=1

 1
λk

∑
j∈Ik

|αmxm
j − αxj |

pk


1
M

≤ |αm − α|h(xm) + |α|h(xm − x).

The last expression tends to zero as m → ∞, that is, the scalar multiplication is
continuous. Hence h is paranorm on the space V (λ; p).

It remains to prove the completeness of the space V (λ; p).
Let (xn) be any Cauchy sequence in the space V (λ; p), where x = (xn

j ) =
(xn

1 , xn
2 , xn

3 , ...). Then, for a given ε > 0, there exists a positive integer n0(ε) such
that

h(xn − xm) <
ε

2
for every m,n ≥ n0(ε). By using the definition of h, we obtain that ∞∑

k=1

 1
λk

∑
j∈Ik

|xn
j − xm

j |

pk
 < εM

for every m,n ≥ n0(ε). Also we get, for fixed j ∈ N, |xn
j − xm

j | < ε for every
m,n ≥ n0(ε). Hence it is clear that the sequences (xn

j ) is a Cauchy sequence in R.
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6 NECİP ŞİMŞEK∗, EKREM SAVAŞ, AND VATAN KARAKAYA

Since the real numbers set is complete, so we have xm
j → xj for every n ≥ n0(ε)

and as m →∞. Now we get r∑
k=1

 1
λk

∑
j∈Ik

|xn
j − xj |

pk
 < εM .

If we pass to the limit over the r to infinity and n ≥ n0(ε) we obtained h(xn−x) < ε.
So, the sequence (xn) is a Cauchy sequence in the space V (λ; p).

It remains to show that the space V (λ; p) is complete. Since we have x =
xn − xn + x, we get

∞∑
k=1

 1
λk

∑
j∈Ik

|xj |

pk

≤
∞∑

k=1

 1
λk

∑
j∈Ik

|xn
j − xj |

pk

+
∞∑

k=1

 1
λk

∑
j∈Ik

|xn
j |

pk

.

Consequently, we obtain x ∈ V (λ; p). This completes the proof.
b) By taking pk = p in (a), it can be easily shown the proof of (b).

4. Some Geometric Properties Of The Spaces Vρ(λ; p) And Vp(λ).

In this section we construct the modular structure of the space V (λ; p) and since
the Luxemburg norm is equivalent to usual norm of the space Vp(λ), we show that
the space Vp(λ) has the Banach-Saks type p.

Firstly, we will introduce a generalized modular sequence space Vρ(λ; p) by

Vρ(λ; p) :=
{
x ∈ `0 : ρ(λx) < ∞, for some λ > 0

}
,

where

ρ(x) =

 ∞∑
k=1

 1
λk

∑
j∈Ik

|xj |

pk
 .

It can be seen that ρ : Vρ(λ; p) → [0,∞] is a modular on Vρ(λ; p).
Note that the Luxemburg norm on the sequence space Vρ(λ; p) is defined as

follows:
||x||L = inf

{
λ > 0 : ρ(

x

λ
) ≤ 1

}
, for all x ∈ Vρ(λ; p)

or equally

||x||L = inf

λ > 0 : ρ(
x

λ
) =

 ∞∑
k=1

 1
λk

∑
j∈Ik

|xj |

pk
 ≤ 1

 .

In the same way we can introduce the Amemiya norm (Orlicz norm) on the sequence
space Vρ(λ; p) as follows:

||x||A = inf
λ>0

1
λ

(1 + ρ(λx)) for all x ∈ Vρ(λ; p).

We now give some basic properties of the modular ρ on the space Vρ(λ; p). Also
we will investigate some relationships between the modular ρ and the Luxemburg
norm on Vρ(λ; p).
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Proposition 4.1. The functional ρ is a convex modular on Vρ(λ; p).

Proposition 4.2. For any x ∈ Vρ(λ; p)
i) if ||x||L ≤ 1, then ρ(x) ≤ ||x||L;
ii) ||x||L = 1 if and only if ρ(x) = 1.

Proposition 4.3. For any x ∈ Vρ(λ; p), we have
i) If 0 < a < 1 and ||x||L > a, then ρ(x) > aH ;
ii) if a ≥ 1 and ||x||L < a, then ρ(x) < aH .

The proofs of the three propositions given above are proved with standard tech-
niques in a similar way as in [19] and [3].

Proposition 4.4. Let (xn) be a sequence in Vρ(λ; p). Then:
i) if lim

n→∞
||xn||L = 1, then lim

n→∞
ρ(xn) = 1;

ii) if lim
n→∞

ρ(xn) = 0, then lim
n→∞

||x
n
||L = 0.

Proof. (i) Suppose that lim
n→∞

||xn||L = 1. Let ε ∈ (0, 1). Then there exists n0 such

that 1 − ε < ||xn||L < 1 + ε for all n ≥ n0. Since (1 − ε)H < ||xn||L < (1 + ε)H

for all n ≥ n0 by the Proposition 4.3 (i) and (ii), we have ρ(xn) ≥ (1 − ε)H and
ρ(xn) ≤ (1− ε)H . Therefore lim

n→∞
ρ(xn) = 1.

(ii) Suppose that ||xn||L 9 0. Then there is an ε ∈ (0, 1) and a subsequence
(xn

k
) of (xn) such that ||xn

k
||L > ε for all k ∈ N. By the Proposition 4.3 (i), we

obtain that ρ(xnk
) > εH for all k ∈ N. This implies that ρ(x

nk
) 9 0 as n → ∞.

Hence ρ(xn) 9 0.

Theorem 4.5. The space Vρ(λ; p) is a Banach space with respect to Luxemburg
norm defined by

||x||L = inf
{

λ > 0 : ρ(
x

λ
) ≤ 1

}
.

Proof. We show that every Cauchy sequence in Vρ(λ; p) is convergent according to
the Luxemburg norm.

Let (xn(j)) be any Cauchy sequence in Vρ(λ; p) and ε ∈ (0, 1). Thus, there
exists n0 such that ||xn − xm||L < εM for all m,n ≥ n0. By the Proposition 3.2
(i), we obtain

(4.1) ρ(xn − xm) < ||xn − xm||L < εM ,

for all n, m ≥ n0, that is;

∞∑
k=1

 1
λk

∑
j∈Ik

|xn(j)− xm(j)|

pk

< ε

for all m,n ≥ n0. For fixed j ∈ N, the last inequality gives that

|xn(j)− xm(j)| < ε

774
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for all m,n ≥ n0. Hence we obtain that the sequence (xn(j)) is a Cauchy sequence
in R. Since R is complete, xm(j) → x(j) as m →∞. Therefore, we have

∞∑
k=1

 1
λk

∑
j∈Ik

|xn(j)− x(j)|

pk

< ε

for all n ≥ n0.

It remains to show that the sequence (x(j)) is an element of Vρ(λ; p). From the
inequality (4.1), we can write

∞∑
k=1

 1
λk

∑
j∈Ik

|xn(j)− xm(j)|

pk

< ε

for all m,n ≥ n0. For every j ∈ N, we have xm(j) → x(j), so we obtain that

ρ(xn − xm) → ρ(xn − x)

as m →∞. Since for all n ≥ n0,

∞∑
k=1

 1
λk

∑
j∈Ik

|xn(j)− xm(j)|

pk

→
∞∑

k=1

 1
λk

∑
j∈Ik

|xn(j)− x(j)|

pk

as m →∞, then by (4.1) we have ρ(xn − x) < ‖xn − x‖L < ε for all n ≥ n0. This
means that xn → x as n → ∞. So, we have (xn0 − x) ∈ Vρ(λ; p). Since Vρ(λ; p)
is a linear space, we have x = xn0 − (xn0 − x) ∈ Vρ(λ; p). Therefore the sequence
space Vρ(λ; p) is a Banach space with respect to Luxemburg norm. This completes
the proof.

Next, we will show that the space Vρ(λ; p) has Kadec-Klee property. To do this,
we need the following Proposition.

Proposition 4.6. Let x ∈ Vρ(λ; p) and (xn) ⊆ Vρ(λ; p). If ρ(xn) → ρ(x) as
n →∞ and xn(j) → x(j) as n →∞ for all j ∈ N, then xn → x as n →∞.

Proof. Let ε > 0. Since ρ(x) =
∞∑

k=1

 1
λk

∑
j∈Ik

|x(i)|

pk

< ∞, there exists j ∈ N

such that

(4.2)
∞∑

k=n0+1

 1
λk

∑
j∈Ik

|x(j)|

pk

<
ε

6K

where K = max{1, 2H−1}.
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Since ρ(xn)−
n0∑

k=1

 1
λk

∑
j∈Ik

|xn(j)|

pk

→ ρ(x)−
n0∑

k=1

 1
λk

∑
j∈Ik

|x(j)|

pk

as n →∞

and xn(j) → x(j) as n →∞ for all j ∈ N, there exists n0 ∈ N such that

(4.3)

∣∣∣∣∣∣
∞∑

k=n0+1

 1
λk

∑
j∈Ik

|xn(j)|

pk

−
∞∑

k=n0+1

 1
λk

∑
j∈Ik

|x(j)|

pk
∣∣∣∣∣∣ < ε

3K

for all n ≥ n0. Also, since xn(j) → x(j) for all j ∈ N, we have ρ(xn) → ρ(x) as
n →∞. Hence for all n ≥ n0, we have |xn(j)−x(j)| < ε. As a result, for all n ≥ n0,

we have

(4.4)
n0∑

k=1

 1
λk

∑
j∈Ik

|xn(j)− x(j)|

pk

<
ε

3
.

Then from (4.2), (4.3) and (4.4) it follows that for n ≥ n0,

ρ(xn − x) =
∞∑

k=1

 1
λk

∑
j∈Ik

|xn(j)− x(j)|

pk

=
n0∑

k=1

 1
λk

∑
j∈Ik

|xn(j)− x(j)|

pk

+
∞∑

k=n0+1

 1
λk

∑
j∈Ik

|xn(j)− x(j)|

pk

<
ε

3
+ K

 ∞∑
k=n0+1

 1
λk

∑
j∈Ik

|xn(j)|

pk

+
∞∑

k=n0+1

 1
λk

∑
j∈Ik

|x(j)|

pk


=
ε

3
+ K

ρ(xn)−
n0∑

k=1

 1
λk

∑
j∈Ik

|xn(j)|

pk

+
∞∑

k=n0+1

 1
λk

∑
j∈Ik

|x(j)|

pk


<
ε

3
+ K

ρ(x)−
n0∑

k=1

 1
λk

∑
j∈Ik

|xn(j)|

pk

+
ε

3K
+

∞∑
k=n0+1

 1
λk

∑
j∈Ik

|x(j)|

pk


=
ε

3
+ K

 ∞∑
k=n0+1

 1
λk

∑
j∈Ik

|x(j)|

pk

+
ε

3K
+

∞∑
k=n0+1

 1
λk

∑
j∈Ik

|x(j)|

pk


<
ε

3
+

ε

3
+

ε

3
= ε.

This shows that ρ(xn − x) → 0 as n →∞. Hence by Proposition 4.4 (ii), we have
||xn − x||L → 0 as n →∞.

Now, we give one of the main result of this paper involving geometric properties
of the space Vρ(λ; p).

Theorem 4.7. The space Vρ(λ; p) has the Kadec-Klee property.

Proof. Let x ∈ S(Vρ(λ; p)) and (xn) ⊆ B(Vρ(λ; p)) such that ||xn||L → 1 and
xn

w→ x as n → ∞. From Proposition 4.2 (ii), we have ρ(x) = 1, so it follows
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from Proposition 4.4 (i) that ρ(xn) → ρ(x) as n → ∞. Since xn
w→ x and the

ith-coordinate mapping πj : Vρ(λ; p) → R defined by πj(x) = x(j) is continuous
linear function on Vρ(λ; p), it follows that xn(j) → x(j) as n → ∞ for all j ∈ N.
Thus, by Proposition 4.6 that xn → x as n →∞.

We prove the following theorem regarding the Banach-Saks of type p property.

Theorem 4.8. The space Vp(λ) has the Banach-Saks of type p.

Proof. From the Theorem 3.1 b), it is known that the space Vp(λ) is a Banach space
with respect to the norm ||x||Vp(λ).

Let (εn) be a sequence of positive numbers for which
∞∑

n=1
εn ≤ 1

2 . Let (xn) be a

weakly null sequence in B(Vp(λ)). Set b0 = x0 = 0 and b1 = xn1 = x1. Then there
exists m1 ∈ N such that ∥∥∥∥∥

∞∑
i=m1+1

b1(i)e(i)

∥∥∥∥∥
Vp(λ)

< ε1.

Since (xn) is a weakly null sequence implies xn → 0 (coordinatewise), there is an
n2 ∈ N such that ∥∥∥∥∥

m1∑
i=0

xn(i)e(i)

∥∥∥∥∥
Vp(λ)

< ε1,

where n ≥ n2. Set b2 = xn2 . Then there exists an m2 > m1 such that∥∥∥∥∥
∞∑

i=m2+1

b2(i)e(i)

∥∥∥∥∥
Vp(λ)

< ε2.

By using the fact that xn → 0 (coordinatewise), there exists an n3 > n2 such that∥∥∥∥∥
m2∑
i=0

xn(i)e(i)

∥∥∥∥∥
Vp(λ)

< ε2,

where n ≥ n3.

If we continue this process, we can find two increasing subsequences (mi) and
(ni) such that ∥∥∥∥∥

mj∑
i=0

xn(i)e(i)

∥∥∥∥∥
Vp(λ)

< εj,

for each n ≥ nj+1 and ∥∥∥∥∥∥
∞∑

i=mj+1

bj(i)e(i)

∥∥∥∥∥∥
Vp(λ)

< εj,

where bj = xnj
. Hence,∥∥∥∥∥∥

n∑
j=0

bj

∥∥∥∥∥∥
Vp(λ)

=

∥∥∥∥∥∥
n∑

j=0

mj−1∑
i=0

bj(i)e(i) +
mj∑

i=mj−1+1

bj(i)e(i) +
∞∑

i=mj+1

bj(i)e(i)

∥∥∥∥∥∥
Vp(λ)
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≤

∥∥∥∥∥∥
n∑

j=0

 mj∑
i=mj−1+1

bj(i)e(i)

∥∥∥∥∥∥
Vp(λ)

+

∥∥∥∥∥∥
n∑

j=0

(
mj−1∑
i=0

bj(i)e(i)

)∥∥∥∥∥∥
Vp(λ)

+

∥∥∥∥∥∥
n∑

j=0

 ∞∑
i=mj+1

bj(i)e(i)

∥∥∥∥∥∥
Vp(λ)

.

≤

∥∥∥∥∥∥
n∑

j=0

 mj∑
i=mj−1+1

bj(i)e(i)

∥∥∥∥∥∥
Vp(λ)

+ 2
n∑

j=0

εj .

On the other hand, since

‖xn‖Vp(λ) =

 ∞∑
k=1

 1
λk

∑
j∈Ik

|xnk
(j) |

p
1
p

, it can be seen that ‖xn‖Vp(λ) < 1.

Therefore ‖xn‖p
Vp(λ) < 1. We have∥∥∥∥∥∥

n∑
j=0

 mj∑
i=mj−1+1

bj(i)e(i)

∥∥∥∥∥∥
p

Vp(λ)

=
n∑

j=0

mj∑
i=mj−1+1

(
1
λi

∑
v∈Ii

|bj(v)|

)p

≤
n∑

j=0

∞∑
i=0

(
1
λi

∑
v∈Ii

|bj(v)|

)p

≤ (n + 1).

Hence we obtain, ∥∥∥∥∥∥
n∑

j=0

 mj∑
i=mj−1+1

bj(i)e(i)

∥∥∥∥∥∥
Vp(λ)

≤ (n + 1)
1
p .

By using the fact 1 ≤ (n + 1)
1
p for all n ∈ N and 1 ≤ p < ∞, we have∥∥∥∥∥∥

n∑
j=0

bj

∥∥∥∥∥∥
Vp(λ)

≤ (n + 1)
1
p + 1 ≤ 2(n + 1)

1
p .

Hence Vp(λ) has the Banach-Saks type p. This completes the proof of the theo-
rem.
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[21] E. Savaş, R. Savaş, Some λ-sequence spaces defined by Orlicz functions. Indian J. Pure Appl.

Math. 34 (2003), no. 12, 1673–1680.
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Composition operators on logarithmic α-Bloch spaces

SHANLI YE∗

Department of Mathematics, Fujian Normal University, Fuzhou 350007, China

Abstract

In this paper we discuss the composition operator on the logarithmic α-Bloch space LBα on the
unit disk. The main results are as follows: (i) the sufficient and necessary conditions of Cϕ being
bounded on the LBα and LBα, 0; (ii) the sufficient and necessary conditions of Cϕ being compacted
on the LBα and LBα, 0.

Keywords: Composition operator; Bloch space; Boundedness; Compactness
MSC 2000: Primary 47B38, secondary 30D05, 30H05

1 Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane C, and H(D) denote the set of all
analytic functions on D. For α > 0, a function f ∈ H(D) is said to belong to the logarithmic α-Bloch
space LBα if

‖f‖LBα
= sup{(1− |z|2)α ln(

2
1− |z|2 )|f ′(z)| : z ∈ D} < +∞

and to the little logarithmic α-Bloch space LBα, 0 if

lim
|z|→1

(1− |z|2)α ln(
2

1− |z|2 )|f ′(z)| = 0.

It is easily proved that LBα is a Banach space under the norm ‖f‖α = |f(0)|+‖f‖LBα
and that LBα, 0 is

a closed subspace of LBα. when α = 1, the LBα space is called the logarithmic Bloch space LB1. Some
sources for results and references about the logarithmic Bloch functions are the papers of Yoneda [10],
Stević [4, 5], and the author [6, 7, 8, 9].

Let ϕ be a holomorphic self-map of D. The composition operator Cϕ is defined by

Cϕ(f) = f ◦ ϕ, f ∈ H(D).

It is easy to see that an operator defined in this manner is linear. It is interesting to provide a function
theoretic characterization when ϕ induces a bounded or compact operator on various spaces (see [1, 2,
3, 11] for more information). In the logarithmic Bloch space LB1, the author [8] has characterized the
pointwise multiplier operator and R. Yoneda [10] studied the composition operator respectively. We
shall study the conditions for which Cϕ is a bounded operator or a compact operator on the logarithmic
α-Bloch LBα and the little logarithmic LBα, 0 spaces. In this paper, C denotes the constant depending
only on the index α; the C may differ at different places.

2 The boundedness of Cϕ

Lemma 2.1 Let α > 0 and f(z) =
(1− |z|)α ln 2

1−|z|
|1− z|α ln 4

|1−z|
, z ∈ D. Then |f(z)| ≤ max(1,

1
α ln 2

).

∗E-mail: ye shanli@yahoo.com.cn; shanliye@fjnu.edu.cn
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Proof Since r(x) = xα ln 2
x is increasing on (0, 2e−

1
α ], decreasing on [2e−

1
α , 2] and r(2e−

1
α ) =

2α

αe
, we

have |f(z)| ≤ 1 where z ∈ D1 = {z ∈ D : |1− z| < 2e−
1
α }.

On the other hand, for z ∈ D \D1,

|f(z)| ≤
(1− |z|)α ln 2

1−|z|
(2e−

1
α )α ln 2

≤
2α

αe

(2e−
1
α )α ln 2

=
1

α ln 2
,

hence |f(z)| ≤ max(1, 1
α ln 2 ).

Lemma 2.2 Let α > 0 and g(x) = (1 − x)α ln
2

1− x
, x ∈ [0, 1). Then

g(x)
g(tx)

≤ 1 +
1

αe ln 2
for each

t ∈ [0, 1].

Proof Since xα ln
1
x
≤ 1

αe
for each x ∈ (0, 1], we have

g(x)
g(tx)

= (
1− x

1− tx
)α(

ln 2
1−x

ln 2
1−tx

− 1) + (
1− x

1− tx
)α

≤ (
1− x

1− tx
)α ln

1− tx

1− x

1
ln 2

1−tx

+ 1 ≤ 1
αe ln 2

+ 1.

Lemma 2.3 Let α > 0 and f ∈ LBα, then exists constant C such that ‖ft‖α ≤ C‖f‖α , 0 < t < 1, where
ft(z) = f(tz).

The result can be easily proved by lemma 2.2.

Theorem 2.1 Let α > 0, then Cϕ is a bounded operator on LBα if and only if

sup{
(1− |z|2)α ln 2

1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| : z ∈ D} < +∞. (1)

Proof Suppose that (1) holds. For ∀f ∈ LBα, we have

sup
z∈D

(1− |z|2)α ln(
2

1− |z|2 )|(Cϕ(f))′(z)|

= sup
z∈D

(1− |z|2)α ln(
2

1− |z|2 )|f ′(ϕ(z))||ϕ′(z)|

≤ sup
z∈D

|f ′(ϕ(z))|(1− |ϕ(z)|2)α ln(
2

1− |ϕ(z)|2 )× sup
z∈D

(1− |z|2)α ln 2
1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)|

≤ C‖f‖LBα .

This shows that Cϕ is bounded.
Conversely, suppose that Cϕ is a bounded operator on LBα. Then ‖Cϕ(f)‖α ≤ ‖Cϕ‖‖f‖α for all

f ∈ LBα. On the other hand, we take the test function f(z) = z, which shows ϕ ∈ LBα. For ∀ 0 6= w ∈ D,
let

fw(z) =
∫ z

0

(1− w2

|w|2 z2)−α(ln
4

1− w2

|w|2 z2
)−1 dz.

By Lemma 2.1, we have

sup
z1∈D

(1− |z1|2)α(ln
2

1− |z1|2 )|1− z2
1 |−α| ln 4

1− z2
1

|−1 ≤ C < +∞.

2
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Applying to z1 = w
|w|z, we have

sup
z∈D

(1− |z|2)α(ln
2

1− |z|2 )|1− w2

|w|2 z2|−α| ln 4
1− w2

|w|2 z2
|−1 ≤ C < +∞.

Hence we have fw ∈ LBα for w 6= 0. Then for w 6= 0 we get

‖Cϕ(fw)‖LBα ≤ ‖Cϕ(fw)‖α ≤ ‖Cϕ‖‖fw‖α = ‖Cϕ‖‖fw‖LBα = C < +∞.

