

Journal of

Computational

Analysis and

Applications

Journal of Computational Analysis and Applications ISSNno.'s:1521-1398 PRINT,1572-9206 ONLINE SCOPE OF THE JOURNAL A quarterly international publication of Eudoxus Press, LLC Editor in Chief: George Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240, U.S.A ganastss@memphis.edu http://www.msci.memphis.edu/~ganastss/jocaaa
The main purpose of "J.Computational Analysis and Applications" is to publish high quality research articles from all subareas of Computational Mathematical Analysis and its many potential applications and connections to other areas of Mathematical Sciences. Any paper whose approach and proofs are computational,using methods from Mathematical Analysis in the broadest sense is suitable and welcome for consideration in our journal, except from Applied Numerical Analysis articles.Also plain word articles without formulas and proofs are excluded. The list of possibly connected mathematical areas with this publication includes, but is not restricted to: Applied Analysis, Applied Functional Analysis, Approximation Theory, Asymptotic Analysis, Difference Equations, Differential Equations, Partial Differential Equations, Fourier Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities, Integral Equations, Measure Theory, Moment Theory, Neural Networks, Numerical Functional Analysis, Potential Theory, Probability Theory, Real and Complex Analysis, Signal Analysis, Special Functions, Splines, Stochastic Analysis, Stochastic Processes, Summability, Tomography, Wavelets, any combination of the above, e.t.c.
"J.Computational Analysis and Applications" is a peer-reviewed Journal. See at the end instructions for preparation and submission of articles to JoCAAA.

Webmaster:Ray Clapsadle

Journal of Computational Analysis and Applications(JoCAAA) is published by EUDOXUS PRESS,LLC,1424 Beaver Trail
Drive,Cordova,TN38016,USA, anastassioug@yahoo.com
http//:www.eudoxuspress.com.Annual Subscription Prices:For USA and Canada,Institutional:Print \$470,Electronic \$300,Print and Electronic $\$ 500$.Individual:Print $\$ 150$,Electronic $\$ 100$, Print \&Electronic \$200.For any other part of the world add $\$ 50$ more to the above prices for Print.No credit card payments.
Copyright©2010 by Eudoxus Press,LLCAll rights reserved.JoCAAA is printed in USA.
JoCAAA is reviewed and abstracted by AMS Mathematical Reviews,MATHSCI, and Zentralblaat MATH.
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in any form and by any means without the written permission of the publisher.It is only allowed to educators to Xerox articles for educational purposes. The publisher assumes no responsibility for the content of published papers

Editorial Board
 Associate Editors

1) George A. Anastassiou	20) Hrushikesh N.Mhaskar
Department of Mathematical Sciences	Department Of Mathematics
The University of Memphis	California State University
Memphis, TN 38152,U.S.A	Los Angeles, CA 90032
Tel.901-678-3144	626-914-7002
e-mail: ganastss@memphis.edu	e-mail: hmhaska@calstatela.edu
Approximation Theory, Real Analysis,	Orthogonal Polynomials,
Wavelets, Neural	Approximation Theory, Splines,
Networks, Probability,	Wavelets, Neural Networks
Inequalities.	
	21) M.Zuhair Nashed
2) J. Marshall Ash	Department Of Mathematics
Department of Mathematics	University of Central Florida
De Paul University	PO Box 161364
2219 North Kenmore Ave.	Orlando, FL 32816-1364
Chicago, IL 60614-3504	e-mail: znashed@mail.ucf.edu
773-325-4216	Inverse and Ill-Posed problems,
e-mail: mash@math.depaul.edu	Numerical Functional Analysis,
Real and Harmonic Analysis	Integral Equations,Optimization,
3) Mark J.Balas	
Department Head and Professor 22) Mubenga N.Nkashama	
Electrical and Computer Engineering	Department OF Mathematics
Dept.	University of Alabama at
College of Engineering	Birmingham
University of Wyoming	Birmingham, AL 35294-1170
1000 E. University Ave.	205-934-2154
Laramie, WY 82071	e-mail: nkashama@math.uab.edu
307-766-5599	Ordinary Differential Equations,
e-mail: mbalas@uwyo.edu	Partial Differential Equations
Control Theory, Nonlinear Systems,	
Neural Networks, Ordinary and	23) Charles E.M.Pearce
Partial Differential Equations,	Applied Mathematics Department
Functional Analysis and Operator	University of Adelaide
Theory	Adelaide 5005, Australia
	e-mail:
4) Drumi D.Bainov	cpearce@maths.adelaide.edu. au
Department of Mathematics	Stochastic Processes, Probability
Medical University of Sofia	Theory, Harmonic Analysis,
P.O.Box 45,1504 Sofia, Bulgaria	Measure Theory,
e-mail:	Special Functions, Inequalities
dbainov@mbox.pharmfac.acad.bg	
e-mail:drumibainov@yahoo.com	24) Josip E. Pecaric
Differential Equations/Inequalities	Faculty of Textile Technology University of Zagreb
5) Carlo Bardaro	Pierottijeva 6,10000
Dipartimento di Matematica e	Zagreb, Croatia
Informatica	e-mail: pecaric@hazu.hr
Universita di Perugia	Inequalities, Convexity
Via Vanvitelli 1	

```
06123 Perugia, ITALY
TEL+390755853822
+390755855034
FAX+390755855024
E-mail bardaro@unipg.it
Web site:
http://www.unipg.it/~bardaro/
Functional Analysis and
Approximation
Theory,Signal Analysis, Measure
Theory,
Real Analysis.
6) Jerry L.Bona
    Department of Mathematics
    The University of Illinois at
    Chicago
    851 S. Morgan St. CS 249
    Chicago, IL 60601
    e-mail:bona@math.uic.edu
    Partial Differential Equations,
    Fluid Dynamics
7) Luis A.Caffarelli
    Department of Mathematics
    The University of Texas at Austin
    Austin,Texas 78712-1082
    512-471-3160
    e-mail: caffarel@math.utexas.edu
    Partial Differential Equations
8) George Cybenko
    Thayer School of Engineering
    Dartmouth College
    8000 Cummings Hall,
    Hanover, NH 03755-8000
    603-646-3843 (x 3546
    Secr.)
    e-mail:
    george.cybenko@dartmouth.edu
    Approximation Theory and Neural
    Networks
9) Ding-Xuan Zhou
    Department Of Mathematics
    City University of Hong Kong
    83 Tat Chee Avenue
    Kowloon,Hong Kong
    852-2788 9708,Fax:852-2788 8561
    e-mail: mazhou@math.cityu.edu.hk
    Approximation Theory,
    Spline functions, Wavelets
10) Sever S.Dragomir
    School of Computer Science and
    Mathematics, Victoria University,
```

25) Svetlozar T.Rachev Department of Statistics and Applied Probability University of California at Santa Barbara,
Santa Barbara, CA 93106-3110
805-893-4869
e-mail: rachev@pstat.ucsb.edu
and Chair of Econometrics,
Statistics and Mathematical
Finance
School of Economics and
Business Engineering
University of Karlsruhe
Kollegium am Schloss, Bau
II,20.12, R210
Postfach 6980, D-76128,
Karlsruhe, GERMANY.
Tel +49-721-608-7535,
+49-721-608-2042(s)
Fax +49-721-608-3811
Zari. Rachev@wiwi.uni-karlsruhe.de Probability,Stochastic Processes and
Statistics,Financial Mathematics, Mathematical Economics.
26) Alexander G. Ramm Mathematics Department
Kansas State University Manhattan, KS 66506-2602 e-mail: ramm@math.ksu.edu Inverse and Ill-posed Problems, Scattering
Theory, Operator Theory, Theoretical Numerical Analysis, Wave Propagation, Signal Processing and Tomography

27) Ervin Y.Rodin

Department of Systems Science and Applied Mathematics Washington University, Campus Box 1040
One Brookings Dr., St.Louis, MO
63130-4899
314-935-6007
e-mail: rodin@rodin.wustl.edu
Systems Theory, Semantic
Control,
Partial Differential Equations, Calculus of
Variations,Optimization and

```
PO Box 14428,
Melbourne City,
MC 8001,AUSTRALIA
Tel. +61 3 9688 4437
Fax +61 3 9688 4050
sever@csm.vu.edu.au
Inequalities,Functional Analysis,
Numerical Analysis, Approximations,
Information Theory, Stochastics.
11) Saber N.Elaydi
    Department Of Mathematics
    Trinity University
    715 Stadium Dr.
    San Antonio,TX 78212-7200
    210-736-8246
    e-mail: selaydi@trinity.edu
    Ordinary Differential Equations,
    Difference Equations
12) Augustine O.Esogbue
    School of Industrial and Systems
    Engineering
    Georgia Institute of Technology
    Atlanta,GA 30332
    404-894-2323
    e-mail:
    augustine.esogbue@isye.gatech.edu
    Control Theory,Fuzzy sets,
    Mathematical Programming,
    Dynamic Programming,Optimization
```

13) Christodoulos A.Floudas
Department of Chemical Engineering
Princeton University
Princeton, NJ 08544-5263
609-258-4595 (x4619
assistant)
e-mail: floudas@titan.princeton.edu
OptimizationTheory\&Applications,
Global Optimization
14) J.A.Goldstein
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
901-678-3130
e-mail: jgoldste@memphis.edu
Partial Differential Equations,
Semigroups of Operators
15) H.H.Gonska
Department of Mathematics
University of Duisburg
Duisburg, D-47048

Artificial Intelligence, Operations Research, Math. Programming
28) T. E. Simos

Department of Computer
Science and Technology
Faculty of Sciences and Technology
University of Peloponnese
GR-221 00 Tripolis, Greece
Postal Address:
26 Menelaou St.
Anfithea - Paleon Faliron
GR-175 64 Athens, Greece
tsimos@mail.ariadne-t.gr
Numerical Analysis
29) I. P. Stavroulakis

Department of Mathematics
University of Ioannina 451-10 Ioannina, Greece ipstav@uoi.gr
Differential Equations
Phone +3 0651098283
30) Manfred Tasche

Department of Mathematics
University of Rostock
D-18051 Rostock, Germany
manfred.tasche@mathematik.uni-
rostock.de
Numerical Fourier
Analysis, Fourier Analysis,
Harmonic Analysis,Signal
Analysis,
Spectral
Methods, Wavelets, Splines,
Approximation Theory
31) Gilbert G.Walter

Department Of Mathematical
Sciences
University of Wisconsin-
Milwaukee, Box 413,
Milwaukee, WI 53201-0413
414-229-5077
e-mail: ggw@csd.uwm.edu
Distribution
Functions, Generalised Functions, Wavelets

32) Halbert White

Department of Economics
University of California at San
Diego

Germany

011-49-203-379-3542
e-mail:
gonska@mathematik.uni-duisburg.de Approximation Theory,
Computer Aided Geometric Design
16) Weimin Han

Department of Mathematics
University of Iowa
Iowa City, IA 52242-1419
319-335-0770
e-mail: whan@math.uiowa.edu
Numerical analysis, Finite element method,
Numerical PDE, Variational
inequalities,
Computational mechanics
17) Christian Houdre

School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332
404-894-4398
e-mail: houdre@math.gatech.edu
Probability, Mathematical
Statistics, Wavelets
18) V. Lakshmikantham

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901
e-mail: lakshmik@fit.edu
Ordinary and Partial Differential
Equations,
Hybrid Systems, Nonlinear Analysis

```
19) Burkhard Lenze
    Fachbereich Informatik
    Fachhochschule Dortmund
    University of Applied Sciences
    Postfach 105018
    D-44047 Dortmund, Germany
    e-mail: lenze@fh-dortmund.de
    Real Networks,
    Fourier Analysis,Approximation
    Theory
```

36) Ahmed I. Zayed

Department Of Mathematical Sciences
DePaul University
2320 N. Kenmore Ave.
Chicago, IL 60614-3250
773-325-7808
e-mail: azayed@condor.depaul.edu

La Jolla, CA 92093-0508
619-534-3502
e-mail: hwhite@econ.ucsd.edu
Econometric Theory,Approximation
Theory,
Neural Networks
33) Xin-long zhou

Fachbereich
Mathematik, Fachgebiet Informatik
Gerhard-Mercator-Universitat
Duisburg
Lotharstr. 65, D-47048
Duisburg, Germany
e-mail:
Xzhou@mathematik.uni-duisburg.de
Fourier Analysis, Computer-Aided Geometric Design,
Computational Complexity,
Multivariate Approximation Theory, Approximation and Interpolation Theory
34) Xiang Ming Yu

Department of Mathematical Sciences
Southwest Missouri State University
Springfield, MO 65804-0094
417-836-5931
e-mail: xmy944f@missouristate.edu
Classical Approximation
Theory, Wavelets
35) Lotfi A. Zadeh

Professor in the Graduate School and
Director,
Computer Initiative, Soft Computing (BISC)
Computer Science Division
University of California at Berkeley
Berkeley, CA 94720
Office: 510-642-4959
Sec: 510-642-8271
Home: 510-526-2569
FAX: 510-642-1712
e-mail: zadeh@cs.berkeley.edu
Fuzzyness, Artificial Intelligence, Natural language processing, Fuzzy logic

Shannon sampling theory, Harmonic analysis
and wavelets, Special functions and orthogonal
polynomials, Integral transforms.

ON REPRESENTABILITY OF QUASI QUADRATIC FUNCTIONALS BY SESQUILINEAR FUNCTIONALS

MEHMET AÇIKGÖZ AND ALIAKBAR GOSHABULAGHI

Abstract

In this paper, the representability of quasi-quadratic functionals by sesquilinear ones over real and complex *-Banach algebras will be determined. Moreover, we will give some relative results for modules over general *-rings.

1. Introduction

Let R be a ${ }^{*}$-ring with identity such that 2 is a unit in R and M be left R module. The mapping $Q: M \rightarrow R$ is said to be quasi quadratic functional if for any $x, y \in M$ and $\alpha \in R$ the parallelogram law

$$
\begin{equation*}
Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y) \tag{1.1}
\end{equation*}
$$

and the homogeneity equation

$$
\begin{equation*}
Q(a x)=a Q(x) a^{*} \tag{1.2}
\end{equation*}
$$

holds. A biadditive mapping $S: M \times M \rightarrow R$ satisfying

$$
\begin{equation*}
S\left(a_{1} x_{1}+a_{2} x_{2}, y\right)=a_{1} S\left(x_{1}, y\right)+a_{2} S\left(x_{2}, y\right) \quad\left(a_{1}, a_{2} \in R, x_{1}, x_{2}, y \in M\right) \tag{1.3}
\end{equation*}
$$

(1.4) $S\left(x, a_{1} y_{1}+a_{2} y_{2}\right)=S\left(x, y_{1}\right) a_{1}^{*}+S\left(x, y_{2}\right) a_{2}^{*} \quad\left(a_{1}, a_{2} \in R, x, y_{1}, y_{2} \in M\right)$
is a sesquilinear functional.
Over ${ }^{*}$-algebra A an element with the property $h^{*}=h$ is said to be hermitian. An element $a \in A$ will be called normal if $a^{*} a=a a^{*}$. It is seen that over a complex *-algebra A each element $a \in A$ has a unique decomposition $a=h+i k$ with hermitian h and k. A *-algebra being a Banach algebra is said to be Banach *algebra. A Banach *-algebra is called hermitian if each hermitian element has real spectrum. If A be a hermitian Banach *-algebra and $h \in A$ be a hermitian element then it is convenient to write $h>0$ if the spectrum of h be positive.

Now let M be a left R-module over a ${ }^{*}$-ring R and $Q: M \rightarrow R$ be a quasi quadratic functional. It is interesting to know that is there a sesquilinear functional S such that $Q(x)=S(x, x)$ for any $x \in M$?

In 1984 Vukman [10] possed the problem of representability of quasi quadratic functionals by sesquilinear ones over complex ${ }^{*}$-algebras. The complete solution was given in [2]. In our present work [1] we gave a solution to a general case, modules over special *-rings including complex *-algebras. However here we will give a solution of the problem of representability of some quasi quadratic functionals

[^0]with sesquilinear functionals for ones over modules on general ${ }^{*}$-rings including commutative *-rings with trivial involution.

2. Quasi-quadratic functionals over real Banach *-algebras

Lemma 1. Let X be a real vector space and $Q: X \rightarrow R$ be additive functional. Then the functional

$$
m(x, y)=\frac{1}{4}[Q(x+y)-Q(x-y)]
$$

is symmetric and biadditive.

Proof. See [10].

Theorem 1. Let A be a commutative Banach algebra and X be a left A-module. Moreover $Q: X \rightarrow A$ be a mapping such that each invertible $a \in A$ and $x, y \in X$ satisfies:

1) $Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y)$
2) $Q(a x)=a^{2} Q(x)$
then for the functional $S: X \times X \rightarrow A$ defined by

$$
S(x, y)=\frac{1}{4}[Q(x+y)-Q(x-y)]
$$

the following conditions hold.

1) S is biadditive;
2) for any $x, y \in X, S(x, x)=Q(x)$;
3) for any $x, y \in X$ and $a \in A$,

$$
S(a x, y)+S(x, a y)=2 a S(x, y)
$$

Proof. (1) and (2) are clear. To prove (3), let $x, y \in X$ be fixed and the mapping $f: A \rightarrow A$ be defined in the way

$$
f(a)=S(a x, y)+S(x, a y)
$$

Since S is biadditive so f is additive. It is seen that for any invertible $a \in A$, $f(a)=a^{2} f\left(a^{-1}\right)$. For any $a \in A$ the identity $f(a)=a f(e)$ holds(See [7]). So for any $a \in A$ and $x, y \in X$;

$$
\begin{aligned}
S(a x, y)+S(x, a y) & =a[S(e x, y)+S(x, e y)] \\
& =a[S(x, y)+S(x, y)] \\
& =2 a S(x, y) .
\end{aligned}
$$

Theorem 2. Let A be a commutative Banach algebra with identity and X be a unitary left A-module and let $Q: X \rightarrow A$ be a such mapping that for any invertible $a \in A$ and $x, y \in X$,
i) $Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y)$;
ii) $Q(a x)=a^{2} Q(x)$;
iii) Let $Q: X \rightarrow A$ be a functional such that $a \rightarrow Q(a x+y)$ be continuous for any fixed $x, y \in X$.

ON QUASI QUADRATIC FUNCTIONALS BY SESQUILINEAR FUNCTIONALS

Then then the functional $S: X \times X \rightarrow A$ defined by

$$
S(x, y)=\frac{1}{4}[Q(x+y)-Q(x-y)]
$$

is a bilinear form and for any $x \in X, S(x, x)=Q(x)$.
Proof. From Theorem 1, it sufficies to prove

$$
S(a x, y)=a S(x, y), \quad S(x, a y)=a S(x, y)
$$

For fixed $x, y \in X$, define $f: A \rightarrow A$ such as

$$
f(a)=S(a x, y)-S(x, a y),
$$

f is additive since S is biadditive. From (iii) f is continuous and for any invertible $a \in A, f(a)=-a^{2} f\left(a^{-1}\right)$ holds hence from [10], Corollary 1 (3), for any $a \in A$, $f(a)=0$ (See [6], [7]), that yields;

$$
S(a x, y)=S(x, a y)
$$

and from Theorem 1, (3), the proof completes.

Theorem 3. Let X be a vector space over a complex *-algebra A having an identity element 1. For any quasi-quadratic functional $Q: X \rightarrow A$ define $S: X \times X: \rightarrow A$;

$$
S(x, y)=\frac{1}{4}[Q(x+y)-Q(x-y)]+\frac{i}{4}[Q(x+i y)-Q(x-i y)]
$$

The following conditions hold.
(a) S is biadditive;
(b) For $x, y \in X$ and $a \in A$,

$$
S(a x, y)=a S(x, y), \quad S(x, a y)=S(x, y) a^{*}
$$

(c) For any $x \in X, Q(x)=S(x, x)$.

Proof. See [10].

3. Modules over *-Rings

Theorem 4. Let R be a^{*}-ring with identity and there exist $a_{0} \in R$ satisfying

$$
\begin{align*}
& a_{0}+a_{0}^{*}=0, \quad a_{0} a_{0}^{*}=1 \tag{3.1}\\
& a_{0} a=a a_{0}, \quad(a \in R) . \tag{3.2}
\end{align*}
$$

then for any quasi quadratic functional $Q: M \rightarrow R$, the functional $S: M \times M \rightarrow R$ defined by

$$
S(x, y)=\frac{1}{4}(Q(x+y)-Q(x-y))+\frac{a_{0}}{4}\left(Q\left(x+a_{0} y\right)-Q\left(x-a_{0} y\right)\right)
$$

is the unique sesquilinear functional satisfying $Q(x)=S(x, x)$ for any $x \in M$.
Proof. From, Theorem 1 of [1], S is sesquilinear and for any $x \in M, S(x, x)=$ $Q(x)$. The only fact remains to prove is uniqueness. Let T be an other sesquilinear functional satisfying the condition of theorem. Now for $x, y \in M$;

$$
\begin{aligned}
S(x, x)+S(x, y)+S(y, x)+S(y, y) & =S(x+y, x+y)=Q(x+y) \\
& =T(x+y, x+y) \\
& =T(x, x)+T(x, y)+T(y, x)+T(y, y)
\end{aligned}
$$

MEHMET AÇIKGÖZ AND ALIAKBAR GOSHABULAGHI

So

$$
\begin{equation*}
S(x, y)+S(y, x)=T(x, y)+T(y, x) \tag{3.3}
\end{equation*}
$$

Now by replacing x with $a_{0} x$ we conclude

$$
S(x, y)-S(y, x)=T(x, y)-T(y, x)
$$

This with (3.3) yields $S=T$.

Proposition 1. Let R be a^{*}-ring with identity then $R \oplus R$ is a^{*}-ring with the addition $(a, b)+(c, d)=(a+c, b+d)$, product $(a, b) .(c, d)=(a c-b d, a d+b c)$ and involution $(a, b)^{*}=\left(a^{*},-b^{*}\right)$.

Proof. Since

$$
\begin{aligned}
(c, d)^{*} \cdot(a, b)^{*} & =\left(c^{*},-d^{*}\right) \cdot\left(a^{*},-b^{*}\right)=\left(c^{*} a^{*}-d^{*} b^{*},-c^{*} b^{*}-d^{*} a^{*}\right) \\
& =(a c-b d, a d+b c)^{*} \\
& =((a, b) \cdot(c, d))^{*}
\end{aligned}
$$

Reminder of proof is clear.
Proposition 2. Let M be a left R-module then $M \oplus M$ is a left module over $R \oplus R$ with the module action defined by

$$
(a, b) \cdot(x, y)=(a x-b y, a y+b x) \quad(a, b \in R, x, y \in M)
$$

Proof. For any $a, b, c, d \in R, x, y \in M$ we have;

$$
\begin{aligned}
(a, b) \cdot[(c, d) \cdot(x, y)] & =(a, b) \cdot(c x-d y, c y+d x) \\
& =(a c x-a d y-b c y-b d x, a c y+a d x+b c x-b d y) \\
& =((a c-b d) x-(a d+b c) y,(a c-b d) y+(a d+b c) x) \\
& =(a c-b d, a d+b c) \cdot(x, y) \\
& =((a, b)(c, d)) \cdot(x, y) .
\end{aligned}
$$

One can easily check other module action properties.
Proposition 3. i) $R \cong R \oplus 0 \subseteq R \oplus R$,
ii) $(1,0)$ is the identity of $R \oplus R$ and $a_{0}=(0,1)$ satisfies $(3.1),(3.2)$.

Theorem 5. Let M be a left module over *-ring R with identity such that 2 be a unit in R. Moreover, let $q: M \rightarrow R$ be a functional such that for any $a, b \in R$, $x, y \in M$;

$$
\begin{equation*}
q(a x-b y)+q(a y+b x)=a(q(x)+q(y)) a^{*}+b(q(x)+q(y)) b^{*} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a q(x) b^{*}=b q(x) a^{*} \tag{3.5}
\end{equation*}
$$

then the functional $S: M \times M \rightarrow R$ defined by

$$
S(x, y)=\frac{1}{4}(q(x+y)-q(x-y))
$$

is sesquilinear and $S(x, x)=q(x)$ for any $x \in M$.

ON QUASI QUADRATIC FUNCTIONALS BY SESQUILINEAR FUNCTIONALS

Notice 1. By giving $a=b=1$ and $a=b, y=0$ in (3.4) we get parallelogram law and homogeneity equation, respectively.

Notice 2. In the case of commutative *-rings with trivial involution (3.5) holds.
Proof of Theorem 5. Consider $Q: M \oplus M \rightarrow R \subseteq R \oplus R$ as $Q((x, y))=$ $(q(x)+q(y), 0)$ then

$$
\begin{aligned}
& Q\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)+Q\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right) \\
= & Q\left(\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right)+Q\left(\left(x_{1}-x_{2}, y_{1}-y_{2}\right)\right) \\
= & \left(q\left(x_{1}+x_{2}\right)+q\left(y_{1}+y_{2}\right)+q\left(x_{1}-x_{2}\right)+q\left(y_{1}-y_{2}\right), 0\right) \\
= & \left(2 q\left(x_{1}\right)+2 q\left(x_{2}\right)+2 q\left(y_{1}\right)+2 q\left(y_{2}\right), 0\right) \\
= & 2\left(q\left(x_{1}\right)+q\left(y_{1}\right), 0\right)+2\left(q\left(x_{2}\right)+q\left(y_{2}\right), 0\right) \\
= & 2 Q\left(\left(x_{1}+y_{1}\right)\right)+2 Q\left(\left(x_{2}, y_{2}\right)\right),
\end{aligned}
$$

also

$$
\begin{aligned}
(a, b) Q((x, y))(a, b)^{*}= & (a, b)(q(x)+q(y), 0)\left(a^{*},-b^{*}\right) \\
= & (a q(x)+a q(y), b q(x)+b q(y))\left(a^{*},-b^{*}\right) \\
= & \left(a q(x) a^{*}+a q(y) a^{*}+b q(x) b^{*}+b q(y) b^{*}, b q(x) a^{*}\right. \\
& \left.+b q(y) a^{*}-a q(x) b^{*}-a q(y) b^{*}\right) \\
= & (q(a x-b y)+q(a y+b x), 0) \\
= & Q((a x-b y, a y+b x)) \\
= & Q((a, b) \cdot(x, y))
\end{aligned}
$$

So Q is quasi quadratic, now by theorem 4, the mapping $S:(M \oplus M) \times(M \oplus M) \rightarrow$ $R \oplus R$ determined by

$$
\begin{aligned}
& T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \\
= & \frac{1}{4}\left(Q\left(\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right)-Q\left(\left(x_{1}-x_{2}, y_{1}-y_{2}\right)\right)\right) \\
& +\frac{(0,1)}{4}\left(Q\left(\left(x_{1}, y_{1}\right)+(0,1) \cdot\left(x_{2}, y_{2}\right)\right)-Q\left(\left(x_{1}, y_{1}\right)-(0,1) \cdot\left(x_{2}, y_{2}\right)\right)\right) \\
= & \frac{1}{4}\left(Q\left(\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right)-Q\left(\left(x_{1}-x_{2}, y_{1}-y_{2}\right)\right)\right) \\
& +\frac{(0,1)}{4}\left(Q\left(\left(x_{1}-y_{2}, y_{1}+y_{2}\right)\right)-Q\left(\left(x_{1}+y_{2}, y_{1}-x_{2}\right)\right)\right) \\
= & \frac{1}{4}\left(q\left(x_{1}+x_{2}\right)+q\left(y_{1}+y_{2}\right)-q\left(x_{1}-x_{2}\right)-q\left(y_{1}-y_{2}\right), 0\right) \\
& +\frac{(0,1)}{4}\left(q\left(x_{1}-y_{2}\right)+q\left(y_{1}+x_{2}\right)-q\left(x_{1}+y_{2}\right)-q\left(y_{1}-x_{2}\right), 0\right) \\
= & \frac{1}{4}\left(q\left(x_{1}+x_{2}\right)+q\left(y_{1}+y_{2}\right)-q\left(x_{1}-x_{2}\right)-q\left(y_{1}-y_{2}\right)\right. \\
& \left.q\left(x_{1}-y_{2}\right)+q\left(y_{1}+x_{2}\right)-q\left(x_{1}+y_{2}\right)-q\left(y_{1}-y_{2}\right)\right)
\end{aligned}
$$

is sesquilinear and $T((x, y),(x, y))=Q((x, y))=(q(x)+q(y), 0)$. Now let $B(x, y)=$ $T((x, 0),(y, 0))$ then clearly $B: M \times M \rightarrow R \oplus R$ is biadditive. Also for $a, b \in R$,
$x, y \in M ;$

$$
\begin{aligned}
B(a x, b y) & =S((a x, 0),(b y, 0)) \\
& =S((a, 0) \cdot(x, 0),(b, 0)(y, 0)) \\
& =(a, 0) S((x, 0),(y, 0))\left(b^{*}, 0\right) \\
& =a S((x, 0),(y, 0)) b^{*} \\
& =a B(x, y) b^{*} .
\end{aligned}
$$

On the other hand $B(x, y)=\frac{1}{4}(q(x+y)-q(x-y), 0)$ so by giving

$$
S(x, y)=\frac{1}{4}(q(x+y)-q(x-y))
$$

the proof completes.
Corollary 1. Let M be a module over a commutative *-ring R with trivial involution and identity element such that 2 be a unit in R.Moreover, let $q: M \rightarrow R$ be a functional such that for any $a, b \in R, x, y \in M$;

$$
\begin{equation*}
q(a x-b y)+q(a y+b x)=a^{2}(q(x)+q(y))+b^{2}(q(x)+q(y)) \tag{3.6}
\end{equation*}
$$

then the functional $S: M \times M \rightarrow R$ defined by

$$
S(x, y)=\frac{1}{4}(q(x+y)-q(x-y))
$$

is sesquilinear and $S(x, x)=q(x)$ for any $x \in M$.

References

[1] Acikgoz, M., Goshabulaghi, A., On quasi quadratic functionals and existence of related sesquilinear functionals, (Submitted)
[2] Šemrl, P., Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc., 119, no 4 (1993), 1105-1113.
[3] Šemrl, P., Quadratic functionals and Jordan *-derivations, Studia Math., 97, (1991), 157-165.
[4] Aczel, J., Dhombres, J., Functional Equations in Several Variables, Cambridge University Press, Newyork, 1989.
[5] Šemrl, P., On quadratic functionals, Bull. Austral. Math. Soc., 37 (1988), 27-29.
[6] Vukman, J., Some remarks on derivations in Banach algebras, Aequationes Math., 36, (1988), 165-175.
[7] Vukman, J., Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc. 100, No 1, (1987)133-136.
[8] Šemrl, P., Quadratic and sesquilinear functionals, Aequationes Math., 19, (1986), 184-190.
[9] Vukman, J., Some results concerning the Cauchy functional equation in certain Banach algebras, Bull. Austral. Math. Soc., 31, (1985), 137-144.
[10] Vukman, J., A result concerning additive functions in hermitian Banach ${ }^{*}$-algebras and an application, Proc. Amer. Math. Soc., 91, (1984), 367-372.
[11] Kurepa, S., On bimorphisms and quadratic forms on groups, Aequationes Math. 9, (1973), 30-45.
[12] Jordan, P., Von Neumann, J., On inner products in linear metric spaces, Ann. of Math. 2, 36 (1935), 719-723.

University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, 27310 Gaziantep, TURKEY

E-mail address: acikgoz@gantep.edu.tr
Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., TEHRAN 15914, IRAN

E-mail address: alakgoo@yahoo.com

SOME INEQUALITIES EQUIVALENT TO TRIANGULAR INEQUALITY IN NORMED AND 2-NORMED SPACES

ALİAKBAR GOSHABULAGHI AND MEHMET AÇIKGÖZ

Abstract

We give an equivalent definition of semi norm and 2-norm extending the notion of q-norm to $q \in R-\{0\}$.

1. INTRODUCTION

It is known that the parallelogram equation

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

characterizes Hilbert spaces among normed spaces. S. Saitoh [Sa] noted that the inequality $\|x+y\|^{2} \leq 2\left(\|x\|^{2}+\|y\|^{2}\right)$ may be more suitable than the usual triangular inequality. He used this inequality to the setting of a natural sum Hilbert space for two arbitrary Hilbert spaces. Obviously the triangle inequality implies the above inequality so one motivates to consider an extension of the triangle inequality. In [Mos], it was shown that every q-norm which is defined by replacing the triangle inequality by $\|x+y\|^{q} \leq 2^{q-1}\left(\|x\|^{2}+\|y\|^{2}\right)$, where $q \geq 1$, is a norm in usual sense. Here we will give an extension of the notion of q-norm by determining some results. Finally, we will assert the previous results for 2-normed spaces, a notion which is defined naturally different of q-normed spaces.

2. Normed spaces

Definition 1. Let X be a real or complex vector space and $q \in[1, \infty)$. A mapping $\|\cdot\|: X \rightarrow R$ is called a-norm on X if it satisfies the following conditions:
(i) $\|\cdot\|=0 \Leftrightarrow x=0$,
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in X$ and scalar λ.
(iii) $\|x+y\|^{q} \leq 2^{q-1}\left(\|x\|^{q}+\|y\|^{q}\right)$ for all $x, y \in X$.

Theorem 1. $\|$.$\| is a norm iff it is a q$-norm for any $q \in[1, \infty)$.
Proof. see [2].

Now we obtain the following theorems.

Date: September 04, 2008.
1991 Mathematics Subject Classification. Primary 44B20, Secondary 46C05.
Key words and phrases. Triangular inequality, parallelogram law, normed space, 2-normed space, q norm.

Theorem 2. Let $q<0$ be real. Then the triangular inequality holds iff the inequality

$$
2^{q-1}\left(\|x\|^{q}+\|y\|^{q}\right) \leq\|x+y\|^{q} \quad(x, y \in X)
$$

holds.
Proof. (\Rightarrow) Consider the function $f(t)=\frac{1+t^{q}}{2}-\left(\frac{1+t}{2}\right)^{q}$ on $(0, \infty)$. It is seen that f has a negative derivative on $[1, \infty)$ and so for any $0<t \leq 1, f(t) \leq 0$. Now let $\|x\| \geq\|y\|$ then

$$
\frac{1+\left(\frac{\|y\|}{\|x\|}\right)^{q}}{2} \leq\left(\frac{1+\frac{\|y\|}{\|x\|}}{2}\right)^{q}
$$

Hence

$$
\frac{\|x\|^{q}+\|y\|^{q}}{2} \leq\left(\frac{\|x\|+\|y\|}{2}\right)^{q} \leq\left(\frac{\|x+y\|}{2}\right)^{q}
$$

so

$$
2^{q-1}\left(\|x\|^{q}+\|y\|^{q}\right) \leq\|x+y\|^{q} .
$$

(\Leftarrow) conversely, the function $f(t)=2^{\frac{q-1}{q}}\left(t^{q}+1\right)^{\frac{1}{q}}-t-1$ has positive derivative on $(0,1]$. Then for $t=\frac{\|y\|}{\|x\|}$ with $\|y\| \leq\|x\|, f(t) \leq 0$. So

$$
2^{\frac{q-1}{q}}\left(\|x\|^{q}+\|y\|^{q}\right)^{\frac{1}{q}} \leq\|x\|+\|y\|,
$$

Hence

$$
(\|x\|+\|y\|)^{q} \leq 2^{q-1}\left(\|x\|^{q}+\|y\|^{q}\right) \leq\|x+y\|^{q}
$$

which yields the triangular inequality.
Theorem 3. Let $q \in(0,1]$ and $\|\|:. X \rightarrow R$ satisfies $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in X$ and scalar λ. Then triangular inequality holds iff the inequality

$$
\|x+y\|^{q} \leq\|x\|^{q}+2^{q-1}\|y\|^{q}, \quad(x, y \in X, \quad\|y\| \leq\|x\|)
$$

holds.
Proof. (\Rightarrow) The function $f(t)=\frac{1+t^{q}}{2}-\left(\frac{1+t}{2}\right)^{q}$ is increasing on $[0,1]$ since the derivative function of f is nonnegative on $(0,1)$. So for $t=\frac{\|y\|}{\|x\|}$ with $\|y\| \leq\|x\|$, $f(t) \geq \frac{1}{2}-\frac{1}{2^{q}}$ that is

$$
\frac{1+\left(\frac{\|y\|}{\|x\|}\right)^{q}}{2}+\frac{1}{2^{q}}-\frac{1}{2} \geq\left(\frac{1+\frac{\|y\|}{\|x\|}}{2}\right)^{q} \geq\left(\frac{\|x+y\|}{2\|x\|}\right)^{q}
$$

Hence

$$
\|x+y\|^{q} \leq 2^{q-1}\left(\|x\|^{q}+\|y\|^{q}\right)+\left(1-2^{q-1}\right)\|x\|^{q}=\|x\|^{q}+2^{q-1}\|y\|^{q}
$$

(\Leftarrow) Conversely, the function $f(t)=\left(t^{q}+2^{q-1}\right)^{\frac{1}{q}}-t-1$ is increasing on $[0, \infty)$ and $f(0) f\left(2^{\frac{q-1}{q}}\right)<0$ so there exists $c \in\left(0,2^{\frac{q-1}{q}}\right)$ such that $f(c)=0$ and for any $t \in[0, c], f(t) \leq f(c)=0$. Now for $t=\frac{\|y\|}{\|x\|}$ where $\|y\| \leq c\|x\| ;$

$$
\begin{aligned}
\left(\left(\frac{\|y\|}{\|x\|}\right)^{q}+2^{q-1}\right)^{\frac{1}{q}} & \leq \frac{\|y\|}{\|x\|}+1 \Rightarrow\left(\|y\|^{q}+2^{q-1}\|x\|^{q}\right)^{\frac{1}{q}} \leq\|x\|+\|y\| \\
& \Rightarrow\|x+y\| \leq\left(\left(\|y\|^{q}+2^{q-1}\|x\|^{q}\right)^{\frac{1}{q}}\right) \leq\|x\|+\|y\|
\end{aligned}
$$

Similarly, for $x, y \in X$ which $\|x\| \leq c\|y\|,\|x+y\| \leq\|x\|+\|y\|$.
Now let $c\|x\|<\|y\|<\frac{1}{c}\|x\|$, then

$$
\begin{align*}
\left\|\frac{x}{c}\right\| & >\frac{1}{c}\|c y\| \\
\left\|\frac{x}{c}+c y\right\| & <\frac{1}{c}\|x\|+c\|y\| \\
\left\|x+c^{2} y\right\| & <\|x\|+c^{2}\|y\| \tag{2.1}
\end{align*}
$$

and

$$
\begin{align*}
\|x\| & <c\left\|\frac{y}{c^{2}}\right\| \\
\left\|x+\frac{y}{c^{2}}\right\| & <\|x\|+\frac{1}{c^{2}}\|y\| \\
\left\|c^{2} x+y\right\| & <c^{2}\|x\|+\|y\| \tag{2.2}
\end{align*}
$$

Now if both $c\left\|x+c^{2} y\right\|>\left\|c^{2} x+y\right\|$ and $c\left\|c^{2} x+y\right\|>\left\|x+c^{2} y\right\|$ hold then

$$
c\left(\left\|x+c^{2} y\right\|+\left\|c^{2} x+y\right\|\right)>\left\|c^{2} x+y\right\|+\left\|x+c^{2} y\right\| \Rightarrow c>1 \text { or } 0>0
$$

which is a contradiction. Now let $c\left\|x+c^{2} y\right\| \leq\left\|c^{2} x+y\right\|$ then by (2.1) and (2.2),
$\left(1+c^{2}\right)\|x+y\|=\left\|x+c^{2} y+c^{2} x+y\right\| \leq\left\|x+c^{2} y\right\|+\left\|c^{2} x+y\right\|<\left(c^{2}+1\right)(\|x\|+\|y\|)$,
so the triangular inequality holds.
Theorems (1), (2) and (3) show that the definition of a semi-norm is equivalent to the following:

Corollary 1. Let X be a real or complex vector space. A mapping $\|\|:. X \rightarrow R$ which satisfies $\|\lambda x\|=|\lambda| .\|x\|$ for all $x \in X$ and scalar λ, then the following conditions are equivalent:

1) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$.
2) For any $q \in[1, \infty),\|x+y\|^{q} \leq\left(\|x\|^{q}+\|y\|^{q}\right)$ for all $x, y \in X$.
3) For any $q \in(0,1),\|x+y\|^{q} \leq\|x\|^{q}+2^{q-1}\|y\|^{q}$ where $x, y \in X,\|y\| \leq\|x\|$.
4) For any $q<0,2^{q-1}\left(\|x\|^{q}+\|y\|^{q}\right) \leq\|x+y\|^{q}$ for all $x, y \in X$.

If one of the above four conditions satisfied then the function $\|$.$\| is a semi norm$ on X.

It is known that the parallelogram equality

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

characterizes Hilbert spaces among normed spaces. Now for the equation

$$
\begin{equation*}
\|x+y\|^{q}+\|x-y\|^{q}=2^{q-1}\left(\|x\|^{q}+\|y\|^{q}\right), \quad q \neq 2 \tag{2.3}
\end{equation*}
$$

we state the following proposition.
Proposition 1. For any $q \neq 2$ the equation (2.3) yields $\|\|=$.0 .
Proof. First give $x=y=0$ and then give $y=0$ in (2.3). Note that the limitation $\|0\|=0$ is necessary in case $q=1$.

3. 2-Normed Spaces

Definition 2. Let X be a vector space of dimension greater than one over F, where F is the real or complex numbers field. Suppose $\|.,$.$\| be a non-negative real function$ on $X x X$ satisfies the following conditions:
i) $\|x, y\|=0$ if and only if x and y are linearly dependent vectors,
ii) $\|x, y\|=\|y, x\|$ for all $x, y \in X$,
iii) $\|\lambda x, y\|=|\lambda|\|x, y\|$ for all $\lambda \in F$ and $x, y \in X$,
iv) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$ for all $x, y, z \in X$,

Then $\|.,$.$\| is called a 2$-normed space.
Clearly, for any 2-norm $\|.,$.$\| and each y \in X$ the mapping $\|$.$\| defined by \|x\|=$ $\|x, y\|$ is a semi- norm. So we can obtain the results of section II to the 2 -normed spaces.

Theorem 4. Let X be a vector space of dimension greater than one over F, where F is the real or complex numbers field. Suppose $\|.,$.$\| be a non-negative real function$ on $X \times X$ satisfies the following conditions:
i) $\|x, y\|=0$ if and only if x and y are linearly dependent vectors,
ii) $\|x, y\|=\|y, x\|$ for all $x, y \in X$,
iii) $\|\lambda x, y\|=|\lambda|\|x, y\|$ for all $\lambda \in F$ and $x, y \in X$,

Then the following statements are equivalent:

1) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$ for all $x, y, z \in X$.
2) For any $q \in[1,+\infty),\|x+y, z\|^{q} \leq 2^{q-1}\left(\|x, z\|^{q}+\|y, z\|^{q}\right)$ for all $x, y, z \in X$.
3) For any $q \in(0,1),\|x+y, z\|^{q} \leq\|x, z\|^{q}+2^{q-1}\|y, z\|^{q}$ where $x, y, z \in X$, $\|y, z\| \leq\|x, z\|$.
4) For any $q<0,2^{q-1}\left(\|x, z\|^{q}+\|y, z\|^{q}\right) \leq\left(\|x+y, z\|^{q}\right)$ for all $x, y, z \in X$.

If one of the above four conditions satisfied then the function $\|.,$.$\| is a 2$-norm on X.

References

[1] M. Acikgoz, A review on 2-normed spaces, Int. Journal Mathematical Analysis, (2007), No. 4,
[2] H. Belbachir, M. Mirzavaziri and M.S. Moslehian, q-norms are really norms, Aust. J. Math. Anal. Appl. 3 (2006) 1, No. 3, 3pp.
[3] S. Saitoh, Generalizations of the triangle inequality, J. Inequal. Pure Appl. Math. 4 (2003), No. 3, Article 62, 5 pp.
[4] W.B. Johnson(ed) and J. Lindenstrauss(ed), Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland Publishing Co., Amsterdam, 2001.

ALİAKBAR GOSHABULAGHI, FACULTY OF MATHEMATICS AND COMPUTER SCIENCES, AMIRKABIR UNIVERSITY OF TECHNOLOGY(TEHRAN POLYTECHNIC) 424 HAFEZ AVE., TEHRAN 15914, IRAN

E-mail address: goshabulaghi@yahoo.com
MEHMET AÇIKGÖZ, UNIVERSITY OF GAZİANTEP, FACULTY OF SCIENCE AND LITERATURE, DEPARTMENT OF MATHEMATICS 27310 GAZİANTEP TURKEY

E-mail address: acikgoz@gantep.edu.tr

On Distributions of Order Statistics of Random Vectors

M. Güngör ${ }^{1}$ and A. Turan ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Firat, 23119 Elazığ, Turkey
${ }^{2}$ Department of Statistics, University of Firat, 23119 Elazığ, Turkey

Abstract

In this study, the probability density and distribution functions of order statistics of the innid random vectors expressed as the probability density and distribution functions of order statistics of the iid random vectors using permanents. Moreover, we collect some results concerning the probability density and distribution functions of order statistics for the specialized cases.

Keywords. Order statistics, permanent, joint probability density function, joint distribution function, iid random variables, innid random variables, recurrence relations.

MSC 2000: 62G30, 62E15.

1. Introduction

Balakrishnan[1] considered recent developments on order statistics arising from independent and not necessarily identically distributed(innid) random variables based primarily on the theory of permanents.

Balasubramanian et al.[2] established identities satisfied by distributions of order statistics from non-independent non-identical variables through operator methods based on difference and differential operators.

Beg[3] obtained several recurrence relations and identities for product moments of order statistics of innid random variables using permanents.

Childs and Balakrishnan[4] obtained, using multinomial arguments, the probability density function $(p d f)$ of $X_{r: n+1}(l \leq r \leq n+l)$ if another independent random variable with distribution function $(d f) F_{i}$ and $p d f f_{i}(i=1,2, \ldots, n)$ is added to the original n variables $X_{1}, X_{2}, \ldots, X_{n}$.

David[5] considered the fundamental distribution theory of order statistics.
Gan and Bain[6] obtained the joint probability function $(p f)$ of any k order statistics and also conditional distributions of discrete order statistics from a general discrete parent by "tieruns".

Guilbaud[7] expressed probability of the functions of innid random vectors as a linear
combination of probabilities of the functions of independent and identically distributed(iid) random vectors and thus also for order statistics of random variables.

Khatri[8] examined the $p f$ and $d f$ of a single order statistics, the joint $p f$ and $d f$ of any two order statistics and joint $d f$ of any three order statistics of iid random variables from a discrete parent.

Reiss[9] considered the joint $p d f$, marginal $p d f$ and $d f$ of any k order statistics of iid random variables under a continuous $d f$ and discontinuous $d f$. He also considered $p d f$ of bivariate order statistics by marginal ordering of bivariate iid random vectors with a continuous $d f$ by means of multinomial probabilities of appropriate "cell frequency vectors", defining multivariate order statistics by marginal ordering of iid random vectors with a continuous $d f$.

Vaughan and Venables[10] denoted the joint $p d f$ and marginal $p d f$ of order statistics of innid random variables by means of permanents.

If $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$ are defined as column vectors, then the matrix obtained by taking m_{1} copies a_{1}, m_{2} copies a_{2}, \ldots can be denoted as

$$
\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \ldots \\
m_{1} & m_{2}
\end{array}\right]
$$

and per A denotes the permanent of a square matrix A , which is defined as similar to determinants except that all terms in the expansion have a positive sign.

Consider $\mathrm{x}=\left(x^{(1)}, x^{(2)}, \ldots, x^{(b)}\right)$ and $\mathrm{y}=\left(y^{(1)}, y^{(2)}, \ldots, y^{(b)}\right)$, then it can be written as $\mathrm{x} \leq \mathrm{y}$ if $x^{(v)} \leq y^{(v)}, v=1,2, \ldots, b$ and $\mathrm{x}+\mathrm{y}=\left(x^{(1)}+y^{(1)}, x^{(2)}+y^{(2)}, \ldots, x^{(b)}+y^{(b)}\right)$.

Let $\xi_{i}=\left(\xi_{i}^{(1)}, \xi_{i}^{(2)}, \ldots, \xi_{i}^{(b)}\right), i=1,2, \ldots, n$ be n innid random vectors which components of ξ_{i} are independent. The expression

$$
\begin{equation*}
X_{r: n}^{(v)}=Z_{r: n}\left(\xi_{1}^{(v)}, \xi_{2}^{(v)}, \ldots, \xi_{n}^{(v)}\right) \tag{1}
\end{equation*}
$$

is stated as the r th order statistic of the v th components of $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$.
From (1), the ordered values of the ν th components of $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ are expressed as

$$
\begin{equation*}
X_{1: n}^{(v)} \leq X_{2: n}^{(v)} \leq \ldots \leq X_{n: n}^{(v)} . \tag{2}
\end{equation*}
$$

From (2), we can write

$$
\mathrm{X}_{r: n}=\left(X_{r: n}^{(1)}, X_{r: n}^{(2)}, \ldots, X_{r: n}^{(b)}\right), \quad 1 \leq r \leq n .
$$

Let F_{i} be $d f$ of ξ_{i} and be continuous at any $\mathrm{x}_{l}=\left(x_{l}^{(1)}, x_{l}^{(2)}, \ldots, x_{l}^{(b)}\right), l=1,2, \ldots, d ; d=1$, $2, \ldots, n$.

In this study, the $d f$ and $p d f$ of $X_{r_{1}: n}, X_{r_{2}: n}, \ldots, X_{r_{d}: n}, \quad l \leq r_{1}<r_{2}<\ldots<r_{d} \leq n$ will be given in Theorem 1 and Theorem 2, respectively. Let $X^{(v)}=\left(X_{r_{1}, n}^{(v)}, X_{r_{2}, n}^{(v)}, \ldots, X_{r_{d} \cdot n}^{(v)}\right)$ and $\mathrm{x}^{(v)}=\left(x_{1}^{(v)}, x_{2}^{(v)}, \ldots, x_{d}^{(v)}\right)$. For notational convenience we write $\sum \sum$ and $\sum_{m_{1}, m_{2}, \ldots, m_{d}}$ instead of $\sum_{k=1}^{n}(-1)^{n-k} \frac{k^{n}}{n!} \sum_{n_{s}=k}$ and $\sum_{m_{d}=r_{d}}^{n} \ldots \sum_{m_{2}=r_{2}}^{m_{3}} \sum_{m_{1}=r_{1}}^{m_{2}}$ in the expressions below, respectively. Moreover, $\mathrm{X}^{(v), s}=\left(X_{r_{1}: n}^{(v), s}, X_{r_{2}: n}^{(v), s}, \ldots, X_{r_{d}, n}^{(v), s}\right)$ are random vectors with common df F^{s} and $p d f f^{s}$, respectively, defined by
$F^{s}\left(x_{a}^{(v)}\right)=\frac{1}{n_{s}} \sum_{i \in s} F_{i}\left(x_{a}^{(v)}\right), \quad a=1,2, \ldots, d$.
and
$f^{s}\left(x_{a}^{(\nu)}\right)=\frac{1}{n_{s}} \sum_{i \in s} f_{i}\left(x_{a}^{(\nu)}\right), \quad a=1,2, \ldots, d$.
Here, s is a non-empty subset of the integers $\{1,2, \ldots, n\}$ with $n_{s} \geq 1$ elements.
The following theorem connects the $d f$ of order statistics of innid random vectors to that of order statistics of iid random vectors using (3).

Theorem 1.

$$
F_{r_{1}, r_{2}, \ldots, r_{d} ; n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)=\prod_{v=1}^{b}\left\{\sum \sum_{m_{1}, m_{2}, \ldots, m_{d}} n!\prod_{a=1}^{d+1} \frac{\left[F^{s}\left(x_{a}^{(v)}\right)-F^{s}\left(x_{a-1}^{(v)}\right)\right]^{\left(m_{a}-m_{a-1}\right)}}{\left(m_{a}-m_{a-1}\right)!}\right\},
$$

$$
\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{d}, \quad m_{0}=0, \quad m_{d+1}=n, F^{s}\left(x_{0}^{(v)}\right)=0 \text { and } F^{s}\left(x_{d+1}^{(v)}\right)=1 .
$$

Proof. It can be written
(5) can be expressed as

$$
\begin{aligned}
& \prod_{v=1}^{b}\left[\sum \sum P\left\{X_{r_{1} ; n}^{(v), s} \leq x_{1}^{(v)}, X_{r_{2} ; h}^{(v), s} \leq x_{2}^{(v)}, \ldots, X_{r_{d} ; n}^{(v), s} \leq x_{d}^{(v)}\right\}\right] \\
&=\prod_{v=1}^{b}\left\{\sum \sum_{m_{1}, m_{2}, \ldots, m_{d}} n!\prod_{a=1}^{d+1} \frac{\left[F^{s}\left(x_{a}^{(v)}\right)-F^{s}\left(x_{a-1}^{(v)}\right)\right]^{\left(m_{a}-m_{a-1}\right)}}{\left(m_{a}-m_{a-1}\right)!}\right\} .
\end{aligned}
$$

The proof is complete.

$$
\begin{align*}
& F_{r_{1}, r_{2}, \ldots, r_{d} ; n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)=P\left\{\mathrm{X}_{r_{1}: n} \leq \mathrm{x}_{1}, \mathrm{X}_{r_{2}: n} \leq \mathrm{x}_{2}, \ldots, \mathrm{X}_{r_{d}: n} \leq \mathrm{x}_{d}\right\} \\
& =P\left\{\mathrm{X}^{(1)} \leq \mathrm{x}^{(1)}, \mathrm{X}^{(2)} \leq \mathrm{x}^{(2)}, \ldots, \mathrm{X}^{(b)} \leq \mathrm{x}^{(b)}\right\} \\
& =\prod_{v=1}^{b} P\left\{\mathrm{X}^{(v)} \leq \mathrm{X}^{(\nu)}\right\} . \tag{5}
\end{align*}
$$

Theorem 1 will be specialized to the following results.
Result 1. From Theorem 1, we can write

$$
\begin{align*}
F_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right) & =\prod_{v=1}^{b} \sum_{m_{1}, m_{2}, \ldots, m_{d}} \text { Cper } \mathrm{A} \\
& =\prod_{v=1}^{b}\left\{\sum \sum_{m_{1}, m_{2}, \ldots, m_{d}} n!\prod_{a=1} \frac{\left[F^{s}\left(x_{a}^{(v)}\right)-F^{s}\left(x_{a-1}^{(v)}\right)\right]^{\left(m_{a}-m_{a-1}\right)}}{\left(m_{a}-m_{a-1}\right)!}\right\}, \tag{6}
\end{align*}
$$

where $C=\left[m_{1}!\left(m_{2}-m_{1}\right)!\ldots\left(n-m_{d}\right)!\right]^{-1}$,
$\mathrm{A}=\left[\underset{m_{1}}{\left.\underset{x_{1}}{(v)}\right)} \mathrm{F}\left(x_{2}^{(v)}\right)-\mathrm{F}\left(x_{1}^{(v)}\right) \ldots \underset{m_{2}-m_{1}}{\left.1-\mathrm{F}\left(x_{d}^{(v)}\right)\right] \text { is matrix, }}\right.$
$\mathrm{F}\left(x_{t}^{(v)}\right)-\mathrm{F}\left(x_{t-1}^{(v)}\right)=\left(F_{1}\left(x_{t}^{(v)}\right)-F_{1}\left(x_{t-1}^{(v)}\right), F_{2}\left(x_{t}^{(v)}\right)-F_{2}\left(x_{t-1}^{(v)}\right), \ldots, F_{n}\left(x_{t}^{(v)}\right)-F_{n}\left(x_{t-1}^{(v)}\right)\right)^{\prime}$,
$t=1,2, \ldots, d+1$ is column vector, $\mathrm{F}\left(x_{d+1}^{(v)}\right)=1$ and $\mathrm{F}\left(x_{0}^{(v)}\right)=0$.

Result 2.

$$
\begin{equation*}
\sum_{m=r}^{n} \frac{1}{m!(n-m)!} \sum_{l=0}^{n-m}(-1)^{n-m-1}\binom{n-m}{l} l!\sum_{n_{s}=n-l} \operatorname{per}[\underset{\substack{\mathrm{~F} \\ n-l}}{ }(x)][s / .)=\sum \sum_{m=r}^{n}\binom{n}{m} \sum_{l=0}^{n-m}(-1)^{n-m-l}\binom{n-m}{l}\left(F^{s}(x)\right)^{n-l} . \tag{7}
\end{equation*}
$$

Proof. In (6), if $b=1, d=1$ and using properties of permanent and binomial expansion, we can write

$$
\begin{align*}
& F_{r: n}(x)=\sum_{m=r}^{n} \frac{1}{m!(n-m)!} \operatorname{per}[\underset{m}{\mathrm{~F}(x)} \underset{\substack{-\mathrm{F}(x) \\
n-m}}{1-\mathrm{F}(}) \\
& =\sum_{m=r}^{n} \frac{1}{m!(n-m)!} \sum_{l=0}^{n-m}(-1)^{n-m-l}\binom{n-m}{l} \operatorname{per}\left[\begin{array}{cc}
\mathrm{F}(x) & 1 \\
n-l
\end{array}\right] \\
& =\sum_{m=r}^{n} \frac{1}{m!(n-m)!} \sum_{l=0}^{n-m}(-1)^{n-m-l}\binom{n-m}{l} l!\sum_{n_{s}=n-l} \operatorname{per}[\mathrm{~F}(x)][s / .), \tag{8}
\end{align*}
$$

where $\quad \mathrm{F}(x)=\left(F_{1}(x), F_{2}(x), \ldots, F_{n}(x)\right)^{\prime}, \quad 1-\mathrm{F}(x)=\left(1-F_{1}(x), 1-F_{2}(x), \ldots, 1-F_{n}(x)\right)^{\prime}$, $1=(1,1, \ldots, l)^{\prime}$ are column vectors and $\mathrm{A}[s /$.$) is the matrix obtained from \mathrm{A}$ by taking rows whose indices are in s.

Furthermore,
$F_{r: n}(x)=\sum \sum \sum_{m=r}^{n}\binom{n}{m}\left(F^{s}(x)\right)^{m}\left(1-F^{s}(x)\right)^{n-m}$

$$
\begin{equation*}
=\sum \sum \sum_{m=r}^{n}\binom{n}{m} \sum_{l=0}^{n-m}(-1)^{n-m-l}\binom{n-m}{l}\left(F^{s}(x)\right)^{n-l} . \tag{9}
\end{equation*}
$$

(7) is immediate from (8) and (9). The proof is complete.

In addition, if \sum_{P} denotes the sum over all n ! permutations $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $(1,2, \ldots, n)$,

$$
\begin{aligned}
F_{r: n}(x) & =\sum_{m=r}^{n} \frac{1}{m!(n-m)!} \sum_{p} F_{i_{1}}(x) F_{i_{2}}(x) \ldots F_{i_{m}}(x)\left(1-F_{i_{m+1}}(x)\right) \ldots\left(1-F_{i_{n}}(x)\right) \\
& =\sum_{m=r}^{n} \frac{1}{m!(n-m)!} \sum_{p} F_{i_{1}}(x) F_{i_{2}}(x) \ldots F_{i_{m}}(x) \sum_{j=0}^{n-m}(-1)^{j} \sum_{n_{s}=j} F_{l_{1}}(x) \ldots F_{l_{j}}(x),
\end{aligned}
$$

where $\sum_{n_{s}=j}$ denotes the sum over all $\binom{n-m}{j}$ subsets $s=\left\{l_{1}, l_{2}, \ldots, l_{j}\right\}$ of $\left\{i_{m+1}, i_{m+2}, \ldots, i_{n}\right\}$.
Result 3. In (7), if $r=1$,

$$
F_{1: n}(x)=1-\frac{1}{n!} \operatorname{per}[1-\mathrm{F}(x)]=\sum \sum\left[1-\left(1-F_{n}^{s}(x)\right)^{n}\right] .
$$

Result 4. In (7), if $r=n$,

$$
F_{n: n}(x)=\frac{1}{n!} \operatorname{per}[\mathrm{F}(x)]=\sum \sum\left(F_{n}^{s}(x)\right)^{n}
$$

The following theorem connects the $p d f$ of order statistics of innid random vectors to that of order statistics of iid random vectors using (4).

Theorem 2.

$$
f_{r_{1}, r_{2}, \ldots, r_{d} ; n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)=\prod_{v=1}^{b}\left\{\sum \sum n!\left(\prod_{a=1}^{d} f^{s}\left(x_{a}^{(\nu)}\right)\right) \prod_{a=1}^{d+1} \frac{\left[F^{s}\left(x_{a}^{(v)}\right)-F^{s}\left(x_{a-1}^{(v)}\right)\right]^{\left(r_{a}-r_{a-1}-1\right)}}{\left(r_{a}-r_{a-1}-1\right)!}\right\}
$$

where $r_{0}=0$ and $r_{d+1}=n+1$.
Proof. Omitted.
Theorem 2 will be specialized to the following results.
Result 5. From Theorem 2, we can write

$$
f_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)=\prod_{v=1}^{b} \operatorname{Dper} \mathrm{~B}
$$

$$
\begin{equation*}
=\prod_{v=1}^{b}\left\{\sum \sum n!\left(\prod_{a=1}^{d} f^{s}\left(x_{a}^{(\nu)}\right)\right) \prod_{a=1}^{d+1} \frac{\left[F^{s}\left(x_{a}^{(\nu)}\right)-F^{s}\left(x_{a-1}^{(\nu)}\right)\right]^{\left(r_{a}-r_{a-1}-1\right)}}{\left(r_{a}-r_{a-1}-1\right)!}\right\} \tag{10}
\end{equation*}
$$

where $D=\left[\left(r_{1}-1\right)!\left(r_{2}-r_{1}-1\right)!\ldots\left(n-r_{d}\right)!\right]^{-1}$,

matrix and $\mathrm{f}\left(x_{t}^{(\nu)}\right)=\left(f_{1}\left(x_{t}^{(\nu)}\right), f_{2}\left(x_{t}^{(\nu)}\right), \ldots, f_{n}\left(x_{t}^{(v)}\right)\right)^{\prime}, t=1,2, \ldots, d$ is column vector.

Result 6.

$$
\begin{align*}
\left.\frac{1}{(r-1)!(n-r)!} \sum_{l=0}^{n-r}(-1)^{n-r-l}\binom{n-r}{l}\right)! & \left.\sum_{n_{s}=n-l} \underset{n}{\operatorname{per}[\mathrm{~F}(x)} \underset{n}{ } \mathrm{f}(x)\right][s / .) \\
& =\sum \sum \sum_{1}\binom{n}{r} f^{s}(x) \sum_{l=0}^{n-r}(-1)^{n-r-l}\binom{n-r}{l}\left[F^{s}(x)\right]^{n-l-1} \tag{11}
\end{align*}
$$

Proof. In (10), if $b=1, d=1$ and using properties of permanent and binomial expansion, we can write

$$
\begin{align*}
f_{r: n}(x) & =\frac{1}{(r-1)!(n-r)!} \operatorname{per}[\underset{r-1}{\mathrm{~F}(x)} \underset{1}{\mathrm{f}(x)} \underset{n-r}{1-\mathrm{F}(x)]} \\
& =\frac{1}{(r-1)!(n-r)!} \sum_{l=0}^{n-r}(-1)^{n-r-l}\binom{n-r}{l} \operatorname{per}\left[\underset{n-l-1}{\mathrm{~F}(x)} \underset{1}{\mathrm{f}(x)}{\underset{l}{l}]}^{(1)}\right. \\
& =\frac{1}{(r-1)!(n-r)!} \sum_{l=0}^{n-r}(-1)^{n-r-l}\binom{n-r}{l} l!\sum_{n_{s}=n-l} \operatorname{per}[\underset{n}{\mathrm{~F}(x)} \underset{1}{\mathrm{f}} \mathrm{f}(x)][s / .) . \tag{12}
\end{align*}
$$

Furthermore,

$$
\begin{align*}
f_{r: n}(x) & =\sum \sum r\binom{n}{r}\left[F^{s}(x)\right]^{r-1} f^{s}(x)\left[1-F^{s}(x)\right]^{n-r} \\
& =\sum \sum r\binom{n}{r} f^{s}(x) \sum_{l=0}^{n-r}(-1)^{n-r-l}\binom{n-r}{l}\left[F^{s}(x)\right]^{n-l-1} . \tag{13}
\end{align*}
$$

(11) is immediate from (12) and (13). The proof is complete.

Result 7. In (11), if $r=1$,

$$
f_{1: n}(x)=\frac{1}{(n-1)!} \operatorname{per}[\mathrm{f}(x) \underset{n}{1} 1-\mathrm{F}(x)]=\sum \sum n f^{s}(x)\left[1-F^{s}(x)\right]^{n-1} .
$$

Result 8. In (11), if $r=n$,

$$
f_{n: n}(x)=\frac{1}{(n-1)!} \operatorname{per}\left[\underset{n-1}{ }[x) \underset{\substack{1}}{\mathrm{f}(x)]=\sum \sum n f^{s}(x)\left[F^{s}(x)\right]^{n-1} ~}\right.
$$

Result 9: In (10), if $b=1, d=2$ and $r_{1}=1, r_{2}=n$,

$$
f_{1, n: n}\left(x_{1}, x_{2}\right)=\sum \sum n(n-1) f^{s}\left(x_{1}\right) f^{s}\left(x_{2}\right)\left[F^{s}\left(x_{2}\right)-F^{s}\left(x_{1}\right)\right]^{n-2}, \quad x_{1}<x_{2} .
$$

Result 10: In (10), if $r_{1}=1, r_{2}=2, \ldots, r_{k}=k$,

$$
f_{1,2, \ldots, k: n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\prod_{\mathrm{v}=1}^{\mathrm{b}}\left\{\sum \sum n!\left(\prod_{\mathrm{a}=1}^{\mathrm{k}} f^{s}\left(x_{a}^{(v)}\right)\right) \frac{\left[1-F^{s}\left(x_{k}^{(v)}\right)\right]^{n-k}}{(n-k)!}\right\}, \quad \mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{k}} .
$$

References

[1] Balakrishnan, N., 2007, Permanents, order statistics, outliers and robustness, Rev. Mat. Complut., 1,7-107.
[2] Balasubramanian, K., Balakrishnan, N. and Malik, H.J., 1994, Identities for order statistics from nonindependent non- identical variables, Sankhya, Ser. B, 56, 67-75.
[3] Beg, M. I., 1991, Recurrence relations and identities for product moments of order statistics corresponding to nonidentically distributed variables, Sankhya, Ser. A, 53, 365-374.
[4] Childs, A. and Balakrishnan, N., 2006, Relations for order statistics from non-identical logistic random variables and assessment of the effect of multiple outliers on bias of linear estimators, J. Statist. Plann. Inference, 9, 2227-2253, 136.
[5] David, H.A., 1981, Order statistics, John Wiley and Sons, New York.
[6] Gan, G. and Bain, L.J., 1995, Distribution of order statistics for discrete parents with applications to censored sampling, J. Statist. Plann. Inference, 44, 37-46.
[7] Guilbaud, O., 1982, Functions of non-i.i.d. random vectors expressed as functions of i.i.d. random vectors, Scand. J. Statist., 9, 229-233.
[8] Khatri, C.G., 1962, Distributions of order statistics for discrete case, Annals of the Ins. of Stat. Math., 14, 167-171.
[9] Reiss, R.-D., 1989, Approximate distributions of order statistics, Springer-Verlag, New York.
[10] Vaughan, R.J. and Venables, W.N., 1972, Permanent expressions for order statistics densities, J. Roy. Statist. Soc., Ser. B, 34, 308-310.

A-Equistatistical Convergence of Positive Linear Operators

Hüseyin Aktuğlu ${ }^{\text {a }}$, Mehmet Ali Ozarslan ${ }^{\text {a }}$ Halil Gezer ${ }^{\text {a }}$
${ }^{a}$ Eastern Mediterranean University, Department of Mathematics, Gazimağusa, Mersin 10. Turkey

Abstract

Recently, the concept of equistatistical convergence which is stronger than statistical uniform convergence was introduced by Balcerzac, Dems and Komisarski. In the present paper we introduce the concept of A-equistatistical convergence which extends equi-statistical convergence. Moreover, we construct examples to show that A-equistatistical convergence lies between A-statistically pointwise and uniform convergence. We also obtain A-equistatistical case of Korovkin result and finally we compute the rates of A-equistatistical convergence of sequences of positive linear operators.

Key words: Statistical convergence, A-statistical convergence, equi-statistical convergence, Korovkin type approximation theorem, modulus of contininuity, Bernstein polynomials

1 Introduction

The concept of statistical convergence has been initiated by Fast [11] and so far various kinds of generalization of statistical convergence and their applications have been studied by different researchers (see [4],[7],[12],[13],[18]). Recently, Balcerzak et al. [3] have introduced the notion of equi-statistical convergence which is stronger than the statistical uniform convergence. Then Korovkin type approximation theorem via equi-statistical convergence is considered in [15]. In the present paper our main interest is to introduce the

[^1]notion of A-equistatistical convergence which extends equi-statistical convergence and to prove a Korovkin type approximation theorem by means of A-equistatistical convergence.

Recall that for an infinite summability matrix $A=\left(a_{m k}\right) m, k=1,2, \ldots$ and a sequence $x=\left(x_{j}\right)_{j \in \mathbb{N}}$, the A-transform of x is denoted by $A x=(A x)_{m}$ and defined as;

$$
(A x)_{m}=\sum_{k=1}^{\infty} a_{m k} x_{k}
$$

provided that the series converges for each $m \in \mathbb{N}$. The matrix A is said to be regular if A-transform of x preserves the limit of x. Suppose that A is a non-negative regular summability matrix and $K \subset \mathbb{N}$, then

$$
\delta_{A}^{m}(K):=\sum_{k=1}^{\infty} a_{m k} \chi_{K}(k)
$$

is called the m th partial A-density of K where χ_{K} denotes the characteristic function of K [12]. The A-density of K is defined as $\delta_{A}(K):=$ $\lim _{m \rightarrow \infty} \delta_{A}^{m}(K)$ provided that limit exists. A sequence $x:=\left(x_{j}\right)$ is called A statistically convergent to L and denoted by $s t_{A}-\lim _{n \rightarrow \infty} x_{n}=L$, if for every $\varepsilon>0, \delta_{A}\left\{n \in \mathbb{N}:\left|x_{n}-L\right| \geq \varepsilon\right\}=0$. For the case $A=C_{1}$, the Cesáro matrix of order one, A-statistical convergence reduces to statistical convergence. Also, taking $A=I$, the identity matrix, A-statistical convergence coincides with the ordinary convergence. We also note that if a non-negative regular summability matrix $A=\left(a_{m k}\right)$ satisfies the condition $\lim _{m} \max _{k}\left\{a_{m k}\right\}=0$, then A-statistical convergence is stronger than ordinary convergence [16].

2 Types of convergence for sequences of functions

In this section we introduce A-equistatistical convergence which is lying between A-statistical pointwise and A-statistical uniform convergence, for sequences of real valued functions.

Let X be a subset of \mathbb{R} and assume $f, f_{n}: X \longrightarrow \mathbb{R}$, for all $n \in \mathbb{N}$, then we have the following well known definitions.