So
sup
z∈D

(1− |z|2)α ln(
2

1− |z|2 )|f ′w(ϕ(z))||ϕ′(z)| ≤ C < +∞. (2)

For ∀z ∈ D with ϕ(z) 6= 0, applying w = ϕ(z) in (2), we have

(1− |z|2)α ln 2
1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| ≤ C < +∞.

For ∀z ∈ D with ϕ(z) = 0, since ϕ ∈ LBα, we have

(1− |z|2)α ln 2
1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| ≤ 1
ln 2

‖ϕ‖LBα
< +∞.

Hence (1) holds. This completes the proof of this theorem.

Remark 1 There is a problem in the proof of the Theorem 1 of R. Yonda’s 2002 Arch. Math. paper
[10]. The reason is that the test function

fw(z) =
∫ z

0

(1− w2

|w|2 z2)−1(ln
2

1− w2

|w|2 z2
)−1 dz.

in R. Yonda’s paper does not belong to LB1. In fact, let w = 1
2 and z = ir, then

(1− |z|2) ln
2

1− |z|2 |f
′
w(z)| = (1− r2) ln 2

1−r2

(1 + r2) ln 2
1+r2

−→∞

as r −→ 1.

Theorem 2.2 Let α > 0, then Cϕ is a bounded operator on LBα, 0 if and only if ϕ ∈ LBα, 0 and

sup{
(1− |z|2)α ln 2

1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| : z ∈ D} < +∞. (3)

Proof Suppose ϕ ∈ LBα, 0 and (3) holds. Let

M = sup{
(1− |z|2)α ln 2

1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| : z ∈ D}.

Assume that f ∈ LBα, 0. Then given ε > 0 there exists 0 < r < 1 such that

(1− |z|2)α ln
2

1− |z|2 |f
′(z)| < ε

M

whenever |z| > r.

3
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On the other hand, since ϕ ∈ LBα, 0, there exists 0 < R < 1 such that

(1− |z|2)α ln
2

1− |z|2 |ϕ
′(z)| < (1− r2)α ln 2

1−r2

‖f‖LBα

ε

whenever |z| > R.
Then, for |z| > R such that |ϕ(z)| > r, we have

(1− |z|2)α ln( 2
1−|z|2 )|(Cϕ(f))′(z)|

= (1− |ϕ(z)|2)α ln(
2

1− |ϕ(z)|2 )|f ′(ϕ(z))| ×
(1− |z|2)α ln 2

1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)|

≤ ε
M M = ε.

For |z| > R such that |ϕ(z)| ≤ r, we have

(1− |z|2)α ln( 2
1−|z|2 )|(Cϕ(f))′(z)|

= (1− |ϕ(z)|2)α ln(
2

1− |ϕ(z)|2 )|f ′(ϕ(z))| ×
(1− |z|2)α ln 2

1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)|

≤ ‖f‖LBα

(1− |z|2)α ln 2
1−|z|2

(1− r2)α ln 2
1−r2

|ϕ′(z)| < ε.

Hence we have (1− |z|2)α ln( 2
1−|z|2 )|(Cϕ(f))′(z)| < ε, which show Cϕ(f) ∈ LBα, 0.

Conversely, suppose that Cϕ is bounded in LBα, 0. First we take test function f(z) = z, then
ϕ ∈ LBα, 0.

Next we have ‖Cϕ(g)‖α ≤ ‖Cϕ‖‖g‖α for all g ∈ LBα, 0. For any f ∈ LBα and every 0 < t < 1, we
have ft = f(tz) ∈ LBα, 0. Then by Lemma 2.3, we get

‖Cϕ(ft)‖α ≤ ‖Cϕ‖‖ft‖α ≤ C‖Cϕ‖‖f‖α.

Let t → 1, we have ‖Cϕ(f)‖α ≤ C‖Cϕ‖‖f‖α. So Cϕ is bounded in LBα. By Theorem 2.1, (3) holds.
This proof is completed.

3 The compactness of Cϕ

Lemma 3.1 Suppose α > 0 and f ∈ LBα, then
(1) |f(z)| ≤ C‖f‖α, where α < 1;
(2) |f(z)| ≤ (1 + C ln(ln 2

1−|z| ))‖f‖α, where α = 1 ;
(3) |f(z)| ≤ (1 + C

(1−|z|)α−1 )‖f‖α, where α > 1.

The proof follows from the same method as the one for Lemma 2.1 in [4]. We omit the details.

Lemma 3.2 Let Cϕ be a bounded operator on LBα, then Cϕ is compact if and only if for any bounded
sequence {fn} in LBα which converges to 0 uniformly on compact subsets of D, we have ‖Cϕ(fn)‖α → 0
as n →∞.

The result can be proved by using Montel theorem, Lemma 2.3 and 3.1; the details are omitted here.

Lemma 3.3 Suppose α > 0, then a closed set U in LBα, 0 is compact if and only if it is bounded and
satisfies

4
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lim
|z|→1

sup
f∈U

(1− |z|2)α ln(
2

1− |z|2 )|f ′(z)| = 0. (4)

The proof is similar to that of [1, Lemma 1].

Theorem 3.1 Let α > 0, then Cϕ is compact on LBα, 0 if and only if

lim
|z|→1

(1− |z|2)α ln 2
1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| = 0.

Proof By Lemma 3.3, Cϕ is compact if and only if

lim
|z|→1

sup
‖f‖α≤1

(1− |z|2)α ln(
2

1− |z|2 )|(Cϕ(f))′(z)| = 0.

On the other hand, we have

(1− |z|2)α ln( 2
1−|z|2 )|(Cϕ(f))′(z)|

= (1− |ϕ(z)|2)α ln( 2
1−|ϕ(z)|2 )|f ′(ϕ(z))| × (1−|z|2)α ln 2

1−|z|2
(1−|ϕ(z)|2)α ln 2

1−|ϕ(z)|2
|ϕ′(z)|,

and
sup

‖f‖α≤1

(1− |z|2)α ln(
2

1− |z|2 )|f ′(z)| = 1

Hence Cϕ is compact on LBα, 0 if and only if

lim
|z|→1

(1− |z|2)α ln 2
1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| = 0.

Theorem 3.2 Let α > 0, then Cϕ is a compact operator on LBα if and only if for every ε > 0, there
exists 0 < r < 1, such that

(1− |z|2)α ln 2
1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| < ε. (5)

whenever |ϕ(z)| > r.

Proof Assume that (5) holds. Then it clearly shows that ϕ ∈ LBα and Cϕ is bounded by Theorem 2.1.
Let {fn} be a bounded sequence in LBα which converges to 0 uniformly on compact subsets of D. We
only need to prove limn→∞ ‖Cϕ(fn)‖α = 0 by Lemma 3.2. Let M = supn ‖fn‖LBα

< +∞. Given ε > 0,
there exists 0 < r < 1 such that

(1− |z|2)α ln 2
1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| < ε

M
,

whenever |ϕ(z)| > r.
Then, for |ϕ(z)| > r, we have

‖Cϕ(fn)‖LBα
= (1− |z|2)α ln( 2

1−|z|2 )|(Cϕ(fn))′(z)|

= (1− |ϕ(z)|2)α ln(
2

1− |ϕ(z)|2 )|f ′n(ϕ(z))| ×
(1− |z|2)α ln 2

1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)|

≤ M ε
M = ε.

5
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Let

M1 = sup
|ϕ(z)|≤r

(1− |z|2)α ln 2
1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| ≤ ‖ϕ‖LBα

(1− r2) ln 2
< +∞.

On the other hand, because Cϕ(fn)(0) and (1−|w|2)α ln 2
1−|w|2 |f ′n(w)| converge to 0 uniformly on |w| ≤ r

as n → ∞, we have, for large enough n, Cϕ(fn)(0) < ε and (1 − |w|2)α ln 2
1−|w|2 |f ′n(w)| < ε

M1
whenever

|w| ≤ r . Then for large enough n we have

‖Cϕ(fn)‖α = Cϕ(fn)(0) + supz(1− |z|2)α ln( 2
1−|z|2 )|(Cϕ(fn))′(z)|

≤ ε + sup
|ϕ(z)|>r

(1− |z|2)α ln(
2

1− |z|2 )|(Cϕ(fn))′(z)|

+ sup
|ϕ(z)|≤r

(1− |z|2)α ln(
2

1− |z|2 )|(Cϕ(fn))′(z)|

≤ 2ε + sup
|ϕ(z)|≤r

(1− |ϕ(z)|2)α ln(
2

1− |ϕ(z)|2 )|f ′n(ϕ(z))|
(1− |z|2)α ln 2

1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)|

≤ 2ε +
ε

M1
M1 = 3ε.

This shows limn→∞ ‖Cϕ(fn)‖α = 0.
Conversely, suppose Cϕ is compact on LBα. Assume that (5) fails. Then there exists a sequence

{zn} ⊂ D and an ε0 > 0 such that |zn| → 1(n →∞) and

(1− |z|2)α ln 2
1−|z|2

(1− |ϕ(z)|2)α ln 2
1−|ϕ(z)|2

|ϕ′(z)| ≥ ε0.

Let ϕ(zn) = rneiθn , we take

fn(z) =
∫ z

0

(
rn

1− e−iθnwrn
− r2

n

1− r2
ne−iθnw

)α(ln
4

1− r2
ne−iθnw

)−1 dw.

We get sup
n
‖fn‖α < ∞ and |fn(z)| ≤ ( 1−rn

(1−|z|)2 )α(ln 2)−1 by Lemma 2.1 and 2.2. Then {fn} is a bounded

sequence on LBα which converges to 0 uniformly on compact subsets of D. On the other hand, for
enough large n, it follows that

‖Cϕ(fn)‖α ≥ (1− |zn|2)α ln
2

1− |zn|2 |f
′
n(ϕ(zn))||ϕ′(zn)|

= (1− |zn|2)α ln
2

1− |zn|2 (
1

1− rn
− rn

1− r2
n

)α(ln
4

1− r2
n

)−1|ϕ′(zn)|

= (
rn

1 + rn + r2
n

)α
(1− |zn|2)α ln 2

1−|zn|2

(1− |ϕ(zn)|2)α ln 4
1−|ϕ(zn)|2

|ϕ′(zn)|

≥ 1
3α

ε0
2

.

This contradicts the compactness of Cϕ by Lemma 3.2. The proof is completed.
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Abstract. Motivated by the notion of 2-norm due to Gähler [S. Gähler, 2-metrische Räume und

ihre topologische Struktur, Math. Nachr. 26 (1963) 115-148], in this paper we define and study the

concept of statistical convergence and statistically Cauchy sequence in fuzzy 2-normed space which

provide better tool to study a more general class of sequences. We also introduce here statistical limit

point and statistical cluster point in fuzzy 2-normed space.

Keywords and phrases: Fuzzy 2-normed space; statistical convergence; statistically Cauchy sequence;

statistical limit point; statistical cluster point; 2-normed space.

1. Introduction and preliminaries

By modifying own studies on fuzzy topological vector spaces, Katsaras [13] first
introduced the notion of fuzzy seminorm and norm on a vector space and later on Felbin
[6] gave the concept of a fuzzy normed space (for short, FNS) by applying the notion
fuzzy distance of Kaleva and Seikala [12] on vector spaces. Further, Xiao and Zhu
[23] improved a bit the Felbin’s definition of fuzzy norm of a linear operator between
FNSs. Recently, Bag and Samanta [2] has given another notion of boundedness in
FNS and introduced another type of boundedness of operators. With the novelty of
their approach they can introduce the fuzzy dual spaces and some important analogues
of fundamental theorems in classical functional analysis [3]. Certainly there are some
situations where the ordinary norm does not work and the concept of fuzzy norm seems
to be more suitable in such cases, that is, we can deal with such situations by modelling
the inexactness of the norm in some situations.

The idea of statistical convergence was introduced by Fast [5] and Steinhaus [22]
independently in the same year 1951 and later on studied by various authors. Ac-
tive researches on this topic were started after the papers of S̆alát [19] and Fridy [8].
Recently, fuzzy version of this concept were discussed in [15,16,20,21].

The concept of 2-normed spaces was initially introduced by Gähler [10] in the
1960s. Since then, this concept has been studied by many authors, see for instance
[11,17,18].

Research of the first author is supported by the Department of Atomic Energy, Government of
India under the NBHM-Post Doctoral Fellowship programme number 40/10/2008-R&D II/892.

The present paper was started when the first author visited Yüzüncü Yil University, Van, Turkey
during May 16-June 11, 2009.

1

787JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.4, 787-798,2010,COPYRIGHT 2010 EUDOXUS PRESS, LLC



Our aim for this paper is to generalize the definition of Felbin’s FNS into fuzzy
2-normed space using the idea of Gähler. We define and study the concept of statistical
convergence and statistical Cauchy in fuzzy 2-normed space. Further, we introduce the
concept of statistical limit point and statistical cluster point in fuzzy 2-normed spaces.

Firstly, we recall some notations and basic definitions which we will used through-
out the paper.

According to Mizumoto and Tanaka [14], a fuzzy number is a mapping x :
R → [0, 1] over the set R of all real numbers. A fuzzy number x is convex if
x(t) ≥ min{x(s), x(r)} where s ≤ t ≤ r. If there exists a t0 ∈ R such that x(t0) = 1,
then x is called normal. For 0 < α ≤ 1, α-level set of an upper semi continuous convex
normal fuzzy number η (denoted by [η]α) is a closed interval [aα, bα], where aα = −∞
and bα = +∞ admissible. When aα = −∞, for instance, then [aα, bα] means the
interval (−∞, bα]. Similar is the case when bα = +∞. A fuzzy number x is called
non-negative if x(t) = 0, for all t < 0. We denoted the set of all convex, normal, upper
semicontinuous fuzzy real numbers by L(R) and the set of all non-negative, convex,
normal, upper semicontinuous fuzzy real numbers by L(R∗). Given a number r ∈ R,
we define a corresponding fuzzy number r̃ by

r̃(t) =

{
1 if t = r,
0 otherwise.

As α-level sets of a convex fuzzy number is an interval, there is a debate in the
nomenclature of fuzzy numbers/fuzzy real numbers. In [4], Dubois and Prade suggested
to call this as fuzzy interval.

A partial ordering 	 on L(R) is defined by u 	 v if and only if u−α ≤ v
−
α and

u+α ≤ v+α for all α ∈ [0, 1], where [u]α = [u−α , u
+
α ] and [v]α = [v−α , v

−
α ]. The strict

inequality in L(R) is defined by u ≺ v if and only if u−α < v
−
α and u+α < v

+
α for all

α ∈ [0, 1]. For k > 0, ku is defined as ku(t) = u(t/k) and (0u)(t) is defined to be 0̃(t).
According to Mizumoto and Tanaka [14], the arithmetic operations ⊕,⊖,⊗ on

L(R)× L(R) are defined by

(x⊕ y)(t) = sup
s∈R

min{x(s), y(t− s)}, (x⊖ y)(t) = sup
s∈R

min{x(s), y(s− t)} and

(x⊗ y)(t) = sup
s∈R,s�=0

min{x(s), y(t/s)},

for all t ∈ R.
Let u, v ∈ L(R). Define

D(u, v) = sup
α∈[0,1]

max{|u−α − v
−
α |, |u

+
α − v

+
α |},

then D is called the supremum metric on L(R). Let (un) ⊂ L(R) and u ∈ L(R). We
say that a sequence (un) converges to u in the metric D (for short, D-converges to u),

written as un
D
→ u or (D)- lim

n→∞
un = u if lim

n→∞
D(un, u) = 0.
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2. Fuzzy 2-normed spaces

In this section, we generalize the definition of Felbin’s FNS into fuzzy 2-normed
space using the idea of Gähler [10]. Here, we also define the convergence of a sequence
in fuzzy 2-normed space.

Let X be a real vector space of dimension d, where 2 ≤ d ≤ ∞. A 2-norm on X
is a function ‖., .‖ : X ×X → R which satisfies (i) ‖x, y‖ = 0 if and only if x and y
are linearly dependent, (ii) ‖x, y‖ = ‖y, x‖ for all x, y ∈ X, (iii) ‖αx, y‖ = |α|‖x, y‖,
whenever x, y ∈ X and α ∈ R, (iv) ‖x+ y, z‖ = ‖x, z‖+ ‖y, z‖ for all x, y, z ∈ X.

The pair (X, ‖., .‖) is then called a 2-normed space.
As an example of a 2-normed space take X = R2 being equipped with the 2-norm

‖x, y‖ := the area of the parallelogram spanned by the vectors x and y, which may be
given explicitly by the formula

‖x, y‖ = |x1y2 − x2y1|, where x = (x1, x2), y = (y1, y2).

We define the following:
Definition 2.1. The quadruple (X, ‖., .‖∼, L, R) is said to be fuzzy 2-normed space
(for short FTNS) if X is a vector space over R, ‖., .‖∼ : X×X → L∗(R), L,R : [0, 1]×
[0, 1] → [0, 1] be symmetric, non-decreasing in both arguments such that L(0, 0) = 0
and R(1, 1) = 1 satisfying the following conditions for every x, y, z ∈ X and s, t ∈ R:

(i) ‖x, y‖∼ = 0̃ if and only if x and y are linearly dependent,

(ii) ‖x, y‖∼ = ‖y, x‖∼,

(iii) ‖αx, y‖∼ = |α|‖x, y‖∼, α ∈ R,

(iv) ‖x+ y, z‖∼(s + t) ≥ L(‖x, z‖∼(s), ‖y, z‖∼(t)) whenever s ≤ ‖x, z‖−1 , t ≤ ‖y, z‖
−
1

and s + t ≤ ‖x+ y, z‖−1 ,

(v) ‖x+ y, z‖∼(s + t) ≤ R(‖x, z‖∼(s), ‖y, z‖∼(t)) whenever s ≥ ‖x, z‖−1 , t ≥ ‖y, z‖
−
1

and s + t ≥ ‖x+ y, z‖−1 ,

where [‖x, z‖∼]α = [‖x, z‖−α , ‖x, z‖
+
α ] for x, z ∈ X , 0 ≤ α ≤ 1 and inf

α∈[0,1]
‖x, z‖−α > 0.

In this case ‖., .‖∼ is called a fuzzy 2-norm.

let us consider the topological structure of a FTNS (X, ‖., .‖∼, L, R). For any
ǫ > 0,α ∈ [0, 1] and x ∈ X, the (ǫ, α)-neighborhood of x is the set

Nx(ǫ, α) := {y ∈ X : ‖x− y, z‖+α < ǫ},

for each nonzero z ∈ X .

3
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Definition 2.2. Let (X, ‖., .‖∼, L, R) be a FTNS. Then a sequence (xn) is said to be
convergent to x ∈ X with respect to the fuzzy 2-norm on X if for every ǫ > 0 and
every nonzero z ∈ X there exists a number N = N(ǫ, z) such that

D(‖xn − x, z‖
∼, 0̃) < ǫ for all n ≥ N,

or equivalently
(D)- lim

n→∞
‖xn − x, z‖

∼ = 0̃.

In this case we write (xn, z)
FTN
−→ (x, z) for every nonzero z ∈ X. This means that for

every ǫ > 0 there exists a number N = N(ǫ, z) such that

sup
α∈[0,1]

‖xn − x, z‖
+
α = ‖xn − x, z‖

+
0 < ǫ

for all n ≥ N . In terms of neighborhoods, we have (xn, z)
FTN
−→ (x, z) provided that for

any ǫ > 0 there exists a number N = N (ǫ, z) such that xn ∈ Nx(ǫ, 0) whenever n ≥ N .

3. Statistical convergence and statistically Cauchy in FTNS

In this section, we define the notion of statistical convergence and statistically
Cauchy sequences in fuzzy 2-normed space. Before proceeding further, we should recall
some of the basic concepts on statistical convergence.

Let K be a subset of N, the set of natural numbers. Then the asymptotic density
of K denoted by δ(K), is defined as

δ(K) = lim
n

1

n
|{k ≤ n : k ∈ K}|,

where the vertical bars denote the cardinality of the enclosed set.
A number sequence x = (xk) is said to be statistically convergent to the number

L if for each ǫ > 0, the set K(ǫ) = {k ≤ n : |xk − L| > ǫ} has asymptotic density zero,
i.e.

lim
n

1

n
|{k ≤ n : |xk − L| ≥ ǫ}| = 0.

In this case we write st- limx = L (see [8,22]).
Note that every convergent sequence is statistically convergent to the same limit,

but converse need not be true.
Statistical convergence in 2-normed space has been studied by Gürdal and Pehlivan

[11].
Let (xn) be a sequence in 2-norm space (X, ‖., .‖). Then, a sequence (xn) is said

to be statistically convergent to x if for every ǫ > 0, the set

{n ∈ N : ‖xn − x, z‖ ≥ ǫ}

4
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has natural density zero for each nonzero z ∈ X, in other words (xn) is statistically
convergent to x in 2-norm space (X, ‖., .‖) if

lim
m→∞

1

m
|{n ≤ m : ‖xn − x, z‖ ≥ ǫ}| = 0

for each nonzero z ∈ X . It means that for every z ∈ X,

‖xn − x, z‖ < ǫ a.a.n.

for almost all n (for short, a.a.n). In this case we write st- lim ‖xn − x, z‖ = ‖x, z‖.
Now, we define the statistical convergence in fuzzy 2-normed space.

Definition 3.1. Let (X, ‖., .‖∼, L, R) be a FTNS. We say that a sequence (xn) is said
to be statistically convergent to x ∈ X with respect to the fuzzy 2-norm on X if for
every ǫ > 0 and every nonzero z in X , we have

δ({n ∈ N : D(‖xn − x, z‖
∼, 0̃) ≥ ǫ}) = 0, (1)

or equivalently
δ({n ∈ N : D(‖xn − x, z‖

∼, 0̃) < ǫ}) = 1. (1)
′

This implies that for each ǫ > 0 and z in X , the set

K(ǫ) := {n ∈ N : ‖xn − x, z‖
+
0 ≥ ǫ}

has natural density zero; namely, for each ǫ > 0, ‖xn − x, z‖
+
0 < ǫ for a.a.n. In

this case we write st(FTN)- lim ‖xn − x, z‖∼ = 0̃ either st- lim ‖xn − x, z‖∼ = 0̃ or

(xn, z)
st(FTN)
−→ (x, z).

In terms of neighborhoods, we have (xn, z)
st(FTN)
−→ (x, z) if for every ǫ > 0,

δ({n ∈ N : xn �∈ Nx(ǫ, 0)}) = 0,

i.e., for each ǫ > 0, (xn) ∈ Nx(ǫ, 0) for a.a.n.

A useful interpretation of the above definition is the following:

(xn, z)
st(FTN)
−→ (x, z) iff st- lim ‖xn − x, z‖

+
0 = 0

Note that st- lim ‖xn − x, z‖
+
0 = 0 implies that

st- lim ‖xn − x, z‖
−
α = st- lim ‖xn − x, z‖

+
α = 0

for each α ∈ [0, 1] since

0 ≤ ‖xn − x, z‖
−
α ≤ ‖xn − x, z‖

+
α ≤ ‖xn − x, z‖

+
0

holds for every n ∈ N and for each α ∈ [0, 1]. Hence the result.

5
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Remark 3.1. If a sequence (xn) in a fuzzy 2-normed space (X, ‖., .‖∼, L,R) is
convergent then it is also statistically convergent but converse need not be true, which
can be seen by the following example.

Example 3.1. Define a sequence (xn) in fuzzy 2-normed space (X, ‖., .‖∼, L, R) by

xn =

{
(1, n) ; if n = m2,m ∈ N
(1, n−1

n
) ; otherwise.

Let L = (1, 1) and z = (z1, z2). If z1 = 0. Then for every ǫ > 0 and z ∈ X , the set

K(ǫ) := {n ∈ N : ‖xn − x, z‖
+
0 ≥ ǫ}

has natural density zero. Therefore we have z1 �= 0. For each ǫ > 0 and z ∈ X, the set
{
n ∈ N : n �= m2,m ≤

|z1|

ǫ

}

is finite. Thus

{n ∈ N : ‖xn − x, z‖
+
0 ≥ ǫ}

=

{
n ∈ N : n = m2,m ≥

√
ǫ

|Z1|
+ 1

}
∪

{
n ∈ N : n �= m2,m ≤

|z1|

ǫ

}
.

Therefore,

1

m
|{n ≤ m : ‖xn − x, z‖

+
0 ≥ ǫ}| =

1

m

∣∣∣∣

{
n ≤ m : n = m2,m ≥

√
ǫ

|Z1|
+ 1

}∣∣∣∣∪
1

m
0(1)

for each z ∈ X. Hence

δ({n ∈ N : ‖xn − x, z‖
+
0 ≥ ǫ}) = 0

implies that (xn, z)
st(FTN )
−→ (x, z), while it is obvious that (xn, z) �

FTN
−→ (x, z).

Definition 3.2. Let (X, ‖., .‖∼, L, R) be a FTNS. Then a sequence (xn) is said to be
statistically Cauchy with respect to the fuzzy 2-norm on X if for every ǫ > 0, there
exists a number N = N (ǫ, z) such that

δ({n ∈ N : ‖xn − xN(ǫ,z), z‖
+
0 ≥ ǫ}) = 0.

Theorem 3.1. Let (xn) and (yn) be a sequences in a FTNS (X, ‖., .‖∼, L,R) such

that (xn, z)
st(FTN )
−→ (x, z) and (yn, z)

st(FTN)
−→ (x, z), for all x, y ∈ X and nonzero z ∈ X .

Then we have the following:

(i) (xn + yn, z)
st(FTN )
−→ (x+ y, z),

6
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(ii) (αxn, z)
st(FTN )
−→ (αx, z), α ∈ R,

(iii) st(FTN)-‖x, z‖∼ = ‖x, z‖∼.

Proof. (i) Suppose that (xn, z)
st(FTN)
−→ (x, z) and (yn, z)

st(FTN)
−→ (x, z). Since ‖., .‖+0 is

a 2-norm in the usual sense, we get

‖(xn + yn)− (x+ y), z‖+0 ≤ ‖xn − x, z‖
+
0 + ‖yn − y, z‖

+
0 (3.1.1)

for all n ∈ N and every nonzero z ∈ X. Write

K(ǫ) := {n ∈ N : ‖(xn + yn)− (x+ y), z‖+0 ≥ ǫ},

K1(ǫ) := {n ∈ N : ‖xn − x, z‖
+
0 ≥ ǫ/2},

K2(ǫ) = {n ∈ N : ‖yn − y, z‖
+
0 ≥ ǫ/2}.

From (3.1.1), we have K(ǫ) ⊆ K1(ǫ) ∪K2(ǫ). Now by assumption we have δ(K1(ǫ)) =
δ(K2(ǫ)) = 0. This yields δ(K(ǫ)) = 0, i.e., (i) holds.

(ii) Easy to proof.
(iii) Since ‖., .‖−α and ‖., .‖+α are 2-norms in the usual sense, we have

0 ≤ |‖xn, z‖
−
α − ‖x, z‖

−
α | ≤ ‖xn − x, z‖

−
α

and
0 ≤ |‖xn, z‖

+
α − ‖x, z‖

+
α | ≤ ‖xn − x, z‖

+
α

for all α ∈ [0, 1]. Therefore

0 ≤ max{|‖xn, z‖
−
α − ‖x, z‖

−
α |, |‖xn, z‖

+
α − ‖x, z‖

+
α |} ≤ ‖xn − x, z‖

+
α

for all α ∈ [0, 1]. Taking supremum over α ∈ [0, 1], we get

0 ≤ D(‖xn, z‖
∼, ‖x, z‖∼) ≤ ‖xn − x, z‖

+
0 .

Hence st(FTN)-‖xn, z‖∼ = ‖x, z‖∼ by Definition 5 in [20].

Lemma 3.1 [7]. Let {Ai : i ∈ I} be a countable collection of subset of N such
that δ(Ai) = 1 for each i ∈ I. Then there is a set A ⊂ N such that δ(A) = 1 and
|A \Ai| <∞ for all i ∈ I .

Theorem 3.2. Let (X, ‖., .‖∼, L,R) be a FTNS . Then a sequence (xn) is a statistically
convergent to x with respect to the fuzzy 2-norm on X if and only if (xn) is a se-
quence for which there is a sequence (yn) that is convergent such that xn = yn for a.a.n.

Proof. Suppose that (xn, z)
st(FTN )
−→ (x, z). For each i ∈ N, let

Ai = {n ∈ N : ‖xn − x, z‖
+
0 ≤ 1/i}

7
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and δ(Ai) = 1 for each i, since (xn) is statistically convergent. Let A be as given in
Lemma 3.1. For every ǫ > 0 there exists a number N = N(ǫ, z) such that n ≥ N and
n ∈ A imply ‖xn − x, z‖

+
0 < ǫ. Define a sequence (yn) as:

yn =

{
xn ; for each n ∈ A
x ; for n �∈ A.

This shows that the sequence (yn) is convergent to x with respect to the fuzzy 2-norm
on X such that yn = xn for a.a.n.

Conversely, suppose that xn = yn for a.a.n. and (yn, z)
FTN
−→ (x, z). Let ǫ > 0 be

given. Then, for each m, define the following set as:

{n ≤ m : ‖xn−x, z‖
+
0 ≥ ǫ} ⊆ {n ≤ m : xn �= yn}∪{n ≤ m : ‖yn−y, z‖

+
0 > ǫ}. (3.2.1)

Since (yn, z)
FTN
−→ (x, z), the second set on the right hand side of (3.2.1) contains a finite

number of elements, say p = p(ǫ, z). Therefore

lim
m→∞

1

m
|{n ≤ m : ‖xn − x, z‖

+
0 ≥ ǫ}| ≤ lim

m→∞

1

m
|{n ≤ m : xn �= yn}|+ lim

m→∞

p

m
= 0,

since xn = yn for a.a.n. Hence ‖xn − x, z‖
+
0 < ǫ for a.a.n. Hence (xn) is statistically

convergent with respect to the fuzzy 2-norm on X .

Theorem 3.3. Let (X, ‖., .‖∼, L, R) be a FTNS. Then every statistically convergent
sequence (xn) is statistically Cauchy sequence with respect to the fuzzy 2-norm on X .

Proof. Assume that (xn, z)
st(FTN)
−→ (x, z). Then, for given ǫ > 0 we have ‖xn−x, z‖

+
0 <

ǫ/2 for a.a.n. Choose N = N(ǫ, z) ∈ N such that ‖xN(ǫ,z) − x, z‖
+
0 < ǫ/2. Now ‖., .‖+0

being a 2-norm in the usual sense, we get

‖xn − xN(ǫ,z), z‖
+
0 = ‖(xn − x) + (x− xN (ǫ,z)), z‖

+
0

≤ ‖xn − x, z‖
+
0 + ‖xN (ǫ,z) − x, z‖

+
0 < ǫ/2 + ǫ/2 = ǫ

for a.a.n. Hence (xn) is statistically Cauchy sequence with respect to the fuzzy 2-norm
on X .

Theorem 3.4. Let (xn) be a sequence in FTNS (X, ‖., .‖∼, L, R) and denote
EN(ǫ,z) := {n ∈ N : ‖xn − xN (ǫ,z), z‖

+
0 ≥ ǫ}. If (xn) is statistically Cauchy, then for

every ǫ > 0 there exists A ⊂ N with δ(A) = 0 such that ‖xm − xn, z‖
+
0 < ǫ for all

m,n �∈ A.

Proof. For a given ǫ > 0, write A = EN (ǫ/2,z). Since (xn) is statistically Cauchy, we
can write δ(A) = 0. Then, for any m,n �∈ A, we have ‖xn − xN (ǫ,z), z‖

+
0 < ǫ/2 and

‖xm − xN (ǫ,z), z‖
+
0 < ǫ/2. Hence ‖xm − xn, z‖

+
0 < ǫ for all m,n �∈ A.

8
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Definition 3.3. A fuzzy 2-norm ‖|., .|‖∼ on a vector X is called fuzzy equivalent to a
fuzzy 2-norm ‖., .‖∼, written as ‖|., .|‖∼ ∼ ‖., .‖∼, on X if there exist µ, ν ∈ L(R) and
µ, ν ≻ 0̃ such that for all x ∈ X, and every nonzero z ∈ X

µ⊗ ‖x, z‖∼ 	 ‖|x, z|‖∼ 	 ν ⊗ ‖x, z‖∼.

Theorem 3.5. Let X be a vector space over R and let ‖., .‖∼ and ‖|., .|‖∼ be fuzzy
equivalent fuzzy 2-norms on X. Let (xn) be a sequence in X . Then

(i) (xn) is statistically convergent to x in (X, ‖., .‖∼, L, R) iff (xn) is statistically
convergent to x in (X,‖|., .|‖∼, L, R).

(ii) (xn) is statistically Cauchy in (X, ‖., .‖∼, L, R) iff (xn) is statistically Cauchy in
(X, ‖|., .|‖∼, L, R).

Proof. (i) Let (xn) be statistically convergent to x in (X, ‖., .‖∼, L, R). Since
(X, ‖., .‖∼, L,R) and (X, ‖|., .|‖∼, L,R) are fuzzy equivalent, there exist µ, ν ∈ L(R)
and µ, ν ≻ 0̃ such that

µ⊗ ‖xn − x, z‖
∼ 	 ‖|xn − x, z|‖

∼ 	 ν ⊗ ‖xn − x, z‖
∼

for all xn, x ∈ X and z ∈ X. Thus

µ+0 ‖xn − x, z‖
+
0 ≤ ‖|xn − x, z|‖

+
0 ≤ ν

+
0 ‖xn − x, z‖

+
0

for all n ∈ N. By assumption, we have st(FTN)- lim ‖xn − x, z‖
+
0 = 0. Hence

st(FTN)- lim ‖|xn − x, z|‖
+
0 = 0, i.e., (xn, z)

st(FTN)
−→ (x, z) in (X, ‖|., .|‖∼, L, R). Simi-

larly, if (xn, z)
st(FTN )
−→ (x, z) then (xn, z)

st(FTN )
−→ (x, z) in (X, ‖., .‖∼, L, R).

(ii) Let (xn) be statistically Cauchy in (X,‖., .‖∼, L, R). Since (X, ‖., .‖∼, L, R)
and (X, ‖|., .|‖∼, L, R) are fuzzy equivalent, there exist µ, ν ∈ L(R) and µ, ν ≻ 0̃ such
that

µ+0 ‖x, z‖
+
0 ≤ ‖|x, z|‖

+
0 ≤ ν

+
0 ‖x, z‖

+
0

for all x ∈ X and z ∈ X . For any ǫ > 0, there exists N(ǫ, z) ∈ N such that ‖xn −
xN (ǫ,z)‖

+
0 < ǫ/ν

+
0 for a.a.n. Hence

‖|xn − xN(ǫ,z), z|‖
+
0 ≤ ν

+
0 ‖xn − xN(ǫ,z), z‖

+
0 < ǫ

for a.a.n. Hence (xn) is statistically Cauchy in (X,‖|., .|‖∼, L, R). Similarly, if
(xn) is statistically Cauchy in (X,‖|., .|‖∼, L, R) then it is statistically Cauchy in
(X, ‖., .‖∼, L,R).

4. Statistical limit point and statistical cluster point in FTNS

Statistical limit point of sequence (xn) has been define and studied by Fridy [9];
and for fuzzy number by Aytar [1]. In this section, we define the notions of thin

9
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subsequence, non-thin subsequence, statistical limit point and statistical cluster point
in fuzzy 2-normed space.

Definition 4.1. Let (xn) be a sequence in FTNS (X, ‖., .‖∼, L,R). An element x ∈ X
is said to be a limit point of the sequence (xn) provided that there is a subsequence
of (xn) that converges to x with respect to the fuzzy 2-norm on X . We denote by
LFTN(xn), the set of all limit points of the sequence (xn).

Definition 4.2. Let (xn) be a sequence in FTNS (X, ‖., .‖∼, L,R) and (xnj) be a
subsequence of (xn). Write K = {nj : j ∈ N}. If δ(K) = 0 then we say that (xnj) is a
thin subsequence on (xn). A subsequence (xnj) is said to be a non-thin subsequence
provided that δ(k) > 0 or δ(k) does not exist, namely, δ̄(k) > 0.

Definition 4.3. Let (xn) be a sequence in FTNS (X, ‖., .‖∼, L,R). An element x ∈ X
is said to be a statistical limit point of the sequence (xn) provided that there exists
a non-thin subsequence of (xn) that converges to x with respect to the fuzzy 2-norm
onX . By ΛFTN(xn), we denote the set of all statistical limit points of the sequence (xn).

Definition 4.4. Let (xn) be a sequence in FTNS (X, ‖., .‖∼, L, R). We say that an
element x ∈ X is said to be a statistical cluster point of the sequence (xn) with respect
to the fuzzy 2-norm on X provided that for every ǫ > 0 and z ∈ X

δ̄({n ∈ N : ‖xn − x, z‖
+
0 < ǫ}) > 0.

By ΓFTN (xn), we denote the set of all statistical limit points of the sequence (xn).

Remark 4.1. An element x ∈ ΓFTN(xn) implies that

δ̄({n ∈ N : ‖xn − x, z‖
+
α < ǫ}) > 0.

and
δ̄({n ∈ N : ‖xn − x, z‖

−
α < ǫ}) > 0.

for all ǫ > 0, α ∈ [0, 1] and z ∈ X .

Theorem 4.1. Let (X,‖., .‖∼, L, R) be a FTNS. Then for every sequence (xn) in X ,
we have

ΛFTN (xn) ⊆ ΓFTN(xn) ⊆ LFTN(xn).

Proof. Let x ∈ ΛFTN (xn). Then there exists a non-thin subsequence (xnj) of the
sequence (xn) that converges to x, namely, δ̄({nj : j ∈ N}) = d > 0. Since

{n ∈ N : ‖xn − x, z‖
+
0 < ǫ} ⊇ {n ∈ N : ‖xnj − x, z‖

+
0 < ǫ}

for every ǫ > 0 and so

{n ∈ N : ‖xn − x, z‖
+
0 < ǫ} ⊇ {nj : j ∈ N} \ {n ∈ N : ‖xnj − x, z‖

+
0 ≥ ǫ}.

10
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Since (xnj , z)
FTN
−→ (x, z), the set {nj ∈ N : ‖xnj − x, z‖

+
0 ≥ ǫ} is finite for any ǫ > 0.

Hence we have

δ̄({n ∈ N : ‖xn−x, z‖
+
0 < ǫ}) ≥ δ̄({nj : j ∈ N})−δ̄({nj ∈ N : ‖xnj−x, z‖

+
0 ≥ ǫ}) = d > 0.

Thus, for every ǫ > 0 and z ∈ X

δ̄({n ∈ N : ‖xn − x, z‖
+
0 < ǫ}) > 0,

i.e., x ∈ ΓFTN(xn).
Let x ∈ ΓFTN (xn). For every ǫ > 0 and z ∈ X, write

δ̄({n ∈ N : ‖xn − x, z‖
+
0 < ǫ}) > 0.

This means that there are infinitely many terms of the sequence (xn) in every
(ǫ, 0)-neighborhood of x, i.e., x ∈ LFTN(xn). Hence the result.

Theorem 4.2. Let (xn) be a sequence in a FTNS (X,‖., .‖∼, L, R). Then

ΛFTN (xn) = ΓFTN(xn) = {x}, provided (xn, z)
st(FTN )
−→ (x, z).

Proof. Let (xn, z)
st(FTN)
−→ (x, z). Therefore x ∈ ΓFTN(xn). Now suppose that there

exists atleast one y ∈ ΓFTN (xn) such that y �= x. For every ǫ > 0 and every nonzero
z ∈ X such that

{n ∈ N : ‖xn − x, z‖
+
0 ≥ ǫ} ⊇ {n ∈ N : ‖xn − y, z‖

+
0 < ǫ}

holds. Hence

δ̄({n ∈ N : ‖xn − x, z‖
+
0 ≥ ǫ}) ≥ δ̄({n ∈ N : ‖xn − y, z‖

+
0 < ǫ}).

Since (xn, z)
st(FTN)
−→ (x, z), we have δ({n ∈ N : ‖xn − x, z‖

+
0 ≥ ǫ}) = 0, which implies

that
δ̄({n ∈ N : ‖xn − x, z‖

+
0 ≥ ǫ}) = 0.

Thus
δ̄({n ∈ N : ‖xn − y, z‖

+
0 < ǫ}) = 0,

which is a contradiction to y ∈ ΓFTN(xn). Therefore, we have ΓFTN(xn) = {x}.

On the other hand, since (xn, z)
st(FTN )
−→ (x, z). By Theorem 3.2 and Definition

4.3, we get x ∈ ΛFTN (xn). Now, Theorem 4.1 yields ΛFTN(xn) = ΓFTN (xn) = {x}.

5. Conclusion

The concept of fuzzy 2-normed space, which has been introduced here, is not
merely a generalization of fuzzy normed space, but it also provides a bigger setting to
deal with the uncertainity and vagueness in natural problems arising in many branches
of engineering and science. Some basic results of normed linear spaces have been
established here which could be very useful functional tools in the development of
fuzzy set theory.
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Abstract

From an algebraic point of view, the EMML and ISRA algorithms for Positron

Emission Tomography can be considered as iterative procedures for solving a

class of linear system of equations. We introduce an algorithm A(p), p ∈ R,

such that A(1) coincides with EMML and A(−1) with a version of ISRA. Some

examples illustrate the speed of convergence. Applications are indicated to:

(i) the Bernstein-Bézier representation;

(ii) the B-spline interpolation;

(iii) the inverse problem for Markov chains;

(iv) the problem of finding the stationary distribution of a regular Markov chain.

Keywords: Expectation-Maximization Algorithm, Kullback-Leibler dis-

tances, log-likelihood functions, least-squares, linear systems.
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A Generalization of the EMML and ISRA Algorithms for Solving Linear Systems

1 Introduction and notation

Using the Expectation-Maximization (EM) algorithm, L. A. Shepp and Y.

Vardi in 1982 and independently K Lange and R. Carson in 1984 pioneered

an algorithm in order to compute Maximum Likelihood (ML) estimates for the

problem of tomography reconstruction; see [9].

W. H. Richardson in 1972 and independently L. B. Lucy in 1974 obtained

the same algorithm in the setting of restoration of astronomical images; see [9].

With the terminology of [11] we shall call this algorithm the EMML algo-

rithm. It can be considered as a numerical procedure for calculating maximum

likelihood estimates, or alternatively as an iterative procedure for solving a class

of linear systems of equations; see [1], [3], [4], [9], [10], [11].

In the context of the Positron Emission Tomography problem, M. E. Daube-

Witherspoon and G. Muehllehner introduced in 1986 the Image Space Recon-

struction Algorithm (ISRA) in order to obtain Least-Squares (LS) estimates of

the emission densities; see [9]. Alternatively, ISRA can be viewed as a proce-

dure for solving linear systems; see [1], [3], [4], [9], [10], [11]. Both the ML and

LS estimates can be considered as minimum distance estimates, but based on

different measures of distance: Kullback-Leibler distance for EMML and least-

squares distance for ISRA; see [1], [3], [4], [9], [10], [11], where the relationship

between the two algorithms is discussed.

In this paper we introduce an algorithm A(p), depending on a real parameter

p, such that:

(a) A(1) coincides with EMML, and A(−1) with a version of ISRA;

(b) A(p) minimizes a suitable generalized Kullback-Leibler distance and solves

a specific problem of convex optimization involving generalized log-likelihood

functions and least-squares functions;

(c) A(p) solves iteratively linear systems from a certain class and assigns gen-
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eralized solutions to inconsistent systems.

Let N(p) be the number of iterations when one uses the algorithm A(p).

Numerical experiments show that, if the system has dominant diagonal, then

N(−p) ≈ N(p) and N(p) < N(q) for 0 ≤ p < q.

Systems for which A(p) works and which have a (more or less) dominant di-

agonal appear quite naturally in practical applications involving the Bernstein-

Bézier representation of polynomials, the B-spline interpolation, the inverse

problem for Markov chains and the problem of finding the stationary distribu-

tion of a Markov chain. We describe such applications in the final sections.