Definition 1 Let $A=\left(a_{m k}\right)$ be a non-negative regular summability matrix then $\left(f_{n}\right)_{n \in \mathbb{N}}$ is said to be A-statistically pointwise convergent to f on X and denoted by $f_{n} \longrightarrow_{A} f$ if

$$
s t_{A}-\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

for each $x \in X$, i.e. for every $\varepsilon>0$ and for each $x \in X$,

$$
\delta_{A}\left(\left\{n \in \mathbb{N}:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)=0 .
$$

Definition 2 Let $A=\left(a_{m k}\right)$ be a non-negative regular summability matrix then $\left(f_{n}\right)_{n \in \mathbb{N}}$ is said to be A-statistically uniform convergent to f on X and denoted by $f_{n} \rightrightarrows_{A} f$ if

$$
s t_{A}-\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{C(X)}=0
$$

i.e. for every $\varepsilon>0$,

$$
\delta_{A}\left(\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x)\right\|_{C(X)} \geq \varepsilon\right\}\right)=0
$$

In [3], the concept of equi-statistical convergence was based on the Cesáro matrix of order one. In the following definition we extend this idea for an arbitrary non-negative regular summability matrix A.

Definition 3 Let $A=\left(a_{m k}\right)$ be a non-negative regular summability matrix then $\left(f_{n}\right)_{n \in \mathbb{N}}$ is said to be A-equistatistically convergent to f on X and denoted by $f_{n} \rightarrow_{A} f$ if for every $\varepsilon>0$, the sequence of real valued functions $\left(h_{m, \varepsilon}\right)_{m \in \mathbb{N}}$ where

$$
\begin{equation*}
h_{m, \varepsilon}(x)=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right), x \in X \tag{2.1}
\end{equation*}
$$

uniformly converges to the zero function on X. i.e. $\lim _{m \rightarrow \infty}\left\|h_{m, \varepsilon}(\cdot)\right\|_{C(X)}=0$.
Choosing $A=C_{1}$ then above definition reduces to the one considered in [3] and [15]. As a direct consequence of the definitions, we can state the following lemma.

Lemma 2.1 Let X be a subset of \mathbb{R} and assume $f, f_{n}: X \rightarrow \mathbb{R}$, for all $n \in \mathbb{N}$ then
i) $f_{n} \rightrightarrows_{A} f$ on $X \Longrightarrow f_{n} \rightarrow_{A} f$ on X
ii) $f_{n} \rightarrow_{A} f$ on $X \Longrightarrow f_{n} \longrightarrow_{A} f$ on X.

The following intriguing examples guarantee that, in general the inverse implications of (i) and (ii) does not hold.

Example 1 Consider the sequence of continuous functions $f_{n}:[0,1] \longrightarrow \mathbb{R}$, $n \in \mathbb{N}$, defined as

$$
f_{n}(x)= \begin{cases}-4 n^{2}(n+1)^{2}\left(x-\frac{1}{n}\right)\left(x-\frac{1}{n+1}\right) & , \text { if } \quad x \in\left(\frac{1}{n+1}, \frac{1}{n}\right] \\ 0 & , \text { otherwise }\end{cases}
$$

and let $A=\left(a_{m k}\right)$ be the non-negative regular summability matrix such that

$$
a_{m k} \leq b_{m}, \quad k=1,2, \ldots \text { and } \lim _{m \rightarrow \infty} b_{m}=0
$$

then $f_{n} \rightarrow_{A} 0$ but $f_{n} \rightrightarrows_{A} 0$ does not hold. Indeed, for each $\varepsilon>0$ and for all $x \in[0,1]$, the set $\left\{n \in \mathbb{N}:\left|f_{n}(x)\right| \geq \varepsilon\right\}$ has cardinality at most one. Thus for every $\varepsilon>0$ and $x \in[0,1]$

$$
h_{m, \varepsilon}(x)=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|f_{n}(x)\right| \geq \varepsilon\right\}\right) \leq b_{m}
$$

Taking limit from both sides as $m \rightarrow \infty$, we have

$$
\lim _{m \rightarrow \infty}\left\|h_{m, \varepsilon}(\cdot)\right\|_{C[0,1]}=0
$$

Hence $f_{n} \rightarrow_{A} 0$. Finally, choosing $\varepsilon=1$ and taking into account that

$$
\left\|f_{n}\right\|_{C[0,1]}=\sup _{x \in[0,1]}\left|f_{n}(x)\right|=1 \text { for all } n \in \mathbb{N}
$$

we have

$$
\delta_{A}\left\{n \in \mathbb{N}:\left\|f_{n}\right\|_{C[0,1]} \geq 1\right\}=\delta_{A}\{\mathbb{N}\}=1 \neq 0
$$

Example 2 Consider the sequence of functions $f_{n}:[0,1] \longrightarrow \mathbb{R}, n \in \mathbb{N}$, defined by $f_{n}(x):=\chi_{\left\{\frac{1}{2 n}\right\}}$ and let $A=\left(a_{n k}\right)$ be the non-negative regular summability matrix, where

$$
a_{n k}=\left\{\begin{array}{l}
\frac{1}{2 n}, n \leq k \leq 3 n-1 \\
0, \text { otherwise }
\end{array}\right.
$$

then for each $\varepsilon>0$ and for every $x \in[0,1]$,

$$
h_{m, \varepsilon}(x)=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|f_{n}(x)\right| \geq \varepsilon\right\}\right) \leq \frac{1}{2 m}
$$

thus $f_{n} \rightarrow{ }_{A} 0$. But $f_{n} \rightrightarrows_{A} 0$ does not hold.
Example 3 Consider the sequence of functions $f_{n}:[0,1] \longrightarrow \mathbb{R}, n \in \mathbb{N}$, defined by $f_{n}(x)=x^{n}$ and let $C_{1}=\left(c_{n k}\right)$ be the Cesàro matrix of order one, i.e.

$$
c_{n k}=\left\{\begin{array}{l}
\frac{1}{n}, 1 \leq k \leq n \\
0, \text { otherwise }
\end{array}\right.
$$

and take $\varepsilon=\frac{1}{4}$, then $\forall n \in \mathbb{N}, \exists m \geq n$ such that for any $x \in\left(\sqrt[m]{\frac{1}{4}}, 1\right)$,

$$
\{1,2, \ldots, m\} \subset\left\{n \in \mathbb{N}:\left|f_{n}(x)\right| \geq \frac{1}{4}\right\}
$$

which implies that

$$
1=\delta_{C_{1}}^{m}(\{1,2, \ldots, m\}) \leq \delta_{C_{1}}^{m}\left(\left\{n \in \mathbb{N}:\left|f_{n}(x)\right| \geq \frac{1}{4}\right\}\right)
$$

it follows from (2.1) that f_{n} is not equi-statistically convergent to the ordinary limit function.

3 Korovkin type approximation theorem

As it is well known, many researchers obtained many Korovkin type approximation theorems via A-statistical convergence (see [1],[2],[4], [6], [8], [9], [10] and [14]). Recently, a Korovkin type approximation theorem by means of equistatistical convergence was given in [15]. The primary goal of this section is to prove a Korovkin type approximation theorem via A-equistatistical convergence.

Theorem 3.1 Let $A=\left(a_{m k}\right)$ be a non-negative regular summability matrix and X be a compact subset of \mathbb{R}. Suppose that $\left\{L_{n}\right\}$ is a sequence of positive linear operators defined on $C\left(X^{r}\right)$, the space of all continuous real valued functions on X^{r} into itself, where $X^{r}=X \times \cdots \times X$. Then for all $f \in C\left(X^{r}\right)$,

$$
L_{n}(f) \rightarrow_{A} f
$$

is satisfied if the following holds;

$$
\begin{equation*}
L_{n}\left(f_{\nu}\right) \rightarrow_{A} f_{\nu}, \nu=0,1, \ldots, r+1 \tag{3.1}
\end{equation*}
$$

where, for $\vec{y}=\left(y_{1}, \ldots, y_{r}\right) \in X^{r}, f_{0}(\vec{y})=1, \quad f_{v}(\vec{y})=y_{\nu}, \quad \nu=1,2, \ldots, r$, and $f_{r+1}(\vec{y})=\sum_{v=1}^{r} y_{\nu}^{2}$.

Proof. Let f be a continuous function on X^{r} and let $\vec{x}=\left(x_{1}, x_{2}, \cdots, x_{r}\right)$ be a fixed point in X^{r}. For every $\varepsilon>0$ there exists a real number $\delta>0$ such that $|f(\vec{y})-f(\vec{x})|<\varepsilon$ for all $\vec{y}=\left(y_{1}, y_{2}, \cdots, y_{r}\right) \in X^{r}$ satisfying $\left|y_{\nu}-x_{\nu}\right|<\delta$, $\nu=1,2, \cdots, r$. If $X_{\delta}^{r}:=X^{r} \cap K_{\delta}^{r}$ where $K_{\delta}^{r}:=\left\{\vec{y} \in \mathbb{R}^{r}:\left|y_{\nu}-x_{\nu}\right|<\delta\right\}$, then

$$
\begin{aligned}
|f(\vec{y})-f(\vec{x})| \leq & |f(\vec{y})-f(\vec{x})| \chi_{X_{\delta}^{r}}(\vec{y}) \\
& +|f(\vec{y})-f(\vec{x})| \chi_{X^{r} \backslash X_{\delta}^{r}}(\vec{y}) \\
\leq & \varepsilon+2 M \chi_{X^{r} \backslash X_{\delta}^{r}}(\vec{y})
\end{aligned}
$$

where $M:=\|f\|_{C\left(X^{r}\right)}$. After some simple calculations we may write that

$$
\chi_{X^{r} \backslash X_{\delta}^{r}}(\vec{y}) \leq \frac{1}{\delta^{2}} \sum_{\nu=1}^{r}\left(y_{\nu}-x_{\nu}\right)^{2} .
$$

Therefore, we get

$$
|f(\vec{y})-f(\vec{x})| \leq \varepsilon+\frac{2 M}{\delta^{2}} \sum_{\nu=1}^{r}\left(y_{\nu}-x_{\nu}\right)^{2}
$$

for all $\vec{y} \in X^{r}$. By linearity and positivity of the operators $\left\{L_{n}\right\}$, we have

$$
\begin{align*}
& \left|L_{n}(f ; \vec{x})-f(\vec{x})\right| \\
\leq & L_{n}\left(\left|f(\vec{y})-f(\vec{x}) f_{0}\right| ; \vec{x}\right)+|f(\vec{x})|\left|L_{n}\left(f_{0} ; \vec{x}\right)-f_{0}(\vec{x})\right| \\
\leq & \varepsilon L_{n}\left(f_{0} ; \vec{x}\right)+\frac{2 M}{\delta^{2}}\left\{\sum_{\nu=1}^{r} L_{n}\left(\left(y_{\nu}-x_{\nu}\right)^{2} ; \vec{x}\right)\right\} \\
& +M\left|L_{n}\left(f_{0} ; \vec{x}\right)-f_{0}(\vec{x})\right| \\
\leq & \varepsilon+(\varepsilon+M)\left|L_{n}\left(f_{0} ; \vec{x}\right)-f_{0}(\vec{x})\right| \\
& +\frac{2 M}{\delta^{2}}\left|L_{n}\left(f_{r+1} ; \vec{x}\right)-f_{r+1}(\vec{x})\right| \\
& +\sum_{\nu=1}^{r} \frac{4 M}{\delta^{2}}\left|x_{\nu}\right|\left|L_{n}\left(\left(f_{\nu} ; \vec{x}\right)-f_{\nu}(\vec{x})\right)\right| \\
& +\frac{2 M}{\delta^{2}}\left[\sum_{\nu=1}^{r} x_{\nu}^{2}\right]\left|L_{n}\left(f_{0} ; \vec{x}\right)-f_{0}(\vec{x})\right| \\
\leq & \varepsilon+\left(\varepsilon+M+\frac{\left.2 r M\|\vec{x}\|_{C\left(X^{r}\right)}^{2}\right)\left|L_{n}\left(f_{0} ; \vec{x}\right)-f_{0}(\vec{x})\right|}{\delta^{2}}\right. \\
& +\frac{4 r M\|\vec{x}\|_{C\left(X^{r}\right)}\left\{\sum_{\nu=1}^{r}\left|L_{n}\left(f_{i} ; \vec{x}\right)-f_{i}(\vec{x})\right|\right\}}{\delta^{2}} \\
& +\frac{2 M}{\delta^{2}}\left|L_{n}\left(f_{r+1} ; \vec{x}\right)-f_{r+1}(\vec{x})\right| \\
\leq & \varepsilon+B \sum_{\nu=0}^{r+1}\left|L_{n}\left(f_{\nu} ; \vec{x}\right)-f_{\nu}(\vec{x})\right| \tag{3.2}
\end{align*}
$$

where $B:=\varepsilon+M+\frac{4 r M}{\delta^{2}}\left(\|\vec{x}\|_{C\left(X^{r}\right)}^{2}+\|\vec{x}\|_{C\left(X^{r}\right)}+1\right)$.
For a given $s>0$, choose $0<\varepsilon<s$ and define the following sets:

$$
\begin{aligned}
& D_{s}(\vec{x}):=\left\{n \in \mathbb{N}:\left|L_{n}(f, \vec{x})-f(\vec{x})\right| \geq s\right\} \\
& D_{s}^{\nu}(\vec{x}):=\left\{n \in \mathbb{N}:\left|L_{n}\left(f_{\nu}, \vec{x}\right)-f_{\nu}(\vec{x})\right| \geq \frac{s-\varepsilon}{(r+2) B}\right\}
\end{aligned}
$$

$\nu=0,1, \ldots, r+1$. Then from (3.2), we clearly have

$$
\begin{equation*}
D_{s}(\vec{x}) \subset \bigcup_{\nu=0}^{r+1} D_{s}^{\nu}(\vec{x}) \tag{3.3}
\end{equation*}
$$

Also define the following real valued functions

$$
p_{m, s}(\vec{x}):=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|L_{n}(f, \vec{x})-f(\vec{x})\right| \geq s\right\}\right)
$$

and

$$
p_{m, s}^{\nu}(\vec{x}):=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|L_{n}\left(f_{\nu}, \vec{x}\right)-f_{\nu}(\vec{x})\right| \geq \frac{s-\varepsilon}{(r+2) B}\right\}\right)
$$

$\nu=0,1, \ldots, r+1$, then by the monotonicity of the operators δ_{A}^{m} and (3.3), we find

$$
p_{m, s}(\vec{x}) \leq \sum_{\nu=0}^{r+1} p_{m, s}^{\nu}(\vec{x})
$$

for all $\vec{x} \in X^{r}$. This gives the inequality

$$
\begin{equation*}
\left\|p_{m, s}(.)\right\|_{C\left(X^{r}\right)} \leq \sum_{\nu=0}^{r+1}\left\|p_{m, s}^{\nu}(.)\right\|_{C\left(X^{r}\right)} \tag{3.4}
\end{equation*}
$$

Taking limit in (3.4) as $m \rightarrow \infty$ and using (3.1) we have

$$
\lim _{m}\left\|p_{m, s}(.)\right\|_{C\left(X^{r}\right)}=0
$$

which completes the proof.
Corollary 3.2 Let $A=\left(a_{m k}\right)$ be a non-negative regular summability matrix. Suppose that $\left\{L_{n}\right\}$ is a sequence of positive linear operators from $C(X)$ into itself, where X is a compact subset of \mathbb{R}. Then for all $f \in C(X)$,

$$
L_{n}(f) \rightarrow_{A} f
$$

is satisfied if the following holds;

$$
L_{n}\left(e_{i}\right) \rightarrow_{A} e_{i}, i=0,1,2
$$

where $e_{i}(y)=y^{i}$.
Remark 1 Let $A=C_{1}$, and let $r=1$, then the Theorem 3.1 reduces to the Theorem 2.1 of [15].

4 Rates of A-equistatistical convergence

Although, there is no standard definition for the rates of A-statistical convergence, in [4] Duman at al. defined this rates in four different ways. After these definitions, rates of A-statistical convergence of various classes of linear positive operators has been computed in several articles (see [5], [6],[7],[19], [20]).

For the rates of A-equistatistical convergence we use the idea which was borrowed from the concept of convergence in measure:

Definition 4 Let $A=\left(a_{m k}\right)$ be a non-negative regular summability matrix and let $\left(a_{n}\right)$ be a positive, non-increasing and real valued sequence. We say that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of functions is A-equistatistically convergent to f with the rate of $o\left(a_{n}\right)$, if for every $\varepsilon>0$,

$$
h_{m, \varepsilon}(x)=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|f_{n}(x)-f(x)\right| \geq \varepsilon a_{n}\right\}\right)
$$

converges uniformly to the zero function i.e. $\lim _{m}\left\|h_{m, \varepsilon}(\cdot)\right\|=0$. In this case we write

$$
f_{n}-f=s t_{A-\text { equi }}-o\left(a_{n}\right), \quad(\text { as } n \longrightarrow 0)
$$

Definition 5 Let $A=\left(a_{m k}\right)$ be a non-negative regular summability matrix and let $\left(a_{n}\right)$ be a positive, non-increasing and real valued sequence. We say that the sequence $\left(f_{n}\right)$ of functions is A-equistatistically bounded with the rate of $O\left(a_{n}\right)$, if there is a positive number S such that

$$
h_{m, \varepsilon}(x)=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|f_{n}(x)\right| \geq S a_{n}\right\}\right)
$$

converges uniformly to the zero function i.e. $\lim _{m}\left\|h_{m, \varepsilon}(\cdot)\right\|=0$. In this case we write

$$
f_{n}=s t_{A-e q u i}-O\left(a_{n}\right), \quad(\text { as } n \longrightarrow \infty)
$$

Lemma 4.1 Let $A=\left(a_{m k}\right)$ be a non-negative regular summability matrix, $\left(f_{n}\right)$ and $\left(g_{n}\right)$ be sequences of continuous functions on X. Assume that $f_{n}-f=$ $s t_{A-\text { equi }}-o\left(a_{n}\right)$ on X and $g_{n}-g=s t_{A-\text { equi }}-o\left(b_{n}\right)$ on $X \quad($ as $n \rightarrow \infty)$ where a_{n} and b_{n} are both positive non-increasing sequences then the following hold:
i) $\quad\left(f_{n}+g_{n}\right) \pm(f+g)=s t_{A-\text { equi }}-o\left(c_{n}\right)$
ii) $\quad\left(f_{n}-f\right)\left(g_{n}-g\right)=s t_{A-e q u i}-o\left(c_{n}\right)$
$c_{n}=\max \left\{a_{n}, b_{n}\right\}$.
Proof. (i) Given $\varepsilon>0$, by the assumption, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|h_{m, \varepsilon}(\cdot)\right\|_{C(X)}=0 \text { and } \lim _{m \rightarrow \infty}\left\|p_{m, \varepsilon}(\cdot)\right\|_{C(X)}=0 \tag{4.1}
\end{equation*}
$$

where

$$
h_{m, \varepsilon}(x)=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|f_{n}(x)-f(x)\right| \geq \frac{\varepsilon}{2} a_{n}\right\}\right)
$$

and

$$
p_{m, \varepsilon}(x)=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|g_{n}(x)-g(x)\right| \geq \frac{\varepsilon}{2} b_{n}\right\}\right) .
$$

Let

$$
r_{m, \varepsilon}(x)=\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|\left(f_{n} \pm g_{n}\right)(x)-(f \pm g)(x)\right| \geq \varepsilon c_{n}\right\}\right)
$$

where $c_{n}=\max \left\{a_{n}, b_{n}\right\}$. Then by the following inequality

$$
r_{m, \varepsilon}(x) \leq h_{m, \varepsilon}(x)+p_{m, \varepsilon}(x), \quad x \in X
$$

and (4.1), the result follows immediately.
(ii) Using a similar method and the fact that if $a b \geq \varepsilon$, then $a \geq \frac{\sqrt{\varepsilon}}{2}$ or $b \geq \frac{\sqrt{\varepsilon}}{2}$ for any $a, b \geq 0$, we get the result.

Note that similar results hold when the little "o" is replaced by the big "O".
Now we give the rate of A-equistatistical convergence of the operators $L_{n}(f ; x)$ to $f(x)$ by using the modulus of continuity. It is known that the usual modulus of continuity is defined as

$$
\omega(f ; \delta)=\sup _{0<h \leq \delta} \sup _{x \in[0, \infty)}|f(x+h)-f(x)|
$$

and satisfies

$$
\begin{equation*}
\omega(f ;|y-x|) \leq\left(1+\frac{|y-x|}{\delta}\right) \omega(f ; \delta), \quad \delta>0 \tag{4.2}
\end{equation*}
$$

Then we have the following theorem:
Theorem 4.2 Let $A=\left(a_{m k}\right)$ be a non-negative regular summability matrix and let
(i) $L_{n}\left(e_{0}(x)\right)-e_{0}(x)=s t_{A-e q u i} o\left(a_{n}(x)\right)$
(ii) $w\left(f, \sqrt{L_{n}\left((y-x)^{2} ; x\right)}\right)=s t_{A-\text { equi }} O\left(b_{n}(x)\right)$
where $a_{n}(x)$ and $b_{n}(x)$ are positive non-increasing sequences. Then

$$
L_{n}(f ; x)-f(x)=s t_{A-e q u i} O\left(c_{n}(x)\right), \text { as } n \rightarrow \infty .
$$

where $c_{n}(x)=\max \left\{a_{n}(x), b_{n}(x)\right\}$. Similar result holds when little " o " replace by " O ".

Proof. Using linearity and positivity of the operators and then (4.2), we have

$$
\begin{aligned}
\left|L_{n}(f ; x)-f(x)\right| \leq & L_{n}(|f(y)-f(x)| ; x)+|f(x)|\left|L_{n}\left(e_{0} ; x\right)-e_{0}(x)\right| \\
\leq & L_{n}(\omega(f ;|y-x|) ; x)+|f(x)|\left|L_{n}\left(e_{0} ; x\right)-e_{0}(x)\right| \\
& \omega(f ; \delta)\left(e_{0}(x)+\frac{L_{n}(|y-x| ; x)}{\delta}\right) \\
& +|f(x)|\left|L_{n}\left(e_{0} ; x\right)-e_{0}(x)\right| .
\end{aligned}
$$

Applying the Cauchy- Schwarz inequality, we get

$$
\begin{align*}
\left|L_{n}(f ; x)-f(x)\right| \leq & \left(1+L_{n}\left(e_{0}(x)\right)\right) w\left(f, \sqrt{L_{n}\left((y-x)^{2} ; x\right)}\right) \\
& +|f(x)|\left|L_{n}\left(e_{0} ; x\right)-e_{0}(x)\right| \\
\leq & 2 w\left(f, \sqrt{L_{n}\left((y-x)^{2} ; x\right)}\right)+M\left|L_{n}\left(e_{0} ; x\right)-e_{0}(x)\right| \\
& +w\left(f, \sqrt{L_{n}\left((y-x)^{2} ; x\right)}\right)\left|L_{n}\left(e_{0} ; x\right)-e_{0}(x)\right| .(4.3 \tag{4.3}
\end{align*}
$$

Using the inequality (4.3), conditions (i) and (ii), and Lemma 4.1, the proof is completed at once.

5 Concluding Remarks

In this section, we first construct an example to show that A-equistatistical convergence is stronger than equi-statistical convergence. Then, we modify the well known Bernstein polynomials and show that A-equistatistical convergence is valid, while the ordinary and equi-statistical convergence are not. Finally, we compute the rate of A-equistatistical convergence of these modified Bernstein polynomials.

We start with the following example:
Example 4 Consider the sequence of functions

$$
u_{n}(x)=\left\{\begin{array}{l}
0, \text { if } n \text { is even } \\
x, \text { if } n \text { is odd }
\end{array}, x \in[0,1]\right.
$$

and the non-negative regular summability matrix $A=\left(a_{n k}\right)$ where

$$
a_{m k}=\left\{\begin{array}{l}
\frac{1}{2}, \text { if } k=2 n-1 \text { or } k=2 n+1 \\
0, \text { otherwise } .
\end{array}\right.
$$

Since $\delta_{A}^{m}\left(\left\{n \in \mathbb{N}:\left|u_{n}(x)-x\right| \geq \varepsilon\right\}\right)=\delta_{A}^{m}(2 \mathbb{N})=0$, for every $\varepsilon>0$ and $x \in[0,1], u_{n}(x)$ is A-equistatistically and A-statistically convergent to x. On the other hand, one can easily see that $u_{n}(x)$ is not equi-statistically convergent to x.

Now let $u_{n}(x)$ and $A=\left(a_{n k}\right)$ be the same as in the Example 6 and consider the following modified version of the Bernstein polynomials:

$$
\begin{equation*}
B_{n}^{*}(f ; x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} u_{n}^{k}(x)\left(1-u_{n}(x)\right)^{n-k}, \tag{5.1}
\end{equation*}
$$

$x \in[0,1]$ and $f \in C[0,1]$. We immediately see that

$$
\begin{align*}
& B_{n}^{*}\left(e_{0} ; x\right)=e_{0}(x), \\
& B_{n}^{*}\left(e_{1} ; x\right)=u_{n}(x) \tag{5.2}\\
& B_{n}^{*}\left(e_{2} ; x\right)=\left(u_{n}^{2}(x)+\frac{u_{n}(x)\left(1-u_{n}(x)\right)}{n}\right) .
\end{align*}
$$

Therefore we obtain that

$$
B_{n}^{*}\left(f_{i} ; x\right) \rightarrow_{A} f_{i} \text { on }[0,1] \text { for } i=0,1,2 .
$$

Hence by the Corollary 3.2 we have

$$
B_{n}^{*}(f ; x) \rightarrow_{A} f \text { on }[0,1] \text { for all } f \in C[0,1] .
$$

Also by (5.2) and the Theorem 4.2, we have

$$
\left|B_{n}^{*}(f ; x)-f(x)\right|=s t_{A-e q u i} O\left(w\left(f, \delta_{n}(x)\right)\right), \text { as } n \rightarrow \infty .
$$

where $\delta_{n}^{2}(x)=3$. $\max \left\{2 x\left|u_{n}(x)-x\right|,\left|u_{n}^{2}(x)-x^{2}\right|,\left|\frac{u_{n}(x)\left(1-u_{n}(x)\right)}{n}\right|\right\}$.
Under the light of the above interesting application, we see that the Corollary 2 of [4] and the Theorem 2.1 of [15] do not work for the operators defined by (5.1). This also shows that the Theorem 3.1 is a non-trivial extension of A-statistical and equi-statistical version of the Korovkin theorems considered in [4] and [15], respectively.

References

[1] H, Aktuğlu, M.A. Özarslan, and O. Duman, Matrix summability methods on the approximation of $q-$ MKZ operators, (submitted).
[2] F. Altamore and M. Campiti, Korovkin Type Approximation Theory and its Applications, Walter de Gruyter Publ. Berlin, 1994.
[3] M. Balcerzak, K. Dems and A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007) 715729.
[4] O.Duman, M. K. Khan and C. Orhan, A-statistical convergence of approximating operators, Math. Ineq. Appl. 6 (2003), 689-699.
[5] O.Duman and C. Orhan, Rates of A-statistical convergence of operators in the space of locally integrable functions, Applied Mathematics Letters, (in press).
[6] O.Duman and C. Orhan, Rates of A-statistical convergence of positive linear operators, Appl. Math Letters, 18 (2005), 1339-1344.
[7] O.Duman and C. Orhan, Statistical approximation by positive linear operators, Studia Math. 161 (2004), 187-197.
[8] O. Duman, M. A. Özarslan, and O. Doğru, On integral type generalizations of positive linear operators, Studia Math. 174 (1)(2006), 1-12.
[9] E. Erkus and O. Duman, A-statistical extension of the Korovkin type approximation theorems, Proc. Indian Acad. Sci., 115, (2005), 499-508.
[10] E. Erkuş and O. Duman, A Korovkin type approximation theorem in statistical sense, Studia Scientiarum Mathematicarum Hungarica 43 (3), (2006), 285-294.
[11] H. Fast, Sur la convergence statistique, Collog. Math. 2 (1951), 241-244.
[12] A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95, (1981), 293-305.
[13] J. A. Fridy, On stastistical convergence, Analysis 5 (1985), 301-313.
[14] A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Approx. Theory 57, (1989), 90-103.
[15] S. Karakuş, K. Demirci and O. Duman, Equi-Statistical Convergence of Positive linear operators, J. Math Anal. Appl. 339 (2008), 1065-1072.
[16] E. Kolk, Matrix summability of statistically convergent sequences, Analysis, 13 (1993), 77-83.
[17] P. P. Korovkin, Linear Operators and the Theory of Approximation, India, Delhi, 1960.
[18] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811,1819.
[19] M. A. Özarslan, O. Duman, and O. Doğru, "Rates of A-statistical convergence of approximating operators", Calcolo 42, 93-104 (2005).
[20] M.A. Özarslan, O. Duman and H.M. Srivastava, Statistical approximation results for Kantorovich-type operators involving some special functions, Math. Comput. Modelling. (in press).

Hüseyin Aktuğlu (Corresponding author)
Eastern Mediterranean University
Faculty of Arts and Sciences
Department of Matematics
Gazimağusa, Mersin 10, Turkey
huseyin.aktuglu@emu.edu.tr

Halil Gezer
Eastern Mediterranean University
Faculty of Arts and Sciences
Department of Matematics
Gazimağusa, Mersin 10, Turkey
halil.gezer@emu.edu.tr

Mehmet Ali Özarslan
Eastern Mediterranean University
Faculty of Arts and Sciences
Department of Matematics
Gazimağusa, Mersin 10, Turkey
mehmetali.ozarslan@emu.edu.tr

Approximating the solution of second order differential equation with retarded argument

${ }^{1}$ A. M. Bica, ${ }^{2}$ M. Curilă, ${ }^{3}$ S. Curilă
${ }^{1}$ Department of Mathematics and Informatics,
${ }^{2}$ Faculty of Environment Protection,
${ }^{3}$ Faculty of Electric Engineering and Information Technology
University of Oradea, Str. Universităţii no.1, 410087, Oradea, Romania
e-mail addresses : abica@uoradea.ro

Abstract

A new numerical method for second order nonlinear delay differential equations is constructed. The method combines the fixed point Banach-Picard technique with the trapezoidal quadrature rule and cubic spline interpolation. The effective error estimation of the method which gives a stopping criterion of the algorithm is obtained.

Keywords and phrases : second order delay differential equations, numerical method, fixed point technique, cubic splines.

2000 AMS Mathematics Subject Classification : .34K28.

1 Introduction

Some of the existing numerical methods for second order delay differential equations are based on RungeKutta procedures (see [6]), on spline functions (see [2]), on Adomian decomposition (see [4]) and on Taylor expansion (see [7]) Most of them require high order smoothness conditions in order to obtain the convergence of the method (for instance, this is the situation of Runge-Kutta procedures and of the spline functions method). Here, we present a new numerical method which combines the Picard's sequence of successive approximations with a quadrature rule and use spline interpolation only on the points where the modified argument appears. The interpolation procedure is repeated at each step of iteration using the values computed at the previous step. All procedures included in the algorithm are recurrent and therefore, easy to programming. The method is developed, in the aim to be an alternative to the well-known spline functions method, in general cases for f (without smoothness conditions, for instance).

Consider the initial value problem:

$$
\left\{\begin{array}{c}
x^{\prime \prime}(t)=f(t, x(t), x(\varphi(t))), \quad t \in[0, a] \tag{1}\\
x(0)=x_{0}, x^{\prime}(0)=v_{0}
\end{array}\right.
$$

where $a>0, x_{0} \in \mathbb{R}$ and $\varphi:[0, a] \rightarrow[0, a]$ is such that $\varphi(0)=0, \varphi(t) \leq t$ for all $t \in[0, a]$. The case $\varphi(t)=\lambda t$ correspond to the second order pantograph equation used in electrodynamics (a numerical method for this equation can be viewed in [7]). We suppose that φ is Lipschitzian and f is Lipschitzian in each argument. These lead to the error estimation of the method which proves the convergence of the algorithm (the rate of convergence being $O(h)$). The obtained error estimates lead to a practical stopping criterion of the algorithm. Finally, we present two numerical examples, of pantograph type, in order to illustrate the method.

2 Existence, uniqueness and approximation

Consider the following conditions:
(i) $f \in C([0, a] \times \mathbb{R} \times \mathbb{R})$ and there is $M_{0}>0$ such that

$$
|f(s, u, v)| \leq M_{0}, \quad \text { for all } s \in[0, a], u, v \in \mathbb{R}
$$

(ii) $\varphi \in C[0, a], \varphi(0)=0$ and $\varphi(t) \leq t$ for all $t \in[0, a]$,
(iii) exist $L_{1}, L_{2}>0$ such that

$$
\left|f(s, u, v)-f\left(s, u^{\prime}, v^{\prime}\right)\right| \leq L_{1}\left|u-u^{\prime}\right|+L_{2}\left|v-v^{\prime}\right|, \quad \text { for all } s \in[0, a], u, u^{\prime}, v, v^{\prime} \in \mathbb{R}
$$

(iv) $a^{2}\left(L_{1}+L_{2}\right)<1$,
(v) exist $\alpha, \gamma>0$ such that

$$
\left|f(s, u, v)-f\left(s^{\prime}, u, v\right)\right| \leq \gamma\left|s-s^{\prime}\right|, \quad \text { for all } s, s^{\prime} \in[0, a], u, v \in \mathbb{R}
$$

and

$$
\left|\varphi(s)-\varphi\left(s^{\prime}\right)\right| \leq \alpha\left|s-s^{\prime}\right|, \quad \text { for all } s \in[0, a] .
$$

On $C[0, a]$, we apply the fixed point technique (based on the Picard-Banach principle) to the operator $A: C[0, a] \rightarrow C[0, a]$, given by

$$
A(x(t))=x_{0}+v_{0} t+\int_{0}^{t}(t-s) f(s, x(s), x(\varphi(s))) d s
$$

and obtain sufficient conditions for the convergence of the sequence of successive approximations: $x_{0}(t)=$ $x_{0}, t \in[0, a]$,

$$
\begin{equation*}
x_{m}(t)=x_{0}+v_{0} t+\int_{0}^{t}(t-s) f\left(s, x_{m-1}(s), x_{m-1}(\varphi(s))\right) d s, \quad t \in[0, a], m \in \mathbb{N}^{*} \tag{2}
\end{equation*}
$$

to the unique solution x^{*}, of the initial value problem (1). So, we obtain:
Theorem 1 Under the conditions (i)-(iv) the initial value problem (1) has unique solution $x^{*} \in C[0, a]$ and the sequence of successive approximations given by $x_{0}(t)=x_{0}, t \in[0, a]$,

$$
x_{m}(t)=x_{0}+v_{0} t+\int_{0}^{t}(t-s) f\left(s, x_{m-1}(s), x_{m-1}(\varphi(s))\right) d s, \quad t \in[0, a], m \in \mathbb{N}^{*}
$$

uniformly converges to x^{*}. Moreover, the following error estimation holds:

$$
\begin{equation*}
\left|x_{m}(t)-x^{*}(t)\right| \leq \frac{(a)^{2 m}\left(L_{1}+L_{2}\right)^{m}}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot\left(\left|v_{0} a\right|+M_{0} a^{2}\right), \quad \text { for all } t \in[0, a], m \in \mathbb{N}^{*} \tag{3}
\end{equation*}
$$

Proof. From condition (iv) the operator A is contraction and by the Picard-Banach fixed point principle follows the estimation

$$
\left|x_{m}(t)-x^{*}(t)\right| \leq \frac{(a)^{2 m}\left(L_{1}+L_{2}\right)^{m}}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot \max \left\{\left|x_{1}(t)-x_{0}(t)\right|: t \in[0, a]\right\} .
$$

Since

$$
\left|x_{1}(t)-x_{0}\right| \leq\left|v_{0} t\right|+\int_{0}^{t}|t-s| \cdot\left|f\left(s, x_{0}, x_{0}\right)\right| d s \leq\left|v_{0} a\right|+M_{0} a^{2}, \quad \text { for all } t \in[0, a]
$$

we obtain (3). Moreover, after elementary calculus, we infer that $x^{*} \in C^{2}[0, a]$ and x^{*} is the unique solution of (1).

Remark 1 Under the hypotheses of the above theorem follows that $x_{m} \in C^{2}[0, a]$ for all $m \in \mathbb{N}^{*}$,

$$
x_{m}^{\prime \prime}(t)=f\left(t, x_{m-1}(t), x_{m-1}(\varphi(t))\right)
$$

and

$$
\begin{align*}
& \left|x_{m}(t)-x_{m}\left(t^{\prime}\right)\right| \leq\left|v_{0}\right|\left|t-t^{\prime}\right|+\left|\int_{t}^{t^{\prime}}(t-s) f\left(s, x_{m-1}(s), x_{m-1}(\varphi(s))\right) d s\right|+ \\
& \quad+\int_{0}^{t^{\prime}}\left|f\left(s, x_{m-1}(s), x_{m-1}(\varphi(s))\right)\right| \cdot\left|t-t^{\prime}\right| d s \leq\left(\left|v_{0}\right|+2 a M_{0}\right) \cdot\left|t-t^{\prime}\right| \tag{4}
\end{align*}
$$

for all $t, t^{\prime} \in[0, a], m \in \mathbb{N}^{*}$. Moreover, since $x_{m} \in C^{2}[0, a]$ follows that x_{m}^{\prime} is Lipschitzian with the Lipschitz constant,

$$
\max \left\{\left|x_{m}^{\prime \prime}(t)\right|: t \in[0, a]\right\}=\max \left(\left|f\left(t, x_{m-1}(t), x_{m-1}(\varphi(t))\right)\right|: t \in[0, a]\right\} \leq M_{0}
$$

Consider the functions F_{m} given by $F_{m}:[0, a] \rightarrow \mathbb{R}$,

$$
F_{m}(t)=f\left(t, x_{m}(t), x_{m}(\varphi(t))\right), \quad m \in \mathbb{N}
$$

It is easy to see that the functions $x_{m}^{\prime \prime}$ and F_{m} have the same properties.
In the aim to compute the terms of the sequence of successive approximations consider the uniform partition of $[0, a]$ given by the knots $t_{i}=\frac{i \cdot a}{n}, i=\overline{0, n}$. On these knots, the relations (2) became

$$
\begin{equation*}
x_{m}\left(t_{i}\right)=x_{0}+v_{0} t_{i}+\int_{0}^{t_{i}}\left(t_{i}-s\right) f\left(s, x_{m-1}(s), x_{m-1}(\varphi(s))\right) d s, \quad i=\overline{0, n}, \quad . m \in \mathbb{N}^{*} \tag{5}
\end{equation*}
$$

Let the functions $G_{m . i}:[0, a] \rightarrow \mathbb{R}, \quad i=\overline{0, n}, m \in \mathbb{N}$, given by $G_{m, i}(s)=\left(t_{i}-s\right) \cdot f\left(s, x_{m}(s), x_{m}(\varphi(s))\right.$.
Proposition 1 Under the conditions (i)-(v) the functions $x_{m}^{\prime \prime}$ and $F_{m}, m \in \mathbb{N}^{*}$ are Lipschitzian with the same Lipschitz constant $\bar{L}=\gamma+\left(\left|v_{0}\right|+2 a M_{0}\right)\left(L_{1}+\alpha L_{2}\right)$. Moreover, the functions $G_{m . i}, i=\overline{0, n}, m \in \mathbb{N}$, are Lipschitzian with the same constant $L=a \bar{L}+M_{0}$.

Proof. Let $t, t^{\prime} \in[0, a]$. We have, $\left|F_{0}(t)-F_{0}\left(t^{\prime}\right)\right| \leq \gamma\left|t-t^{\prime}\right|$ and

$$
\begin{gathered}
\left|F_{m}(t)-F_{m}\left(t^{\prime}\right)\right| \leq \gamma\left|t-t^{\prime}\right|+L_{1}\left|x_{m}(t)-x_{m}\left(t^{\prime}\right)\right|+L_{2}\left|x_{m}(\varphi(t))-x_{m}\left(\varphi\left(t^{\prime}\right)\right)\right| \leq \\
\leq\left[\gamma+L_{1}\left(\left|v_{0}\right|+2 a M_{0}\right) \cdot\left|t-t^{\prime}\right|+\alpha L_{2}\left(\left|v_{0}\right|+2 a M_{0}\right)\right] \cdot\left|t-t^{\prime}\right|
\end{gathered}
$$

for all $t, t^{\prime} \in[0, a], m \in \mathbb{N}^{*}$. On the other hand,

$$
\left|x_{1}^{\prime \prime}(t)-x_{1}^{\prime \prime}\left(t^{\prime}\right)\right|=\left|f\left(t, x_{0}(t), x_{0}(\varphi(t))\right)-f\left(t^{\prime}, x_{0}\left(t^{\prime}\right), x_{0}\left(\varphi\left(t^{\prime}\right)\right)\right)\right| \leq \gamma\left|t-t^{\prime}\right|
$$

and

$$
\left|x_{m}^{\prime \prime}(t)-x_{m}^{\prime \prime}\left(t^{\prime}\right)\right| \leq\left[\gamma+\left(\left|v_{0}\right|+2 a M_{0}\right)\left(L_{1}+\alpha L_{2}\right)\right]\left|t-t^{\prime}\right|
$$

for $m \in \mathbb{N}^{*}$. We see that

$$
\begin{gathered}
\left|G_{m, i}(t)-G_{m, i}\left(t^{\prime}\right)\right|=\left|\left(t_{i}-t\right) F_{m}(t)-\left(t_{i}-t^{\prime}\right) F_{m}\left(t^{\prime}\right)\right| \leq \\
\leq\left|t_{i}-t\right| \cdot\left|F_{m}(t)-F_{m}\left(t^{\prime}\right)\right|+\left|F_{m}\left(t^{\prime}\right)\right| \cdot\left|t-t^{\prime}\right| \leq a \bar{L}\left|t-t^{\prime}\right|+M_{0}\left|t-t^{\prime}\right|
\end{gathered}
$$

for all $t, t^{\prime} \in[0, a], i=\overline{0, n}$ and $m \in \mathbb{N}^{*}$.
To compute the integrals from (5) we apply the trapezoidal quadrature rule with recent remainder estimation obtained in [3] for Lipschitzian functions:

$$
\begin{equation*}
\int_{a}^{b} F(t) d t=\frac{(b-a)}{2 n} \cdot\left[\sum_{i=0}^{n-1} F\left(a+\frac{i(b-a)}{n}\right)+F\left(a+\frac{(i+1)(b-a)}{n}\right)\right]+R_{n}(F) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left|R_{n}(F)\right| \leq \frac{L(b-a)^{2}}{4 n} \tag{7}
\end{equation*}
$$

where $L>0$ is the Lipschitz constant of F.
Applying the quadrature rule (6)-(7) to the integrals from (5) we obtain the following numerical method: $x_{m}\left(t_{0}\right)=x_{0}$, for all $m \in \mathbb{N}^{*}$,

$$
\begin{gather*}
x_{0}\left(t_{i}\right)=x_{0}, \text { for all } i=\overline{0, n} \tag{8}\\
x_{m}\left(t_{i}\right)=x_{0}+v_{0} t_{i}+\int_{0}^{t_{i}}\left(t_{i}-s\right) f\left(s, x_{m-1}(s), x_{m-1}(\varphi(s))\right) d s=x_{0}+v_{0} t_{i}+ \\
+\int_{0}^{t_{i}} G_{m-1, i}(s) d s=x_{0}+v_{0} t_{i}+\frac{a}{2 n} \cdot \sum_{j=0}^{i-1}\left[\left(t_{i}-t_{j}\right) \cdot f\left(t_{j}, x_{m-1}\left(t_{j}\right), x_{m-1}\left(\varphi\left(t_{j}\right)\right)\right)+\right. \\
\left.+\left(t_{i}-t_{j+1}\right) \cdot f\left(t_{j+1}, x_{m-1}\left(t_{j+1}\right), x_{m-1}\left(\varphi\left(t_{j+1}\right)\right)\right)\right]+R_{m, i}, \tag{9}
\end{gather*}
$$

for all $i=\overline{1, n}$ and $m \in \mathbb{N}^{*}$.
Since the functions $G_{m . i}, i=\overline{0, n}, m \in \mathbb{N}$, are Lipschitzian with the same constant $L=a \bar{L}+M_{0}$, for the remainder estimation in (9) we have

$$
\begin{equation*}
\left|R_{m, i}\right| \leq \frac{L a^{2}}{4 n}, \quad \text { for all } i=\overline{1, n}, \quad m \in \mathbb{N}^{*} \tag{10}
\end{equation*}
$$

3 The algorithm

The relations (8)-(9) lead to the following algorithm:

$$
\begin{gather*}
x_{0}\left(t_{i}\right)=x_{0}, \text { for all } i=\overline{0, n} \text { and } x_{1}\left(t_{0}\right)=x_{0} \tag{11}\\
x_{1}\left(t_{i}\right)=x_{0}+v_{0} t_{i}+\frac{a}{2 n} \cdot \sum_{j=0}^{i-1}\left[\left(t_{i}-t_{j}\right) \cdot f\left(t_{j}, x_{0}, x_{0}\right)+\left(t_{i}-t_{j+1}\right) \cdot f\left(t_{j+1}, x_{0}, x_{0}\right)\right]+ \\
+R_{1, i}=\overline{x_{1}\left(t_{i}\right)}+R_{1, i}, \text { for all } i=\overline{1, n} . \tag{12}
\end{gather*}
$$

$x_{2}\left(t_{0}\right)=x_{0}$ and

$$
\begin{gather*}
x_{2}\left(t_{i}\right)=x_{0}+v_{0} t_{i}+\frac{a}{2 n} \cdot \sum_{j=0}^{i-1}\left[\left(t_{i}-t_{j}\right) \cdot f\left(t_{j}, \overline{x_{1}\left(t_{j}\right)}+R_{1, j}, x_{1}\left(\varphi\left(t_{j}\right)\right)\right)+\right. \\
\left.+\left(t_{i}-t_{j+1}\right) \cdot f\left(t_{j+1}, \overline{x_{1}\left(t_{j+1}\right)}+R_{1, j+1}, x_{1}\left(\varphi\left(t_{j+1}\right)\right)\right)\right]+R_{2, i}=x_{0}+v_{0} t_{i}+ \\
+\frac{a}{2 n} \cdot \sum_{j=0}^{i-1}\left[\left(t_{i}-t_{j}\right) \cdot f\left(t_{j}, \overline{x_{1}\left(t_{j}\right)}, s_{1}\left(\varphi\left(t_{j}\right)\right)\right)+\right. \\
\left.+\left(t_{i}-t_{j+1}\right) \cdot f\left(t_{j+1}, \overline{x_{1}\left(t_{j+1}\right)}, s_{1}\left(\varphi\left(t_{j+1}\right)\right)\right)\right]+\overline{R_{2, i}}=\overline{x_{2}\left(t_{i}\right)}+\overline{R_{2, i}} \tag{13}
\end{gather*}
$$

for all $i=\overline{1, n}$, where $s_{1}:[0, a] \rightarrow \mathbb{R}$, is the cubic spline generated by initial conditions, inspired by the construction from [5], which interpolates the values $x_{0}, \overline{x_{1}\left(t_{i}\right)}, i=\overline{1, n}$ and has the restrictions to the intervals $\left[t_{i-1}, t_{i}\right], i=\overline{1, n}$,

$$
\begin{equation*}
s_{1}^{(1)}(t)=\frac{M_{1}^{(1)}-M_{1}^{(0)}}{6\left(t_{1}-t_{0}\right)} \cdot\left(t-t_{0}\right)^{3}+\frac{M_{1}^{(0)}}{2} \cdot\left(t-t_{0}\right)^{2}+z_{1}^{(0)}\left(t-t_{0}\right)+x_{0} \tag{14}
\end{equation*}
$$

$t \in\left[t_{0}, t_{1}\right]$,

$$
\begin{equation*}
s_{1}^{(i)}(t)=\frac{M_{1}^{(i)}-M_{1}^{(i-1)}}{6\left(t_{i}-t_{i-1}\right)} \cdot\left(t-t_{i-1}\right)^{3}+\frac{M_{1}^{(i-1)}}{2} \cdot\left(t-t_{i-1}\right)^{2}+z_{1}^{(i-1)}\left(t-t_{i-1}\right)+\overline{x_{1}\left(t_{i-1}\right)}, \tag{15}
\end{equation*}
$$

$t \in\left[t_{i-1}, t_{i}\right], \quad i=\overline{2, n}$. Here, the parameters $M_{1}^{(i)}, z_{1}^{(i)}, i=\overline{1, n}$ are recurrent given in:

$$
\begin{gather*}
\left\{\begin{array}{c}
z_{1}^{(1)}=\frac{3}{h_{1}} \cdot\left[\overline{x_{1}\left(t_{1}\right)}-x_{0}\right]-2 z_{1}^{(0)}-\frac{h_{1}}{2} \cdot M_{1}^{(0)} \\
M_{1}^{(1)}=\frac{6}{h_{1}^{2}} \cdot\left[\overline{x_{1}\left(t_{1}\right)}-x_{0}\right]-\frac{6}{h_{1}} \cdot z_{1}^{(0)}-2 M_{1}^{(0)}
\end{array}\right. \tag{16}\\
\left\{\begin{array}{c}
z_{1}^{(i)}=\frac{3}{h_{i}} \cdot\left[\overline{\left[\overline{x_{1}\left(t_{i}\right)}\right.}-\overline{x_{1}\left(t_{i-1}\right)}\right]-2 z_{1}^{(i-1)}-\frac{h_{i}}{2} \cdot M_{1}^{(i-1)} \\
M_{1}^{(i)}=\frac{6}{h_{i}^{2}} \cdot\left[\overline{x_{1}\left(t_{i}\right)}-\overline{x_{1}\left(t_{i-1}\right)}\right]-\frac{6}{h_{i}} \cdot z_{1}^{(i-1)}-2 M_{1}^{(i-1)} \quad, i=\overline{2, n}
\end{array}\right. \tag{17}
\end{gather*}
$$

starting from $z_{1}^{(0)}=v_{0}, M_{1}^{(0)}=f\left(0, x_{0}, x_{0}\right)$. By induction, for $m \geq 3$, we obtain

$$
\begin{align*}
& x_{m}\left(t_{i}\right)=x_{0}+v_{0} t_{i}+\frac{a}{2 n} \cdot \sum_{j=0}^{i-1}\left[\left(t_{i}-t_{j}\right) \cdot f\left(t_{j}, \overline{x_{m-1}\left(t_{j}\right)}+\overline{R_{m-1, j}}, x_{m-1}\left(\varphi\left(t_{j}\right)\right)\right)+\right. \\
& \left.+\left(t_{i}-t_{j+1}\right) \cdot f\left(t_{j+1}, \overline{x_{m-1}\left(t_{j+1}\right)}+\overline{R_{m-1, j+1}}, x_{m-1}\left(\varphi\left(t_{j+1}\right)\right)\right)\right]+R_{m, i}=x_{0}+v_{0} t_{i}+ \\
& \quad+\frac{a}{2 n} \cdot \sum_{j=0}^{i-1}\left[\left(t_{i}-t_{j}\right) \cdot f\left(t_{j}, \overline{x_{m-1}\left(t_{j}\right)}, s_{m-1}\left(\varphi\left(t_{j}\right)\right)\right)+\right. \\
& \left.\quad+\left(t_{i}-t_{j+1}\right) \cdot f\left(t_{j+1}, \overline{x_{m-1}\left(t_{j+1}\right)}, s_{m-1}\left(\varphi\left(t_{j+1}\right)\right)\right)\right]+\overline{R_{m, i}}=\overline{x_{m}\left(t_{i}\right)}+\overline{R_{m, i}} \tag{18}
\end{align*}
$$

for all $i=\overline{1, n}$, where $s_{m-1}:[0, a] \rightarrow \mathbb{R}$, is the cubic spline generated by initial conditions, interpolating the values $x_{0}, \overline{x_{m-1}\left(t_{i}\right)}, i=\overline{1, n}$ and having the restrictions to the intervals $\left[t_{i-1}, t_{i}\right], i=\overline{1, n}$

$$
\begin{equation*}
s_{m-1}^{(1)}(t)=\frac{M_{m-1}^{(1)}-M_{m-1}^{(0)}}{6\left(t_{1}-t_{0}\right)} \cdot\left(t-t_{0}\right)^{3}+\frac{M_{m-1}^{(0)}}{2} \cdot\left(t-t_{0}\right)^{2}+z_{m-1}^{(0)}\left(t-t_{0}\right)+x_{0} \tag{19}
\end{equation*}
$$

$t \in\left[t_{0}, t_{1}\right]$,

$$
\begin{gather*}
s_{m-1}^{(i)}(t)=\frac{M_{m-1}^{(i)}-M_{m-1}^{(i-1)}}{6\left(t_{i}-t_{i-1}\right)} \cdot\left(t-t_{i-1}\right)^{3}+\frac{M_{m-1}^{(i-1)}}{2} \cdot\left(t-t_{i-1}\right)^{2}+z_{m-1}^{(i-1)}\left(t-t_{i-1}\right)+ \\
+\overline{x_{m-1}\left(t_{i-1}\right)}, \quad t \in\left[t_{i-1}, t_{i}\right], \quad i=\overline{2, n} \tag{20}
\end{gather*}
$$

Here, the parameters $M_{m-1}^{(i)}, z_{m-1}^{(i)}, i=\overline{1, n}$ are recurrently given in:

$$
\begin{gather*}
\left\{\begin{array}{c}
z_{m-1}^{(1)}=\frac{3}{h_{1}} \cdot\left[\overline{x_{m-1}\left(t_{1}\right)}-x_{0}\right]-2 z_{m-1}^{(0)}-\frac{h_{1}}{2} \cdot M_{m-1}^{(0)} \\
M_{m-1}^{(1)}=\frac{6}{h_{1}^{2}} \cdot\left[\overline{x_{m-1}\left(t_{1}\right)}-x_{0}\right]-\frac{6}{h_{1}} \cdot z_{m-1}^{(0)}-2 M_{m-1}^{(0)}
\end{array}\right. \tag{21}\\
\left\{\begin{array}{c}
z_{m-1}^{(i)}=\frac{3}{h_{i}} \cdot\left[\overline{x_{m-1}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i-1}\right)}\right]-2 z_{m-1}^{(i-1)}-\frac{h_{i}}{2} \cdot M_{m-1}^{(i-1)} \\
M_{m-1}^{(i)}=\frac{6}{h_{i}^{2}} \cdot\left[\overline{x_{m-1}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i-1}\right)}\right]-\frac{6}{h_{i}} \cdot z_{m-1}^{(i-1)}-2 M_{m-1}^{(i-1)}
\end{array}\right. \tag{22}
\end{gather*}
$$

$i=\overline{2, n}, m \in \mathbb{N}^{*}, m \geq 3$, starting from

$$
\begin{equation*}
z_{m-1}^{(0)}=v_{0}, \quad M_{m-1}^{(0)}=f\left(0, x_{0}, x_{0}\right) \tag{23}
\end{equation*}
$$

4 The main result

Firstly, we get a new result about the error estimation in spline approximation, which held in the interpolation of functions with Lipschitzian first derivative.

Lemma 2 If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function such that $f\left(t_{i}\right)=y_{i}, i=\overline{0, n}$ and its restrictions to the intervals $\left[t_{i-1}, t_{i}\right], i=\overline{1, n}$ are differentiable on $\left(t_{i-1}, t_{i}\right)$ being Lipschitzian together with their first derivatives, then for any cubic spline s of interpolation of the values $y_{i}, i=\overline{0, n}$ we have the following error estimations:

$$
\|f-s\|_{C} \leq\left(L^{\prime}+N(s)\right) \cdot h^{2}
$$

and

$$
\left|f^{\prime}(t)-s^{\prime}(t)\right| \leq\left(L^{\prime}+N(s)\right) \cdot h
$$

for all $t \in[a, b] \backslash\left\{t_{0}, \ldots, t_{n}\right\}$, where $N(s)=\max \left\{\left|M_{i}\right|: i=\overline{0, n}\right\}, M_{i}=s^{\prime \prime}\left(t_{i}\right), i=\overline{0, n}, L^{\prime}=\max \left\{L_{i}\right.$: $i=\overline{1, n}\}, h=\max \left\{h_{i}: i=\overline{1, n}\right\}$. Here, $L_{i}, i=\overline{1, n}$ are the Lipschitz constants of the derivatives of the restrictions of f to the intervals $\left[t_{i-1}, t_{i}\right], i=\overline{1, n}$.

Proof. If $s \in C^{2}[a, b]$ is cubic spline then the Lipschitz constant of s^{\prime} is $N(s)=\left\|s^{\prime \prime}\right\|_{C}=\max \left\{\left|M_{i}\right|\right.$: $i=\overline{0, n}\}$. Let $f_{i}, \quad i=\overline{1, n}$ be the restrictions of f to the intervals $\left[t_{i-1}, t_{i}\right], i=\overline{1, n}$. Consider $\varphi=f-s$ and let $\varphi_{i}, i=\overline{1, n}$ be the restrictions of φ to the intervals $\left[t_{i-1}, t_{i}\right], i=\overline{1, n}$. We have $\varphi \in C[a, b]$ and $\varphi_{i} \in C^{1}\left(t_{i-1}, t_{i}\right), \forall i=\overline{1, n}$. Moreover, $\varphi\left(t_{i}\right)=f\left(t_{i}\right)-s\left(t_{i}\right)=0$ for all $i=\overline{0, n}$, and according to the Rolle's theorem we infer that exists $\xi_{i} \in\left(t_{i-1}, t_{i}\right)$ such that $\varphi_{i}^{\prime}\left(\xi_{i}\right)=0, \forall i=\overline{1, n}$. Therefore, $f_{i}^{\prime}\left(\xi_{i}\right)=s_{i}^{\prime}\left(\xi_{i}\right)$ for all $i=\overline{1, n}$. Let arbitrary $t \in[a, b]$. Then there is $j \in\{1, \ldots, n\}$ such that $t \in\left[t_{j-1}, t_{j}\right]$. We get

$$
\begin{gathered}
\left|f^{\prime}(t)-s^{\prime}(t)\right| \leq\left|f_{j}^{\prime}(t)-f_{j}^{\prime}\left(\xi_{j}\right)\right|+\left|s_{j}^{\prime}\left(\xi_{j}\right)-s_{j}^{\prime}(t)\right| \leq \\
\leq\left(L_{j}+N(s)\right)\left|t-\xi_{j}\right| \leq\left(L^{\prime}+N(s)\right) \cdot h
\end{gathered}
$$

and

$$
\begin{gathered}
|f(t)-s(t)|=\left|f(t)-s(t)-\left(f\left(t_{j-1}\right)-s\left(t_{j-1}\right)\right)\right| \leq \\
\leq \int_{t_{j-1}}^{t}\left|f_{j}^{\prime}(u)-s_{j}^{\prime}(u)\right| d u \leq\left(L_{j}+N(s)\right) \cdot h_{j}^{2} \leq\left(L^{\prime}+N(s)\right) \cdot h^{2}
\end{gathered}
$$

4.1 The error estimation

Theorem 3 Under the conditions (i)-(v), if $\left(L_{1}+2 L_{2}\right) a^{2}<1$, then the unique solution of the initial value problem (1), x^{*} is approximated on the knots $t_{i}=\frac{i \cdot a}{n}, i=\overline{1, n}$ by the sequence $\left(\overline{x_{m}\left(t_{i}\right)}\right)_{m}$ given in (4)-(6), (13) and the apriori error estimation is:

$$
\begin{gather*}
\left|x^{*}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right| \leq \frac{a^{2 m}\left(L_{1}+L_{2}\right)^{m}}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot\left(\left|v_{0} a\right|+M_{0} a^{2}\right)+\frac{a^{2} L}{4 n\left[1-a^{2}\left(L_{1}+2 L_{2}\right)\right]}+ \\
\quad+\frac{a^{2} L_{2}}{1-a^{2}\left(L_{1}+2 L_{2}\right)} \cdot\left(M_{0}+\max \left\{\left|M_{k}^{(i)}\right|: k=\overline{1, m-1}, i=\overline{0, n}\right\}\right) \cdot \frac{a^{2}}{n^{2}} \tag{24}
\end{gather*}
$$

for all $m \in \mathbb{N}^{*}$ and $i=\overline{1, n}$.
Proof. For $m \in \mathbb{N}^{*}$ and $i=\overline{1, n}$, we have $\left|x^{*}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right| \leq\left|x^{*}\left(t_{i}\right)-x_{m}\left(t_{i}\right)\right|+\left|x_{m}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right|$, $\left|x_{m}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right|=\left|\overline{R_{m, i}}\right|$ and

$$
\begin{equation*}
\left|x^{*}\left(t_{i}\right)-x_{m}\left(t_{i}\right)\right| \leq \frac{a^{2 m}\left(L_{1}+L_{2}\right)^{m}}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot\left(\left|v_{0} a\right|+M_{0} a^{2}\right) \tag{25}
\end{equation*}
$$

according to Theorem 1. From (12) and (10), follows

$$
\left|x_{1}\left(t_{i}\right)-\overline{x_{1}\left(t_{i}\right)}\right|=\left|R_{1, i}\right| \leq \frac{L a^{2}}{4 n}, \quad \forall i=\overline{1, n}
$$

We define the functions $V_{m}, m \in \mathbb{N}^{*}, V_{m}:[0, a] \rightarrow \mathbb{R}$ given by its restrictions to the subintervals $\left[t_{i-1}, t_{i}\right]$, $i=\overline{1, n}$, by

$$
\begin{gather*}
V_{m}(t)=x_{m}(t)+\left[\overline{x_{m}\left(t_{1}\right)}-x_{m}\left(t_{1}\right)\right] \cdot \frac{t-t_{0}}{t_{1}-t_{0}}, \quad t \in\left[t_{0}, t_{1}\right] \\
V_{m}(t)=x_{m}(t)+\left[\overline{x_{m}\left(t_{i}\right)}-x_{m}\left(t_{i}\right)\right] \cdot \frac{t-t_{i-1}}{t_{i}-t_{i-1}}+\left[\overline{x_{m}\left(t_{i-1}\right)}-x_{m}\left(t_{i-1}\right)\right] \\
\cdot \frac{t_{i}-t}{t_{i}-t_{i-1}}, \quad t \in\left[t_{i-1}, t_{i}\right], i=\overline{2, n} \tag{26}
\end{gather*}
$$

We see that $V_{m}\left(t_{0}\right)=x_{m}\left(t_{0}\right)=x_{0}$ and $V_{m}\left(t_{i}\right)=\overline{x_{m}\left(t_{i}\right)}, V_{m}\left(t_{i-1}\right)=\overline{x_{m}\left(t_{i-1}\right)}$ for all $i=\overline{2, n}$ and $m \in \mathbb{N}^{*}$. So, the spline function s_{m-1} interpolates V_{m-1} on the knots $t_{i}, i=\overline{0, n}$. Moreover, the restrictions of V_{m} given in (26) have the same properties as the terms of the sequence of successive approximations, x_{m} (that is, with Lipschitzian first derivative having the same Lipschitz constant M_{0}). On the other hand, for the splines given in (14)-(17) and (19)-(23) we obtain,

$$
\left|x_{k}(t)-s_{k}(t)\right| \leq\left|x_{k}(t)-V_{k}(t)\right|+\left|V_{k}(t)-s_{k}(t)\right|, \quad \forall t \in[0, a]
$$

with

$$
\begin{gathered}
\left|V_{k}(t)-x_{k}(t)\right| \leq\left|\overline{x_{k}\left(t_{i}\right)}-x_{k}\left(t_{i}\right)\right| \cdot\left|\frac{t-t_{i-1}}{t_{i}-t_{i-1}}\right|+ \\
+\left|\overline{x_{k}\left(t_{i-1}\right)}-x_{k}\left(t_{i-1}\right)\right| \cdot\left|\frac{t_{i}-t}{t_{i}-t_{i-1}}\right| \leq 2 \cdot \max \left(\left|\overline{R_{k, i}}\right|,\left|\overline{R_{k, i-1}}\right|\right)
\end{gathered}
$$

for all $i=\overline{0, n-1}$ and $k=\overline{1, m-1}$. From Lemma 2 follows

$$
\begin{gather*}
\left|V_{k}(t)-s_{k}(t)\right| \leq\left(M_{0}+\max \left\{\left|M_{k}^{(i)}\right|: i=\overline{0, n}\right\}\right) \cdot \frac{a^{2}}{n^{2}} \leq \\
\leq\left(M_{0}+\max \left\{\left|M_{k}^{(i)}\right|: i=\overline{0, n}, k=\overline{1, m-1}\right\}\right) \cdot \frac{a^{2}}{n^{2}}, \quad \forall t \in[0, a], \forall m \in \mathbb{N}^{*} \tag{27}
\end{gather*}
$$

Now, we proceed to estimate the remainders $\overline{R_{m, i}}, m \in \mathbb{N}^{*}, m \geq 2, i=\overline{1, n}$. In this aim, firstly we get

$$
\begin{gathered}
\left|\overline{R_{2, i}}\right|=\left|x_{2}\left(t_{i}\right)-\overline{x_{2}\left(t_{i}\right)}\right| \leq\left|R_{2, i}\right|+\frac{a}{2 n} \cdot \sum_{j=0}^{i-1}\left[(t _ { i } - t _ { j }) \cdot \left(L_{1}\left|R_{1, j}\right|+L_{2}\left(\omega_{1} \cdot \frac{a^{2}}{n^{2}}+\right.\right.\right. \\
\left.+\max \left(2\left|R_{1, j}\right|, 2\left|R_{1, j+1}\right|\right)\right)+\left(t_{i}-t_{j+1}\right) \cdot\left(L_{1}\left|R_{1, j+1}\right|+L_{2}\left(\omega_{1} \cdot \frac{a^{2}}{n^{2}}+\max \left(2\left|R_{1, j}\right|, 2\left|R_{1, j+1}\right|\right)\right)\right] \leq \\
\leq \frac{L a^{2}}{4 n}\left(1+a^{2}\left(L_{1}+2 L_{2}\right)\right)+a^{2} \omega_{1} L_{2} \cdot \frac{a^{2}}{n^{2}}, \quad \forall i=\overline{1, n}
\end{gathered}
$$

where $\omega_{1}=M_{0}+\max \left\{\left|M_{1}^{(i)}\right|: i=\overline{0, n}\right\}$.
Analogously,

$$
\begin{gathered}
\left|\overline{R_{3, i}}\right|=\left|x_{3}\left(t_{i}\right)-\overline{x_{3}\left(t_{i}\right)}\right| \leq\left|R_{3, i}\right|+\frac{a}{2 n} \cdot \sum_{j=0}^{i-1}\left[(t _ { i } - t _ { j }) \cdot \left(L_{1}\left|\overline{R_{2, j}}\right|+L_{2}\left(\operatorname { m a x } \left(2\left|\overline{R_{2, j}}\right|\right.\right.\right.\right. \\
\left.\left.\left.\left., 2\left|\overline{R_{2, j+1}}\right|\right)+\omega_{2} \cdot \frac{a^{2}}{n^{2}}\right)\right)+\left(t_{i}-t_{j+1}\right) \cdot\left(L_{1}\left|\overline{R_{2, j+1}}\right|+L_{2}\left(\max \left(2\left|\overline{R_{2, j}}\right|, 2\left|\overline{R_{2, j+1}}\right|\right)+\omega_{2} \cdot \frac{a^{2}}{n^{2}}\right)\right)\right] \leq \\
\leq \frac{L a^{2}}{4 n} \cdot\left[1+a^{2}\left(L_{1}+2 L_{2}\right)+\left(a^{2}\left(L_{1}+2 L_{2}\right)\right)^{2}\right]+a^{2} \omega_{1} L_{2} a^{2}\left(L_{1}+2 L_{2}\right) \cdot \frac{a^{2}}{n^{2}}+a^{2} L_{2} \omega_{2} \cdot \frac{a^{2}}{n^{2}}
\end{gathered}
$$

where $\omega_{2}=M_{0}+\max \left\{\left|M_{2}^{(i)}\right|: i=\overline{0, n}\right\}$. Let $\omega=\max \left(\omega_{1}, \omega_{2}\right)$. Then

$$
\left|\overline{R_{3, i}}\right| \leq\left[1+a^{2}\left(L_{1}+2 L_{2}\right)+a^{4}\left(L_{1}+2 L_{2}\right)^{2}\right] \cdot \frac{L a^{2}}{4 n}+
$$

$$
+a^{2} L_{2}\left[1+a^{2}\left(L_{1}+2 L_{2}\right)\right] \cdot \omega \frac{a^{2}}{n^{2}}, \quad \forall i=\overline{1, n}
$$

By induction for $m \in \mathbb{N}^{*}, m \geq 3$ let $\omega_{k}=M_{0}+\max \left\{\left|M_{k}^{(i)}\right|: i=\overline{0, n}\right\}, k=\overline{3, m-1}$ and $\omega=$ $\max \left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m-1}\right\}$.
We get

$$
\begin{aligned}
& \quad\left|x_{m}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right|=\left|\overline{R_{m, i}}\right| \leq\left|R_{m, i}\right|+\frac{a}{2 n}\left[\sum _ { j = 0 } ^ { i - 1 } \left[(t _ { i } - t _ { j }) \cdot \left(L_{1}\left|\overline{R_{m-1, j}}\right|+\right.\right.\right. \\
& \left.+L_{2}\left(2 \max \left(\left|\overline{R_{m-1, j}}\right|,\left|\overline{R_{m-1, j+1}}\right|\right)+\omega \cdot \frac{a^{2}}{n^{2}}\right)\right)+ \\
& \left.+\left(t_{i}-t_{j+1}\right) \cdot\left(L_{1}\left|\overline{R_{m-1, j+1}}\right|+L_{2}\left(2 \max \left(\left|\overline{R_{m-1, j}}\right|,\left|\overline{R_{m-1, j+1}}\right|\right)+\omega \cdot \frac{a^{2}}{n^{2}}\right)\right)\right] \leq \\
& \leq\left[1+a^{2}\left(L_{1}+2 L_{2}\right)+a^{4}\left(L_{1}+2 L_{2}\right)^{2}+\ldots+\left(a^{2}\right)^{m-1}\left(L_{1}+2 L_{2}\right)^{m-1}\right] \cdot \frac{L a^{2}}{4 n}+ \\
& +a^{2} L_{2}\left[1+a^{2}\left(L_{1}+2 L_{2}\right)+\ldots+\left(a^{2}\right)^{m-2}\left(L_{1}+2 L_{2}\right)^{m-2}\right] \cdot \frac{\omega a^{2}}{n^{2}}, \quad \forall i=\overline{1, n} .
\end{aligned}
$$

We can see that $\omega=M_{0}+\max \left\{\left|M_{k}^{(i)}\right|: i=\overline{0, n}, k=\overline{1, m-1}\right\}$. Consequently,

$$
\begin{gathered}
\left|x_{m}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right|=\left|\overline{R_{m, i}}\right| \leq \frac{1-a^{2 m}\left(L_{1}+2 L_{2}\right)^{m}}{1-a^{2}\left(L_{1}+2 L_{2}\right)} \cdot \frac{L a^{2}}{4 n}+ \\
+a^{2} L_{2} \frac{1-a^{2(m-1)}\left(L_{1}+2 L_{2}\right)^{m-1}}{1-a^{2}\left(L_{1}+2 L_{2}\right)} \cdot \frac{\omega a^{2}}{n^{2}}
\end{gathered}
$$

Since $a^{2}\left(L_{1}+2 L_{2}\right)<1$ we conclude

$$
\begin{gathered}
\left|x_{m}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right|=\left|\overline{R_{m, i}}\right| \leq \frac{L a^{2}}{4 n\left[1-a^{2}\left(L_{1}+2 L_{2}\right)\right]}+ \\
+\frac{\omega a^{4} L_{2}}{n^{2}\left[1-a^{2}\left(L_{1}+2 L_{2}\right)\right]} \stackrel{\text { notation }}{=} \Omega, \quad \forall i=\overline{1, n}, \forall m \in \mathbb{N}^{*}, m \geq 2
\end{gathered}
$$

and

$$
\left|x_{1}\left(t_{i}\right)-\overline{x_{1}\left(t_{i}\right)}\right|=\left|R_{1, i}\right| \leq \frac{L a^{2}}{4 n}, \quad \forall i=\overline{1, n}
$$

These complete the proof.
Remark 2 From estimation (24) follows the convergence of the method and of its algorithm. Now, we can see that the same estimation can give a practical stopping criterion of the algorithm. This can be stated as follows: For given $\varepsilon^{\prime}>0$ and given $n \in \mathbb{N}^{*}$ (previously chosen) it determines the first natural number $m \in \mathbb{N}^{*}$ for which,

$$
\left|\overline{x_{m}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i}\right)}\right|<\varepsilon^{\prime} \quad \text { for all } i=\overline{1, n}
$$

and we stop to this m, retaining the approximations $\overline{x_{m}\left(t_{i}\right)}, i=\overline{1, n}$, of the solution. A demonstration of this criterion is the following:
For each $i=\overline{1, n}$ we have

$$
\begin{gathered}
\left|x^{*}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right| \leq\left|x^{*}\left(t_{i}\right)-x_{m}\left(t_{i}\right)\right|+\left|x_{m}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right| \leq \\
\quad \leq \frac{a^{2}\left(L_{1}+L_{2}\right)}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot\left|x_{m}\left(t_{i}\right)-x_{m-1}\left(t_{i}\right)\right|+\left|\overline{R_{m, i}}\right|
\end{gathered}
$$

and

$$
\begin{aligned}
& \quad\left|x_{m}\left(t_{i}\right)-x_{m-1}\left(t_{i}\right)\right| \leq\left|x_{m}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right|+\left|\overline{x_{m}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i}\right)}\right|+ \\
& +\left|\overline{x_{m-1}\left(t_{i}\right)}-x_{m-1}\left(t_{i}\right)\right|=\left|\overline{R_{m, i}}\right|+\left|\overline{R_{m-1, i}}\right|+\left|\overline{x_{m}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i}\right)}\right|
\end{aligned}
$$

So,

$$
\begin{gathered}
\left|x^{*}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right| \leq\left|\overline{R_{m, i}}\right|+\frac{a^{2}\left(L_{1}+L_{2}\right)}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot\left|\overline{x_{m}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i}\right)}\right|+ \\
+\frac{a^{2}\left(L_{1}+L_{2}\right)}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot\left(\left|\overline{R_{m, i}}\right|+\left|\overline{R_{m-1, i}}\right|\right)
\end{gathered}
$$

Then

$$
\left|x^{*}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right| \leq \Omega \cdot \frac{1+a^{2}\left(L_{1}+L_{2}\right)}{1-a^{2}\left(L_{1}+L_{2}\right)}+\frac{a^{2}\left(L_{1}+L_{2}\right)}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot\left|\overline{x_{m}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i}\right)}\right|
$$

For given $\varepsilon>0$ we require

$$
\begin{equation*}
\Omega \cdot \frac{1+a^{2}\left(L_{1}+L_{2}\right)}{1-a^{2}\left(L_{1}+L_{2}\right)}<\frac{\varepsilon}{2} \tag{28}
\end{equation*}
$$

and

$$
\frac{a^{2}\left(L_{1}+L_{2}\right)}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot\left|\overline{x_{m}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i}\right)}\right|<\frac{\varepsilon}{2}
$$

Since

$$
\Omega<\frac{L a^{2}}{4 n\left[1-a^{2}\left(L_{1}+2 L_{2}\right)\right]}+\frac{\omega a^{4} L_{2}}{4 n\left[1-a^{2}\left(L_{1}+2 L_{2}\right)\right]}
$$

for $n \geq 5$, we can chose the least natural number n for which the inequality (28) holds. Afterward we find the least natural number m (this is the last iterative step to be made) for which

$$
\left|\overline{x_{m}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i}\right)}\right|<\frac{\varepsilon}{2} \cdot \frac{1-a^{2}\left(L_{1}+L_{2}\right)}{a^{2}\left(L_{1}+L_{2}\right)}
$$

for all $i=\overline{1, n}$. With these, we obtain $\left|x^{*}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right|<\varepsilon$, for all $i=\overline{1, n}$.
Remark 3 It is easy to prove that if $f \in C^{1}([0, a] \times \mathbb{R} \times \mathbb{R})$ has bounded partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ such that all its first order partial derivatives are Lipschitzian in each argument, and if $\varphi \in C^{1}[0, a]$ with Lipschitzian first derivative, then $F_{m} \in C^{1}[0, a]$ and the functions F_{m}^{\prime} are Lipschitzian with the same Lipschitz constant L^{\prime}.
Theorem 4 Under the conditions (i)-(v) and in the conditions mentioned in Remark 3, if $a^{2}\left(L_{1}+2 L_{2}\right)<$ 1 then the unique solution x^{*}, of the initial value problem (1), is approximated on the knots $t_{i}=\frac{i \cdot a}{n}$, $i=\overline{1, n}$ by the sequence $\left(\overline{x_{m}\left(t_{i}\right)}\right)_{m}$ given in (4)-(6), (13) and the apriori error estimation is:

$$
\begin{align*}
& \left|x^{*}\left(t_{i}\right)-\overline{x_{m}\left(t_{i}\right)}\right| \leq \frac{a^{2 m}\left(L_{1}+L_{2}\right)^{m}}{1-a^{2}\left(L_{1}+L_{2}\right)} \cdot\left(\left|v_{0} a\right|+M_{0} a^{2}\right)+\frac{a^{3} L^{\prime}}{12 n^{2}\left[1-a^{2}\left(L_{1}+2 L_{2}\right)\right]}+ \\
& \quad+\frac{a^{2} L_{2}}{1-a^{2}\left(L_{1}+2 L_{2}\right)} \cdot\left(M_{0}+\max \left\{\left|M_{k}^{(i)}\right|: k=\overline{1, m-1}, i=\overline{0, n}\right\}\right) \cdot \frac{a^{2}}{n^{2}} \tag{29}
\end{align*}
$$

for all $m \in \mathbb{N}^{*}$ and $i=\overline{1, n}$.
Proof. Is similar to the proof of Theorem 3, with the difference that instead of inequality (10) it is used the estimation

$$
\begin{equation*}
\left|R_{m, i}\right| \leq \frac{L^{\prime} a^{3}}{12 n^{2}}, \quad \text { for all } i=\overline{1, n}, \quad m \in \mathbb{N}^{*} \tag{30}
\end{equation*}
$$

The inequality (30) is obtained using the remainder estimation in (6)

$$
\left|R_{n}(F)\right| \leq \frac{L^{\prime}(b-a)^{3}}{12 n^{2}}
$$

which holds for functions with Lipschitzian first derivative (see [1]). Here, L^{\prime} is the Lipschitz constant of F^{\prime}.