Throughout the paper, we consider the integers m ≥ 1, n ≥ 1, the matrix

A = (aij)i=1,...,n;j=1,...,m with aij ≥ 0,
∑n

i=1 aij > 0,
∑m

j=1 aij > 0, i = 1, ..., n;

j = 1, ...,m, and the vector b = (b1, ..., bn)t with bi > 0, i = 1, ..., n.

We shall be concerned with the (consistent or inconsistent) system of linear

equations (S):

Ax = b, (1)

where x = (x1, ..., xm)t ∈ Rm.

We shall use the notation

Πm := {x ∈ Rm : xj > 0, j = 1, ...,m},

Ωm,n := {x ∈ Rm : (Ax)i > 0, i = 1, ..., n}.

Obviously Πm ⊂ Ωm,n.

2 Generalized Kullback-Leibler distances

Let p ∈ R. For u, t ∈ (0,∞), define

3
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ep(u, t) :=


t log t− t log u + u− t, p=0;

u log u− u log t + t− u, p=1;
upt1−p−(1−p)t−pu

p(p−1) , p 6= 0, 1.

(2)

It is easy to verify that for all u, t > 0 one has: limp→0 ep(u, t) = e0(u, t);

limp→1 ep(u, t) = e1(u, t); ep(u, u) = 0; ep(u, t) > for u 6= t.

For all v, w ∈ Πn we define:

dp(v, w) :=
n∑

i=1

ep(vi, wi). (3)

Then d1 is the well-known Kullback-Leibler distance; see, e.g., [11] and the

references therein. For p ∈ R, dp can be considered as a generalized Kullback-

Leibler distance.

3 Generalized log-likelihood functions and least-

squares functions

For p ∈ R consider the function Fp : (0,∞) → R,

Fp(t) :=


t log t− t, p=0;

log t, p=1;

t1−p/(1− p), p 6= 0,1.

Let now Lp : Ωm,n → R,

Lp(x) :=


∑n

i=1 ((bi)pFp((Ax)i)− (Ax)i) , p 6= 0;∑n
i=1 (F0((Ax)i)− (Ax)i log bi) , p=0.

(4)

Then L1 is basically the log-likelihood function appearing in the EMML
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algorithm; see [9], [4], [11]. On the other hand,

L−1 =
1
2

n∑
i=1

1
bi

((Ax)i − bi)2 −
1
2

n∑
i=1

bi

is obviously a least-squares cost function.

Thus the family (Lp)p∈R extends the notions of log-likelihood functions and

least-squares functions.

It is easy to prove

Theorem 1. The families (Lp) and (dp) are related by

L1(x) =
n∑

i=1

bi(log bi − 1)− d1(b, Ax), (5)

L0(x) = −
n∑

i=1

bi + d0(b, Ax), (6)

Lp(x) =
p

1− p

n∑
i=1

bi − pdp(b, Ax), p 6= 0, 1. (7)

4 Minimizing dp(b, Ax)

We are interested in minimizing dp(b, Ax) with respect to x ∈ Ωm,n.

I. Let p ≤ 0. According to Eqs. (6) and (7), minimizing dp(b, Ax) is equiva-

lent to minimizing the function Lp(x). Remark that in this case Fp(t) is strictly

convex on (0,∞), hence Lp(x) is convex on Ωm,n. By examining the behavior

of Lp(x) when x approaches the infinity or the boundary of Ωm,n, we conclude

that Lp has global minimum points in Ωm,n.

II. Let p > 0. Now Eqs. (5) and (7) show that to minimize dp(b, Ax),

means to maximize Lp(x). Since Fp(t) is strictly concave, we infer that Lp(x)

is concave and has global maximum points in Ωm,n.

5
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5 p-generalized solutions of the system (S)

Let x ∈ Ωm,n be a global extremum point of the function Lp. Then

∂Lp(x)
∂xr

= 0, r = 1, ...,m. (8)

For p 6= 0, Eq. (8) is equivalent to (Sp):

n∑
i=1

airb
p
i /(Ax)p

i =
n∑

i=1

air, r = 1, ...,m, (9)

while for p = 0 it is equivalent to (S0):

n∑
i=1

(bi/(Ax)i)air = 1, r = 1, ...,m. (10)

Theorem 2. (i) For each p ∈ R, the system (Sp) is consistent, i.e., has solu-

tions in Ωm,n.

(ii) If xp is a solution of (Sp), then xp minimizes dp(b, Ax). Moreover, xp

minimizes (if p ≤ 0), respectively maximizes (if p > 0) the function Lp(x).

(iii) If (S) has a solution x ∈ Ωm,n, then x is a solution of (Sp).

(iv) If rank(A)=n, then each solution of (Sp) is a solution of (S).

Proof. According to [6], pp. 14-15, the set

{x ∈ Ωm,n : x is a global extremum point of Lp} =

= {x ∈ Ωm,n : x is a solution of (Sp)}

is a nonempty convex subset of Ωm,n. This proves statement (i) in the theorem.

Statement (ii) is a consequence of the results presented in Section 4. (iii) is

obvious, and (iv) is an easy exercise in algebra.
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Definition 1. Each solution of (Sp) will be called a p-generalized solution

of (S).

According to Theorem 2, each solution of (S) is also a p-generalized solution,

p ∈ R. If rank(A) = n, the p-generalized solutions coincide with the solutions

of (S). For each p ∈ R, (S) has a p-generalized solution even if (S) itself is

inconsistent.

6 The A(p) algorithm

In order to find the p-generalized solutions of (S), i.e., the global extremum

points of Lp, we shall apply the Maximization-Minimization (or Minimization-

Maximization) Algorithm; see [7], [9].

For a given k ∈ N let x(k) ∈ Πm be an arbitrary vector. If p 6= 0, define

lp(x|x(k)) :=
n∑

i=1

bp
i

m∑
j=1

aijx
(k)
j

(Ax(k))i
Fp

(
(Ax(k))i

x
(k)
j

xj

)
−

n∑
i=1

(Ax)i.

If p = 0, let

l0(x|x(k)) :=
n∑

i=1

m∑
j=1

aijx
(k)
j

(Ax(k))i
F0

(
(Ax(k))i

x
(k)
j

xj

)
−

n∑
i=1

(Ax)i log bi.

It is easy to verify that

lp(x(k)|x(k)) = Lp(x(k)), p ∈ R. (11)

As consequence of Jensen’s inequality, we get

Lp(x) ≤ lp(x|x(k)), x ∈ Πm, p ≤ 0, (12)

7
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Lp(x) ≥ lp(x|x(k)), x ∈ Πm, p > 0. (13)

With straightforward computation we find that for each p ∈ R the system

∂lp
∂xr

(x|x(k)) = 0, r = 1, ...,m

has a unique solution in Πm, denoted by x(k+1) and given by

A(p) : x(k+1)
r = x(k)

r

(∑n
i=1 air

(
bi/(Ax(k))i

)p∑n
i=1 air

)1/p

(14)

for p 6= 0 and r = 1, ...,m;

A(0) : x(k+1)
r = x(k)

r

n∏
i=1

(
bi

(Ax(k))i

)air/
Pn

s=1 asr

(15)

for p = 0 and r = 1, ...,m.

I. Let p ≤ 0. Then lp(x|x(k)) is convex and x(k+1) is a minimum point of it.

According to Eqs. (12) and (11),

Lp(x(k+1)) ≤ lp(x(k+1)|x(k)) ≤ lp(x(k)|x(k)) = Lp(x(k)).

So, starting from an arbitrary x(0) ∈ Πm, the algorithm A(p) generates a se-

quence x(0), x(1), x(2), ... such that Lp(x(0) ≥ Lp(x(1) ≥ Lp(x(2) ≥ ... . The

sequence (x(k)) is bounded since Lp(x) −→∞ as x approaches the infinity.

II. Let p > 0. It can be proved similarly that starting from an arbitrary

x(0) ∈ Πm, the algorithm A(p) generates a bounded sequence (x(k)) such that

Lp(x(0)) ≤ Lp(x(1)) ≤ Lp(x(2)) ≤ ... .

8
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These results, combined with Eqs. (9), (10), (14) and (15), lead to

Theorem 3. If for given x(0) ∈ Πm and p ∈ R the sequence (x(k)) generated

by A(p) is convergent and

x∗ := lim
k→∞

x(k) ∈ Πm, (16)

then x∗ is a p-generalized solution of (S).

To conclude this section, let us remark that A(1) is equivalent to the EMML

Algorithm (see [9], [4], [11]) and, when b1 = ... = bn, A(−1), is equivalent to the

ISRA Algorithm (see [9], [3], [11]). The convergence of the sequence (x(k)) is

governed by the general rules of the Expectation-Maximization Algorithm; see

[9].

7 Examples and applications

For the sake of brevity we shall present only some examples and applica-

tions involving systems with exactly one solution; underconstrained and over-

constrained systems will be considered in subsequent papers, as well as compar-

isons with other methods.

7.1 Dominant diagonal

Example 1.

9
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For illustrative purposes, consider the system for which

A =



100000 1000 1000 1000 1000 1000

1 100 1 1 1 1

1 1 100 1 1 1

1 1 1 100 1 1

1 1 1 1 100 1

1000 1000 1000 1000 1000 100000


and b = (1050000 1050 1050 1050 1050 1050000)t.

The exact solution is (10 10 10 10 10 10)t. Taking as initial solution x(0) =

(1 1000 1 1000 1 1000)t we get as approximate solution (10 10 10 10 10 10)t. The

number of iterations, corresponding to p ∈ [−5, 5], can be seen in Fig. 1.

Figure 1: The number of iterations (Example 1)

Remark that N(0) < N(−1) ≈ N(1); this happened in all our numerical ex-

periments with systems having dominant diagonal. Moreover, in such cases the

algorithm exhibits little sensitivity with respect to changing the initial solution.
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7.2 Non-dominant diagonal

Example 2.

The dominant diagonal makes the computation easier. The opposite circum-

stance is illustrated here by the very simple system

 0.9 1

1 1


 x1

x2

 =

 190

200

 .

Indeed, we know that solving the system with A(p) is equivalent to finding

the extremum points of the function Lp. The surfaces representing Lp for p ∈

{−1, 0, 1} can be seen in Fig. 2.

(a) (b)

(c)

Fig. 2: The surface representation of the function Lp for (a) p=-1, (b) p=0 and
(c) p=1 (Example 2)

We remark that they are similar to the surface representing the Rosenbrock
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function: ”long, narrow, parabolic shaped flat valley” (see [12]).

The difficulties in finding the extremum points for such functions are notorious;

they explain the difficulties in solving the corresponding system with A(p).

In fact, taking x(0) = (50 150)t as initial solution of the above system, we

get the approximate solution (99.8 100)t after a number of iterations presented

in Fig. 3.

Fig. 3: The number of iterations (Example 2)

Example 3.

By contrast, consider the system given by

A =

 100 1

1 100

 , b = (10100 10100)t,

and take x(0) = (1 199)t as initial solution. We get as approximate solution

(100 100)t with a number of iterations illustrated in Fig. 4.

In this case the function Lp, p ∈ {−1, 0, 1} looks like in Fig. 5.

12
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Fig. 4: The number of iterations (Example 3)

7.3 Bernstein-Bézier representation

Let Pn be the space of the real polynomial functions of degree at most n,

defined on [0, 1]. Let bnj(t) :=

 n

j

 tj(1 − t)n−j , t ∈ [0, 1], j = 0, 1, ..., n.

Then {bnj : j = 0, 1, ..., n} is a basis of Pn, called the Bernstein-Bézier basis;

see [5], [8];

Let f ∈ Pn; suppose that the numbers f( i
n ) > 0, i = 0, 1, ..., n, are known.

We want to represent f with respect to the Bernstein-Bézier basis, i.e., to

find the coefficients c0, c1, ..., cn such that f =
∑n

j=0 cjbnj . Then we have to

solve the system Ax = b, where A =
(
bnj

(
i
n

))
i,j=0,...,n

, x = (c0, ..., cn)t, b =(
f(0), f( 1

n ), ..., f(1)
)t.

The algorithm A(p) works particularly well if one takes x(0) := b.

13
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(a) (b)

(c)

Fig. 5: The surface representation of the function Lp for (a) p=-1, (b) p=0 and
(c) p=1 (Example 3)

7.4 B-spline interpolation

In solving the problem of B-spline interpolation (see [5], [8]), one has to

consider systems with

M =



1 1

a1 b1 c1

. . .

an−1 bn−1 cn−1

1 1


(17)

where ai > 0, ci > 0, bi = 2(ai + ci), i = 1, ..., n− 1.

Once again, the A(p) algorithm can be used.
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7.5 The inverse problem of Markov chains

Let (Xk)k≥0 be a homogeneous Markov chain with state space {1, ..., n} and

transition matrix T = (pij)i,j=1,...,n. Let bi := P (Xk = i), i = 1, ..., n, where

k ≥ 1 is a given integer. Then (b1, ..., bn) describes the probability distribution

at the moment k. Suppose that we know the vector b and want to find the

probability distribution at the moment k−1. Then we have to solve the system

T tx = bt, (18)

where xj = P (Xk−1 = j), j = 1, ..., n, and we can use A(p). So we can solve

the inverse problem for the Markov chain (Xk) (see [2], p. 304). In particular,

P (Xk−1 = j|Xk = i) = pijxj/bi, i, j = 1, ..., n.

7.6 Stationary distribution

Suppose that the above Markov chain is regular. Then it has a stationary

distribution (see [2]) given by wi = limk→∞ P (Xk = i), i = 1, ..., n. The vector

w is the unique eigenvector of the matrix T t, associated with the eigenvalue 1

and having positive components with sum equal to 1. It is easy to see that w is

the solution of the system



p11w1 + (p21 + 1)w2 + ... + (pn1 + 1)wn = 1

(p12 + 1)w1 + p22w2 + ... + (pn2 + 1)wn = 1

...

(p1n + 1)w1 + (p2n + 1)w2 + ... + pnnwn = 1.

15
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So we can use the algorithm A(p) in order to find the stationary distribution.

Example 4.

If the transition matrix is

T =



0.2 0.2 0.2 0.2 0.2

0.4 0.1 0.1 0.1 0.3

0.2 0.4 0.2 0.1 0.1

0.1 0.3 0.4 0.1 0.1

0.3 0.3 0.2 0.1 0.1


then we have to solve the system for which

A =



0.2 1.4 1.2 1.1 1.3

1.2 0.1 1.4 1.3 1.3

1.2 1.1 0.2 1.4 1.2

1.2 1.1 1.1 0.1 1.1

1.2 1.3 1.1 1.1 0.1


and b = (1, 1, 1, 1, 1)t.

Taking as initial solution x(0) = (0.05 0.2 0.5 0.05 0.2)t we get the approx-

imate solution (stationary distribution) (0.2540 0.2455 0.2005 0.1254 0.1745)t.

The number of iterations is presented in Fig. 6.
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Fig. 6: The number of iterations (Example 4)

8 Concluding remarks

In the frame of the EM Algorithm, the A(p) algorithm generalizes the known

algorithms EMML (i.e., A(1)) and ISRA (i.e., A(−1)). For systems with domi-

nant diagonal A(0) is better than A(1) and A(−1) with respect to the number

of iterations. A(p) can be applied to concrete problems, as shown by the above

examples. Subsequent papers will be devoted to applications involving under-

constrained and overconstrained systems, as well as to the problem of identifying

classes of systems for which a certain A(p) works better than other algorithms.
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Abstract 
    

        In  this note we have improved the result of Sulaiman [2]  on local property of 
                absolute weighted mean summability with index δ and k, of factored Fourier series 
                by proving under weaker conditions. 
 
 

1  Introduction 
     
Let ∑ na be a given series with partial sums( )ns , and let )( np  be a sequence of positive 

numbers such that ∞→∞→+++= naspppP nn ⋯10 . The sequence- to- sequence 

transformation                    

∑
=

=
n

v
vv

n
n sp

P
T

0

1
                                                                                                    

 

defines the sequence )( nT  of the ( )npN ,  means of the the sequence )( ns , generated the 

sequence coefficients )( np . The series ∑ na  is summable the , ;n k
N p δ summability, 

1, 0k δ≥ ≥ , if  (see [1] ) 
 

    ( ) 1
1

1

∞
δ + −

−
=

− < ∞∑
k k k

n n n n
n

P / p T T .                                                         (1)        

In the special case when 0δ = , , ;n k
N p δ summability is the same as , n k

N p summability. If 

we take 1/( 1), 1, 0np n k= + = δ = , , ;n k
N p δ is reduced to , log ,1R n  summability.  

Let f be a function with periodπ2 , integrable ( )L  over ( )ππ ,−  . Without any loss of 
generality we may assume that the constant term in the Fourier series of is zero, so that 

  

                                   0)( =∫
−

π

π

dttf  

and 
________________________________ 
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 2 

                    ( )∑
∞

=

+
1

sincos~)(
n

nn ntbntatf .)(
1
∑

∞

=

≡
n

n tC                                                           (2) 

 
It is well known [3] that convergence of a Fourier series at any point xt =  is a local property 
f, i.e., for arbitrarily small 0>δ , the behaviour of( ))(tsn , the n-th partial sum of the series (2), 

depends only the natura of f in the interval  ( )δδ +− xx ,  and is not affected by the values it 
takes outside the interval. The local property problem of the factored Fourier series has been 
by several authors (see [1] for detail). 
  

Quite recently Sulaiman [ ]2  proved the following theorem on local property of n k
N , p ;δ  

summability of factored Fourier series.  
 
Theorem A. Let 1≥k  and 0≥δ . If  ( )np  and( )nλ  satisfy the conditions  

 
 ( )1∆ =nX O / n ,   nnn PnpX 1)( −=           (3) 

             

( ) { }1
1

1

∞
−

+
=

+ < ∞∑
k k k k

n n n n n
n

P / p X
δ λ λ ,                     (4) 

   

    ( ) 1
1

/
∞

δ
+

=
∆λ < ∞∑

k
n n n n

n

P p X ,              (5) 

 

                        ( ) ( ) ( ) ( ){ }1
1 1

∞
−

=
=∑

k v
n n n v v v

n v

P / p / P O P / p / P
δ δ

,                 (6) 

then the summability 
k

npN δ;, of the series ∑
∞

=1

)(
n

nnn tCXλ at a point can be ensured by a 

local property. 
 
The aim of this paper is to establish Theorem A under weaker conditions. Now, we shall 
prove the following theorem. 
 
Theorem. Let 1≥k  and 0≥δ . If ( )np  and ( )nλ  satisfy the conditions (3), (6),  

          

( ) 1

1

/
k kk

n n n n
n

P p X
∞

δ −

=
λ < ∞∑ ,    nnn PnpX 1)( −=                                           (7) 

and 

( ) 1
1

/
∞

δ
+

=
∆λ < ∞∑ n n n n

n

P p X ,                             (8) 

then the summability 
k

npN δ;, of the series ∑
∞

=1

)(
n

nnn tCXλ at a point can be ensured by a 

local property. 
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 3 

Remark. It may be noticed that our result is an improvement of Theorem A in the sense that 
the conditions (7) and (8) are weaker than (4) and (5).   
 
2. Proof of  the Theorem. As mentioned in the beginning, the convergence of Fourier 
series at a point is a local property. Therefore in order to prove the theorem it is sufficient to 
prove that if ( )ns  is bounded, then under the conditions of our theorem, the series n n nX aλ∑  

is summable , ; .n k
N p δ  Now, let ( )nT  denote the ( ), nN p  means of this series. Then we 

have  

                          ( ) 1
1 1 1

1

−
− − −

=
− = λ∑

n

n n n n n v v v v
v

T T P P p P X a  . 

 
Applying Abel’s transformation to this sum we get 
 

( ) ( ) ( )1 1
1 1 1 1 1

1

− −
− − − − −

=
− = ∆ λ + λ∑

n

n n n n n n v v v n n n n n n n
v

T T P P p s P X P P p s P X  

 

  ( ) ( ) ( )1 1
1 1 1 1

1 1

− −
− − − +

= =
= λ ∆ + ∆λ∑ ∑

n n

n n n v v v v n n n v v v v
v v

P P p s P X P P p s P X  

 

   ( ) 1−+ λn n n n nP p s X 1 2 3T T T= + + , say. 

 
For the proof of the lemma, by Minkowski’s inequality, it suffices to show that  
 

                          ( ) 1

1

/ , 1,2,3.
∞

+ −

=
< ∞ =∑

k k k
n n r

n

P p T r
δ

.  

 
Now, since (1)ns O= , It follows that  

 

            ( )
1

1
1

2

/
+

+ −

=
∑
m

k k k
n n

n

P p T
δ

 ( ) ( ) ( )
1 1

1
1 1

2 1

(1) /
+ −

δ − −
− −

= =

 
= λ ∆ 

 
∑ ∑

km n
k k

n n n v v v
n v

O P p P P X . 

 

In addition, in view of  ( ) ( )1 1
1

− −
−∆ = − + ∆ = − + ∆ = − + ∆v v v v v v v v v v vP X p X P X v P P X P v X , it is 

clear that the condition (1/ )vX O v∆ = is equivalent to ( ) ( )1
1

−
−∆ =v v vP X O v P . Therefore, 

applying Hölder’s inequality, we get 
                                

                ( )
1

1
1

2

/
+

+ −

=
∑
m

k k k
n n

n

P p T
δ ( ) ( )

1 1
1 1

1
2 1

(1) /
+ −

δ − − −
−

= =

 
= λ 

 
∑ ∑

km n
k k

n n n v v
n v

O P p P v P  

        

                   ( ) ( )
1 1

1
1

2 1

(1) /
+ −

δ − −
−

= =

 
= λ 

 
∑ ∑

km n
k k

n n n v v v
n v

O P p P X p  
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  ( ) ( )
11 1 1

1
1

2 1 1

(1) /
−+ − −

δ − −
−

= = =

  
= λ  

  
∑ ∑ ∑

km n n
k k k k

n n n v v v v
n v v

O P p P X p p  

 

  ( ) ( )
1

1 1
1

1 1

(1) /
+

δ − −
−

= = +
= λ∑ ∑

m m
kk k

v v v n n n
v n v

O X p P p P  

   

  ( ) 1

1

(1) / (1)
δ −

=
= λ =∑

m
k kk

v v v v
v

O P p X O  as m → ∞ . 

Again, 
 

  ( )
1

1
2

2

/
+

δ + −

=
∑
m

k k k
n n

n

P p T  = )1(O ( ) ( ) ( ) ( )
1 1

1
1 1

2 1

/ / /
+ −

δ − − −δ δ
− +

= =

 
∆λ 

 
∑ ∑

km n
k k

n n n v v v v v v v
n v

P p P P p P P p X       

                

( ) ( ) ( ) ( )
11 1 1

1
1 1 1

2 1 1

(1) / / /
−+ − −

δ − − δ−δ δ
− + +

= = =

 
= ∆λ ∆λ 

 
∑ ∑ ∑

km n n
k k k k

n n n v v v v v v v v v
n v v

O P p P P p P X P p X

 

            ( ) ( ) ( )
1 1

1
1 1

2 1

(1) / /
+ −

δ − − δ−δ
− +

= =
= ∆λ∑ ∑

m n
k k k k

n n n v v v v v
n v

O P p P P p P X  

 

( ) ( ) ( )
1

1
1 1

1 1

(1) / /
+

δ−δ δ − −
+ −

= = +
= ∆λ∑ ∑

m m
k k kk

v v v v v n n n
v n v

O P p P X P p P  

 

( ) 1
1

(1) / (1)
δ

+
=

= ∆λ =∑
m

v v v v
v

O P p X O , as m ,→ ∞  

 

by virtue of (8). Finally, it is clear that ( ) 1
3

1

/
∞

δ + −

=
< ∞∑

k k k
n n

n

P p T  by virtue of (7). This 

completes the proof.  
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Abstract
We introduce higher order generalization of the q-Bernstein operators. Then we study ap-

proximation properties and a Voronovskaja-type theorem for higher order q-Bernstein operators.

1 Introduction

Nowadays it is known that the theory of q-calculus plays an important role on analytic number theory
and theoretical physics. For example, various applications of this theory have appeared in the study
of hypergeometric series [1], in the approximation theory [2], [17], [18] while some other important
applications have been related with the quantum theory. In this paper, using the moment estimates
from [9] and with the techniques of the works [5], [6], we study the approximation properties of an
rth order generalization of the q-Bernstein polynomials.

We first recall some basic definitions used in the paper. The q-Bernstein operators are given by

Bn,q (f ; x) =
n∑

k=0

f

(
[k]
[n]

)
pn,k (q; x) , n ∈ N, 0 ≤ x ≤ 1,

pn,k (q; x) =
[

n
k

]
xk

n−k−1∏
s=0

(1− qsx) .

Recall that [n] = [n]q and
[

n
k

]
denotes the q-integers and q-Gaussian binomial, which are defined,

respectively by

[n] =
{

(1− qn) / (1− q) , if q 6= 1
n, if q = 1 ,

[
n
k

]
=

[n]!
[k]! [n− k]!

,

where [n]! denotes the q-factorial given by

[n]! =
{

[n] ... [2] [1] , if n ≥ 1,
1, if n = 0.

After q-Bernstein polynomials were introduced by Phillips [15] they have been the object of
several investigations in approximation theory (cf. [3]-[21]). Surveys of results on the q-Bernstein
polynomials together with comprehensive lists of references on the subject are given in [12].

We introduce a new sequence of positive linear operators so-called higher (rth) order q-Bernstein
operators.

Definition 1 Let r ∈ N ∪ {0} be a fixed number. For f ∈ Cr [0, 1] and n ∈ N we define the rth
order generalization of the q-Bernstein operators as follows

B[r]
n,q (f ; x) :=

n∑

k=0

pn,k (q; x)
r∑

j=0

1
j!

f (j)

(
[k]
[n]

) (
x− [k]

[n]

)j

.

1
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It is clear that for r = 0, B
[0]
n,q (f ; x) becomes the q-Bernstein operator, Bn,q (f ; x) , defined by

Phillips. Also it can be easily shown that B
[r]
n,q (f ; 1) = f(1). It should be stressed out that this kind

of generalization was considered in [5], [10], [14], [6].

In the paper, we investigate the rate of convergence for the sequence {B[r]
n,q (f ;x)} by the modulus

of continuity of the rth order derivative of f in the case 0 < q < 1. Moreover we study a Voronovskaja-
type theorem for higher order q-Bernstein operators.

2 Auxilary results

Theorem 2 [9] For any m ∈ N , 0 < q < 1, there exists a constant K̃m > 0 such that

|Bn,q ((t− x)m
, x)| ≤ K̃m

x (1− x)

[n]bm+1
2 c ,

where x ∈ [0, 1] and bac is the integer part of a ≥ 0.

Corollary 3 For any m ∈ N , 0 < q < 1, there exists a constant Km > 0 such that

Bn,q (|t− x|m , x) ≤ Km
x (1− x)

[n]m/2
. (1)

Proof. Indeed if m is even

Bn,q (|t− x|m , x) = Bn,q ((t− x)m
, x) ≤ K̃m

x (1− x)

[n]b(m+1)/2c = Km
x (1− x)

[n]m/2
.

On the other hand if m is odd, say m = 2k + 1, we have

Bn,q

(
|t− x|2k+1

, x
)
≤

√
Bn,q

(
|t− x|4k

, x
)√

Bn,q

(
|t− x|2 , x

)

≤
√

K̃4k
x(1− x)

[n]b(4k+1)/2c

√
K̃2

x(1− x)

[n]b3/2c

=

√
K̃4k

x(1− x)

[n]2k

√
K̃2

x(1− x)
[n]

= K2k+1
x (1− x)

[n](2k+1)/2
.

Lemma 4 Let 0 < q < 1. B
[r]
n,q (f ; x) is an operator from Cr [0, 1] into C [0, 1]. Furthermore there

exists a constant C (r) such that for every f ∈ Cr [0, 1] we have

∥∥∥B[r]
n,q (f)

∥∥∥
C[0,1]

≤ C (r)
r∑

j=0

∥∥∥f (j)
∥∥∥ = C (r) ‖f‖Cr [0,1] . (2)

Proof. It is obvious that B
[r]
n,q (f ; x) is continuous on [0, 1]. To show (2) from the definition we

deduce that

B[r]
n,q (f ; x) =

r∑

j=0

(−1)j

j!
Bn,q

(
(t− x)j

f (j) (t) ;x
)

.

2
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Further, by the Corollary 3 we have
∣∣∣Bn,q

(
(t− x)j

f (j) (t) ; x
)∣∣∣ ≤

∥∥∥f (j)
∥∥∥Bn,q

(
|t− x|j ; x

)
≤ Kj

∥∥∥f (j)
∥∥∥ [n]−j/2

.

Consequently

∥∥∥B[r]
n,q (f)

∥∥∥ ≤
r∑

j=0

(−1)j

j!

∥∥∥Bn,q

(
(t− x)j

f (j) (t) ; x
)∥∥∥ ≤ C (r)

r∑

j=0

∥∥∥f (j)
∥∥∥ .

Thus the proof is completed.

3 Convergence properties of B
[r]
n,q

We use the modulus of continuity of the derivative f (r) :

ω
(
f (r); t

)
:= sup

{∣∣∣f (r) (x)− f (r) (y)
∣∣∣ : |x− y| ≤ t, x, y ∈ [0, 1]

}
.

Theorem 5 Let 0 < q < 1 and r ∈ N ∪ {0} be a fixed number. Then there exists Ar > 0 such that
for every f ∈ Cr [0, 1] and n ∈ N the following inequality holds

∥∥∥B[r]
n,q (f)− f

∥∥∥ ≤ Ar
1

[n]
r
2
ω

(
f (r);

1√
[n]

)
. (3)

Proof. The estimation (3) for r = 0 follows from [19, Theorem 4.1].

Let r ∈ N . We apply the following Taylor formula for f ∈ Cr [0, 1] at a given point t ∈ [0, 1]:

f (x) =
r∑

j=0

f (j) (t)
j!

(x− t)j +
(x− t)r

(r − 1)!

∫ 1

0

(1− u)r−1
[
f (r) (t + u (x− t))− f (r) (t)

]
du.

Applying Bn,q we get

f (x)−B[r]
n,q (f ; x) =

n∑

k=0

(x− [k] / [n])r

(r − 1)!

×
∫ 1

0

(1− u)r−1

[
f (r)

(
[k]
[n]

+ u

(
x− [k]

[n]

))
− f (r)

(
[k]
[n]

)]
dupn,k (q; x) . (4)

The definition and properties of modulus of continuity of function imply that
∣∣∣∣f (r)

(
[k]
[n]

+ u

(
x− [k]

[n]

))
− f (r)

(
[k]
[n]

)∣∣∣∣ ≤ ω

(
f (r); u

∣∣∣∣x−
[k]
[n]

∣∣∣∣
)

≤ ω

(
f (r);

∣∣∣∣x−
[k]
[n]

∣∣∣∣
)
≤

(√
[n]

∣∣∣∣x−
[k]
[n]

∣∣∣∣ + 1
)

ω

(
f (r);

1√
[n]

)
, (5)

for every 0 ≤ u ≤ 1, 0 ≤ x ≤ 1, k ∈ N ∪ {0}, n ∈ N . From (4) and (5) we get
∣∣∣B[r]

n,q (f ;x)− f (x)
∣∣∣

≤ 1
r!

ω

(
f (r);

1√
[n]

)
n∑

k=0

∣∣∣∣x−
[k]
[n]

∣∣∣∣
r (√

[n]
∣∣∣∣x−

[k]
[n]

∣∣∣∣ + 1
)

pn,k (q;x)

=
1
r!

ω

(
f (r);

1√
[n]

)(√
[n]Bn,q

(
|x− t|r+1 ; x

)
+ Bn,q (|x− t|r ; x)

)
(6)

3
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for 0 ≤ x ≤ 1, n ∈ N . Using (1) in (6), we have

∣∣∣B[r]
n,q (f ; x)− f (x)

∣∣∣ ≤ 1
r!

(Kr+1 + Kr)

(
1√
[n]

)r

ω

(
f (r);

1√
[n]

)

= Ar

(
1√
[n]

)r

ω

(
f (r);

1√
[n]

)
.

It is easy to see that if qn → 1 for n → ∞ then limn→∞ [n]qn
= +∞. Therefore, the sequence

B
[r]
n,qn (f ;x) converges uniformly to f for each continuous function f if limn→∞ qn = 1. From

Theorem 5 we can derive the following two corollaries.

Corollary 6 Let f ∈ Cr[0, 1], 0 < qn < 1, limn→∞ qn = 1 and r ∈ N ∪{0} be a fixed number. Then

lim
n→∞

[n]r/2
qn

∥∥∥B[r]
n,qn

(f)− f
∥∥∥ = 0.

We note that a function f ∈ C [0, 1] belongs to LipM (α), 0 < α ≤ 1, provided

|f (x)− f (y)| ≤ M |x− y|α (x, y ∈ [0, 1] and M > 0) .

Corollary 7 Let 0 < qn < 1, limn→∞ qn = 1, r ∈ N ∪ {0}, f ∈ Cr [0, 1]. If f (r) ∈LipM (α) then
∥∥∥B[r]

n,qn
(f)− f

∥∥∥ = O
(
[n]−

r+α
2

qn

)
.

Proof. Since f (r) ∈LipM (α) we have immediately

∥∥∥B[r]
n,qn

(f)− f
∥∥∥ ≤ Ar

1

[n]
r
2
qn

ω


f (r);

1√
[n]qn


 ≤ ArM

1

[n]
r
2
qn

1

[n]
α
2
qn

.

Consequently, according to (3) the sequence {B[r]
n,qn (f)} converges uniformly to any f ∈ Cr [0, 1]

if qn → 1 for n →∞.

Theorem 8 (Voronovskaja) Let 0 < q < 1. Suppose that f ∈ Cr+2 [0, 1] where r ∈ N ∪ {0} is fixed.
Then

∣∣∣B[r]
n,q (f ; x)− f (x)

− (−1)rf (r+1)(x)Bn,q

(
(t− x)r+1; x

)

(r + 1)!
− (−1)r(r + 1)f (r+2)(x)Bn,q

(
(t− x)r+2;x

)

(r + 2)!

∣∣∣∣∣

≤ (Kr+2 + Kr+4)
x (1− x)

[n]
r
2+1

r∑

j=0

1
j! (r + 2− j)!

ω
(
f (r+2−j), [n]−

1
2

)
.

Proof. Fix 0 ≤ x ≤ 1. For f ∈ Cr+2 [0, 1] we have f (j) ∈ Cr+2−j [0, 1] , 0 ≤ j ≤ r, and by the Taylor
formula we can write

f (j)(t) =
r+2−j∑

i=0

f (j+i)(x)
i!

(t− x)i + Rr+2−j (f ; t, x) , (7)

Rr+2−j (f ; t, x) =
f (r+2−j) (ξt)− f (r+2−j) (x)

(r + 2− j)!
(t− x)r+2−j

,

4
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where ξt is situated between x and t, therefore, |ξt − x| < |t− x|. Taking t = τnk = [k]
[n] in (7) and

applying this formula to B
[r]
n,q (f) we have

B[r]
n,q (f ; x) =

n∑

k=0

pnk(q; x)
r∑

j=0

(x− τnk)j

j!

r+2−j∑

i=0

f (j+i)(x)
i!

(τnk − x)i

+
n∑

k=0

pnk(q; x)
r∑

j=0

(x− τnk)j

j!
Rr+2−j (f ; τnk, x)

= I1 + I2. (8)

It follows that

∣∣∣B[r]
n,q (f ; x)− I1

∣∣∣ = |I2| =
∣∣∣∣∣∣

n∑

k=0

pnk(q; x)
r∑

j=0

(−1)j

j!
f (r+2−j) (ξτnk

)− f (r+2−j) (x)
(r + 2− j)!

(τnk − x)r+2

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Bn,q




r∑

j=0

(−1)j

j!
f (r+2−j) (ξt)− f (r+2−j) (x)

(r + 2− j)!
(t− x)r+2 ; x




∣∣∣∣∣∣

For the estimate of the remainder |I2| we shall use the well-known inequality

ω (f, λδ) ≤ (
1 + λ2

)
ω (f, δ) .

We have
∣∣∣f (r+2−j) (ξt)− f (r+2−j) (x)

∣∣∣ ≤ ω
(
f (r+2−j), |ξt − x|

)
≤ ω

(
f (r+2−j), |t− x|

)

≤ ω
(
f (r+2−j), [n]−

1
2

)(
1 + [n] (t− x)2

)
.

Hence

|I2| ≤ Bn,q




r∑

j=0

∣∣∣∣∣
(−1)j

j!
f (r+2−j) (ξt)− f (r+2−j) (x)

(r + 2− j)!

∣∣∣∣∣ |t− x|r+2 ; x




≤ Bn,q




r∑

j=0

1
j! (r + 2− j)!

ω
(
f (r+2−j), [n]−

1
2

)(
1 + [n] (t− x)2

)
|t− x|r+2 ;x




=
r∑

j=0

1
j! (r + 2− j)!

ω
(
f (r+2−j), [n]−

1
2

)(
Bn,q

(
|t− x|r+2 ; x

)
+ [n] Bn,q

(
|t− x|r+4 ; x

))

≤
r∑

j=0

1
j! (r + 2− j)!

ω
(
f (r+2−j), [n]−

1
2

) (
Kr+2

x (1− x)

[n]
r
2+1

+ Kr+4
[n] x (1− x)

[n]
r
2 +2

)

= (Kr+2 + Kr+4)
x (1− x)

[n]
r
2 +1

r∑

j=0

1
j! (r + 2− j)!

ω
(
f (r+2−j), [n]−

1
2

)
,

and consequently

∣∣∣B[r]
n,q (f ; x)− I1

∣∣∣ ≤ (Kr+2 + Kr+4)
x (1− x)

[n]
r
2+1

r∑

j=0

1
j! (r + 2− j)!

ω
(
f (r+2−j), [n]−

1
2

)
.
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In order to end the proof it remains to simplify I1. Standard calculations give

I1 =
n∑

k=0

pnk(q;x)
r∑

j=0

(x− τnk)j

j!

r+2∑

l=j

f (l)(x)
(l − j)!

(τnk − x)l−j

=
n∑

k=0

pnk(q;x)
r∑

j=0

(−1)j

j!





r∑

l=j

f (l)(x)
(l − j)!

(τnk − x)l

+
f (r+1)(x)

(r + 1− j)!
(τnk − x)r+1 +

f (r+2)(x)
(r + 2− j)!

(τnk − x)r+2

}

=
n∑

k=0

pnk(q;x)
r∑

l=0

f (l)(x)
l!

(τnk − x)l
l∑

j=0

(
l
j

)
(−1)j

+
f (r+1)(x)
(r + 1)!

n∑

k=0

pnk(q;x) (τnk − x)r+1
r∑

j=0

(
r + 1

j

)
(−1)j

+
f (r+2)(x)
(r + 2)!

n∑

k=0

pnk(q;x) (τnk − x)r+2
r∑

j=0

(
r + 2

j

)
(−1)j

for n ∈ N. Using the following inequalities

r∑

j=0

(
r + 1

j

)
(−1)j = (−1)r,

r∑

j=0

(
r + 2

j

)
(−1)j = (r + 1) (−1)r, r ∈ N ∪ {0} ,

we obtain

I1 = f(x) +
(−1)rf (r+1)(x)Bn,q

(
(t− x)r+1; x

)

(r + 1)!

+
(−1)r(r + 1)f (r+2)(x)Bn,q

(
(t− x)r+2; x

)

(r + 2)!
, n ∈ N.

Thus the proof is completed.

Theorem 8 implies the following Voronovskaja type theorem for operators Bn,q(f) proved by
Videnskii [19].

Corollary 9 If f ∈ C2 [0, 1] and qn → 1 as n →∞, then
∣∣∣∣∣Bn,qn

(f ; x)− f (x)− f ′′(x)
2

x (1− x)
[n]qn

∣∣∣∣∣ ≤ K
x (1− x)

[n]qn

ω
(
f ′′, [n]−

1
2

qn

)
,

for every x ∈ [0, 1] , where K = (K2 + K4) /2. Moreover

lim
n→∞

[n]qn
(Bn,qn(f ; x)− f(x)) =

x(1− x)
2

f ′′(x)

uniformly on [0, 1].
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Calculating zeros of the second kind Euler polynomials

C. S. Ryoo

Department of Mathematics, Hannam University, Daejeon 306-791, Korea

Abstract : Many mathematicians have studied the second kind Euler numbers and polynomials in
the complex plane. One purpose of this paper is to investigate the zeros of the second kind Euler
polynomials En(x). We also display the shape of the second kind Euler polynomials En(x).

Key words : Bernoulli numbers, Bernoulli polynomials, Euler numbers, Euler polynomials, the
second kind Euler numbers and polynomials

1. Introduction

Several mathematicians have studied the second kind Euler numbers and polynomials (see [1,2,3,4]).
The second kind Euler numbers and polynomials posses many interesting properties and arising
in many areas of mathematics and physics. In this paper, we introduce the second kind Euler
numbers En and polynomials En(x). In order to study the second kind Euler numbers En and
polynomials En(x), we must understand the structure of the second kind Euler numbers En and
polynomials En(x). Therefore, using computer, a realistic study for the second kind Euler numbers
En and polynomials En(x) is very interesting. It is the aim of this paper to observe an interesting
phenomenon of ‘scattering’ of the zeros of the second kind Euler polynomials En(x) in complex
plane. The outline of this paper is as follows. We introduce the second kind Euler numbers En

and polynomials En(x). In Section 2, we describe the beautiful zeros of the the second kind Euler
polynomials En(x) using a numerical investigation. Finally, we investigate the roots of the second
kind Euler polynomials En(x).

First, we introduce the second kind Euler numbers En and polynomials En(x). The second
kind Euler numbers En are defined by the generating function:

F (t) =
2

et + e−t
=

∞∑
n=0

En
tn

n!
, (|t| < π

2
), cf. [1, 3] (1)

where we use the technique method notation by replacing En by En(n ≥ 0) symbolically. From (1),
we have

2
et + e−t

=
∞∑

n=0

En
tn

n!
= eEt

which yields
2 = e(E+1)t + e(E−1)t.

Using Taylor expansion of exponential function, we obtain

2 =
∞∑

n=0

((E + 1)n + (E − 1)n)
tn

n!
.

By comparing the coefficients, we have

(E + 1)n + (E − 1)n =

{
2, if n = 0,

0, if n > 0.
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We obtain the first value of the second kind Euler numbers En :

E0 = 1, E1 = 0, E2 = −1, E3 = 0, E4 = 5, E5 = 0, E6 = −61, E7 = 0,

E8 = 1385, E9 = 0, E10 = −50521, E11 = 0, E12 = 2702765, E14 = −199360981,

E16 = 19391512145, E18 = −2404879675441 E20 = 370371188237525, · · ·

In general, it satisfies E3 = E5 = E7 = · · · = 0. We consider the second kind Euler polynomials
En(x) as follows:

F (x, t) =
2

et + e−t
ext =

∞∑
n=0

En(x)
tn

n!
. (2)

By the above definition, we obtain

∞∑

l=0

El(x)
tl

l!
=

2
et + e−t

ext =
∞∑

n=0

En
tn

n!

∞∑
m=0

xm tm

m!

=
∞∑

l=0

(
l∑

n=0

En
tn

n!
xl−n tl−n

(l − n)!

)
=

∞∑

l=0

(
l∑

n=0

(
l

n

)
Gnxl−n

)
tl

l!
.

By using comparing coefficients
tl

l!
, we have

En(x) =
n∑

k=0

(
n

k

)
Ekxn−k.

In the special case x = 0, we define En(0) = En. Let m be odd. It is easy to see that

∞∑
n=0

En(x)
tn

n!
=

2
et + e−t

ext =
m−1∑
a=0

(−1)a 2emt

e2mt + 1
e(2a+x+1−m)t

=
m−1∑
a=0

(−1)a 2
emt + e−mt

e

 2a + x + 1−m

m

!
mt

=
m−1∑
a=0

(−1)a
∞∑

n=0

En

(
2a + x + 1−m

m

)
(mt)n

n!

=
∞∑

n=0

(
mn

m−1∑
a=0

(−1)aEn

(
2a + x + 1−m

m

))
tn

n!
.

Hence we have the below theorem.