4.2 Numerical examples

Example 5 Firstly, we consider the initial value problem (1) with $\varphi(t)=\lambda t, a=\frac{1}{2}, \lambda=\frac{1}{2}, x_{0}=$ 1 and $f(s, u, v)=\frac{2 u}{3}+\frac{v}{3} \cdot e^{s / 2}$ which has the exact solution $x^{*}(t)=e^{t}$. The stopping condition is $\left|\overline{x_{m}\left(t_{i}\right)}-\overline{x_{m-1}\left(t_{i}\right)}\right|<\varepsilon^{\prime}, \quad$ for all $i=\overline{1, n}$. On this example, the condition of convergence $\left(L_{1}+2 L_{2}\right) a^{2}=$ $\frac{1+\sqrt[4]{e}}{6}<1$ is fulfilled. Using the algorithm with $\varepsilon^{\prime}=10^{-5}, n=10$, we get $m=4$, the number of iterations, and the approximations $\overline{x_{m}\left(t_{i}\right)}$ of the exact solution on the corresponding knots (which can be compared with the exact values of $e^{t_{i}}$) are in Table 1. We observe a very good accuracy and the order of convergence stated in Theorem 2 is confirmed to be $O\left(h^{2}\right)$, where $h=\frac{a}{n}$. Moreover, on the interval $[0,0.3]$ the accuracy is better, having a convergence order $O\left(h^{4}\right)$ on this interval. If we take $\varepsilon^{\prime}=10^{-9}$ and $n=10$, we get $m=7$, and the values are represented in Table 2 (we can observe a similar accuracy as in Table 1).

t_{i}	$\overline{x_{m}\left(t_{i}\right)}$	$x^{*}\left(t_{i}\right)=e^{t_{i}}$	t_{i}	$\overline{x_{m}\left(t_{i}\right)}$	$x^{*}\left(t_{i}\right)=e^{t_{i}}$
0.05	1.0512500	1.05127109637	0.3	1.34946602	1.3498588075
0.1	1.1051273	1.10517091807	0.35	1.41811653	1.4190675485
0.15	1.1617571	1.16183424272	0.4	1.49342171	1.4918246976
0.2	1.2213094	1.22114027581	0.45	1.56962813	1.5683121854
0.25	1.2839754	1.28402541668	0.5	1.63131058	1.6487212707

Table 1

t_{i}	$\overline{x_{m}\left(t_{i}\right)}$	$x^{*}\left(t_{i}\right)=e^{t_{i}}$	t_{i}	$\overline{x_{m}\left(t_{i}\right)}$	$x^{*}\left(t_{i}\right)=e^{t_{i}}$
0.05	1.0512500000	1.05127109637	0.3	1.34946602403	1.3498588075
0.1	1.1051273393	1.10517091807	0.35	1.41811653455	1.4190675485
0.15	1.1617571992	1.16183424272	0.4	1.49342174410	1.4918246976
0.2	1.2213094121	1.22114027581	0.45	1.56962803549	1.5683121854
0.25	1.2839754824	1.28402541668	0.5	1.63131062924	1.6487212707

Table 2

Example 6 Consider the initial value problem

$$
\left\{\begin{array}{c}
x^{\prime \prime}(t)=\left|\frac{1}{3} \cdot \sin t \cdot \cos (x(t))+\frac{1}{5} \cdot \cos t \cdot \sin (x(0.5 t))\right| \\
x(0)=1, \quad x^{\prime}(0)=0.5
\end{array}, \quad t \in[0,1]\right.
$$

which is nonlinear and the kernel function cannot be differentiable. On the other hand, this function is continuous and Lipschitzian in each argument having the Lipschitz constants $\gamma=\frac{8}{15}, L_{1}=\frac{1}{3}, L_{2}=\frac{1}{5}$ and the convergence condition is $\left(L_{1}+2 L_{2}\right) a^{2}=\frac{11}{15}<1$. For this example we cannot use the well-known methods (Runge-Kutta, collocation, splines) because these methods require, in the proof of convergence, high order of smoothness properties for the kernel function. But here, we can use the above presented method, which according to the previous example, has good accuracy. The stopping criterion is similar to the previous example. For $\varepsilon^{\prime}=10^{-5}, n=10$ we get $m=2$ and the results are in Table 3.

t_{i}	$\overline{x_{m}\left(t_{i}\right)}$	t_{i}	$\overline{x_{m}\left(t_{i}\right)}$
0.1	1.05	0.6	1.30
0.2	1.10	0.7	1.35
0.3	1.15	0.8	1.40
0.4	1.20	0.9	1.45
0.5	1.25	1	1.50

Table 3

5 Conclusions

A new numerical method for second order delay differential equations is presented. This method combines the Picard sequence of successive approximations, the trapezoidal quadrature rule and spline interpolation. The interpolation is used only on the modified argument. The method's algorithm has recurrent form easy to programming and a practical stopping criterion of the algorithm is obtained using the error estimate. The main result of the paper is Theorem 3.

The method is created in the aim to be an alternative to the well-known methods (Runge-Kutta, collocation, spline functions method) in the cases in which these methods are not applicable (when the kernel function are not smooth). The above presented method is convergent even in the case of Lipschitzian kernel function and such example is presented (in Example 2). Consequently, the presented method covers the situations unsolved by other methods. The accuracy of the method is illustrated in Example 1.

The principle of the method (the use, in numerical integration, of an interpolation procedure only on the points where the argument is modified) gives its generality, being extensible to other types of functional equations with modified argument.

Acknowledgement : The research of the first author on this paper is supported by the grant 2Cex-06-11-96/19.09.2006 of the National Authority for Scientific Research from the Minister of Education and Research, Romanian Government.

References

[1] A. Bica, The error estimation in terms of the first derivative in a numerical method for the solution of a delay integral equation from biomathematics, Rev. d'anal. num. et de theorie de l'approx., 34 (1), 23-36 (2005).
[2] F. Calio, E. Marchetti, R. Pavani, G. Micula, A new deficient spline functions collocation method for second order delay differential equations, P.U.M.A. Pure Math. Appl. 13 (2), 97-109 (2003).
[3] P.Cerone, S.S. Dragomir, Trapezoidal and Midpoint-Type Rules from Inequalities Point of View, Handbook of Analytic Computational Methods in Applied Mathematics (G.A. Anastassiou ed.), Chapman\&Hall/CRC Press, Boca Raton, London, New York, Washington DC, 2000.
[4] D.J. Evans, K.R. Raslan, The Adomian decomposition method for solving delay differential equations, Int. J. Comput. Math. 82 (1), 49-54 (2005).
[5] C. Iancu, On the cubic spline of interpolation, Sem. of Funct. Anal. and Num. Meth., Cluj-Napoca 4, 52-71 (1981).
[6] G. Papageorgiou, I.Th. Famelis, On using explicit Runge-Kutta-Nystrom methods for the treatment of retarded differential equations with periodic solutions, Appl. Math. Comput. 102 (1), 63-76 (1999).
[7] M. Sezer, A. Akyuz-Daşcioglu, A Taylor method for numerical solution of generalized pantograph equations with linear functional argument, J. Comput. Appl. Math. 200, 217-225 (2001).

Rate of Convergence of the Integrated MKZ-Bézier Operators

Bo-Yong Lian
Department of Mathematics, Yang-en University
Quanzhou 362014, Fujian, China
E-mail: lianboyong@163.com

Abstract

In this paper the pointwise approximation of the integrated MKZ-Bézier operators for bounded functions is studied for the case $0<\alpha<1$. By using the method of [J.Approx.Theory $104(2000) 330-344]$ and some analysis techniques, we obtain an estimate formula on this bézier type operators. Our results extend the work of Zeng [Comput.Math.Appl. 39(2000) 1-13].

Keywords: MKZ-Bézier operators, Rate of convergence, Approximation, Bounded functions, Lebesgue-Stieltjes integral

Classification(MSC 2000): 41A30, 41A35, 41A36, 41A60

1. Introduction

For a function $f \in L_{1}[0,1]$ and $\alpha>0$, the integrated MKZ-Bézier operators are defined as

$$
\begin{equation*}
M_{n, \alpha}(f, x)=\sum_{k=0}^{\infty} Q_{n k}^{(\alpha)}(x) \frac{(n+k)(n+k+1)}{n} \int_{I_{k}} f(t) d t, \tag{1}
\end{equation*}
$$

where $Q_{n k}^{(\alpha)}(x)=\left(J_{n, k}(x)\right)^{\alpha}-\left(J_{n, k+1}(x)\right)^{\alpha}, J_{n, k}(x)=\sum_{j=k}^{\infty} m_{n j}(x)$, and

$$
I_{k}=\left[\frac{k}{n+k}, \frac{k+1}{n+k+1}\right], m_{n j}(x)=\left({ }_{j}^{n+j-1}\right) x^{j}(1-x)^{n}, j=0,1,2 \ldots
$$

The approximation of bounded variation functions with the operators $M_{n, \alpha}$ for the case $\alpha \geq 1$ was studied by Zeng [1]. Some related investigation about this bézier type operators, we can see Refs. [2-4]. In this paper, we discuss the pointwise approximation of $M_{n, \alpha}$ for the case $0<\alpha<1$. Our results extend the work of Zeng.

The main theorem of this paper is as follows:
Theorem 1 Let f be a bounded function on $[0,1], 0<\alpha<1$, and $f(x+), f(x-)$ exist at a fixed point $x \in(0,1)$, then for n sufficiently large, we have

$$
\begin{align*}
& \left|M_{n, \alpha}(f, x)-\frac{1}{2^{\alpha}} f(x+)-\left(1-\frac{1}{2^{\alpha}}\right) f(x-)\right| \\
\leq & \frac{6}{\sqrt{n x}+1}|f(x+)-f(x-)|+\frac{5+4 C}{n x(1-x)} \sum_{k=1}^{n} \Omega_{x}\left(g_{x}, 1 / \sqrt{k}\right) \tag{2}
\end{align*}
$$

where C is a positive constant, $\Omega_{x}(f, \lambda)=\sup _{t \in[x-\lambda, x+\lambda]}|f(t)-f(x)|$ and

$$
g_{x}(t)=\left\{\begin{array}{cc}
f(t)-f(x+), & x<t \leq 1 \tag{3}\\
0, & t=x \\
f(t)-f(x-), & 0 \leq t<x
\end{array}\right.
$$

For further properties of $\Omega_{x}(f, \lambda)$,we refer the readers to [10].
Let

$$
\begin{equation*}
K_{n, \alpha}(x, t)=\sum_{k=0}^{\infty} Q_{n k}^{(\alpha)}(x) \chi_{k}(t)\left|I_{k}\right|^{-1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{n, \alpha}(x, t)=\int_{0}^{t} K_{n, \alpha}(x, u) d u \tag{5}
\end{equation*}
$$

where χ_{k} is the characteristic function of the interval $I_{k}=[k /(n+k),(k+1) /(n+k+1)]$ with respect to $I=[0,1]$, and $\left|I_{k}\right|$ denotes the length of I_{k}.

Then by Lebesgue-Stieltjes integral representations, there holds

$$
\begin{equation*}
M_{n, \alpha}(f, x)=\int_{0}^{1} f(t) K_{n, \alpha}(x, t) d t=\int_{0}^{1} f(t) d_{t} \lambda_{n, \alpha}(x, t) \tag{6}
\end{equation*}
$$

2. Auxiliary results

The proof of our result is based on the following lemmas.
Lemma 1.[11,Theorem 2] For every $k \in N, x \in(0,1]$, we have

$$
\begin{equation*}
m_{n k}(x)<\frac{1}{\sqrt{2 e n x}} \tag{7}
\end{equation*}
$$

Lemma 2. Let $0<\alpha \leq 1$ and $x \in(0,1)$, as $n>144 / x$ and $k^{\prime}=[n x /(1-x)]$, we have

$$
\begin{align*}
& \text { (i) }\left|\left(\sum_{\mathrm{k}>\mathrm{nx} /(1-\mathrm{x})} \mathrm{m}_{\mathrm{nk}}(\mathrm{x})\right)^{\alpha}-\frac{1}{2^{\alpha}}\right| \leq \frac{4}{\sqrt{\mathrm{nx}}+1}, \tag{8}\\
& \text { (ii) } \quad Q_{n k^{\prime}}^{(\alpha)}(x)<\frac{2}{\sqrt{n x}+1} . \tag{9}
\end{align*}
$$

Proof. (i) By mean value theorem, we have

$$
\begin{equation*}
\left|\left(\sum_{k>n x /(1-x)} m_{n k}(x)\right)^{\alpha}-\frac{1}{2^{\alpha}}\right|=\alpha\left(\xi_{n k}(x)\right)^{\alpha-1}\left|\sum_{k>n x /(1-x)} m_{n k}(x)-\frac{1}{2}\right|, \tag{10}
\end{equation*}
$$

where $\xi_{n k}(x)$ lies between $\frac{1}{2}$ and $\sum_{k>n x /(1-x)} m_{n k}(x)$.
From [1,Lemma 4], there holds

$$
\begin{equation*}
\left|\sum_{k>n x /(1-x)} m_{n k}(x)-\frac{1}{2}\right| \leq \frac{3}{\sqrt{n x}+1} \tag{11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\xi_{n k}(x)>\sum_{k>n x /(1-x)} m_{n k}(x)>\frac{1}{4} \tag{12}
\end{equation*}
$$

for all $n>144 / x$.
From (10),(11),(12) and noting $3 \alpha<4^{\alpha}$, we get

$$
\left|\left(\sum_{k>n x /(1-x)} m_{n k}(x)\right)^{\alpha}-\frac{1}{2^{\alpha}}\right| \leq \frac{\alpha}{4^{\alpha-1}} \frac{3}{\sqrt{n x}+1}<\frac{4}{\sqrt{n x}+1} .
$$

(ii) Noting the expression of $Q_{n k^{\prime}}^{(\alpha)}(x)$, and along the same method of (i), we can get

$$
\begin{equation*}
Q_{n k^{\prime}}^{(\alpha)}(x) \leq \alpha 4^{1-\alpha} m_{n, k^{\prime}}(x) \leq \frac{\alpha 4^{1-\alpha}}{\sqrt{2 e n x}}<\frac{1}{\sqrt{n x}} \tag{13}
\end{equation*}
$$

The second inequality of (13) is obtained from Lemma 1.
Since $Q_{n k^{\prime}}^{(\alpha)}(x) \leq 1,(9)$ is proved.
Lemma 3. For $0<\alpha \leq 1$ and $0 \leq t<x<1$, there holds

$$
\begin{equation*}
\lambda_{n, \alpha}(x, t)=\int_{0}^{t} K_{n, \alpha}(x, u) d u \leq \int_{0}^{t} K_{n, 1}(x, u) d u \leq \frac{2 x(1-x)^{2}}{n(x-t)^{2}} . \tag{14}
\end{equation*}
$$

Proof. Let $t \in\left[k^{*} /\left(n+k^{*}\right),\left(k^{*}+1\right) /\left(n+k^{*}+1\right)\right)$. Then we can write $t=\left[\left(n+k^{*}+\right.\right.$ 1) $\left.k^{*}+\delta\right] /\left(n+k^{*}\right)\left(n+k^{*}+1\right)(0 \leq \delta<n)$. So

$$
\begin{gathered}
\int_{0}^{t} K_{n, \alpha}(x, u) d u=\int_{0}^{t} \sum_{k=0}^{\infty} Q_{n k}^{(\alpha)}(x) \chi_{k}(u)\left|I_{k}\right|^{-1} d u=\sum_{k=0}^{\infty} Q_{n k}^{(\alpha)}(x)\left|I_{k}\right|^{-1} \int_{0}^{t} \chi_{k}(u) d u \\
=\sum_{k=0}^{k^{*}-1} Q_{n k}^{(\alpha)}(x)+\left|I_{k^{*}}\right|^{-1} Q_{n k^{*}}^{(\alpha)}(x) \int_{k^{*} /\left(n+k^{*}\right)}^{\left[\left(n+k^{*}+1\right) k^{*}+\delta\right] /\left(n+k^{*}\right)\left(n+k^{*}+1\right)} 1 d u \\
=\sum_{k=0}^{k^{*}-1} Q_{n k}^{(\alpha)}(x)+\delta Q_{n k^{*}}^{(\alpha)}(x)=1-(1-\delta)\left(J_{n, k^{*}}(x)\right)^{\alpha}-\delta\left(J_{n, k^{*}+1}(x)\right)^{\alpha} \\
\leq 1-(1-\delta) J_{n, k^{*}}(x)-\delta J_{n, k^{*}+1}(x)=\int_{0}^{t} K_{n, 1}(x, u) d u
\end{gathered}
$$

The right hand inequality of (14) follows from [1,Lemma 6]. The proof is complete.
Lemma 4. For $0<\alpha \leq 1$ and $0 \leq x<t<1$, there holds

$$
\begin{equation*}
1-\lambda_{n, \alpha}(x, t)=1-\int_{0}^{t} K_{n, \alpha}(x, u) d u \leq \frac{C x^{1-\alpha}(1-x)^{2-\alpha}}{n(t-x)^{2}} \tag{15}
\end{equation*}
$$

where C is a positive constant.

Proof.

$$
\begin{aligned}
1-\int_{0}^{t} K_{n, \alpha}(x, u) d u & =\int_{t}^{1} K_{n, \alpha}(x, u) d u=\sum_{k=0}^{\infty} Q_{n k}^{(\alpha)}(x)\left|I_{k}\right|^{-1} \int_{t}^{1} \chi_{k}(u) d u \\
& \leq \sum_{t \leq \frac{k+1}{n+k+1}} Q_{n k}^{(\alpha)}(x)\left|I_{k}\right|^{-1} \int_{\frac{k}{n+k}}^{\frac{k+1}{n+k+1}} \chi_{k}(u) d u \\
& =\sum_{t \leq \frac{k+1}{n+k+1}} Q_{n k}^{(\alpha)}(x)=\sum_{k \geq \frac{n t}{1-t}-1}\left(J_{n, k}^{\alpha}(x)-J_{n, k+1}^{\alpha}(x)\right) \\
& =\left(\sum_{k \geq \frac{n t}{1-t}-1} m_{n k}(x)\right)^{\alpha}=\left(\sum_{k \geq \frac{n t}{1-t}} m_{n, k-1}(x)\right)^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{k \geq \frac{n t}{1-t}} \frac{n k}{(n+k)(n+k-1) x(1-x)}\binom{n+k}{k} x^{k}(1-x)^{n+1}\right)^{\alpha} \\
& \leq \frac{1}{(x(1-x))^{\alpha}}\left(\sum_{k \geq \frac{n t}{1-t}} M_{n k(x)}\right)^{\alpha}
\end{aligned}
$$

where $M_{n k(x)}=\binom{n+k}{k} x^{k}(1-x)^{n+1}$.
Since $0 \leq x<t<1$, so $\left|\frac{k}{n+k}-x\right| \geq|t-x|$ for all $k \geq \frac{n t}{1-t}$. Thus we have

$$
\begin{aligned}
1-\int_{0}^{t} K_{n, \alpha}(x, u) d u & \leq \frac{1}{(x(1-x))^{\alpha}}\left(\sum_{k \geq \frac{n t}{1-t}} \frac{\left|\frac{k}{n+k}-x\right|^{2 / \alpha}}{|t-x|^{2 / \alpha}} M_{n k}(x)\right)^{\alpha} \\
& \leq \frac{1}{(x(1-x))^{\alpha}(t-x)^{2}}\left(\sum_{k=0}^{\infty}\left|\frac{k}{n+k}-x\right|^{2 / \alpha} M_{n k}(x)\right)^{\alpha} .
\end{aligned}
$$

we can choose $p, q>1$, i.e., $\frac{1}{p}+\frac{1}{q}=1$.Then by the Hölder inequality, we have

$$
\begin{aligned}
\left(\sum_{k=0}^{\infty}\left|\frac{k}{n+k}-x\right|^{2 / \alpha} M_{n k}(x)\right)^{\alpha} & =\left(\sum_{k=0}^{\infty}\left|\frac{k}{n+k}-x\right|^{2 / \alpha} M_{n k}^{1 / p}(x) M_{n k}^{1 / q}(x)\right)^{\alpha} \\
& \leq\left(\sum_{k=0}^{\infty}\left|\frac{k}{n+k}-x\right|^{2 p / \alpha} M_{n k}(x)\right)^{\alpha / p}
\end{aligned}
$$

since $\left(\sum_{k=0}^{\infty} M_{n k}(x)\right)^{\alpha}=1$.
Choosing $p=\alpha[1 / \alpha+1]$, then $2 p / \alpha=2[1 / \alpha+1]$ is a positive even integer. By [9,Theorem 2.1] and with a simple calculation, we obtain

$$
\left(\sum_{k=0}^{\infty}\left|\frac{k}{n+k}-x\right|^{2 p / \alpha} M_{n k}(x)\right)^{\alpha / p} \leq \frac{C x(1-x)^{2}}{n}
$$

This completes the proof of Lemma 4.
Lemma 5. Let f be a bounded function on (0,1), when n sufficiently large, we have

$$
\begin{equation*}
\left|M_{n, \alpha}\left(g_{x}, x\right)\right| \leq \frac{5+4 C}{n x(1-x)} \sum_{k=1}^{n} \Omega_{x}\left(g_{x}, 1 / \sqrt{k}\right) . \tag{16}
\end{equation*}
$$

Proof. By (6), we have

$$
\begin{equation*}
M_{n, \alpha}\left(g_{x}, x\right)=\int_{0}^{1} g_{x}(t) d_{t} \lambda_{n, \alpha}(x, t)=\Sigma_{1}+\Sigma_{2}+\Sigma_{3} \tag{17}
\end{equation*}
$$

where

$$
\begin{gathered}
\Sigma_{1}=\int_{0}^{x-\frac{x}{\sqrt{n}}} g_{x}(t) d_{t} \lambda_{n, \alpha}(x, t), \quad \Sigma_{2}=\int_{x-\frac{x}{\sqrt{n}}}^{x+\frac{1-x}{\sqrt{n}}} g_{x}(t) d_{t} \lambda_{n, \alpha}(x, t) \\
\Sigma_{3}=\int_{x+\frac{1-x}{\sqrt{n}}}^{1} g_{x}(t) d_{t} \lambda_{n, \alpha}(x, t)
\end{gathered}
$$

Observing that $g_{x}(x)=0$, we first have

$$
\left|\Sigma_{2}\right| \leq \int_{x-\frac{x}{\sqrt{n}}}^{x+\frac{1-x}{\sqrt{n}}}\left|g_{x}(t)-g_{x}(x)\right| d_{t} \lambda_{n, \alpha}(x, t)
$$

$$
\begin{equation*}
\leq \Omega_{x}\left(g_{x}, 1 / \sqrt{n}\right) \leq \frac{1}{n} \sum_{k=1}^{n} \Omega_{x}\left(g_{x}, 1 / \sqrt{k}\right) . \tag{18}
\end{equation*}
$$

To estimate Σ_{1}, let $y=x-x / \sqrt{n}$ and using Lebesgue-Stieltjes integration by parts, we have

$$
\begin{aligned}
\left|\Sigma_{1}\right| & \leq \int_{0}^{y} \Omega_{x}\left(g_{x}, x-t\right) d_{t} \lambda_{n, \alpha}(x, t) \\
& =\Omega_{x}\left(g_{x}, x-y\right) \lambda_{n, \alpha}(x, y+)+\int_{0}^{y} \widehat{\lambda}_{n, \alpha}(x, t) d_{t}\left(-\Omega_{x}\left(g_{x}, x-t\right)\right)
\end{aligned}
$$

where $\widehat{\lambda}_{n, \alpha}(x, t)$ is the normalized form of $\lambda_{n, \alpha}(x, t)$.
Also $\widehat{\lambda}_{n, \alpha}(x, t) \leq \lambda_{n, \alpha}(x, t)$ on $[0,1]$, by (14), it follows that

$$
\begin{equation*}
\left|\Sigma_{1}\right| \leq \Omega_{x}\left(g_{x}, x-y\right) \frac{2 x(1-x)^{2}}{n(x-y)^{2}}+\frac{2 x(1-x)^{2}}{n} \int_{0}^{y} \frac{1}{(x-t)^{2}} d_{t}\left(-\Omega_{x}\left(g_{x}, x-t\right)\right) . \tag{19}
\end{equation*}
$$

Since

$$
\int_{0}^{y} \frac{1}{(x-t)^{2}} d_{t}\left(-\Omega_{x}\left(g_{x}, x-t\right)\right)=-\left.\frac{\Omega_{x}\left(g_{x}, x-t\right)}{(x-t)^{2}}\right|_{0} ^{y+}+\int_{0}^{y} \frac{2 \Omega_{x}\left(g_{x}, x-t\right)}{(x-t)^{3}} d t
$$

from (19) it follows that

$$
\left|\Sigma_{1}\right| \leq \frac{2(1-x)^{2}}{n x} \Omega_{x}\left(g_{x}, x\right)+\frac{2 x(1-x)^{2}}{n} \int_{0}^{x-\frac{x}{\sqrt{n}}} \frac{2 \Omega_{x}\left(g_{x}, x-t\right)}{(x-t)^{3}} d t
$$

Putting $t=x-x / \sqrt{u}$ for the last integral, we get

$$
\begin{gather*}
\left|\Sigma_{1}\right| \leq \frac{2(1-x)^{2}}{n x} \Omega_{x}\left(g_{x}, x\right)+\frac{2(1-x)^{2}}{n x} \int_{1}^{n} \Omega_{x}\left(g_{x}, x / \sqrt{u}\right) d u \\
\leq \frac{4(1-x)^{2}}{n x} \sum_{k=1}^{n} \Omega_{x}\left(g_{x}, 1 / \sqrt{k}\right) \tag{20}
\end{gather*}
$$

Using the similar method to estimate $\left|\Sigma_{3}\right|$, we obtain

$$
\begin{equation*}
\left|\Sigma_{3}\right| \leq \frac{2 C(1-x)^{2-\alpha}}{n x^{1+\alpha}} \sum_{k=1}^{n} \Omega_{x}\left(g_{x}, 1 / \sqrt{k}\right) \tag{21}
\end{equation*}
$$

Combining the estimates of (17),(18),(20) and (21), also noting the properties of $\Omega_{x}(f, \lambda)$, we get the required result.

3. Proof of Theorem 1

Let f satisfy the conditions of Theorem 1, we can decompose $f(t)$ into four parts as

$$
\begin{gather*}
f(t)=\frac{1}{2^{\alpha}} f(x+)+\left(1-\frac{1}{2^{\alpha}}\right) f(x-)+g_{x}(t)+\frac{f(x+)-f(x-)}{2^{\alpha}} \widehat{\operatorname{sign}}(t-x) \\
+\delta_{x}(t)\left[f(x)-\frac{1}{2^{\alpha}} f(x+)-\left(1-\frac{1}{2^{\alpha}}\right) f(x-)\right] \tag{22}
\end{gather*}
$$

where $g_{x}(t)$ is as defined in (3),

$$
\widehat{\operatorname{sign}}(t-x)=\left\{\begin{array}{cc}
2^{\alpha}-1, & t>x \\
0, & t=x \\
-1, & t<x
\end{array}\right.
$$

and

$$
\delta_{x}(t)= \begin{cases}1, & t=x \\ 0, & t \neq x\end{cases}
$$

Therefore,

$$
\begin{align*}
& \left|M_{n, \alpha}(f, x)-\frac{1}{2^{\alpha}} f(x+)-\left(1-\frac{1}{2^{\alpha}}\right) f(x-)\right| \leq\left|M_{n, \alpha}\left(g_{x}, x\right)\right| \\
& \quad+\left|\frac{f(x+)-f(x-)}{2^{\alpha}} M_{n, \alpha}(\widehat{\operatorname{sign}}(t-x), x)\right| \tag{23}\\
& +\left|\left[f(x)-\frac{1}{2^{\alpha}} f(x+)-\left(1-\frac{1}{2^{\alpha}}\right) f(x-)\right] M_{n, \alpha}\left(\delta_{x}, x\right)\right| .
\end{align*}
$$

It is obvious that

$$
\begin{equation*}
M_{n, \alpha}\left(\delta_{x}, x\right)=0 \tag{24}
\end{equation*}
$$

Next we estimate $M_{n, \alpha}(\widehat{\operatorname{sign}}(t-x), x)$.
Let $x \in\left[\frac{k^{\prime}}{n+k^{\prime}}, \frac{k^{\prime}+1}{n+k^{\prime}+1}\right)$, we have

$$
\begin{aligned}
M_{n, \alpha}(\widehat{\operatorname{sign}}(t-x), x) & =\sum_{k=0}^{k^{\prime}-1}(-1) Q_{n k}^{(\alpha)}(x)+\frac{Q_{n k^{\prime}}^{(\alpha)}(x)}{\left|I_{k^{\prime}}\right|} \int_{\frac{k^{\prime}}{n+k^{\prime}}}^{x}(-1) d t \\
& +\frac{Q_{n k^{\prime}}^{(\alpha)}(x)}{\left|I_{k^{\prime}}\right|} \int_{x}^{\frac{k^{\prime}+1}{n+k^{\prime}+1}}\left(2^{\alpha}-1\right) d t+\sum_{k=k^{\prime}+1}^{\infty}\left(2^{\alpha}-1\right) Q_{n k}^{(\alpha)}(x) \\
& =\sum_{k=k^{\prime}+1}^{\infty} 2^{\alpha} Q_{n k}^{(\alpha)}(x)-1+\frac{Q_{n k^{\prime}}^{(\alpha)}(x)}{\left|I_{k^{\prime}}\right|} \int_{x}^{\frac{k^{\prime}+1}{n+k^{\prime}+1}} 2^{\alpha} d t \\
& \leq \sum_{k=k^{\prime}+1}^{\infty} 2^{\alpha} Q_{n k}^{(\alpha)}(x)-1+\frac{Q_{n k^{\prime}}^{(\alpha)}(x)}{\left|I_{k^{\prime}}\right|} \int_{I_{k^{\prime}}} 2^{\alpha} d t .
\end{aligned}
$$

Hence, we get

$$
\begin{align*}
\left|M_{n, \alpha}(\widehat{\operatorname{sign}}(t-x), x)\right| & \leq\left|\sum_{k=k^{\prime}+1}^{\infty} 2^{\alpha} Q_{n k}^{(\alpha)}(x)-1\right|+2^{\alpha} Q_{n k^{\prime}}^{(\alpha)}(x) \\
& =2^{\alpha}\left|\sum_{k>n x /(1-x)} Q_{n k}^{(\alpha)}(x)-\frac{1}{2^{\alpha}}\right|+2^{\alpha} Q_{n k^{\prime}}^{(\alpha)}(x) \tag{25}\\
& =2^{\alpha}\left|\left(\sum_{k>n x /(1-x)} m_{n k}(x)\right)^{\alpha}-\frac{1}{2^{\alpha}}\right|+2^{\alpha} Q_{n k^{\prime}}^{(\alpha)}(x)
\end{align*}
$$

Theorem 1 now follows from (23),(24),(25), Lemma 2 and Lemma 5.

References

[1] X.M.Zeng, Rates of approximation of bounded variation functions by two generalized Meyer-König-Zeller type operators, Comput.Math.Appl. 39 (2000), 1-13.
[2] X.M.Zeng, On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions II, J.Approx. Theory 104 (2000), 330-344.
[3] V.Gupta, An estimate on the convergence of Baskakov-Bézier operators, J.Math.Anal. Appl. 312 (2005), 280-288.
[4] P.Pych-Taberska, Some properties of the Bézier-Kantorovich type operators, J.Approx. Theory 123 (2003), 256-269.
[5] W.Chen and S.Guo, On the rate of convergence of Meyer-König-Zeller operators for functions of bounded variation, Chinese J.Contemporary Math. 9(2) (1988), 193-203.
[6] M.Becker and R.J.Nessel, A global approximation theorem for the Meyer-König-Zeller operators, Math.Z. 160 (1978), 195-206.
[7] U.Abel, The moments for the Meyer-König-Zeller operators, J.Approx.Theory 82 (1995), 352-361.
[8] U.Abel, The complete asymptotic expansion for the Meyer-König-Zeller operators, J.Math.Anal.Appl. 208 (1997), 109-119.
[9] S.Guo,Q.Qi, The moment for the Meyer-König-Zeller operators, Appl.Math.Lett. 20 (2007), 719-722.
[10] X.M.Zeng and F.Cheng, On the rate of approximation of Bernstein type operators, J.Approx.Theory 109 (2001), 242-256.
[11] X.M.Zeng, Bounds for Bernstein basis functions and Meyer-König-Zeller basis functions, J.Math.Anal.Appl. 219 (1998), 364-376.

Stability of moving on $(2+\alpha)$ chain ${ }^{1}$

A. P. Buslaev', J. M. Guo", N. J. Wang", M. V. Yashina'

'Moscow Technical University of Communications and Informatics, 8a, Aviamotornaya str., Moscow, Russia apal2006@yandex.ru
"National Taiwan University of Science \& Technology, 43 Keelung Road, Section 4, Taipei, Taiwan 10672 jmguo@seed.net.tw

Abstract

There is considered the system of differentional equations on graph which is the mathematical model of traffic flows on network. The qualitative properties of solutions, stationary points and system behavior in the neighborhood of critical regimes are studied.

The paper continues the investigation of flow stabiity on graphs [1]-[3].

1. We consider an one direction moving on the graph as shown in Fig. 1.

Figure 1: $(2+\alpha)$ chain

The graph has two nodes N and S, three edges of the same length 1 and the state function, which means the dependence of the flow intensity from density. In this case the state function is defined by $x(1-x), 0 \leq x \leq 1$. Next, an α-part of flow from edge (2) ($\overrightarrow{N S}$) goes to the edge (3) $(\overrightarrow{S S})$, and $(1-\alpha)$ - part of flow goes to edge (1) $(\overrightarrow{S N})$.

[^2]We assume that $\theta(t)$ is the step function with two values. The value of the function is equal to 0 if the movement is forbidded over node S 'on' and 'out' the edge (3) and the value is equal to 1 if the movement is permitted.

Thus if $\rho_{i}, 1 \leq i \leq 3$ denote the densities on edges of the graph, then

$$
\left\{\begin{array}{l}
\frac{d \rho_{1}}{d t}=-f\left(\rho_{1}\right)+(1-\alpha) f\left(\rho_{2}\right)+\theta f\left(\rho_{3}\right) \tag{1}\\
\frac{d \rho_{2}}{d t}=f\left(\rho_{1}\right)+((1-\alpha)+\theta \alpha) f\left(\rho_{2}\right) \\
\frac{d \rho_{3}}{d t}=\quad \theta \alpha f\left(\rho_{2}\right)-\theta f\left(\rho_{3}\right)
\end{array}\right.
$$

i.e.

$$
\left(\begin{array}{c}
\frac{d \rho_{1}}{d t} \tag{2}\\
\frac{d \rho_{2}}{d t} \\
\frac{d \rho_{3}}{d t}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & (1-\alpha) & 0 \\
1 & -(1-\alpha)-\theta \alpha & 0 \\
0 & \theta \alpha & -\theta
\end{array}\right)\left(\begin{array}{c}
f\left(\rho_{1}\right) \\
f\left(\rho_{2}\right) \\
f\left(\rho_{3}\right)
\end{array}\right)
$$

It is clear that

$$
\left(\frac{d \rho_{1}}{d t}+\frac{d \rho_{2}}{d t}+\frac{d \rho_{3}}{d t}\right)=\left(\rho_{1}+\rho_{2}+\rho_{3}\right)^{\prime} \equiv 0
$$

i.e.

$$
\begin{equation*}
\rho_{1}(t)+\rho_{2}(t)+\rho_{3}(t) \equiv C, \tag{3}
\end{equation*}
$$

where C is the flow mass, $0 \leq C \leq 3$. Since

$$
\begin{equation*}
0 \leq \rho_{i}(t) \leq 1, \quad i=1,2,3 \tag{4}
\end{equation*}
$$

and if any function $\rho_{i_{0}}(T)=1$, then

$$
\begin{equation*}
\rho_{i_{0}}(t) \equiv 1 \quad \forall t>T \tag{5}
\end{equation*}
$$

The solution (5) is called critical.
2. The maximal network $(\theta \equiv 1)$

We consider in this section that the edge with number (3) is always open. The system (1)-(2) will be transformed as below:

$$
\left\{\begin{array}{l}
\frac{d \rho_{1}}{d t}=-f\left(\rho_{1}\right)+(1-\alpha) f\left(\rho_{2}\right)+f\left(\rho_{3}\right) \tag{6}\\
\frac{d \rho_{2}}{d t}=f\left(\rho_{1}\right)-f\left(\rho_{2}\right) \\
\frac{d \rho_{3}}{d t}=\alpha f\left(\rho_{2}\right)-f\left(\rho_{3}\right)
\end{array}\right.
$$

By virtue of (4)-(5), if at some time T the density on any edges becomes maximum, then the input and output flows become zero for all $t \geq T$.

Therefore, the behavior of solutions (6) in neighbourhood of admisable value cube's (4) boundary is a very important characteristic.

When $\alpha=1$ the system (6) becames a full 3 -vertex graph and is equivalent to the graph as shown in Fig. 2 [1].

Figure 2: 3 vertices full graph (with 3 edges)

When $\alpha=0$, we get system

$$
\left\{\begin{array}{l}
\frac{d \rho_{1}}{d t}=-f\left(\rho_{1}\right)+f\left(\rho_{2}\right)+f\left(\rho_{3}\right), \tag{7}\\
\frac{d \rho_{2}}{d t}=f\left(\rho_{1}\right)-f\left(\rho_{2}\right) \\
\frac{d \rho_{3}}{d t}=-\quad-f\left(\rho_{3}\right)
\end{array}\right.
$$

and the initial conditions are

$$
\begin{equation*}
\rho_{1}(0)=\rho_{10}, \rho_{2}(0)=\rho_{20}, \rho_{3}(0)=\rho_{30} . \tag{8}
\end{equation*}
$$

From (7) we have

$$
\int_{\rho_{30}}^{\rho_{3}} \frac{d \rho_{3}}{f\left(\rho_{3}\right)}=-\int_{0}^{t} d t=-t
$$

and according to $f\left(\rho_{3}\right)=\rho_{3}\left(1-\rho_{3}\right)$, we get

$$
\left.\ln \frac{\rho_{3}}{\left(1-\rho_{3}\right)}\right|_{\rho_{30}} ^{\rho_{3}}=-t
$$

i.e.

$$
\begin{gather*}
\frac{\rho_{3}(t)}{1-\rho_{3}(t)}=\frac{1-\rho_{30}}{\rho_{30}} e^{-t}, \\
\rho_{3}(t)=\left(1+\frac{\rho_{30}}{1-\rho_{30}} e^{t}\right)^{-1} . \tag{9}
\end{gather*}
$$

It is clear that the function $\rho_{3}(t)$ monotonously decreases and from (3)

$$
\begin{equation*}
\rho_{1}(t)+\rho_{2}(t) \nearrow C \tag{10}
\end{equation*}
$$

If $C<1$, then

$$
\rho_{1}(t)+\rho_{2}(t)=C-\rho_{3}(t) \nearrow C<1
$$

and from (2) it follows that the flow on two edges will be stable.
If $C>1$, then for finite time T_{1} the condition will be achieved

$$
\rho_{1}(t)+\rho_{2}(t)>1
$$

for all $t>T_{1}$.
Thence, from [2] it follows that the flow on subgraph with edges (1)-(2) will certainly be in critical regime.

Hence, for $\alpha=0$, the $(2+0)-$ flow is equivalent to the two-section graph position [2].

3. Qualitative properties of solutions (6) in boundary neighbourhood

We consider the set D of permissible values $\bar{\rho}=\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ meet Eqs. (3), (4) in dependence on parameter C.

When $0<C<1$, we have the set D as shown in Fig. 3 .

Figure 3: The set D when $\rho_{1}+\rho_{2}+\rho_{3}=C<1$

If $1<C<2$, the set D is shown in Fig. 4 .

Figure 4: The set D when $1<\rho_{1}+\rho_{2}+\rho_{3}<2$

If $C=\frac{3}{2}$, we have the regular hexagon as shown in Fig. 4. The cross-sections of the
hexagon are symmetric with certain accuracy that surely depends on rotation on angle $\pi / 3$ with regard to the above mention value of parameter C.

The similar property is trust also for the set of parameters $(0<C<1)$ and $(2<C<3)$. Hence, if $2<C<3$, we have the set D as shown in Fig. 5 .

Figure 5: The set D when $\rho_{1}+\rho_{2}+\rho_{3}=C>2$

Assume that $C<1$.
The normal vector \vec{n}_{1} to $A_{2} A_{3}$ in Fig. 3 is equal to

$$
(2 / \sqrt{6},-1 / \sqrt{6},-1 / \sqrt{6}) .
$$

We consider the function

$$
F=\dot{\vec{\rho}} \cdot \vec{n}_{1},
$$

which represents the velocity of system moving away from bounding (critical) regime $\vec{\rho}$.
If $0<C<1$, we have

$$
F=\frac{d \rho_{1}}{d t}-\frac{1}{2} \frac{d \rho_{2}}{d t}-\frac{1}{2} \frac{d \rho_{3}}{d t}=
$$

$$
\begin{gathered}
\left(-f\left(\rho_{1}\right)+(1-\alpha) f\left(\rho_{2}\right)+f\left(\rho_{3}\right)-\frac{1}{2} f\left(\rho_{1}\right)+\right. \\
\left.+\frac{1}{2} f\left(\rho_{2}\right)-\frac{1}{2} \alpha f\left(\rho_{2}\right)+\frac{1}{2} f\left(\rho_{3}\right)\right) \frac{\sqrt{2}}{6}= \\
=\left(-\sqrt{\frac{3}{2}} f\left(\rho_{1}\right)+\sqrt{\frac{3}{2}} f\left(\rho_{2}\right)(1-\alpha)+\sqrt{\frac{3}{2}} f\left(\rho_{3}\right)\right) .
\end{gathered}
$$

If $\vec{\rho} \in A_{2} A_{3}$, then $\rho_{1}=0, \rho_{2}+\rho_{3}=C$ and

$$
\begin{equation*}
\left.\vec{F}\right|_{\rho_{2}+\rho_{3}=C, \rho_{1} \equiv 0}=\sqrt{\frac{3}{2}}\left((1-\alpha) f\left(\rho_{2}\right)+f\left(\rho_{3}\right)\right) \tag{11}
\end{equation*}
$$

Analogously, $\vec{n}_{2}=(-1 / \sqrt{6}, 2 / \sqrt{6},-1 / \sqrt{6})$, and

$$
\begin{equation*}
\left.\vec{F}\right|_{\rho_{1}+\rho_{3}=C, \rho_{2} \equiv 0}=\frac{3}{\sqrt{6}} f\left(\rho_{1}\right)=\sqrt{\frac{3}{2}} f\left(\rho_{1}\right) \tag{12}
\end{equation*}
$$

Thus $\vec{n}_{3}=(-1 / \sqrt{6},-1 / \sqrt{6}, 2 / \sqrt{6})$,

$$
\begin{equation*}
\left.\vec{F}\right|_{\rho_{1}+\rho_{2}=C, \rho_{3} \equiv 0}=\frac{3 \alpha}{\sqrt{6}} f\left(\rho_{2}\right)=\sqrt{\frac{3}{2}} \alpha f\left(\rho_{1}\right) \tag{13}
\end{equation*}
$$

Figure 6: Tria-gram of velocities, $C<1$
Therefore, the following is existed.
Proposition 1. If $C<1$, the system (6) moves away from bounding regime with velocity close to zero (11)-(13).

Figure 7: Diagram of velocities, $1<C<2$

Then we have $\vec{n}_{12}=-\vec{n}_{3}, \vec{n}_{13}=-\vec{n}_{2}$, and $\vec{n}_{23}=-\vec{n}_{1}$.
Hence, from (11)-(13), if $C>1, C<2$,

$$
\begin{aligned}
&\left.\vec{F}\right|_{\rho_{2}+\rho_{3}=C-1, \rho_{1} \equiv 1}=-\sqrt{\frac{3}{2}}\left((1-\alpha) f\left(\rho_{2}\right)+f\left(\rho_{3}\right)\right), \\
&\left.\vec{F}\right|_{\rho_{1}+\rho_{3}=C-1, \rho_{2} \equiv 1}=-\sqrt{\frac{3}{2}} f\left(\rho_{1}\right), \\
&\left.\vec{F}\right|_{\rho_{1}+\rho_{2}=C-1, \rho_{3} \equiv 1}=-\sqrt{\frac{3}{2}} \alpha f\left(\rho_{1}\right) .
\end{aligned}
$$

Summarizing the above statements, we have the diagram of velocities on the boundary as shown in Fig. 7, if $1<C<2$.

When $C>2$, we obtain the case as shown in Fig.8.

4. On quantity of stationary points (6)

Let ρ_{α} be a minimum solution of the equation

$$
\begin{equation*}
f(\rho)=\frac{1}{\alpha} f\left(\rho_{\alpha}\right), \tag{14}
\end{equation*}
$$

where $\rho_{\alpha}=\rho_{\alpha}(\rho), 0<\alpha<1,0<\rho<1$.
It is clear that

$$
\begin{equation*}
\rho_{\alpha}=(1-\rho)_{\alpha} . \tag{15}
\end{equation*}
$$

Figure 8: Case $C>2$

Moreover, $0_{\alpha}=0$ and

$$
\begin{equation*}
\rho_{\alpha} \nearrow(0.5)_{\alpha} \quad \text { if } \quad \rho \in(0,1) . \tag{16}
\end{equation*}
$$

Analogously, if $\rho \in(0,0.5)$, then it holds

$$
\begin{equation*}
\rho_{\alpha} \nearrow \rho_{1} \equiv \rho \quad \text { if } \quad \alpha \in(0,1] . \tag{17}
\end{equation*}
$$

Proposition 2. The unequality is true

$$
\begin{equation*}
\rho_{\alpha}+\rho \leq 1 \tag{18}
\end{equation*}
$$

for all $\rho \in[0,1]$ and $\alpha \in[0,1]$.
Proof: If $\rho \in(0,1 / 2)$, from $\rho_{\alpha}<\rho$, we get

$$
\rho_{\alpha}+\rho<2 \rho<1 .
$$

If $\rho \in(1 / 2,1)$, then $\rho_{\alpha}=(1-\rho)_{\alpha}<1-\rho$, consequently, $\rho+\rho_{\alpha}<1$.
The stationary points (6) are the solutions of the system

$$
\left\{\begin{array}{c}
f\left(\rho_{1}\right)=f\left(\rho_{2}\right), \tag{19}\\
f\left(\rho_{3}\right)=\alpha f\left(\rho_{2}\right) .
\end{array}\right.
$$

From symmetry of the function $f(\rho)$ relatively to $\rho=0.5$, we get the following stationary points
(1) $\quad\left(\rho, \rho, \rho_{\alpha}\right), \quad 0 \leq 2 \rho+\rho_{\alpha} \leq 2$;
(2) $\left(1-\rho, 1-\rho, \rho_{\alpha}\right), \quad 0 \leq 2-2 \rho+\rho_{\alpha} \leq 2$;
(3) $\quad\left(\rho, 1-\rho, \rho_{\alpha}\right), \quad 1 \leq 1+\rho_{\alpha} \leq 1+(0.5)_{\alpha}$;
(4) $\quad\left(1-\rho, \rho, \rho_{\alpha}\right), \quad 1 \leq 1+\rho_{\alpha} \leq 1+(0.5)_{\alpha}$;
(5) $\quad\left(\rho, \rho, 1-\rho_{\alpha}\right), \quad 1 \leq 2 \rho+1-\rho_{\alpha} \leq 3$;
(6) $\left(1-\rho, 1-\rho, 1-\rho_{\alpha}\right), 1 \leq 2-\rho \leq 3-2 \rho-\rho_{\alpha} \leq 3$;
(7) $\quad\left(\rho, 1-\rho, 1-\rho_{\alpha}\right), \quad 2-(0.5)_{\alpha} \leq 2-2 \rho_{\alpha} \leq 2$;
(8) $\quad\left(1-\rho, \rho, 1-\rho_{\alpha}\right), \quad 2-(0.5)_{\alpha} \leq 2-2 \rho_{\alpha} \leq 2$;

From $\rho_{\alpha}=(1-\rho)_{\alpha}$, the family (1) and (2) are equivalent.
Hence, the following families are equivalent:

$$
(3) \Longleftrightarrow(4), \quad(5) \Longleftrightarrow(6), \quad(7) \Longleftrightarrow(8)
$$

Thus it is true

Proposition 3.

When $\alpha \in(0,1)$ is fixed, there exists four families of stable states of system (6) $0 \leq \rho \leq$ 1 :

$$
\begin{array}{ccc}
(a) & \left(\rho, \rho, \rho_{\alpha}\right), & 0 \leq C \leq 2 ; \\
\text { (b) } & \left(\rho, 1-\rho, \rho_{\alpha}\right), & 1 \leq C \leq 1+(0.5)_{\alpha} ; \\
\text { (c) } & \left(\rho, \rho, 1-\rho_{\alpha}\right), & 1 \leq C \leq 3 ; \\
\text { (d) } & \left(\rho, 1-\rho, 1-\rho_{\alpha}\right), & 2-(0.5)_{\alpha} \leq C \leq 2 .
\end{array}
$$

Corollary 1. When $\alpha=1$

$$
\begin{aligned}
\rho_{\alpha} & =\{\rho, 0 \leq \rho \leq 0.5 ; 1-\rho, 0.5 \leq \rho \leq 1\}= \\
& =\min \{\rho, 1-\rho\}, \quad(0.5)_{1}=0.5 .
\end{aligned}
$$

Combining the families (a) and (c), we have

$$
\begin{array}{lcl}
\left(a^{\prime}\right) & (\rho, \rho, \rho), & 0 \leq \rho \leq 1 \\
\left(c^{\prime}\right) & (\rho, \rho, 1-\rho), & 1 \leq \rho \leq 1
\end{array}
$$

Analogically, from (b) and combining the families (d), we get the following

$$
\begin{array}{lll}
\left(b^{\prime}\right) & (\rho, 1-\rho, \rho), & 0 \leq \rho \leq 1 ; \\
\left(d^{\prime}\right) & (\rho, 1-\rho, 1-\rho), & 1 \leq \rho \leq 1,
\end{array}
$$

where sets $\left(a^{\prime}\right)-\left(d^{\prime}\right)$ are derived in [1].
Definition. Let $m(C)$ be a quantity of stable point (6), $m(C)=m(C, \alpha)$.
Theorem 1. For all $\alpha \in(0,1)$

$$
m(C)=m(C, \alpha)=\left\{\begin{array}{cc}
1, & 0<C<1 \\
4, & 1<C<1+(0.5)_{\alpha} ; \\
2, & 1+(0.5)_{\alpha}<C<2-(0.5)_{\alpha} \\
4, & 2-(0.5)_{\alpha}<C<2 \\
1, & 2<C<3
\end{array}\right.
$$

Proof.

As $C-2 \rho+\rho_{\alpha}(\rho)$ monotonically increases, then for $C \in(0,1)$, the family (a) generates the unique stable point.

Analogically, when $C \in(2,3)$, the family (c) is uniquely admissible.
And the equation

$$
\begin{equation*}
2 \rho+1-\rho_{\alpha}=\rho+1+\left(\rho-\rho_{\alpha}\right)=C \tag{20}
\end{equation*}
$$

has the unique solution as the function $C-2 \rho+\rho_{\alpha}(\rho)$ is monotonic.
Analogically, if the parameter C satisfies the condition $1+(0.5)_{\alpha}<C<2-(0.5)_{\alpha}$, then the equation (20) has the only solution from the family (c) and one solution from the famiy (a) with the same reason.

If $1<C<1+(0.5)_{\alpha}$, then the following families give one solution for each: (a) and (c) and the family (b) gives exactly two solutions.

The function

$$
\rho+(1-\rho)+\rho_{\alpha}(\rho)=1+\rho_{\alpha}(\rho)
$$

grows monotonously for $\rho \in(0,0.5)$ and is symmetrically relative to the point $\rho=0.5$.
From similar consideration, the statement is true in the case $2-(0.5)_{\alpha}<C<2$.

The Theorem 2 is proved.
Remark. For $\alpha=1$, we get the following values [1]

$$
m(C)=m(C, 1)=\left\{\begin{array}{cc}
1, & 0<C<1 ; \\
4, & 1<C<1.5 \\
1, & C=1.5 \\
4, & 1.5<C<2 ; \\
1, & 2 \leq C<3
\end{array}\right.
$$

5. On qualitative properties of the solutions in the neighbourhood of the stationary point

We consider the system of differentional equations (6) in general form

$$
\begin{equation*}
\dot{\vec{\rho}}=\vec{F}(\vec{\rho})=\vec{F}(\vec{\rho}, \alpha), \tag{21}
\end{equation*}
$$

where $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{n}\right)$,

$$
\begin{gather*}
0<\rho_{i}<1, \quad i=1, \ldots, n \tag{22}\\
\|\vec{\rho}\|_{\ell_{1}^{n}}=\rho_{1}+\ldots+\rho_{n} \equiv C \tag{23}
\end{gather*}
$$

Let $\vec{\rho}^{*}$ be a stationary point, i.e. it means that

$$
\begin{aligned}
& \vec{F}\left(\vec{\rho}^{*}\right)=\overrightarrow{0}, \quad 0<\rho_{1}^{*}<1 \\
& i=1, \ldots, n, \quad\left\|\vec{\rho}^{*}\right\|_{\ell_{1}^{n}}=C
\end{aligned}
$$

Let $\vec{\rho}$ be an arbitrary admissible point satisfying (21),(22) and (23).
Then

$$
\begin{aligned}
& \left(\dot{\vec{\rho}}-\dot{\vec{\rho}}^{*}, \vec{\rho}-\vec{\rho}^{*}\right) \\
= & \left(\vec{F}(\vec{\rho}, \alpha), \vec{\rho}-\vec{\rho}^{*}\right) .
\end{aligned}
$$

Suppose $\vec{\Delta}=\vec{\rho}-\vec{\rho}^{*}$ and let T denotes the ortonormal matrix of size $n \times n$ satisfying

$$
\begin{equation*}
\vec{\Delta} \equiv T \vec{x} \tag{24}
\end{equation*}
$$

where $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{equation*}
x_{n}=\Delta_{1}+\ldots+\Delta_{n}=0 \tag{25}
\end{equation*}
$$

Thus the map

$$
\vec{\rho}=\vec{\rho}^{*}+T \vec{x}
$$

fulfills the orthogonal tranformation. It is a rotation and transferring of co-ordinates so that the stationary point becomes point of origin, and the hyperplane (23) has an equation $x_{n}=0$ in new co-ordinates.

Hence, we have the follows

$$
\begin{aligned}
\frac{1}{2}\left(\left\|\vec{\rho}-\vec{\rho}^{*}\right\|_{\ell_{1}^{n}}\right)_{t}^{\prime} & =\left(\vec{F}(\vec{\rho}, \alpha), \vec{\rho}-\vec{\rho}^{*}\right)=\left(\vec{F}\left(\vec{\rho}^{*}+\vec{\Delta}, \alpha\right), \vec{\Delta}\right)= \\
& =\left(\vec{F}\left(\vec{\rho}^{*}+T \vec{x}, \alpha\right), T \vec{x}\right)=G(\vec{x})
\end{aligned}
$$

Proposition 3.

The function $G(\vec{x})=G\left(\vec{x}, \vec{\rho}^{*}\right)$ satisfies the following properties

$$
\begin{aligned}
& \text { (a) } \quad G(\overrightarrow{0})=0 ; \\
& \text { (b) }\left.\operatorname{grad} G\right|_{\vec{x}=\overrightarrow{0}}=\overrightarrow{0} .
\end{aligned}
$$

Proof. It is proved by substitution in right part.
Let $H=H\left(\vec{\rho}^{*}, \alpha\right)$ denotes the matrix $\left.\vec{F}^{\prime}\right|_{\vec{x}=\overrightarrow{0}}$, and by $T^{*}=T^{-1}$ the adjoint of the matrix T.

Theorem 2.

If matrix $T^{*} H T$ is positively definite on hyperpane $x_{n}=0$, then the stationary point $\vec{\rho}^{*}$ is unstable.

If the matrix $T^{*} H T$ is negatively definite on the same set, then the point $\vec{\rho}^{*}$ is stable.
Proof.
As

$$
\left(\left\|\vec{\rho}-\vec{\rho}^{*}\right\|_{\ell_{1}^{n}}\right)_{t}^{\prime}=2 G(\vec{x})
$$

for the function $G(\vec{x})$ when $\vec{x}=\overrightarrow{0}$ and the sufficient conditions of extremum is fulfiled. Then the function $\left\|\vec{\rho}-\vec{\rho}^{*}\right\|_{\ell_{1}^{n}}$ is monotonous, where from the property of strict unstability of the point follows.

6. Transform to $\left(x_{1}, x_{2}, x_{3}\right)=\vec{x}$ co-ordinates

In this part, the following system is introduced for reference

$$
\left\{\begin{array}{l}
\overrightarrow{e_{1}}=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right), \\
\overrightarrow{e_{2}}=\left(-\frac{\sqrt{6}}{6},-\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3}\right), \\
\overrightarrow{e_{3}}=\left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right) .
\end{array}\right.
$$

Let

$$
\left\{\begin{array}{l}
x_{1}=\left(\rho_{1}, \rho_{2}, \rho_{3}\right) \cdot \overline{e_{1}} \\
x_{2}=\left(\rho_{1}, \rho_{2}, \rho_{3}\right) \cdot \overline{e_{2}} \\
x_{3}=\left(\rho_{1}, \rho_{2}, \rho_{3}\right) \cdot \overline{e_{3}}
\end{array}\right.
$$

i.e.

$$
\rho_{1} \overrightarrow{e_{1}}+\rho_{2} \overrightarrow{e_{2}}+\rho_{3} \overrightarrow{e_{3}} \equiv x_{1} \overrightarrow{e_{1}}+x_{2} \overrightarrow{e_{2}}+x_{3} \overrightarrow{e_{3}}, \vec{x}=T^{*} \vec{\rho},
$$

$\begin{aligned} &\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{ccc}-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{3} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3}\end{array}\right)\left(\begin{array}{l}\rho_{1} \\ \rho_{2} \\ \rho_{3}\end{array}\right) \\ & \Longleftrightarrow\left(\begin{array}{l}\rho_{1} \\ \rho_{2} \\ \rho_{3}\end{array}\right)=\left(\begin{array}{ccc}-\frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ 0 & \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3}\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right),\end{aligned}$
$\vec{\rho}=T^{*} \vec{x}=\left(T^{*}\right)^{-1} \vec{x}=T \vec{x}$.
As $\dot{\vec{x}}=T^{*} \dot{\vec{\rho}}$, and $\dot{\vec{x}}=T^{*} \vec{F}(\vec{\rho}, \alpha) \Longleftrightarrow$

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\sqrt{2} f\left(\rho_{1}\right)-\frac{\sqrt{2}}{2}(2-\alpha) f\left(\rho_{2}\right)-\frac{\sqrt{2}}{2} f\left(\rho_{3}\right) \\
\dot{x}_{2}=0 \cdot f\left(\rho_{1}\right)+\frac{\sqrt{6}}{2} \alpha f\left(\rho_{2}\right)-\frac{\sqrt{6}}{2} f\left(\rho_{3}\right) \\
\dot{x}_{3}=0
\end{array}\right.
$$

Consider that $\left(\rho_{1}+\rho_{2}+\rho_{3}\right) \equiv C$, we get

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\sqrt{2} f\left(\rho_{1}\right)-\frac{\sqrt{2}}{2}(2-\alpha) f\left(\rho_{2}\right)-\frac{\sqrt{2}}{2} f\left(c-\rho_{1}-\rho_{2}\right) \tag{27}\\
\dot{x}_{2}=0+\frac{\sqrt{6}}{2} \alpha f\left(\rho_{2}\right)-\frac{\sqrt{6}}{2} f\left(c-\rho_{1}-\rho_{2}\right)
\end{array}\right.
$$

$$
\dot{\vec{x}}=W(\vec{\rho}, c), \vec{x}=\left(x_{1}, x_{2}\right), \vec{\rho}=\left(\rho_{1}, \rho_{2}\right)
$$

The properties of solutions in the neighbourhood of stationary point is defined by eigenvalues of the matrix

$$
\begin{align*}
& W^{\prime}= \\
& -\left(\begin{array}{cc}
\sqrt{2} f^{\prime}\left(\rho_{1}\right)+\frac{\sqrt{2}}{2} f^{\prime}\left(C-\rho_{1}-\rho_{2}\right) & \frac{\sqrt{2}}{2}(\alpha-2) f^{\prime}\left(\rho_{2}\right)+\frac{\sqrt{2}}{2} f^{\prime}\left(C-\rho_{1}-\rho_{2}\right) \\
\frac{\sqrt{6}}{2} f^{\prime}\left(C-\rho_{1}-\rho_{2}\right) & \frac{\sqrt{6}}{2} \alpha f^{\prime}\left(\rho_{2}\right)+\frac{\sqrt{6}}{2} f^{\prime}\left(C-\rho_{1}-\rho_{2}\right)
\end{array}\right) \tag{28}
\end{align*}
$$

We consider all branches of stationary points one by one $(a)-(d)$, found in Proposition 2.
(a) $\quad W^{\prime}\left(\rho, \rho, \rho_{\alpha}\right)=-\left(\begin{array}{cc}\sqrt{2} f^{\prime}(\rho)+\frac{\sqrt{2}}{2} f^{\prime}\left(\rho_{\alpha}\right) & \frac{\sqrt{2}}{2}(\alpha-2) f^{\prime}(\rho)+\frac{\sqrt{2}}{2} f^{\prime}\left(\rho_{\alpha}\right) \\ \frac{\sqrt{6}}{2} f^{\prime}\left(\rho_{\alpha}\right) \frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} \alpha f^{\prime}(\rho)+\frac{\sqrt{6}}{2} f^{\prime}\left(\rho_{\alpha}\right)\end{array}\right)=$

$$
=-\left(\begin{array}{cc}
2 f^{\prime}(\rho)+f^{\prime}\left(\rho_{\alpha}\right) & (\alpha-2) f^{\prime}(\rho)+f^{\prime}\left(\rho_{\alpha}\right) \\
f^{\prime}\left(\rho_{\alpha}\right) & \alpha f^{\prime}(\rho)+f^{\prime}\left(\rho_{\alpha}\right)
\end{array}\right)\left(\begin{array}{cc}
\frac{\sqrt{2}}{2} & 0 \\
0 & \frac{\sqrt{6}}{2}
\end{array}\right)
$$

As multiplying at diagonal matrix is equivalent to the stretching of system of reference, so the picture of qualitative behavior of the matrix W^{\prime} in stationary points neighbourhood is equivalent to the matrix given below

$$
\tilde{W}^{\prime}=-\left(\begin{array}{cc}
2 f^{\prime}(\rho)+f^{\prime}\left(\rho_{\alpha}\right) & (\alpha-2) f^{\prime}(\rho)+f^{\prime}\left(\rho_{\alpha}\right) \tag{29}\\
f^{\prime}\left(\rho_{\alpha}\right) & \alpha f^{\prime}(\rho)+f^{\prime}\left(\rho_{\alpha}\right)
\end{array}\right)
$$

When $\alpha=1$, we obtain

$$
\tilde{W}^{\prime}(\rho, \rho, \rho)=-\left(\begin{array}{cc}
3 f^{\prime}(\rho) & 0 \\
f^{\prime}(\rho) & 2 f^{\prime}(\rho)
\end{array}\right)
$$

wherefrom

$$
\binom{\lambda_{1}<0, \lambda_{2}<0 \Longleftrightarrow \rho<0.5}{\lambda_{1}>0, \lambda_{2}>0 \Longleftrightarrow \rho>0.5}
$$

This case is investigated in [1].
The characteristical polynomial (29) has the following form

$$
\begin{equation*}
P(\lambda)=\lambda^{2}+\left((2+\alpha) f^{\prime}(\rho)+2 f^{\prime}\left(\rho_{\alpha}\right)\right) \lambda+\left(2 \alpha\left(f^{\prime}(\rho)\right)^{2}+4 f^{\prime}(\rho) f^{\prime}\left(\rho_{\alpha}\right)\right) \tag{30}
\end{equation*}
$$

Obviously that when $\rho<0.5$, the both zeroes of $P(\lambda)$ are negative, and when $\rho>0.5$

$$
2 f^{\prime}(\rho)\left(\alpha f^{\prime}(\rho)+2 f^{\prime}\left(\rho_{\alpha}\right)\right)<0
$$

since

$$
\alpha f^{\prime}(\rho)+f^{\prime}\left(\rho_{\alpha}\right) \quad \forall \quad \rho \in(0,1)
$$

by virtue of the convex up of the function f.
(c) $\quad W^{\prime}\left(\rho, \rho, 1-\rho_{\alpha}\right)=$

$$
=-\left(\begin{array}{cc}
\sqrt{2} f^{\prime}(\rho)+\frac{\sqrt{2}}{2} f^{\prime}\left(1-\rho_{\alpha}\right) & \frac{\sqrt{2}}{2}(\alpha-2) f^{\prime}(\rho)+\frac{\sqrt{2}}{2} f^{\prime}\left(1-\rho_{\alpha}\right) \\
\frac{\sqrt{6}}{2} f^{\prime}\left(1-\rho_{\alpha}\right) & \frac{\sqrt{6}}{2} \alpha f^{\prime}(\rho)+\frac{\sqrt{6}}{2} f^{\prime}\left(1-\rho_{\alpha}\right)
\end{array}\right)
$$

and analogically

$$
\begin{gather*}
\tilde{W}^{\prime}=-\left(\begin{array}{cc}
2 f^{\prime}(\rho)+f^{\prime}\left(1-\rho_{\alpha}\right) & (\alpha-2) f^{\prime}(\rho)+f^{\prime}\left(1-\rho_{\alpha}\right) \\
f^{\prime}\left(1-\rho_{\alpha}\right) & \alpha f^{\prime}(\rho)+f^{\prime}\left(1-\rho_{\alpha}\right)
\end{array}\right), \\
P(\lambda)=\lambda^{2}+\left((2+\alpha) f^{\prime}(\rho)+2 f^{\prime}\left(1-\rho_{\alpha}\right)\right) \lambda+\left(2 \alpha\left(f^{\prime}(\rho)\right)^{2}+4 f^{\prime}(\rho) f^{\prime}\left(1-\rho_{\alpha}\right)\right)= \\
=\lambda^{2}+\left((2+\alpha) f^{\prime}(\rho)-2 f^{\prime}\left(\rho_{\alpha}\right)\right) \lambda+\left(2 \alpha f^{\prime}(\rho)-4 f^{\prime}\left(\rho_{\alpha}\right)\right) f^{\prime}(\rho) \tag{31}
\end{gather*}
$$

the polynomial $P(\lambda)$ has $\forall \rho \in[0,1)$ at least one positive null.
Consequantly, the branch (c) is absolutely unstable.
7. Application: vector fields maps $(\alpha=0.5)$
7.1. $0<C<1$
$\left(\rho, \rho, \rho_{\alpha}\right)$

Figure 9: Velocity field and integral cuirves in the case $C=0.6$
7.2. $1<C<1+(0.5)_{\alpha}$
(a) $\left(\rho, \rho, \rho_{\alpha}\right)$
(b) $\left(\rho, 1-\rho, \rho_{\alpha}\right) ;\left(1-\rho, \rho, \rho_{\alpha}\right)$;
(c) $\left(\rho, \rho, 1-\rho_{\alpha}\right)$

Figure 10: Velocity field and integral cuirves in the case $C=1.1$
7.3. $\left.1+(0.5)_{\alpha}<C<2-(0.5)_{\alpha}\right)$
(a) $\left(\rho, \rho, \rho_{\alpha}\right)$
(c) $\left(\rho, \rho, 1-\rho_{\alpha}\right)$

Figure 11: Velocity field and integral cuirves in the case $C=1.5$
7.4. $2-(0.5)_{\alpha}<C<2$
(a) $\left(\rho, \rho, \rho_{\alpha}\right)$
(c) $\left(\rho, \rho, 1-\rho_{\alpha}\right)$
(d) $\left(\rho, 1-\rho, 1-\rho_{\alpha}\right) ;\left(1-\rho, \rho, 1-\rho_{\alpha}\right)$

Figure 12: Velocity field and integral cuirves in the case $C=1.8$
7.5. $C>2$
(c) $\left(\rho, \rho, 1-\rho_{\alpha}\right)$

Figure 13: Case $C=2.3$

References

1. Buslaev A.P., Tatashev A.G., Yashina M.V. On Stability of Flow on a Ring with Three Links. The proceedings of Inter. Conf. Traffic and Granular Flow - 2007. Paris, 2007 (in print)
2. Buslaev A.P., Tatashev A.G., Yashina M.V./ Stability of Flows on Networks. Springer 2006 Proceedings of International Conference Traffic and Granular Flows -2005, Springer 2006 p. 427-435
3. Nazarov A.I. On stability of stationary regime in one system of nonlinear ODE connected with traffic flow modeling. Vestnik S-Peterburg university, Ser.1. - 2006, p.35-42
4. A.P. Buslaev, A.V. Novikov, V.M. Prikhodko, A.G. Tatashev, M.V. Yashina (2003) Stochastic and Simulation Approach to Traffic. Mir. Moscow
5. A.S. Bugaev, A.P. Buslaev, Tatashev A.G. (2006) Monotonous stochastic movement on integer lane and LYuMen problem. J. Imamod RAS, N 6.
6. Buslaev A.P., Tatashev A.G., Yashina M.V. (2004) On properties of solutions of one class of system of non-linear differential equations on graphs. Mathematical modelling. RAS. - Vladikavkaz. V. 6, N 4.
7. Buslaev A.P., Tatashev A.G., Yashina M.V. (2006) Stability of flows on graphs. Complex analysis, operation theory. Mathematical modelling. RAS. Vladikavkaz.

ON CONVERGENCE OF ISHIKAWA'S TYPE ITERATION TO A COMMON FIXED POINT IN \mathcal{L}-FUZZY METRIC SPACES

YEOL JE CHO, REZA SAADATI AND BOŠKO DAMJANOVIĆ
Department of Mathematics Education and the RINS
Gyeongsang National University, Chinju 660-701, Korea
E-mail: yjcho@gnu.ac.kr
Department of Mathematics and Computer Science
Islamic Azad University-Ayatollah Amoli Branch, Amol, Iran
E-mail: rsaadati@eml.cc
Faculty of Agriculture
Nemanjina 6, 11000 Belgrade, Serbia
E-mail: dambo@agrif.bg.ac.rs

Abstract

In this paper, it is shown that, if Ishikawa's type iterative sequence associated with the nonlinear mappings G and H converges to a point, then the limit point is a common fixed point of the mappings G and H in \mathcal{L}-fuzzy metric spaces.

2000 AMS Subject Classification: 54E40; 54E35; 54H25. Key Words and Phrases: Ishikawa's type iterative sequence; \mathcal{L}-fuzzy metric space; common fixed point.

1. Introduction

In the recent years, several authors $[3,8,9]$ have studied the convergence of the sequence of the Mann iterative sequence [5] of a mapping H to a fixed point of H under various contractive conditions. The Ishikawa iteration scheme [3] was first used to establish the strong convergence for a pseudo contractive self-mapping of a convex compact subset of a Hilbert space. Very soon, both

[^3]iterative sequences were used to establish the strong convergence of these iterative sequences for some contractive type mappings in Hilbert spaces and then in more general normed linear spaces.

In this paper, we used Ishikawa's type iterative sequence for finding a common fixed point for two mappings in \mathcal{L}-fuzzy metric spaces.

In the sequel, we shall adopt the usual terminology, notation and conventions of \mathcal{L}-fuzzy metric spaces introduced by Saadati et al. [10].
Definition 1.1. ([2]) Let $\mathcal{L}=\left(L ; \leq_{L}\right)$ be a complete lattice (i.e., a partially ordered set in which every nonempty subset admits supremum and infimum) and U a non-empty set called the universe. An \mathcal{L}-fuzzy set in U is defined as a mapping $U \longrightarrow L$. For each u in $U, \mathcal{A}(u)$ represents the degree (in L) to which u satisfies \mathcal{A}.

Classically, a triangular norm T on ($[0,1], \leq$) is defined as an increasing, commutative, associative mapping $T:[0,1]^{2} \longrightarrow[0,1]$ satisfying $T(1, x)=x$ for all $x \in[0,1]$. These definitions can be straightforwardly extended to any lattice $\mathcal{L}=\left(L, \leq_{L}\right)$.

Definition 1.2. ([1, 4]) A triangular norm (t-norm) on \mathcal{L} is a mapping \mathcal{T} : $L^{2} \rightarrow L$ satisfying the following conditions:
(i) $(\forall x \in L)\left(\mathcal{T}\left(x, 1_{\mathcal{L}}\right)=x\right) \quad$ (: boundary condition);
(ii) $\left(\forall(x, y) \in L^{2}\right)(\mathcal{T}(x, y)=\mathcal{T}(y, x)) \quad$ (: commutativity);
(iii) $\left(\forall(x, y, z) \in L^{3}\right)(\mathcal{T}(x, \mathcal{T}(y, z))=\mathcal{T}(\mathcal{T}(x, y), z)) \quad$ (: associativity);
(iv) $\left(\forall\left(x, x^{\prime}, y, y^{\prime}\right) \in L^{4}\right)\left(x \leq_{L} x^{\prime}\right.$ and $\left.y \leq_{L} y^{\prime} \Rightarrow \mathcal{T}(x, y) \leq_{L} \mathcal{T}\left(x^{\prime}, y^{\prime}\right)\right)$ (: monotonicity).

A t-norm \mathcal{T} on \mathcal{L} is said to be continuous if, for any $x, y \in L$, any sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in \mathcal{L} which converge to x and y, respectively,

$$
\lim _{n \rightarrow \infty} \mathcal{T}\left(x_{n}, y_{n}\right)=\mathcal{T}(x, y)
$$

For example, $\mathcal{T}(x, y)=\min (x, y)$ and $\mathcal{T}(x, y)=x y$ are two continuous t-norms on $[0,1]$.

A t-norm \mathcal{T} is said to be of Hadžić type if $\mathcal{T}(x, y) \geq_{L} \wedge(x, y)$ for all $x, y \in L$, where

$$
\wedge(x, y)=\left\{\begin{array}{l}
x \text { if } x \leq_{L} y \\
y \text { if } y \leq_{L} x
\end{array}\right.
$$

The t-norm \mathcal{T} can be defined recursively as an ($n+1$)-ary operation $(n \in \mathbf{N})$ by $\mathcal{T}^{1}=\mathcal{T}$ and

$$
\mathcal{T}^{n}\left(x_{1}, \cdots, x_{n+1}\right)=\mathcal{T}\left(\mathcal{T}^{n-1}\left(x_{1}, \cdots, x_{n}\right), x_{n+1}\right)
$$

for all $n \geq 2$ and $x_{i} \in L$.

ON CONVERGENCE OF ISHIKAWA'S TYPE ITERATION

Definition 1.3. A negator on \mathcal{L} is any decreasing mapping $\mathcal{N}: L \rightarrow L$ satisfying $\mathcal{N}\left(0_{\mathcal{L}}\right)=1_{\mathcal{L}}$ and $\mathcal{N}\left(1_{\mathcal{L}}\right)=0_{\mathcal{L}}$. If $\mathcal{N}(\mathcal{N}(x))=x$ for all $x \in L$, then \mathcal{N} is called an involutive negator.

Next, we use a fixed involutive negator. The negator N_{s} on $([0,1], \leq)$ defined $\operatorname{as} N_{s}(x)=1-x$ for all $x \in[0,1]$ is called the standard negator on $([0,1], \leq)$.

Definition 1.4. The triple $(X, \mathcal{M}, \mathcal{T})$ is said to be an \mathcal{L}-fuzzy metric space if X is an arbitrary (non-empty) set, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{M} is an \mathcal{L}-fuzzy set on $\left.X^{2} \times\right] 0,+\infty[$ satisfying the following conditions: for every $x, y, z \in X$ and $t, s \in] 0,+\infty[$,
(a) $\mathcal{M}(x, y, t)>_{L} 0_{\mathcal{L}}$;
(b) $\mathcal{M}(x, y, t)=1_{\mathcal{L}}$ for all $t>0$ if and only if $x=y$;
(c) $\mathcal{M}(x, y, t)=\mathcal{M}(y, x, t)$;
(d) $\mathcal{T}(\mathcal{M}(x, y, t), \mathcal{M}(y, z, s)) \leq_{L} \mathcal{M}(x, z, t+s)$;
(e) $\mathcal{M}(x, y, \cdot):] 0, \infty[\rightarrow L$ is continuous;
(f) $\lim _{t \rightarrow \infty} \mathcal{M}(x, y, t)=1_{\mathcal{L}}$.

In this case, \mathcal{M} is called an \mathcal{L}-fuzzy metric.
If, in the above definition, the triangular inequality (d) is replaced by

$$
\text { (NA) } \mathcal{T}(\mathcal{M}(x, y, t), \mathcal{M}(y, z, s)) \leq_{L} \mathcal{M}(x, z, \max \{t, s\})
$$

for all $x, y, z \in X$ and $t, s>0$ or, equivalently,

$$
\mathcal{T}(\mathcal{M}(x, y, t), \mathcal{M}(y, z, t)) \leq_{L} \mathcal{M}(x, z, t)
$$

for all $x, y, z \in X$ and $t>0$, then the triple $(X, \mathcal{M}, \mathcal{T})$ is called a nonArchimedean \mathcal{L}-fuzzy metric space $[6,7]$.
Definition 1.5. (1) A sequence $\left\{x_{n}\right\}$ in an \mathcal{L}-fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ is called a Cauchy sequence if, for each $\varepsilon \in L \backslash\left\{0_{\mathcal{L}}, 1_{\mathcal{L}}\right\}$ and $t>0$, there exists $n_{0} \in \mathbf{N}$ such that, for all $n, m \geq n_{0}$,

$$
\mathcal{M}\left(x_{n}, x_{m}, t\right)>_{L} \mathcal{N}(\varepsilon)
$$

(2) A sequence $\left\{x_{n}\right\}$ is said to be converges to a point $x \in X$, which is denoted by $x_{n} \xrightarrow{\mathcal{M}} x$ if $\mathcal{M}\left(x_{n}, x, t\right) \rightarrow 1_{\mathcal{L}}$ whenever $n \rightarrow+\infty$ for all $t>0$.
(3) A \mathcal{L}-fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ is said to be complete if every Cauchy sequence in X is convergent.

Lemma 1.6. ([10]) Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L}-fuzzy metric space. If we define a mapping $E_{\lambda, \mathcal{M}}: X^{2} \longrightarrow \mathbf{R}^{+} \cup\{0\}$ by

$$
E_{\lambda, \mathcal{M}}(x, y)=\inf \left\{t>0: \mathcal{M}(x, y, t)>_{L} \mathcal{N}(\lambda)\right\}
$$

for all $\lambda \in L \backslash\left\{0_{\mathcal{L}}, 1_{\mathcal{L}}\right\}$ and $x, y \in X$. Then we have the following:
(1) For any $\mu \in L \backslash\left\{0_{\mathcal{L}}, 1_{\mathcal{L}}\right\}$, there exists $\lambda \in L \backslash\left\{0_{\mathcal{L}}, 1_{\mathcal{L}}\right\}$ such that

$$
E_{\mu, \mathcal{M}}(x, z) \leq E_{\lambda, \mathcal{M}}(x, y)+E_{\lambda, \mathcal{M}}(y, z)
$$

for all $x, y, z \in X$;
(2) A sequence $\left\{x_{n}\right\}$ is convergent with the \mathcal{L}-fuzzy metric \mathcal{M} if and only if

$$
E_{\lambda, \mathcal{M}}\left(x_{n}, x\right) \rightarrow 0 .
$$

Also, a sequence $\left\{x_{n}\right\}$ is a Cauchy sequence with the \mathcal{L}-fuzzy metric \mathcal{M} if and only if it is a Cauchy sequence with the $E_{\lambda, \mathcal{M}}$.

2. Main Result

Definition 2.1. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L}-fuzzy metric space and $I=[0,1]$ the closed unit interval.
(1) A continuous mapping $W: X^{2} \times I \longrightarrow X$ is said to be a convex structure on X if, for all $x, y \in X, k \in I$ and $\lambda \in L \backslash\left\{0_{\mathcal{L}}, 1_{\mathcal{L}}\right\}$,

$$
\begin{equation*}
E_{\lambda, \mathcal{M}}[u, W(x, y, k)] \leq k E_{\lambda, \mathcal{M}}(u, x)+(1-k) E_{\lambda, \mathcal{M}}(u, y) \tag{2.1}
\end{equation*}
$$

for all $u \in X$.
(2) A \mathcal{L}-fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ together with a convex structure is called a convex \mathcal{L}-fuzzy metric space.

Theorem 2.2. Let C be a nonempty closed convex subset of a non-Archimedean convex \mathcal{L}-fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ in which \mathcal{T} is of Hadžić type. Let $G, H: X \longrightarrow X$ be two self-mappings satisfying the following condition:

$$
\begin{equation*}
\mathcal{M}(G x, H y, t) \geq_{L} \mathcal{T}^{2}\left(\mathcal{M}\left(x, y, \frac{t}{h}\right), \mathcal{M}\left(x, H y, \frac{t}{h}\right), \mathcal{M}\left(G x, y, \frac{t}{h}\right)\right) \tag{2.2}
\end{equation*}
$$

for all $x, y \in C$ and $t>0$ in which $h \in(0,1)$. Suppose that $\left\{x_{n}\right\}$ is Ishikawa's type iterative sequence with G and T defined by

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{*}\\
y_{n}=W\left(G x_{n}, x_{n}, \beta_{n}\right) \\
x_{n+1}=W\left(H y_{n}, x_{n}, \alpha_{n}\right)
\end{array}\right.
$$

for all $n \geq 0$, where the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy $0 \leq \alpha_{n}, \beta_{n} \leq 1$ and $\left\{\alpha_{n}\right\}$ is away from zero. If $\left\{x_{n}\right\}$ converges to a point $p \in C$, then p is a common fixed point of G and H.

Proof. From (*), it follows that

$$
E_{\lambda, \mathcal{M}}\left(x_{n}, x_{n+1}\right)=E_{\lambda, \mathcal{M}}\left[x_{n}, W\left(H y_{n}, x_{n}, \alpha_{n}\right)\right]=\alpha_{n} E_{\lambda, \mathcal{M}}\left(x_{n}, H x_{n}\right) .
$$

Since $x_{n} \longrightarrow p, \mathcal{M}\left(x_{n}, x_{n+1}, t\right) \longrightarrow 1_{\mathcal{L}}$ and, by Lemma 1.6 (2), it follows that

$$
E_{\lambda, \mathcal{M}}\left(x_{n}, x_{n+1}\right) \longrightarrow 0 .
$$

ON CONVERGENCE OF ISHIKAWA'S TYPE ITERATION

Since $\left\{\alpha_{n}\right\}$ is away from zero, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{\lambda, \mathcal{M}}\left(x_{n}, H y_{n}\right)=0 . \tag{2.3}
\end{equation*}
$$

Using (2.7), we get

$$
\mathcal{M}\left(G x_{n}, H y_{n}, t\right)
$$

$$
\begin{equation*}
\geq_{L} \mathcal{T}^{2}\left(\mathcal{M}\left(x_{n}, y_{n}, \frac{t}{h}\right), \mathcal{M}\left(x_{n}, H y_{n}, \frac{t}{h}\right), \mathcal{M}\left(G x_{n}, y_{n}, \frac{t}{h}\right)\right) \tag{2.4}
\end{equation*}
$$

By the property of E and (2.4), we have

$$
\begin{aligned}
& E_{\lambda, \mathcal{M}}\left(G x_{n}, H y_{n}\right) \\
= & \inf \left\{t>0: \mathcal{M}\left(G x_{n}, H y_{n}, t\right)>_{L} \mathcal{N}(\lambda)\right\} \\
\leq & \inf \left\{t>0: \mathcal{T}^{2}\left(\mathcal{M}\left(x_{n}, y_{n}, \frac{t}{h}\right), \mathcal{M}\left(x_{n}, H y_{n}, \frac{t}{h}\right), \mathcal{M}\left(G x_{n}, y_{n}, \frac{t}{h}\right)\right)>_{L} \mathcal{N}(\lambda)\right\} \\
\leq & h \inf \left\{t>0: \mathcal{T}^{2}\left(\mathcal{M}\left(x_{n}, y_{n}, t\right), \mathcal{M}\left(x_{n}, H y_{n}, t\right), \mathcal{M}\left(G x_{n}, y_{n}, t\right)\right)>_{L} \mathcal{N}(\lambda)\right\} \\
\leq & h \inf \left\{t>0: \wedge^{2}\left(\mathcal{M}\left(x_{n}, y_{n}, t\right), \mathcal{M}\left(x_{n}, H y_{n}, t\right), \mathcal{M}\left(G x_{n}, y_{n}, t\right)\right)>_{L} \mathcal{N}(\lambda)\right\} \\
\leq & h\left[E_{\lambda, \mathcal{M}}\left(x_{n}, y_{n}\right)+E_{\lambda, \mathcal{M}}\left(x_{n}, H y_{n}\right)+E_{\lambda, \mathcal{M}}\left(G x_{n}, y_{n}\right)\right] .
\end{aligned}
$$

It follows from $(*)$ that

$$
\begin{gathered}
E_{\lambda, \mathcal{M}}\left(x_{n}, y_{n}\right)=E_{\lambda, \mathcal{M}}\left[x_{n}, W\left(G x_{n}, x_{n}, \beta_{n}\right)\right]=\beta_{n} E_{\lambda, \mathcal{M}}\left(x_{n}, G x_{n}\right), \\
E_{\lambda, \mathcal{M}}\left(G x_{n}, y_{n}\right)=E_{\lambda, \mathcal{M}}\left[G x_{n}, W\left(G x_{n}, x_{n}, \beta_{n}\right)\right]=\left(1-\beta_{n}\right) E_{\lambda, \mathcal{M}}\left(x_{n}, G x_{n}\right) .
\end{gathered}
$$

Thus we have

$$
\begin{equation*}
E_{\lambda, \mathcal{M}}\left(G x_{n}, H y_{n}\right) \leq h\left[E_{\lambda, \mathcal{M}}\left(x_{n}, G x_{n}\right)+E_{\lambda, \mathcal{M}}\left(x_{n}, H y_{n}\right)\right] . \tag{2.5}
\end{equation*}
$$

By the triangular inequality (NA), we have

$$
\begin{equation*}
\mathcal{T}\left(\mathcal{M}\left(H y_{n}, G x_{n}, t\right), \mathcal{M}\left(x_{n}, H y_{n}, t\right)\right) \leq_{L} \mathcal{M}\left(x_{n}, G x_{n}, t\right) . \tag{2.6}
\end{equation*}
$$

By the property of E, since the t-norm is of Hadžić type, we have

$$
\begin{aligned}
& E_{\lambda, \mathcal{M}}\left(x_{n}, G x_{n}\right) \\
= & \inf \left\{t>0: \mathcal{M}\left(x_{n}, G x_{n}, t\right)>_{L} \mathcal{N}(\lambda)\right\} \\
\leq & \inf \left\{t>0: \mathcal{T}\left(\mathcal{M}\left(H y_{n}, G x_{n}, t\right), \mathcal{M}\left(x_{n}, H y_{n}, t\right)\right)>_{L} \mathcal{N}(\lambda)\right\} \\
\leq & \inf \left\{t>0: \wedge\left(\mathcal{M}\left(H y_{n}, G x_{n}, t\right), \mathcal{M}\left(x_{n}, H y_{n}, t\right)\right)>_{L} \mathcal{N}(\lambda)\right\} \\
\leq & E_{\lambda, \mathcal{M}}\left(H y_{n}, G x_{n}\right)+E_{\lambda, \mathcal{M}}\left(x_{n}, H y_{n}\right) .
\end{aligned}
$$

Hence, from (2.5) and the last inequality, we have

$$
E_{\lambda, \mathcal{M}}\left(H y_{n}, G x_{n}\right) \leq \frac{2 h}{1-h} E_{\lambda, \mathcal{M}}\left(H y_{n}, x_{n}\right) .
$$

Taking the limit as $n \longrightarrow \infty$, by (2.3), we obtain

$$
\lim _{n \rightarrow \infty} E_{\lambda, \mathcal{M}}\left(H y_{n}, G x_{n}\right)=0 .
$$

YEOL JE CHO, REZA SAADATI AND BOŠKO DAMJANOVIĆ

Since $H y_{n} \longrightarrow p$, we have $G x_{n} \longrightarrow p$. From $E_{\lambda, \mathcal{M}}\left(x_{n}, y_{n}\right)=\beta_{n} E_{\lambda, \mathcal{M}}\left(x_{n}, G x_{n}\right)$, it follows that $y_{n} \longrightarrow p$. Further, from (2.2) and the property of E, we have

$$
E_{\lambda, \mathcal{M}}\left(G x_{n}, H p\right) \leq h\left[E_{\lambda, \mathcal{M}}\left(x_{n}, p\right)+E_{\lambda, \mathcal{M}}\left(x_{n}, H p\right)+E_{\lambda, \mathcal{M}}\left(p, G x_{n}\right)\right] .
$$

Taking the limit as $n \longrightarrow \infty$, we obtain

$$
E_{\lambda, \mathcal{M}}(p, H p) \leq h E_{\lambda, \mathcal{M}}(p, H p) .
$$

Since $h \in(0,1)$, we have $E_{\lambda, \mathcal{M}}(p, H p)=0$ and hence $H p=p$.
Similarly, from (2.2) and the property of E, it follows that

$$
E_{\lambda, \mathcal{M}}\left(G p, H x_{n}\right) \leq h\left[E_{\lambda, \mathcal{M}}\left(x_{n}, p\right)+E_{\lambda, \mathcal{M}}\left(p, H x_{n}\right)+E_{\lambda, \mathcal{M}}\left(x_{n}, G p\right)\right] .
$$

Taking the limit as $n \longrightarrow \infty$, we obtain

$$
E_{\lambda, \mathcal{M}}(p, G p) \leq h E_{\lambda, \mathcal{M}}(p, G p) .
$$

Since $h \in(0,1)$, we have $E_{\lambda, \mathcal{M}}(p, G p)=0$ and hence $G p=p$. Therefore, $G p=H p=p$ and so the point p is a common fixed point of the mappings H and G. This completes the proof.

If $G=H$ in Theorem 2.2, then we have the following:
Corollary 2.3. Let C be a nonempty closed convex subset of a non-Archimedean convex \mathcal{L}-fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ in which \mathcal{T} is of Hadžićc type. Let $G: X \longrightarrow X$ be a self-mapping satisfying the following condition:

$$
\begin{equation*}
\mathcal{M}(G x, G y, t) \geq_{L} \mathcal{T}^{2}\left(\mathcal{M}\left(x, y, \frac{t}{h}\right), \mathcal{M}\left(x, G y, \frac{t}{h}\right), \mathcal{M}\left(G x, y, \frac{t}{h}\right)\right) \tag{2.7}
\end{equation*}
$$

for all $x, y \in C$ and $t>0$ in which $h \in(0,1)$. Suppose that $\left\{x_{n}\right\}$ is Ishikawa's type iterative sequence with G defined by

$$
\left\{\begin{array}{l}
x_{0} \in C \\
y_{n}=W\left(G x_{n}, x_{n}, \beta_{n}\right), \\
x_{n+1}=W\left(G y_{n}, x_{n}, \alpha_{n}\right)
\end{array}\right.
$$

for all $n \geq 0$, where the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy $0 \leq \alpha_{n}, \beta_{n} \leq 1$ and $\left\{\alpha_{n}\right\}$ is away from zero. If $\left\{x_{n}\right\}$ converges to a point $p \in C$, then p is a fixed point of G.

References

[1] G. Deschrijver and E.E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets Syst. 133(2003), 227-35.
[2] J. Goguen, \mathcal{L}-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.
[3] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.

ON CONVERGENCE OF ISHIKAWA'S TYPE ITERATION

[4] E. P. Klement, R. Mesiar and E. Pap, Triangular norms: Basic Notions and Properties, Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, 2005, 1760.
[5] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
[6] D. Mihets, On the existence and the uniqueness of fixed points of Sehgal contractions, Fuzzy Sets Syst. 156 (2005), 135-141.
[7] D. Miheţ, Generalized Hicks contractions: An extension of a result of Žikić, Fuzzy Sets Syst. 157 (2006), 2384-2393.
[8] B. E. Rhoades, Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc. 196 (1974), 161-176.
[9] K. L. Singh, Generalized contractions and the sequence of iterates, In "Nonlinear Equations in Abstract Spaces" (V. Lakshmikantham, Ed.), pp. 439-462, Academic Press, New York, 1978.
[10] R. Saadati, A. Razani and H. Adibi, A Common fixed point theorem in \mathcal{L}-fuzzy metric spaces, Chaos, Solitons and Fractals 33 (2007), 358-363.

IDENTITIES OF ROGERS-RAMANUJAN TYPE VIA " ± 1 "

WENCHANG CHU ${ }^{\dagger}$ AND CHENYING WANG
Department of Applied Mathematics
Dalian University of Technology
Dalian 116024, P. R. China

Abstract

By modifying the initial terms with " ± 1 ", we review few known identities of Rogers-Ramanujan type and establish several new ones. The approach is fundamentally based on known theta function identities.

For two indeterminate q and x, the shifted-factorial of x with base q is defined by

$$
(x ; q)_{0}=1 \quad \text { and } \quad(x ; q)_{n}=(1-x)(1-x q) \cdots\left(1-x q^{n-1}\right) \quad \text { for } \quad n \in \mathbb{N}
$$

When $|q|<1$, the q-shifted factorial of infinite order and the modified Jacobi theta function read respectively as

$$
(x ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-q^{k} x\right) \quad \text { and } \quad\langle x ; q\rangle_{\infty}=(x ; q)_{\infty}(q / x ; q)_{\infty}
$$

For the sake of brevity, their multiparameter forms are abbreviated to

$$
\begin{aligned}
{[\alpha, \beta, \cdots, \gamma ; q]_{\infty} } & =(\alpha ; q)_{\infty}(\beta ; q)_{\infty} \cdots(\gamma ; q)_{\infty} \\
\langle\alpha, \beta, \cdots, \gamma ; q\rangle_{\infty} & =\langle\alpha ; q\rangle_{\infty}\langle\beta ; q\rangle_{\infty} \cdots\langle\gamma ; q\rangle_{\infty}
\end{aligned}
$$

Following Gasper-Rahman [12], the basic hypergeometric series is defined by

$$
{ }_{1+r} \phi_{s}\left[\left.\begin{array}{c}
a_{0}, a_{1}, \cdots, a_{r} \\
b_{1}, \cdots, b_{s}
\end{array} \right\rvert\, q ; z\right]=\sum_{n=0}^{\infty}\left\{(-1)^{n} q^{\binom{n}{2}}\right\}^{s-r}\left[\left.\begin{array}{c}
a_{0}, a_{1}, \cdots, a_{r} \\
q, b_{1}, \cdots, b_{s}
\end{array} \right\rvert\, q\right]_{n} z^{n}
$$

where the base q will be restricted to $|q|<1$ for nonterminating q-series.
In the q-series theory, there are numerous identities expressing infinite sums as infinite products. Two typical ones are the celebrated Rogers-Ramanujan identities (see Andrews $[1, \S 1]$ and Chu [8, §4] for example):

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=\frac{1}{\left[q, q^{4} ; q^{5}\right]_{\infty}} \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\frac{1}{\left[q^{2}, q^{3} ; q^{5}\right]_{\infty}}
$$

For a comprehensive investigation of Rogers-Ramanujan type identities, refer to Slater [19] in her collection of 130 identities and Sills [17] with an excellent up-todate annotation.

The purpose of this paper is to present a new approach to a class of RogersRamanujan type identities. By employing the theta function identities appeared mainly in [9], we shall review few known Rogers-Ramanujan identities and establish several new ones simply by modifying the initial terms with " ± 1 ".

[^4]§1. In this section, we shall establish three pairs of new identities of RogersRamanujan type through the following two theta function equations (cf. [4, Entry $25(\mathrm{i}-\mathrm{ii}), \mathrm{P} 40$] and [9, Eqs 3.1a and 3.1b]):
\[

$$
\begin{align*}
\left(-q ; q^{2}\right)_{\infty}+\left(q ; q^{2}\right)_{\infty} & =\frac{2}{\left(q^{4} ; q^{4}\right)_{\infty}}\left[q^{16},-q^{6},-q^{10} ; q^{16}\right]_{\infty} \tag{1a}\\
\left(-q ; q^{2}\right)_{\infty}-\left(q ; q^{2}\right)_{\infty} & =\frac{2 q}{\left(q^{4} ; q^{4}\right)_{\infty}}\left[q^{16},-q^{2},-q^{14} ; q^{16}\right]_{\infty} \tag{1b}
\end{align*}
$$
\]

Firstly, recalling the q-Kummer theorem (cf. Gasper-Rahman [12, II-9])

$$
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a, c \\
q a / c
\end{array} \right\rvert\, q ;-q / c\right]=(-q ; q)_{\infty} \frac{\left[q a, q^{2} a / c^{2} ; q^{2}\right)_{\infty}}{[q a / c,-q / c ; q]_{\infty}} \quad \text { where } \quad|q / c|<1
$$

we may derive, by letting $a \rightarrow-q^{2}$ and $c \rightarrow \infty$, the identity [20, Eq 3.14]

$$
\sum_{m=0}^{\infty} \frac{(-q ; q)_{m+1}}{(q ; q)_{m}} q^{\binom{m+1}{2}}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{4}, q^{2}, q^{2} ; q^{4}\right]_{\infty}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}
$$

According to (1a) and (1b), modifying the initial term of the last sum by " ± 1 " leads us to the following two identities.

Theorem 1 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
& 1+\sum_{m=0}^{\infty} \frac{(-q ; q)_{m+1}}{(q ; q)_{m}} q^{\binom{m+1}{2}}=2 \frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{6},-q^{10} ; q^{16}\right]_{\infty}, \tag{2a}\\
& 1+\sum_{m=0}^{\infty} \frac{(-q ; q)_{m+2}}{(q ; q)_{m+1}} q^{\binom{m}{2}+2 m}=2 \frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{2},-q^{14} ; q^{16}\right]_{\infty} . \tag{2b}
\end{align*}
$$

Secondly, recall the q-Gauss summation formula [12, II-8]

$$
{ }_{2} \phi_{1}\left[\left.\begin{array}{ll}
a, & b \tag{3}\\
& c
\end{array} \right\rvert\, q ; c / a b\right]=\frac{[c / a, c / b ; q]_{\infty}}{[c, c / a b ; q]_{\infty}} \quad \text { where } \quad|c / a b|<1 .
$$

When $q \rightarrow q^{2}, a \rightarrow-q^{2}, c \rightarrow q^{3}$ and $b \rightarrow \infty$, it reduces to [7, Eq 2.4]

$$
{ }_{1} \phi_{1}\left[\left.\begin{array}{c}
-q^{2} \\
q^{3}
\end{array} \right\rvert\, q^{2} ;-q\right] \frac{1}{1-q}=\sum_{m=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m}}{(q ; q)_{2 m+1}} q^{m^{2}}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}
$$

Combining this equation with " ± 1 ", we derive the two identities.
Theorem 2 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
& 1+\sum_{m=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m}}{(q ; q)_{2 m+1}} q^{m^{2}}=2 \frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{6},-q^{10} ; q^{16}\right]_{\infty} \tag{4a}\\
& 1+\sum_{m=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m+1}}{\left(q^{2} ; q\right)_{2 m+2}} q^{m^{2}+2 m}=2 \frac{\left(-q^{3} ; q^{2}\right)_{\infty}}{\left(q^{4} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{2},-q^{14} ; q^{16}\right]_{\infty} \tag{4b}
\end{align*}
$$

Finally, the q-Gauss summation formula (3) may be specified, by $q \rightarrow q^{2}, a \rightarrow-1$, $c \rightarrow q^{3}$ and $b \rightarrow \infty$, to another identity

$$
(1+q) \sum_{m=0}^{\infty} \frac{\left(-1 ; q^{2}\right)_{m}}{(q ; q)_{2 m+1}} q^{m^{2}+2 m}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}
$$

Its combinations with " ± 1 " yields the following two identities.

Theorem 3 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
& 1+(1+q) \sum_{m=1}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m-1}}{\left(q^{2} ; q\right)_{2 m}} q^{m^{2}+2 m}=\frac{\left(-q^{3} ; q^{2}\right)_{\infty}}{\left(q^{4} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{6},-q^{10} ; q^{16}\right]_{\infty} \tag{5a}\\
& 1+(1+q) \sum_{m=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m}}{\left(q^{2} ; q\right)_{2 m+2}} q^{m^{2}+4 m+2}=\frac{\left(-q^{3} ; q^{2}\right)_{\infty}}{\left(q^{4} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{2},-q^{14} ; q^{16}\right]_{\infty} \tag{5b}
\end{align*}
$$

Furthermore, it is not difficult to verify that (1.7a-1.7b) and (1.9a-1.9b) in ChuWang [10] are two equivalent pairs under the " ± 1 " rule in view of (1a) and (1b).
§2. Next, we reproduce the two theta function identities from [4, Entry $25(\mathrm{vi}-\mathrm{v})$, P40] (see [9, Eqs 3.1c and 3.1d] also)

$$
\begin{align*}
\left(-q ; q^{2}\right)_{\infty}^{2}+\left(q ; q^{2}\right)_{\infty}^{2} & =\frac{2}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{8},-q^{4},-q^{4} ; q^{8}\right]_{\infty} \tag{6a}\\
\left(-q ; q^{2}\right)_{\infty}^{2}-\left(q ; q^{2}\right)_{\infty}^{2} & =\frac{4 q}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{8},-q^{8},-q^{8} ; q^{8}\right]_{\infty} \tag{6b}
\end{align*}
$$

They will be used to prove two pairs of Rogers-Ramanujan type identities.
Recall the q-analogue of the second Gauss ${ }_{2} F_{1}(-1)$ sum [12, II-11]

$$
{ }_{2} \phi_{2}\left[\left.\begin{array}{c}
a^{2}, \tag{7}\\
a b q^{1 / 2},-a b q^{1 / 2}
\end{array} \right\rvert\, q ;-q\right]=\frac{\left[q a^{2}, q b^{2} ; q^{2}\right]_{\infty}}{\left[q, q a^{2} b^{2} ; q^{2}\right]_{\infty}} .
$$

For $a=b=\sqrt{-1}$, it reduces to the following identity

$$
\sum_{m=0}^{\infty} \frac{(-1 ; q)_{m}^{2}}{(q ; q)_{m}\left(q ; q^{2}\right)_{m}} q^{\binom{m+1}{2}}=\frac{\left(-q ; q^{2}\right)_{\infty}^{2}}{\left(q ; q^{2}\right)_{\infty}^{2}}
$$

In view of (6a) and (6b), we may modify the initial term of the last sum by " ± 1 " and therefore establish the following two identities.

Theorem 4 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
1+\sum_{m=1}^{\infty} \frac{(-1 ; q)_{m}(-q ; q)_{m-1}}{(q ; q)_{m}\left(q ; q^{2}\right)_{m}} q^{\binom{m+1}{2}} & =\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{8},-q^{4},-q^{4} ; q^{8}\right]_{\infty} \tag{8a}\\
\sum_{m=0}^{\infty} \frac{(-q ; q)_{m}^{2} q^{\binom{m}{2}+2 m}}{(q ; q)_{m+1}\left(q ; q^{2}\right)_{m+1}} & =\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{8},-q^{8},-q^{8} ; q^{8}\right]_{\infty} \tag{8b}
\end{align*}
$$

Similarly, for $a=\sqrt{-1}$ and $b=q \sqrt{-1}$ in (7), the corresponding identity reads as

$$
\sum_{m=0}^{\infty} \frac{(-1 ; q)_{m}(-q ; q)_{m+1}}{(q ; q)_{m}\left(q ; q^{2}\right)_{m+1}} q^{\binom{m+1}{2}}=\frac{\left(-q ; q^{2}\right)_{\infty}^{2}}{\left(q ; q^{2}\right)_{\infty}^{2}}
$$

Its combinations with " ± 1 " lead us to the further two identities.
Theorem 5 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
& 1+\sum_{m=1}^{\infty} \frac{(-q ; q)_{m-1}(-q ; q)_{m+1}}{(q ; q)_{m}\left(q^{3} ; q^{2}\right)_{m}} q^{\binom{m+1}{2}}=\frac{(-q ; q)_{\infty}}{\left(q^{2} ; q\right)_{\infty}}\left[q^{8},-q^{4},-q^{4} ; q^{8}\right]_{\infty} \tag{9a}\\
& 1+\sum_{m=0}^{\infty} \frac{(-q ; q)_{m}(-q ; q)_{m+2}}{(q ; q)_{m+1}\left(q^{3} ; q^{2}\right)_{m+1}} q^{\binom{m}{2}+2 m}=2 \frac{(-q ; q)_{\infty}}{\left(q^{2} ; q\right)_{\infty}}\left[q^{8},-q^{8},-q^{8} ; q^{8}\right]_{\infty} \tag{9b}
\end{align*}
$$

§3. Recall the two cubic theta function identities (cf. [5, Theorem 2 and Corollary 2] and [9, Eqs 3.16a and 3.16b]):

$$
\begin{align*}
& \frac{(-q ; q)_{\infty}}{\left(-q^{3} ; q^{3}\right)_{\infty}}+\frac{(q ; q)_{\infty}}{\left(q^{3} ; q^{3}\right)_{\infty}}=\frac{2}{\left(q^{3} ; q^{3}\right)_{\infty}}\left[q^{12},-q^{5},-q^{7} ; q^{12}\right]_{\infty} \tag{10a}\\
& \frac{(-q ; q)_{\infty}}{\left(-q^{3} ; q^{3}\right)_{\infty}}-\frac{(q ; q)_{\infty}}{\left(q^{3} ; q^{3}\right)_{\infty}}=\frac{2 q}{\left(q^{3} ; q^{3}\right)_{\infty}}\left[q^{12},-q,-q^{11} ; q^{12}\right]_{\infty} \tag{10b}
\end{align*}
$$

They will be employed to show three pairs of Rogers-Ramanujan type identities.
Firstly, combining " ± 1 " with the identity [19, Eqs 24 and 30]

$$
\sum_{m=0}^{\infty} \frac{(-1 ; q)_{2 m}}{\left(q^{2} ; q^{2}\right)_{m}} q^{m}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{6}, q^{3}, q^{3} ; q^{6}\right]_{\infty}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \frac{\left(q^{3} ; q^{3}\right)_{\infty}}{\left(-q^{3} ; q^{3}\right)_{\infty}}
$$

and then using (10a) and (10b), we derive the following two identities.
Theorem 6 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
1+\sum_{m=1}^{\infty} \frac{(-q ; q)_{2 m-1}}{\left(q^{2} ; q^{2}\right)_{m}} q^{m} & =\frac{\left[q^{12},-q^{5},-q^{7} ; q^{12}\right]_{\infty}}{(q ; q)_{\infty}} \tag{11a}\\
\sum_{m=0}^{\infty} \frac{(-q ; q)_{2 m+1}}{\left(q^{2} ; q^{2}\right)_{m+1}} q^{m} & =\frac{\left[q^{12},-q,-q^{11} ; q^{12}\right]_{\infty}}{(q ; q)_{\infty}} \tag{11b}
\end{align*}
$$

Similarly, combining " ± 1 " with the identity [14, Proposition 6C]

$$
\sum_{m=0}^{\infty} \frac{(-1 ; q)_{m}(-q ; q)_{m+1}}{(q ; q)_{2 m+1}} q^{m^{2}+m}=\frac{\left[q^{3},-q,-q^{2} ; q^{3}\right]_{\infty}}{(q ; q)_{\infty}}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \frac{\left(q^{3} ; q^{3}\right)_{\infty}}{\left(-q^{3} ; q^{3}\right)_{\infty}}
$$

leads us to the following two Rogers-Ramanujan type identities.
Theorem 7 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
& 1+\sum_{m=1}^{\infty} \frac{(-q ; q)_{m-1}(-q ; q)_{m+1}}{\left(q^{2} ; q\right)_{2 m}} q^{m^{2}+m}=\frac{\left[q^{12},-q^{5},-q^{7} ; q^{12}\right]_{\infty}}{\left(q^{2} ; q\right)_{\infty}}, \tag{12a}\\
& 1+\sum_{m=0}^{\infty} \frac{(-q ; q)_{m}(-q ; q)_{m+2}}{\left(q^{2} ; q\right)_{2 m+2}} q^{m^{2}+3 m+1}=\frac{\left[q^{12},-q,-q^{11} ; q^{12}\right]_{\infty}}{\left(q^{2} ; q\right)_{\infty}} . \tag{12b}
\end{align*}
$$

Finally, combining " ± 1 " with the following identity [19, Eq 26]

$$
\sum_{m=0}^{\infty} \frac{(-q ; q)_{m}}{(q ; q)_{m}\left(q ; q^{2}\right)_{m+1}} q^{m^{2}}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{6}, q^{3}, q^{3} ; q^{6}\right]_{\infty}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \frac{\left(q^{3} ; q^{3}\right)_{\infty}}{\left(-q^{3} ; q^{3}\right)_{\infty}}
$$

we establish the two identities displayed in the following theorem.
Theorem 8 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
& 1+\sum_{m=0}^{\infty} \frac{(-q ; q)_{m}}{(q ; q)_{m}\left(q ; q^{2}\right)_{m+1}} q^{m^{2}}=2 \frac{\left[q^{12},-q^{5},-q^{7} ; q^{12}\right]_{\infty}}{(q ; q)_{\infty}}, \tag{13a}\\
& 1+\sum_{m=0}^{\infty} \frac{(-q ; q)_{m+1}}{(q ; q)_{m+1}\left(q^{3} ; q^{2}\right)_{m+1}} q^{m^{2}+2 m}=2 \frac{\left[q^{12},-q,-q^{11} ; q^{12}\right]_{\infty}}{\left(q^{2} ; q\right)_{\infty}} . \tag{13b}
\end{align*}
$$

In addition, there is also a fourth equivalent pair based on relations (10a) and (10b), which can be found in Chu-Wang [10, Eqs 1.18a and 1.18b].

Identities of Rogers-Ramanujan Type via " ± 1 "

§4. Rewrite the theta function equation [9, Example 4] as

$$
\begin{equation*}
\frac{(-q ; q)_{\infty}}{\left(q^{4} ;-q^{4}\right)_{\infty}}-\frac{(q ; q)_{\infty}}{\left(-q^{4} ;-q^{4}\right)_{\infty}}=2 q \frac{(-q ; q)_{\infty}}{\left(-q^{4} ;-q^{4}\right)_{\infty}}\left[q^{8},-q^{8},-q^{8} ; q^{8}\right]_{\infty} \tag{14}
\end{equation*}
$$

Taking into account of

$$
\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{8},-q^{4},-q^{4} ; q^{8}\right]_{\infty}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \frac{\left(-q^{4} ;-q^{4}\right)_{\infty}}{\left(q^{4} ;-q^{4}\right)_{\infty}}
$$

and then applying the " -1 " rule to Theorems 4 and 5 , we find that the identities displayed there constitute two equivalent pairs of Rogers-Ramanujan type identities. Similarly, one can show that the following identities due to Chu-Wang [10, Eqs 1.12a and 1.12 b] result also in an equivalent pair

$$
\begin{align*}
1+2 \sum_{m=1}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m-1}^{2}}{(q ; q)_{2 m}} q^{m} & =\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{8},-q^{4},-q^{4} ; q^{8}\right]_{\infty}, \tag{15a}\\
\sum_{m=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m}^{2}}{(q ; q)_{2 m+2}} q^{m} & =\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{8},-q^{8},-q^{8} ; q^{8}\right]_{\infty} . \tag{15b}
\end{align*}
$$

§5. According to the two quintuple theta function equations (cf. Chu [9, Eqs 3.17a and 3.17 b$]$)

$$
\begin{align*}
& \frac{(-q ; q)_{\infty}}{\left(-q^{5} ; q^{5}\right)_{\infty}}+\frac{(q ; q)_{\infty}}{\left(q^{5} ; q^{5}\right)_{\infty}}=2\left(-q^{5} ; q^{5}\right)_{\infty}^{2}\left\langle-q^{3},-q^{4} ; q^{10}\right\rangle_{\infty} \tag{16a}\\
& \frac{(-q ; q)_{\infty}}{\left(-q^{5} ; q^{5}\right)_{\infty}}-\frac{(q ; q)_{\infty}}{\left(q^{5} ; q^{5}\right)_{\infty}}=2 q\left(-q^{5} ; q^{5}\right)_{\infty}^{2}\left\langle-q,-q^{2} ; q^{10}\right\rangle_{\infty} \tag{16b}
\end{align*}
$$

we may apply the " ± 1 " rule to the identity due to Sills $[18, \mathrm{Eq} 5]$

$$
\sum_{m=0}^{\infty} \frac{(-1 ; q)_{m}}{(q ; q)_{m}\left(q ; q^{2}\right)_{m}} q^{\binom{m+1}{2}}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{10}, q^{5}, q^{5} ; q^{10}\right]_{\infty}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \frac{\left(q^{5} ; q^{5}\right)_{\infty}}{\left(-q^{5} ; q^{5}\right)_{\infty}}
$$

and derive consequently the following two strange identities, where the second one is due to Bowman-Laughlin-Sills [7, Eq 2.28].

Theorem 9 (Identities of Rogers-Ramanujan type).

$$
\begin{align*}
& 1+\sum_{m=1}^{\infty} \frac{(-q ; q)_{m-1}}{(q ; q)_{m}\left(q ; q^{2}\right)_{m}} q^{\binom{m+1}{2}}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \frac{\left(q^{10} ; q^{10}\right)_{\infty}}{\left\langle-q,-q^{2} ; q^{10}\right\rangle_{\infty}} \tag{17a}\\
& \sum_{m=0}^{\infty} \frac{(-q ; q)_{m}}{(q ; q)_{m+1}\left(q ; q^{2}\right)_{m+1}} q^{\binom{m}{2}+2 m}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \frac{\left(q^{10} ; q^{10}\right)_{\infty}}{\left\langle-q^{3},-q^{4} ; q^{10}\right\rangle_{\infty}} \tag{17b}
\end{align*}
$$

§6. Recall the theta function equation (cf. [6, Eq 2.16] and [9, Example 16])

$$
\begin{equation*}
\frac{(-q ; q)_{\infty}}{\left(-q^{9} ; q^{9}\right)_{\infty}}-\frac{(q ; q)_{\infty}}{\left(q^{9} ; q^{9}\right)_{\infty}}=2 q \frac{(-q ; q)_{\infty}}{\left(q^{9} ; q^{9}\right)_{\infty}}\left[q^{18}, q^{3}, q^{15} ; q^{18}\right]_{\infty} \tag{18}
\end{equation*}
$$

Taking into account of the equality

$$
\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{18}, q^{9}, q^{9} ; q^{18}\right]_{\infty}=\frac{(-q ; q)_{\infty}\left(q^{9} ; q^{9}\right)_{\infty}}{(q ; q)_{\infty}\left(-q^{9} ; q^{9}\right)_{\infty}}
$$

and then applying the " -1 " rule to the two identities appeared in $[2, \mathrm{Eq} \mathrm{D} 3]$, $[3$, $\mathrm{Eq} 7.2]$ and [19, Eq 78]

$$
\begin{align*}
& 1+\sum_{m=1}^{\infty} \frac{\left(q^{3} ; q^{3}\right)_{m-1}(-1 ; q)_{m}}{(q ; q)_{2 m-1}(q ; q)_{m}} q^{\binom{m+1}{2}}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{18}, q^{9}, q^{9} ; q^{18}\right]_{\infty}, \tag{19a}\\
& 1+2 \sum_{m=1}^{\infty} \frac{\left(q^{6} ; q^{6}\right)_{m-1} q^{m}}{\left(q^{2} ; q^{2}\right)_{m-1}(q ; q)_{2 m}}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{18}, q^{9}, q^{9} ; q^{18}\right]_{\infty} \tag{19b}
\end{align*}
$$

we recover, respectively, the two identities of Rogers-Ramanujan type.
Theorem 10 (Bailey [2, Eq D1] and [3, Eq 7.1]).

$$
\begin{align*}
& \sum_{m=0}^{\infty} \frac{\left(q^{3} ; q^{3}\right)_{m}(-q ; q)_{m}}{(q ; q)_{2 m+1}(q ; q)_{m+1}} q^{\binom{m}{2}+2 m} \tag{20a}
\end{align*}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{18}, q^{3}, q^{15} ; q^{18}\right]_{\infty}, ~=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{18}, q^{3}, q^{15} ; q^{18}\right]_{\infty} .
$$

§7. In view of the theta function equation (cf. [9, Example 18] and [16, Eq 4.3])

$$
\begin{equation*}
3 \frac{(-q ; q)_{\infty}}{\left(-q^{9} ; q^{9}\right)_{\infty}}-\frac{(q ; q)_{\infty}}{\left(q^{9} ; q^{9}\right)_{\infty}}=2 \frac{(-q ; q)_{\infty}}{\left(q^{9} ; q^{9}\right)_{\infty}}\left[q^{6},-q,-q^{5} ; q^{6}\right]_{\infty} \times\left[q^{4}, q^{8} ; q^{12}\right]_{\infty} \tag{21}
\end{equation*}
$$

applying the " -1 " rule to the three times of (19a) and (19b), we derive the following two Rogers-Ramanujan type identities, respectively.

Theorem 11 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
& 1+3 \sum_{m=1}^{\infty} \frac{\left(q^{3} ; q^{3}\right)_{m-1}(-q ; q)_{m-1}}{(q ; q)_{2 m-1}(q ; q)_{m}} q^{\left(m_{2}^{2+1}\right)} \tag{22a}\\
& =\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{6},-q,-q^{5} ; q^{6}\right]_{\infty} \times\left[q^{4}, q^{8} ; q^{12}\right]_{\infty} \tag{22b}\\
& 1+3 \sum_{m=1}^{\infty} \frac{\left(q^{6} ; q^{6}\right)_{m-1} q^{m}}{\left(q^{2} ; q^{2}\right)_{m-1}(q ; q)_{2 m}} \tag{23a}\\
& =\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{6},-q,-q^{5} ; q^{6}\right]_{\infty} \times\left[q^{4}, q^{8} ; q^{12}\right]_{\infty} \tag{23b}
\end{align*}
$$

$\S 8$. For A, b, c, d, e subject to $A^{2}=b c d e$, there holds Weirstrass' classical three term relation (cf. Chu [9, Theorem 1]):

$$
\langle A / b, A / c, A / d, A / e ; q\rangle_{\infty}-\langle b, c, d, e ; q\rangle_{\infty}=b\langle A, A / b c, A / b d, A / b e ; q\rangle_{\infty}
$$

which can be used to prove the following theta function equations

$$
\begin{align*}
& {\left[q^{2}, q w, q^{3} w ; q^{3} w\right]_{\infty}-(q ; q)_{\infty}=q(1-w)\left[q^{27}, q^{6}, q^{21} ; q^{27}\right]_{\infty}} \tag{24a}\\
& {\left[q, q^{2} w, q^{3} w ; q^{3} w\right]_{\infty}-(q ; q)_{\infty}=q^{2}(1-w)\left[q^{27}, q^{3}, q^{24} ; q^{27}\right]_{\infty}} \tag{24b}
\end{align*}
$$

where $\omega \neq 1$ denotes the cubic root of unity. In fact, manipulating the difference displayed in equation (24a)

$$
\begin{aligned}
& {\left[q^{2}, q w, q^{3} w ; q^{3} w\right]_{\infty}-(q ; q)_{\infty} } \\
= & {\left[q^{9}, q^{2}, q^{7} ; q^{9}\right]_{\infty}\left\{\left\langle q w, q^{3} w, q^{5} w ; q^{9}\right\rangle_{\infty}-\left\langle q, q^{3}, q^{5} ; q^{9}\right\rangle_{\infty}\right\} } \\
= & \frac{\left[q^{9}, q^{2}, q^{7} ; q^{9}\right]_{\infty}}{\left[q^{3} w^{2}, q^{6} w ; q^{9}\right]_{\infty}}\left\{\left\langle q w, q^{3} w, q^{5} w, q^{3} w^{2} ; q^{9}\right\rangle_{\infty}-\left\langle q, q^{3}, q^{5}, q^{3} w^{2} ; q^{9}\right\rangle_{\infty}\right\} \\
= & q \frac{\left[q^{9}, q^{2}, q^{7} ; q^{9}\right]_{\infty}}{\left[q^{3} w^{2}, q^{6} w ; q^{9}\right]_{\infty}}\left\langle q^{6} w, w, q^{2} w, q^{2} w^{2} ; q^{9}\right\rangle_{\infty}
\end{aligned}
$$

and then simplifying the products in the last line, we get the right member stated in (24a). The equation (24b) follows analogously from the reformulation:

$$
\begin{aligned}
& {\left[q, q^{2} w, q^{3} w ; q^{3} w\right]_{\infty}-(q ; q)_{\infty} } \\
= & {\left[q^{9}, q, q^{8} ; q^{9}\right]_{\infty}\left\{\left\langle q^{2} w, q^{3} w, q^{4} w ; q^{9}\right\rangle_{\infty}-\left\langle q^{2}, q^{3}, q^{4} ; q^{9}\right\rangle_{\infty}\right\} } \\
= & \frac{\left[q^{9}, q, q^{8} ; q^{9}\right]_{\infty}}{\left[q^{3} w^{2}, q^{6} w ; q^{9}\right]_{\infty}}\left\{\left\langle q^{2} w, q^{3} w, q^{4} w, q^{3} w^{2} ; q^{9}\right\rangle_{\infty}-\left\langle q^{2}, q^{3}, q^{4}, q^{3} w^{2} ; q^{9}\right\rangle_{\infty}\right\} \\
= & q^{2} \frac{\left[q^{9}, q, q^{8} ; q^{9}\right]_{\infty}}{\left[q^{3} w^{2}, q^{6} w ; q^{9}\right]_{\infty}}\left\langle q^{6} w, w, q w, q w^{2} ; q^{9}\right\rangle_{\infty} .
\end{aligned}
$$

Recall the following two Rogers-Ramanujan type identities due to Bailey [2, Eqs B2 and 10.8] (see [19, Eqs 91 and 90] also)

$$
\begin{align*}
& \sum_{m=0}^{\infty} \frac{\left(q^{3} ; q^{3}\right)_{m} q^{m^{2}+2 m}}{(q ; q)_{m}(q ; q)_{2+2 m}}=\frac{\left[q^{27}, q^{6}, q^{21} ; q^{27}\right]_{\infty}}{(q ; q)_{\infty}} \tag{25a}\\
& \sum_{m=0}^{\infty} \frac{\left(q^{3} ; q^{3}\right)_{m} q^{m^{2}+3 m}}{(q ; q)_{m}(q ; q)_{2+2 m}}=\frac{\left[q^{27}, q^{3}, q^{24} ; q^{27}\right]_{\infty}}{(q ; q)_{\infty}} \tag{25b}
\end{align*}
$$

Applying the " +1 " rule to these two identities multiplied, respectively, by $q(1-w)$ and $q^{2}(1-w)$, we recover the two strange identities of Rogers-Ramanujan type.

Theorem 12 (Ismail-Stanton [14, Theorem 9]).

$$
\begin{align*}
& 1+(1-w) \sum_{m=1}^{\infty} \frac{\left(q^{3} ; q^{3}\right)_{m-1} q^{m^{2}}}{(q ; q)_{m-1}(q ; q)_{2 m}}=\frac{\left[q^{3} w, q^{2}, q w ; q^{3} w\right]_{\infty}}{(q ; q)_{\infty}} \tag{26a}\\
& 1+(1-w) \sum_{m=1}^{\infty} \frac{\left(q^{3} ; q^{3}\right)_{m-1} q^{m^{2}+m}}{(q ; q)_{m-1}(q ; q)_{2 m}}=\frac{\left[q^{3} w, q, q^{2} w ; q^{3} w\right]_{\infty}}{(q ; q)_{\infty}} \tag{26b}
\end{align*}
$$

§9. According to the two theta function equations [9, Eqs 3.3a and 3.3b]

$$
\begin{align*}
& \frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}+\frac{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(-q^{2} ; q^{4}\right)_{\infty}^{2}}=2 \frac{(-q ; q)_{\infty}}{\left(-q^{2} ; q^{4}\right)_{\infty}^{2}}\left[-q^{3},-q^{4},-q^{5},-q^{8} ; q^{8}\right]_{\infty}^{2} \tag{27a}\\
& \frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}-\frac{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(-q^{2} ; q^{4}\right)_{\infty}^{2}}=2 q \frac{(-q ; q)_{\infty}}{\left(-q^{2} ; q^{4}\right)_{\infty}^{2}}\left[-q,-q^{4},-q^{7},-q^{8} ; q^{8}\right]_{\infty}^{2} \tag{27b}
\end{align*}
$$

modifying with " ± 1 " the initial term of the following identity [10, Eq 1.11a]

$$
\sum_{m=0}^{\infty} \frac{(-1 ; q)_{2 m}}{(q ; q)_{2 m}} q^{m}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left[q^{4},-q^{2},-q^{2} ; q^{4}\right]_{\infty}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \frac{\left(-q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}
$$

we derive further the two identities with strange product expressions.
Theorem 13 (New identities of Rogers-Ramanujan type).

$$
\begin{align*}
1+\sum_{m=1}^{\infty} \frac{(-q ; q)_{2 m-1}}{(q ; q)_{2 m}} q^{m} & =\frac{(-q ; q)_{\infty}}{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}\left[-q^{3},-q^{4},-q^{5},-q^{8} ; q^{8}\right]_{\infty}^{2} \tag{28a}\\
\sum_{m=0}^{\infty} \frac{(-q ; q)_{2 m+1}}{(q ; q)_{2 m+2}} q^{m} & =\frac{(-q ; q)_{\infty}}{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}\left[-q,-q^{4},-q^{7},-q^{8} ; q^{8}\right]_{\infty}^{2} \tag{28b}
\end{align*}
$$

§10. Further bisections on triple products. In a recent paper [10] by the authors, several identities of Rogers-Ramanujan type have been reviewed by applying the multisection method to Jacobi's triple product identity [15]

$$
\begin{equation*}
[q, x, q / x ; q]_{\infty}=\sum_{n=-\infty}^{+\infty}(-1)^{n} q^{\binom{n}{2}} x^{n} \tag{29}
\end{equation*}
$$

Splitting the sum into two parts according to the parity of summation index n, we get the following expression

$$
[q, x, q / x ; q]_{\infty}=\sum_{n=-\infty}^{+\infty} q^{2 n^{2}-n} x^{2 n}-x \sum_{n=-\infty}^{+\infty} q^{2 n^{2}+n} x^{2 n}
$$

Factorizing each infinite series by means of (29) leads to the equivalent identity

$$
\begin{equation*}
[q, x, q / x ; q]_{\infty}=\left[q^{4},-q x^{2},-q^{3} / x^{2} ; q^{4}\right]_{\infty}-x\left[q^{4},-q / x^{2},-q^{3} x^{2} ; q^{4}\right]_{\infty} \tag{30}
\end{equation*}
$$

which can also be derived from the sextuple product identity appeared in a recent paper by Chu-Yan [11, Corollary 2].

Letting $x \rightarrow q$ and $q \rightarrow q^{3}$ in (30), then writing alternatively

$$
(q ; q)_{\infty}=\left[q^{3}, q, q^{2} ; q^{3}\right]_{\infty}
$$

we find the following theta function equation:

$$
\begin{equation*}
(q ; q)_{\infty}=\left[q^{12},-q^{5},-q^{7} ; q^{12}\right]_{\infty}-q\left[q^{12},-q,-q^{11} ; q^{12}\right]_{\infty} \tag{31}
\end{equation*}
$$

According to the " -1 " rule, it is not hard to check that the following identities [19, Eqs 58 and 56] (see Chu-Wang [10, Eqs 1.18a-1.18b] for correction) are equivalent:

$$
\begin{align*}
1+\sum_{m=1}^{\infty} \frac{(-q ; q)_{m-1} q^{m^{2}}}{(q ; q)_{m}\left(q ; q^{2}\right)_{m}} & =\frac{\left[q^{12},-q^{5},-q^{7} ; q^{12}\right]_{\infty}}{(q ; q)_{\infty}} \tag{32a}\\
\sum_{m=0}^{\infty} \frac{(-q ; q)_{m} q^{m^{2}+2 m}}{(q ; q)_{m+1}\left(q ; q^{2}\right)_{m+1}} & =\frac{\left[q^{12},-q,-q^{11} ; q^{12}\right]_{\infty}}{(q ; q)_{\infty}} \tag{32b}
\end{align*}
$$

Similarly by expressing the factorial fraction in terms of triple product

$$
\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}}=\left[q^{4}, q, q^{3} ; q^{4}\right]_{\infty}
$$

we may specify (30), under $x \rightarrow q$ and $q \rightarrow q^{4}$, to another theta function equation

$$
\begin{equation*}
\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}}=\left[q^{16},-q^{6},-q^{10} ; q^{16}\right]_{\infty}-q\left[q^{16},-q^{2},-q^{14} ; q^{16}\right]_{\infty} \tag{33}
\end{equation*}
$$

In accordance with the " -1 " rule, we have consequently the following three equivalent pairs of Rogers-Ramanujan type identities.

- Chu-Wang [10, Eqs 1.4a and 1.4b]:

$$
\begin{align*}
1+\sum_{m=1}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m-1}}{\left(q^{2} ; q^{2}\right)_{m}} q^{m} & =\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{6},-q^{10} ; q^{16}\right]_{\infty} \tag{34a}\\
\sum_{m=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m}}{\left(q^{2} ; q^{2}\right)_{m+1}} q^{m} & =\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{2},-q^{14} ; q^{16}\right]_{\infty} \tag{34b}
\end{align*}
$$

- Gessel-Stanton [13, Eqs 7.13 and 7.15]:

$$
\begin{align*}
1+\sum_{m=1}^{\infty} \frac{(-q ; q)_{m-1}}{(q ; q)_{m}} q^{\binom{m+1}{2}} & =\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{6},-q^{10} ; q^{16}\right]_{\infty} \tag{35a}\\
\sum_{m=0}^{\infty} \frac{(-q ; q)_{m}}{(q ; q)_{m+1}} q^{\binom{m}{2}+2 m} & =\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{2},-q^{14} ; q^{16}\right]_{\infty} \tag{35b}
\end{align*}
$$

$$
\text { Identities of Rogers-Ramanujan Type via " } \pm 1 "
$$

- Slater [19, Eqs 69 and 72]:

$$
\begin{align*}
\sum_{m=0}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m}}{(q ; q)_{2 m+2}} q^{m^{2}+2 m} & =\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{2},-q^{14} ; q^{16}\right]_{\infty} \tag{36a}\\
1+\sum_{m=1}^{\infty} \frac{\left(-q^{2} ; q^{2}\right)_{m-1}}{(q ; q)_{2 m}} q^{m^{2}} & =\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}\left[q^{16},-q^{6},-q^{10} ; q^{16}\right]_{\infty} \tag{36b}
\end{align*}
$$

References

[1] G. E. Andrews, q-series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, CBMS Regional Conference Series in Mathematics, 66; American Mathematical Society, Providence, RI, 1986.
[2] W. N. Bailey, Some identities in combinatory analysis, Proc. London Math. Soc. (2) 49 (1947), 421-435.
[3] W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50 (1948), 1-10.
[4] B. C. Berndt, Ramanujan's Notebooks (Part III), Springer-Verlag, New York, 1991.
[5] R. Blecksmith - J. Brillhart - I. Gerst, Parity results for certain partition functions and identities similar to theta function identities, Mathematics of Computation 48:177 (1987), 29-38.
[6] J. M. Borwein - P. B. Borwein - F. G. Garvan, Some cubic modular identities of Ramanujan, Trans. Amer. Math. Soc. 343:1 (1994), 35-47.
[7] D. Bowman - J. Mc Laughlin - A. V. Sills, Some more identities of the Rogers-Ramanujan type, arXiv:math/0607202 (2006), 2nd version.
[8] W. Chu, Basic Almost-Poised Hypergeometric Series, Mem. Amer. Math. Soc. 135:642 (1998), pp 99+iv; MR 99b:33035.
[9] W. Chu, Common source of numerous theta function identities, Glasgow Mathematical Journal 49:1 (2007), 61-79.
[10] W. Chu - C. Y. Wang, The multisection method for triple products and identities of RogersRamanujan type, J. Math. Anal. Appl. 339 (2008), 774-784.
[11] W. Chu - Q. L. Yan, Unification of the quintuple and septuple product identities, Electron. J. Combin. 14 (2007), \#N7 .
[12] G. Gasper - M. Rahman, Basic Hypergeometric Series (2nd ed.), Cambridge University Press, Cambridge, 2004.
[13] I. Gessel - D. Stanton, Applications of q-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277:1 (1983), 173-201.
[14] M. E. H. Ismail - D. Stanton, Tribasic integrals and identities of Rogers-Ramanujan type, Trans. Amer. Math. Soc. 355:10 (2003), 4061-4091.
[15] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Fratrum Bornträger Regiomonti, 1829; Gesammelte werke, Erster Band, G. Reimer, Berlin, 1881.
[16] L. C. Shen, On the products of three theta functions, Ramanujan J. 3:4 (1999), 343-357.
[17] A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), \#R13.
[18] A. V. Sills, On identities of the Rogers-Ramanujan type, Ramanujan J. 11:3 (2006), 403-429.
[19] L. J. Slater, Further Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (Ser. 2) 54 (1952), 147-167.
[20] J. R. Stembridge, Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities, Trans. Amer. Math. Soc. 319:2 (1990), 469-498.

VOLTERRA COMPOSITION OPERATORS FROM MIXED NORM SPACES TO BLOCH-TYPE SPACES

Dinggui Gu
Department of Mathematics, JiaYing University, 514015, Meizhou, China
E-mail: gudinggui@163.com

Abstract

Let φ be a holomorphic self-map and g a fixed holomorphic function on the unit ball B in \mathbb{C}^{n}. This paper studies the boundedness and compactness of the following Volterra composition operator $$
T_{g, \varphi} f(z)=\int_{0}^{1} f(\varphi(t z)) \Re g(t z) \frac{d t}{t}
$$ from the mixed-norm space $H(p, q, \varphi)$ to the Bloch-type space of holomorphic functions on B.

MSC 2000: 47B38; 30H05. Keywords: Volterra composition operators, mixed-norm space, Bloch-type space.

1 Introduction

Let B be the unit ball of \mathbb{C}^{n} and $H(B)$ the space of all holomorphic functions on B. Let $d v$ be the normalized Lebesgue measure of B, i.e. $v(B)=1$. For $f \in H(B)$, let

$$
\Re f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z)
$$

represent the radial derivative of $f \in H(B)$.
A positive continuous function μ on the interval $[0,1)$ is called normal if there is $\delta \in[0,1)$ and s and $t, 0<s<t$ such that

$$
\begin{align*}
& \frac{\mu(r)}{(1-r)^{s}} \text { is decreasing on }[\delta, 1) \text { and } \lim _{r \rightarrow 1} \frac{\mu(r)}{(1-r)^{s}}=0 ; \\
& \frac{\mu(r)}{(1-r)^{t}} \text { is increasing on }[\delta, 1) \text { and } \lim _{r \rightarrow 1} \frac{\mu(r)}{(1-r)^{t}}=\infty . \tag{1}
\end{align*}
$$

If we say that $\mu: B \rightarrow[0, \infty)$ is normal we will assume that $\mu(z)=\mu(|z|), z \in B$.
Let $\mu: B \rightarrow[0, \infty)$ be normal. For $0<p, q<\infty$, the mixed norm space $H(p, q, \nu)=H(p, q, \nu)(B)$ consists of all $f \in H(B)$ such that

$$
\|f\|_{H(p, q, \nu)}=\left(\int_{0}^{1} M_{q}^{p}(f, r) \frac{\varphi^{p}(r)}{1-r} d r\right)^{1 / p}<\infty
$$

where

$$
M_{q}(f, r)=\left(\int_{S}|f(r \zeta)|^{q} d \sigma(\zeta)\right)^{1 / q}
$$

For $p=q$ and $\varphi(r)=\left(1-r^{2}\right)^{\alpha+1}$, the mixed norm space is equivalent to the weighted Bergman space $A_{\alpha}^{p}=A_{\alpha}^{p}(B)$, which consisting of all $f \in H(B)$ such that

$$
\|f\|_{A_{\alpha}^{p}}^{p}=\int_{B}|f(z)|^{p}\left(1-|z|^{2}\right)^{\alpha} d v(z)<\infty
$$

Let $\mu: B \rightarrow[0, \infty)$ be normal. The Bloch-type space $\mathcal{B}_{\mu}=\mathcal{B}_{\mu}(B)$ is the space of all functions $f \in H(B)$ such that

$$
b_{\mu}(f)=\sup _{z \in B} \mu(z)|\Re f(z)|<\infty
$$

\mathcal{B}_{μ} is Banach space with the norm $\|f\|_{\mathcal{B}_{\mu}}=|f(0)|+b_{\mu}(f)$. The little Bloch-type space $\mathcal{B}_{\mu, 0}=\mathcal{B}_{\mu, 0}(B)$ consists of all $f \in H(B)$ such that

$$
\lim _{|z| \rightarrow 1} \mu(z)|\Re f(z)|=0
$$

It is easy to see that $\mathcal{B}_{\mu, 0}$ is a closed subspace of \mathcal{B}_{μ}. When $\mu(r)=\left(1-r^{2}\right)^{\alpha}$, $\alpha \in(0, \infty)$, we obtain α-Bloch spaces and little α-Bloch spaces (see, e.g., [21]).