Theorem 1. For any positive integer m(=odd), we obtain

En(x) = mn
m−1∑

i=0

(−1)iEn

(
2i + x + 1−m

m

)
for n ≥ 0.

Since ∞∑

l=0

El(x + y)
tl

l!
=

2
et + e−t

e(x+y)t =
∞∑

n=0

En(x)
tn

n!

∞∑
m=0

ym tm

m!

=
∞∑

l=0

(
l∑

n=0

En(x)
tn

n!
yl−n tl−n

(l − n)!

)

=
∞∑

l=0

(
l∑

n=0

(
l

n

)
En(x)yl−n

)
tl

l!
,
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we have the following theorem.

Theorem 2. The second kind Euler polynomials En(x) satisfies the following relation:

El(x + y) =
l∑

n=0

(
l

n

)
En(x)yl−n.

Because

∂

∂x
F (t, x) = tF (t, x) =

∞∑
n=0

d

dx
En(x)

tn

n!
,

it follows the important relation
d

dx
En(x) = nEn−1(x).

We have the integral formula as follows:

∫ b

a

En−1(x)dx =
1
n

(En(b)− En(a)).

Since
∞∑

n=0

En(−x)
(−t)n

n!
= F (−x,−t) =

2
e−t + et

e(−x)(−t)

=
2

et + e−t
ext = F (x, t) =

∞∑
n=0

En(x)
tn

n!
,

we obtain the following theorem.

Theorem 3. For n ∈ N, we have

En(x) = (−1)nEn(−x).

By using computer, the second kind Euler polynomials En(x) can be determined explicitly. A few

of them are
E0(x) = 1,

E1(x) = x,

E2(x) = x2 − 1,

E3(x) = x3 − 3x,

E4(x) = x4 − 6x2 + 5,

E5(x) = x5 − 10x3 + 25x,

E6(x) = x6 − 15x4 + 75x2 − 61,

E7(x) = x7 − 21x5 + 175x3 − 427x,

E8(x) = x8 − 28x6 + 350x4 − 1708x2 + 1385,

E9(x) = x9 − 36x7 + 630x5 − 5124x3 + 12465x,

E10(x) = x10 − 45x8 + 1050x6 − 12810x4 + 62325x2 − 50521,

E11(x) = x11 − 55x9 + 1650x7 − 28182x5 + 228525x3 − 555731x

· · ·
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2. Zeros of the second kind Euler polynomials En(x)

In this section, we display the shapes of the second kind Euler polynomials En(x) and we
investigate the zeros of the second Euler polynomials En(x). For n = 1, · · · , 10, we can draw a plot
of the second kind Euler polynomials En(x), respectively. This shows the ten plots combined into
one. We display the shape of En(x),−8 ≤ x ≤ 8. (Figure 1).

-7.5 -5 -2.5 0 2.5 5 7.5

x

-20000

0

20000

40000

EnHxL

Figure 1: Curve of En(x)

We investigate the beautiful zeros of the En(x) by using a computer. We plot the zeros of the
second kind Euler polynomials En(x) for n = 20, 30, 40, 50 and x ∈ C. (Figure 2). Stacks of zeros
of En(x) for 1 ≤ n ≤ 40 from a 3-D structure are presented. (Figure 3). Our numerical results for
approximate solutions of real zeros of En(x) are displayed. (Tables 1, 2).

Table 1. Numbers of real and complex zeros of En(x)

degree n real zeros complex zeros

2 2 0

3 3 0

4 4 0

5 5 0

6 2 4

7 3 4

8 3 4

9 5 4

10 5 4

11 3 8

We observe a remarkably regular structure of the complex roots of the Euler polynomials En(x). We
hope to verify a remarkably regular structure of the complex roots of the Euler polynomials En(x).
(Table 1). Next, we calculated an approximate solution satisfying En(x), x ∈ R. The results are
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Figure 2: Zeros of En(x) for n = 20, 30, 40, 50

given in Table 2.

Table 2. Approximate solutions of En(x) = 0, x ∈ R

degree n x

2 −1.0000, 1.0000

3 −1.7321, 0.0000, 1.7321

4 −2.236, −1.0000, 1.0000, 2.236

5 −2.236, −2.236, 0.0000, 2.236, 2.236

6 −1.000, 1.000

7 −1.995463, 0.0000, 1.995463

8 −2.86466, −1.0000000, 1.0000000, 2.86466

9 −3.4395, −2.00016, 0.0000 2.00016, 3.4395

10 −3.730, −3.030 − 1.000, 1.000, 3.030, 3.730

11 −2.0000, 0.0000, 2.0000
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Figure 3: Stacks of zeros of En(x), 1 ≤ n ≤ 50

3. Directions for Further Research

Finally, we shall consider the more general problems. Prove that En(x) = 0 has n distinct
solutions. Find the numbers of complex zeros CEn(x) of En(x), Im(x) 6= 0. Since n is the degree of
the polynomial En(x), the number of real zeros REn(x) lying on the real plane Im(x) = 0 is then
REn(x) = n − CEn(x), where CEn(x) denotes complex zeros. See Table 1 for tabulated values of
REn(x) and CEn(x). Find the equation of envelope curves bounding the real zeros lying on the plane.
We prove that En(x), x ∈ C, has Re(x) = 0 reflection symmetry in addition to the usual Im(x) = 0
reflection symmetry analytic complex functions. The author has no doubt that investigation along
this line will lead to a new approach employing numerical method in the field of research of the
second kind Euler polynomials En(x) to appear in mathematics and physics. For related topics the
interested reader is referred to [1,4].
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Block incomplete LU factorization for block-tridiagonal
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Abstract
Here we propose a block ILU preconditioner for block-tridiagonal M -matrices,

and some theoretical properties for the block ILU preconditioner are studied. Nu-
merical results of the BICGSTAB using the block ILU and ILU(0) as the precon-
ditioners are compared to see the effective of the block ILU preconditioners.
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1 INTRODUCTION

The discretization of partial differential equatinons in 2D or 3D, by finite difference
or finite element approximation, leads often to large sparse block-tridiagonal linear
systems. In this paper, we consider the matrix equations

Ax = b, x, b ∈ Rn, (1)

where A is a block-tridiagonal M -matrix and have the following form

A =




D1 E1

C2 D2 E2

. . . . . . . . .
. . . . . . En−1

Cn Dn



∈ Rn×n. (2)
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Since A is M -matrix the diagonal blocks Di of A are square M -matrices too and
Ci and Ei are nonpositive matrices. The matrix A is generally sparse and with a large
dimension, thus the direct solvers become prohibitively expensive. Alternatively, the
preconditioned conjugate gradient (CG) iterative method is widely used. For the non-
symmetric case, the other Krylov subspace methods are widely used, such as the GM-
RES and BICGSTAB methods. In general, the convergence rate of the above methods
may be extremely slow, so the preconditioning matrix or preconditioner will always
be needed and will be applied to the iterative solvers to accelerate the convergence
rate. If K is a approximation of matrix A, then we can perform the left preconditioner
K−1Ax = K−1b or the right preconditioned linear system AK−1y = b, where y = Kx.
The preconditoner K should be chosen so that the eigenvalue of K−1A or AK−1 is a
more centralized.

The ultimate goal of the preconditioned iterative methods is to reduce the total
execution time, one of the powerful preconditioning methods in terms of reducing the
number of iterations and executing time is the ILU factorization method. However,
the parallelization of the construction of the ILU preconditioner is one of the problems
which will influence the time used to construct the preconditioner, while the efficient
of the preconditioner to accelerate the convergence rate of the iterative method such
as the Krylov subspace method is another which will reduce the time used to solve the
whole linear system.

The purpose of this paper is to propose a kind of block ILU preconditioner which can
be computed in parallel for block-tridiagonal M -matrices. In Section 2, we review some
properties of the ILU factorizations for block-tridiagonal matrix. In Section 3, the new
block ILU factorization preconditioners for block-tridiagonal M -matrices are proposed
and some of theoretical properties. In Section 4 the construction of a effective block
preconditoners for a special type of matrices which arises from five-point discretiza-
tion of the second-order PDE is given, and the numerical results of the BICGSTAB
with the block ILU preconditoners proposed in this paper and the standard ILU(0)
preconditioners are compared.

2 ILU FACTORIZATION FOR M-MATRICES

J. H. Yun [2] proposed a new block incomplete factoriztion preconditioner for a
symmetric block-tridiagonal M -matrix which can be computed in parallel. For the
linear system of equations (2), where A is a symmetric block-tridiagonal M -matrix
blocked in the form of

A =




B1 −C1

−CT
1 B2 −C2

. . . . . . . . .
. . . . . . −Cn−1

−CT
n−1 Bn



∈ Rn×n, (3)

2
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the following theorem is given.

Theorem 2.1. ([2]) Let A be a symmetric block-tridiagonal M -matrix of the form
(3) and let Bi = UT

i DiUi −Ri be a regular splitting of Bi which can be obtained by the
IC factorization process for each i = 1, 2, · · ·, n. Suppose that for each i = 1, 2, · · ·, n−1,
Ei is a matrix which satisfies UT

i DiEi ≤ Ci ≤ Ei. Let

D =




D1 0
0 D2 0

. . . . . . . . .
. . . . . . 0

0 Dn




, U =




U1 0
0 U2 0

. . . . . . . . .
. . . . . . 0

0 Un




,

Ū =




U1 −C1

0 U2 −C2

. . . . . . . . .
. . . . . . −Cn−1

0 Un




,

Û =




U1 −E1

0 U2 −E2

. . . . . . . . .
. . . . . . −En−1

0 Un




,

Ũ =




U1 −(UT
1 D1)−1C1

0 U2 −(UT
2 D2)−1C2

. . . . . . . . .
. . . . . . −(UT

n−1Dn−1)−1Cn−1

0 Un



∈ Rn×n,

M = UT DU , M̄ = ŪT DŪ , M̂ = ÛT DÛ and M̃ = ŨT DŨ . Then the following holds:
(a) R = M −A ≥ 0, R̄ = M̄ −A ≥ 0, R̂ = M̂ −A ≥ 0, R̃ = M̃ −A ≥ 0;
(b) 0 ≤ U−1 ≤ Ū−1 ≤ Û−1 ≤ Ũ−1;
(c) 0 ≤ M−1 ≤ M̄−1 ≤ M̂−1 ≤ M̃−1;
(d) A = M −R = M̄ −R = M̂ −R = M̃ −R are regular splittings of A;
(e)ρ(M̃−1R) ≤ ρ(M̄−1R) ≤ ρ(M̂−1R) ≤ ρ(M−1R) ≤ 1.

The most favorite character of the four types of IC factorization preconditoners
presented by [2] is that it can be computed in parallel. Block IC facttorization pre-
conditioner of type M̃ may not be used in practical situations since it requires a lot

3
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of fill-in elements causing too much storage and arithmetic operations. Block precon-
ditioner of type M has rich parallelism since both the computation of preconditioner
and preconditioner solve step of the PCG can be done in parallel, but its effectiveness
is much worse than the other types of block preconditioners. So the preconditoner of
type M̂ is recommended. Yun [11] have already make it to more generalized case for
nonsymmetric block-tridiagonal M -matrices.

Saad [3] and M. H. Koulaei [4] discussed the block ILU factorization method too,
since the block-tridiagonal matrix A has the form

A = L + D + U, (4)

where D is the diagonal block part of matrix A, L is the lower block part of the matrix
A and U is the upper block part. Then a block factorization can be defined as

M = (L + S)S−1(S + U), (5)

where L and U are the same as those above, and S is a bock-diagonal matrix whose
blocks Si are defined by the recurrence:

S1 = D1, Si = Di − Ciai−1Ei−1,

in which ai is the sparse approximate to S−1
i . In this case for computing the blocks

ai, it is natural to keep the blocks ai banded, particular keep it tridiagonal. Then the
method proposed by [8-10] can be used to compute the approximate inverse of S−1

i−1.
Koulaei [4] proposed two algorithm for computing the inverse factors directly which is
needed for computing ai. Using the LU factorization of Si

Si = LiUi,

the preconditioner M can be expressed in terms of lower and upper triangular factors

M =




L1

V2 L2

. . . . . .
Vn−1 Ln−1

Vn Ln







U1 W2

U2 W3

. . . . . .
Un−1 Wn

Un




, (6)

where
Vi = CiU

−1
i−1, Wi = L−1

i−1Ei−1.

This form is generally more efficient. But since Si is computed by the recurrence, the
construction of the preconditoner M is less parallel than Yun’s [2].

4
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3 BLOCK ILU FACTORIZATION PRECONDITIONERS

We consider the matrix A which is a large sparse block-tridiagonal M -matrix
blocked in the form (2) too, to compute the Si we define the recurrence as:

S1 = D1, Si = Di − CiD
−1
i−1Ei−1,

using the ILU factorization Si = LiUi, the preconditioner M can be expressed in a
similar form as equation(6).

M = LU =




L1

V2 L2

. . . . . .
Vn−1 Ln−1

Vn Ln







U1 W2

U2 W3

. . . . . .
Un−1 Wn

Un




,

where Vi = CiU
−1
i−1 and Wi = L−1

i−1Ei−1 too.
The only different is the construction of the Si, we define is as Si = Di−CiD

−1
i−1Ei−1

instead of Si = Di − CiS
−1
i−1Ei−1 used by Saad [3] and M. H. Koulaei [4] or Si = Di

used by J. H. Yun [2]. Then we have the following Theorems.

Lemma 3.1([2]). Let A and B be square M -matrices, and let A = L1U1 − R1

and B = L2U2 − R2 be ILU factorizations corresponding to the same zero pattern set
P ∈ Pn. If A ≤ B, then L−1

2 ≤ L−1
1 and U−1

2 ≤ U−1
1 .

Theorem 3.2. Let A be a block-tridiagonal M -matrix of the form (2), and let
M = LU and the computation of Si defined as above. Then

Si + CiS
−1
i−1Ei−1 ≥ Di.

Proof. Since A is a block-tridiagonal M -matrix, from the definition of Si, we can
get Si−1 ≤ Di−1 and that they are both M -matrices. So

S−1
i−1 ≥ D−1

i−1,

Then
Si + CiS

−1
i−1Ei−1 −Di = CiS

−1
i−1Ei−1 − CiD

−1
i−1Ei−1 ≥ 0.

Thus the proof complete. 2

Theorem 3.3. Let A be a block-tridiagonal M -matrix of the form (2), and let
M = LU defined as above. Then the following holds:

(a) R = M −A ≥ 0;

5

REN et al: LU FACTORIZATION IN BLOCK SPACES838



(b) U−1 ≥ 0 and L−1 ≥ 0;
(c) A = M −R is a regular splitting of A.

Proof. By simple calculation, we can obtain

R = M −A =




0
S2 + C2S

−1
1 E1 −D2

. . .
Sn + CnS−1

n−1En−1 −Dn


 .

Then R = M − A ≥ 0 can be easily obtained from Theorem 3.2. Since L and U are
both Z-matrices with positive diagonal, they are M -matrices, then we can get U−1 ≥ 0
and L−1 ≥ 0, and

M−1 = U−1L−1 ≥ 0.

Therefore A = M −R is a regular splitting of A. 2

Theorem 3.4. Let A be a block-tridiagonal M -matrix of the form (2), let M = LU
defined as above, and M̄ = L̄Ū , where L̄ and Ū are constructed as follow:

Bi = L̄iŪi,

and

M̄ = L̄Ū =




L̄1

V̄2 L̄2

. . . . . .
V̄n−1 L̄n−1

V̄n L̄n







Ū1 W̄2

Ū2 W̄3

. . . . . .
Ūn−1 W̄n

Ūn




,

where
V̄i = CiŪ

−1
i−1, W̄i = L̄−1

i−1Ei−1.

Then
M−1 ≥ M̄−1 and ρ(M−1R) ≤ ρ(M̄−1R̄).

Proof. From the definition of Si, it is easy to obtain that Si ≤ Di. From Lemma
1, we know that

Li ≤ L̄i and Ui ≤ Ūi.

So
Vi = CiU

−1
i−1 ≤ V̄i = CiŪ

−1
i−1,

Wi = L−1
i−1Ei−1 ≤ W̄i = L̄−1

i−1Ei−1.

Then
L ≤ L̄ and U ≤ Ū ,

6
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so
M−1 = U−1L−1 ≥ M̄−1 = Ū−1L̄−1.

Since A = M −R and A = M̄ − R̄ are both regular splittings, and M−1 ≥ M̄−1. It is
naturally ρ(M−1R) ≤ ρ(M̄−1R̄). 2

For the matrix A which is a large sparse block-tridiagonal M -matrix blocked in the
form (2), when we perform the block ILU factorization we can also define the recurrence
of the computation of Si as:

S1 = D1,

for i = 3, 5, . . . , 2i + 1, . . . ,
Si = Di − CiD

−1
i−1Ei−1;

For i = 2, 4, . . . , 2i, . . . ,
Si = Di − CiS

−1
i−1Ei−1.

In other words, if we define the recurrence for the fist steps as S1 = D1, and the
following k− 1 steps as Si = Di −CiS

−1
i−1Ei−1. At the k + 1 step we restart and define

the recurrence as Si = Di − CiD
−1
i−1Ei−1 and the following k − 1 steps we also define

it as Si = Di − CiS
−1
i−1Ei−1, repeat such process until it have been exceed the matrix

dimension. We call such process the k step restart method. To simplify the k step
restart method we can choose the number k so that the matrix dimension n can be
divide exactly by k.

Then for k ≥ 2, the k step restart method can be expressed as

S1 = D1,

for i = 2, 3, . . . , n, if (i)mod(k) = 1,

Si = Di − CiD
−1
i−1Ei−1,

otherwise,
Si = Di − CiS

−1
i−1Ei−1.

For k < 2, when k = 0 we just define the Si by Si = Di and when k = 1 we define
the Si by S1 = D1 and for i = 2, 3, . . . , n, Si = Di − CiD

−1
i−1Ei−1, for k ≥ 2, it can be

performed as we discussed above. It is easy to proof that when we perform the block
ILU factorization combining with the k step restart method to compute the Si, then
for all k = 2, . . . , n, Theorem 3.2, Theorem3.3 and Theorem 3.4 are consistent. And
when k = n, it is just the method Saad [3] and Koulaei [4] discussed.

7
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4 NUMERICAL RESULTS

The construction of the block ILU factorization preconditiner presented in section
3 will be considered for a special type of matrices described below. The matrix arises
from five-point discretization of the second-order self-adjoint elliptic partial differential
equation:

−auxx − buyy + cux + duy + fu = g, (7)

with a(x, y) > 0, b(x, y) > 0, c(x, y),d(x, y) and f(x, y) defined on the unit square
region Ω, and with suitable boundary conditions on ∂Ω.

Therefore Ci and Ei are diagonal and Di is tridiagonal. Since Di is a tridiagonal
matrix, the complete LU factorization of Di is equal to ILU(0). Considering the re-
currence Si = Di − CiD

−1
i−1Ei−1, the approximate inverse of Di should be simple for

the calculation of the Si and do better make the Si have the same zero pattern as
Di, by other words we can make the approximation of inverse of Di still tridiagonal.
Thus we will use the L−1

Di and U−1
Di to compute the tridiagonal part of the D−1

i where
Di = LDiUDi. Since the inverse of the matrix Di can be calculated parallel, the calcula-
tion of the matrix Si can be done respectively too. The inverse of Li and Ui, Si = LiUi,
are also used to construct the block ILU factorization, so we denote the term L−1j

i , the
lower banded matrices with j lower diagonal by drop some nonzero elements of L−1

i ,
and U−1j

i respectively. The nonzero structures of L−1j
i are illustrated in Fig.1.

By Lj we means the block ILU preconditioner constructed by using L−1j
i and U−1j

i

to compute the Si and Wi and Vi. The nonzero structures of Lj are illustrated in Fig.
2. And the term M j denotes M j = LjU j .

Now we provide numerical results of the BICGSTAB method using different pre-
conditioners M j and ILU(0) for linear systems Ax = b, where A is the block tridiagonal
M -matrices.

Example 1. This example considers Eq. (7) with a(x, y) = b(x, y) = 1, c(x, y) =
−10(x + y), d(x, y) = −10(x− y), and f(x, y) = 1.

Example 2. This example considers Eq. (7) with a(x, y) = c(x, y) = 1, b(x, y) =
−(1 + y2), d(x, y) = (1 + y2), and f(x, y) = 1.

Example 3. This example considers Eq. (7) with a(x, y) = b(x, y) = 1, c(x, y) =
cos(x/6), d(x, y) = sin(y/6), and f(x, y) = 1.

Example 4. This example considers Eq. (7) with a(x, y) = b(x, y) = 1, c(x, y) =
10exy, d(x, y) = 10e−xy, and f(x, y) = 1.

8
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Figure 1: Nonzero structures of L−1j
i ’s.
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Figure 2: Nonzero structures of Lj ’s.

In the examples above, we all used a uniform mesh of 4x = 4y = 1/(m+1), which
leads to a matrix of order n = m × m, where 4x and 4y refer to the mesh sizes in
the x-direction and y-direction respectively. The right-hand side b is created from Ae,
where e = (1, . . . , 1)T ∈ Rn. Therefore, the right-hand side function g(x, y) in (7) is
not relevant. We will show the results of the BICGSTAB with ILU(0) and with our
Preconditioners when m = 32 in Table 1, Table 2 and Table 3 and m = 48 in Table 4,
Table 5 and Table 6. The Lj and U j are constructed as above.

Table 1: The number of iterations of BICGSTAB with ILU(0) and with our Precondi-
tioners when m = 32 with 1 step restart.

example 1 example 2 example 3 example 4
ILU(0) 16 20 17 17

M1 15 18 16 16
M2 12 13 12 11
M3 11 11 10 9
M4 9 11 10 9
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Table 2: The number of iterations of BICGSTAB with ILU(0) and with our Precondi-
tioners when m = 32 with 2 step restart.

example 1 example 2 example 3 example 4
ILU(0) 16 20 17 17

M1 14 20 16 16
M2 10 12 12 10
M3 9 11 10 9
M4 9 10 9 8

Table 3: The number of iterations of BICGSTAB with ILU(0) and with our Precondi-
tioners when m = 32 with 3 step restart.

example 1 example 2 example 3 example 4
ILU(0) 16 20 17 17

M1 15 18 16 16
M2 10 12 12 10
M3 9 10 10 9
M4 9 10 9 8

Table 4: The number of iterations of BICGSTAB with ILU(0) and with our Precondi-
tioners when m = 48 with 1 step restart.

example 1 example 2 example 3 example 4
ILU(0) 25 29 23 23

M1 25 27 23 21
M2 17 21 16 16
M3 15 19 14 13
M4 14 19 14 12
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Table 5: The number of iterations of BICGSTAB with ILU(0) and with our Precondi-
tioners when m = 48 with 2 step restart.

example 1 example 2 example 3 example 4
ILU(0) 25 29 23 23

M1 21 28 22 22
M2 15 18 16 14
M3 13 16 14 13
M4 14 16 13 12

Table 6: The number of iterations of BICGSTAB with ILU(0) and with our Precondi-
tioners when m = 48 with 3 step restart.

example 1 example 2 example 3 example 4
ILU(0) 25 29 23 23

M1 21 26 24 21
M2 15 16 15 15
M3 14 16 14 13
M4 12 15 12 11

5 CONCLUSIONS

We presented in this paper a block ILU factorization method. Notice that the
construction of M j requires more storage and arithmetic operations when j becomes
large, it is not recommended to use a large value of j and j = 2, 3 is better enough
from our experiments. Theoretically speaking, the block ILU factorization method
combining with the k step restart method will performance better when the number
k is bigger, especially for the block ILU preconditioner to reduce the iteration counts
of the iterative method. But from our experiments it is not always right, when k is
large enough the iteration counts of the BICGSTAB will not reduce as it is expected.
And with a small k it means the parallelization of the calculation of the block ILU
preconditioner will be enhanced, thus a less time will be used to construct the block
ILU preconditioner, of course a less efficient of the block ILU preconditioner will be
encountered. A pity is that the parrel computation of the block ILU preconditioner
is beyond our ability now, we can not do much more compare with the time used
to construct the preconditoner, so only the iteration counts are compared to see the
efficient of the proposed block ILU preconditioners.
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Abstract : In this paper, we construct a new (h, q)-extension of q-analogue of Genocchi polynomials
G

(h)
n,q(x). We consider the behavior of real roots of the (h, q)-extension of q-analogue of Genocchi

polynomials G
(h)
n,q(x), using numerical investigation. By numerical experiments, we demonstrate a

remarkably regular structure of the complex roots of the G
(h)
n,q(x). Finally, we give a table for the

solutions of the(h, q)-extension of q-analogue of Genocchi polynomials G
(h)
n,q(x).

Key words : Euler numbers, Euler polynomials, Genocchi numbers, Genocchi polynomials, q-
analogue of Genocchi numbers, q-analogue of Genocchi polynomials, (h, q)-extension of q-analogue
of Genocchi polynomials
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1. Introduction

The q-analogue of Genocchi numbers Gn,q and polynomials Gn,q(x) using generating functions
was constructed by T. Kim [1]. The significance of the q-analogue of Genocchi numbers Gn,q and
polynomials Gn,q(x) was already pointed out in [1,2]. In this paper, we construct a new (h, q)-
extension of q-analogue of Genocchi polynomials, G

(h)
n,q(x). In order to study (h, q)-extension of q-

analogue of Genocchi polynomials, G
(h)
n,q(x), we must understand the structure of the (h, q)-extension

of q-analogue of Genocchi polynomials, G
(h)
n,q(x). Therefore, using computer, a realistic study for

the (h, q)-extension of q-analogue of Genocchi polynomials, G
(h)
n,q(x) is very interesting. The main

purpose of this paper is to describe the distribution and structure of the zeros of the (h, q)-extension of
q-analogue of Genocchi polynomials, G

(h)
n,q(x) for values of the index n by using computer. The outline

of this paper is as follows. We introduce the (h, q)-extension of q-analogue of Genocchi polynomials,
G

(h)
n,q(x). In Section 2, we describe the beautiful zeros of the (h, q)-extension of q-analogue of Genocchi

polynomials, G
(h)
n,q(x) using a numerical investigation. Finally, we also investigate the roots of the

(h, q)-extension of q-analogue of Genocchi polynomials, G
(h)
n,q(x).

First, we introduce the Genocchi numbers and Genocchi polynomials. The Genocchi numbers
Gn are defined by the generating function:

G(t) =
2t

et + 1
=

∞∑
n=0

Gn
tn

n!
, (|t| < π), cf. [1, 2, 3], (1)

where we use the technique method notation by replacing Gn by Gn(n ≥ 0) symbolically. For x ∈ R
∗This paper has been supported by the 2010 Hannam University Research Fund.
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(= the field of real numbers), we consider the Genocchi polynomials Gn(x) as follows:

G(x, t) =
2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
. (2)

Note that Gn(x) =
∑n

k=0

(
n
k

)
Gkxn−k. In the special case x = 0, we define Gn(0) = Gn.

The Euler numbers are defined by the following generating function

F (t) =
2

et + 1
=

∞∑
n=0

En
tn

n!
, (|t| < π), cf. [2, 3], (3)

where we use the technique method notation by replacing En by En symbolically. For x ∈ R (= the
field of real numbers), we consider the Euler polynomials En(x) as follows:

F (x, t) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
. (4)

2. (h, q)-extension of q-analogue of Genocchi polynomials

Let q be a complex number with |q| < 1. The q-analogue of n is denoted by

[n]q =
1− qn

1− q
.

In [1], Kim introduced q-analogue of Euler numbers and polynomials. We consider the following
generating functions:

Fq(t) = [2]q
∞∑

n=0

(−1)nqne[n]qt =
∞∑

n=0

En,q
tn

n!
, (5)

and

Fq(x, t) = [2]q
∞∑

n=0

(−1)nqne[n+x]qt =
∞∑

n=0

En,q(x)
tn

n!
. (6)

We see that

lim
q→1

Fq(x, t) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, lim

q→1
Fq(t) =

2
et + 1

=
∞∑

n=0

En
tn

n!
.

T. Kim constructed q-analogue of Genocchi numbers and polynomials(see [1]). We introduce the
following generating functions:

Gq(t) = [2]qte
t

1−q

∞∑
n=0

(−1)n

1 + qn+1

(
1

1− q

)n
tn

n!
=

∞∑
n=0

Gn,q
tn

n!
, (7)

and

Gq(x, t) = [2]qqxte
t

1−q

∞∑
n=0

(−1)n

1 + qn+1
qnx

(
1

1− q

)n
tn

n!
=

∞∑
n=0

Gn,q(x)
tn

n!
, (8)

Note that

lim
q→1

Gq(x, t) =
2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
, lim

q→1
Gq(t) =

2t

et + 1
=

∞∑
n=0

Gn
tn

n!
.

We now construct a new (h, q)-extension of q-analogue of Genocchi polynomials G
(h)
n,q(x). (h, q)-

extension of q-analogue of Genocchi polynomials G
(h)
n,q(x) are defined by means of the generation

function

G(h)
q (t) = [2]qt

∞∑
n=0

(−1)nqnhe[n]qt =
∞∑

n=0

G(h)
n,q

tn

n!
, (9)
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and

G(h)
q (x, t) = [2]qt

∞∑
n=0

(−1)nq(n+x)he[n+x]qt =
∞∑

n=0

G(h)
n,q(x)

tn

n!
. (10)

Hence, we have the following remark.
Remark. For n ≥ 0, we have

(1) lim
q→1

G(h)
q (x, t) =

2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
.

(2) lim
q→1

G(h)
q (t) =

2t

et + 1
=

∞∑
n=0

Gn
tn

n!
.

(3) If h = 1, then G(h)
q (x, t) = Gq(x, t) and G(h)

q (t) = Gq(t).

(4) G(h)
n,q(0) = G(h)

n,q.

(5) lim
q→1

G(h)
n,q(x) = Gn(x) and lim

q→1
G(h)

n,q = Gn.

(6) If h = 1, then G(h)
n,q(x) = Gn,q(x) and G(h)

n,q = Gn,q.

By (10), we obtain

G(h)
q (x, t) = [2]qt

∞∑
m=0

(−1)mq(m+x)he[m+x]qt

= [2]q
∞∑

m=0

(−1)mq(m+x)h
∞∑

n=0

n[m + x]n−1
q

tn

n!

=
∞∑

n=0

(
[2]qn

(
1

1− q

)n−1 n−1∑

l=0

(
n− 1

l

)
(−1)l

1 + ql+h
q(l+h)x

)
tn

n!
.

Hence, we have the following theorem.

Theorem 1. For n ≥ 0, we have

G(h)
n,q(x) = [2]qn

(
1

1− q

)n−1 n−1∑

l=0

(
n− 1

l

)
(−1)l

1 + ql+h
q(l+h)x.

By definition of (h, q)-extension of q-analogue of Genocchi polynomials G
(h)
n,q(x), we obtain the

following corollary.

Corollary 2. For n ≥ 0, we have

G(h)
n,q = [2]qn

(
1

1− q

)n−1 n−1∑

l=0

(
n− 1

l

)
(−1)l

1 + ql+h
.

We obtain the first value of the (h, q)-extension of q-analogue of Genocchi numbers G
(h)
n,q :

G
(h)
0,q = 0, G

(h)
1,q =

1 + q

1 + qh
,

G
(h)
2,q = − 2qh(1 + q)

(1 + qh)(1 + q1+h)
,

G
(h)
3,q =

3qh(1 + q)(−1 + q1+h)
(1 + qh)(1 + q1+h)(1 + q2+h)

,

G
(h)
4,q = − 4qh(1 + q)(1− 2q1+h − 2q2+h + q3+2h)

(1 + qh)(1 + q1+h)(1 + q2+h)(1 + q3+h)
· · ·
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In [5], the (h, q)-Euler polynomials E
(h)
n,q(x) are defined by means of the generating function

F (h)
q (x, t) = [2]q

∞∑
n=0

(−1)nqhne[x+n]qt. (11)

Since

[2]q
∞∑

n=0

(−1)nqhneqx[n]qt =
∞∑

n=0

qnx
G

(h)
n+1,q

n + 1
tn

n!
,

we obtain

F (h)
q (x, t) = [2]q

∞∑
n=0

(−1)nqhne[n+x]qt = e[x]qt[2]q
∞∑

n=0

(−1)nqhneqx[n]qt

=
∞∑

n=0

(
n∑

k=0

(
n

k

)
[x]n−k

q qnx
G

(h)
n+1,q

n + 1

)
tn

n!
.

By using comparing coefficients
tn

n!
, we have the following theorem.

Theorem 3. For any positive integer n, we have

E(h)
n,q(x) =

n∑

k=0

(
n

k

)
[x]n−k

q qnx
G

(h)
n+1,q

n + 1
.

By (10), we obtain

∞∑
n=0

G(h)
n,q(x)

tn

n!
=

∞∑
n=0

(
[2]q
[2]qm

[m]n−1
q

m−1∑
a=0

(−1)aG
(h)
n,qm

(
x + a

m

))
tn

n!
for m odd.

Thus ue have the following theorem.

Theorem 4. Let m ∈ N and m odd. Then we have

G(h)
n,q(x) =

[2]q
[2]qm

[m]n−1
q

m−1∑
a=0

(−1)aG
(h)
n,qm

(
x + a

m

)
=

n∑

k=0

(
n

k

)
qxkq(h−1)xG(h)

n,q[x]n−k
q .

3. Distribution and Structure of the Zeros

In order to study G
(h)
n,q(x), we must understand the structure of the(h, q)-extension of q-analogue

of Genocchi polynomials G
(h)
n,q(x). By numerical investigation, we examine properties of the figures,

look for patterns, and make open problems. Here is the list of the first the (h, q)-Euler polynomials
G

(h)
n,q(x).

G
(h)
1,q (x) =

qhx(1 + q)
1 + qh

,

G
(h)
2,q (x) = −2(1 + q)(qhx − q(1+h)x + q1+h+hx − qh+(1+h)x)

(−1 + q)(1 + qh)(1 + q1+h)
, · · ·

We investigate the beautiful zeros of the G
(h)
n,q(x) by using a computer. We plot the zeros of the(h, q)-

extension of q-analogue of Genocchi polynomials G
(2)
n,q(x) for n = 10, 20, 30, 60, q = 1

5 , and x ∈ C.
(Figure 1). We plot the zeros of the G

(h)
n,q(x) for n = 40, q = 1

5 , h = 2, 3, 4, 5, and x ∈ C. (Figures
2, 3, 4, and 5). We observe a remarkably regular structure of the complex roots of G

(h)
n,q(x). We

hope to verify a remarkably regular structure of the complex roots of the G
(h)
n,q(x)(Table 1). Next,

we calculate an approximate solution satisfying G
(h)
n,q(x), x ∈ R. The results are given in Table 2.
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Figure 1: Zeros of G
(2)
n,q(x) for n = 10, 20, 30, 60, q = 1/5

Table 1. Numbers of real and complex zeros of G
(h)
n,q(x)

h = 2 h = 3
degree n real zeros complex zeros real zeros complex zeros

2 1 0 1 0

3 2 0 2 0

4 1 2 1 2

5 2 2 2 2

6 1 4 1 4

7 2 4 2 4

8 1 6 1 6

9 2 6 2 6

10 1 8 1 8

11 2 8 2 8
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Figure 2: Zeros of G
(2)
40,q(x)
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Figure 3: Zeros ofG(3)
40,q(x)
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Figure 4: Zeros of G
(4)
40,q(x)
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Figure 5: Zeros of G
(5)
40,q(x)

Table 2. Approximate solutions of G
(h)
n,1/5(x) = 0, x ∈ R

n h = 2 h = 3

2 0.0194183 0.00395756

3 -0.0865271, 0.109903 -0.0419744, 0.0467265

4 0.210809 0.112746

5 -0.172576, 0.303527 -0.125933, 0.181708

6 0.38639 0.247597

7 -0.211514, 0.46049 -0.175576, 0.308997

8 0.527205 0.365857

9 -0.230443, 0.587741 -0.205166, 0.418522

10 0.643079 0.467428

11 -0.2358, 0.694006 -0.223993, 0.512998

Figure 6 presents the distribution of real zeros of G
(2)
n,1/5(x) for 11 ≤ n ≤ 50.
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Figure 6: Plot of real zeros of G

(2)
n,1/5(x), 11 ≤ n ≤ 50

4. Directions for Further Research

In general, how many roots does G
(h)
n,q(x) have ? Prove or disprove: G

(h)
n,q(x) has n− 1 distinct

solutions. Find the numbers of complex zeros C
G

(h)
n,q(x)

of G
(h)
n,q(x), Im(x) 6= 0. Prove or give a

counterexample: Conjecture: Since n − 1 is the degree of the polynomial G
(h)
n,q(x), the number of

real zeros R
G

(h)
n,q(x)

lying on the real plane Im(x) = 0 is then R
G

(h)
n,q(x)

= n − 1 − C
G

(h)
n,q(x)

, where
C

G
(h)
n,q(x)

denotes complex zeros. See Table 1 for tabulated values of R
G

(h)
n,q(x)

and C
G

(h)
n,q(x)

. Find
the equation of envelope curves bounding the real zeros lying on the plane, and the equation of a
trajectory curve running through the complex zeros on any one of the arcs. In Figures 1, 2, 3, 4,
and 5, G

(h)
n,q(x), x ∈ C, has Im(x) = 0 reflection symmetry. This translates to the following open

problem. Prove or disprove: G
(h)
n,q(x), x ∈ C, has Im(x) = 0 reflection symmetry. These figures give

mathematicians an unbounded capacity to create visual mathematical investigations of the behavior
of the roots of the G

(h)
n,q(x). Moreover, it is possible to create a new mathematical ideas and analyze

them in ways that generally are not possible by hand. The author has no doubt that investigation
along this line will lead to a new approach employing numerical method in the field of research of
G

(h)
n,q(x) to appear in mathematics and physics. For related topics the interested reader is referred

to [3], [4], [5].
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1.Introduction 

 

 

By a lacunary sequence ( )rk=θ , ,...,2,1,0=r where 0=ok , we shall mean an 

increasing sequence of non-negative integers ∞→∞→−= − raskkh rrr 1 . The intervals 

determined by θ  are denoted by ],( 1 rrr kkI −=  and the ratio 
1−r

r

k

k
 will be denoted by rq . The 

space of lacunary strongly convergent sequence θN  was defined by Freedman et al. [3] as 

follows: 

( )








=−== ∑
∈

∞→

rIi

i

r

rk LsomeforLx
h

xxN ,0
1

lim:θ . 

 

Recall [4,5] that an Orlicz function is a function ),0[),0[: ∞→∞M  which is 

continuous, non-decreasing an convex with ( ) ( ) 0,00 >= xMM  for 0>x  and ( ) ∞→xM  as 

∞→x . If convexity of M  is replaced by subadditivity, then this function is called a modulus 

function (see, Ruckle [11]). 

 

An Orlicz function M  is said to satisfy −∆ 2 condition for all values of u , if there 

exists a constant 0>T , such that ( ) ( ) ( )02 ≥≤ uuTMuM . The −∆ 2 condition is equivalent 

to ( ) ( )uTLMLuM ≤ , for all values of u  and for 1>L . 
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An Orlicz function M  can be always be represented (see [5]) in the integral form 

( ) ( )dttqxM

x

∫=
0

, where q  known as the kernel of M , is right differentiable for 0≥t , 

( ) 0>tq  for 0>t , q  is non-decreasing and ( ) ∞→tq  as ∞→t . 

 

Remark. An Orlicz function satisfies the inequality ( ) ( )uMuM λλ ≤  for all λ  with 

10 << λ .   

 

Lindenstrauss and Tzafriri [6] used the idea of  Orlicz functions to consruct Orlicz 

sequence space, 

 

( )












>∞<









== ∑

i

i

iM somefor
x

Mxxl 0,: ρ
ρ

. 

The sequence space Ml  with the norm 

 













≤









>= ∑

i

ix
Mx 1:0inf

ρ
ρ  

becomes a Banach space which is called an Orlicz Sequence Space. The space Ml  is closely 

related to the space pl , which is an Orlicz sequence space with ( ) pxxM =  for ∞<≤ p1 . 

 

 Recently, Esi [1] have introduced and examined some properties of three sequence 

spaces defined by using an Orlicz function, which generalized the well-known Orlicz 

sequence space Ml  and strongly summable sequence spaces [ ]pC ,1, , [ ]
o

pC ,1,  and [ ]∞pC ,1, . 

It may be noted here that the space of strongly summable sequences were discussed by 

Maddox [7]. 

 

 A generalization of Orlicz sequence space is due to Woo [13]. Let ( )iMM =  be a 

sequence of  Orlicz functions. Define the sequence space ( )iMl  by  

 

 ( ) ( )












>∞<









== ∑

i

i

iii somefor
x

MxxMl 0,: ρ
ρ

 

and equip this space with the norm 

 













≤









>= ∑

i

i

i

x
Mx 1:0inf

ρ
ρ . 

The space ( )iMl  is a Banach space and is called a modular sequence space. The space ( )iMl  

also generalizes the concept of modulared sequence space introduced earlier by Nakano [9], 

who considered the space ( )iMl  when ( ) ixxM i

α= , where ∞<≤ iα1  for 1≥i . 

 

 Recently, Esi and Et [2] have introduced and examined some properties of three 

sequence spaces defined by using a sequence of Orlicz functions, which generalized the well-

known Orlicz sequence space Ml  and strongly invariant −A summable sequence spaces 
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[ ]pA ,σ , [ ]
o

pA ,σ  and [ ]
∞

pA ,σ . It may be noted here that the space of strongly invariant 

−A summable sequences were discussed by Savaş [12]. 

 

 A sequence space E  is said to be solid (or normal) if ( ) Exii ∈λ , whenever ( ) Exi ∈  

for all sequences ( )iλ  of scalars such that 1≤iλ  for all Ni ∈ . 

 

 A sequence space E  is said to be monotone if E  contains the canonical preimages of 

all its step spaces. 

 

 Lemma. A sequence space E  is solid implies E  is monotone. 

  

Let ( )
1, ≥

=
kiikaA  be an infinite matrix of complex numbers. We write ( )( )xAAx im=  if 

( ) ∑
≥

+=
1k

mkikim xaxA  converges for each mi, . (This assumption is made throughout the paper). 

 

Let ( )iMM =  be a sequence of Orlicz functions and ( )ipp =  be any sequence of 

strictly positive real numbers. Now we define the following sequence spaces. 

 

( ) ( )
( )

,,0,,0lim:,, 1














>=






















 −
== ∑

∈

− Lsomeforminuniformly
LxA

MhxxpAMw

i

r

p

Ii

im

irrk ρ
ρ

θ

 

( ) ( )
( )














>=























== ∑

∈

− 0,,0lim:,, 1 ρ
ρ

θ someforminuniformly
xA

MhxxpAMw

i

r

p

Ii

im

irrko

and 

 ( ) ( )
( )














>∞<























== ∑

∈

−
∞ 0,sup:,, 1

, ρ
ρ

θ somefor
xA

MhxxpAMw

i

r

p

Ii

im

irmrk
. 

 

 If ∈x ( )pAMw ,,θ , we said that the sequence x  is lacunary strongly almost 

−A convergent to the number L  with respect to the sequence of Orlicz functions ( )iMM = . 

 

Some sequence spaces are obtained by specializing ( )rk=θ , ( )iMM = , ( )
1, ≥

=
kiikaA  

m  and ( )ipp = . Some examples are below: 

 

 If we take 1=ip  for all Ni ∈ , then we write the spaces ( )AMw ,θ , ( )AMwo ,θ  and 

( )AMw ,θ
∞  in place of the spaces ( )pAMw ,,θ , ( )pAMwo ,,θ  and ( )pAMw ,,θ

∞ . 

 

When IA =  unit matrix, the spaces ( )pAMw ,,θ , ( )pAMwo ,,θ  and ( )pAMw ,,θ
∞  

reduce the spaces ( )pMw ,θ , ( )pMwo ,θ  and ( )pMw ,θ
∞  respectively, which are defined as  
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( ) ( ) ,,0,,0lim:, 1














>=






















 −
== ∑

∈

+− Lsomeforminuniformly
Lx

MhxxpMw

i

r

p

Ii

mi

irrk ρ
ρ

θ

 

( ) ( )













>=























== ∑

∈

+− 0,,0lim:, 1 ρ
ρ

θ someforminuniformly
x

MhxxpMw

i

r

p

Ii

mi

irrko
 

and 

( ) ( )













>∞<























== ∑

∈

+−
∞ 0,sup:, 1

, ρ
ρ

θ somefor
x

MhxxpMw

i

r

p

Ii

mi

irmrk
. 