Let φ be a holomorphic self-map of B. The composition operator C_{φ} is defined by

$$
\left(C_{\varphi} f\right)(z)=(f \circ \varphi)(z), \quad f \in H(B) .
$$

The book [2] contains plenty of information on composition operators on various function spaces.

Suppose that $g: B \rightarrow \mathbb{C}^{1}$ is a holomorphic map, define

$$
T_{g} f(z)=\int_{0}^{1} f(t z) \Re g(t z) \frac{d t}{t}, \quad f \in H(B), \quad z \in B
$$

This operator is called the extended Cesàro operator (or the Riemann-Stieltjes operator), which was introduced in [3], and studied in $[1,3,4,5,7,8,9,10,11$, $12,13,17,19,20]$.

Motivated by the definition of operators C_{φ} and T_{g}, in [22] Zhu defined the so-called Volterra composition operator as follows.

$$
\begin{equation*}
T_{g, \varphi} f(z)=\int_{0}^{1} f(\varphi(t z)) \Re g(t z) \frac{d t}{t}, \quad f \in H(B), \quad z \in B . \tag{2}
\end{equation*}
$$

It is easy to see that $T_{g, z}=T_{g}$. In the setting of the unit disk D, the Volterra composition operator has the following form

$$
T_{g, \varphi} f(z)=\int_{0}^{z}(f \circ \varphi)(\xi) g^{\prime}(\xi) d \xi, \quad f \in H(D), \quad z \in D
$$

which was first introduced and studied in [6].
In [22], Zhu studied the boundedness and compactness of the Volterra composition operator from generalized Bergman spaces to Bloch type spaces. In [23], Zhu studied the boundedness and compactness of the Volterra composition operator on logarithmic Bloch spaces. Recall that a linear operator is said to be bounded if the image of a bounded set is a bounded set, while a linear operator is compact if it takes bounded sets to sets with compact closure.

In this paper, we study the operator $T_{g, \varphi}$ from mixed norm spaces to Bloch type spaces in the unit ball. The sufficient and necessary conditions for the operator $T_{g, \varphi}$ to be bounded or compact are given. As some corollaries, we can obtain the characterization of the boundedness and compactness of the extended Cesàro operator from mixed norm spaces to Bloch type spaces, which generalize the corresponding results in [13]. We omit the details.

Throughout the paper, constants are denoted by C, they are positive and may not be the same in every occurrence.

2 Main Results and Proofs

In this section we state and prove the main results of this paper. First we quote several lemmas which are used in the proofs of the main results. The following characterization of compactness can be proved in a standard way (see, e.g., the proofs of Proposition 3.11 of [2]), hence we omit its proof.

Lemma 1. Assume that $0<p, q<\infty, g \in H(B), \varphi$ is a holomorphic selfmap of $B, \nu: B \rightarrow[0, \infty)$ and $\mu: B \rightarrow[0, \infty)$ are normal. Then the operator $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is compact if and only if $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is bounded and for every bounded sequence $\left(f_{k}\right)_{k \in \mathbb{N}} \subset H(p, q, \nu)$ converging to 0 uniformly on compacts of B we have

$$
\lim _{k \rightarrow \infty}\left\|T_{g, \varphi} f_{k}\right\|_{\mathcal{B}_{\mu}}=0
$$

Lemma 2. Assume that $\mu: B \rightarrow[0, \infty)$ is normal. A closed set K in $\mathcal{B}_{\mu, 0}$ is compact if and only if it is bounded and satisfies

$$
\lim _{|z| \rightarrow 1} \sup _{f \in K} \mu(z)|\Re f(z)|=0 .
$$

Lemma 3. [18] Assume that $0<p, q<\infty$ and $\nu: B \rightarrow[0, \infty)$ is normal. Then there is a positive constant C independent of f such that

$$
\begin{equation*}
|f(z)| \leq C \frac{\|f\|_{H(p, q, \nu)}}{\nu(z)\left(1-|z|^{2}\right)^{\frac{n}{q}}}, \quad z \in B \tag{3}
\end{equation*}
$$

Now we are in a position to state and prove our main results.
Theorem 1. Assume that $0<p, q<\infty, g \in H(B), \varphi$ is a holomorphic self-map of $B, \nu: B \rightarrow[0, \infty)$ and $\mu: B \rightarrow[0, \infty)$ are normal. Then $T_{g, \varphi}:$ $H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is bounded if and only if

$$
\begin{equation*}
M:=\sup _{z \in B} \frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}}<\infty . \tag{4}
\end{equation*}
$$

Moreover, if $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is bounded then the following asymptotic relation holds

$$
\begin{equation*}
\left\|T_{g, \varphi}\right\|_{H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}} \asymp \sup _{z \in B} \frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}} . \tag{5}
\end{equation*}
$$

Proof. Assume that (4) holds. A calculation with (2) gives the following formula (see, e.g. $[3,22]$)

$$
\Re\left[T_{g, \varphi}(f)\right](z)=f(\varphi(z)) \Re g(z)
$$

Moreover $\left(T_{g, \varphi} f\right)(0)=0$. Then by Lemma 3 and the condition (4), we have

$$
\begin{align*}
\left\|T_{g, \varphi} f\right\|_{\mathcal{B}_{\mu}} & =\left|\left(T_{g, \varphi} f\right)(0)\right|+\sup _{z \in B} \mu(z)|\Re g(z) \| f(z)| \\
& \leq C \sup _{z \in B} \frac{\mu(z)|\Re g(z)|\|f\|_{H(p, q, \varphi)}}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}}=C M\|f\|_{H(p, q, \nu)} \tag{6}
\end{align*}
$$

i.e. $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is bounded.

Now assume that $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is bounded. Set

$$
\begin{equation*}
f_{w}(z)=\frac{\left(1-|w|^{2}\right)^{\beta}}{\varphi(w)(1-\langle z, w\rangle)^{\frac{n}{q}+\beta}}, \quad z \in B \tag{7}
\end{equation*}
$$

where $\beta>1$. By [18] we know that $\sup _{w \in B}\left\|f_{w}\right\|_{H(p, q, \varphi)} \leq C$. Therefore

$$
\begin{aligned}
C\left\|T_{g, \varphi}\right\|_{H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}} & \geq\left\|T_{g, \varphi} f_{\varphi(w)}\right\|_{\mathcal{B}_{\mu}}=\sup _{z \in B} \mu(z)\left|\Re g(z) \| f_{\varphi(w)}(\varphi(z))\right| \\
& \geq \mu(w)|\Re g(w)|\left|f_{\varphi(w)}(\varphi(w))\right|=\frac{\mu(w)|\Re g(w)|}{\nu(\varphi(w))\left(1-|\varphi(w)|^{2}\right)^{\frac{n}{q}}},
\end{aligned}
$$

from which (4) follows, moreover

$$
\begin{equation*}
\sup _{w \in B} \frac{\mu(w)|\Re g(w)|}{\nu(\varphi(w))\left(1-|\varphi(w)|^{2}\right)^{\frac{n}{q}}} \leq C\left\|T_{g, \varphi}\right\|_{H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}} \tag{8}
\end{equation*}
$$

From (6) and (8), asymptotic relationship (5) follows.

Theorem 2. Assume $0<p, q<\infty, g \in H(B), \varphi$ is a holomorphic self-map of $B, \nu: B \rightarrow[0, \infty)$ and $\mu: B \rightarrow[0, \infty)$ are normal. Then $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is compact if and only if $g \in \mathcal{B}_{\mu}$ and

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}}=0 . \tag{9}
\end{equation*}
$$

Proof. Suppose that $g \in \mathcal{B}_{\mu}$ and (9) holds. From $g \in \mathcal{B}_{\mu}$ and (9), it is easy to see that (4) holds. Hence $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is bounded by Theorem 1. From (9) we have that for every $\varepsilon>0$, there is an $r \in(0,1)$ such that

$$
\begin{equation*}
\frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}}<\varepsilon . \tag{10}
\end{equation*}
$$

when $|\varphi(z)|>r$. Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a bounded sequence in $H(p, q, \nu)$ such that f_{k} converges to 0 uniformly on compact subsets of B as $k \rightarrow \infty$. Let $G=\{w \in$ $B:|w| \leq \delta\}$. From the fact that $g \in \mathcal{B}_{\mu}$ and (10), we have

$$
\begin{align*}
& \left\|T_{g, \varphi} f_{k}\right\|_{\mathcal{B}_{\mu}}=\sup _{z \in B} \mu(|z|)\left|f_{k}(\varphi(z)) \Re g(z)\right| \\
= & \left(\sup _{\{z \in B:|\varphi(z)| \leq \delta\}}+\sup _{\{z \in B: \delta<|\varphi(z)|<1\}}\right) \mu(z)\left|\Re g(z) \| f_{k}(\varphi(z))\right| \\
= & \|g\|_{\mathcal{B}_{\mu}} \sup _{w \in G}\left|f_{k}(w)\right|+C\left\|f_{k}\right\|_{H(p, q, \nu)} \sup _{\{z \in B: \delta<|\varphi(z)|<1\}} \frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}} \\
\leq & \|g\|_{\mathcal{B}_{\mu}} \sup _{w \in G}\left|f_{k}(w)\right|+C\left\|f_{k}\right\|_{H(p, q, \nu)} \varepsilon . \tag{11}
\end{align*}
$$

Note that G is a compact subset of B, we have $\lim _{k \rightarrow \infty} \sup _{w \in G}\left|f_{k}(w)\right|=0$. Using this fact and letting $k \rightarrow \infty$ in (11), we obtain $\lim \sup _{k \rightarrow \infty}\left\|T_{g, \varphi} f_{k}\right\|_{\mathcal{B}_{\mu}} \leq$ $C\left\|f_{k}\right\|_{H(p, q, \nu)} \varepsilon$. Since ε is an arbitrary positive number, we obtain

$$
\limsup _{k \rightarrow \infty}\left\|T_{g, \varphi} f_{k}\right\|_{\mathcal{B}_{\mu}}=0
$$

Employing Lemma 1, we get that $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is compact.
Conversely we assume that $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is compact. We need to prove that (9) holds. This can be done by contradiction. We assume that (9) is not true. Then there would be some $\varepsilon_{0}>0$ and a sequence $\left(z_{k}\right)_{k \in \mathbb{N}} \subseteq B$ with $\lim _{k \rightarrow \infty}\left|\varphi\left(z_{k}\right)\right|=1$, and such that

$$
\begin{equation*}
\frac{\mu\left(z_{k}\right)\left|\Re g\left(z_{k}\right)\right|}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\frac{n}{q}}} \geq \varepsilon_{0}, \tag{12}
\end{equation*}
$$

for every $k \in \mathbb{N}$. Set

$$
\begin{equation*}
f_{k}(z)=\frac{\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\beta}}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\left\langle z, \varphi\left(z_{k}\right)\right\rangle\right)^{\frac{n}{q}+\beta}}, \quad k \in \mathbb{N} \tag{13}
\end{equation*}
$$

where $\beta>1$. Then $\sup _{k \in \mathbb{N}}\left\|f_{k}\right\|_{H(p, q, \nu)} \leq C$, and f_{k} converges to 0 uniformly on compacts of B. Hence by Lemma 1 ,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T_{g, \varphi} f_{k}\right\|_{\mathcal{B}_{\mu}}=0 \tag{14}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\left\|T_{g, \varphi} f_{k}\right\|_{\mathcal{B}_{\mu}} & =\sup _{z \in B} \mu(z)\left|\Re\left(T_{g, \varphi} f_{k}\right)(z)\right| \geq \mu\left(z_{k}\right)\left|\Re g\left(z_{k}\right)\right|\left|f_{k}\left(\varphi\left(z_{k}\right)\right)\right| \\
& =\frac{\mu\left(z_{k}\right)\left|\Re g\left(z_{k}\right)\right|}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\frac{n}{q}}} \geq \varepsilon_{0},
\end{aligned}
$$

which contradicts to (14). This completes the proof of this theorem.
Theorem 3. Assume that $0<p, q<\infty, g \in H(B), \varphi$ is a holomorphic self-map of $B, \nu: B \rightarrow[0, \infty)$ and $\mu: B \rightarrow[0, \infty)$ are normal. Then $T_{g, \varphi}:$ $H(p, q, \nu) \rightarrow \mathcal{B}_{\mu, 0}$ is bounded if and only if $g \in \mathcal{B}_{\mu, 0}$ and $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is bounded.

Proof. Suppose that $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu, 0}$ is bounded, then $T_{g, \varphi}:$ $H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is bounded. Taking $f(z)=1$, and employing the boundedness of $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu, 0}$, we get $g \in \mathcal{B}_{\mu, 0}$, as desired.

Conversely, suppose that $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is bounded and $g \in \mathcal{B}_{\mu, 0}$. For each polynomial $p(z)$, we obtain

$$
\begin{equation*}
\mu(z)\left|\Re\left(T_{g, \varphi} p\right)(z)\right|=\mu(z)|p(\varphi(z))| \Re g(z)\left|\leq\|p\|_{\infty} \mu(z)\right| \Re g(z) \mid . \tag{15}
\end{equation*}
$$

From the above inequality, it follows that for each polynomial $p, T_{g, \varphi}(p) \in \mathcal{B}_{\mu, 0}$. Since the set of all polynomials is dense in $H(p, q, \nu)$, for every $f \in H(p, q, \nu)$ there is a sequence of polynomials $\left(p_{k}\right)_{k \in \mathbb{N}}$ such that $\left\|p_{k}-f\right\|_{H(p, q, \nu)} \rightarrow 0$ as $k \rightarrow \infty$. From the boundedness of $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$, we have that
$\left\|T_{g, \varphi} p_{k}-T_{g, \varphi} f\right\|_{\mathcal{B}_{\mu}} \leq\left\|T_{g, \varphi}\right\|_{H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}}\left\|p_{k}-f\right\|_{H(p, q, \nu)} \rightarrow 0, \quad$ as $k \rightarrow \infty$.
From this and since $\mathcal{B}_{\mu, 0}$ is a closed subset of \mathcal{B}_{μ}, we obtain

$$
\begin{equation*}
T_{g, \varphi} f=\lim _{k \rightarrow \infty} T_{g, \varphi} p_{k} \in \mathcal{B}_{\mu, 0} \tag{17}
\end{equation*}
$$

Therefore $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu, 0}$ is bounded. The proof is completed.
Theorem 4. Assume that $0<p, q<\infty, g \in H(B), \varphi$ is a holomorphic self-map of $B, \nu: B \rightarrow[0, \infty)$ and $\mu: B \rightarrow[0, \infty)$ are normal. Then $T_{g, \varphi}$: $H(p, q, \nu) \rightarrow \mathcal{B}_{\mu, 0}$ is compact if and only if

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}}=0 . \tag{18}
\end{equation*}
$$

Proof. Suppose that $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu, 0}$ is compact. Then $T_{g, \varphi}$: $H(p, q, \nu) \rightarrow \mathcal{B}_{\mu, 0}$ is bounded and $T_{g, \varphi}: H(p, q, \nu) \rightarrow \mathcal{B}_{\mu}$ is compact. By Theorems 2 and 3 we obtain

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}}=0 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \mu(z)|\Re g(z)|=0 \tag{20}
\end{equation*}
$$

By (19), for every $\varepsilon>0$, there exists a $\delta \in(0,1)$,

$$
\frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}}<\varepsilon
$$

when $\delta<|\varphi(z)|<1$. By (20), for the above ε, there exists a $r \in(0,1)$,

$$
\mu(z)|\Re g(z)| \leq \varepsilon \nu(\delta)\left(1-|\delta|^{2}\right)^{\frac{n}{q}}
$$

when $r<|z|<1$.
Therefore, when $r<|z|<1$ and $\delta<|\varphi(z)|<1$, we have that

$$
\begin{equation*}
\frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}}<\varepsilon . \tag{21}
\end{equation*}
$$

If $|\varphi(z)| \leq \delta$ and $r<|z|<1$, we obtain

$$
\begin{equation*}
\frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}} \leq \frac{1}{\nu(\delta)\left(1-|\delta|^{2}\right)^{\frac{n}{q}}} \mu(|z|)|\Re g(z)|<\varepsilon . \tag{22}
\end{equation*}
$$

Combing (21) with (22) we get (18), as desired.
Conversely, suppose that (18) holds. From Lemma 2, we see that $T_{g, \varphi}$: $H(p, q, \nu) \rightarrow \mathcal{B}_{\mu, 0}$ is compact if and only if

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \sup _{\|f\|_{H(p, q, \nu)} \leq 1} \mu(z)\left|\Re\left(T_{g, \varphi} f\right)(z)\right|=0 \tag{23}
\end{equation*}
$$

For any $f \in H(p, q, \nu)$ with $\|f\|_{H(p, q, \nu)} \leq 1$, by (3) we have

$$
\mu(z)\left|\Re\left(T_{g, \varphi} f\right)(z)\right| \leq C\|f\|_{H(p, q, \nu)} \frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}} .
$$

Using (18) we get

$$
\lim _{|z| \rightarrow 1} \sup _{\|f\|_{H(p, q, \nu)} \leq 1} \mu(z)\left|\Re\left(T_{g, \varphi} f\right)(z)\right| \leq C \lim _{|z| \rightarrow 1} \frac{\mu(z)|\Re g(z)|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{n}{q}}}=0
$$

as desired. This completes the proof of the theorem.
Acknowledgments. The author is supported partly by the NSF of Guangdong Province of China (No.07006700).

References

[1] D. Chang, S. Li and S. Stević, On some integral operators on the unit polydisk and the unit ball, Taiwanese J. Math. 11 (2007), 1251-1286.
[2] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
[3] Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (2003), 2171-2179.
[4] Z. Hu, Extended Cesàro operators on the Bloch space in the unit ball of \mathbb{C}^{n}, Acta Math. Sci. Ser. B Engl. Ed. 23 (2003), 561-566.
[5] Z. Hu, Extended Cesàro operators on Bergman spaces, J. Math. Anal. Appl. 296 (2004), 435-454.
[6] S. Li, Volterra composition operators between weighted Bergman space and Bloch type spaces, J. Korea Math. Soc. 45(2008), 229-248.
[7] S. Li, Riemann-Stieltjes operators from $F(p, q, s)$ to Bloch space on the unit ball, Vol. 2006, Article ID 27874 J. Inequal. Appl. Volume 2006 (2006), 14 pages.
[8] S. Li and S. Stević, Compactness of Riemann-Stieltjes operators between $F(p, q, s)$ and α-Bloch spaces, Publ. Math. Debrecen, 72 (1-2) (2008), 111-128.
[9] S. Li and S. Stević, Riemann-Stieltjes type integral operators on the unit ball in \mathbb{C}^{n}, Complex Var. Elliptic Equ. 52 (2007), 495-517.
[10] S. Li and S. Stević, Riemann-Stieltjes operators between mixed norm spaces, Indian J. Math. 50 (2008), 177-188.
[11] S. Li and S. Stević, Riemann-Stieltjes operators on Hardy spaces in the unit ball of \mathbb{C}^{n}, Bull. Belg. Math. Soc. Simon Stevin, 14 (2007), 621-628.
[12] S. Li and S. Stević, Riemann-Stieltjes operators between different weighted Bergman spaces, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 1-10.
[13] S. Li and S. Stević, Integral type operators from mixed-norm spaces to α-Bloch spaces, Integral Transform. Spec. Funct. 18 (2007), 485-493.
[14] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347(1995), 2679-2687.
[15] Ch. Pommerenke, Schlichte funktionen und analytische funktionen von beschränkter mittlerer oszillation, Comment. Math. Helv. 52 (1977), 591-602.
[16] A. Siskakis and R. Zhao, A Volterra type operator on spaces of analytic functions, Contemp. Math. 232 (1999), 299-311.
[17] S. Stević, On an integral operator on the unit ball in \mathbb{C}^{n}, J. Ineq. Appl. 2005 (2005), 81-88.
[18] S. Stević, Weighted composition operators between mixed norm spaces and H_{α}^{∞} spaces in the unit ball, J. Ineq. Appl. Volume 2007 (2007), Article ID 28629, 9 pages.
[19] X. Tang, Extended Cesàro operators between Bloch-type spaces in the unit ball of \mathbb{C}^{n}, J. Math. Anal. Appl. 326 (2007), 1199-1211.
[20] J. Xiao, Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. London. Math. Soc. 70 (2004), 199-214.
[21] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.
[22] X. Zhu, Volterra composition operators from generalized weighted Bergman spaces to μ-Bloch type spaces, J. Funct. Space Appl. Accepted, 2008.
[23] X. Zhu, Volterra composition operators on logarithmic Bloch spaces, Banach J. Math. Anal. 3 (2009), 122-130.

NEW KKM TYPE THEOREMS IN G-CONVEX SPACES WITH APPLICATIONS

WEIPING GUO, JUNG IM KANG AND YEOL JE CHO
Department of Applied Mathematics
University of Science and Technology of Suzhou
Suzhou, Jiangsu 215009, P. R. China
E-mail: guoweiping18@yahoo.com.cn
National Institute for Mathematical Sciences
385-16, 3F Tower Koreana, Doryong-dong, Yuseong-gu
Daejeon 305-340, Korea
E-mail: jikang@nims.re.kr
Department of Mathematics Education and the RINS
Gyeongsang National University
Chinju 660-701, Korea
E-mail: yjcho@gsnu.ac.kr

Abstract

The purpose of this paper is to establish some new KKM type theorems in G-convex spaces and, as applications, to obtain some new matching theorems, fixed point theorems, section theorems and minimax theorems in G-convex spaces. The results presented in this paper improve and generalize the corresponding results in $[1-6,16,20,23]$. Key Words: G-convex space; KKM type theorem; Matching theorem; Fixed point theorem; Section theorem; Minimax theorem.

2000 AMS Subject Classification: 47H04, 47H10, 46A16, 46A55, 52A07, 54C60, 54H25, 91B50.

1. Introduction and preliminaries

In 1929, Knaster, Kuratowski and Mazurkiewicz [11] deduced the celebrated KKM theorem. In 1961, Ky Fan [7] gave an extended version of the KKM theorem to infinite dimensional spaces and made useful variations such as geometric property of convex sets, best approximation theorem and minimax

WEIPING GUO, JUNG IM KANG AND YEOL JE CHO

inequality. Since then, many authors have given numerous generalizations of the known results and new applications (see Granas [8], Park [15, 17] and references therein). Later, this theorem was extended to convex spaces by Lassonde $[12,13]$ and to space having certain families of contractible subsets (simply, H-spaces) by Horvath [10] and was further developed in H-spaces ([1$5,9,16]$). In [18-22], Park et al. introduced and studied generalized convex spaces (simply, G-convex spaces) and obtained many important results in G convex spaces. The concept of G-convex spaces is a common generalization of the usual convexity in a topological vector space and many abstract convexities which have been mainly developed in connection with the fixed point and the KKM theory.

The purpose of this paper is to establish a new KKM type theorem in G convex spaces and as applications, to obtain some new matching theorems, fixed point theorems, section theorems and minimax theorems in G-convex spaces. The results presented in this paper improve and generalize the corresponding results in $[1-6,16,20,23]$.

Definition 1.1. ([14, 18, 19]) (1) A generalized convex space (or a G convex space) $(X, D ; \Gamma)$ consists of a topological space X and a nonempty set D such that, for each $A=\left\{a_{0}, a_{1}, \cdots, a_{n}\right\} \in\langle D\rangle$, there exists a subset $\Gamma(A)=\Gamma_{A}$ of X and a continuous function $\phi_{A}: \triangle_{n} \rightarrow \Gamma(A)$ such that $J \subset\{0,1, \cdots, n\}$ implies $\phi_{A}\left(\triangle_{J}\right) \subset \Gamma\left(\left\{a_{j}: j \in J\right\}\right)$, where $\langle D\rangle$ denotes the set of all nonempty finite subsets of D, \triangle_{n} an n-simplex with vertices $v_{0}, v_{1}, \cdots \cdots, v_{n}$ and $\triangle_{J}=c o\left\{v_{j}: j \in J\right\}$ the face of \triangle_{n} corresponding to J, respectively.

In case to emphasize $X \supset D,(X, D ; \Gamma)$ will be denoted by $(X \supset D ; \Gamma)$; and if $X=D$, then $(X \supset X ; \Gamma)$ by (X, Γ).
(2) For a G-convex space $(X \supset D ; \Gamma$), a subset K of X is said to be Γ-convex if, for each $N \in\langle D\rangle, N \subset K$ implies $\Gamma_{N} \subset K$. If X is compact, then the G-convex space $(X, D ; \Gamma)$ is said to be compact.

Definition 1.2. ([14]) Let $(X, D ; \Gamma)$ be a G-convex space and I a nonempty set. A mapping $F: I \multimap X$ is called a generalized KKM mapping provided that, for each $N \in\langle I\rangle$, there exists a function $\sigma: N \rightarrow D$ such that $\Gamma_{\sigma(M)} \subset$ $F(M)$ for each $M \in\langle N\rangle$.

Lee [14] studied generalized KKM mapping and proved the following result:
Theorem 1.1. Let $(X, D ; \Gamma)$ be a G-convex space, I a nonempty set and F : $I \multimap X$ a generalized KKM mapping with closed values such that $\bigcap_{z \in M} F(z)$ is compact for some $M \in\langle I\rangle$. Then $\bigcap_{z \in I} F(z) \neq \emptyset$.

2. A NEW KKM type theorem

In order to prove the main results of this work, we introduce the following concept:

Definition 2.1. Let (X, Γ) and $\left(Y, D ; \Gamma^{\prime}\right)$ be two G-convex spaces. A mapping $F: X \multimap Y$ is called a quasi-generalized KKM mapping provided that, for each $N \in\langle X\rangle$, there exists a function $\sigma: N \rightarrow D$ such that $\Gamma_{\sigma(M)}^{\prime} \subset$ $F\left(M \cup \Gamma_{M}\right)$ for each $M \in\langle N\rangle$.

Example 2.1. Let $X=(-\infty, 0), Y=(0,+\infty)$ with Euclidean topologies and, for each $M \in\langle X\rangle$ and $N \in\langle Y\rangle$, let $\Gamma_{M}=c o(M \cup\{\min M-2\})$ and $\Gamma_{N}^{\prime}=\operatorname{co}(N \cup\{\max N+1\})(c o A$ denotes the hull of $A)$. Then (X, Γ) and $\left(Y, \Gamma^{\prime}\right)$ are two G-convex spaces. Define a mapping $F: X \multimap Y$ by

$$
F(x)=\{-x,-x+1\}, \quad \forall x \in X
$$

and, for each $M \in\langle X\rangle$, let $\sigma(x)=-x$ for each $x \in M$. Then we have

$$
\begin{aligned}
\Gamma_{\sigma\left(M_{0}\right)}^{\prime} & =\operatorname{co}\left(\sigma\left(M_{0}\right) \cup\left\{\max \sigma\left(M_{0}\right)+1\right\}\right)=c o\left(\bigcup_{x \in M_{0}}\{-x,-x+1\}\right) \\
& \subset \operatorname{co}\left(\bigcup_{x \in c o M_{0}}\{-x,-x+1\}\right) \subset \bigcup_{x \in \Gamma_{M_{0}}}\{-x,-x+1\} \\
& =\bigcup_{x \in M_{0} \cup \Gamma_{M_{0}}} F(x), \quad \forall M_{0} \in\langle M\rangle .
\end{aligned}
$$

This shows that F is a quasi-generalized KKM mapping.
Let X, Y be two nonempty sets and $F: X \multimap Y$ a mapping. Then, for each $y \in Y$, we put

$$
F^{-1}(y)=\{x \in X: y \in F(x)\}, \quad F^{*}(y)=X \backslash F^{-1}(y) .
$$

Theorem 2.1. Let $(X, \Gamma),\left(Y, D ; \Gamma^{\prime}\right)$ be two G-convex spaces and $F: X \multimap$ Y a quasi-generalized KKM mapping with closed values such that $\bigcap_{x \in M} F(x)$ is compact for some $M \in\langle X\rangle$. Suppose that $F^{*}(y)$ is Γ-convex for each $y \in Y$. Then $\bigcap_{x \in X} F(x) \neq \emptyset$.

Proof. If F is not a generalized KKM mapping, then there exists $N_{0} \in\langle X\rangle$ and, for each function $\sigma: N_{0} \rightarrow D$, there exists $M_{0} \in\left\langle N_{0}\right\rangle$ such that

$$
\Gamma_{\sigma\left(M_{0}\right)}^{\prime} \nsubseteq F\left(M_{0}\right) .
$$

That is, there exists $y_{0} \in \Gamma_{\sigma\left(M_{0}\right)}^{\prime}$ with $y_{0} \notin F\left(M_{0}\right)$, i.e., $y_{0} \notin F(x)$ for each $x \in M_{0}$, which implies that $x \notin F^{-1}\left(y_{0}\right)$ for each $x \in M_{0}$ and so $M_{0} \subset F^{*}\left(y_{0}\right)$. Since $F^{*}\left(y_{0}\right)$ is Γ-convex, it follows that $\Gamma_{M_{0}} \subset F^{*}\left(y_{0}\right)$. Thus $M_{0} \cup \Gamma_{M_{0}} \subset$ $F^{*}\left(y_{0}\right)$ and so $x \notin F^{-1}\left(y_{0}\right)$ for each $x \in M_{0} \cup \Gamma_{M_{0}}$. This shows that $y_{0} \notin$

WEIPING GUO, JUNG IM KANG AND YEOL JE CHO

$F\left(M_{0} \cup \Gamma_{M_{0}}\right)$, which is a contradiction to F, that is, the quasi-generalized KKM mapping. Therefore, it follows from Theorem 1.1 that $\bigcap_{x \in X} F(x) \neq \emptyset$. This completes the proof.

Corollary 2.1. Let $(X, \Gamma),\left(Y, D ; \Gamma^{\prime}\right)$ be two G-convex spaces and $F: X \multimap$ Y a quasi-generalized KKM mapping with closed values. Suppose that $F^{*}(y)$ is Γ-convex for each $y \in Y$ and there exists $x_{0} \in X$ such that $F\left(x_{0}\right)$ is compact. Then $\bigcap_{x \in X} F(x) \neq \emptyset$.

Remark 2.1. Theorem 2.2 and Corollary 2.1 generalize Theorems 1 and 2 in Badaro and Ceppitelli [1], Theorem 4 in Badaro and Ceppitelli [2], Theorem 1 in Chang and Ma [4], Lemma 1.3 in Chang and Yang [5], Theorem 3 and Corollary 4 in Wu and Li [23] to G-convex spaces.

3. Matching theorems and fixed point theorems

By using Theorem 2.1, we have the following:
Theorem 3.1. Let $(X, \Gamma),\left(Y, D ; \Gamma^{\prime}\right)$ be two G-convex spaces and $F: X \multimap$ Y a mapping with open values such that $Y \backslash \bigcup_{x \in M} F(x)$ is compact for some $M \in\langle X\rangle$ and the following conditions hold:
(i) $F(X)=Y$;
(ii) for each $y \in Y, F^{-1}(y)$ is Γ-convex.

Then there exists $N_{0} \in\langle X\rangle$ such that, for each function $\sigma: N_{0} \rightarrow D$,

$$
\Gamma_{\sigma\left(M_{0}\right)}^{\prime} \cap \bigcap_{x \in M_{0} \cup \Gamma_{M_{0}}} F(x) \neq \emptyset
$$

for some $M_{0} \in\left\langle N_{0}\right\rangle$.
Proof. If the conclusion of Theorem 3.1 is false, then for each $N \in\langle X\rangle$, there exists a function $\sigma: N \rightarrow D$ such that

$$
\Gamma_{\sigma\left(N_{0}\right)}^{\prime} \subset Y \backslash \bigcap_{x \in N_{0} \cup \Gamma_{N_{0}}} F(x)=\bigcup_{x \in N_{0} \cup \Gamma_{N_{0}}}(Y \backslash F(x)), \quad \forall N_{0} \in\langle N\rangle .
$$

Let

$$
G(x)=Y \backslash F(x), \quad \forall x \in X .
$$

Then

$$
\Gamma_{\sigma\left(N_{0}\right)}^{\prime} \subset \bigcup_{x \in N_{0} \cup \Gamma_{N_{0}}} G(x)=G\left(N_{0} \cup \Gamma_{N_{0}}\right), \quad \forall N_{0} \in\langle N\rangle .
$$

So $G: X \multimap Y$ is a quasi-generalized KKM mapping with closed values and

$$
\bigcap_{x \in M} G(x)=\bigcap_{x \in M}(Y \backslash F(x))=Y \backslash \bigcup_{x \in M} F(x)
$$

is a compact set.

Now, we prove that $G^{*}(y)$ is Γ-convex for each $y \in Y$. Firstly, we prove $G^{*}(y) \neq \emptyset$. Otherwise, then there exists $\bar{y} \in Y$ such that $G^{*}(\bar{y})=\emptyset$ and thus $G^{-1}(\bar{y})=X$. Therefore, $x \in G^{-1}(\bar{y})$ for each $x \in X$, which implies that $\bar{y} \in G(x)$ and so $\bar{y} \notin F(x)$, that is, $\bar{y} \notin F(X)=Y$, which is a contradiction.

For each $N \in\left\langle G^{*}(y)\right\rangle$, let $x \in N$. Then $x \notin G^{-1}(y)$ and so $y \notin G(x)$. Thus $y \in F(x)$. This implies that $x \in F^{-1}(y)$ for each $x \in N$, that is, $N \subset F^{-1}(y)$. By also the condition (ii), we have $\Gamma_{N} \subset F^{-1}(y)$. Let $x \in \Gamma_{N}$. Then $x \in F^{-1}(y)$ and so $y \in F(x)$. Thus $y \notin G(x)$. Therefore, $x \notin G^{-1}(y)$, which implies that $x \in G^{*}(y)$. This shows that $\Gamma_{N} \subset G^{*}(y)$ and so that $G^{*}(y)$ is Γ-convex. It follows from Theorem 2.1 that

$$
\bigcap_{x \in X}(Y \backslash F(x))=\bigcap_{x \in X} G(x) \neq \emptyset
$$

and

$$
Y \backslash F(X)=Y \backslash \bigcup_{x \in X} F(x)=\bigcap_{x \in X}(Y \backslash F(x)) \neq \emptyset .
$$

This is a contradiction to the condition (i). This completes the proof.
As an immediate consequence of Theorem 3.1, we have the following:
Theorem 3.2. Let (X, Γ) be a G-convex space, $\left(Y, D ; \Gamma^{\prime}\right)$ a compact G convex space and $F: X \multimap Y$ a mapping with open values. Suppose that the following conditions hold:
(i) $F(X)=Y$;
(ii) for each $y \in Y, F^{-1}(y)$ is Γ-convex.

Then there exists $N_{0} \in\langle X\rangle$ such that, for each function $\sigma: N_{0} \rightarrow D$,

$$
\Gamma_{\sigma\left(M_{0}\right)}^{\prime} \cap \bigcap_{x \in M_{0} \cup \Gamma_{M_{0}}} F(x) \neq \emptyset
$$

for some $M_{0} \in\left\langle N_{0}\right\rangle$.
Remark 3.1. Theorems 3.1 and 3.2 generalize Theorem 2 and Corollary 1 in Chang and Ma [4] and Theorem 5 in Park [16] to G-convex spaces.

Corollary 3.1. Let (X, Γ) be a G-convex space and $F: X \multimap X$ a mapping with open values such that $X \backslash \bigcup_{x \in M} F(x)$ is compact for some $M \in\langle X\rangle$. Suppose that the following conditions hold:
(i) $F(X)=X$;
(ii) for each $y \in X, F^{-1}(y)$ is Γ-convex.

Then there exist $M_{0} \in\langle X\rangle$ and $\hat{x} \in \Gamma_{M_{0}}$ such that

$$
\Gamma_{M_{0}} \cap \bigcap_{x \in M_{0}} F(x) \neq \emptyset, \quad \Gamma_{M_{0}} \cap \bigcap_{x \in \Gamma_{M_{0}}} F(x) \neq \emptyset
$$

WEIPING GUO, JUNG IM KANG AND YEOL JE CHO

and

$$
\hat{x} \in F(\hat{x}) .
$$

Proof. Let $D=Y=X, \Gamma^{\prime}=\Gamma$ and σ be an identical mapping as in Theorem 3.1. Then we know that there exists $M_{0} \in\langle X\rangle$ such that

$$
\Gamma_{M_{0}} \cap \bigcap_{x \in M_{0}} F(x) \supset \Gamma_{M_{0}} \cap \bigcap_{x \in M_{0} \cup \Gamma_{M_{0}}} F(x)=\Gamma_{\sigma\left(M_{0}\right)} \cap \bigcap_{x \in M_{0} \cup \Gamma_{M_{0}}} F(x) \neq \emptyset
$$

and

$$
\Gamma_{M_{0}} \cap \bigcap_{x \in \Gamma_{M_{0}}} F(x) \supset \Gamma_{M_{0}} \cap \bigcap_{x \in M_{0} \cup \Gamma_{M_{0}}} F(x)=\Gamma_{\sigma\left(M_{0}\right)} \cap \bigcap_{x \in M_{0} \cup \Gamma_{M_{0}}} F(x) \neq \emptyset
$$

Let $\hat{x} \in \Gamma_{M_{0}} \cap \bigcap_{x \in \Gamma_{M_{0}}} F(x)$. Then there exists $\hat{x} \in \Gamma_{M_{0}}$ such that $\hat{x} \in F(\hat{x})$. This completes the proof.

From Corollary 3.1, we have the following:
Corollary 3.2. Let (X, Γ) be a compact G-convex space and $F: X \multimap X$ a mapping with open values. Suppose that the following conditions hold:
(i) $F(X)=X$;
(ii) for each $y \in X, F^{-1}(y)$ is Γ-convex.

Then there exist $M_{0} \in\langle X\rangle$ and $\hat{x} \in \Gamma_{M_{0}}$ such that

$$
\Gamma_{M_{0}} \cap \bigcap_{x \in M_{0}} F(x) \neq \emptyset, \quad \Gamma_{M_{0}} \cap \bigcap_{x \in \Gamma_{M_{0}}} F(x) \neq \emptyset
$$

and

$$
\hat{x} \in F(\hat{x})
$$

Remark 3.2. Corollaries 3.1 and 3.2 generalize Theorem 3.1 in Chen et al. [6] to G-convex spaces and improve Theorems 5 and 8, Corollaries 8.2 and 8.3 in Park [20].

4. Section theorems

By using Theorem 3.1, we have the following:
Theorem 4.1. Let $(X, \Gamma),\left(Y, D ; \Gamma^{\prime}\right)$ be two G-convex spaces, Z a nonempty set, $B \subset Z$ and let $g: X \times Y \rightarrow Z$ be a mapping satisfying the following conditions:
(i) for each $x \in X$, the set $\{y \in Y: g(x, y) \in B\}$ is open, and the set $Y \backslash \bigcup_{x \in M}\{y \in Y: g(x, y) \in B\}$ is compact for some $M \in\langle X\rangle$;
(ii) for each $y \in Y$, the set $\{x \in X: g(x, y) \in B\}$ is Γ-convex;
(iii) $\bigcup_{x \in X}\{y \in Y: g(x, y) \in B\}=Y$.

Then there exists $N_{0} \in\langle X\rangle$ such that, for each function $\sigma: N_{0} \rightarrow D$,

$$
g\left(\left(M_{0} \cup \Gamma_{M_{0}}\right) \times\left\{y_{0}\right\}\right) \subset B
$$

for some $M_{0} \in\left\langle N_{0}\right\rangle$ and $y_{0} \in \Gamma_{\sigma\left(M_{0}\right)}^{\prime}$.
Proof. Let

$$
F(x)=\{y \in Y: g(x, y) \in B\}, \quad \forall x \in X
$$

It follows from Theorem 3.1 that there exists $N_{0} \in\langle X\rangle$ such that, for each function $\sigma: N_{0} \rightarrow D$,

$$
\Gamma_{\sigma\left(M_{0}\right)}^{\prime} \cap \bigcap_{x \in M_{0} \cup \Gamma_{M_{0}}} F(x) \neq \emptyset
$$

for some $M_{0} \in\left\langle N_{0}\right\rangle$. Let $y_{0} \in \Gamma_{\sigma\left(M_{0}\right)}^{\prime} \cap \bigcap_{x \in M_{0} \cup \Gamma_{M_{0}}} F(x)$. Then $y_{0} \in \Gamma_{\sigma\left(M_{0}\right)}^{\prime}$ and $g\left(x, y_{0}\right) \in B$ for each $x \in M \cup \Gamma_{M_{0}}$, that is,

$$
g\left(\left(M_{0} \cup \Gamma_{M_{0}}\right) \times\left\{y_{0}\right\}\right) \subset B .
$$

This completes the proof.
As an immediate consequence of Theorem 4.1, we have the following:
Theorem 4.2. Let (X, Γ) be a G-convex space, $\left(Y, D ; \Gamma^{\prime}\right)$ a compact G convex space, Z a nonempty set, $B \subset Z$ and let $g: X \times Y \rightarrow Z$ be a mapping satisfying the following conditions:
(i) for each $x \in X$, the set $\{y \in Y: g(x, y) \in B\}$ is open;
(ii) for each $y \in Y$, the set $\{x \in X: g(x, y) \in B\}$ is Γ-convex;
(iii) $\bigcup_{x \in X}\{y \in Y: g(x, y) \in B\}=Y$.

Then there exists $N_{0} \in\langle X\rangle$ such that, for each function $\sigma: N_{0} \rightarrow D$,

$$
g\left(\left(M_{0} \cup \Gamma_{M_{0}}\right) \times\left\{y_{0}\right\}\right) \subset B
$$

for some $M_{0} \in\left\langle N_{0}\right\rangle$ and $y_{0} \in \Gamma_{\sigma\left(M_{0}\right)}^{\prime}$.
Remark 4.1. Theorems 4.1 and 4.2 generalize Theorem 1 and Corollary 2 in Wu and $\mathrm{Li}[23]$ to G-convex spaces.

Let $D=Y=X, \Gamma^{\prime}=\Gamma, Z=X \times X, g(x, y)=(x, y)$ and σ be an identical mapping as in Theorem 4.1, then we have the following:

Corollary 4.1. Let (X, Γ) be a G-convex space and $B \subset X \times X$. Suppose that the following conditions hold:
(i) for each $x \in X$, the set $\{y \in X:(x, y) \in B\}$ is open and the set $X \backslash \bigcup_{x \in M}\{y \in X:(x, y) \in B\}$ is compact for some $M \in\langle X\rangle$;
(ii) for each $y \in X$, the set $\{x \in X:(x, y) \in B\}$ is Γ-convex;
(iii) $\bigcup_{x \in X}\{y \in X:(x, y) \in B\}=X$.

WEIPING GUO, JUNG IM KANG AND YEOL JE CHO

Then there exist $M_{0} \in\langle X\rangle$ and $\hat{x} \in \Gamma_{M_{0}}$ such that

$$
M_{0} \times\{\hat{x}\} \subset B, \quad \Gamma_{M_{0}} \times\{\hat{x}\} \subset B
$$

and

$$
(\hat{x}, \hat{x}) \in B .
$$

From Corollary 4.1, we have the following:
Corollary 4.2. Let (X, Γ) be a compact G-convex space and $B \subset X \times X$. Suppose that the following conditions hold:
(i) for each $x \in X$, the set $\{y \in X:(x, y) \in B\}$ is open;
(ii) for each $y \in X$, the set $\{x \in X:(x, y) \in B\}$ is Γ-convex;
(iii) $\bigcup_{x \in X}\{y \in X:(x, y) \in B\}=X$.

Then there exist $M_{0} \in\langle X\rangle$ and $\hat{x} \in \Gamma_{M_{0}}$ such that

$$
M_{0} \times\{\hat{x}\} \subset B, \quad \Gamma_{M_{0}} \times\{\hat{x}\} \subset B
$$

and

$$
(\hat{x}, \hat{x}) \in B .
$$

Remark 4.2. Corollary 4.2 generalizes Corollary 1 in Badaro and Ceppitelli [3] to G-convex spaces.

5. Minimax theorems

We first discuss the minimax theorem for the vector function.
Theorem 5.1. Let $(X, \Gamma),\left(Y, D ; \Gamma^{\prime}\right)$ be two G-convex spaces and (E, \leq) a complete lattice. Let $f: X \times Y \rightarrow E$ be a mapping satisfying the following conditions:
(i) for each $x \in X, f(x, \cdot)$ is bounded below and, for each $y \in Y, f(\cdot, y)$ is bounded above;
(ii) for each $\lambda>\sup _{x \in X} \inf _{y \in Y} f(x, y)$ and $x \in X$, the set $\{y \in Y$: $f(x, y) \leq \lambda\}$ is closed and $\bigcap_{x \in M}\{y \in Y: f(x, y) \leq \lambda\}$ is compact set for some $M \in\langle X\rangle$;
(iii) for each $\lambda>\sup _{x \in X} \inf _{y \in Y} f(x, y)$ and $y \in Y$, the set $\{x \in X$: $f(x, y) \not \leq \lambda\}$ is Γ-convex;
(iv) for each $\lambda>\sup _{x \in X} \inf _{y \in Y} f(x, y)$ and $N \in\langle X\rangle$, there exists a function $\sigma: N \rightarrow D$ such that, for each $M \in\langle N\rangle$, there exists $x_{0} \in M \cup \Gamma_{M}$ such that

$$
f\left(x_{0}, y\right) \leq \lambda, \quad \forall y \in \Gamma_{\sigma(M)}^{\prime} .
$$

Then

$$
\inf _{y \in Y} \sup _{x \in X} f(x, y)=\sup _{x \in X} \inf _{y \in Y} f(x, y) .
$$

Proof. Put $\lambda_{0}=\sup _{x \in X} \inf _{y \in Y} f(x, y)$. We need only to prove

$$
\inf _{y \in Y} \sup _{x \in X} f(x, y) \leq \lambda_{0}
$$

Let

$$
B_{\lambda}=\{(x, y) \in X \times Y: f(x, y) \not \leq \lambda\}, \quad \forall \lambda \in E .
$$

Suppose that there exists $\beta>\lambda_{0}$ such that

$$
\bigcup_{x \in X}\left\{y \in Y:(x, y) \in B_{\beta}\right\}=Y
$$

It follows from the conditions (ii) and (iii) that

$$
\left\{y \in Y:(x, y) \in B_{\beta}\right\}=\{y \in Y: f(x, y) \nsubseteq \beta\}
$$

and

$$
\left\{x \in X:(x, y) \in B_{\beta}\right\}=\{x \in X: f(x, y) \not \leq \beta\}
$$

are open in Y and Γ-convex in X, respectively. By the condition (ii), we also know that

$$
Y \backslash \bigcup_{x \in M}\left\{y \in Y:(x, y) \in B_{\beta}\right\}=\bigcap_{x \in M}\{y \in Y: f(x, y) \leq \beta\}
$$

is a compact set. Let $Z=X \times Y$ and $g(x, y)=(x, y)$ in Theorem 4.1. Then there exists $N_{0} \in\langle X\rangle$ such that, for each function $\sigma: N_{0} \rightarrow D$,

$$
\left(M_{0} \cup \Gamma_{M_{0}}\right) \times\left\{y_{0}\right\} \subset B_{\beta}
$$

for some $M_{0} \in\left\langle N_{0}\right\rangle$ and $y_{0} \in \Gamma_{\sigma\left(M_{0}\right)}^{\prime}$. Hence $f\left(x, y_{0}\right) \not \leq \beta$ for each $x \in M_{0} \cup \Gamma_{M_{0}}$, which is a contradiction to the condition (iv). Therefore, for each $\lambda>\lambda_{0}$, there exists

$$
y_{\lambda} \in Y \backslash \bigcup_{x \in X}\left\{y \in Y:(x, y) \in B_{\lambda}\right\}=Y \backslash \bigcup_{x \in X}\{y \in Y: f(x, y) \not \leq \lambda\} .
$$

This implies that $f\left(x, y_{\lambda}\right) \leq \lambda$ for each $x \in X$. Since E is a complete lattice, we have

$$
\sup _{x \in X} f\left(x, y_{\lambda}\right) \leq \lambda
$$

and so $\inf _{y \in Y} \sup _{x \in X} f(x, y) \leq \lambda$. Therefore, since $\lambda>\lambda_{0}$ and λ is arbitrary, we have

$$
\inf _{y \in Y} \sup _{x \in X} f(x, y) \leq \lambda_{0} .
$$

This completes the proof.
Remark 5.1. Theorem 5.1 generalizes Theorem 5 in Badaro and Ceppitelli [3] and Theorem 4.6 in Chen et al. [6] to G-convex spaces.

WEIPING GUO, JUNG IM KANG AND YEOL JE CHO

As an immediate consequence of Theorem 5.1, we have the following minimax theorem for real function, which generalizes Theorem 5 and Corollary 6 in Wu and $\mathrm{Li}[23]$ to G-convex spaces.

Corollary 5.1. Let $(X, \Gamma),\left(Y, D ; \Gamma^{\prime}\right)$ be two G-convex spaces and f : $X \times Y \rightarrow \mathbb{R}(\mathbb{R}$ denotes the set of real numbers) a function satisfying the following conditions:
(i) for each $x \in X, f(x, \cdot)$ is bounded below and, for each $y \in Y, f(\cdot, y)$ is bounded above;
(ii) for each $\lambda>\sup _{x \in X} \inf _{y \in Y} f(x, y)$ and $x \in X$, the set $\{y \in Y$: $f(x, y) \leq \lambda\}$ is closed and $\bigcap_{x \in M}\{y \in Y: f(x, y) \leq \lambda\}$ is compact set for some $M \in\langle X\rangle$;
(iii) for each $\lambda>\sup _{x \in X} \inf _{y \in Y} f(x, y)$ and $y \in Y$, the set $\{x \in X$: $f(x, y)>\lambda\}$ is Γ-convex;
(iv) for each $\lambda>\sup _{x \in X} \inf _{y \in Y} f(x, y)$ and $N \in\langle X\rangle$, there exists a function $\sigma: N \rightarrow D$ such that, for each $M \in\langle N\rangle$, there exists $x_{0} \in M \cup \Gamma_{M}$ such that

$$
f\left(x_{0}, y\right) \leq \lambda, \quad \forall y \in \Gamma_{\sigma(M)}^{\prime} .
$$

Then

$$
\inf _{y \in Y} \sup _{x \in X} f(x, y)=\sup _{x \in X} \inf _{y \in Y} f(x, y) .
$$

References

[1] C. Badaro, R. Ceppitelli, Some further generalizations of Knaster-KuratowskiMazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl. 132(1988) 484490.
[2] C. Badaro, R. Ceppitelli, Applications of the generalized Knaster-KuratowskiMazurkiewicz theorem to variational inequalities, J. Math. Anal. Appl. 137(1989) 46-58.
[3] C. Badaro, R. Ceppitelli, Fixed point theorem and vector valued minimax theorems, J. Math. Anal. Appl. 146(1990) 363-373.
[4] S. S. Chang, Y. H. Ma, Generalized KKM theorem on H-spaces with applications, J. Math. Anal. Appl. 163(1992) 406-421.
[5] S. S. Chang, L. Yang, Section theorem on H-spaces with applications, J. Math. Anal. Appl. 179(1993) 214-231.
[6] Y. Q. Chen, Y. J. Cho, J. K. Kim, B. S. Lee, Note on KKM maps and applications, Fixed Point Theory and Applications. (2006) 1-9.
[7] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann, 142(1961) 305-310.
[8] A. Granas, KKM-maps and their applications to nonlinear problems, The Scottish Book(R. D. Maulin, ed), Birkhauser, Boston. (1982) 45-61.
[9] W. Guo, Y. J. Cho, A new maximal element theorem in H-space with applications, Nonlinear Anal. 68(2008) 2194-2203.
[10] C. D. Horvath, Points fixes et coincidences pour les applications multivogues sens convexité, C. R. Acad. Sci. Paris. 296(1983) 403-406.

NEW KKM TYPE THEOREMS IN G-CONVEX SPACES

[11] B. Knaster, K. Kuratowski, und S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-Dimensionale Simplexe, Fund. Math. 14(1929) 132-137.
[12] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983) 151-201.
[13] M. Lassonde, Sur le principe KKM, C. R. Acad. Sci. Paris. 310(1990) 573-576.
[14] W. Lee, Theory of Generalized KKM Maps on Generalized Convex Spaces, Ph.D Thesis, Seoul National University, 2001.
[15] S. Park, Generalizations of Ky Fan's matching theorems and their applications, J. Math. Anal. Appl. 141(1989) 164-176.
[16] S. Park, On minimax inequalities on spaces having certain contractible subsets, Bull. Aaustral. Math. Soc. 47(1993) 25-40.
[17] S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31(1994) 493-519.
[18] S. Park, Elements of the KKM theory for generalized convex spaces, Korean J. Comput. Appl. Math. 7(2000) 1-28.
[19] S. Park, Remarks on topologics of generalized convex spaces, Nonlinear Func. Anal. Appl. 5(2000) 67-79.
[20] S. Park, The KKM, matching, and fixed point theorems in generalized convex spaces, to appear in Nonlinear Funct. Anal. Appl.
[21] S. Park, H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996) 173-187.
[22] S. Park, H. Kim, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209(1997) 551-571.
[23] X. Wu, F. Li, On Ky Fan's section theorem, J. Math. Anal. Appl. 227(1998) 112-121.

Some approximation properties of q-parametric BBH operators

Nazim Mahmudov and Pembe Sabancıgil
Eastern Mediterranean University
Department of Mathematics Gazimagusa
Mersin 10 Turkey

March 5, 2009

Abstract

The paper introduces q-parametric Bleimann, Butzer and Hahn (q-BBH) operators as a rational transformation of q-Bernstein-Lupaş operators. On their basis, a set of new results on q-BBH operators can be obtained easily from the corresponding properties of q-BernsteinLupaş operators. Among several other results, a set of identities involving divided differences are obtained. Furthermore, convergence properties of q-BBH operators are studied.

1 Introduction

q-Bernstein polynomials $B_{n, q}$ were introduced by G. M. Phillips in [26]. q-Bernstein polynomials form an area of an intensive research in the approximation theory, see survey paper [25] and references there in. Nowadays, there are new studies on the q-parametric operators, see [20]-[31]. Twoparametric generalization of q-Bernstein polynomials have been considered by P. Lewanowicz and P. Wozny (cf. [20]), an analogue of the Bernstein-Durrmeyer operator and Bernstein-Chlodowsky operator related to the q-Bernstein basis has been studied by M. - M. Derriennic [9], V. Gupta [16] and V. Gupta and H. Karslı [17], respectively, a q-version of the Szasz-Mirakjan operator has been investigated by A. Aral and V. Gupta in [6]. Also some results on q-parametric Meyer-König and Zeller operators can be found in [27], [31], [11]. Recently Aral and Doğru [5] introduced a q-analogue of Bleimann, Butzer, and Hahn operators and they have established some approximation properties of their q-Bleimann, Butzer, and Hahn operators in the subspace of $C_{B}[0, \infty)$. Also, they showed that these operators are more flexible than classical BBH operators, that is, depending on the selection of q, rate of convergence of the q - BBH operators is better than the classical one. Voronovskaja type asymptotic estimate and the monotonicity properties for q - BBH operators are studied in [10].

The linear operator H_{n} defined by

$$
H_{n}(f, x):=\frac{1}{(1+x)^{n}} \sum_{k=0}^{n} f\left(\frac{k}{n-k+1}\right)\binom{n}{k} x^{k}, \quad x \geq 0, \quad n=1,2, \ldots,
$$

where $f \in \mathbb{R}^{[0, \infty)}$ was introduced by Bleimann, Butzer, and Hahn [7] to approximate continuous functions on the positive semi-axis and has been studied by several authors see, for instance, [8], [19], [3], [7], [4], [2], [18]. In [7], [2] the authors pointed out some formal similarities and differences between H_{n} and the classical Bernstein operator B_{n}. Connection suggested in [2] can be formulated by means of the following identity

$$
H_{n}=V \circ B_{n+1} \circ U
$$

V and U are suitable positive linear operators which will be defined below. This idea was used in [22] to define new q-analogue of the Bleimann, Butzer, and Hahn operators as follows:

$$
H_{n, q}(f ; x):=\left(V \circ B_{n+1, q} \circ U\right)(f ; x),
$$

where $B_{n+1, q}$ is a Philips q-analogue of the Bernstein operators.
On the other hand the Lupaş q-analogue of the Bernstein polynomials ($R_{n, q}$) are less known. However, they have an advantage of generating positive linear operators for all $q>0$, whereas Phillips polynomials generate positive linear operators only if $q \in(0,1)$. Lupaş [21] investigated approximating properties of the operators $R_{n, q}(f, x)$ with respect to the uniform norm of $C[0,1]$. In particular, he obtained some sufficient conditions for a sequence $\left\{R_{n, q}(f, x)\right\}$ to be approximating for any function $f \in C[0,1]$ and estimated the rate of convergence in terms of the modulus of continuity. He also investigated behavior of the operators $R_{n, q}(f, x)$ for convex functions. In [24] several results on convergence properties of the sequence $\left\{R_{n, q}(f, x)\right\}$ is presented. In particular, it is proved that the sequence $\left\{R_{n, q}(f, x)\right\}$ converges uniformly to $f(x)$ on $[0,1]$ if and only if $q_{n} \rightarrow 1$. On the other hand, for any $q>0$ fixed, $q \neq 1$, the sequence $\left\{R_{n, q}(f, x)\right\}$ converges uniformly to $f(x)$ if and only if $f(x)=a x+b$ for some $a, b \in R$.

Using the classical connection between Bernstein and BBH operators we propose the following q-analogue of the Bleimann, Butzer and Hahn operators in $C_{1+x}^{0}[0, \infty)$:

$$
\begin{equation*}
H_{n, q}(f ; x):=\left(V \circ R_{n+1, q} \circ U\right)(f ; x), \tag{1}
\end{equation*}
$$

where $R_{n, q}$ is the Lupaş q-Bernstein operator on $C[0,1]$ defined by

$$
R_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{q^{\frac{k(k-1)}{2}} x^{k}(1-x)^{n-k}}{(1-x+q x) \ldots\left(1-x+q^{n-1} x\right)}
$$

Thanks to (1), different properties of $R_{n+1, q}$ can be transferred to $H_{n, q}$ with some extra effort. Thus, the limiting behaviour of $H_{n, q}$ can be immediately derived from (1) and the well known properties of $R_{n+1, q}$. In [14], Gadjiev and Çakar gave a Korovkin-type theorem using the test function $\left(\frac{t}{1+t}\right)^{i}$ for $i=0,1,2$. In [5], for q-BBH operators $L_{n, q}$ Korovkin-type approximation properties are investigated by using these test functions. Notice that,

$$
H_{n, q}(f ; x)=L_{n, q}(f ; q x)
$$

where $L_{n, q}$ is the q - BBH operator defined in [5].
The paper is organized as follows. In Section 2 we give construction of q - BBH operators and study some elementary properties. Moreover, Arama-Popoviciu-type Formula and Stancu-type form for the remainder of the q - BBH approximation process are obtained. In Section 3 we investigate convergence properties of q - BBH operators and we show how to reduce the case $q \in(1, \infty)$ to the case $q \in(0,1)$.

2 Construction and properties

Before introducing the operators, we mention some basic definitions of q calculus.
Let $q>0$. For any $n \in N \cup\{0\}$, the q-integer $[n]=[n]_{q}$ is defined by

$$
[n]:=1+q+\ldots+q^{n-1}, \quad[0]:=0
$$

and the q-factorial $[n]!=[n]_{q}!$ by

$$
[n]!:=[1][2] \ldots[n], \quad[0]!:=1
$$

For integers $0 \leq k \leq n$, the q-binomial is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{[n]!}{[k]![n-k]!} .
$$

Also, we use the following notations:

$$
\begin{aligned}
(1-x)_{q}^{n}:= & \prod_{j=0}^{n-1}\left(1-q^{j} x\right), \quad(1-x)_{q}^{\infty}:=\prod_{j=0}^{\infty}\left(1-q^{j} x\right), \\
b_{n, k}(q ; x):= & {\left[\begin{array}{c}
n \\
k
\end{array}\right] \frac{q^{\frac{k(k-1)}{2}} x^{k}(1-x)^{n-k}}{(1-x+q x) \ldots\left(1-x+q^{n-1} x\right)}, \quad h_{n, k}(q ; x):=\left[\begin{array}{c}
n \\
k
\end{array}\right] \frac{q^{k(k+1) / 2} x^{k}}{(1+q x)_{q}^{n}}, } \\
b_{\infty, k}(q ; x):= & \frac{q^{\frac{k(k-1)}{2}}(x / 1-x)^{k}}{(1-q)^{k}[k]!\prod_{j=0}^{\infty}\left(1+q^{j}(x / 1-x)\right)}, \quad h_{\infty, k}(q ; x):=\frac{q^{k(k+1) / 2} x^{k}}{(1+q x)_{q}^{\infty}(1-q)^{k}[k]!}, \\
h_{n, k}(q ; x)= & (1+x) \frac{[n-k+1] q^{k}}{[n+1]} b_{n+1, k}\left(q ; \frac{x}{1+x}\right) .
\end{aligned}
$$

As usual, $\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right]$ denotes the divided difference of the function f with respect to distinct nodes $x_{0}, x_{1}, \ldots, x_{n}$ in the domain of f and can be expressed as the following formula:

$$
\left[x_{0}, \ldots, x_{n} ; f\right]=\frac{\left[x_{1}, \ldots, x_{n} ; f\right]-\left[x_{0}, \ldots, x_{n-1} ; f\right]}{x_{n}-x_{0}}
$$

We shall also use the following notations:

$$
\begin{aligned}
C_{B}[0, \infty) & =\{f \in C[0, \infty) \mid f(x)=O(1+x)\} \\
C[0, \infty] & =\{f \in C[0, \infty) \mid f(x) \text { has a finite limit at } \infty\} \\
C_{1+x}^{0}[0, \infty) & =\{f \in C[0, \infty) \mid f(x)=o(1+x) \quad(x \rightarrow \infty)\}
\end{aligned}
$$

It is assumed that $C_{1+x}^{0}[0, \infty)$ is endowed with the norm $\|f\|_{1+x}=\sup _{x \geq 0} \frac{|f(x)|}{1+x}$.
We consider the operators $U: \mathbb{R}^{[0, \infty)} \rightarrow \mathbb{R}^{[0,1]}$,

$$
U(f, t):=\left\{\begin{array}{cc}
(1-t) f\left(\frac{t}{1-t}\right), & t \in[0,1) \\
0, & t=1
\end{array}\right.
$$

and $V: \mathbb{R}^{[0,1)} \rightarrow \mathbb{R}^{[0, \infty)}$,

$$
V(g, x):=(1+x) g\left(\frac{x}{1+x}\right), \quad x \in[0, \infty)
$$

They were introduced in [2] and, aside from notation, in [13]. Some of properties, used throughout the paper, are gathered in the following theorem.

Theorem 1 [1] We have the following relations:

1. $V \circ U$ is the identity operator on $\mathbb{R}^{[0, \infty)}$.
2. $f \in C_{1+x}^{0}[0, \infty)$ if and only if $U f \in C[0,1]$.
3. If $f \in C_{1+x}^{0}[0, \infty)$, then f is convex if and only if f is convex and nonincreasing.

We introduce Bleimann, Butzer and Hahn type operators based on q-integers as follows.
Definition 2 For $f \in \mathbb{R}^{[0, \infty)}$ the q-Bleimann, Butzer and Hahn operators are given by

$$
\begin{aligned}
H_{n, q}(f ; x) & :=\left(V \circ R_{n+1, q} \circ U\right)(f ; x)=\sum_{k=0}^{n} f\left(\frac{[k]}{q^{k}[n-k+1]}\right) h_{n, k}(q ; x) \\
& =\frac{1}{(1+q x)_{q}^{n}} \sum_{k=0}^{n} f\left(\frac{[k]}{q^{k}[n-k+1]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{k(k+1) / 2} x^{k}, \quad n \in N .
\end{aligned}
$$

Definition 3 Let $0<q<1$. The linear operator defined on $\mathbb{R}^{[0, \infty)}$ given by

$$
H_{\infty, q}(f ; x):=\sum_{k=0}^{\infty} f\left(\frac{1-q^{k}}{q^{k}}\right) h_{\infty, k}(q ; x)=\frac{1}{(1+q x)_{q}^{\infty}} \sum_{k=0}^{\infty} f\left(\frac{1-q^{k}}{q^{k}}\right) \frac{q^{k(k+1) / 2}}{(1-q)^{k}[k]!} x^{k}
$$

is called the limit $q-B B H$ operator.
Lemma $4 H_{n, q}, H_{\infty, q}: C_{1+x}^{0}[0, \infty) \rightarrow C_{1+x}^{0}[0, \infty)$ are linear positive operators and

$$
\left\|H_{n, q}(f)\right\|_{1+x} \leq\|f\|_{1+x}, \quad\left\|H_{\infty, q}(f)\right\|_{1+x} \leq\|f\|_{1+x}
$$

Proof. We prove the first inequality, since the second one can be done in a like manner. Thanks to the definition we have

$$
\begin{aligned}
\left|H_{n, q}(f ; x)\right| & \leq \sum_{k=0}^{n}\left|f\left(\frac{[k]}{q^{k}[n-k+1]}\right)\right| h_{n, k}(q ; x) \\
& =(1+x) \sum_{k=0}^{n}\left|f\left(\frac{[k]}{q^{k}[n-k+1]}\right)\right| \frac{[n-k+1] q^{k}}{[n+1]} b_{n+1, k}\left(q ; \frac{x}{1+x}\right) \\
& =(1+x) \sum_{k=0}^{n}\left|f\left(\frac{[k]}{q^{k}[n-k+1]}\right)\right| /\left(1+\frac{[k]}{q^{k}[n-k+1]}\right) b_{n+1, k}\left(q ; \frac{x}{1+x}\right) \\
& \leq(1+x)\|f\|_{1+x} \sum_{k=0}^{n+1} b_{n+1, k}\left(q ; \frac{x}{1+x}\right)=(1+x)\|f\|_{1+x} .
\end{aligned}
$$

Lemma 5 We have

$$
H_{n, q}(1 ; x)=1, \quad H_{n, q}(t ; x)=x-\frac{q^{n(n+1) / 2} x^{n+1}}{(1+q x)_{q}^{n}}
$$

The Arama-Popoviciu-type formula was obtained in [4] and in [8] by direct calculation. Formula (2) below is a q-analogue of the mentioned formula for the q - BBH operators.

Theorem 6 (i) If $f \in C_{1+x}^{0}[0, \infty)$ is a convex function, then the sequence $\left\{H_{n, q}(f ; x)\right\}$ is nonincreasing in n for each $q \in(0,1]$ and $x \in[0, \infty)$.
(ii) If $f \in \mathbb{R}^{[0, \infty)}$, then the following formula is valid

$$
\begin{gather*}
H_{n, q}(f ; x)-H_{n+1, q}(f ; x)=-\frac{1}{(1+q x)_{q}^{n+1}} q^{n(n+1) / 2} x^{n+1}\left[\frac{[n]}{q^{n}}, \frac{[n+1]}{q^{n+1}} ; f\right] \\
+\frac{1}{(1+q x)_{q}^{n+1}} \sum_{k=0}^{n-1} \frac{q^{n-3 k-2}}{[n-k][n-k+1]} \\
\times\left[\frac{[k]}{q^{k}[n-k+1]}, \frac{[k+1]}{q^{k+1}[n-k+1]}, \frac{[k+1]}{q^{k+1}[n-k]} ; f\right]\left[\begin{array}{c}
n+1 \\
k
\end{array}\right] q^{(k+1)(k+2) / 2} x^{k+1} . \tag{2}
\end{gather*}
$$

Proof. (i) We start by writing

$$
\begin{aligned}
& H_{n, q}(f ; x)-H_{n+1, q}(f ; x) \\
& =\frac{1}{(1+q x)_{q}^{n+1}} \sum_{k=0}^{n} f\left(\frac{[k]}{q^{k}[n-k+1]}\right)\left[\begin{array}{c}
n \\
k
\end{array}\right] q^{k(k+1) / 2} x^{k}\left(1+q^{n+1} x\right) \\
& -\frac{1}{(1+q x)_{q}^{n+1}} \sum_{k=0}^{n+1} f\left(\frac{[k]}{q^{k}[n-k+2]}\right)\left[\begin{array}{c}
n+1 \\
k
\end{array}\right] q^{k(k+1) / 2} x^{k} \\
& =-\frac{1}{(1+q x)_{q}^{n+1}} q^{(n+1)(n+2) / 2} x^{n+1}\left(f\left(\frac{[n+1]}{q^{n+1}}\right)-f\left(\frac{[n]}{q^{n}}\right)\right) \\
& +\frac{1}{(1+q x)_{q}^{n+1}} \sum_{k=0}^{n-1} f\left(\frac{[k]}{q^{k}[n-k+1]}\right)\left[\begin{array}{c}
n \\
k
\end{array}\right] q^{(k+1)(k+2) / 2} q^{n-k} x^{k+1} \\
& +\frac{1}{(1+q x)_{q}^{n+1}} \sum_{k=0}^{n-1} f\left(\frac{[k+1]}{q^{k+1}[n-k]}\right)\left[\begin{array}{c}
n \\
k+1
\end{array}\right] q^{(k+1)(k+2) / 2} x^{k+1} \\
& -\frac{1}{(1+q x)_{q}^{n+1}} \sum_{k=0}^{n-1} f\left(\frac{[k+1]}{q^{k+1}[n-k+1]}\right)\left[\begin{array}{c}
n+1 \\
k+1
\end{array}\right] q^{(k+1)(k+2) / 2} x^{k+1} .
\end{aligned}
$$

Consequently,

$$
\begin{align*}
& H_{n, q}(f ; x)-H_{n+1, q}(f ; x)=-\frac{1}{(1+q x)_{q}^{n+1}} q^{(n+1)(n+2) / 2} x^{n+1}\left(f\left(\frac{[n+1]}{q^{n+1}}\right)-f\left(\frac{[n]}{q^{n}}\right)\right) \\
& +\frac{1}{(1+q x)_{q}^{n+1}} \sum_{k=0}^{n-1} a_{k}\left[\begin{array}{c}
n+1 \\
k+1
\end{array}\right] q^{(k+1)(k+2) / 2} x^{k+1} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
a_{k}=\frac{q^{n-k}[k+1]}{[n+1]} f\left(\frac{[k]}{q^{k}[n-k+1]}\right)+\frac{[n-k]}{[n+1]} f\left(\frac{[k+1]}{q^{k+1}[n-k]}\right)-f\left(\frac{[k+1]}{q^{k+1}[n-k+1]}\right) . \tag{4}
\end{equation*}
$$

Now from Theorem 1 since f is nonincreasing the first term is nonnegative. Thus to show monotonicity of $H_{n, q}$ it suffices to show nonnegativity of $a_{k}, 0 \leq k \leq n$. Let us write

$$
\alpha=\frac{q^{n-k}[k+1]}{[n+1]}, \quad 1-\alpha=\frac{[n-k]}{[n+1]}, \quad x_{1}=\frac{[k]}{q^{k}[n-k+1]}, \quad x_{2}=\frac{[k+1]}{q^{k+1}[n-k]} .
$$

Then it follows that

$$
\begin{aligned}
& \alpha x_{1}+(1-\alpha) x_{2}=\frac{q^{n-k}[k+1]}{[n+1]} \frac{[k]}{q^{k}[n-k+1]}+\frac{[n-k]}{[n+1]} \frac{[k+1]}{q^{k+1}[n-k]} \\
& =\frac{[k+1]}{q^{k+1}[n+1]} \frac{q^{n-k+1}[k]+[n-k+1]}{[n-k+1]}=\frac{[k+1]}{q^{k+1}[n+1]} \frac{[n+1]}{[n-k+1]}=\frac{[k+1]}{q^{k+1}[n-k+1]} .
\end{aligned}
$$

We see immediately that

$$
a_{k}=\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)-f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \geq 0
$$

which proves part (i).
(ii) For part (ii) we evaluate the second divided difference of f at the points $\frac{[k]}{q^{k}[n-k+1]}, \frac{[k+1]}{q^{k+1}[n-k+1]}$,
$\frac{[k+1]}{q^{k+1}[n-k]}$ and we obtain

$$
\begin{align*}
& {\left[\frac{[k]}{q^{k}[n-k+1]}, \frac{[k+1]}{q^{k+1}[n-k+1]}, \frac{[k+1]}{q^{k+1}[n-k]} ; f\right]} \\
& =\frac{q^{2 k+2}[n-k][n-k+1]^{2}}{[n+1]} f\left(\frac{[k]}{q^{k}[n-k+1]}\right) \\
& -\frac{q^{2 k+2}[n-k][n-k+1]^{2}}{q^{n-k}[k+1]} f\left(\frac{[k+1]}{q^{k+1}[n-k+1]}\right) \\
& +\frac{q^{2 k+2}[n-k]^{2}[n-k+1]^{2}}{q^{n-k}[k+1][n+1]} f\left(\frac{[k+1]}{q^{k+1}[n-k]}\right) . \tag{5}
\end{align*}
$$

From (4) and (5) we see that

$$
\begin{align*}
{\left[\begin{array}{c}
n+1 \\
k+1
\end{array}\right] a_{k} } & =\left[\begin{array}{c}
n+1 \\
k+1
\end{array}\right] \frac{q^{n-k}[k+1]}{q^{2 k+2}[n-k][n-k+1]^{2}} \\
& \times\left[\frac{[k]}{q^{k}[n-k+1]}, \frac{[k+1]}{q^{k+1}[n-k+1]}, \frac{[k+1]}{q^{k+1}[n-k]} ; f\right] \\
& =\frac{q^{n-k}}{q^{2 k+2}[n-k][n-k+1]}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right] \tag{6}\\
& \times\left[\frac{[k]}{q^{k}[n-k+1]}, \frac{[k+1]}{q^{k+1}[n-k+1]}, \frac{[k+1]}{q^{k+1}[n-k]} ; f\right] .
\end{align*}
$$

Therefore the formula (2) follows from (3) and (6).
The following theorem provides a Stancu-type form of the remainder of the q - BBH approximation process.

Theorem 7 If $f \in \mathbb{R}^{[0, \infty)}$ and $x \in[0, \infty) \backslash\left\{[k] /[n-k+1] q^{k}: k=0,1, \ldots, n\right\}$, then

$$
\begin{gather*}
H_{n, q}(f ; x)-f(x)=-\frac{x^{n+1}}{(1+q x)_{q}^{n}}\left[x, \frac{[n]}{q^{n}} ; f\right] q^{n(n+1) / 2} \\
+\frac{x}{(1+q x)_{q}^{n}} \sum_{k=0}^{n-1}\left[x, \frac{[k]}{[n-k+1] q^{k}}, \frac{[k+1]}{[n-k] q^{k+1}} ; f\right] \frac{q^{\frac{(k-2)(k+1)}{2}}}{[n-k]}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right] x^{k} . \tag{7}
\end{gather*}
$$

Proof. By the definition of $H_{n, q}$ we have

$$
\begin{aligned}
H_{n, q}(f ; x)-f(x) & =\frac{1}{(1+q x)_{q}^{n}} \sum_{k=0}^{n}\left(f\left(\frac{[k]}{q^{k}[n-k+1]}\right)-f(x)\right)\left[\begin{array}{c}
n \\
k
\end{array}\right] q^{k(k+1) / 2} x^{k} \\
= & -\frac{1}{(1+q x)_{q}^{n}} \sum_{k=0}^{n}\left(x-\frac{[k]}{q^{k}[n-k+1]}\right)\left[x, \frac{[k]}{[n-k+1] q^{k}} ; f\right]\left[\begin{array}{c}
n \\
k
\end{array}\right] q^{k(k+1) / 2} x^{k}
\end{aligned}
$$

Since

$$
\frac{[k]}{[n-k+1]}\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{c}
n \\
k-1
\end{array}\right]
$$

we have

$$
\begin{aligned}
H_{n, q}(f ; x)-f(x) & =-\frac{1}{(1+q x)_{q}^{n}} \sum_{k=0}^{n}\left[x, \frac{[k]}{[n-k+1] q^{k}} ; f\right]\left[\begin{array}{c}
n \\
k
\end{array}\right] q^{k(k+1) / 2} x^{k+1} \\
& +\frac{1}{(1+q x)_{q}^{n}} \sum_{k=1}^{n}\left[x, \frac{[k]}{[n-k+1] q^{k}} ; f\right]\left[\begin{array}{c}
n \\
k-1
\end{array}\right] q^{k(k-1) / 2} x^{k}
\end{aligned}
$$

Rearranging the above equality, we can write

$$
\begin{gather*}
H_{n, q}(f ; x)-f(x)=-\frac{x^{n+1}}{(1+q x)_{q}^{n}}\left[x, \frac{[n]}{q^{n}} ; f\right] q^{n(n+1) / 2} \\
+\frac{1}{(1+q x)_{q}^{n}} \sum_{k=0}^{n-1}\left(\left[x, \frac{[k+1]}{[n-k] q^{k+1}} ; f\right]-\left[x, \frac{[k]}{[n-k+1] q^{k}} ; f\right]\right)\left[\begin{array}{c}
n \\
k
\end{array}\right] q^{k(k+1) / 2} x^{k+1} \tag{8}
\end{gather*}
$$

Using the equality

$$
\frac{[k+1]}{[n-k] q^{k+1}}-\frac{[k]}{[n-k+1] q^{k}}=\frac{[n+1]}{[n-k][n-k+1] q^{k+1}}
$$

we have the following formula for divided differences:

$$
\begin{align*}
& {\left[x, \frac{[k+1]}{[n-k] q^{k+1}} ; f\right]-\left[x, \frac{[k]}{[n-k+1] q^{k}} ; f\right]} \\
& =\left[x, \frac{[k]}{[n-k+1] q^{k}}, \frac{[k+1]}{[n-k] q^{k+1}} ; f\right] \frac{[n+1]}{[n-k][n-k+1] q^{k+1}}, \tag{9}
\end{align*}
$$

and therefore the formula (7) follows from (8) and (9).
We will focus now on the formula for the second central moment of the $H_{n, q}$, which is the q-analogue of classical formula for q-BBH operators, see [19], [1].

Lemma 8 We have
$H_{n, q}\left((t-x)^{2} ; x\right)=\frac{x^{n+1}}{(1+q x)_{q}^{n}} q^{n(n+1) / 2}\left(x-\frac{[n]}{q^{n}}\right)+\frac{1}{(1+q x)_{q}^{n}} \sum_{k=0}^{n-1} \frac{1}{[n-k]}\left[\begin{array}{c}n+1 \\ k\end{array}\right] q^{(k-2)(k+1) / 2} x^{k+1}$.
Proof. Indeed, with $f(t)=(t-x)\left(t-\frac{[n]}{q^{n}}\right)$, equation (7) gives

$$
H_{n, q}\left((t-x)\left(t-\frac{[n]}{q^{n}}\right) ; x\right)=\frac{1}{(1+q x)_{q}^{n}} \sum_{k=0}^{n-1} \frac{1}{[n-k] q^{k+1}}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right] q^{k(k+1) / 2} x^{k+1}
$$

Consequently, we obtain

$$
\begin{aligned}
& H_{n, q}\left((t-x)^{2} ; x\right)=\left(\frac{[n]}{q^{n}}-x\right)\left(H_{n, q}(t ; x)-x\right)+H_{n, q}\left((t-x)\left(t-\frac{[n]}{q^{n}}\right) ; x\right) \\
& \quad=\frac{x^{n+1}}{(1+q x)_{q}^{n}} q^{n(n+1) / 2}\left(x-\frac{[n]}{q^{n}}\right)+\frac{1}{(1+q x)_{q}^{n}} \sum_{k=0}^{n-1} \frac{1}{[n-k] q^{k+1}}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right] q^{k(k+1) / 2} x^{k+1}
\end{aligned}
$$

It is known that a function f is convex on an interval if and only if all second order divided differences of f are nonnegative. This property, Theorems 7,1 and 6 together imply the following result.

Corollary 9 If $f \in C_{1+x}^{0}[0, \infty)$ is convex or if $f \in R^{[0, \infty)}$ is convex and nonincreasing, then

$$
H_{n, q}(f ; x) \geq H_{n+1, q}(f ; x) \geq f(x)
$$

3 Convergence properties

For $f \in C[0,1], t>0$, the modulus of continuity $\omega(f, t)$ of f is defined by

$$
\omega(f, t)=\sup _{|x-y| \leq t}|f(x)-f(y)|
$$

Theorem 10 Let $q=q_{n}$ satisfies $0<q_{n}<1$ and let $q_{n} \rightarrow 1$ as $n \rightarrow \infty$. For any $x \in[0, \infty)$ and for any $f \in C_{1+x}^{0}[0, \infty)$ the following inequality holds

$$
\frac{1}{1+x}\left|H_{n, q_{n}}(f ; x)-f(x)\right| \leq 2 \omega\left(U f, \sqrt{\lambda_{n}(x)}\right)
$$

where $\lambda_{n}(x)=\frac{x}{(1+x)^{2}} \frac{1}{[n+1]_{q_{n}}}$.
Proof. Positivity of $R_{n+1, q_{n}}$ implies that for any $g \in C[0,1]$

$$
\begin{equation*}
\left|R_{n+1, q_{n}}(g ; x)-g(x)\right| \leq R_{n+1, q_{n}}(|g(t)-g(x)| ; x) . \tag{10}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
& |(U f)(t)-(U f)(x)| \\
& \leq \omega(U f,|t-x|) \leq \omega(U f, \delta)\left(1+\frac{1}{\delta}|t-x|\right), \quad \delta>0 .
\end{aligned}
$$

This inequality and (10) imply that

$$
\left|R_{n+1, q_{n}}(U f ; x)-(U f)(x)\right| \leq \omega(U f, \delta)\left(1+\frac{1}{\delta} R_{n+1, q_{n}}(|t-x| ; x)\right)
$$

and

$$
\begin{aligned}
& \left|H_{n, q_{n}}(f ; x)-f(x)\right| \\
& =(1+x)\left|R_{n+1, q_{n}}\left(U f ; \frac{x}{1+x}\right)-(U f)\left(\frac{x}{1+x}\right)\right| \\
& \leq(1+x) \omega(U f, \delta)\left(1+\frac{1}{\delta} R_{n+1, q_{n}}\left(\left|t-\frac{x}{1+x}\right| ; \frac{x}{1+x}\right)\right) \\
& \leq(1+x) \omega(U f, \delta)\left(1+\frac{1}{\delta}\left(R_{n+1, q_{n}}\left(\left|t-\frac{x}{1+x}\right|^{2} ; \frac{x}{1+x}\right)\right)^{1 / 2}\right) \\
& =(1+x) \omega(U f, \delta)\left(1+\frac{1}{\delta}\left(\frac{x}{1+x} \frac{1}{[n+1]_{q_{n}}}+\frac{x}{1+x} \frac{q_{n} x}{1+q_{n} x}\left(1-\frac{1}{[n+1]_{q_{n}}}\right)-\left(\frac{x}{1+x}\right)^{2}\right)^{1 / 2}\right) \\
& \leq(1+x) \omega(U f, \delta)\left(1+\frac{1}{\delta}\left(\frac{x}{1+x} \frac{1}{[n+1]_{q_{n}}}-\left(\frac{x}{1+x}\right)^{2} \frac{1}{[n+1]_{q_{n}}}\right)^{1 / 2}\right) \\
& =(1+x) \omega(U f, \delta)\left(1+\frac{1}{\delta}\left(\frac{x}{(1+x)^{2}} \frac{1}{[n+1]_{q_{n}}}\right)^{1 / 2}\right)
\end{aligned}
$$

where we have used the explicit formula for $R_{n+1, q_{n}}\left(\left|t-\frac{x}{1+x}\right|^{2} ; \frac{x}{1+x}\right)$, which can be found in [24]. Now by choosing $\delta=\sqrt{\lambda_{n}(x)}$, we obtain desired result.

Corollary 11 Let $q=q_{n}$ satisfies $0<q_{n}<1$ and let $q_{n} \rightarrow 1$ as $n \rightarrow \infty$. For any $f \in C_{1+x}^{0}[0, \infty)$ it holds that

$$
\lim _{n \rightarrow \infty}\left\|H_{n, q_{n}}(f ; x)-f(x)\right\|_{1+x}=0
$$

In [24], it is proved that $b_{n, k}(q ; x) \rightarrow b_{\infty, k}(q ; x)$ uniformly in $x \in[0,1)$ as $n \rightarrow \infty$. In the next lemma we give an estimate for $\left|b_{n, k}\left(q ; \frac{x}{1+x}\right)-b_{\infty, k}\left(q ; \frac{x}{1+x}\right)\right|$ for $x \in[0, \infty)$.

Lemma 12 Let $0<q<1, k \geq 0, n \geq 1$. For any $x \in[0, \infty)$ we have

$$
\left|b_{n, k}\left(q ; \frac{x}{1+x}\right)-b_{\infty, k}\left(q ; \frac{x}{1+x}\right)\right| \leq b_{n, k}\left(q ; \frac{x}{1+x}\right) \frac{x q^{n}}{1-q}+b_{\infty, k}\left(q ; \frac{x}{1+x}\right) \frac{q^{n-k+1}}{1-q}
$$

Proof. Standard computations show that

$$
\begin{align*}
& \left|b_{n, k}\left(q ; \frac{x}{1+x}\right)-b_{\infty, k}\left(q ; \frac{x}{1+x}\right)\right| \\
& =\left\lvert\,\left[\begin{array}{c}
n \\
k
\end{array}\right] \prod_{j=0}^{k-1} \frac{q^{j} x}{1+q^{j} x} \prod_{j=0}^{n-k-1}\left(1-\frac{q^{k+j} x}{1+q^{k+j} x}\right)\right. \\
& \left.-\frac{1}{(1-q)^{k}[k]!} \prod_{j=0}^{k-1} \frac{q^{j} x}{1+q^{j} x} \prod_{j=0}^{\infty}\left(1-\frac{q^{k+j} x}{1+q^{k+j} x}\right) \right\rvert\, \\
& =\left\lvert\,\left[\begin{array}{c}
n \\
k
\end{array}\right] \prod_{j=0}^{k-1} \frac{q^{j} x}{1+q^{j} x}\left(\prod_{j=0}^{n-k-1}\left(1-\frac{q^{k+j} x}{1+q^{k+j} x}\right)-\prod_{j=0}^{\infty}\left(1-\frac{q^{k+j} x}{1+q^{k+j} x}\right)\right)\right. \\
& \left.+\prod_{j=0}^{k-1} \frac{q^{j} x}{1+q^{j} x} \prod_{j=0}^{\infty}\left(1-\frac{q^{k+j} x}{1+q^{k+j} x}\right)\left(\left[\begin{array}{c}
n \\
k
\end{array}\right]-\frac{1}{(1-q)^{k}[k]!}\right) \right\rvert\, \\
& \leq b_{n, k}\left(q ; \frac{x}{1+x}\right)\left|1-\prod_{j=n}^{\infty}\left(1-\frac{q^{j} x}{1+q^{j} x}\right)\right|+b_{\infty, k}\left(q ; \frac{x}{1+x}\right)\left|\prod_{j=n-k+1}^{n}\left(1-q^{j}\right)-1\right| \tag{11}
\end{align*}
$$

Now using the inequality

$$
1-\prod_{j=1}^{k}\left(1-a_{j}\right) \leq \sum_{j=1}^{k} a_{j},\left(a_{1}, a_{2}, \ldots, a_{k} \in(0,1), k=1,2, \ldots, \infty\right)
$$

we get from (11) that

$$
\begin{aligned}
\left|b_{n, k}\left(q ; \frac{x}{1+x}\right)-b_{\infty, k}\left(q ; \frac{x}{1+x}\right)\right| & \leq b_{n, k}\left(q ; \frac{x}{1+x}\right) \sum_{j=n}^{\infty} \frac{q^{j} x}{1+q^{j} x}+b_{\infty, k}\left(q ; \frac{x}{1+x}\right) \sum_{j=n-k+1}^{n} q^{j} \\
& \leq b_{n, k}\left(q ; \frac{x}{1+x}\right) \frac{x q^{n}}{1-q}+b_{\infty, k}\left(q ; \frac{x}{1+x}\right) \frac{q^{n-k+1}}{1-q}
\end{aligned}
$$

Using Lemma 12 we prove the following quantitative result for the rate of local convergence of $H_{n, q}(f ; x)$ in terms of the first modulus of continuity.

Theorem 13 Let $0<q<1$ and $f \in C_{1+x}^{0}[0, \infty)$. Then for all $0 \leq x<\infty$ we have

$$
\left|H_{n, q}(f ; x)-H_{\infty, q}(f ; x)\right| \leq(1+x)^{2} \frac{2}{1-q} \omega\left(U f, q^{n+1}\right)
$$

Proof. Consider

$$
\begin{aligned}
\Delta(x) & :=H_{n, q}(f ; x)-H_{\infty, q}(f ; x)=\left(V \circ R_{n+1, q} \circ U\right)(f ; x)-\left(V \circ R_{\infty, q} \circ U\right)(f ; x) \\
& =\left(V \circ\left(R_{n+1, q}-R_{\infty, q}\right) \circ U\right)(f ; x)=\left(V \circ\left(R_{n+1, q}-R_{\infty, q}\right)\right)(U f ; x) .
\end{aligned}
$$

Since $H_{n, q}(f ; x)$ and $H_{\infty, q}(f ; x)$ possess the end point interpolation property, $\Delta(0)=0$. For all $x \in(0, \infty)$ we rewrite Δ in the following form

$$
\begin{aligned}
& \Delta(x)=V \circ \sum_{k=0}^{n+1} {\left[(U f)\left(\frac{[k]}{[n+1]}\right)-(U f)\left(1-q^{k}\right)\right] b_{n+1, k}(q ; x) } \\
&+V \circ \sum_{k=0}^{n+1}\left[(U f)\left(1-q^{k}\right)-(U f)(1)\right]\left(b_{n+1, k}(q ; x)-b_{\infty, k}(q ; x)\right) \\
& \quad-V \circ \sum_{k=n+2}^{\infty}\left[(U f)\left(1-q^{k}\right)-(U f)(1)\right] b_{\infty, k}(q ; x)=: I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

We start with estimation of I_{1} and I_{3}. Since

$$
\begin{aligned}
\frac{[k]}{[n+1]}-\left(1-q^{k}\right) & =\frac{1-q^{k}}{1-q^{n+1}}-\left(1-q^{k}\right)=q^{n+1} \frac{1-q^{k}}{1-q^{n+1}} \leq q^{n+1} \\
0 & \leq 1-\left(1-q^{k}\right)=q^{k} \leq q^{n+1}, \quad k>n+1
\end{aligned}
$$

we get

$$
\begin{align*}
& \left|I_{1}\right| \leq(1+x) \omega\left(U f, q^{n+1}\right) \sum_{k=0}^{n+1} b_{n+1, k}\left(q ; \frac{x}{1+x}\right)=(1+x) \omega\left(U f, q^{n+1}\right) \tag{12}\\
& \left|I_{3}\right| \leq(1+x) \omega\left(U f, q^{n+1}\right) \sum_{k=n+2}^{\infty} b_{\infty, k}\left(q ; \frac{x}{1+x}\right) \leq(1+x) \omega\left(U f, q^{n+1}\right) \tag{13}
\end{align*}
$$

Finally we estimate I_{2}. Using the property of the modulus of continuity

$$
\omega(f, \lambda t) \leq(1+\lambda) \omega(f, t), \quad \lambda>0
$$

and Lemma 12 we get

$$
\begin{align*}
\left|I_{2}\right| & \leq(1+x) \sum_{k=0}^{n+1} \omega\left(U f, q^{k}\right)\left|b_{n+1, k}\left(q ; \frac{x}{1+x}\right)-b_{\infty, k}\left(q ; \frac{x}{1+x}\right)\right| \\
& \leq(1+x) \omega\left(U f, q^{n+1}\right) \sum_{k=0}^{n+1}\left(1+q^{k-n-1}\right)\left|b_{n+1, k}\left(q ; \frac{x}{1+x}\right)-b_{\infty, k}\left(q ; \frac{x}{1+x}\right)\right| \\
& \leq 2(1+x) \omega\left(U f, q^{n+1}\right) \frac{1}{q^{n+1}} \sum_{k=0}^{n+1} q^{k}\left|b_{n+1, k}\left(q ; \frac{x}{1+x}\right)-b_{\infty, k}\left(q ; \frac{x}{1+x}\right)\right| \\
& \leq 2(1+x) \omega\left(U f, q^{n+1}\right) \frac{1}{q^{n+1}} \sum_{k=0}^{n+1} q^{k}\left(b_{n+1, k}\left(q ; \frac{x}{1+x}\right) \frac{x q^{n+1}}{1-q}+b_{\infty, k}\left(q ; \frac{x}{1+x}\right) \frac{q^{n-k+2}}{1-q}\right) \\
& \leq 2(1+x)^{2} \frac{1}{1-q} \omega\left(U f, q^{n+1}\right) \tag{14}
\end{align*}
$$

From (12), (13), and (14), we conclude the desired estimation.
Finally we give the following theorem which allows us to reduce the case $q \in(1, \infty)$ to the case $q \in(0,1)$. Let $f \in C[0, \infty]$. Define

$$
g(x)=\left\{\begin{array}{lr}
\lim _{x \rightarrow \infty} f(x), \quad \text { if } x=0 \\
f\left(\frac{1}{x}\right), & \text { if } 0<x<\infty \\
f(0), & \text { if } x=\infty
\end{array}\right.
$$

Theorem 14 For any $q>0$ we have

$$
H_{n, 1 / q}\left(g ; \frac{1}{x}\right)= \begin{cases}\lim _{x \rightarrow \infty} H_{n, q}(f ; x), & \text { if } x=0 \\ H_{n, q}(f ; x), & \text { if } 0<x<\infty \\ f(0), & \text { if } x=\infty\end{cases}
$$

Proof. It is clear that

$$
H_{n, q}(f ; x)=\sum_{k=0}^{n} f\left(\frac{[n-k]_{q}}{q^{n-k}[k+1]_{q}}\right) h_{n, n-k}(q ; x) .
$$

Consider

$$
\begin{aligned}
h_{n, n-k}(q ; x) & =\frac{1}{(1+q x)_{q}^{n}}\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q} q^{(n-k)(n-k+1) / 2} x^{n-k} \\
& =\frac{1}{q^{n(n+1) / 2} x^{n}\left(1+\frac{1}{q x}\right)_{1 / q}^{n}} \frac{q^{n(n+1) / 2}}{q^{(n-k)(n-k+1) / 2} q^{k(k+1) / 2}}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{1 / q} q^{(n-k)(n-k+1) / 2} x^{n-k} \\
& =\frac{1}{\left(1+\frac{1}{q x}\right)_{1 / q}^{n}}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{1 / q}\left(\frac{1}{q}\right)^{k(k+1) / 2}\left(\frac{1}{x}\right)^{k}=h_{n, k}\left(\frac{1}{q} ; \frac{1}{x}\right)
\end{aligned}
$$

On the other hand,

$$
\frac{[n+1-k]_{q}}{q^{n+1-k}[k]_{q}}=\frac{1-q^{n+1-k}}{q^{n+1-k}\left(1-q^{k}\right)}=\frac{[n-k+1]_{1 / q}}{q^{k}[k]_{1 / q}}=\frac{1}{q^{k}} \frac{1-\left(\frac{1}{q}\right)^{n-k+1}}{1-\left(\frac{1}{q}\right)^{k}}=\frac{1}{q^{n-k+1}} \frac{q^{n-k+1}-1}{q^{k}-1}
$$

Therefore

$$
\begin{aligned}
H_{n, q}(f ; x) & =\sum_{k=0}^{n} f\left(\frac{[n+1-k]_{q}}{q^{n+1-k}[k]_{q}}\right) h_{n, n-k}(q ; x)=\sum_{k=0}^{n} f\left(\frac{[n-k+1]_{1 / q}}{q^{k}[k]_{1 / q}}\right) h_{n, k}\left(\frac{1}{q} ; \frac{1}{x}\right) \\
& =\sum_{k=0}^{n} g\left(\frac{q^{k}[k]_{1 / q}}{[n-k+1]_{1 / q}}\right) h_{n, k}\left(\frac{1}{q} ; \frac{1}{x}\right)=H_{n, 1 / q}\left(g ; \frac{1}{x}\right) .
\end{aligned}
$$

Acknowledgement
The research is supported by the Research Advisory Board of Eastern Mediterranean University under project BAP-A-08-04.

References

[1] U. Abel and M. Ivan, Some identities for the operator of Bleimann, Butzer and Hahn involving divided differences, Calcolo, 36, 143-160 (1999).
[2] Adell, José A.; Badía, F. Germán; de la Cal, Jesús On the iterates of some Bernstein-type operators. J. Math. Anal. Appl., 209, 529-541 (1997).
[3] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and Its Applications, De Gruyter Studies in Mathematics,Walter de Gruyter, Berlin, Germany, 1994.
[4] O. Agratini, An application of divided differences. Automat. Comput. Appl. Math. 4, 95-99 (1995).
[5] A. Aral, O. Doğru, Bleimann, Butzer, and Hahn operators based on the q-integers. J. Inequal. Appl. 2007, Art. ID 79410.
[6] A. Aral, V. Gupta, The q-derivative and applications to q-Szasz-Mirakyan operators, Calcolo, 43, 151-170 (2003).
[7] G. Bleimann, P. L. Butzer, and L. Hahn, A Bernstem-type operator approximating continuous functions on the semi-axis, Koninklijke Nederlandse Akademie vanWetenschappen. Indagationes Mathematicae, 42, 255-262 (1980).
[8] B. Della Vecchia, Some properties of a rational operator of Bernstein-type, in "Progress in Approximation Theory" P. Nevai and A. Pinkus, Eds.., Academic Press, New York, 1991, pp. 177-185.
[9] M.-M. Derriennic, Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl., 76, 269-290 (2005).
[10] O. Doğru, V. Gupta, Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, Georgian Math. J., 12, 415-422 (2005).
[11] O. Doğru, V. Gupta, Korovkin-type approximation properties of bivariate q-Meyer-König and Zeller operators, Calcolo, 43, 51-63 (2006).
[12] A. II'nskii and S. Ostrovska, Convergence of generalized Bernstein polynomials, Journal of Approximation Theory, 116, 100-112 (2002).
[13] M. Ivan, A note on the Bleimann-Butzer-Hahn operator. Automat. Comput. Appl. Math., 6, 11-15 (1997).
[14] A. D. Gadjiev and O. Cakar, On uniform approximation by Bleimann, Butzer and Hahn operators on all positive semiaxis, Transactions of Academy of Sciences of Azerbaijan. Series of Physical-Technical and Mathematical Sciences, 19, 21-26 (1999).
[15] T. N. T. Goodman, H. Oruc, and G. M. Phillips, Convexity and generalized Bernstein polynomials, Proceedings of the Edinburgh Mathematical Society, 42, 179-190 (1999).
[16] V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput. (2007), doi:10.1016/j.amc.2007.07.056.
[17] H. Karsli, V. Gupta, Some approximation properties of q-Chlodowsky operators, Appl. Math. Comput., 195, 220-229 (2008).
[18] R.A. Khan, A. A note on a Bernstein-type operator of Bleimann, Butzer, and Hahn, J. Approx. Theory, 53, 295-303 (1988).
[19] R. A. Khan, Some properties of a Bernstein-type operator of Bleimann, Butzer and Hahn, in "Progress in Approximation Theory" P. Nevai and A. Pinkus, Eds.., Academic Press, New York, 1991, pp. 497-504.
[20] S. Lewanowicz, P. Wozny, Generalized Bernstein polynomials, BIT, 44, 63-78 (2004).
[21] A. Lupaş, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, $\mathbf{9}, 1987$.
[22] N. I. Mahmudov and P. Sabancıgil, q-Parametric Bleimann Butzer and Hahn Operators, Journal of Inequalities and Applications, 2008 (2008), Article ID 816367, 15 pages doi:10.1155/2008/816367.
[23] H. Oruc and G. M. Phillips, A generalization of the Bernstein polynomials, Proceedings of the Edinburgh Mathematical Society, 42, 403-413 (1999).
[24] S. Ostrovska, On the Lupaş q-analogue of the Bernstein operator, Rocky Mountain Journal of Mathematics, 36, 1615-1629 (2006).
[25] S. Ostrovska," The first decade of the q-Bernstein polynomials: results and perspectives, Journal of Mathematical Analysis and Approximation Theory, 2, 35-51 (2007).
[26] G.M. Phillips, Bernstein polynomials based on the q-integers, Annals of Numerical Mathematics, 4, 511-518 (1997).
[27] T. Trif, Meyer-Konig and Zeller operators based on the q-integers, Revue d'Analyse Numeorie de l'Approximation, 29, 221-229 (2000).
[28] H. Wang, Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for $0<q<1$, J. Approx. Theory, 145, 182-195 (2007).
[29] V.S. Videnskii, On some classes of q-parametric positive linear operators, Selected topics in complex analysis, 213-222, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005.
[30] H. Wang, Korovkin-type theorem and application, J. Approx. Theory, 132, 258-264 (2005).
[31] H. Wang Properties of convergence for the q-Meyer-König and Zeller operators. J. Math. Anal. Appl. 335, 1360-1373 (2007).

A GENERAL COMPOSITE ITERATIVE METHOD FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

Jong Soo Jung
Department of Mathematics, Dong-A University, Busan, 604-714, Korea
E-mail: jungjs@mail.donga.ac.kr

Abstract

We introduce a new general composite iterative scheme by the viscosity approximation method for finding a common point of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in Hilbert spaces. It is proved that the sequence generated by the iterative scheme converges strongly to a common point of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping, which is the unique solution of a ceratin variational inequality. Our results substantially develop and improve the corresponding results of Jung [J. S. Jung, Strong convergence of composite iterative methods for equilibrium problems and fixed point problems, Appl. Math. Comput. 213 (2009) 498-505], Plubtieng and Punpaeng [S. Plubtieng and R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007) 455-469], Shang et al. [M. Shang, X. Qin, Y . Su, A general iterative method for equilibrium problems and fixed point problems, Fixed Point Theory Appl. 2007 (2007), Article ID 64306, 7 pages] and Takahashi and Takahashi [A. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert space, J. Math. Anal. appl. 333 (2007) 506-515].

AMS Mathematics Subject Classification : 47H09, 47H10, 47J20, 47J25, 49J40, 47N10.
Key words and phrases: Viscosity approximation method; Composite iterative scheme; Equilibrium problem; Fixed points; Variational inequality; Nonexpansive mapping; Contraction.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Recall that a mapping $f: C \rightarrow C$ is a contraction on C if there exists a constant $k \in(0,1)$ such that $\|f(x)-f(y)\| \leq k\|x-y\|, x, y \in C$. We use Σ_{C} to denote the

[^5]collection of all contractions on C. That is, $\Sigma_{C}=\{f: f: C \rightarrow C$ a contraction $\}$. A mapping $S: C \rightarrow C$ is called nonexpansive if $\|S x-S y\| \leq\|x-y\| \quad x, y \in C$. We denote by $F(S)$ the set of fixed points of S; that is, $F(S)=\{x \in C: x=S x\}$. If $C \in H$ is a bounded closed convex subset and S is a nonexpansive mapping of C into itself, then $F(S)$ is nonempty; see $[5,15]$.

Let F be a bifunction of $C \times C$ into \mathbb{R}, where \mathbb{R} is the set of real numbers. The equilibrium problem for $F: C \times C \rightarrow \mathbb{R}$ is to find $x \in C$ such that

$$
\begin{equation*}
F(x, y) \geq 0 \quad \text { for all } y \in C \tag{1.1}
\end{equation*}
$$

The set of solutions of (1.1) is denoted by $E P(F)$. Given a mapping $T: C \rightarrow$ H, let $F(x, y)=\langle T x, y-x\rangle$ for all $x, y \in C$. Then, $z \in E P(F)$ if and only if $\langle T z, y-z\rangle \geq 0$ for all $y \in C$, that is, z is a solution of the variational inequality. Many problems in physics, optimization, and economics reduce to find a solution of the equilibrium problem (1.1). Some methods have been proposed to solve the equilibrium problem; see, for instance, [2,4]. In 2005, Combettes and Hirstoaga [2] introduced an iterative scheme of finding the best approximation to the initial data when $E P(F)$ is nonempty and prove a strong convergence theorem.

Let A be a strongly positive bounded linear operator on H : that is, there is a constant $\bar{\gamma}>0$ with property

$$
\langle A x, x\rangle \geq \bar{\gamma}\|x\|^{2}, \quad \text { for all } x \in H
$$

Recently iterative methods for nonexpansive mappings have been applied to solve convex minimization problem; see, e.g., $[3,17,18,20]$ and the references therein. A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H :

$$
\begin{equation*}
\min _{x \in F(S)} \frac{1}{2}\langle A x, x\rangle-\langle x, b\rangle \tag{1.2}
\end{equation*}
$$

where b is a given point in H
In 2000, as a method for approximation of fixed points of a nonexpansive mapping, the viscosity approximation method of selecting a particular fixed point of a given nonexpansive mapping was proposed by Moudafi [9]. In 2004, in order to improve Theorem 2.2 of Moudafi [9], Xu [19] considered the the following explicit iterative scheme: for $S: C \rightarrow C$ nonexpansive mapping, $f \in \Sigma_{C}$ and $\alpha_{n} \in(0,1)$,

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S x_{n}, \quad n \geq 1 \tag{1.3}
\end{equation*}
$$

Moreover, in [19], he also studied the strong convergence of $\left\{x_{n}\right\}$ generated by (1.3) as $n \rightarrow \infty$ in a Hilbert space and showed that the strong $\lim _{n \rightarrow \infty} x_{n}$ is the unique solution of a certain variational inequality.

In 2003, Xu [18] proved that the sequence $\left\{x_{n}\right\}$ generated by the following iterative method with the initial guess $x_{0} \in H$ chosen arbitrarily,

$$
x_{n+1}=\alpha_{n} b+\left(I-\alpha_{n} A\right) S x_{n}, \quad n \geq 0
$$

A general composite iterative method for equilibrium problems

converges strongly to the unique solution of the minimization problem (1.2) provided the sequence $\left\{\alpha_{n}\right\}$ satisfies certain conditions. In 2006, Marino and $\mathrm{Xu}[8]$ introduced a new iterative scheme by the viscosity approximation method:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S x_{n}, \quad n \geq 0, \tag{1.4}
\end{equation*}
$$

and proved that the sequence $\left\{x_{n}\right\}$ generated by (1.4) converges strongly to the unique solution x^{*} of the variational inequality

$$
\left\langle(\gamma f-A) x^{*}, x^{*}-x\right\rangle \geq 0, \quad x \in F(S)
$$

which is the optimality condition for the minimization problem

$$
\min _{x \in F(S)} \frac{1}{2}\langle A x, x\rangle-h(x),
$$

where h is a potential function for γf (that is, $h^{\prime}(x)=\gamma f(x)$ for $x \in H$).
On the other hand, in 2007, using the metric projection, Tada and Takahashi [13] introduced the an iterative scheme for finding a common point of the set of solutions of the equilibrium problem (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space as follows:

$$
\left\{\begin{array}{l}
u_{n} \in C \text { such that } F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \text { for all } y \in C, \tag{1.5}\\
w_{n}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S u_{n}, \\
C_{n}=\left\{z \in H:\left\|w_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
D_{n}=\left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap D_{n}}(x), \quad n \geq 1,
\end{array}\right.
$$

where P_{K} denotes the metric projection from H onto a closed convex subset K of H. Using an additional projection to calculate at each iteration step, they showed that the sequence $\left\{x_{n}\right\}$ generated by (1.5) converges strongly to $P_{F(S) \cap E P(F)}(x)$ (see also Tada and Takahashi [12]).

In 2007, without using the metric projection, Takahashi and Takahashi [14] considered the following iterative scheme by the the viscosity approximation method for finding a common point of the set of solutions of the equilibrium problem (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space:

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \text { for all } y \in C, \tag{1.6}\\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S u_{n}, \quad n \geq 1,
\end{array}\right.
$$

and proved that the sequence $\left\{x_{n}\right\}$ generated by (1.6) strongly converges strongly to a point in $F(S) \cap E P(F)$, provided $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$,
(C2) $\liminf \operatorname{in}_{n \rightarrow \infty} r_{n}>0, \quad \sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$.
Their result was connected with Combettes and Hirstoaga's result [2] and Wittmann's result [16].

In 2009, Jung [7] considered the following composite iterative scheme for finding a common point of the set of solutions of the equilibrium problem (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space:

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \text { for all } y \in C, \tag{1.7}\\
y_{n}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S u_{n}, \\
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S y_{n}, \quad n \geq 1,
\end{array}\right.
$$

and established the strong convergence of $\left\{x_{n}\right\}$ generated by (1.7) to a point in $F(S) \cap E P(F)$ under conditions (C1) and (C2) on $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ and the following condition on $\left\{\beta_{n}\right\}$:
(C3) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$.
In 2007, Plubtieng and Punpaeng [10] (see also Shang et al. [11]) studied the following iterative scheme by the the viscosity approximation method for finding a common point of the set of solutions of the equilibrium problem (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space:

$$
\begin{cases}F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, & \text { for all } y \in C, \tag{1.8}\\ x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S u_{n}, & n \geq 1,\end{cases}
$$

where $0<\gamma<\frac{\bar{\gamma}}{k}$, and proved that the sequence $\left\{x_{n}\right\}$ generated by (1.8) strongly converges strongly to a point in $F(S) \bigcap E P(F)$ under the conditions (C1) and (C2) on $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$, which is the unique solution of the following variational inequality

$$
\langle\gamma f(q)-A q, q-p\rangle \geq 0, \quad p \in F(S) \cap E P(F),
$$

which is also the optimality condition for the minimization problem

$$
\min _{x \in F(S) \cap E P(F)} \frac{1}{2}\langle A x, x\rangle-h(x),
$$

where h is a potential function for γf.
In this paper, motivated by above-mentioned results, we introduce a new composite iterative scheme by viscosity approximation method for finding a common point of the set of solutions of the equilibrium problem (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space:

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \text { for all } y \in C, \tag{IS}\\
y_{n}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S u_{n} \\
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S y_{n}, \quad n \geq 1
\end{array}\right.
$$

A general composite iterative method for equilibrium problems

If $\beta_{n}=0$, then (IS) reduces to (1.8). Then, under the conditions (C1), (C2) and (C3) on the sequences $\left\{\alpha_{n}\right\},\left\{r_{n}\right\}$ and $\left\{\beta_{n}\right\}$, we show that the sequence $\left\{x_{n}\right\}$ generated by (IS) converges strongly to a point in $F(S) \cap E P(F)$, which is the unique solution of a certain variational inequality. The main results develop and improve the corresponding results of Jung [7], Plubtieng and Punpaeng [10], Shang et al. [11], ands Takahashi and Takahashi [14], as well as Combettes and Hirstoaga [2], Marino and Xu [8], Moudafi [9], Xu [19], and Wittmann [16]. We point out that the iterative scheme (IS) is a new method for finding the solutions of the equilibrium problem (1.1) and the fixed points of nonexpansive mappings.

2. Preliminaries and Lemmas

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. For the sequence $\left\{x_{n}\right\}$ in H, we write $x_{n} \rightharpoonup x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges weakly to x. $x_{n} \rightarrow x$ implies that $\left\{x_{n}\right\}$ converges strongly to x. In a real Hilbert space H, we have

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

for all $x, y \in H$ and $\lambda \in \mathbb{R}$. Let C be a closed convex subset of H. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$, such that

$$
\left\|x-P_{C} x\right\| \leq\|x-y\| \quad \text { for all } y \in C
$$

P_{C} is called the metric projection of H to C. It is well known that P_{C} satisfies

$$
\left\langle x-y, P_{C} x-P_{y}\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2}
$$

for every $x, y \in H$. Moreover, $P_{C} x$ is characterized by the properties: for $x \in H$ and $z \in C$,

$$
\begin{equation*}
z=P_{C} x \Leftrightarrow\langle x-z, z-y\rangle \geq 0 \quad \text { for all } y \in C \text {, } \tag{2.1}
\end{equation*}
$$

We also know that for any sequence $\left\{x_{n}\right\} \subset H$ with $x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in H$ with $x \neq y$; we refer [5,15] for more details.
For solving the equilibrium problem for a bifunction $F: C \times C \rightarrow \mathbb{R}$, let us assume that F satisfies the following conditions:
(A1) $F(x, x)=0$ for all $x \in C$;
(A2) F is monotone, that is, $F(x, y)+F(y, x) \leq 0$ for all $x, y \in C$;
(A3) for each $x, y, z \in C$,

$$
\lim _{t \downarrow 0} F(t z+(1-t) x, y) \leq F(x, y) ;
$$

(A4) for each $x \in C, y \mapsto F(x, y)$ is convex and lower semicontinuous.
The following lemmas were given in $[1,2]$.

Jong Soo Jung

Lemma 2.1 ([1]). Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0 \quad \text { for all } y \in C
$$

Lemma 2.2 ([2]). Assume that $F: C \times C \rightarrow \mathbb{R}$ satisfies (A1)-(A4). For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \text { for all } y \in C\right\}
$$

for all $z \in H$. Then, the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is firmly nonexpansive, that is, for any $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle
$$

(3) $F\left(T_{r}\right)=E P(F)$;
(4) $E P(F)$ is closed and convex.

We also need the following lemmas for the proof of our main results; see also [17] for the proof of Lemma 2.3.
Lemma 2.3 ([18]). Let $\left\{s_{n}\right\}$ be a sequence of non-negative real numbers satisfying

$$
s_{n+1} \leq\left(1-\lambda_{n}\right) s_{n}+\beta_{n}, \quad n \geq 0
$$

where $\left\{\lambda_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the following conditions:
(i) $\left\{\lambda_{n}\right\} \subset[0,1]$ and $\sum_{n=0}^{\infty} \lambda_{n}=\infty$ or, equivalently, $\prod_{n=0}^{\infty}\left(1-\lambda_{n}\right)=0$,
(ii) $\lim \sup _{n \rightarrow \infty} \frac{\beta_{n}}{\lambda_{n}} \leq 0$ or $\sum_{n=0}^{\infty}\left|\beta_{n}\right|<\infty$,

Then $\lim _{n \rightarrow \infty} s_{n}=0$.
Lemma 2.4 ([5]). (Demicloseness principle) Let H be a real Hilbert space, C a nonempty closed convex subset of H and $T: C \rightarrow E$ a nonexpansive mapping. Then the mapping $I-T$ is demiclosed on C, where I is the identity mapping; that is, $x_{n} \rightharpoonup x$ in E and $(I-T) x_{n} \rightarrow y$ imply that $x \in C$ and $(I-T) x=y$.

Lemma 2.5. In a real Hilbert space H, there holds the following inequality

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle
$$

for all $x, y \in H$
Lemma 2.6 ([8]). Assume that A is a strongly positive linear bounded operator on a Hilbert space H with coefficient $\bar{\gamma}>0$ and $0<\rho \leq\|A\|^{-1}$. Then $\|I-\rho A\| \leq 1-\rho \bar{\gamma}$.

A general composite iterative method for equilibrium problems

3. Main results

In this section, as the viscosity approximation method, we introduce a new general composite iterative scheme for finding a common point of the set of solutions of the equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and S be a nonexpansive mapping of C into H such that $F(S) \cap E P(F) \neq \emptyset$. Let A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma}>0$ and let $f \in \Sigma_{H}$ with a coefficient $k(0<k<1)$. Assume that $0<\gamma<\frac{\bar{\gamma}}{k}$. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \text { for all } y \in C \tag{IS}\\
y_{n}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S u_{n} \\
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S y_{n}, \quad n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$. If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy the conditions:
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
(C2) $\lim \inf _{n \rightarrow \infty} r_{n}>0, \quad \sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$;
(C3) $\lim _{n \rightarrow \infty} \beta_{n}=0, \quad \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$,
then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $q \in F(S) \cap E P(F)$, where $q=P_{F(S)} \cap$ $E P(F)(\gamma f+(I-A))(q)$, which is the unique solution of the variational inequality

$$
\langle\gamma f(q)-A q, q-p\rangle \geq 0, \quad p \in F(S) \cap E P(F)
$$

Proof. By Lemma 2.1, $\left\{u_{n}\right\}$ and $\left\{x_{n}\right\}$ are well defined. Since $\alpha_{n} \rightarrow 0$ by the condition (C1), we may assume, with no loss of generality, that $\alpha_{n}<\|A\|^{-1}$ for all n. From Lemma 2.6, we know that if $0<\rho \leq\|A\|^{-1}$, then $\|I-\rho A\| \leq 1-\rho \bar{\gamma}$. We will assume that $\|I-A\| \leq 1-\bar{\gamma}$. Let $Q=P_{F(S) \cap E P(F)}$. Then $Q(\gamma f+(I-A))$ is a contraction of H into itself. Indeed, for $x, y \in H$, we have

$$
\begin{aligned}
\| Q(\gamma f+ & (I-A))(x)-Q(\gamma f+(I-A))(y) \| \\
& \leq\|(\gamma f+(I-A))(x)-(\gamma f+(I-A))(y)\| \\
& \leq \gamma\|f(x)-f(y)\|+\|I-A\|\|x-y\| \\
& \leq \gamma k\|x-y\|+(1-\bar{\gamma})\|x-y\| \\
& <\|x-y\|
\end{aligned}
$$

for some $k \in[0,1)$. Since H is complete, there exists a unique point $q \in H$ such that $q=Q(\gamma f+(I-A))(q)=P_{F(S) \cap E P(F)}(\gamma f+(I-A))(q)$. Such a q is a point of C.

We proceed with following steps:
Step 1. We show that $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded.
In fact, let $v \in F(S) \bigcap E P(F)$. Then from $u_{n}=T_{r_{n}} x_{n}$, we have

$$
\left\|u_{n}-v\right\|=\left\|T_{r_{n}} x_{n}-T_{r_{n}} v\right\| \leq\left\|x_{n}-v\right\|, \quad n \geq 1
$$

Put $M=\max \left\{\left\|x_{1}-v\right\|, \frac{\|\gamma f(v)-A v\|}{\bar{\gamma}-\gamma^{k}}\right\}$. It is obvious that $\left\|x_{1}-v\right\| \leq M$. Suppose that $\left\|x_{n}-v\right\| \leq M$. Then, we have

$$
\begin{aligned}
\left\|y_{n}-v\right\| & =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-A v\right)+\left(I-\alpha_{n} A\right)\left(S u_{n}-v\right)\right\| \\
& \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-A v\right\|+\left\|I-\alpha_{n} A\right\|\left\|u_{n}-v\right\| \\
& \leq \alpha_{n}\left[\gamma\left\|f\left(x_{n}\right)-f(v)\right\|+\|\gamma f(v)-A v\|\right]+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-v\right\| \\
& \leq \alpha_{n} \gamma k\left\|x_{n}-v\right\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-v\right\|+\alpha_{n}\|\gamma f(v)-A v\| \\
& =\left(1-(\bar{\gamma}-\gamma k) \alpha_{n}\right)\left\|x_{n}-v\right\|+\alpha_{n}(\bar{\gamma}-\gamma k) \frac{1}{\bar{\gamma}-\gamma k}\|\gamma f(v)-A v\| \\
& \leq\left(1-(\bar{\gamma}-\gamma k) \alpha_{n}\right) M+(\bar{\gamma}-\gamma k) \alpha_{n} M=M
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|x_{n+1}-v\right\| & =\left\|\left(1-\beta_{n}\right)\left(y_{n}-v\right)+\beta_{n}\left(S y_{n}-v\right)\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|y_{n}-v\right\|+\beta_{n}\left\|y_{n}-v\right\| \\
& =\left\|y_{n}-v\right\| \leq M
\end{aligned}
$$

So, we have that $\left\|x_{n}-v\right\| \leq M$ for $n \geq 1$ and hence $\left\{x_{n}\right\}$ is bounded. We also obtain that $\left\{u_{n}\right\},\left\{S u_{n}\right\},\left\{y_{n}\right\},\left\{f\left(x_{n}\right)\right\},\left\{A S u_{n}\right\}$ and $\left\{S y_{n}\right\}$ are bounded. Moreover, by condition (C1), we also obtain

$$
\begin{equation*}
\left\|y_{n}-S u_{n}\right\|=\alpha_{n}\left\|\gamma f\left(x_{n}\right)-A S u_{n}\right\| \rightarrow 0 \quad(\text { as } n \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

Step 2. We show that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. From (IS), we have

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S u_{n} \\
y_{n-1}=\alpha_{n-1} \gamma f\left(x_{n-1}\right)+\left(I-\alpha_{n-1} A\right) S u_{n-1}
\end{array}\right.
$$

Simple calculations show that

$$
\begin{aligned}
y_{n}-y_{n-1}= & \left(I-\alpha_{n} A\right)\left(S u_{n}-S u_{n-1}\right)-\left(\alpha_{n}-\alpha_{n-1}\right) A S u_{n-1} \\
& +\gamma\left[\alpha_{n}\left(f\left(x_{n}\right)-f\left(x_{n-1}\right)\right)+\left(\alpha_{n}-\alpha_{n-1}\right) f\left(x_{n-1}\right)\right] .
\end{aligned}
$$

So, we have

$$
\begin{align*}
\left\|y_{n}-y_{n-1}\right\|= & \|\left(I-\alpha_{n} A\right)\left(S u_{n}-S u_{n-1}\right)-\left(\alpha_{n}-\alpha_{n-1}\right) A S u_{n-1} \\
& +\gamma\left[\alpha_{n}\left(f\left(x_{n}\right)-f\left(x_{n-1}\right)\right)+\left(\alpha_{n}-\alpha_{n-1}\right) f\left(x_{n-1}\right)\right] \| \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left\|S u_{n}-S u_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|A S u_{n-1}\right\| \\
& +\gamma\left[\alpha_{n} k\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(x_{n-1}\right)\right\|\right] \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-u_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|A S u_{n-1}\right\| \tag{3.2}\\
& +\gamma\left[\alpha_{n} k\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(x_{n-1}\right)\right\|\right] \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-u_{n-1}\right\|+\gamma \alpha_{n} k\left\|x_{n}-x_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right| L_{1}
\end{align*}
$$

A general composite iterative method for equilibrium problems

for every $n \geq 1$, where $L_{1}=\sup \left\{\gamma\left\|f\left(x_{n}\right)\right\|+\left\|A S u_{n}\right\|: n \geq 1\right\}$.
On the other hand, from $u_{n}=T_{r_{n}} x_{n}$ and $u_{n-1}=T_{r_{n-1}} x_{n-1}$, we have

$$
\begin{equation*}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \text { for all } y \in C \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F\left(u_{n-1}, y\right)+\frac{1}{r_{n-1}}\left\langle y-u_{n-1}, u_{n-1}-x_{n-1}\right\rangle \geq 0, \quad \text { for all } y \in C . \tag{3.4}
\end{equation*}
$$

Putting $y=u_{n-1}$ in (3.3) and $y=u_{n}$ in (3.4), we have

$$
F\left(u_{n}, u_{n-1}\right)+\frac{1}{r_{n}}\left\langle u_{n-1}-u_{n}, u_{n}-x_{n}\right\rangle \geq 0
$$

and

$$
F\left(u_{n-1}, u_{n}\right)+\frac{1}{r_{n-1}}\left\langle u_{n}-u_{n-1}, u_{n-1}-x_{n-1}\right\rangle \geq 0
$$

So, from (A2) we have

$$
\left\langle u_{n}-u_{n-1}, \frac{u_{n-1}-x_{n-1}}{r_{n-1}}-\frac{u_{n}-x_{n}}{r_{n}}\right\rangle \geq 0
$$

and hence

$$
\left\langle u_{n}-u_{n-1}, u_{n-1}-u_{n}+u_{n}-x_{n-1}-\frac{r_{n-1}}{r_{n}}\left(u_{n}-x_{n}\right)\right\rangle \geq 0
$$

Without loss of generality, let us assume that there exists a real number b such that $r_{n}>b>0$ for all $n \geq 1$. Then, we have

$$
\begin{aligned}
& \left\|u_{n}-u_{n-1}\right\|^{2} \\
\leq & \left\langle u_{n}-u_{n-1}, x_{n}-x_{n-1}+\left(1-\frac{r_{n-1}}{r_{n}}\right)\left(u_{n}-x_{n}\right)\right\rangle \\
\leq & \left\|u_{n}-u_{n-1}\right\|\left\{\left\|x_{n}-x_{n-1}\right\|+\left|1-\frac{r_{n-1}}{r_{n}}\right|\left\|u_{n}-x_{n}\right\|\right\}
\end{aligned}
$$

and hence

$$
\begin{align*}
\left\|u_{n}-u_{n-1}\right\| & \leq\left\|x_{n}-x_{n-1}\right\|+\frac{1}{r_{n}}\left|r_{n}-r_{n-1}\right|\left\|u_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+\frac{1}{b}\left|r_{n}-r_{n-1}\right| L_{2} \tag{3.5}
\end{align*}
$$

Jong Soo Jung

where $L_{2}=\sup \left\{\left\|u_{n}-x_{n}\right\|: n \geq 1\right\}$. So, from (3.2) we have

$$
\begin{align*}
\left\|y_{n}-y_{n-1}\right\| \leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left(\left\|x_{n}-x_{n-1}\right\|+\frac{1}{b}\left|r_{n}-r_{n-1}\right| L_{2}\right) \\
& +\gamma \alpha_{n} k\left\|x_{n}-x_{n-1}\right\|+L_{1}\left|\alpha_{n}-\alpha_{n-1}\right| \\
= & \left(1-(\bar{\gamma}-\gamma k) \alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+L_{1}\left|\alpha_{n}-\alpha_{n-1}\right| \tag{3.6}\\
& +\frac{1}{b}\left|r_{n}-r_{n-1}\right| L_{2}
\end{align*}
$$

Also, simple calculations show that

$$
\begin{aligned}
x_{n+1}-x_{n}= & \left(1-\beta_{n}\right)\left(y_{n}-y_{n-1}\right)+\beta_{n}\left(S y_{n}-S y_{n-1}\right) \\
& +\left(\beta_{n}-\beta_{n-1}\right)\left(S y_{n-1}-y_{n-1}\right)
\end{aligned}
$$

So, from (3.6) it follows that

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|y_{n}-y_{n-1}\right\|+\beta_{n}\left\|S y_{n}-S y_{n-1}\right\| \\
& +\left|\beta_{n}-\beta_{n-1}\right|\left\|S y_{n-1}-y_{n-1}\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|y_{n}-y_{n-1}\right\|+\beta_{n}\left\|y_{n}-y_{n-1}\right\| \\
& +\left|\beta_{n}-\beta_{n-1}\right|\left\|S y_{n-1}-y_{n-1}\right\| \tag{3.7}\\
\leq & \left\|y_{n}-y_{n-1}\right\|+\left|\beta_{n}-\beta_{n-1}\right| L_{3} \\
\leq & \left(1-(\bar{\gamma}-\gamma k) \alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right| L_{1}+\frac{1}{b}\left|r_{n}-r_{n-1}\right| L_{2} \\
& +\left|\beta_{n}-\beta_{n-1}\right| L_{3}
\end{align*}
$$

where $L_{3}=\sup \left\{\left\|S y_{n}-y_{n}\right\|: n \geq 1\right\}$. From the conditions (C1)-(C3), it is easy to see that

$$
\lim _{n \rightarrow \infty}(\bar{\gamma}-\gamma k) \alpha_{n}=0, \quad \sum_{n=0}^{\infty}(\bar{\gamma}-\gamma k) \alpha_{n}=\infty
$$

and

$$
\sum_{n=0}^{\infty}\left(\left|\alpha_{n+1}-\alpha_{n}\right| L_{1}+\frac{1}{b}\left|r_{n+1}-r_{n}\right| L_{2}+\left|\beta_{n+1}-\beta_{n}\right| L_{3}\right)<\infty
$$

Applying Lemma 2.3, to (3.7), we have

$$
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Moreover, from (3.5) it follows that $\left\|u_{n+1}-u_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. By (3.2), we also have that

$$
\begin{equation*}
\left\|y_{n+1}-y_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.8}
\end{equation*}
$$

A general composite iterative method for equilibrium problems

Step 3. We show that $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$. Indeed, from (C3) we have

$$
\left\|x_{n+1}-y_{n}\right\|=\beta_{n}\left\|y_{n}-S y_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty .
$$

So, we have from Step 2

$$
\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Step 4. We show that $\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|S u_{n}-u_{n}\right\|=0$. To this end, let $v \in F(S) \cap E P(F)$. Then, from (2) in Lemma 2.2 we have

$$
\begin{aligned}
\left\|u_{n}-v\right\|^{2} & =\left\|T_{r_{n}} x_{n}-T_{r_{n}} v\right\|^{2} \\
& \leq\left\langle T_{r_{n}} x_{n}-T_{r_{n}} v, x_{n}-v\right\rangle \\
& =\left\langle u_{n}-v, x_{n}-v\right\rangle \\
& =\frac{1}{2}\left(\left\|u_{n}-v\right\|^{2}+\left\|x_{n}-v\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right)
\end{aligned}
$$

and hence

$$
\left\|u_{n}-v\right\|^{2} \leq\left\|x_{n}-v\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2} .
$$

Therefore, by convexity of $\|\cdot\|^{2}$, we have

$$
\begin{aligned}
\left\|y_{n}-v\right\|^{2}= & \left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-A v\right)+\left(I-\alpha_{n} A\right)\left(S u_{n}-v\right)\right\|^{2} \\
\leq & \left(\alpha_{n}\left\|\gamma f\left(x_{n}\right)-A v\right\|+\left\|I-\alpha_{n} A\right\|\left\|S u_{n}-v\right\|\right)^{2} \\
\leq & \left(\alpha_{n}\left\|\gamma f\left(x_{n}\right)-A v\right\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-v\right\|\right)^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-v A\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-v\right\|^{2} \\
& +2 \alpha_{n}\left(1-\alpha_{n} \bar{\gamma}\right)\left\|\gamma f\left(x_{n}\right)-A v\right\|\left\|u_{n}-v\right\| \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-A v\right\|^{2}+\left\|x_{n}-v\right\|^{2}-\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-u_{n}\right\|^{2} \\
& +2 \alpha_{n}\left(1-\alpha_{n} \bar{\gamma}\right)\left\|\gamma f\left(x_{n}\right)-A v\right\|\left\|u_{n}-v\right\| .
\end{aligned}
$$

So, we obtain

$$
\begin{aligned}
& \left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-u_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-A v\right\|^{2}+\left(\left\|x_{n}-v\right\|+\left\|y_{n}-v\right\|\right)\left(\left\|x_{n}-v\right\|-\left\|y_{n}-v\right\|\right) \\
& +2 \alpha_{n}\left(1-\alpha_{n} \bar{\gamma}\right)\left\|\gamma f\left(x_{n}\right)-A v\right\|\left\|u_{n}-v\right\| \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-A v\right\|^{2}+\left(\left\|x_{n}-v\right\|+\left\|y_{n}-v\right\|\right)\left\|x_{n}-y_{n}\right\| \\
& +2 \alpha_{n}\left(1-\alpha_{n} \bar{\gamma}\right)\left\|\gamma f\left(x_{n}\right)-A v\right\|\left\|u_{n}-v\right\| .
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0$ and $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ by the condition (C1) and Step 3, we have $\left\|x_{n}-u_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Moreover, by (3.9)

$$
\begin{equation*}
\left\|y_{n}-u_{n}\right\| \leq\left\|y_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.9}
\end{equation*}
$$

Jong Soo Jung

Since

$$
\left\|S u_{n}-u_{n}\right\| \leq\left\|S u_{n}-y_{n}\right\|+\left\|y_{n}-u_{n}\right\|,
$$

from (3.1) and (3.9) we also have

$$
\begin{equation*}
\left\|S u_{n}-u_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{3.10}
\end{equation*}
$$

Step 5. We show that $\limsup _{n \rightarrow \infty}\left\langle\gamma f(q)-A q, y_{n}-q\right\rangle \leq 0$ for $q \in F(S) \cap E P(F)$, where $q=P_{F(S) \cap E P(F)}(\gamma f+(I-A))(q)$. To this end, choose a subsequence $\left\{u_{n_{i}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle\gamma f(q)-A q, x_{n}-q\right\rangle=\lim _{i \rightarrow \infty}\left\langle\gamma f(q)-A q, x_{n_{i}}-q\right\rangle
$$

Since $\left\{u_{n_{i}}\right\}$ is bounded, there exists a subsequence $\left\{u_{n_{i_{j}}}\right\}$ of $\left\{u_{n_{i}}\right\}$ which converges weakly to z. We may assume without loss of generality that $u_{n_{i}} \rightharpoonup z$. Then we can obtain $z \in F(S) \bigcap E P(F)$. Indeed, let us first show that $z \in E P(F)$. By $u_{n}=T_{r_{n}} x_{n}$, we have

$$
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \text { for all } y \in C
$$

From (A2), we also have

$$
\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq F\left(y, u_{n}\right)
$$

and hence

$$
\left\langle y-u_{n_{i}}, \frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}}\right\rangle \geq F\left(y, u_{n_{i}}\right) .
$$

Since $\frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}} \rightarrow 0$ and $u_{n_{i}} \rightharpoonup z$, from (A4) we have

$$
0 \geq F(y, z) \text { for all } y \in C
$$

For $0<t \leq 1$ and $y \in C$, let $y_{t}=t y+(1-t) z$. Since $y \in C$ and $z \in C$, we have $y_{t} \in C$ and hence $F\left(y_{t}, z\right) \leq 0$. So, from (A1) and (A4) we have

$$
\begin{aligned}
0=F\left(y_{t}, y_{t}\right) & \leq t F\left(y_{t}, y\right)+(1-t) F\left(y_{t}, z\right) \\
& \leq t F\left(y_{t}, y\right)
\end{aligned}
$$

and hence $0 \leq F\left(y_{t}, y\right)$. From (A3) we have

$$
0 \leq F(z, y) \text { for all } y \in C
$$

A general composite iterative method for equilibrium problems

and hence $z \in E P(F)$. On the other hand, since $\left\|S u_{n}-u_{n}\right\| \rightarrow 0$ by (3.10) and $u_{n_{i}} \rightharpoonup z$, from Lemma 2.4 we obtain $z \in F(S)$. Therefore $z \in F(S) \cap E P(F)$. Since $q=P_{F(S) \cap E P(F)}(\gamma f+(I-A))(q)$ and $x_{n_{i}} \rightharpoonup z$ by Step 4, from (2.1) we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle\gamma f(q)-A q, x_{n}-q\right\rangle & =\lim _{i \rightarrow \infty}\left\langle\gamma f(q)-A q, x_{n_{i}}-q\right\rangle \tag{3.11}\\
& =\langle\gamma f(q)-A q, z-q\rangle \leq 0 .
\end{align*}
$$

Since $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ by Step 3 , from (3.11) we have

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\langle\gamma f(q)-A q, y_{n}-q\right\rangle \\
\leq & \limsup _{n \rightarrow \infty}\left\langle\gamma f(q)-A q, y_{n}-x_{n}\right\rangle+\underset{n \rightarrow \infty}{\limsup }\left\langle\gamma f(q)-A q, x_{n}-q\right\rangle \\
\leq & \limsup _{n \rightarrow \infty}\|\gamma f(q)-A q\|\left\|y_{n}-x_{n}\right\|+\limsup _{n \rightarrow \infty}\left\langle\gamma f(q)-A q, x_{n}-q\right\rangle \\
\leq & 0 .
\end{aligned}
$$

Step 6. We show that $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|=0$ for $q \in F(S) \cap E P(F)$, where $q=P_{F(S) \cap E P(F)}(\gamma f+(I-A))(q)$. Indeed, from $\left\|x_{n+1}-q\right\| \leq\left\|y_{n}-q\right\|,\left\|u_{n}-q\right\| \leq$ $\left\|x_{n}-q\right\|$ and $y_{n}-q=\alpha_{n}\left(\gamma f\left(x_{n}\right)-A q\right)+\left(I-\alpha_{n} A\right)\left(S u_{n}-q\right)$, by Lemma 2.5 we have

$$
\begin{aligned}
&\left\|x_{n+1}-q\right\|^{2} \\
& \leq\left\|y_{n}-q\right\|^{2}=\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-A q\right)+\left(I-\alpha_{n} A\right)\left(S u_{n}-q\right)\right\|^{2} \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|S u_{n}-q\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-A q, y_{n}-q\right\rangle \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|u_{n}-q\right\|^{2}+2 \alpha_{n} \gamma\left\langle f\left(x_{n}\right)-f(q), y_{n}-q\right\rangle \\
&\left.+2 \alpha_{n}\left\langle\gamma f(q)-A q, y_{n}-q\right\rangle\right) \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \gamma k\left\|x_{n}-q\right\|\left\|y_{n}-q\right\| \\
&+2 \alpha_{n}\left\langle\gamma f(q)-A q, y_{n}-q\right\rangle \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \gamma k\left\|x_{n}-q\right\|\left(\left\|y_{n}-x_{n}\right\|+\left\|x_{n}-q\right\|\right) \\
&+2 \alpha_{n}\left\langle\gamma f(q)-A q, y_{n}-q\right\rangle \\
& \leq\left(1-2(\bar{\gamma}-\gamma k) \alpha_{n}\right)\left\|x_{n}-q\right\|^{2}+\alpha_{n}^{2} \bar{\gamma}^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \gamma k\left\|y_{n}-x_{n}\right\| \\
&+2 \alpha_{n}\left\langle\gamma f(q)-A q, y_{n}-q\right\rangle \\
&=\left(1-\bar{\alpha}_{n}\right)\left\|x_{n}-q\right\|^{2}+\bar{\alpha}_{n} \bar{\beta}_{n},
\end{aligned}
$$

where

$$
\begin{aligned}
& \bar{\alpha}_{n}=2(\bar{\gamma}-\gamma k) \alpha_{n}, \\
& \bar{\beta}_{n}=\frac{\alpha_{n} \bar{\gamma}^{2}}{2(\bar{\gamma}-\gamma k)} M_{1}+\frac{\gamma k}{\bar{\gamma}-\gamma k}\left\|y_{n}-x_{n}\right\|+\frac{1}{\bar{\gamma}-\gamma k}\left\langle\gamma f(q)-A q, y_{n}-q\right\rangle,
\end{aligned}
$$

and $M_{1}=\sup \left\{\left\|x_{n}-q\right\|^{2}: n \geq 1\right\}$. From (C1), Step 3 and Step 5, it is easily seen that $\bar{\alpha}_{n} \rightarrow 0, \sum_{n=1}^{\infty} \bar{\alpha}_{n}=\infty$, and $\lim \sup _{n \rightarrow \infty} \bar{\beta}_{n} \leq 0$. Thus, by Lemma 2.3, we obtain $x_{n} \rightarrow q$. This completes the proof.

As in [10,14], we obtain the following corollaries as immediate consequences of Theorem 3.1.
Corollary 3.1. ([7, Theorem 3.1]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let S be a nonexpansive mapping of C into H such that $F(S) \cap E P(F) \neq \emptyset$. Let $f \in \Sigma_{H}$ with a coefficient $k(0<k<1)$. and let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \text { for all } y \in C, \\
y_{n}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S u_{n}, \\
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S y_{n}, \quad n \geq 1,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$. If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy the conditions:
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
(C2) $\liminf _{n \rightarrow \infty} r_{n}>0, \sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$;
(C3) $\lim _{n \rightarrow \infty} \beta_{n}=0, \quad \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$,
then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $q \in F(S) \cap E P(F)$, where $q=P_{F(S) \cap}$ $E P(F) f(q)$.
Proof. Taking $A=I$ and $\gamma=1$ in Theorem 3.1, we can obtain the desired result.
Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S be a nonexpansive mapping of C into H such that $F(S) \cap E P(F) \neq \emptyset$. Let A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma}>0$ and let $f \in \Sigma_{H}$ with a coefficient $k(0<k<1)$. Assume that $0<\gamma<\frac{\bar{\gamma}}{k}$. Let $\left\{x_{n}\right\}$ be sequence generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S P_{C} x_{n}, \\
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S P_{C} y_{n}, \quad n \geq 1,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\} \subset[0,1]$. If $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the conditions:
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
(C3) $\lim _{n \rightarrow \infty} \beta_{n}=0, \quad \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$,
then $\left\{x_{n}\right\}$ converge strongly to $q \in F(S)$, where $q=P_{F(S)}(\gamma f+(I-A))(q)$.
Proof. Put $F(x, y)=0$ for all $x, y \in C$ and $\left\{r_{n}\right\}=1$ for all n in Theorem 3.1. Then we have $u_{n}=P_{C} x_{n}$. So the sequence $\left\{x_{n}\right\}$ converges strongly to $q \in F(S)$, where $q=P_{F(S)}(\gamma f+(I-A))(q)$.

Corollary 3.3. ([7, Corollary 3.1]) Let C be a nonempty closed convex subset of H and S a nonexpansive mapping of C into H such that $F(S) \neq \emptyset$. Let $f \in \Sigma_{H}$ and let $\left\{x_{n}\right\}$ be sequence generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S P_{C} x_{n} \\
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S P_{C} y_{n}, \quad n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\} \subset[0,1]$. If $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the conditions:
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
(C3) $\lim _{n \rightarrow \infty} \beta_{n}=0, \quad \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$,
then $\left\{x_{n}\right\}$ converges strongly to $q \in F(S)$, where $q=P_{F(S)} f(q)$.
Corollary 3.4. ([10, Corollary 3.4]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and $E P(F) \neq \emptyset$. Let A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma}>0$ and let $f \in \Sigma_{H}$ with a coefficient $k(0<k<1)$. Assume that $0<\gamma<\frac{\bar{\gamma}}{k}$. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \text { for all } y \in C \\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) u_{n}, \quad n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$. If $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy the conditions:
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
(C2) $\liminf \operatorname{inc\infty }_{n \rightarrow} r_{n}>0, \sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$;
then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $q \in E P(F)$, where $q=P_{E P(F)}(\gamma f+(I-$ $A))(q)$, which is the unique solution of the variational inequality

$$
\langle\gamma f(q)-A q, q-p\rangle \geq 0, \quad p \in E P(F)
$$

Proof. Put $S x=x$ for all $x \in C$ in Theorem 3.1. Then, from Theorem 3.1 the sequence $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ generated in Corollary 3.4 converge strongly to $q \in E P(F)$, where $q=P_{E P(F)}(\gamma f+(I-A))(q)$.
Corollary 3.5. ([7, Corollary 3.2]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) such that $E P(F) \neq \emptyset$ and $f \in \Sigma_{H}$. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \text { for all } y \in C, \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) u_{n}
\end{array}\right.
$$

for every $n \geq 1$, where $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$. If $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy the conditions:
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
(C2) $\liminf _{n \rightarrow \infty} r_{n}>0, \sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$,
then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $q \in E P(F)$, where $q=P_{E P(F)} f(q)$.