If ∈x ( )pMw ,θ , we said that the sequence x  is lacunary strongly almost convergent 

to the number L  with respect to the sequence of Orlicz functions ( )iMM = . 

 

If ( )r2=θ , MM i =  for all Ni ∈ , IA =  unit matrix and 0=m , the spaces the 

spaces ( )pAMw ,,θ , ( )pAMwo ,,θ  and ( )pAMw ,,θ
∞  reduce to ( )pMw , , ( )pMwo ,  and 

( )pMw ,∞  which were defined and studied by Parashar and Choudhary [10]. 

 

If ( )r2=θ , ( ) xxM i =  for all Ni ∈ , IA =  unit matrix and 0=m , the spaces the 

spaces ( )pAMw ,,θ , ( )pAMwo ,,θ  and ( )pAMw ,,θ
∞  reduce to [ ]pC ,1, , [ ]

o
pC ,1,  and [ ]∞pC ,1,  

which were defined and studied by Maddox [7]. 

 

 

2. Main Results 

 

We have 

 

Theorem 2.1. For any sequence of Orlicz functions ( )iMM =  and a bounded 

sequence ( )ipp =  strictly positive real numbers, ( )pAMw ,,θ , ( )pAMwo ,,θ  and 

( )pAMw ,,θ
∞  are linear spaces over the set of complex numbers C. 

 

Proof. We shall prove the result only for ( )pAMwo ,,θ . The others can be treated 

similarly. Let ∈yx, ( )pAMwo ,,θ  and ∈µλ, C. In order to prove the result we need to find 

some 3ρ   such that  

 

( )
minuniformly

yxA
Mh

i

r

p

Ii

im

irr ,0lim
3

1 =





















 +
∑
∈

−

ρ

µλ
. 

 

Since ∈yx, ( )pAMwo ,,θ , there exist 01 >ρ  and 02 >ρ   such that  
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( )
minuniformly

xA
Mh

i

r

p

Ii

im

irr ,0lim
1

1 =






















∑
∈

−

ρ
 

and 

 
( )

minuniformly
yA

Mh

i

r

p

Ii

im

irr ,0lim
2

1 =






















∑
∈

−

ρ
. 

 

Define, ( )213 2,2max ρµρλρ = . Since iM  is non-decreasing and convex for all Ni ∈ , 

 

( ) i

r

p

Ii

im

ir

yxA
Mh ∑

∈

−






















 +

3

1

ρ

µλ
 

( ) ( ) ( ) ( ) i

r

i

i

r

p

Ii

im

i

im

i

p

r

p

Ii

imim

ir

yA
M

xA
Mh

yAxA
Mh ∑∑

∈

−−

∈

−























+









≤























+≤

21

1

33

1 2
ρρρ

µ

ρ

λ
 

 

( ) ( )
0

2

1

1

1 →






















+























≤ ∑∑

∈

−

∈

−

i

r

i

r

p

Ii

im

ir

p

Ii

im

ir

yA
MKh

xA
MKh

ρρ
 as ∞→r , uniformly in  

 

m , where ( ) ∞<== −
ii

H
pHK sup,2,1max 1 . Therefore ∈+ yx µλ ( )pAMwo ,,θ . 

 

 Theorem 2.2. For any sequence of Orlicz functions ( )iMM =  and a bounded 

sequence ( )ipp =  strictly positive real numbers,  ( )pAMwo ,,θ  is a paranormed linear space, 

paranormed by 

 

( )
( )



















=

=
≤





































= ∑

∈

−

,...2,1

,...2,1
,1:inf

1

1

m

rxA
Mhxf

Hp

Ii

im

ir
H

p i

r

r

ρ
ρ  

 

where ( )ii pH sup,1max= . 

 

 Proof. It is easy to see that ( ) ( )xfxf −= . Since ( ) 00 =iM  for all Ni ∈ , we get 

0inf =








H

pr

ρ  for 0=x . Conversely, suppose that ( ) 0=xf , then 

( )
0

,...2,1

,...2,1
,1:inf

1

1 =



















=

=
≤





































∑
∈

−

m

rxA
Mh

Hp

Ii

im

ir
H

p i

r

r

ρ
ρ . 

This implies that for a given 0>ε , there exists some ερ  ( )ερε <<0  such that 
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( )
1

1

1 ≤




































∑
∈

−

Hp

Ii

im

ir

i

r

xA
Mh

ερ
. 

Thus 

( )
≤





































∑
∈

−

Hp

Ii

im

ir

i

r

xA
Mh

1

1

ε

( )
1

1

1 ≤




































∑
∈

−

Hp

Ii

im

ir

i

r

xA
Mh

ερ
  for each mandr . 

 

Suppose that 0≠
jkx  for some j . This implies that ( ) 0≠

jkim xA  for some j . Let 0→ε . 

Then,   
( )

∞→
ε

jkim xA
. It follows that 

( )
∞→

















































∑
∈

−

Hp

Ii

kim

ir

i

r

j
xA

Mh

1

1

ε
, which is 

contradiction. Therefore 0=
jkx  for some j . 

Next let 01 �ρ  and 02 �ρ  be such that 

( )
1

1

1 ≤






















∑
∈

−

k

r

p

im

i

Ii

r

xA
Mh

ρ
 

and  

                      
( )

1
2

1 ≤






















∑
∈

−

k

r

p

im

i

Ii

r

yA
Mh

ρ
. 

 

Let 21 ρρρ += . Then we have 

 

 
( ) ( ) k

r

k

r

p

im

Ii

r

Hp

im

i

Ii

r

xA
Mh

yxA
Mh
































+
≤






















 +
∑∑
∈

−

∈

−

1

1

21

11

ρρρ

ρ

ρ
 

 

+ 
( ) k

r

p

im

i

Ii

r

H
yA

Mh































+
∑
∈

−

2

1

21

1

ρρρ

ρ
1≤ . 

 

Since the s'ρ  are non-negative, we have 

( )
( )



















=

=
≤




































 +
=+ ∑

∈

−

,...2,1

,...2,1
,1:inf

1

1

m

ryxA
Mhyxf

Hp

Ii

im

ir
H

p i

r

r

ρ
ρ   

ESI, GOKHAN: LACUNARY STRONG ALMOST A-CONVERGENCE858



 7 

 

( )



















=

=
≤





































≤ ∑

∈

−

,...2,1

,...2,1
,1:inf

1

1

1

1
m

rxA
Mh

Hp

Ii

im

ir
H

p i

r

r

ρ
ρ

( )



















=

=
≤





































+ ∑

∈

−

,...2,1

,...2,1
,1:inf

1

2

1

2
m

ryA
Mh

Hp

Ii

im

ir
H

p i

r

r

ρ
ρ  

( ) ( )yfxf += . 

 

Finally, we prove scalar multiplication is continuous. Let λ be any complex number. 

By definition,  

( )
( )



















=

=
≤





































= ∑

∈

−

,...2,1

,...2,1
,1:inf

1

1

m

rxA
Mhxf

Hp

Ii

im

ir
H

p i

r

r

ρ

λ
ρλ . 

Then,  

 ( ) ( )
( )



















=

=
≤





































= ∑

∈

−

,...2,1

,...2,1
,1:inf

1

1

m

r

t

xA
Mhtxf

Hp

Ii

im

ir
H

p
i

r

r λ
λλ  where 

1−
= λρt . 

Since ( )Hpr λλ ,1max≤  ( )rr pH sup= , we have 

( ) ( )H
H

xf

1

,1max λλ ≤
( )



















=

=
≤





































∑
∈

−

,...2,1

,...2,1
,1:inf

1

1

m

r

t

xA
Mht

Hp

Ii

im

ir
H

p i

r

r λ
 which 

converges to zero as x  converges to zero in ( )pAMwo ,,θ . Now suppose that 0→nλ  and x  

is fixed in ( )pAMwo ,,θ . For arbitrary 0>ε ,  let R  be a positive integer such that 

 

( ) H
p

Ii

im

ir

i

r

xA
Mh 








<























∑
∈

−

2

1 ε

ρ

λ
, for some Rr >> ,0ρ  and all Nm ∈ . 

 

This implies that 

 

( )
2

1

1 ε

ρ

λ
<





































∑
∈

−

Hp

Ii

im

ir

i

r

xA
Mh  , for some Rr >> ,0ρ  and all Nm ∈ . 

 

 Let 10 << λ . For all Ni ∈ , using the convexity of iM , for Rr >  and all Nm ∈ , we 

get  
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( ) ( ) H
p

Ii

im

ir

p

Ii

im

ir

i

r

i

r

xA
Mh

xA
Mh 








<























<























∑∑
∈

−

∈

−

2

11 ε

ρ
λ

ρ

λ
. 

Since iM  is continuous everywhere in ),0[ ∞  for all Ni ∈ , then for Rr ≤ , 

 

( )
( ) i

r

p

Ii

im

ir

sxA
Mhsg ∑

∈

−























=

ρ
1 is continuous at zero. So there is 10 << δ  such that 

( )
H

sg 







<

2

ε
 for δ<< s0 . Let K  be such that δλ <n  for Kn > . Then for Kn > , Rr ≤  

and all Nm ∈ ,  

( )
2

1

1 ε

ρ

λ
<





































∑
∈

−

Hp

Ii

knim

ir

i

r

xA
Mh . 

Thus 

 

 
( )

ε
ρ

λ
<





































∑
∈

−

Hp

Ii

knim

ir

i

r

xA
Mh

1

1 , for Kn >  and all r  and m , so that ( ) 0→xf λ   

 

as 0→λ . This completes the proof. 

 

 

Theorem 2.3. For any sequences of Orlicz functions ( )iMM =  and ( )iNN =  which 

satisfies the −∆ 2 condition for all Ni ∈  and a bounded sequence ( )ipp =  strictly positive 

real numbers,  we have  ( ) ( )pAMoNwpAMw ,,,, θθ ⊂ . 

 

Proof. Let ∈x ( )pAMw ,,θ . Then there exists 0>ρ  such that  

( )
.,,,01 Lsomeforminuniformlyras

LxA
Mh

i

r

p

Ii

im

ir ∞→→





















 −
∑
∈

−

ρ
 

Let 0>ε  and choose δ with 10 << δ  such that ( ) ε<uM i  for δ≤≤ u0  and all Ni ∈ . Let  

 

( )









 −
=

ρ

LxA
MB

im

iim   

and let  

( )[ ] ( )[ ] ( )[ ] i

im

r

i

im

r

i

r

p

B

Ii
imir

p

B

Ii
imir

p

Ii

imir BNhBNhBNh ∑∑∑
>

∈

−

≤

∈

−

∈

− +=

δδ

111 . 

By the Remark, we have 
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( )[ ] ( )( ) ( ) ( )( ) ( ) i

im

r

i

im

r

i

im

r

p

B

Ii
imr

H

i

p

B

Ii
imr

H

i

p

B

Ii
imir BhNBhNBNh ∑∑∑

≤

∈

−

≤

∈

−

≤

∈

− ≤≤

δδδ

111 21   …(1) 

 

where ∞<= ii pH sup . For δ>imB  

 

δδ
imim

im

BB
B +≤< 1 , 

since iN  is non-decreasing and convex for all Ni ∈ , so 

 

( ) ( ) 







+<








+<

δδ
im

ii

im

iimi

B
NN

B
NBN 2

2

1
2

2

1
1 . 

 

Since iN  satisfies −∆ 2 condition for all Ni ∈ , so 

 

( ) ( ) ( ) ( )22
2

1
2

2

1
i

im

i

im

i

im

imi N
B

TN
B

TN
B

TBN
δδδ

=+< . 

Hence 

 ( )[ ] ( ) ( ) i

im

r

i

im

r

p

B

Ii
imr

H

i

p

B

Ii
imir BhN

T
BNh ∑∑

>

∈

−

>

∈

−








≤

δδ

δ
11 2,1max                                               …(2)                             

 

where ∞<= ii pH sup . By (1) and (2), we have ∈x ( )pAMoNw ,,θ . Thus 

( ) ( )pAMoNwpAMw ,,,, θθ ⊂ . 

 

 By using the method of the proof of Theorem 2.3. it is not hard to see that 

( ) ( )pAMoNwpAMw oo ,,,, θθ ⊂  and ( ) ( )pAMoNwpAMw ,,,, θθ
∞∞ ⊂ . 

 

 Taking ( ) xxM i =  for all Ni ∈  in Theorem 2.3. we have the following result. 

 

Corollary 2.4. For any sequence of Orlicz functions ( )iMM =  which satisfies the 

−∆ 2 condition for all Ni ∈  and a bounded sequence ( )ipp =  strictly positive real numbers,  

we have  ( ) ( )pAMwpAw ,,, θθ ⊂ , ( ) ( )pAMwpAw oo ,,, θθ ⊂  and ( ) ( )pAMwpAw ,,, θθ
∞∞ ⊂ . 

 

In the following  theorem, we prove the inclusions ( ) ( )pAMwpAMw ,,,, θ⊂  and 

( ) ( )pAMwpAMw ,,,, ⊂θ  for any sequence of Orlicz functions ( )iMM =  under certain 

restrictions on lacunary sequence ( )rk=θ . 

 

Theorem 2.5. Let ( )iMM =  be any sequence of Orlicz functions. 

 

(a) Let ( )rk=θ  be a lacunary sequence with 1inflim >rr q . Then  
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( ) ( )pAMwpAMw ,,,, θ⊂ ,  

where  

( ) ( )
( )

.,0,,0lim:,,
1

1














>=






















 −
== ∑

=

−
Lsomeforminuniformly

LxA
MnxxpAMw

ip
n

i

im

ink ρ
ρ

 

(b) Let ( )rk=θ  be a lacunary sequence with ∞<rr qsuplim . Then 

( ) ( )pAMwpAMw ,,,, ⊂θ . 

 

Proof. (a). Suppose that 1inflim >rr q . Then there exists 0>δ  such that 

δ+≥=
−

1
1r

r

r
k

k
q  for all 1≥r . Then, for ∈x ( )pAMw ,, , we write 

 

( )
i

r

p

Ii

im

irmr

xA
MhC ∑

∈

−


























=

ρ
1

,  

 

          
( ) ( ) i

r
i

r

p
i

i

im

ir

p
i

i

im

ir

LxA
Mh

LxA
Mh ∑∑

−

=

−

=

−






















 −
−






















 −
=

1

1

1

1

1

ρρ
 

 

          
( ) ( )




































 −
−



































 −
= ∑∑

−

=

−
−

−
−

=

−−

i
r

i
r

p
i

i

im

irrr

p
i

i

im

irrr

LxA
Mkhk

LxA
Mkhk

1

1

1

1

1

1

1

11

ρρ
. 

 

Since 1−−= rrr kkh , we have 
δ

δ+
≤

1

r

r

h

k
 and 

δ

11 ≤−

r

r

h

k
. 

 The terms 
( ) ( ) i

r
i

r

p
i

i

im

ir

p
i

i

im

ir

LxA
Mkand

LxA
Mk ∑∑

−

=

−
−

=

−






















 −






















 − 1

1

1

1

1

1

ρρ
 both converge 

to zero uniformly in m  and it follows that 0, →mrC  as ∞→r , uniformly in m . That is,  

 

∈x ( )pAMw ,,θ . Thus ( ) ( )pAMwpAMw ,,,, θ⊂ . 

 

 (b). Suppose that ∞<rr qsuplim . Then, there exists 0>B  such that Bqr <  for all 

1≥r . Let ∈x ( )pAMw ,,θ  and 0>ε . Then there exists 0>R  such that  for every Rj ≥  

and all Nm ∈ , 

 

( )
ε

ρ
<


























= ∑

∈

−

i

j

p

Ii

im

ijmj

xA
MhC 1

, . 
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We can also find 0>C  such that CC mj <,  for all Nj ∈ .  Now let n  be any integer with 

rr knk ≤<−1 , where Rr > . Then, for all Nm ∈  

 

( ) ( ) i
r

i p
k

i

im

ir

p
n

i

im

i

LxA
Mk

LxA
Mn ∑∑

=

−
−

=

−






















 −
≤






















 −

1

1

1

1

1

ρρ
 

 

( ) ( ) ( )



































 −
++






















 −
+






















 −
= ∑∑∑

∈∈∈

−
−

i

r

ii p

Ii

im

i

p

Ii

im

i

p

Ii

im

ir

LxA
M

LxA
M

LxA
Mk

ρρρ
...

21

1

1

 

( )
( ) ( )

( ) ii p

Ii

im

ir

p

Ii

im

ir

LxA
Mkkkkk

LxA
Mkkk ∑∑

∈

−−
−

∈

−−
−






















 −
−−+






















 −
=

21

1

12

1

112

1

1

1

11
ρρ

 

 

( ) ( )
( ) i

R

p

Ii

im

iRRrRR

LxA
Mkkkkk ∑

∈

−

−
−
−−






















 −
−−++

ρ
1

1

1

11...  

 

( ) ( )
( ) i

r

p

Ii

im

irrrrr

LxA
Mkkkkk ∑

∈

−

−
−
−−






















 −
−−++

ρ
1

1

1

11...  

( ) ++−+= −
−

−
− ...,2

1

112,1

1

11 mrmr CkkkCkk ( ) mRrRR Ckkk ,

1

11

−
−−− ( ) mrrrr Ckkk ,

1

11... −
−−−++  

 

( ) ( ) ( )
mjRjrRrmjjrR CkkkCkk ,

1

1,1

1

1 supsup ≥
−
−≥

−
− −+≤  

 

BkCk rR ε+< −
−
1

1 . 

 

Since ∞→−1rk  as ∞→n , it follows that 

 

( )
0

1

1 →





















 −
∑

=

−

ip
n

i

im

i

LxA
Mn

ρ
, uniformly in m . Therefore ∈x ( )pAMw ,, . This  

 

completes the proof. 

 

 Theorem 2.6. Let ( )iMM =  be any sequence of Orlicz functions and let ( )rk=θ  be a 

lacunary sequence with ≤< rr qinflim1 ∞<rr qsuplim . Then ( ) ( )pAMwpAMw ,,,, θ= . 

 

 Proof. It follows from Theorem 2.5.(a) and (b). 

 

 Theorem 2.7. Let ( )iMM =  be any sequence of Orlicz functions. The space 

( )pAMw ,,θ
∞  is solid. 
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 Proof. Let ∈x ( )pAMw ,,θ
∞ . Then, for some 0>ρ  

 

( )
∞<























∑
∈

−

i

r

p

Ii

im

irmr

xA
Mh

ρ
1

,sup .               …(3) 

Let ( )iλ  be a sequence of scalars with 1≤iλ  for all Ni ∈ . Then the result follows from (3), 

Remark  and the following inequality 

 

 
( ) ( ) ( ) i

r

i

r

i

r

p

Ii

im

ir

p

Ii

im

iir

p

Ii

im

ir

xA
Mh

xA
Mh

xA
Mh ∑∑∑

∈

−

∈

−

∈

−























≤























≤
























ρρ
λ

ρ

λ
111 . 

 

 The following result follows from Theorem 2.7. and the Lemma . 

 

 Corollary 2.8. Let ( )iMM =  be any sequence of Orlicz functions. The space 

( )pAMw ,,θ
∞  is monotone. 

 

 Theorem 2.9. Let ( )iMM =  be any sequence of Orlicz functions and let ii qp ≤<0  

and 








i

i

p

q
 be bounded. Then ( ) ( )pAMwqAMw ,,,, θθ ⊂ . 

 Proof. Let ∈x ( )qAMw ,,θ . Write 
( )

iq

im

imi

xA
Mw


























=

ρ
, and 

i

i

i
p

q
=λ  so that 

10 ≤<< iλλ  (λ constant) for each Ni ∈ . We define the sequences ( )miu ,  and ( )miv ,  as 

follows: 

 Let mimi wu ,, =  and 0, =miv  if 1, ≥miw  and let 0, =miu  and mimi wv ,, =  if 1, <miw . 

Then, it is clear that for all Ni ∈  we have mimimi vuw ,,, +=  and iii

mimimi vuw
λλλ
,,, += . Now it 

follows that mimimi wuu i

,,, ≤≤λ
 and λλ

mimi vv i

,, ≤ . Therefore 

 

( ) ∑∑∑∑
∈

−

∈

−

∈

−

∈

− +≤+=
rrr

ii

r

i

Ii

mir

Ii

mir

Ii

mimir

Ii

mir vhwhvuhwh
λλλλ
,

1

,

1

,,

1

,

1 . 

 

Since 10 << λ , for each 1≥r , by using Hölder’s Inequality, we have 

 

 ( ) ( ) ( )[ ] ( )[ ]
λ

λλ

λ

λλλλλ

−

∈

−−−

∈

−−−

∈

−

∈

−




























≤= ∑∑∑∑

1

1

1
11

1

,

111

,

1

,

1

rrrr Ii

r

Ii

mirr

Ii

mir

Ii

mir hvhhvhvh  

      

λ











= ∑

∈

−

rIi

mir vh ,

1  

and thus 

 +≤ ∑∑
∈

−

∈

−

rr

i

Ii

mir

Ii

mir whwh ,

1

,

1 λ

λ











∑
∈

−

rIi

mir vh ,

1 . 
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Therefore ∈x ( )pAMw ,,θ . 

 

 We have the following result which follows from the above result. 

 

 Corollary 2.10. Let ( )iMM =  be any sequence of Orlicz functions. 

 (a). Let 1inf0 ≤≤< iii pp , then ( ) ( ).,,, AMwpAMw θθ ⊂ . 

 (b). Let ∞<≤≤ iii pp sup1 , then ( ) ( ).,, AMwAMw θθ ⊂ , 

 

where 

 

( ) ( )
( )













>=








 −
== ∑

∈

− Lsomeforminuniformly
LxA

MhxxAMw
rIi

im

irrk ,0,,0lim:, 1 ρ
ρ

θ . 
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