Corollary 3.6. ([8, Theorem 3.4]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let S be a nonexpansive mapping of C into itself with $F(S) \neq \emptyset$. Let A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma}>0$ and let $f \in \Sigma_{H}$ with a coefficient $k(0<k<1)$. Assume that $0<\gamma<\frac{\bar{\gamma}}{k}$. Let $\left\{x_{n}\right\}$ be sequence generated by $x_{1} \in H$ and

$$
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S x_{n}, \quad n \geq 1,
$$

where $\left\{\alpha_{n}\right\} \subset[0,1]$. If $\left\{\alpha_{n}\right\}$ satisfies the condition:
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
then $\left\{x_{n}\right\}$ converge strongly to $q \in F(S)$, where $q=P_{F(S)}(\gamma f+(I-A))(q)$, which is the unique solution of the variational inequality

$$
\langle\gamma f(q)-A q, q-p\rangle \geq 0, \quad p \in E P(F) .
$$

Proof. Putting $F(x, y)=0$ for all $x, y \in C$ and $r_{n}=1$ for all n in Corollary 3.2, we get $P_{C} x_{n}=x_{n}$. So, taking $\beta_{n}=0$ for all n in Corollary 3.2, we obtain the desired result.

Remark 3.1. (1) Theorem 3.1 and Corollary 3.1 improve the corresponding result of Plubtieng and Pungaeng [10], Shang et al. [11] and Takahashi and Takahashi [14]. In particular, if $\beta_{n}=0$ for all $n \geq 1$, then Theorem 3.1 and Corollary 3.1 reduce to Theorem 3.3 in [10] (Theorem 3.1 in [11]) and Theorem 3.1 in [14], respectively.
(2) In the case $\beta_{n}=0$ for all n, Corollary 3.2 is just Theorem 4.1 of Shang et al. [11].
(3) In the case when $f(x)=u=x_{1}$ for all $x \in H$ in Corollary 3.5, We also get Combettes and Hirstoaga's theorem [2].
(4) We have Xu's theorem [18] in the case when $f(x)=u=x_{1}$ for all $x \in H$ in Corollary 3.6.
(5) We obtain a composite iterative scheme for nonexpansive mapping if $S: C \rightarrow$ C and $f \in \Sigma_{C}$ in Corollary 3.3 as follows:

$$
\left\{\begin{array}{l}
x_{1} \in C \tag{3.12}\\
y_{n}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S x_{n} \\
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S y_{n}
\end{array}\right.
$$

(see also [6]). If $\beta_{n}=0$ for all $n \geq 1$ and $f(x)=u=x_{1}$ for all $x \in C$ in (3.12), we obtain Wittmann's result [16].

References

1. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.

A general composite iterative method for equilibrium problems
2. P. I. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136.
3. F. Deutsch and I. Yamada, Minimizing certain convex functions over the intersection of the fixed point set of nonexpansive mappings, Numer. Funct. Anal. Optim. 19 (1998), 33-56.
4. S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithm, Math. Program. 78 (1997), 29-41.
5. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, in "Cambridge Studies in Advanced Mathematics," Vol. 28, Cambridge Univ. Press, Cambridge, UK, 1990.
6. J. S. Jung, Convergence on composite iterative schemes for nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2008 (2008), Articl ID 16735, 14 pages.
7. J. S. Jung, Strong convergence of composite iterative methods for equilibrium problems and fixed point problems, Appl. Math. Comput. 213 (2009), 498-505.
8. G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43-52..
9. A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), 46-55.
10. S. Plubtieng and R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007), 455-469.
11. M. Shang, X. Qin and Y. Su, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, Fixed Point Theory Appl. 2007 (2007), Article ID 64306, 7 pages.
12. A. Tada and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in W. Takahashi and T. Tanaka (Eds), Nonlinear Analysis and Convex Analysis, Yokohama Publishers, Yokohama, Japan, 2006.
13. A. Tada and W. Takahashi, Strong convergence theorem for a nonexpansive mapping and an equilibrium problem, J. Optim. Theory Appl. 133 (2007), 359-370.
14. A. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506-515.
15. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.
16. R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 59 (1992), 486-491.
17. H. K. Xu, An iterative algorithm for nonlinear operators, J. London Math. Soc. 66 (2002), 240-256.
18. H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003), 659-678.
19. H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279-291.
20. I. Yamada, The hybrid steepest descent method for the variational inequality of the intersection of fixed point sets of nonexpansive mappings, in D. Butnariu, Y. Censor, S. Reich (Eds), Inherently Parallel Algorithm for Feasibility and Optimization, Elsevier, 2001, pp. 473-504.

On the roots of the twisted (h, q)-Euler polynomials

Cheon Seoung Ryoo
Department of Mathematics, Hannam University, Daejeon 306-791, Korea
e-mail: ryoocs @hnu.kr

Abstract

Recently several authors studied the q-extension of Euler numbers and polynomials(see [1-11]). In this paper we observe the behavior of complex roots of the twisted (h, q)-Euler polynomials $E_{n, q, w}^{(h)}(x)$, using numerical investigation. By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of twisted (h, q)-Euler polynomials $E_{n, q, w}^{(h)}(x)$. Finally, we give tables for the solutions of twisted (h, q) Euler polynomials.

2000 Mathematics Subject Classification - 11B68, 11S40, 11S80
Key words- Euler numbers and polynomials, q-Euler numbers and polynomials, (h, q) Euler numbers and polynomials, twisted (h, q)-Euler numbers and polynomials

1. Introduction

Throughout this paper we use the following notations. By \mathbb{Z}_{p} we denote the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers, \mathbb{C} denotes the complex number field, and \mathbb{C}_{p} denotes the completion of algebraic closure of \mathbb{Q}_{p}. Let ν_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-\nu_{p}(p)}=p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$ one normally assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, we normally assume that $|q-1|_{p}<p^{-\frac{1}{p-1}}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$.

$$
[x]_{q}=[x: q]=\frac{1-q^{x}}{1-q}, \text { cf. }[1-11]
$$

Hence, $\lim _{q \rightarrow 1}[x]=x$ for any x with $|x|_{p} \leq 1$ in the present p-adic case. Let d be a fixed integer and let p be a fixed prime number. For any positive integer N, we set

$$
\begin{aligned}
& X={\underset{N}{\overleftarrow{N}}}_{\lim _{N}}\left(\mathbb{Z} / d p^{N} \mathbb{Z}\right), \quad X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}}\left(a+d p \mathbb{Z}_{p}\right), \\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a \quad\left(\bmod d p^{N}\right)\right\}
\end{aligned}
$$

where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{N}$. For any positive integer N,

$$
\mu_{q}\left(a+d p^{N} \mathbb{Z}_{p}\right)=\frac{q^{a}}{\left[d p^{N}\right]_{q}}
$$

is known to be a distribution on X, cf. $[1,2,3,4,5,6,7,8,9,10]$.
For

$$
g \in U D\left(\mathbb{Z}_{p}\right)=\left\{g \mid g: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p} \text { is uniformly differentiable function }\right\}
$$

the p-adic q-integral was defined by [1-11]

$$
I_{q}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]} \sum_{0 \leq x<p^{N}} g(x) q^{x}
$$

Let

$$
T_{p}=\cup_{m \geq 1} C_{p^{m}}=\lim _{m \rightarrow \infty} C_{p^{m}}
$$

where $C_{p^{m}}=\left\{w \mid w^{p^{m}}=1\right\}$ is the cyclic group of order p^{m}. For $w \in T_{p}$, we denote by $\phi_{w}: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}$ the locally constant function $x \longmapsto w^{x}$. In [8], we introduced analogue of q-Euler numbers and polynomials, which is called twisted Euler numbers and polynomials. By using p-adic q-integral, we defined the twisted q-Euler numbers as follows:

$$
E_{n, q, w}=\int_{\mathbb{Z}_{p}} \phi_{w}(x)[x]_{q}^{n} d \mu_{-q}(x), \text { for } n \in \mathbb{N}
$$

By using the above equation, we have the generating function of twisted q-Euler numbers $E_{n, q, w}$ as follows:

$$
F_{q, w}(t)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{n} w^{n} e^{[n]_{q} t}=\sum_{n=0}^{\infty} E_{n, q, w} \frac{t^{n}}{n!}
$$

By using p-adic q-integral, we defined the twisted q-Euler polynomials as follows:

$$
E_{n, q, w}(z)=\int_{\mathbb{Z}_{p}} \phi_{w}(x)[x+z]_{q}^{n} d \mu_{-q}(x), \text { for } n \in \mathbb{N}
$$

Similarly, we have the generating function of twisted q-Euler polynomials $E_{n, q, w}(z)$ as follows:

$$
F_{q, w}(t, z)=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} w^{m} e^{[m+z]_{q} t}
$$

see [8], for details.
For $h \in \mathbb{Z}, q \in \mathbb{C}_{p}$ with $|1-p|_{p} \leq p^{-\frac{1}{p-1}}$, the twisted (h, q)-Euler numbers $E_{n, q, w}^{(h)}$ are defined by

$$
\begin{equation*}
E_{n, q, w}^{(h)}=\int_{\mathbb{Z}_{p}} \phi_{w}(x) q^{x(h-1)}[x]_{q}^{n} d \mu_{-q}(x) \tag{1.1}
\end{equation*}
$$

By using p-adic q-integral, we obtain,

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \phi_{w}(x) q^{x(h-1)}[x]_{q}^{n} d \mu_{-q}(x)=[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+w q^{(h+l)}} . \tag{1.2}
\end{equation*}
$$

Here is the list of the first the twisted (h, q)-Euler numbers $E_{n, q, w}^{(h)}$.

$$
\begin{aligned}
E_{0, q, w}^{(h)} & =\frac{(1+q)}{\left(1+w q^{h}\right)} \\
E_{1, q, w}^{(h)} & =-\frac{q^{h}(1+q) w}{\left(1+w q^{h}\right)\left(1+w q^{1+h}\right)}, \\
E_{2, q, w}^{(h)} & =\frac{q^{h}(1+q) w\left(-1+w q^{1+h}\right)}{\left(1+w q^{h}\right)\left(1+w q^{1+h}\right)\left(1+w q^{2+h}\right)} \\
E_{3, q, w}^{(h)} & =-\frac{q^{h}(1+q) w\left(1-2 w q^{1+h}-2 w q^{2+h}+w^{2} q^{3+2 h}\right)}{\left(1+w q^{h}\right)\left(1+w q^{1+h}\right)\left(1+w q^{2+h}\right)\left(1+w q^{3+h}\right)}, \cdots
\end{aligned}
$$

By (1.1), we have

$$
E_{n, q, w}^{(h)}=[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+w q^{(h+l)}} .
$$

We set

$$
F_{q, w}^{(h)}(t)=\sum_{n=0}^{\infty} E_{n, q, w}^{(h)} \frac{t^{n}}{n!}
$$

By using above equation and (1.2), we have

$$
\begin{align*}
F_{q, w}^{(h)}(t) & =\sum_{n=0}^{\infty} E_{n, q, w}^{(h)} \frac{t^{n}}{n!} \\
& =[2]_{q} \sum_{n=0}^{\infty}\left(\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+w q^{h+1}}\right) \frac{t^{n}}{n!} \tag{1.3}\\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} w^{m} q^{h m} e^{[m]_{q} t} .
\end{align*}
$$

Thus twisted (h, q)-Euler numbers $E_{n, q, w}^{(h)}$ are defined by means of the generating function

$$
\begin{equation*}
F_{q, w}^{(h)}(t)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} w^{n} q^{h n} e^{[n]_{q} t} \tag{1.4}
\end{equation*}
$$

Note that, if $h=1$, then $F_{q, w}^{(h)}(t)=F_{q, w}(t)$. By using (1.1), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} E_{n, q, w}^{(h)} \frac{t^{n}}{n!} & =\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}} \phi_{w}(x) q^{x(h-1)}[x]_{q}^{n} d \mu_{-q}(x) \frac{t^{n}}{n!} \tag{1.5}\\
& =\int_{\mathbb{Z}_{p}} \phi_{w}(x) q^{x(h-1)} e^{[x]_{q} t} d \mu_{-q}(x)
\end{align*}
$$

By (1.3), (1.5), we have

$$
\int_{\mathbb{Z}_{p}} \phi_{w}(x) q^{x(h-1)} e^{[x]_{q} t} d \mu_{-q}(x)=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} w^{m} q^{h m} e^{[m]_{q} t}
$$

Next, we introduce the twisted (h, q)-Euler polynomials $E_{n, q, w}^{(h)}(z)$. The twisted (h, q)-Euler polynomials $E_{n, q, w}^{(h)}(z)$ are defined by

$$
\begin{equation*}
E_{n, q, w}^{(h)}(z)=\int_{\mathbb{Z}_{p}} \phi_{w}(x) q^{x(h-1)}[z+x]_{q}^{n} d \mu_{-q}(x) \tag{1.6}
\end{equation*}
$$

By using p-adic q-integral, we obtain

$$
\begin{equation*}
E_{n, q, w}^{(h)}(z)=[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{z l} \frac{1}{1+w q^{(h+l)}} \tag{1.7}
\end{equation*}
$$

Here is the list of the first the (h, q)-extension of the q-Euler polynomials $E_{n, q}^{(h)}(z)$.

$$
\begin{aligned}
& E_{0, q, w}^{(h)}(z)=\frac{(1+q)}{\left(1+w q^{h}\right)} \\
& E_{1, q, w}^{(h)}(z)=-\frac{(1+q)\left(1-q^{z}+w q^{1+h}-w q^{h+z}\right)}{(-1+q)\left(1+w q^{h}\right)\left(1+w q^{1+h}\right)}, \cdots
\end{aligned}
$$

We set

$$
\begin{equation*}
F_{q, w}^{(h)}(t, z)=\sum_{n=0}^{\infty} E_{n, q, w}^{(h)}(z) \frac{t^{n}}{n!} \tag{1.8}
\end{equation*}
$$

By using (1.7) and (1.8), we obtain

$$
F_{q, w}^{(h)}(t, z)=\sum_{n=0}^{\infty} E_{n, q, w}^{(h)}(z) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{h m} w^{m} e^{[m+z]_{q} t}
$$

Similarly, the generating function $F_{q, w}^{(h)}(t, z)$ of the q-Euler polynomials $E_{n, q, w}^{(h)}(z)$ is defined analogously as follows:

$$
\begin{equation*}
F_{q, w}^{(h)}(t, z)=\sum_{n=0}^{\infty} E_{n, q, w}(z) \frac{t^{n}}{n!}=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{h n} w^{n} e^{[n+z]_{q} t} \tag{1.9}
\end{equation*}
$$

By using (1.9), we easily see that

$$
\int_{\mathbb{Z}_{p}} \phi_{w}(x) q^{x(h-1)} e^{[z+x]_{q} t} d \mu_{-q}(x)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} w^{n} q^{h n} e^{[n+z]_{q} t}
$$

Since $[x+z]_{q}=[z]_{q}+q^{z}[x]_{q}$, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} E_{n, q, w}^{(h)}(z) \frac{t^{n}}{n!} & =\int_{\mathbb{Z}_{p}} \phi_{w}(x) q^{x(h-1)} e^{[x+z]_{q} t} d \mu_{-q}(x) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} q^{l z}[z]_{q}^{n-l} \int_{\mathbb{Z}_{p}} \phi_{w}(x) q^{x(h-1)}[x]_{q}^{l} d \mu_{-q}(x)\right) \frac{t^{n}}{n!}
\end{aligned}
$$

By using comparing coefficients $\frac{t^{n}}{n!}$, we easily see that

$$
E_{n, q, w}^{(h)}(z)=\sum_{l=0}^{n}\binom{n}{l} q^{l z}[z]_{q}^{n-l} E_{n, q, w}^{(h)} .
$$

Observe that, if $q \rightarrow 1, w \rightarrow 1$, then $E_{n, q, w}^{(h)}(z) \rightarrow E_{n}(z)$, where $E_{n}(z)$ are the Euler polynomials. Note that, if $q \rightarrow 1$, then $E_{n, q, w}^{(h)}(z) \rightarrow E_{n, w}(z)$, where $E_{n, w}(z)$ are the twisted Euler polynomials.

2. Distribution and Structure of the Zeros

In this section, we investigate the zeros of the twisted (h, q)-Euler polynomials $E_{n, q, w}^{(h)}(z)$ by using computer. We plot the zeros of $E_{n, q, w}^{(h)}(z), z \in \mathbb{C}$ for $n=10,20,30,40, q=1 / 2, w=$ $e^{\pi i}$ and $h=2$. (Figures 1, 2, 3, and 4). Next, we plot the zeros of $E_{n, q, w}^{(h)}(z), z \in \mathbb{C}$ for

Figure 1: Zeros of $E_{10, q, w}^{(2)}$

Figure 2: Zeros of $E_{20, q, w}^{(2)}$

Figure 3: Zeros of $E_{30, q, w}^{(2)}$

Figure 5: Zeros of $E_{30, q, w}^{(5)}$

Figure 4: Zeros of $E_{30, q, w}^{(2)}$

Figure 6: Zeros of $E_{30, q, w}^{(10)}$

7, and $8, E_{n, q, w}^{(h)}(z), z \in \mathbb{C}$, has $\operatorname{Im}(z)=0$ reflection symmetry. This translates to the following open problem: Prove or disprove that $E_{n, q, w}^{(h)}(z), z \in \mathbb{C}$, has $\operatorname{Im}(z)=0$ reflection symmetry. Our numerical results for numbers of real and complex zeros of $E_{n, q, w}^{(h)}(z)$ are displayed in Table 1. In general, how many roots does $E_{n, q, w}^{(h)}(z)$ have ? Prove or disprove: $E_{n, q, w}^{(h)}(z)$ has n distinct solutions. Find the numbers of complex zeros $C_{E_{n, q, w}^{(h)}(z)}$ of $E_{n, q, w}^{(h)}(z), \operatorname{Im}(z) \neq 0$.
Prove or give a counterexample: Conjecture: Since n is the degree of the polynomial $E_{n, q, w}^{(h)}(z)$, the number of real zeros $R_{E_{n, q, w}^{(h)}(z)}$ lying on the real plane $\operatorname{Im}(z)=0$ is then $R_{E_{n, q, w}^{(h)}(z)}=$ $n-C_{E_{n, q, w}^{(h)}(z)}$, where $C_{E_{n, q, w}^{(h)}(z)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{E_{n, q, w}^{(h)}(z)}$ and $C_{E_{n, q, w}^{(h)}(z)}$. We calculated an approximate solution satisfying $E_{n, q, w}^{(h)}(z), q=$ $1 / 2, w=e^{\pi i}, z \in \mathbb{R}$. The results are given in Table 2 and Table 3.

Table 1. Numbers of real and complex zeros of $E_{n, q, w}^{(2)}(z)$

degree n	$w=e^{\pi i}$		$w=e^{\pi i / 3}$	
	real zeros	complex zeros	real zeros	complex zeros
1	1	0	0	1
2	0	2	0	2
3	1	2	0	3
4	0	4	0	4
5	1	4	0	5
6	0	6	0	6
7	1	6	0	6
8	0	8	0	8
9	1	8	0	9
10	0	10	0	10
11	1	10	0	11
12	0	12	0	12
13	1	12	0	13

Table 2. Approximate solutions of $E_{n, q, w}^{(2)}(z)=0, w=e^{\pi i}, z \in \mathbb{R}$

degree n	z
1	-0.222392
3	-0.425458
5	-0.525835
7	-0.593454
9	-0.641321
11	-0.677809
13	-0.706818
15	-0.730465
17	-0.750137
19	-0.7668

Table 3. Approximate solutions of $E_{n, q, w}^{(5)}(z)=0, w=e^{\pi i}, z \in \mathbb{R}$

degree n	z
1	-0.0230836
3	-0.191203
5	-0.281468
7	-0.344607
9	-0.400306
11	-0.446693
13	-0.48419
15	-0.515564
17	-0.542866
19	-0.56714

Finally, we shall consider the more general problems. Find the equation of envelope curves bounding the real zeros lying on the plane, and the equation of a trajectory curve running through the complex zeros on any one of the arcs. We can draw a plot of zeros of the $E_{n, q, w}^{(h)}(z)$, respectively (Figures $1,2,3,4,5,6,7$, and 8$)$. These figures give mathematicians an unbounded capacity to create visual mathematical investigations of the behavior of roots of the $E_{n, q, w}^{(h)}(z)$. Moreover, it is possible to create a new mathematical ideas and analyze them in ways that generally are not possible by hand. The author has no doubt that investigation along this line will lead to a new approach employing numerical method in the field of research of the $E_{n, q, w}^{(h)}(z)$ to appear in mathematics and physics. For related topics the interested reader is referred to [8], [9], [10], [11].

References

[1] M.Cenkci, M. Can, V.Kurt, p-adic interpolation functions and Kummer-type congruences for q-twisted and q-generalized twisted Euler numbers, Adv. Stud. Contemp. Math. 9(2)(2004), 203-216.
[2] T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10(3)(2003), 261-267.
[3] T. Kim, Analytic continuation of multiple q-zeta functions and their values at negative integers, Russ. J. Math. Phys. 11(12)(2004), 71-76.
[4] T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math. Phys. 13(3)(2006), 293-298.
[5] T. Kim, L. C. Jang, C. S. Ryoo, Note on q-extensions of Euler numbers and polynomials of higher order J. Inequalities Applications. 2008, Art. ID 371295.
[6] H. Ozden, Y. Simsek, I.N. Cangul, Euler polynomials associated with p-adic q-Euler measure, Gen. Math. 15(2)(2007), 24-37.
[7] S.-H. Rim, T. Kim, A note on p-adic Euler measure on \mathbb{Z}_{p}, Russ. J. Math. Phys. 13(3)(2006), 358-361.
[8] C. S. Ryoo, T. Kim, L. C. Jang, Some Relationships between the analogues of Euler numbers and Polynomials J. Inequalities Applications. 2007, Art. ID 86052.
[9] C. S. Ryoo, T. Kim, L. C. Jang, A note on generalized Euler numbers and polynomials, Inter. J. Comput. Math. 84(7)(2007), 1099-1111.
[10] C. S. Ryoo, J. J. Seo, T. Kim, A note on generalized q-Euler numbers and polynomials, J. Comput. Anal. Appl. 10(4)(2008), 483-493.
[11] C. S. Ryoo, T. Kim, R.P. Agarwal, A numerical investigation of the roots of q polynomials, Inter. J. Comput. Math. 83(2006), 223-234.

A numerical computation of the roots of q-Euler polynomials

C. S. Ryoo
${ }^{1}$ Department of Mathematics, Hannam University, Daejeon 306-791, Korea

Abstract

Recently several authors studied the q-extension of Euler numbers and polynomials(see [1-8]). In this paper we construct the q-Euler numbers $E_{n, q}$ and Polynomials $E_{n, q}(x)$. We also observe the behavior of complex roots of the q-Euler polynomials $E_{n, q}(x)$, using numerical investigation. By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the q-Euler polynomials $E_{n, q}(x)$. Finally, we give a table for the solutions of the q-Euler polynomials $E_{n, q}(x)$.

1. Introduction

In the 21st century, the computing environment would make more and more rapid progress. Using computer, a realistic study for new analogs of q-Euler numbers and polynomials is very interesting. It is the aim of this paper to observe an interesting phenomenon of 'scattering' of the zeros of the q-Euler polynomials $E_{n, q}(x)$. The outline of this paper is as follows. In Section 2, we study q Euler polynomials $E_{n, q}(x)$. In Section 3, we describe the beautiful zeros of the q-Euler polynomials $E_{n, q}(x)$ using a numerical investigation. Also we display distribution and structure of the zeros of the the q-Euler polynomials $E_{n, q}(x)$ by using computer. By using the results of our paper the readers can observe the regular behavior of the roots of the q-Euler polynomials $E_{n, q}(x)$. Finally, we carried out computer experiments for doing demonstrate a remarkably regular structure of the complex roots of the q-Euler polynomials $E_{n, q}(x)$. Throughout this paper we use the following notations. By \mathbb{Z}_{p} we denote the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers. \mathbb{C} denotes the complex number field. Let ν_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-\nu_{p}(p)}=p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$ one normally assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, we normally assume that $|q-1|_{p}<p^{-\frac{1}{p-1}}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$.

$$
[x]_{q}=[x: q]=\frac{1-q^{x}}{1-q}, \text { cf. }[1,4,5] .
$$

Hence, $\lim _{q \rightarrow 1}[x]=x$ for any x with $|x|_{p} \leq 1$ in the present p-adic case. Let d be a fixed integer and let p be a fixed prime number. For any positive integer N, we set

$$
\begin{aligned}
& X={\underset{N}{\lim }\left(\mathbb{Z} / d p^{N} \mathbb{Z}\right),}_{X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}}\left(a+d p \mathbb{Z}_{p}\right),}=\left\{p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a \quad\left(\bmod d p^{N}\right)\right\},\right.
\end{aligned}
$$

where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{N}$. For any positive integer N,

$$
\mu_{q}\left(a+d p^{N} \mathbb{Z}_{p}\right)=\frac{q^{a}}{\left[d p^{N}\right]_{q}}
$$

is known to be a distribution on X, cf. [3,4,5]. For

$$
g \in U D\left(\mathbb{Z}_{p}\right)=\left\{g \mid g: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p} \text { is uniformly differentiable function }\right\}
$$

the p-adic q-integral was defined by $[3,5,6]$

$$
I_{q}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]} \sum_{0 \leq x<p^{N}} g(x) q^{x}
$$

Note that

$$
I_{1}(g)=\lim _{q \rightarrow 1} I_{q}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{1}(x)=\lim _{N \rightarrow \infty} \frac{1}{p^{N}} \sum_{0 \leq x<p^{N}} g(x)
$$

(see $[3,5,6]$). Now, we consider the case $q \in(-1,0)$ corresponding to q-deformed fermionic certain and annihilation operators and the literature given therein $[3,4,5,6]$. The expression for the $I_{q}(g)$ remains same, so it is tempting to consider the limit $q \rightarrow-1$. That is,

$$
\begin{equation*}
I_{-1}(g)=\lim _{q \rightarrow-1} I_{q}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{0 \leq x<p^{N}} g(x)(-1)^{x} \tag{1.1}
\end{equation*}
$$

If we take $g_{1}(x)=g(x+1)$ in (1.1), then we easily see that

$$
\begin{equation*}
I_{-1}\left(g_{1}\right)+I_{-1}(g)=2 g(0) \tag{1.2}
\end{equation*}
$$

First, we introduce the Euler numbers and Euler polynomials. The Euler numbers E_{n} are defined by the generating function:

$$
\begin{equation*}
F(t)=\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} G_{n} \frac{t^{n}}{n!}, \text { cf. }[1,4,5] \tag{1.3}
\end{equation*}
$$

where we use the technique method notation by replacing E^{n} by $E_{n}(n \geq 0)$ symbolically. For $x \in \mathbb{R}$ ($=$ the field of real numbers), we consider the Euler polynomials $E_{n}(x)$ as follows:

$$
\begin{equation*}
F(x, t)=\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{1.4}
\end{equation*}
$$

Note that $E_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} E_{k} x^{n-k}$. In the special case $x=0$, we define $E_{n}(0)=E_{n}$.

2. The q-Euler numbers and polynomials

In [5], we defined the q-Euler numbers and polynomials. In this section, we introduce another q-Euler numbers $E_{n, q}$ and polynomials $E_{n, q}(x)$ and investigate their properties. In (1.2), if we take $g(x)=q^{x} e^{x t}$, then we easily see that

$$
I_{-1}\left(q^{x} e^{x t}\right)=\int_{\mathbb{Z}_{p}} q^{x} e^{x t} d \mu_{-1}(x)=\frac{2}{q e^{t}+1}
$$

Let us define the twisted Euler numbers $E_{n, q}$ and polynomials $E_{n, q}(x)$ as follows:

$$
\begin{gather*}
I_{-1}\left(q^{y} e^{y t}\right)=\int_{\mathbb{Z}_{p}} q^{y} e^{y t} d \mu_{-1}(y)=\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!} \tag{2.1}\\
I_{-1}\left(q^{y} e^{(y+x) t}\right)=\int_{\mathbb{Z}_{p}} q^{y} e^{(x+y) t} d \mu_{-1}(y)=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!} . \tag{2.2}
\end{gather*}
$$

By (2.1) and (2.2), we obtain the following Witt's formula.

Theorem 1. For $n \in \mathbb{N}$, we have

$$
\int_{\mathbb{Z}_{p}} q^{x} x^{n} d \mu_{-1}(x)=E_{n, q}
$$

$$
\int_{\mathbb{Z}_{p}} q^{y}(x+y)^{n} d \mu_{-1}(y)=E_{n, q}(x)
$$

Let q be a complex number with $|q|<1$. By the meaning of (1.3) and (1.4), let us define the q-Euler numbers $E_{n, q}$ and polynomials $E_{n, q}(x)$ as follows:

$$
\begin{gather*}
F_{q}(t)=\frac{2}{q e^{t}+1}=\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!} \tag{2.3}\\
F_{q}(x, t)=\frac{2}{q e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!} . \tag{2.4}
\end{gather*}
$$

We have the following remark.

Remark. Note that
(1) $E_{n, q}(0)=E_{n, q}$,
(2) If $q \rightarrow 1$, then $E_{n, q}(x)=E_{n}(x), E_{n, q}=E_{n}$,
(3) If $q \rightarrow 1$, then $F_{q}(x, t)=F(x, t), F_{q}(t)=F(t)$.

Here is the list of the first q-Euler numbers $E_{n, q}$.

$$
\begin{aligned}
& E_{0, q}=\frac{2}{1+q}, \quad E_{2, q}=-\frac{2 q}{(1+q)^{2}} \\
& E_{3, q}=\frac{2(-1+q) q}{(1+q)^{3}}, \\
& E_{3, q}=-\frac{2 q\left(1-4 q+q^{2}\right)}{(1+q)^{4}} \\
& E_{4, q}=\frac{2(-1+q) q\left(1-10 q+q^{2}\right)}{(1+q)^{5}} \\
& E_{5, q}=-\frac{2 q\left(1-26 q+66 q^{2}-26 q^{3}+q^{4}\right)}{(1+q)^{6}} \cdots
\end{aligned}
$$

By the above definition, we obtain

$$
\begin{aligned}
\sum_{l=0}^{\infty} E_{l, q}(x) \frac{t^{l}}{l!} & =\frac{2}{q e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!} \sum_{m=0}^{\infty} x^{m} \frac{t^{m}}{m!} \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l} E_{n, q} \frac{t^{n}}{n!} x^{l-n} \frac{t^{l-n}}{(l-n)!}\right) \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l}\binom{l}{n} E_{n, q} x^{l-n}\right) \frac{t^{l}}{l!}
\end{aligned}
$$

By using comparing coefficients $\frac{t^{l}}{l!}$, we have the following theorem.
Theorem 2. For any positive integer n, we have

$$
E_{n, q}(x)=\sum_{k=0}^{n}\binom{n}{k} E_{k, q} x^{n-k}
$$

Here is the list of the first q-Euler polynomials $E_{n, q}(x)$.

$$
\begin{aligned}
E_{0, q}(x)= & \frac{2}{1+q}, \\
E_{1, q}(x)= & \frac{2(-q+x+q x)}{(1+q)^{2}}, \\
E_{2, q}(x)= & \frac{2\left(-q+q^{2}-2 q x-2 q^{2} x+x^{2}+2 q x^{2}+q^{2} x^{2}\right)}{(1+q)^{3}}, \\
E_{3, q}(x)= & \frac{2\left(-q+4 q^{2}-q^{3}-3 q x+3 q^{3} x-3 q x^{2}-6 q^{2} x^{2}-3 q^{3} x^{2}\right)}{(1+q)^{4}} \\
& +\frac{2\left(x^{3}+3 q x^{3}+3 q^{2} x^{3}+q^{3} x^{3}\right)}{(1+q)^{4}}, \cdots
\end{aligned}
$$

Because

$$
\frac{\partial}{\partial x} F_{q}(x, t)=t G_{q}(x, t)=\sum_{n=0}^{\infty} \frac{d}{d x} E_{n, q}(x) \frac{t^{n}}{n!}
$$

it follows the important relation

$$
\frac{d}{d x} E_{n, q}(x)=n E_{n-1, q}(x)
$$

We also obtain the following integral formula

$$
\int_{a}^{b} E_{n-1, q}(x) d x=\frac{1}{n}\left(E_{n, q}(b)-E_{n, q}(a)\right)
$$

Over five decades ago, Carlitz [1] defined q-extensions of the classical Bernoulli numbers B_{n} and Bernoulli polynomials $B_{n}(x)$ and proved properties analogues to those satisfied by B_{n} and $B_{n}(x)$. Carlitz's q-Bernoulli numbers $\beta_{n}=\beta_{n, q}$ can be determined inductively by [1]

$$
\beta_{0}=1, \quad q(q \beta+1)^{k}-\beta_{k}= \begin{cases}1, & \text { if } k=1 \\ 0, & \text { if } k>1\end{cases}
$$

with the usual convention about replacing β^{k} by β_{k}. For the q-Euler numbers, we obtain the following theorem.

Theorem 3. The q-Euler numbers $E_{n, q}$ are defined respectively by

$$
q\left(E_{q}+1\right)^{n}+E_{n, q}= \begin{cases}2, & \text { if } n=0 \\ 0, & \text { if } n>0\end{cases}
$$

with the usual convention about replacing $\left(E_{q}\right)^{n}$ by $E_{n, q}$ in the binomial expansion.
Proof. From (2.3), we obtain

$$
\frac{2}{q e^{t}+1}=\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}\left(E_{q}\right)^{n} \frac{t^{n}}{n!}=e^{E_{q} t}
$$

which yields

$$
2=\left(q e^{t}+1\right) e^{E_{q} t}=q e^{\left(E_{q}+1\right) t}+e^{E_{q} t}
$$

Using Taylor expansion of exponential function, we have

$$
\begin{aligned}
2 & =\sum_{n=0}^{\infty}\left\{q\left(E_{q}+1\right)^{n}+\left(E_{q}\right)^{n}\right\} \frac{t^{n}}{n!} \\
& =q\left(E_{q}+1\right)^{0}+\left(E_{q}\right)^{0}+\sum_{n=1}^{\infty}\left\{q\left(E_{q}+1\right)^{n}+\left(E_{q}\right)^{n}\right\} \frac{t^{n}}{n!}
\end{aligned}
$$

The result follows by comparing the coefficients.

Since

$$
\begin{aligned}
\sum_{l=0}^{\infty} E_{l, q}(x+y) \frac{t^{l}}{l!} & =\frac{2}{q e^{t}+1} e^{(x+y) t} \\
& =\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!} \sum_{m=0}^{\infty} y^{m} \frac{t^{m}}{m!} \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l} E_{n, q}(x) \frac{t^{n}}{n!} y^{l-n} \frac{t^{l-n}}{(l-n)!}\right) \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l}\binom{l}{n} E_{n, q}(x) y^{l-n}\right) \frac{t^{l}}{l!},
\end{aligned}
$$

we have the following addition theorem.

Theorem 4. The twisted Euler polynomials $E_{n, w}(x)$ satisfies the following relation:

$$
E_{l, q}(x+y)=\sum_{n=0}^{l}\binom{l}{n} E_{n, q}(x) y^{l-n} .
$$

It is easy to see that

$$
\begin{aligned}
\sum_{n=0}^{\infty} G_{n, q}(x) \frac{t^{n}}{n!} & =\frac{2}{q e^{t}+1} e^{x t}=\frac{2 t}{q^{n} e^{m t}+1} e^{x t} \sum_{a=0}^{m-1}(-1)^{a} q^{a} e^{a t} \\
& =\frac{1}{m} \sum_{a=0}^{m-1}(-1)^{a} q^{a} \frac{2 m}{q^{m} e^{m t}+1} e^{\left.\frac{a+x}{m}\right)(m t)} \\
& =\frac{1}{m} \sum_{a=0}^{m-1}(-1)^{a} q^{a} \sum_{n=0}^{\infty} E_{n, q^{m}}\left(\frac{a+x}{m}\right) \frac{(m t)^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(m^{n-1} \sum_{a=0}^{m-1}(-1)^{a} q^{a} E_{n, q^{m}}\left(\frac{a+x}{m}\right)\right) \frac{t^{n}}{n!}
\end{aligned}
$$

Hence we have the below theorem.

Theorem 5. For any positive integer m (=odd), we have

$$
E_{n, q}(x)=m^{n-1} \sum_{i=0}^{m-1}(-1)^{i} q^{i} E_{n, q^{m}}\left(\frac{i+x}{m}\right), \text { for } n \geq 0
$$

3. Distribution and Structure of the zeros

In this section, we investigate the zeros of q-Euler polynomials $E_{n, q}(x)$ by using computer. Let q be a complex number with $0<q<1$. We plot the zeros of $E_{n, q}(x), x \in \mathbb{C}$ for $q=1 / 2$. (Figures 1 , 2,3 , and 4). Next, we plot the zeros of $E_{16, q}(x), x \in \mathbb{C}$ for $q=1 / 10,1 / 50,1 / 100,1 / 150$. (Figures $5,6,7$, and 8).

In Figures $1-8, E_{n, q}(x), x \in \mathbb{C}$, has $\operatorname{Im}(x)=0$ reflection symmetry. This translates to the following open problem: Prove or disprove: $E_{n, q}(x), x \in \mathbb{C}$, has $\operatorname{Im}(x)=0$ reflection symmetry.

Our numerical results for numbers of real and complex zeros of $E_{n, q}(x)$ are displayed in Table 1.

Figure 1: Zeros of $E_{10, q}(x)$

Figure 3: Zeros of $E_{14, q}(x)$

Figure 4: Zeros of $E_{16, q}(x)$

Table 1. Numbers of real and complex zeros of $E_{n, q}(x)$

	$q=1 / 2$		$q=1 / 5$	
	real zeros	complex zeros	real zeros	complex zeros
1	1	0	1	0
2	2	0	2	0
3	3	0	3	0
4	2	2	2	2
5	3	2	3	2
6	0	6	0	6
7	3	4	3	4
8	4	4	4	4
9	3	6	5	4
10	4	6	4	6

We shall consider the more general open problem. In general,how many roots does $E_{n, q}(x)$ have ? Prove or disprove: $E_{n, q}(x)$ has n distinct solutions. Find the numbers of complex zeros $C_{E_{n, q}(x)}$

Figure 5: Zeros of $E_{16, q}(x)$

of $E_{n, q}(x), \operatorname{Im}(x) \neq 0$. Prove or give a counterexample: Conjecture: Since n is the degree of the polynomial $E_{n, q}(x)$, the number of real zeros $R_{E_{n, q}(x)}$ lying on the real plane $\operatorname{Im}(x)=0$ is then $R_{E_{n, q}(x)}=n-C_{E_{n, q}(x)}$, where $C_{E_{n, q}(x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{E_{n, q}(x)}$ and $C_{E_{n, q}(x)}$. We plot the $E_{n, q}(x)$, respectively (Figures 1-9). These figures give mathematicians an unbounded capacity to create visual mathematical investigations of the behavior of the roots of the $E_{n, q}(x)$. Moreover, it is possible to create a new mathematical ideas and analyze them in ways that generally are not possible by hand. The author has no doubt that investigation along this line will lead to a new approach employing numerical method in the field of research of the q-Euler polynomials $E_{n, q}(x)$ to appear in mathematics and physics. For related topics the interested reader is referred to [4], [6], [7]. We calculated an approximate solution satisfying $E_{n, q}(x), q=1 / 2,1 / 5, x \in \mathbb{R}$.

Figure 9: Stacks of zeros $E_{n, q}(x), q=1 / 2$ for $1 \leq n \leq 16$

The results are given in Table 2 and Table 3.
Table 2. Approximate solutions of $E_{n, q}(x)=0, q=1 / 2$

degree n	x
1	0.3333
2	$-0.13807, \quad 0.8047$
3	$-0.42060, \quad 0.22004, \quad 1.2006$
4	$0.6547, \quad 1.5273$
5	$0.08542, \quad 1.0854, \quad 1.7866$

Table 3. Approximate solutions of $E_{n, q}(x)=0, q=1 / 5$

degree n	x
1	0.16667
2	$-0.20601, \quad 0.53934$
3	$-0.3009, \quad-0.10220, \quad 0.9031$
4	$0.24627, \quad 1.2384$
5	$-0.3717, \quad 0.5951, \quad 1.5439$

REFERENCES

1. Carlitz, L. (1948) q-Bernoulli numbers and polynomials, Duke Math. J., v. 15, pp. 987-1000.
2. Cenkci, M., Can, M., Kurt, V.(2004). q-adic interpolation functions and kummer type congruence for q-twisted and q-generalized twisted Euler numbers, Advan. Stud. Contemp. Math., v. 9, pp. 203-216.
3. Kim, T., Jang, L.C., Pak, H-K.(2001). A note on q-Euler and Genocchi numbers, Proc. Japan Acad., v. 77 A, pp. 139-141.
4. Kim, T., Ryoo, C.S., Jang, L.C., Rim, S.H.,(2005). Exploring the q-Riemann Zeta function and q-Bernoulli polynomials, Discrete Dynamics in Nature and Society, v.2005(2), pp.171-181.
5. Ryoo, C.S., Kim, T., Jang, L.C. (2007). Some Relationships between the Analogs of Euler Numbers and Polynomials, Journal of Inequalities and Applications, v. 2007 ID 86052, doi:10.1155/2007/86052.
6. Ryoo, C.S., Seo, J.J., Kim, T.(2008). A note on generalized q-Euler numbers and polynomials , Journal of Computational Analysis and Applications, v. 10(4), pp.483-493.
7. Ryoo,C.S., Song, H., Agarwal, R.P. (2004). On the roots of the q-analogue of Euler-Barnes' polynomials, Advan. Stud. Contemp. Math., v. 9, pp. 153-163.
8. Santos, J.P. (2001). On a new combinatorial interpolation for a theorem of Euler, Advan. Stud. Contemp. Math., v. 3, pp. 31-38.

Generalized distance and some common fixed point theorems

R. Saadati ${ }^{a}$, S. M. Vaezpour ${ }^{a}$ and Lj. B. Ćirićc ${ }^{b}$
${ }^{a}$ Department of Mathematics and Computer Science
Amirkabir University of Technology
424 Hafez Avenue, Tehran 15914, Iran
${ }^{b}$ Faculty of Mechanical Engineering
Kraljice Marije 16, 11000 Belgrade, Serbia.

Abstract

In this paper, we consider w-distance on a complete metric spaces and prove some common fixed point theorem for commuting maps.

2000 AMS Subject Classification: 54E40; 54E35; 54H25. Key Words and Phrases: Fixed point theorem; metric spaces; w-distance; commuting maps; common fixed point theorem.

1. Introduction and Preliminaries

Recently, Kada, Suzuki and Takahashi [3] introduced the concept of w-distance on a metric space and proved some fixed point theorems. In the sequel, we state the definition of w-distance and we state a lemma which we will use in Sections 2 and 3 ; for more information we refer the reader to [3], [4] and [5].
Definition 1.1. ([3]) Let X be a metric space with metric d. Then a function $p: X \times X \longrightarrow[0, \infty)$ is called a w-distance on X if the following are satisfied:
(a) $p(x, z) \leq p(x, y)+p(y, z)$ for any $x, y, z \in X$;
(b) for any $x \in X, p(x,):. X \longrightarrow[0, \infty)$ is lower semi-continuous;
(c) for any $\varepsilon>0$, there exists $\delta>0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply $d(x, y) \leq \varepsilon$.

Lemma 1.2. ([3,5]) Let X be a metric space with metric d and p be a w-distance on X. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X, let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences in $[0, \infty)$ converging to zero, and let $x, y, z \in X$. Then the following hold:
(1) If $p\left(x_{n}, y\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then $y=z$. In particular, if $p(x, y)=0$ and $p(x, z)=0$, then $y=z$;
(2) if $p\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then $d\left(y_{n}, z\right) \rightarrow 0$;
(3) if $p\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for any $n, m \in \mathbb{N}$ with $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence;
(4) if $p\left(y, x_{n}\right) \leq \alpha_{n}$ for any $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

Reza Saadati (rsaadati@eml.cc)
Tel :+98 1212203741 , Fax: +981212203726.

2. Common fixed point theorem for commuting maps

The following theorem is Jungck's [2] generalization of the contraction principle for metric spaces.

Theorem 2.1. Let f be a continuous mapping of a complete metric space (X, d) into itself and let $g: X \longrightarrow X$ be a map that satisfy the following conditions:
(a) $g(X) \subseteq f(X)$;
(b) g commutes with f;
(c) $d(g(x), g(y)) \leq k d(f(x), f(y))$ for all $x, y \in X$ and for some $0<k<1$.

Then f and g have a unique common fixed point.
In the next example we show that if the function f is continuous and

$$
p(g(x), g(y)) \leq k p(f(x), f(y))
$$

for all $x, y \in X$ and $0<k<1$, in general, g may be not continuous.
Example 2.2. Let $(\mathbb{R},||$.$) be a normed linear space. Then the function p: \mathbb{R}^{2} \longrightarrow$ $[0, \infty)$ defined by

$$
p(x, y)=|y| \text { for every } x, y \in \mathbb{R},
$$

is a w-distance on X (see [3] Example 2). Consider the functions f and g defined by $f(x)=4$ and

$$
g(x)= \begin{cases}1, & \text { if } x \in \mathbb{Q} \\ 0, & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}
$$

Then

$$
p(g(x), g(y))=|g(y)| \leq 1 \leq\left(\frac{1}{3}\right) p(f(x), f(y))=\frac{|f(y)|}{3}=\frac{4}{3} .
$$

Note that the function f is continuous but g is not.
Theorem 2.3. Let (X, d) be a complete metric space, p a w-distance on X, and let $f, g: X \longrightarrow X$ be maps that satisfy the following conditions:
(a) $g(X) \subseteq f(X)$;
(b) g commutes with f and f, g are continuous;
(c) $p(g(x), g(y)) \leq k p(f(x), f(y))$ for all $x, y \in X$ and $0<k<1$.

Then f and g have common fixed point provided f and g commute. Moreover, if $g(v)=g(g(v))$ for all $v \in X$, then $p(g(v), g(v))=0$.
Proof. We claim that for every $x \in X$

$$
\inf \{p(f(x), g(x))+p(f(x), z)+p(g(x), z)+p(g(x), g(g(x)))\}>0
$$

for every $z \in X$ with $g(z) \neq g(g(z))$. For the moment suppose the claim is true. Let $x_{0} \in X$. By (a) we can find x_{1} such that $f\left(x_{1}\right)=g\left(x_{0}\right)$. By induction, we can define a sequence $\left\{x_{n}\right\}_{n}$ such that $f\left(x_{n}\right)=g\left(x_{n-1}\right)$. By induction again,

$$
\begin{aligned}
p\left(f\left(x_{n}\right), f\left(x_{n+1}\right)\right) & =p\left(g\left(x_{n-1}\right), g\left(x_{n}\right)\right) \\
& \leq k p\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \\
& \leq \cdots \leq k^{n} p\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)
\end{aligned}
$$

for $n=1,2, \cdots$, which implies that, for $m>n$,

$$
\begin{aligned}
& p\left(f\left(x_{n}\right), f\left(x_{m}\right)\right) \\
\leq & p\left(f\left(x_{m-1}, f\left(x_{m}\right)\right)+p\left(f\left(x_{m-2}\right), f\left(x_{m-1}\right)\right)+\cdots+p\left(f\left(x_{n}\right), f\left(x_{n+1}\right)\right)\right. \\
\leq & p\left(f\left(x_{0}, f\left(x_{1}\right)\right) \sum_{j=n}^{m-1} k^{j} \leq \frac{k^{n}}{1-k} p\left(f\left(x_{0}, f\left(x_{1}\right)\right)\right.\right.
\end{aligned}
$$

Thus $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence. Since X is complete, there exists $y \in X$ such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=y$. As a result $g\left(x_{n-1}\right)=f\left(x_{n}\right)$ tends to y, so $\left\{g\left(f\left(x_{n}\right)\right)\right\}_{n}$ converges to $g(y)$. However, $g\left(f\left(x_{n}\right)\right)=f\left(g\left(x_{n}\right)\right)$ by the commutativity of f and g and so $f\left(g\left(x_{n}\right)\right)$ converges to $f(y)$. Because limits are unique, $f(y)=g(y)$, so $f(f(y))=f(g(y))$. On the other hand, by lower semi-continuity of $p(x,$.$) we have$

$$
\begin{gathered}
p\left(f\left(x_{n}\right), y\right) \leq \liminf _{m \rightarrow \infty} p\left(f\left(x_{n}\right), f\left(x_{m}\right)\right) \leq \frac{k^{n}}{1-k} p\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \\
p\left(g\left(x_{n}\right), y\right) \leq \liminf _{m \rightarrow \infty} p\left(f\left(x_{n+1}\right), f\left(x_{m}\right)\right) \leq \frac{k^{n+1}}{1-k} p\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)
\end{gathered}
$$

and

$$
\begin{aligned}
p\left(g\left(x_{n}\right), g\left(g\left(x_{n}\right)\right)\right) & \leq k p\left(f\left(x_{n}\right), f\left(g\left(x_{n}\right)\right)\right. \\
& =k p\left(g\left(x_{n-1}\right), g\left(g\left(x_{n-1}\right)\right)\right) \\
& \leq k^{2} p\left(f\left(x_{n-1}\right), f\left(g\left(x_{n-1}\right)\right)\right) \\
& =k^{2} p\left(g\left(x_{n-2}\right), g\left(g\left(x_{n-2}\right)\right)\right) \\
& \leq \cdots \leq k^{n} p\left(f\left(x_{1}\right), g\left(f\left(x_{1}\right)\right)\right) .
\end{aligned}
$$

Now, we show that $g(y)=g(g(y))$. Suppose $g(y) \neq g(g(y)))$ and since we assume the claim above we have

$$
\begin{aligned}
0 & <\inf \{p(f(x), g(x))+p(f(x), y)+p(g(x), y)+p(g(x), g(g(x))): x \in X\} \\
& \leq \inf \left\{p\left(f\left(x_{n}\right), g\left(x_{n}\right)\right)+p\left(f\left(x_{n}\right), y\right)+p\left(g\left(x_{n}\right), y\right)+p\left(g\left(x_{n}\right), g\left(g\left(x_{n}\right)\right)\right): n \in \mathbb{N}\right\} \\
& =\inf \left\{p\left(f\left(x_{n}\right), f\left(x_{n+1}\right)\right)+p\left(f\left(x_{n}\right), y\right)+p\left(g\left(x_{n}\right), y\right)+p\left(g\left(x_{n}\right), g\left(g\left(x_{n}\right)\right)\right): n \in \mathbb{N}\right\} \\
& \leq \inf _{n}\left\{k^{n} p\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)+\frac{k^{n}}{1-k} p\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)+\frac{k^{n+1}}{1-k} p\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)\right. \\
& \left.+k^{n} p\left(f\left(x_{1}\right), g\left(f\left(x_{1}\right)\right)\right): n \in \mathbb{N}\right\}=0 .
\end{aligned}
$$

This is a contradiction. Therefore $g(y)=g(g(y))$. Thus, $g(y)=g(g(y))=f(g(y))$, and so $g(y)$ is a common fixed point of f and g.

Furthermore, if $g(y)$ is a common fixed point of f and g and $g(v)=g(g(v))$ for all $v \in X$, then we have

$$
\begin{aligned}
p(g(y), g(y)) & =p(g(g(y)), g(g(y))) \\
& \leq k p(f(g(y)), f(g(y))) \\
& =k p(g(y), g(y)),
\end{aligned}
$$

which implies that, $p(g(y), g(y))=0$.
Now it remains to prove the claim. Assume that there exists $y \in X$ with $g(y) \neq$ $g(g(y))$ and

$$
\inf \{p(f(x), g(x))+p(f(x), y)+p(g(x), y)+p(g(x), g(g(x))): x \in X\}=0
$$

Then there exists $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty}\left\{p\left(f\left(x_{n}\right), g\left(x_{n}\right)\right)+p\left(f\left(x_{n}\right), y\right)+p\left(g\left(x_{n}\right), y\right)+p\left(g\left(x_{n}\right), g\left(g\left(x_{n}\right)\right)\right)\right\}=0
$$

Since $p\left(f\left(x_{n}\right), g\left(x_{n}\right)\right) \longrightarrow 0$ and $p\left(f\left(x_{n}\right), y\right) \longrightarrow 0$, by Lemma 1.2, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(x_{n}\right)=y \tag{2.1}
\end{equation*}
$$

Also, since $p\left(g\left(x_{n}\right), y\right) \longrightarrow 0$ and $p\left(g\left(x_{n}\right), g\left(g\left(x_{n}\right)\right)\right) \longrightarrow 0$ by Lemma 1.2, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(g\left(x_{n}\right)\right)=y \tag{2.2}
\end{equation*}
$$

By (3.1), (3.2) and continuity of g we have

$$
g(y)=g\left(\lim _{n} g\left(x_{n}\right)\right)=\lim _{n} g\left(g\left(x_{n}\right)\right)=y .
$$

Therefore, $g(y)=g(g(y))$, which is a contradiction. Hence, if $g(y) \neq g(g(y))$, then

$$
\inf \{p(f(x), g(x))+p(f(x), y)+p(g(x), y)+p(g(x), g(g(x))): x \in X\}>0
$$

3. Common fixed point theorem for four mappings

Definition 3.1. ([1]) Let G be the family of all continuous functions g where $g:[0, \infty)^{5} \longrightarrow[0, \infty)$ satisfies the following properties:
(g1) g is non-decreasing in the 1 th, 2 th and 4 th variable;
(g2) If $u, v \in[0, \infty)$ such that $u \leq g(v, v, u, u+v, 0)$ or $u \leq g(v, 0, v, u+v, u)$ or $u \leq g(v, v, u, 0, u+v, 0)$, then $u<h v$ where $0<h<1$ is a given constant;
(g3) If $u \in[0, \infty)$ such that $u \leq g(u, u, 0,0, u)$ or $u \leq g(0,0, u, u, u)$ or $u \leq$ $g(u, 0, u, 0, u, u)$, then $u=0$.

Definition 3.2. Let (X, d) be a metric space. Let A and S be mappings from X into itself and let function p be a w-distance on X. Then A and S are said to be w-compatible mappings on X if

$$
\lim _{n \longrightarrow \infty} \max \left[p\left(A S x_{n}, x_{n}\right), p\left(S A x_{n}, x_{n}\right)\right]=0
$$

Definition 3.3. Let (X, d) be a metric space. Let A and S be mappings from X into itself and let function p be a w-distance on X. Then A and S are said to be $w R$-weakly commuting on X at $a(a \in X)$ if given x in X there exists $R>0$ such that

$$
\max [p(S A x, a), p(A S x, a)] \leq R[|p(A x, a)-p(S x, a)|]
$$

Let (X, d) be a metric space. Let A, B, S and T be mappings from X into itself and p be a w-distance on X. Let (A, S) and (B, T) be $w R$-weakly commuting pairs at a of self mappings of a complete metric space (X, d) such that

$$
\begin{equation*}
A(X) \subseteq T(X), \quad B(X) \subseteq S(X) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
& \max \{p(A x, a), p(B y, a)\} \tag{3,2}\\
\leq & g(|p(S x, a)-p(T y, a)|,|p(S x, a)-p(A x, a)|, \max \{p(T y, a), p(B y, a)\} \\
& ,|p(A x, a)-p(T y, a)|, \max \{p(S x, a), p(B y, a)\})
\end{align*}
$$

for all $x, y \in X$, where $g \in G$.

Then for an arbitrary point x_{0} in X, by (3.1), we can choose a point x_{1} such that $T x_{1}=A x_{0}$ and for this point x_{1}, there exists a point x_{2} in X such that $S x_{2}=B x_{1}$ and so on. Continuing in this manner, we can find a sequence $\left\{y_{n}\right\}$ in X such that

$$
(3,3) y_{2 n}=A x_{2 n}=T x_{2 n+1} \text { and } y_{2 n+1}=B x_{2 n+1}=S x_{2 n+1}, \quad n=1,2,3, \ldots
$$

Lemma 3.4. Let (X, d) be a metric space. Let p be a w-distance on X and let A, B, S and T be mappings from X into itself satisfying the conditions (3.1) and (3.2). Then the sequence $\left\{y_{n}\right\}$ defined by (3.3) is a Cauchy sequence in X.

Proof. From (3.2) we have

$$
\begin{aligned}
& \max \left\{p\left(A x_{2 n}, a\right), p\left(B x_{2 n+1}, a\right)\right\} \\
\leq & g\left(\left|p\left(S x_{2 n}, a\right)-p\left(T x_{2 n+1}, a\right)\right|,\left|p\left(S x_{2 n}, a\right)-p\left(A x_{2 n}, a\right)\right|\right. \\
& \max \left\{p\left(T x_{2 n+1}, a\right), p\left(B x_{2 n+1}, a\right)\right\},\left|p\left(A x_{2 n}, a\right)-p\left(T x_{2 n+1}, a\right)\right| \\
& \left.\max \left\{p\left(S x_{2 n}, a\right), p\left(B x_{2 n+1}, a\right)\right\}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \max \left\{p\left(y_{2 n}, a\right), p\left(y_{2 n+1}, a\right)\right\} \\
\leq & g\left(\left|p\left(y_{2 n-1}, a\right)-p\left(y_{2 n}, a\right)\right|,\left|p\left(y_{2 n-1}, a\right)-p\left(y_{2 n}, a\right)\right|\right. \\
& \max \left\{p\left(y_{2 n}, a\right), p\left(y_{2 n+1}, a\right)\right\},\left|p\left(y_{2 n}, a\right)-p\left(y_{2 n}, a\right)\right| \\
& \left.\max \left\{p\left(y_{2 n-1}, a\right), p\left(y_{2 n+1}, a\right)\right\}\right) \\
\leq & g\left(\max \left\{p\left(y_{2 n-1}, a\right), p\left(y_{2 n}, a\right)\right\}, \max \left\{p\left(y_{2 n-1}, a\right), p\left(y_{2 n}, a\right)\right\}\right. \\
& \max \left\{p\left(y_{2 n}, a\right), p\left(y_{2 n+1}, a\right)\right\}, 0, \\
& \left.\max \left\{p\left(y_{2 n-1}, a\right), p\left(y_{2 n}, a\right)\right\}+\max \left\{p\left(y_{2 n}, a\right), p\left(y_{2 n+1}, a\right)\right\}\right)
\end{aligned}
$$

By (g2) of Definition 3.1, we obtain,

$$
\max \left\{p\left(y_{2 n}, a\right), p\left(y_{2 n+1}, a\right)\right\}<h \max \left\{p\left(y_{2 n-1}, a\right), p\left(y_{2 n}, a\right)\right\}
$$

in which $h \in] 0,1[$. Therefore

$$
\begin{aligned}
\max \left\{p\left(y_{n}, a\right), p\left(y_{n+1}, a\right)\right\} & <h \max \left\{p\left(y_{n-1}, a\right), p\left(y_{n}, a\right)\right\} \\
& <h^{2} \max \left\{p\left(y_{n-2}, a\right), p\left(y_{n-1}, a\right)\right\} \\
& <h^{n} \max \left\{p\left(y_{0}, a\right), p\left(y_{1}, a\right)\right\}
\end{aligned}
$$

Moreover, for every integer $m>n$, we get

$$
\begin{aligned}
& \max \left\{p\left(y_{n}, a\right), p\left(y_{m}, a\right)\right\} \\
< & \max \left\{p\left(y_{n}, a\right), p\left(y_{n+1}, a\right)\right\}+\cdots+\max \left\{p\left(y_{m-1}, a\right), p\left(y_{m}, a\right)\right\} \\
< & \frac{h^{n}}{1-h} \max \left\{p\left(y_{0}, a\right), p\left(y_{1}, a\right)\right\}
\end{aligned}
$$

By Lemma 2 of [6] the sequence $\left\{y_{n}\right\}$ is Cauchy.
Theorem 3.5. Let (X, d) be a metric space. Let p be a w-distance on X and let A, B, S and T be mappings from X into itself satisfying the conditions (3.1) and (3.2). Suppose that (A, S) or (B, T) is a w-compatible pair of reciprocally continuous mappings. Then A, B, S and T have a unique common fixed point in X.

Proof. By Lemma 3.4, $\left\{y_{n}\right\}$ is a Cauchy sequence in X, Since X is complete. So there exists a point z in X such that $\lim _{n \longrightarrow \infty} y_{n}=z, \lim _{n \longrightarrow \infty} A x_{2 n}=$ $\lim _{n \longrightarrow \infty} T x_{2 n+1}=z$ and $\lim _{n \longrightarrow \infty} B x_{2 n+1}=\lim _{n \longrightarrow \infty} S x_{2 n+2}=z$. Suppose A and S are w-compatible and reciprocally continuous. Then by reciprocally continuous of A and S, we have $\lim _{n \longrightarrow \infty} A S x_{2 n}=A z$ and $\lim _{n \longrightarrow \infty} S A x_{2 n}=S z$. Also, by w-compatibility of A and $S, A z=S z$, Since $A(X) \subseteq T(X)$, so there exists a point v in X such that $A z=T v$.

$$
\begin{aligned}
& \max \{p(A z, a), p(B v, a)\} \\
\leq & g(|p(S z, a)-p(T v, a)|,|p(S z, a)-p(A z, a)|, \max \{p(T v, a), p(B v, a)\} \\
& ,|p(A z, a)-p(T v, a)|, \max \{p(S z, a), p(B v, a)\}) \\
\leq & g(0,0, \max \{p(A z, a), p(B v, a)\}, 0, \max \{p(A z, a), p(B v, a)\})
\end{aligned}
$$

By (g3) of Definition 3.1,

$$
\text { (3.4) } \max \{p(A z, a), p(B v, a)\}=0
$$

so $A z=B v$. Thus $A z=S z=T v=B v$.
Since A and S are $w R$-weak commutativity, there exist $R>0$ such that

$$
\text { (3.5) } \max [p(S A z, a), p(A S z, a)] \leq R[|p(A z, a)-p(S z, a)|] .
$$

It follows that $A S z=S A z$ and $A A z=A S z=S A z=S S z$. Also, B and T are τR-weak commutative, so we have $B B v=B T v=T B v=T T v$.

By (3.4) we have $p(A z, a)=0$ and by (3.5) we have $p(A S z, a)=p(A A z, a)=0$, hence $A A z=A z$. Thus $A z$ is a common fixed point of A and S. Similarly, we can prove that $B v(=A z)$ is a common fixed point of B and T.

Finally, in order to prove uniqueness of $A z$, suppose that $A z$ and $A w, A z \neq A w$, are common fixed points of A, B, S and T. Then by (3.2), we obtain

$$
\begin{aligned}
\max \{p(A z, a), p(A w, a)\}= & \max \{p(A A z, a), p(B A w, a)\} \\
\leq & g(|p(S A z, a)-p(T A w, a)|,|p(S A z, a)-p(A A z, a)|, \\
& \max \{p(T A w, a), p(B A w, a)\} \\
& ,|p(A A z, a)-p(T A w, a)|, \max \{p(S A z, a), p(B A w, a)\}) \\
\leq & g(\max \{p(A z, a), p(A w, a)\}, 0, \\
& \max \{p(A z, a), p(A w, a)\}, 2 \max \{p(A z, a), p(A w, a)\}, \\
& \max \{p(A z, a), p(A w, a)\})
\end{aligned}
$$

By (g2) of Definition 3.1, $\max \{p(A z, a), p(A w, a)\}=0$ which implies that $A z=A w$. This completes the proof.

References

[1] A. Constantin, Common fixed points of weakly commuting mappings in 2-metric spaces, Math. Japonica 38 (1991) 507-514.
[2] G. Jungck, Commuting maps and fixed points, Amer. Math. Monthly, 83 (1976) 261-263.
[3] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica, 44 (1996), 381-391.
[4] N. Shioji, T. Suzuki and W. Takahashi, Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc., 126 (1998) 3117-3124.
[5] T. Suzuki, Several fixed point theorem in complete metric spaces, Yokohama Math. J., 44 (1997) 61-72.
[6] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440-458.

Lagrange Interpolations by Bivariate C^{1} Cubic Splines on Powell-Sabin's Triangulations *

Sunkang Chen ${ }^{\text {a }}$, Huanwen Liu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Honghe University, Mengzi, Yunnan 661100, P. R. China
${ }^{\mathrm{b}}$ Faculty of Mathematics and Computer Sciences, Guangxi University for Nationalities, Nanning, Guangxi 530006, P.R. China

Abstract

In this paper, by treating Powell-Sabin's type-1 refined triangulation $\triangle_{P S 1}$ as a triangulated quadrangulation plus a few triangles near the boundary and treating Powell-Sabin's type-2 refined triangulation $\triangle_{P S 2}$ as a triangulated quadrangulation, Lagrange interpolation schemes for both bivariate C^{1} cubic spline spaces $S_{3}^{1}\left(\triangle_{P S 1}\right)$ and $S_{3}^{1}\left(\triangle_{P S 2}\right)$ are respectively constructed and Lagrange interpolation sets are given.

Keywords: bivariate C^{1} cubic splines; Powell-Sabin's refined triangulations; Lagrange interpolation schemes; Lagrange interpolation set

1 Introduction

Let \triangle be a regular triangulation of a simply connected polygonal domain Ω in \mathbb{R}^{2}, i.e., \triangle is a set of closed triangles whose union coincides with Ω such that the intersection of any two triangles in \triangle is either empty, a common edge or a vertex. For convenience, let $V, V_{I}, V_{B}, E, E_{I}, E_{B}$ and T denote the set of vertices, interior vertices, boundary vertices, edges, interior edges, boundary edges and triangles in \triangle, respectively. It is well-known from Euler Theorem that

$$
\begin{equation*}
|T|=\left|E_{I}\right|-\left|V_{I}\right|+1, \quad|E|=2\left|E_{I}\right|-3\left|V_{I}\right|+3, \quad|V|=\left|E_{I}\right|-2\left|V_{I}\right|+3, \tag{1}
\end{equation*}
$$

where $|\cdot|$ is the cardinality of the set.
For given integers r and d with $0 \leq r \leq d-1$, the space of bivariate splines with degree d and smoothness order r with respect to \triangle is defined by

$$
\begin{equation*}
S_{d}^{r}(\triangle)=\left\{s \in C^{r}(\Omega):\left.s\right|_{t} \in \mathcal{P}_{d}, \forall t \in T\right\}, \tag{2}
\end{equation*}
$$

where \mathcal{P}_{d} is the space of bivariate polynomials of total degree being at most d.

[^6]Email address: sunkang_chen@yahoo.com.cn (Sunkang Chen).

There are usually two methods of interpolation by splines, one is the Hermite interpolation scheme and the other is the Lagrange interpolation scheme. The latter is very useful for the construction and reconstruction of surfaces and for scattered data fitting. It does not require knowing or approximating values of derivatives and requires only function values of the Lagrange interpolation points. This is stands in contrast to Hermite interpolation schemes where derivatives have to be computed approximately. In [6], Davydov and Nürnberger developed an algorithm for constructing point sets admissible for Lagrange interpolation by $S_{d}^{1}(\triangle)$ when $d \geq 4$. In [7]-[12], the authors studied the Lagrange interpolation by bivariate C^{1} splines of various degrees on either triangulations or triangulated quadrangulations, all of these results depend on certain colorings of the triangulations or quadrangulations. Recently, Nürnberger et al. [13] discussed the Lagrange interpolation by C^{2} splines of degree seven on triangulations, which is also based on a coloring algorithm.

In this paper, we will construct two Lagrange interpolation sets, one is for $S_{3}^{1}\left(\triangle_{P S 1}\right)$ on PowellSabin's type-1 refined triangulation and the other is for $S_{3}^{1}\left(\triangle_{P S 2}\right)$ on Powell-Sabin's type-2 refined triangulation.

2 Preliminaries

Definition 1 Given a triangulation \triangle of Ω, splitting each triangle t of \triangle into three subtriangles at the incenter v_{t} of t and then connecting the incenters of any two neighboring triangles, if t is a triangle with an edge e on the boundary of Ω, connecting the incenter of to the center of e, then we will get a Powell-Sabin's type-1 triangulation (see Fig. 1).

Definition 2 Given a triangulation \triangle of Ω, connecting three central lines of each triangle t and then connecting each midpoint v_{e}, we will obtain a Powell-Sabin's type-2 triangulation (see Fig. 1).

The Bernstein-Bézier technique (B-net, B-form) plays an important role in the study of both curves fitting and multivariate spline approximation. In 1980, Farin [1] first used the B-net technique in the study of bivariate splines. The more details about this technique can be found in [2], [3] and most of the papers in the references list.

Throughout the paper, let $t:=\langle u, v, w\rangle$ be a triangle, we denote the three vertices of t in counterclockwise direction by u, v and w, then every polynomial $p \in \mathcal{P}_{d}$ associated with t can be written uniquely in the B-net representation

$$
\begin{equation*}
p=\sum_{i+j+k=d} c_{i j k}^{t} \mathcal{B}_{i j k}^{d} \tag{3}
\end{equation*}
$$

where $\left\{\mathcal{B}_{i j k}^{d}\right\}_{i+j+k=d}$ is the Bernstein polynomials of degree d on the triangle t, and $c_{i j k}^{t}$ are called the B-net coefficients of p associated with the domain points $\xi_{i j k}^{t}=(i u+j v+k w) / d$.

It is clear that there is a one to one correspondence between the set of domain points $D_{\triangle}:=$ $\bigcup_{t \in \triangle} D_{t}=\bigcup_{t \in \Delta}\left\{\xi_{i j k}^{t}: i+j+k=d\right\}$ and the set of B-net coefficients $\left\{c_{\xi}\right\}_{\xi \in D_{\Delta}}$ for $s \in S_{d}^{0}(\triangle)$. For each vertex $v \in V$, we define the set

$$
R_{m}(v):=\{\text { points which are distance } m \text { from } v\}
$$

Fig. 1: Powell-Sabin's type-1 triangulation $\triangle_{P S 1}$ (left) and type-2 triangulation $\triangle_{P S 2}$ (right).
and the m-th disk around v defined by

$$
D_{m}(v):=\bigcup_{i=0}^{m} R_{i}(v)
$$

Let S be a spline space. Following Nürnberger and Zeilfelder [14], a set $\left\{z_{1}, \ldots, z_{d}\right\}$ in Ω, where $d=\operatorname{dim} S$, is called a Lagrange interpolation set for S if for any function $f \in C(\Omega)$, a unique $s \in S$ exists and satisfies

$$
\begin{equation*}
s\left(z_{i}\right)=f\left(z_{i}\right), \quad i=1, \ldots, d \tag{4}
\end{equation*}
$$

The following remarks and lemma can be found in Nürnberger et al. [10].
Remark $1 A$ univariate cubic polynomial $s(x)$ on an interval $[a, b]$ which satisfies $s(a)=z_{0}$ and $s(b)=z_{3}$ can be written in the Bernstein-Bézier form

$$
\begin{equation*}
s(x)=\frac{1}{h^{3}}\left[z_{0}(b-x)^{3}+3 c_{1}(x-a)(b-x)^{2}+3 c_{2}(x-a)^{2}(b-x)+z_{3}(x-a)^{3}\right], \tag{5}
\end{equation*}
$$

where $h=b-a$. Then the B-net coefficients c_{1} and c_{2} of the unique $s(x)$ that interpolates given values at the points $t_{1}:=a+h / 3$ and $t_{2}:=a+2 h / 3$, can be determined by solving $a \times 2$ linear system whose matrix is

$$
\frac{2}{9}\left(\begin{array}{ll}
2 & 1 \tag{6}\\
1 & 2
\end{array}\right)
$$

independent of the interval $[a, b]$. Moreover, if c_{1} is given, then we can make $s(x)$ to interpolate a prescribed value z_{2} at t_{2} by simply setting

$$
\begin{equation*}
c_{2}=\frac{27 z_{2}-z_{0}-6 c_{1}-8 z_{3}}{12} \tag{7}
\end{equation*}
$$

Remark 2 Suppose $s(x)$ is a cubic polynomial, and that for a given triangle t we know all of its B-net coefficients except for the one associated with the domain point ξ_{111}^{t}. If we know the function value of ξ_{111}^{t}, then we can immediately calculate c_{111}^{t} by (3).

Fig. 2: (a) Domain points for $S_{3}^{1}(\Sigma)$; (b) The point set P produced by Algorithm 3
Lemma 1 Suppose Σ is the triangulation obtained by inserting both diagonals in a quadrangle $Q:=<v_{1}, v_{2}, v_{3}, v_{4}>$, and suppose $t_{i}=<v_{Q}, v_{i}, v_{i+1}>, i=1, \ldots, 4$, are the four triangles of Σ. As shown in Fig. 2(a), let Γ_{E} be the set of 12 domain points situated on the edges of Q, and let

$$
\begin{aligned}
& M_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, \\
& M_{2}=\left\{a_{1}, a_{2}, a_{3}, a_{Q}\right\}, \\
& M_{3}=\left\{a_{1}, a_{3}, a_{Q}, a_{8}\right\}, \\
& M_{4}=\left\{a_{1}, a_{2}, a_{Q}, a_{8}\right\}, \\
& M_{5}=\left\{a_{1}, a_{Q}, a_{8}, a_{5}\right\} .
\end{aligned}
$$

Then each of the following five sets

$$
\Gamma_{l}=\Gamma_{E} \bigcup M_{l}, l=1, \ldots, 5
$$

is a minimal determining set for $S_{3}^{1}(\Sigma)$.
Algorithm 1 Let \diamond be a quadrangulation with all the quadrangles being convex, and \diamond is the related triangulated quadrangulation. We construct a point set P for $S_{3}^{1}(\triangleleft)$ according to the following steps.

1) For each vertex v of \diamond, choose 3 points in $D_{1}(v)$ which are marked by \circ in Fig. 4. Note that these points must be chosen on the edges of \diamond, and the B-net coefficients associated with these points can be computed by Remark 1.
2) Beginning with an arbitrary quadrangle Q, we label all the quadrangles $Q_{1}, Q_{2}, Q_{3}, \ldots$, where the quadrangle Q_{i+1} must share at least one common edge with $\bigcup_{k=1}^{i} Q_{k}$. Choose 4 points in the first quadrangle Q_{1}, see Fig. 3(e), and choose 3 points in the second quadrangle Q_{2}, see Fig. 3(a). Furthermore, if the quadrangle $Q_{j}(j=3,4, \ldots)$ shares 1, 2, 3 or 4 common edges with $\bigcup_{k=1}^{j-1} Q_{k}$, then we respectively choose 3, 2, 1 or 0 points in the quadrangle Q_{j}, see white quadrangles in Fig. 3.

Theroem 1 Let $P:=\left\{\xi_{i}\right\}_{i=1}^{|P|}$ be a point set constructed by Algorithm 1, then P forms a Lagrange interpolation set for $S_{3}^{1}(\triangleleft)$.

Fig. 3: Choice of points in step 2 of Algorithm 1.

Proof We show that for any given data $Z:=\left\{z_{i}\right\}_{i=1}^{|P|}$, there exists a unique $s \in S_{3}^{1}(\otimes)$ satisfying the interpolation condition (4). Suppose s is expressed in B-net representation as described in the Introduction, we need to show that each of the B-net coefficients of $s \in S_{3}^{1}(\triangleleft)$ is uniquely determined by the data.

At first, for each domain point ξ lying at a vertex of \otimes, the corresponding B-net coefficient is equal to the data value associated with that point. Next, for each edge e of \diamond, it follows from step 2) of Algorithm 1 that P includes one or two domain points in the interior of e, the B-net coefficients associated with those domain points are computed according to Remark 1, then all B-net coefficients of s in $D_{1}(v)$ are uniquely determined by C^{1} smoothness conditions. Finally, we compute B-net coefficients associated with domain points lying inside quadrangles. According to Algorithm 1, there are 4 points in Q_{1} belongs to the point set P, see Fig. 4, and we can apply Remark 1 to compute the B-net coefficients with respect to the domain points a and c, and the B-net coefficient associated with domain point d can be determined by Remark 2. Lemma 1 ensures that all the B-net coefficients associated with domain points lying inside the first quadrangle Q_{1} are determined. Then the B-net coefficient associated with domain point ξ_{111}^{t} in triangle t which neighbors on Q_{1} is computed by C^{1} smoothness conditions. By repeating the above steps for Q_{2}, Q_{3}, \ldots, we can compute all the B-net coefficients of s associated with the domain points lying inside all quadrangles. Then all the B-net coefficients corresponding to the domain points of D_{\triangleleft} are uniquely determined by the data. Finally, from Algorithm 1 and [15], we know that the cardinality of the point set P is equal to the dimension of spline space $S_{3}^{1}(\triangleleft)$, i.e., $\operatorname{dim} S_{3}^{1}(\triangleleft)=|P|=3|V|+|E|$.

3 Lagrange interpolation set

In this section, Lagrange interpolation schemes are constructed for bivariate C^{1} cubic splines for $S_{3}^{1}\left(\triangle_{P S 1}\right)$ and $S_{3}^{1}\left(\triangle_{P S 2}\right)$. Firstly, we construct a Lagrange interpolation set for $S_{3}^{1}\left(\triangle_{P S 1}\right)$ by using Theorem 1.

Fig. 4: A Lagrange interpolation set (\circ and \bullet) for $S_{3}^{1}(\triangleleft)$ obtained by using Algorithm 1.

Algorithm 2 For Powell-Sabin's type-1 refined triangulation $\triangle_{P S 1}$, we construct a point set P for $S_{3}^{1}\left(\triangle_{P S 1}\right)$ according to the following steps.

1) Choose some points from gray part in Fig. 5 according to Algorithm 1.
2) For each boundary edge e of \triangle, choose two points on e which are marked by \square in Fig. 5. If t is a triangle with two edges on the boundary of Ω, then choose three points in $D_{1}(v)$ which are marked by \circ (where v is a vertex linked by these two boundary edges), and choose one point on t which is marked by in Fig. 5.

Theroem 2 Let $P:=\left\{\xi_{i}\right\}_{i=1}^{|P|}$ be a point set constructed by Algorithm 2, then P forms a Lagrange interpolation set for $S_{3}^{1}\left(\triangle_{P S 1}\right)$.

Proof We show that for any given data $Z:=\left\{z_{i}\right\}_{i=1}^{|P|}$, there exists a unique $s \in S_{3}^{1}\left(\triangle_{P S 1}\right)$ satisfying the interpolation condition (4). we suppose s is expressed in B-net form, we need to show that each of the B-net coefficients of $S_{3}^{1}\left(\triangle_{P S 1}\right)$ is uniquely determined by the data. Firstly, we note that for each domain point ξ lying at a vertex of $\triangle_{P S 1}$, the corresponding B-net coefficient is equal to the data value associated with that point.

We now show how to compute the remaining B-net coefficients of s, the B-net coefficients associated with domain points in gray part of Fig. 5 can be computed following Theorem 1, then the remaining B-net coefficients can be determined by Remark 1, Remark 2 and C^{1} smoothness conditions. Furthermore, according to [4], we have

$$
\operatorname{dim} S_{3}^{1}\left(\triangle_{P S 1}\right)=|P|=3|V|+6|T|+2\left|V_{B}\right|
$$

We now prove such P is a Lagrange interpolation set for $S_{3}^{1}\left(\triangle_{P S 1}\right)$.
Remark 3 When there is a single triangle t in the original triangulation \triangle, then Algorithm 2 and Theorem 2 can not construct a Lagrange interpolation set for $S_{3}^{1}\left(t_{P S 1}\right)$, and another Algorithm must be constructed in this situation.

Fig. 5: A Lagrange interpolation set (\circ and \bullet) for $S_{3}^{1}\left(\triangle_{P S 1}\right)$ obtained by using Algorithm 2.

Fig. 6: A Lagrange interpolation set (\circ and \bullet) for $S_{3}^{1}\left(\triangle_{P S 2}\right)$ about Theorem 4.

Algorithm 3 When \triangle is a single triangle t, then we construct a point set P for $S_{3}^{1}\left(t_{P S 1}\right)$ according to the following steps.

1) For each vertex v and incenter v_{t} in t, choose three points in $D_{1}(v)$ and $D_{1}\left(v_{t}\right)$ which are marked by \circ in Fig. 2.
2) For each boundary edges e of t, choose two points on e which are marked by \square in Fig. 2.
3) Choose three points in triangle t which are marked by • in Fig. 2.

Theroem 3 Let $P:=\left\{\xi_{i}\right\}_{i=1}^{21}$ be a point set constructed by Algorithm 3, then P forms a Lagrange interpolation set for $S_{3}^{1}\left(t_{P S 1}\right)$.

Proof It follows from [4] that $\operatorname{dim} S_{3}^{1}\left(t_{P S 1}\right)=21$. Given any data $Z:=\left\{z_{i}\right\}_{i=1}^{21}$, by using Remark 1, Remark 2 and C^{1} smoothness conditions, each of the B-net coefficients of $S_{3}^{1}\left(t_{P S 1}\right)$ is uniquely determined by the data. This completes the proof of this theorem.

Note that triangulation $\triangle_{P S 2}$ can be regarded as a triangulated quadrangulation \forall if we make each original vertex v, v_{t} and center v_{e} as the vertex of quadrangle in $\triangle_{P S 2}$, then we can obtain

Theroem 4 Let $P:=\left\{\xi_{i}\right\}_{i=1}^{|P|}$ be a point set constructed by Algorithm 1 on $S_{3}^{1}\left(\triangle_{P S 2}\right)$, then P forms a it Lagrange interpolation set for $S_{3}^{1}\left(\triangle_{P S 2}\right)$.

Proof We know $\operatorname{dim} S_{3}^{1}(\triangleleft)=3|V|+|E|$, then

$$
|P|=3(|V|+|E|+|T|)+(3|T|+2|E|)=3|V|+5|E|+6|T| .
$$

Using Euler's theorem and [5] we obtain $\operatorname{dim} S_{3}^{1}\left(\triangle_{P S 2}\right)=|P|$. Then we can give a similar proof as we did in the Theorem 1.

References

[1] G. Farin, Bézier polynomials over triangles and the construction of piecewise C^{r} polynomials, Technical Report TR/91 Brunel university Uxbridge, England, 1980.
[2] R. Q. Jia, B-net representation of multivariate splines, KEXUE TONGBAO, 33, 807-811 (1988).
[3] G. Farin, Triangular Bernstein-Bézier patches, Comp. Aided Geom. Design., 3, 83-127 (1986).
[4] H.-W. Liu, S. K. Chen and Y. P. Chen, Bivariate C^{1} cu spline space over Powell-Sabin type-1 refinement, Journal of Information and Computational Science, 4, 151-160 (2007).
[5] S. K. Chen and H.-W. Liu, Bivariate cubic spline space $S_{3}^{1}\left(\triangle_{P S 2}\right)$ over Powell-Sabin's type (II) refinement, Mathematica Numerica Sinica, 30, 49-58 (2008).
[6] O. Davydov and Nürnberger, G., Interpolation by C^{1} splines of degree $q \geq 4$ on triangulations, J. Comp. Appl. Math. 126, 159-183 (2000).
[7] G. Nürnberger, and F. Zeilfelder, Local Lagrange Interpolation by Cubic Splines on a Class of Triangulations, in: K. Kopotun et. al. Trends in Approximation Theory, Vanderbilt University Press, Nashville 2001, 341-350.
[8] G. Nürnberger, L.L. Schumaker and F. Zeilfelder, Local Lagrange Interpolation by Bivariate C^{1} Cubic Splines, in: T. Lyche et. al. Mathematical Methods In CAGD , Vanderbilt University Press, Nashville, 2001, 393-404.
[9] G. Nürnberger, L. L. Schumaker and F. Zeilfelder, Lagrange interpolation by C^{1} cubic splines on triangulations of separabel quadrangulations, C.K. Chui et. al. Approximation Theory X: Splines, Wavelets and Applications Vanderbilt University Press, Nashville, 2002, 405-424.
[10] G. Nürnberger, L. L. Schumaker and F. Zeilfelder, Lagrange interpolation by C^{1} cubic splines on triangulated quadrangulations, Adv. in Comp. Math. 21, 357-380 (2004).
[11] G. Nürnberger and F. Zeilfelder, Lagrange interpolation by bivariate C^{1} splines with optimal approximation order, Adv. Comp. Math., 21, 381-419 (2004).
[12] G. Nürnberger and F. Zeilfelder, Fundamental splines on triangulations, in : W. Haussmann, K. Jetter and J. Stckler, (Eds.), Proc. Conference on Multivariate Approximation, 2002 ISNM Vol. 145, Birkhäuser, Basel, 2003, 215-234.
[13] G. Nürnberger, V. Rayevskaya, L. L. Schumaker, and F. Zeilfelder, Local Lagrange interpolation with C^{2} splines of degree seven on triangulations, in: M. Neamtu and E. Saff, (Eds.), Advances in Constructive Approximation, Nashboro Press, Brentwood, TN, 2004, 345-370.
[14] G. Nürnberger and F. Zeilfelder, Developm in bivariate spline interpolation, J. Comp. Appl. Math., 121, 125-152 (2000).
[15] M. J. Lai, Scattered data interpolation and approximation by using bivariate C^{1} piecewise cubic polynomials, Comp. Aided Geom. Design., 13, 81-88 (1996).

Instructions to Contributors Journal of Computational Analysis and Applications.

A quartely international publication of Eudoxus Press, LLC.

Editor in Chief: George Anastassiou
Department of Mathematical Sciences, University of Memphis Memphis, TN 38152-3240, U.S.A.

AUTHORS MUST COMPLY EXACTLY WITH THE FOLLOWING RULES OR THEIR ARTICLE CANNOT BE CONSIDERED.

1. Manuscripts,hard copies in triplicate and in English,should be submitted to the Editor-in-Chief, mailed un-registered, to:

Prof.George A. Anastassiou
Department of Mathematical Sciences
The University of Memphis
Memphis,TN 38152-3240, USA.

Authors must e-mail a PDF copy of the submission to ganastss@memphis.edu.

Authors may want to recommend an associate editor the most related to the submission to possibly handle it.

Also authors may want to submit a list of six possible referees, to be used in case we cannot find related referees by ourselves.
2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX,or AMS-LaTEX and according to EUDOXUS PRESS, LLC. LATEX STYLE FILE. (Click HERE to save a copy of the style file.)They should be carefully prepared in all respects. Submitted copies should be brightly printed (not dot-matrix), double spaced, in ten point type size, on one side high quality paper $8(1 / 2) \times 11$ inch. Manuscripts should have generous margins on all sides and should not exceed 24 pages.
3. Submission is a representation that the manuscript has not been published previously in this or any other similar form and is not currently under consideration for publication elsewhere. A statement
transferring from the authors(or their employers,if they hold the copyright) to Eudoxus Press, LLC, will be required before the manuscript can be accepted for publication.The Editor-in-Chief will supply the necessary forms for this transfer.Such a written transfer of copyright, which previously was assumed to be implicit in the act of submitting a manuscript,is necessary under the U.S.Copyright Law in order for the publisher to carry through the dissemination of research results and reviews as widely and effective as possible.
4. The paper starts with the title of the article, author's name(s) (no titles or degrees), author's affiliation(s) and e-mail addresses. The affiliation should comprise the department, institution (usually university or company), city, state (and/or nation) and mail code.

The following items, 5 and 6, should be on page no. 1 of the paper.
5. An abstract is to be provided, preferably no longer than 150 words.
6. A list of 5 key words is to be provided directly below the abstract. Key words should express the precise content of the manuscript, as they are used for indexing purposes.

The main body of the paper should begin on page no. 1, if possible.
7. All sections should be numbered with Arabic numerals (such as: 1. INTRODUCTION) .
Subsections should be identified with section and subsection numbers (such as 6.1. Second-Value Subheading).
If applicable, an independent single-number system (one for each category) should be used to label all theorems, lemmas, propositions, corrolaries, definitions, remarks, examples, etc. The label (such as Lemma 7) should be typed with paragraph indentation, followed by a period and the lemma itself.
8. Mathematical notation must be typeset. Equations should be numbered consecutively with Arabic numerals in parentheses placed flush right,and should be thusly referred to in the text [such as Eqs.(2) and (5)]. The running title must be placed at the top of even numbered pages and the first author's name, et al., must be placed at the top of the odd numbed pages.
9. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in one consecutive series of Arabic numerals. The captions for illustrations should be typed double space. All illustrations, charts, tables, etc., must be embedded in the body of the manuscript in proper, final, print position. In particular, manuscript, source, and PDF file
version must be at camera ready stage for publication or they cannot be considered.

Tables are to be numbered (with Roman numerals) and referred to by number in the text. Center the title above the table, and type explanatory footnotes (indicated by superscript lowercase letters) below the table.
10. List references alphabetically at the end of the paper and number them consecutively. Each must be cited in the text by the appropriate Arabic numeral in square brackets on the baseline.

References should include (in the following order): initials of first and middle name, last name of author(s)
title of article,
name of publication, volume number, inclusive pages, and year of publication.

Authors should follow these examples:

Journal Article

1. H.H.Gonska,Degree of simultaneous approximation of bivariate functions by Gordon operators, (journal name in italics) J. Approx. Theory, 62,170-191(1990).

Book

2. G.G.Lorentz, (title of book in italics) Bernstein Polynomials (2nd ed.), Chelsea,New York, 1986.

Contribution to a Book

3. M.K.Khan, Approximation properties of beta operators, in(title of book in italics) Progress in Approximation Theory (P.Nevai and A.Pinkus,eds.), Academic Press, New York,1991,pp.483-495.
4. All acknowledgements (including those for a grant and financial support) should occur in one paragraph that directly precedes the References section.
5. Footnotes should be avoided. When their use is absolutely necessary, footnotes should be numbered consecutively using Arabic numerals and should be typed at the bottom of the page to which they refer. Place a line above the footnote, so that it is set off from the text. Use the appropriate superscript numeral for citation in the text.
6. After each revision is made please again submit three hard copies of the revised manuscript, including in the final one. And after a
manuscript has been accepted for publication and with all revisions incorporated, manuscripts, including the TEX/LaTex source file and the PDF file, are to be submitted to the Editor's Office on a personalcomputer disk, 3.5 inch size. Label the disk with clearly written identifying information and properly ship, such as:

Your name, title of article, kind of computer used, kind of software and version number, disk format and files names of article, as well as abbreviated journal name.

Package the disk in a disk mailer or protective cardboard. Make sure contents of disks are identical with the ones of final hard copies submitted!

Note: The Editor's Office cannot accept the disk without the accompanying matching hard copies of manuscript. No e-mail final submissions are allowed! The disk submission must be used.
14. Effective 1 Nov. 2009 for current journal page charges, contact the Editor in Chief. Upon acceptance of the paper an invoice will be sent to the contact author. The fee payment will be due one month from the invoice date. The article will proceed to publication only after the fee is paid. The charges are to be sent, by money order or certified check, in US dollars, payable to Eudoxus Press, LLC, to the address shown on the homepage of this site.

No galleys will be sent and the contact author will receive one(1) complementary electronic copy of the journal issue in which the article appears.
15. This journal will consider for publication only papers that contain proofs for their listed results.

TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.1-A, 2010

On representability of quasi quadratic, functionals by sesquilinear functionals, Mehmet Açikgözand Aliakbar Goshabulaghi,7
Some inequalities equivalent to triangular inequality in normed and 2-normed spaces, Aliakbar Goshabulaghi, Mehmet Açikgöz, 13
On Distributions of Order Statistics of Random Vectors, M. Güngör, A. Turan, 17
A-Equistatistical Convergence of Positive Linear Operators, Hüseyin Aktuglu, Mehmet Ali Ozarslan, Halil Gezer, 24
Approximating the solution of second order differential equation with retarded argument, A. M. Bica, M. Curila,S. Curila, 37
Rate of Convergence of the Integrated MKZ-Bezier Operators, Bo-Yong Lian, 48
Stability of moving on ($2+\alpha$) chain, A. P. Buslaev, J. M. Guo, N. J. Wang, M. V. Yashina, 55
On convergence of Ishikawa's type iteration to a common fixed point in L-fuzzy metric spaces, Yeol Je Cho, Reza Saadati, Bosko Damjanovic, 76
Identities of Rogers-Ramanujan type via " ± 1 ", Wenchang Chu, Chenying Wang, 83
Volterra composition operators from mixed norm spaces to Bloch-type spaces, Dinggui Gu, 92
New KKM type theorems in G-convex spaces with applications, Weiping Guo, Jung Im Kang, Yeol Je Cho 100
Some approximation properties of q-parametric BBH operators, Nazim Mahmudov, Pembe Sabancigil, 111
A general composite iterative method for equilibrium problems and fixed point problems, JongSoo Jung,124
On the roots of the twisted (h,q)-Euler polynomials, Cheon Seoung Ryoo, 141
A numerical computation of the roots of q-Euler polynomials, C. S. Ryoo, 148
Generalized distance and some common fixed point theorems, R. Saadati, S. M. Vaezpour, Lj. B. Ciric, 157

TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.1-A, 2010, continues

Lagrange Interpolations by Bivariate C1 Cubic Splines on Powell-Sabin's Triangulations, Sunkang Chen, Huanwen Liu, .. 163

Journal of

Computational

Analysis and

Applications

Journal of Computational Analysis and Applications ISSNno.'s:1521-1398 PRINT,1572-9206 ONLINE SCOPE OF THE JOURNAL A quarterly international publication of Eudoxus Press, LLC Editor in Chief: George Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240, U.S.A ganastss@memphis.edu http://www.msci.memphis.edu/~ganastss/jocaaa
The main purpose of "J.Computational Analysis and Applications" is to publish high quality research articles from all subareas of Computational Mathematical Analysis and its many potential applications and connections to other areas of Mathematical Sciences. Any paper whose approach and proofs are computational,using methods from Mathematical Analysis in the broadest sense is suitable and welcome for consideration in our journal, except from Applied Numerical Analysis articles.Also plain word articles without formulas and proofs are excluded. The list of possibly connected mathematical areas with this publication includes, but is not restricted to: Applied Analysis, Applied Functional Analysis, Approximation Theory, Asymptotic Analysis, Difference Equations, Differential Equations, Partial Differential Equations, Fourier Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities, Integral Equations, Measure Theory, Moment Theory, Neural Networks, Numerical Functional Analysis, Potential Theory, Probability Theory, Real and Complex Analysis, Signal Analysis, Special Functions, Splines, Stochastic Analysis, Stochastic Processes, Summability, Tomography, Wavelets, any combination of the above, e.t.c.
"J.Computational Analysis and Applications" is a peer-reviewed Journal. See at the end instructions for preparation and submission of articles to JoCAAA.

Webmaster:Ray Clapsadle

Journal of Computational Analysis and Applications(JoCAAA) is published by EUDOXUS PRESS,LLC,1424 Beaver Trail
Drive,Cordova,TN38016,USA,anastassioug@yahoo.com
http//:www.eudoxuspress.com.Annual Subscription Prices:For USA and Canada,Institutional:Print \$470,Electronic \$300,Print and Electronic \$500.Individual:Print \$150,Electronic \$100, Print \&Electronic \$200.For any other part of the world add $\$ 50$ more to the above prices for Print.No credit card payments.
Copyright©2010 by Eudoxus Press,LLCAll rights reserved.JoCAAA is printed in USA.
JoCAAA is reviewed and abstracted by AMS Mathematical Reviews,MATHSCI, and Zentralblaat MATH.
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in any form and by any means without the written permission of the publisher.It is only allowed to educators to Xerox articles for educational purposes. The publisher assumes no responsibility for the content of published papers

Editorial Board
 Associate Editors

1) George A. Anastassiou	20) Hrushikesh N.Mhaskar
Department of Mathematical Sciences	Department Of Mathematics
The University of Memphis	California State University
Memphis, TN 38152,U.S.A	Los Angeles, CA 90032
Tel.901-678-3144	626-914-7002
e-mail: ganastss@memphis.edu	e-mail: hmhaska@calstatela.edu
Approximation Theory, Real Analysis,	Orthogonal Polynomials
Wavelets, Neural	Approximation Theory, Splines,
Networks, Probability,	Wavelets, Neural Networks
Inequalities.	
	21) M.Zuhair Nashed
2) J. Marshall Ash	Department Of Mathematics
Department of Mathematics	University of Central Florida
De Paul University	PO Box 161364
2219 North Kenmore Ave.	Orlando, FL 32816-1364
Chicago, IL 60614-3504	e-mail: znashed@mail.ucf.edu
773-325-4216	Inverse and Ill-Posed problems,
e-mail: mash@math.depaul.edu	Numerical Functional Analysis,
Real and Harmonic Analysis	Integral Equations,Optimization, Signal Analysis
3) Mark J.Balas	
Department Head and Professor	22) Mubenga N.Nkashama
Electrical and Computer Engineering	Department OF Mathematics
Dept.	University of Alabama at
College of Engineering	Birmingham
University of Wyoming	Birmingham, AL 35294-1170
1000 E. University Ave.	205-934-2154
Laramie, WY 82071	e-mail: nkashama@math.uab.edu
307-766-5599	Ordinary Differential Equations,
e-mail: mbalas@uwyo.edu	Partial Differential Equations
Control Theory, Nonlinear Systems,	
Neural Networks, Ordinary and	23) Charles E.M.Pearce
Partial Differential Equations,	Applied Mathematics Department
Functional Analysis and Operator	University of Adelaide
Theory	Adelaide 5005, Australia
	e-mail:
4) Drumi D.Bainov	cpearce@maths.adelaide.edu. au
Department of Mathematics	Stochastic Processes, Probability
Medical University of Sofia	Theory, Harmonic Analysis,
P.O.Box 45,1504 Sofia, Bulgaria	Measure Theory,
e-mail:	Special Functions, Inequalities
dbainov@mbox.pharmfac.acad.bg	
e-mail:drumibainov@yahoo.com	24) Josip E. Pecaric
Differential Equations/Inequalities	Faculty of Textile Technology University of Zagreb
5) Carlo Bardaro	Pierottijeva 6,10000
Dipartimento di Matematica e	Zagreb, Croatia
Informatica	e-mail: pecaric@hazu.hr
Universita di Perugia	Inequalities, Convexity
Via Vanvitelli 1	

```
06123 Perugia, ITALY
TEL+390755853822
+390755855034
FAX+390755855024
E-mail bardaro@unipg.it
Web site:
http://www.unipg.it/~bardaro/
Functional Analysis and
Approximation
Theory,Signal Analysis, Measure
Theory,
Real Analysis.
6) Jerry L.Bona
Department of Mathematics
The University of Illinois at
Chicago
851 S. Morgan St. CS 249
Chicago, IL 60601
e-mail:bona@math.uic.edu
Partial Differential Equations,
Fluid Dynamics
7) Luis A.Caffarelli
    Department of Mathematics
    The University of Texas at Austin
    Austin,Texas 78712-1082
    512-471-3160
    e-mail: caffarel@math.utexas.edu
    Partial Differential Equations
8) George Cybenko
    Thayer School of Engineering
    Dartmouth College
    8000 Cummings Hall,
    Hanover,NH 03755-8000
    603-646-3843 (x 3546
    Secr.)
    e-mail:
    george.cybenko@dartmouth.edu
    Approximation Theory and Neural
    Networks
9) Ding-Xuan Zhou
    Department Of Mathematics
    City University of Hong Kong
    83 Tat Chee Avenue
    Kowloon,Hong Kong
    852-2788 9708,Fax:852-2788 8561
    e-mail: mazhou@math.cityu.edu.hk
    Approximation Theory,
    Spline functions, Wavelets
10) Sever S.Dragomir
    School of Computer Science and
    Mathematics, Victoria University,
```

25) Svetlozar T.Rachev Department of Statistics and Applied Probability University of California at Santa Barbara,
Santa Barbara, CA 93106-3110
805-893-4869
e-mail: rachev@pstat.ucsb.edu
and Chair of Econometrics,
Statistics and Mathematical
Finance
School of Economics and
Business Engineering
University of Karlsruhe
Kollegium am Schloss, Bau
II,20.12, R210
Postfach 6980, D-76128,
Karlsruhe, GERMANY.
Tel +49-721-608-7535,
+49-721-608-2042(s)

Fax +49-721-608-3811
Zari. Rachev@wiwi.uni-karlsruhe.de Probability,Stochastic Processes and
Statistics,Financial Mathematics, Mathematical Economics.
26) Alexander G. Ramm Mathematics Department
Kansas State University Manhattan, KS 66506-2602 e-mail: ramm@math.ksu.edu Inverse and Ill-posed Problems, Scattering
Theory, Operator Theory, Theoretical Numerical Analysis, Wave Propagation, Signal Processing and Tomography

27) Ervin Y.Rodin

Department of Systems Science and Applied Mathematics Washington University, Campus Box 1040
One Brookings Dr., St.Louis, MO
63130-4899
314-935-6007
e-mail: rodin@rodin.wustl.edu
Systems Theory, Semantic
Control,
Partial Differential Equations, Calculus of
Variations,Optimization and

```
PO Box 14428,
Melbourne City,
MC 8001,AUSTRALIA
Tel. +61 3 9688 4437
Fax +61 3 9688 4050
sever@csm.vu.edu.au
Inequalities,Functional Analysis,
Numerical Analysis, Approximations,
Information Theory, Stochastics.
11) Saber N.Elaydi
    Department Of Mathematics
    Trinity University
    715 Stadium Dr.
    San Antonio,TX 78212-7200
    210-736-8246
    e-mail: selaydi@trinity.edu
    Ordinary Differential Equations,
    Difference Equations
12) Augustine O.Esogbue
    School of Industrial and Systems
    Engineering
    Georgia Institute of Technology
    Atlanta,GA 30332
    404-894-2323
    e-mail:
    augustine.esogbue@isye.gatech.edu
    Control Theory,Fuzzy sets,
    Mathematical Programming,
    Dynamic Programming,Optimization
```

13) Christodoulos A.Floudas
Department of Chemical Engineering
Princeton University
Princeton, NJ 08544-5263
609-258-4595 (x4619
assistant)
e-mail: floudas@titan.princeton.edu
OptimizationTheory\&Applications,
Global Optimization
14) J.A.Goldstein
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
901-678-3130
e-mail: jgoldste@memphis.edu
Partial Differential Equations,
Semigroups of Operators
15) H.H.Gonska
Department of Mathematics
University of Duisburg
Duisburg, D-47048

Artificial Intelligence, Operations Research, Math. Programming
28) T. E. Simos

Department of Computer
Science and Technology
Faculty of Sciences and Technology
University of Peloponnese
GR-221 00 Tripolis, Greece
Postal Address:
26 Menelaou St.
Anfithea - Paleon Faliron
GR-175 64 Athens, Greece
tsimos@mail.ariadne-t.gr
Numerical Analysis
29) I. P. Stavroulakis

Department of Mathematics
University of Ioannina 451-10 Ioannina, Greece ipstav@uoi.gr
Differential Equations
Phone +3 0651098283
30) Manfred Tasche

Department of Mathematics
University of Rostock
D-18051 Rostock, Germany
manfred.tasche@mathematik.uni-
rostock.de
Numerical Fourier
Analysis, Fourier Analysis,
Harmonic Analysis,Signal
Analysis,
Spectral
Methods, Wavelets, Splines,
Approximation Theory
31) Gilbert G.Walter

Department Of Mathematical
Sciences
University of Wisconsin-
Milwaukee, Box 413,
Milwaukee, WI 53201-0413
414-229-5077
e-mail: ggw@csd.uwm.edu
Distribution
Functions, Generalised Functions, Wavelets

32) Halbert White

Department of Economics
University of California at San
Diego

Germany

011-49-203-379-3542
e-mail:
gonska@mathematik.uni-duisburg.de Approximation Theory,
Computer Aided Geometric Design
16) Weimin Han

Department of Mathematics
University of Iowa
Iowa City, IA 52242-1419
319-335-0770
e-mail: whan@math.uiowa.edu
Numerical analysis, Finite element method,
Numerical PDE, Variational
inequalities,
Computational mechanics
17) Christian Houdre

School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332
404-894-4398
e-mail: houdre@math.gatech.edu
Probability, Mathematical
Statistics, Wavelets
18) V. Lakshmikantham

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901
e-mail: lakshmik@fit.edu
Ordinary and Partial Differential
Equations,
Hybrid Systems, Nonlinear Analysis

```
19) Burkhard Lenze
    Fachbereich Informatik
    Fachhochschule Dortmund
    University of Applied Sciences
    Postfach 105018
    D-44047 Dortmund, Germany
    e-mail: lenze@fh-dortmund.de
    Real Networks,
    Fourier Analysis,Approximation
    Theory
```

36) Ahmed I. Zayed

Department Of Mathematical Sciences
DePaul University
2320 N. Kenmore Ave.
Chicago, IL 60614-3250
773-325-7808
e-mail: azayed@condor.depaul.edu

La Jolla, CA 92093-0508
619-534-3502
e-mail: hwhite@econ.ucsd.edu
Econometric Theory,Approximation
Theory,
Neural Networks
33) Xin-long zhou

Fachbereich
Mathematik, Fachgebiet Informatik
Gerhard-Mercator-Universitat
Duisburg
Lotharstr.65, D-47048
Duisburg, Germany
e-mail:
Xzhou@mathematik.uni-duisburg.de
Fourier Analysis, Computer-Aided Geometric Design,
Computational Complexity,
Multivariate Approximation Theory, Approximation and Interpolation Theory
34) Xiang Ming Yu

Department of Mathematical Sciences
Southwest Missouri State University
Springfield, MO 65804-0094
417-836-5931
e-mail: xmy944f@missouristate.edu
Classical Approximation
Theory, Wavelets
35) Lotfi A. Zadeh

Professor in the Graduate School and
Director,
Computer Initiative, Soft Computing (BISC)
Computer Science Division
University of California at Berkeley
Berkeley, CA 94720
Office: 510-642-4959
Sec: 510-642-8271
Home: 510-526-2569
FAX: 510-642-1712
e-mail: zadeh@cs.berkeley.edu
Fuzzyness, Artificial Intelligence, Natural language processing, Fuzzy logic

Shannon sampling theory, Harmonic analysis
and wavelets, Special functions and orthogonal
polynomials, Integral transforms.

Sums of products of q-Euler numbers

By

Taekyun Kim

Abstract

By using multivariate fermionic p-adic q-integral on \mathbb{Z}_{p}, the author introduced the q-Euler polynomials of higher order (see [1]). From these q-Euler polynomials of higher order, we derive the formula for the sums of products of the q-Euler polynomials of the form $\sum_{\substack{r=i_{1}+\cdots+i_{i} \\ i_{1}, \cdots, i_{\ell} \geq 0}} \sum_{k_{1}=0}^{r-i_{1}} \cdots \sum_{k_{\ell-1}=0}^{r-i_{1}-i_{2}-\cdots-i_{\ell-1}}\binom{r}{i_{1}, \cdots, i_{\ell}}\binom{r-i_{1}}{k_{1}} \cdots\binom{r-i_{1}-i_{2}-\cdots-i_{\ell-1}}{k_{\ell-1}} E_{k_{1}+i_{1}, q}\left(\alpha_{1}\right) \cdots$ $E_{k_{\ell-1}+i_{\ell-1}, q}\left(\alpha_{\ell-1}\right) E_{i_{\ell}, q}\left(\alpha_{\ell}\right)(q-1)^{k_{1}+\cdots+k_{\ell-1}}$, where $E_{m, q}(\alpha)$ are the m-th q-Euler polynomials and $\binom{n}{\alpha_{1}, \cdots, \alpha_{n}}=\frac{n!}{\alpha_{1}!\cdots \alpha_{n}!}$.

2000 Mathematics Subject Classification: 11B68, 11S80
Key Words and Phrases: Fermionic p-adic integral, q-Euler polynomials

§1. Introduction

Let p be a fixed odd prime number. Throughout this paper $\mathbb{Z}, \mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will respectively, denote the ring of rational integer, the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_{p}. Let v_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-v_{p}(p)}=1 / p$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$ or a p-adic number $q \in \mathbb{C}_{p}$, (see [1-6]). If $q \in \mathbb{C}_{p}$, we normally assume $|1-q|_{p}<1$. In this paper, we use the notations as follows.

$$
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad \text { and } \quad[x]_{-q}=\frac{1-(-q)^{x}}{1+q} .
$$

Let d be a fixed positive integer with $d \equiv 1(\bmod 2)$. Then we set

$$
\begin{aligned}
X=X_{d} & =\lim _{\stackrel{N}{N}} \mathbb{Z} / d p^{N} \mathbb{Z}, \quad X_{1}=\mathbb{Z}_{p}, \\
X^{*} & =\bigcup_{\substack{0<a<d p,(a, p)=1}}\left(a+d p \mathbb{Z}_{p}\right), \\
a+d p^{N} \mathbb{Z}_{p} & =\left\{x \in X \mid x \equiv a\left(\bmod d p^{N}\right)\right\},
\end{aligned}
$$

where $a \in \mathbb{Z}$ lies $0 \leq a<d p^{N}$, (see [1-6]). We say that f is uniformly differential function at a point $a \in \mathbb{Z}_{p}$ and denote this property by $f \in U D\left(\mathbb{Z}_{p}\right)$ if the difference quotients $F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}$ have a limit $\ell=f^{\prime}(a)$ as $(x, y) \longrightarrow(a, a)$. For $f \in U D\left(\mathbb{Z}_{p}\right)$, the fermionic p-adic q-integral on X is defined as

$$
\begin{equation*}
\left.I_{-q}(f)=\int_{X} f(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[d p^{N}\right]_{-q}} \sum_{x=0}^{d p^{N}-1} f(x)(-q)^{x}, \quad \text { (see }[1-7]\right) . \tag{1}
\end{equation*}
$$

The q-Euler numbers (see [6]) are defined by

$$
\begin{equation*}
E_{n, q}=\int_{X}[x]_{q}^{n} d \mu_{-q}(x)=\int_{\mathbb{Z}_{p}}[x]_{n}^{q} d \mu_{-q}(x)=\frac{[2]_{q}}{(1-q)^{n}} \sum_{\ell=0}^{n} \frac{\binom{n}{\ell}(-1)^{\ell}}{1+q^{\ell+1}} \tag{2}
\end{equation*}
$$

and the q-Euler polynomials (see [5]) are defined as

$$
E_{n, q}(x)=\int_{X}[x+y]_{q}^{n} d \mu_{-q}(y)=\int_{\mathbb{Z}_{1}}[x+y]_{q}^{n} d \mu_{-q}(y)=\frac{[2]_{q}}{(1-q)^{n}} \sum_{\ell=0}^{n} \frac{\binom{n}{\ell}(-1)^{\ell} q^{\ell x}}{1+q^{\ell+1}} .
$$

In this paper, we consider the q-Euler polynomials of higher order using an integral by the q-analogue of fermionic p-adic invariant measure and give the formula for the sums of products of the q-Euler polynomials.

§2. q-Euler numbers of higher order

In [2], the m-th q-Euler polynomials in the variable x in \mathbb{C}_{p} with $|x|_{p} \leq 1$ are defined as

$$
E_{m, q}(x)=\int_{\mathbb{Z}_{p}}[x+y]_{q}^{m} d \mu_{-q}(y)=\frac{[2]_{q}}{(1-q)^{n}} \sum_{\ell=0}^{m}\binom{n}{\ell} \frac{(-1)^{\ell}}{1+q^{\ell+1}} q^{\ell x} .
$$

We use the notation:

$$
\sum_{k_{1}, \cdots, k_{n}=0}^{m}=\sum_{k_{1}=0}^{m} \sum_{k_{2}=0}^{m} \cdots \sum_{k_{n}=0}^{m}
$$

We define the q-Euler numbers of higher order, $E_{n, q}^{(r)} \in \mathbb{C}_{p}$, by making use multivariate fermionic p-adic q-integral on \mathbb{Z}_{p} as follows.

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right)=E_{n, q}^{(r)} . \tag{3}
\end{equation*}
$$

Note that $\lim _{q \rightarrow 1} E_{n, q}^{(r)}=E_{n}^{(r)}$, where $E_{n}^{(r)}$ are the n-th Euler numbers of order r.

Taekyun Kim

From (3), we note that

$$
\begin{aligned}
E_{n, q}^{(r)} & =\frac{[2]_{q}^{r}}{(1-q)^{n}} \sum_{\ell=0}^{n}\binom{n}{\ell}(-1)^{\ell}\left(\frac{1}{1+q^{\ell+1}}\right)^{r} \\
& =[2]_{q}^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} q^{m}[m]_{q}^{n} .
\end{aligned}
$$

Let us define the n-th q-Euler polynomials of order r as follows.

$$
\begin{equation*}
E_{n, q}^{(r)}(x)=\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[x+x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) . \tag{4}
\end{equation*}
$$

From (4), we note that

$$
\begin{aligned}
E_{n, q}^{(r)}(x) & =\frac{[2]_{q}^{r}}{(1-q)^{n}} \sum_{\ell=0}^{n}\binom{n}{\ell}(-1)^{\ell}\left(\frac{1}{1+q^{\ell+1}}\right)^{r} q^{\ell x} \\
& =[2]_{q}^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m}[m+x]_{q}^{n}, \quad \text { (cf. [2]). }
\end{aligned}
$$

By (4), we easily see that

$$
\begin{align*}
E_{n, q^{-1}}^{(r)}(r-x) & =\frac{(-1)^{n} q^{n+r}}{(1-q)^{n}}[2]_{q}^{r} \sum_{\ell=0}^{n}\binom{n}{\ell}(-1)^{\ell}\left(\frac{1}{1+q^{\ell+1}}\right)^{r} q^{\ell x} \tag{5}\\
& =(-1)^{n} q^{n+r} E_{n, q}^{(r)}(x),
\end{align*}
$$

and

$$
E_{n, q^{-1}}^{(r)}(r)=(-1)^{n} q^{n+r} E_{n, q}^{(r)} .
$$

The Eq.(5) seems to be interesting and new. If $q \rightarrow 1$, then we can derive the following formula from (5).

$$
E_{n}^{(r)}(r-x)=(-1)^{n} E_{n}^{(r)}(x), \quad \text { and } \quad E_{n}^{(r)}(r)=(-1)^{n} E_{n}^{(r)}
$$

For $d \in \mathbb{Z}_{+}$with $d \equiv 1(\bmod 2)$, it is easy to see that

$$
\begin{equation*}
[d]_{q}^{n} \frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1}(-1)^{a} q^{a} E_{n, q^{d}}\left(\frac{x+a}{d}\right)=E_{n, q}(x) . \tag{6}
\end{equation*}
$$

In the sense of the extension of (6), we consider the following multivariate integral.

$$
\begin{align*}
& \int_{X} \cdots \int_{X}\left[x_{1}+\cdots+x_{r}+x\right]_{q}^{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) \\
& =\frac{[d]_{q}^{n}}{[d]_{-q}^{r}} \sum_{a_{1}, \cdots, a_{r}=0}^{d-1}(-1)^{a_{1}+\cdots+a_{r}} q^{a_{1}+\cdots+a_{r}} \tag{7}\\
& \times \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[\frac{a_{1}+\cdots+a_{r}+x}{d}+x_{1}+\cdots+x_{r}\right]_{q^{d}}^{n} d \mu_{-q^{d}}\left(x_{1}\right) \cdots d \mu_{-q^{d}}\left(x_{r}\right) .
\end{align*}
$$

Sums of products of q-Euler numbers

From (7) and (4), we note that

$$
\begin{equation*}
E_{n, q}^{(r)}(x)=\frac{[d]_{q}^{n}}{[d]_{-q}^{r}} \sum_{a_{1}, \cdots, a_{r}=0}^{d-1}(-1)^{a_{1}+\cdots+a_{r}} q^{a_{1}+\cdots+a_{r}} E_{n, q^{d}}^{(r)}\left(\frac{a_{1}+\cdots+a_{r}+x}{d}\right) \tag{8}
\end{equation*}
$$

We observe that

$$
\begin{align*}
& \left(\frac{1-q^{\alpha_{1}+\cdots+\alpha_{m}+x_{1}+\cdots+x_{r}}}{1-q}\right)^{n} \\
& =\sum_{\substack{i_{1}, \ldots, i_{n} \geq 0 \\
i_{1}+\cdots+i_{2}=n \\
i_{3}+\cdots+i_{r}}}\binom{n}{i_{1}, \cdots, i_{r}} \sum_{k_{1}=0}^{i_{2}+\cdots+i_{r}}\binom{i_{2}+\cdots+i_{r}}{k_{1}}\left[x_{1}+\alpha_{1}\right]_{q}^{k_{1}+i_{1}} \\
& \times \sum_{k_{2}=0}^{i_{2}}\binom{i_{r}}{k_{2}}\left[x_{2}+\alpha_{2}\right]_{q}^{k_{2}+i_{2}} \cdots \tag{9}\\
& \times \sum_{k_{r-1}=0}^{i_{r}}\binom{i_{r}}{k_{r-1}}\left[x_{r-1}+\alpha_{r-1}\right]_{q}^{k_{r-1}+i_{r-1}}(q-1)^{k_{1}+\cdots+k_{r-1}}\left[x_{r}+\alpha_{r}\right]_{q}^{i_{r}} .
\end{align*}
$$

Thus, we have

$$
\begin{align*}
& {\left[\alpha_{1}+\cdots+\alpha_{r}+x_{1}+\cdots+x_{r}\right]_{q}^{n}} \\
& =\sum_{\substack{i_{1}, \cdots, i_{r} \geq 0 \\
i_{1}+\cdots+i_{r}=n}}^{n} \sum_{k_{1}=0}^{n-i_{1}} \sum_{k_{2}=0}^{n-i_{1}-i_{2}} \cdots \sum_{k_{r-1}=0}^{n-i_{1}-\cdots-i_{r-1}}\binom{n}{i_{1}, \cdots, i_{r}}\binom{n-i_{1}}{k_{1}}\binom{n-i_{1}-i_{2}}{k_{2}} \cdots\binom{n-i_{1}-\cdots-i_{r-1}}{k_{r-1}} \\
& \times(q-1)^{k_{1}+\cdots+k_{r-1}}\left[x_{1}+\alpha_{1}\right]_{q}^{k_{1}+i_{1}}\left[x_{2}+\alpha_{2}\right]_{q}^{k_{2}+i_{2}} \cdots\left[x_{r-1}+\alpha_{r-1}\right]_{q}^{k_{r-1}+i_{k-1}}\left[x_{r}+\alpha_{r}\right]_{q}^{i_{r}} . \tag{10}
\end{align*}
$$

From (10), we note that

$$
\begin{aligned}
& E_{n, q}^{(r)}\left(\alpha_{1}+\cdots+\alpha_{r}\right) \\
& =\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[\alpha_{1}+\cdots+\alpha_{r}+x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) \\
& =\sum_{\substack{i_{1}, \ldots, i_{r} \geq 0 \\
i_{1}+\cdots+i_{i}=n}} \sum_{k_{1}=0}^{n-i_{1}} \sum_{k_{2}=0}^{n-i_{1}-i_{2}} \cdots \sum_{k_{r-1}=0}^{n-i_{1}-\cdots-i_{r-1}}\binom{n}{i_{1}, \cdots, i_{r}}\binom{n-i_{1}}{k_{1}}\binom{n-i_{1}-i_{2}}{k_{2}} \cdots \\
& \binom{n-i_{1}-\cdots-i_{r-1}}{k_{r-1}} E_{k_{1}+i_{1}, q}\left(\alpha_{1}\right) E_{k_{2}+i_{2}, q}\left(\alpha_{2}\right) \cdots E_{k_{r-1}+i_{r-1}, q}\left(\alpha_{r-1}\right) E_{k_{r}, q}\left(\alpha_{r}\right)(q-1)^{k_{1}+\cdots+k_{r-1}},
\end{aligned}
$$

where $\binom{n}{i_{1}, \cdots, i_{r}}=\frac{n!}{i_{1}!\cdots i_{r}!}$.
Therefore, we obtain the following theorem.

Taekyun Kim

Theorem . For $\alpha_{1}, \cdots, \alpha_{r} \in \mathbb{C}_{p}, n \in \mathbb{Z}_{+}$, and $r \in \mathbb{N}$, we have

$$
\begin{aligned}
& E_{n, q}^{(r)}\left(\alpha_{1}+\cdots+\alpha_{r}\right) \\
& =\sum_{\substack{i_{1}, \cdots, i_{r}>0,0, i_{1}+\cdots+i_{r}=n}}^{n} \sum_{k_{1}=0}^{n-i_{1}} \sum_{k_{2}=0}^{n-i_{1}-i_{2}} \cdots \sum_{k_{r-1}=0}^{n-i_{1}-\cdots-i_{r-1}}\binom{n}{i_{1}, \cdots, i_{r}}\binom{n-i_{1}}{k_{1}}\binom{n-i_{1}-i_{2}}{k_{2}} \cdots \\
& \binom{n-i_{1}-\cdots-i_{r-1}}{k_{r-1}} E_{k_{1}+i_{1}, q}\left(\alpha_{1}\right) E_{k_{2}+i_{2}, q}\left(\alpha_{2}\right) \cdots E_{k_{r-1}+i_{r-1}, q}\left(\alpha_{r-1}\right) E_{k_{r}, q}\left(\alpha_{r}\right)(q-1)^{k_{1}+\cdots+k_{r-1}},
\end{aligned}
$$

where $\binom{n}{i_{1}, \cdots, i_{r}}$ is the multinomial coefficient.

Remark2. By (4), we see that

$$
\begin{aligned}
& q E_{n, q}^{(r)}(x+1)+E_{n, q}^{(r)}(x) \\
& =\frac{q[2]_{q}^{r}}{(1-q)^{n}} \sum_{j=0}^{n}\binom{n}{j}(-1)^{j}\left(\frac{1}{1+q^{j+1}}\right)^{r} q^{j(x+1)}+\frac{[2]_{q}^{r}}{(1-q)^{n}} \sum_{j=0}^{n}\binom{n}{j}(-1)^{j}\left(\frac{1}{1+q^{j+1}}\right)^{r} q^{j x} \\
& =\frac{[2]_{q}^{r}}{(1-q)^{n}} \sum_{j=0}^{n}\binom{n}{j}(-1)^{j} q^{j x}\left(\frac{1}{1+q^{j+1}}\right)^{r}\left(1+q^{j+1}\right) \\
& =\frac{[2]_{q}^{r}}{(1-q)^{n}} \sum_{j=0}^{n}\binom{n}{j}(-1)^{j} q^{j x}\left(\frac{1}{1+q^{j+1}}\right)^{r-1} \\
& =[2]_{q} E_{n, q}^{(r-1)}(x) .
\end{aligned}
$$

References

[1] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integraals, J. Nonlinear Mathematical Physics, 14 (2007), 15-27.
[2] T. Kim, New approach to q-Euler, Genocchi numbers and their interpolation functions, Advan. Stud. Contemp. Math., 18(2009)
[3] T. Kim, The modified q-Euler numbers and polynomials, Advan. Stud. Contemp. Math., 16 (2008), 161-170.
[4] T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Appl. Anal., 2008, Article ID 581582, 11pages.
[5] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl., 326 (2007), 1458-1465.

Sums of products of q-Euler numbers

[6] T. Kim, J. Y. Choi, J. Y. Sug, Extended q-Euler numbers and polynomials associated with fermionic p-adic q-integral on \mathbb{Z}_{p}, Russ. J. Math. Phys. 14 (2007), 160-163.
[7] T. Kim, Note on the Euler numbers and polynomials, Advan. Stud. Contemp. Math., 17 (2008), 131-136.

Taekyun Kim
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, S. Korea
E-mail: tkkim@kw.ac.kr

On the existence of periodic solutions to nonlinear third order ordinary differential equations with delay

Cemil Tunç
Department of Mathematics, Faculty of Arts and Sciences
Yüzüncü Yıl University, 65080, Van-Turkey
E-mail:cemtunc@yahoo.com

Abstract

In this paper, we are concerned with the existence of periodic solutions to nonlinear third order delay differential equation: $$
x^{\prime \prime \prime}(t)+\psi\left(x^{\prime}(t)\right) x^{\prime \prime}(t)+g\left(x^{\prime}(t-r)\right)+f(x(t))=p\left(t, x(t), x(t-r), x^{\prime}(t), x^{\prime}(t-r), x^{\prime \prime}(t)\right),
$$ when $p\left(t, x(t), x(t-r), x^{\prime}(t), x^{\prime}(t-r), x^{\prime \prime}(t)\right)$ is a periodic function of period $T, T>0$. With use of Lyapunov's functional approach, we establish some new sufficient conditions which guarantee that there exists a periodic solution of this equation of period $T, T>0$. For illustrations, an example is also given on the existence of periodic solutions.

1. Introduction

It is well-known that functional differential equations, in particular, delay differential equations can be used as models to describe many physical, biological systems, etc. In practice, many actual systems have the property aftereffect, i.e. the future states depend not only on the present, but also on the past history. Aftereffect is believed to occur in mechanics, control theory, physics, chemistry, biology, medicine, economics, atomic energy, information theory, etc. Therefore, it is very important to study the qualitative behaviors of solutions of delay differential equations or more generally functional differential equations.

In 1992, Zhu [5] considered the following nonlinear third order differential equation with constant delay, r :

$$
\begin{equation*}
x^{\prime \prime \prime}(t)+a x^{\prime \prime}(t)+\phi\left(x^{\prime}(t-r)\right)+f(x)=p(t), \tag{1}
\end{equation*}
$$

and he discussed the existence of periodic solutions of this equation when $p(t)$ is a periodic function of period $T, T>0$.

In this paper, we consider nonlinear third order differential equation with constant delay:

$$
\begin{align*}
x^{\prime \prime \prime}(t) & +\psi\left(x^{\prime}(t)\right) x^{\prime \prime}(t)+g\left(x^{\prime}(t-r)\right)+f(x(t)) \\
& =p\left(t, x(t), x(t-r), x^{\prime}(t), x^{\prime}(t-r), x^{\prime \prime}(t)\right) . \tag{2}
\end{align*}
$$

Obviously, our equation, (2), includes equation (1), and it can be stated as the following system:

$$
\begin{align*}
x^{\prime}(t)= & y(t), \quad y^{\prime}(t)=z(t), \\
z^{\prime}(t)= & -\psi(y(t)) z(t)-g(y(t))-f(x(t))+\int_{t-r}^{t} g^{\prime}(y(s)) z(s) d s \\
& +p(t, x(t), x(t-r), y(t), y(t-r), z(t)), \tag{3}
\end{align*}
$$

where r is a positive constant, that is, r is constant delay, which will be determined later;
Keywords: Periodic solutions; Nonlinear differential equations with delay; Third order.
AMS (MOS) Subject Classification: 34K20.
the functions ψ, g, f and p depend only on the arguments displayed explicitly. It is assumed as basic that $\psi(y), g(y), f(x)$ and $p(t, x, x(t-r), y, y(t-r), z)$ are continuous in their respective arguments on $\mathfrak{R}, \mathfrak{R}, \mathfrak{R}$ and $\mathfrak{R}^{+} \times \mathfrak{R}^{5}$, respectively; $g(0)=f(0)=0$ and $p(t, x, x(t-r), y, y(t-r), z)$ is periodic in t, of period $T, T \geq r$, that is, this function satisfies $p(t+T, x, x(t-r), y, y(t-r), z)=p(t, x, x(t-r), y, y(t-r), z)$. The derivative $g^{\prime}(y) \equiv \frac{d}{d y} g(y)$, exists and is also continuous; throughout the paper $x(t), y(t)$ and $z(t)$ are abbreviated as x, y and z, respectively.

It should also be noted that to the best of our knowledge from the literature, so far, the existence of periodic solutions of nonlinear third order differential equations with delay has only been investigated by three authors; Chukwu [2], Tejumola \& Tchegnani [3] and Zhu [5]. Perhaps, the possible difficulty raised to this case is due to the construction of Laypuov functionals for delay differential equations of higher order. But, here, we would not like the details of difficulties. It is also worth mentioning that all the papers afore mentioned, Chukwu [2], Tejumola \& Tchegnani [3] and Zhu [5], have been published without including any explanatory example on the existence of periodic solutions of equations taken under consideration. Here, we will give an example on the topic. Our assumptions and Lyapunov functional, which will be introduced, are completely different than that in Chukwu [2], Tejumola \& Tchegnani [3].

2. Preliminaries

In order to reach the main result of this paper, we will give some basic information for general non-autonomous delay periodic differential system. We now consider the delay periodic system:

$$
\begin{equation*}
\dot{x}(t)=f\left(t, x_{t}\right), x_{t}=x(t+\theta),-r \leq \theta \leq 0, t \geq 0 \tag{4}
\end{equation*}
$$

where $f:[0, \infty) \times C_{H} \rightarrow \mathfrak{R}^{n}$ is a continuous mapping, $f(t+T, \varphi)=f(t, \varphi)$ for all $\varphi \in C$ and for some constant $T>0$. We suppose that f takes closed bounded sets into bounded sets of \mathfrak{R}^{n}. Here $(C,\| \|)$ is the Banach space of continuous function $\phi:[-r, 0] \rightarrow \mathfrak{R}^{n}$ with supremum norm, $r>0 ; C_{H}$ is the open H - ball in $C ; C_{H}:=\left\{\phi \in\left(C[-r, 0], \mathfrak{R}^{n}\right):\|\phi\|<H\right\}$.

Definition 1. (See Burton [1].) A continuous function $W:[0, \infty) \rightarrow[0, \infty)$ with $W(0)=0$, $W(s)>0$ if $s>0$, and W strictly increasing is a wedge. (We denote wedges by W or W_{i}, where i is an integer.)

Definition 2. (See Burton [1].) Let D be an open set in \mathfrak{R}^{n} with $0 \in D$. A function $V:[0, \infty) \times D \rightarrow[0, \infty)$ is called positive definite if $V(t, 0)=0$ and if there is a wedge W_{1} with $V(t, x) \geq W_{1}(|x|)$, and is called decrescent if there is a wedge W_{2} with $V(t, x) \leq W_{2}(|x|)$.

Definition 3. (See Burton [1].) Let $V(t, \phi)$ be a continuous functional defined for $t \geq 0$, $\phi \in C_{H}$. The derivative of V along solutions of (4) will be denoted by \dot{V} and is defined by the following relation:

$$
\dot{V}(t, \phi)=\underset{h \rightarrow 0}{\limsup } \frac{V\left(t+h, x_{t+h}\left(t_{0}, \phi\right)\right)-V\left(t, x_{t}\left(t_{0}, \phi\right)\right)}{h}
$$

where $x\left(t_{0}, \phi\right)$ is the solution of (4) with $x_{t_{0}}\left(t_{0}, \phi\right)=\phi$.
Theorem 1. (Yoshizawa [4].) Suppose that $f(t, \varphi) \in \bar{C}_{0}(\varphi)$ and $f(t, \varphi)$ is periodic in t of period $T, T \geq r$, and consequently for any $\alpha>0$ there exists an $L(\alpha)>0$ such that $\varphi \in C_{\alpha}$ implies $|f(t, \varphi)| \leq L(\alpha)$. Moreover, suppose that there exist a continuous Lyapunov functional $V(t, \varphi)$ defined on $t \in I, \varphi \in S^{*}, S^{*}$ is the set of $\varphi \in C$ such that with $|\varphi(0)| \geq H$ (H may be large), and that $V(t, \varphi)$ satisfies the following conditions:
(i) There exist continuous increasing functions $a(s)$ and $b(s)$, satisfying $a(s)>0$, $b(s)>0$ for $s \geq H$, and $a(s) \rightarrow \infty$ as $s \rightarrow \infty$, such that

$$
a(|\phi(0)|) \leq V(t, \phi) \leq b(\| \phi \mid), \text { when }|\varphi(0)| \geq H .
$$

(ii) There exists a continuous and positive function $w(s)$ such that

$$
\dot{V}(t, \phi) \leq-w(|\varphi(0)|) \text { for } s \geq H .
$$

(iii) Suppose that there exists an $H_{1}>0, H_{1}>H$ such that

$$
r L\left(\gamma^{\circ}\right)<H_{1}-H,
$$

where $\gamma^{*}>0$ is a constant which is determined in the following way: By the condition on $V(t, \varphi)$, there exist $\alpha>0, \beta>0, \gamma>0$ such that $b\left(H_{1}\right) \leq a(\alpha), b(\alpha) \leq a(\beta), b(\beta) \leq a(\gamma)$. γ^{*} is defined by $b(\gamma) \leq a\left(\gamma^{*}\right)$. Under the above conditions, there exists a periodic solution of system (4) of period T. In particular, the relation $r L\left(\gamma^{*}\right)<H_{1}-H$ can be always satisfied if r is sufficiently small.

3. Main result

The main result of this paper is the following theorem:
Theorem 2. We assume that there are positive constants $a, b, c, m, \delta, \gamma, \mu, T$ and L such that the following conditions hold:
(i) $a b-c>0, f(0)=0, f(x) \operatorname{sgn} x>0$ for all $x \neq 0, \sup \left\{f^{\prime}(x)\right\}=c$ and $f(x) \operatorname{sgn} x \rightarrow \infty$ as $|x| \rightarrow \infty$.
(ii) $g(0)=0, \frac{g(y)}{y} \geq b,(y \neq 0)$, and $\left|g^{\prime}(y)\right| \leq L, 0 \leq \psi(y)-a \leq \delta$.
(iii) $p(t, x, x(t-r), y, y(t-r), z)$ is periodic in t, of period T and $|p(t, x, x(t-r), y, y(t-r), z)| \leq m$.
Then equation (2) has a periodic solution of period T provided r is small enough,

$$
r<\min \left\{\frac{a b-c}{b(L+2 \gamma)}, \frac{a b-c}{\mu L}\right\}
$$

with $\mu=\frac{a b+c}{2 b}$ and $\gamma=\frac{L}{2}(1+\mu)$.

Proof. Our main tool for the proof of Theorem 2 is a functional $V\left(x_{t}, y_{t}, z_{t}\right)$ defined by:

$$
\begin{equation*}
V\left(x_{t}, y_{t}, z_{t}\right)=V_{1}\left(x_{t}, y_{t}, z_{t}\right)+V_{2}(x, y, z)+1+L \int_{-r}^{0} \int_{t+s}^{t}|z(\theta)| d \theta d s \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& V_{1}\left(x_{t}, y_{t}, z_{t}\right)= \\
& \quad \mu \int_{0}^{x} f(\xi) d \xi+f(x) y+\mu \int_{0}^{y} \psi(\eta) \eta d \eta+\int_{0}^{y} g(\eta) d \eta \tag{6}\\
& \quad+\mu y z+\frac{1}{2} z^{2}+\gamma \int_{-r}^{0} \int_{t+s}^{t} z^{2}(\theta) d \theta d s \tag{7}\\
& V_{2}(x, y, z)= \begin{cases}\frac{z}{M} \operatorname{sgn} x, & |x| \geq 1,|z| \leq M \\
\operatorname{sgn} z \cdot \operatorname{sgn} x, & |x| \geq 1,|z| \geq M \\
\frac{x z}{M}, & |x| \leq 1,|z| \leq M \\
x \cdot \operatorname{sgn} z, & |x| \leq 1,|z| \geq M\end{cases}
\end{align*}
$$

$L, M(M>1), \mu$ and γ are some positive constants; the constants μ and γ is defined in Theorem 2.

Now, since $g(0)=f(0)=0$, it is immediate that $V_{1}(0,0,0)=0$. In view of the assumptions $\psi(y) \geq a, y^{-1} g(y) \geq b,(y \neq 0), f(x) \operatorname{sgn} x>0,(x \neq 0)$, and $\sup \left\{f^{\prime}(x)\right\}=c$, we see that

$$
\begin{align*}
V_{1}\left(x_{t}, y_{t}, z_{t}\right) \geq & \mu \int_{0}^{x} f(\xi) d \xi+f(x) y+\frac{1}{2} \mu a y^{2}+\int_{0}^{y} \frac{g(\eta)}{\eta} \eta d \eta+\mu y z+\frac{1}{2} z^{2}+\gamma \int_{-r}^{0} \int_{t+s}^{t} z^{2}(\theta) d \theta d s \\
& \geq \mu \int_{0}^{x} f(\xi) d \xi+f(x) y+\frac{1}{2} \mu a y^{2}+\frac{b}{2} y^{2}+\mu y z+\frac{1}{2} z^{2}+\gamma \int_{-r}^{0} \int_{t+s}^{t} z^{2}(\theta) d \theta d s \\
= & \frac{1}{2 b}[b y+f(x)]^{2}+\mu \int_{0}^{x} f(\xi) d \xi+\frac{1}{2} \mu a y^{2}-\frac{1}{2 b} f^{2}(x)+\mu y z+\frac{1}{2} z^{2}+\gamma \int_{-r}^{0} \int_{t+s}^{t} z^{2}(\theta) d \theta d s \\
= & \frac{1}{2 b}[b y+f(x)]^{2}+\frac{1}{2 b y^{2}}\left[4 \int_{0}^{x} f(\xi)\left\{\int_{0}^{y}\left(\mu b-f^{\prime}(\xi)\right) \eta d \eta\right\} d \xi\right] \\
& +\frac{1}{2}(\mu y+z)^{2}+\frac{1}{2} \mu(a-\mu) y^{2}+\gamma \int_{-r}^{0} \int_{t+s}^{t} z^{2}(\theta) d \theta d s \tag{8}
\end{align*}
$$

Now, by help of the assumptions of Theorem 2, we have

$$
\begin{aligned}
& a-\mu=a-\frac{a b+c}{2 b}=\frac{a b-c}{2 b}>0, \\
& \mu b-f^{\prime}(x)=\frac{a b+c}{2}-f^{\prime}(x)=\frac{a b+c-2 f^{\prime}(x)}{2}=\frac{a b-f^{\prime}(x)}{2} \geq \frac{a b-c}{2}>0,
\end{aligned}
$$

and

$$
\int_{-r}^{0} \int_{t+s}^{t} z^{2}(\theta) d \theta d s \geq 0
$$

Hence, one can show from (8) that

$$
\begin{equation*}
V_{1}\left(x_{t}, y_{t}, z_{t}\right) \geq D_{1} x^{2}+D_{2} y^{2}+D_{3} z^{2} \geq D_{4}\left(x^{2}+y^{2}+z^{2}\right), \tag{9}
\end{equation*}
$$

where $D_{4}=\min \left\{D_{1}, D_{2}, D_{3}\right\}$.
Next, it is also clear that the function V_{2} is continuous and satisfies

$$
\begin{equation*}
\left|V_{2}\right| \leq 1 . \tag{10}
\end{equation*}
$$

Now, in view of (5), (9) and (10), together, it can be easily seen that the functional $V\left(x_{t}, y_{t}, z_{t}\right)$ satisfies the first part of condition (i) of Theorem 1. Similarly, making use of the assumptions of Theorem 2, it can also be shown that the functional $V\left(x_{t}, y_{t}, z_{t}\right)$ satisfies the second part of condition (i) of Theorem 1.

Let $\frac{d}{d t} V_{1}\left(x_{t}, y_{t}, z_{t}\right)$ denote the time derivative of functional $V_{1}\left(x_{t}, y_{t}, z_{t}\right)$ along the solutions of (3). Then, by a straightforward calculation from (6) and (3), we observe that

$$
\begin{align*}
\frac{d}{d t} V_{1}\left(x_{t}, y_{t}, z_{t}\right)= & f^{\prime}(x) y^{2}+\mu z^{2}-\mu y g(y)-\psi(y) z^{2}+(\mu y+z) \int_{t-r}^{t} g^{\prime}(y(s)) z(s) d s \\
& +z^{2} r-\gamma \int_{t-r}^{t} z^{2}(\theta) d s+(\mu y+z) p(t, x, x(t-r), y, y(t-r), z) \tag{11}
\end{align*}
$$

Making use of the assumption $\left|g^{\prime}(y)\right| \leq L$ and the inequality $2|u||v| \leq u^{2}+v^{2}$, we have the following:

$$
\mu y \int_{t-r}^{t} g^{\prime}(y(s)) z(s) d s \leq \frac{\mu L}{2} r y^{2}+\frac{\mu L}{2} \int_{t-r}^{t} z^{2}(s) d s, z \int_{t-r}^{t} g^{\prime}(y(s)) z(s) d s \leq \frac{L}{2} r z^{2}+\frac{L}{2} \int_{t-r}^{t} z^{2}(s) d s
$$

By using the afore inequalities in (11), we get

$$
\begin{align*}
\frac{d}{d t} V_{1}\left(x_{t}, y_{t}, z_{t}\right)= & f^{\prime}(x) y^{2}+\mu z^{2}-\mu y g(y)-\psi(y) z^{2}+\gamma^{2} r+\frac{\mu L}{2} r y^{2}+\frac{L}{2} r z^{2} \\
& +\left(\frac{L}{2}+\frac{L \mu}{2}-\gamma\right) \int_{t-r}^{t} z^{2}(s) d s+(\mu y+z) p(t, x, x(t-r), y, y(t-r), z) \tag{12}
\end{align*}
$$

Now, suppose that $\sup \left\{f^{\prime}(x)\right\}=c>0, \psi(y) \geq a$ and $a b-c>0$. Then, (12) implies that

$$
\begin{aligned}
\frac{d}{d t} V_{1}\left(x_{t}, y_{t}, z_{t}\right) \leq & -\left[\mu \frac{g(y)}{y}-c-\frac{\mu L}{2} r\right] y^{2}-\left(a-\mu-\frac{L}{2} r-\gamma\right) z^{2} \\
& +\left(\frac{L}{2}+\frac{L \mu}{2}-\gamma\right) \int_{t-r}^{t} z^{2}(\theta) d \theta+|\mu y+z||p(t, x, x(t-r), y, y(t-r), z)|
\end{aligned}
$$

By use of $\mu=\frac{a b+c}{2 b}$, it follows that

$$
\begin{aligned}
\frac{d}{d t} V_{1}\left(x_{t}, y_{t}, z_{t}\right) \leq & -\left[\mu \frac{g(y)}{y}-c-\frac{\mu L}{2} r\right] y^{2}-\left[\frac{a b-c}{2 b}-\left(\frac{L}{2}+\gamma\right) r\right] z^{2} \\
& +\left(\frac{L}{2}+\frac{L \mu}{2}-\gamma\right) \int_{t-r}^{t} z^{2}(s) d s+(\mu|y|+|z|)|p(t, x, x(t-r), y, y(t-r), z)|
\end{aligned}
$$

If we choose $\gamma=\frac{L}{2}+\frac{L \mu}{2}$ and use the assumption $|p(t, x, x(t-r), y, y(t-r), z)| \leq m$, then we obtain

$$
\begin{equation*}
\frac{d}{d t} V_{1}\left(x_{t}, y_{t}, z_{t}\right) \leq-\left[\mu \frac{g(y)}{y}-c-\frac{\mu L}{2} r\right] y^{2}-\left[\frac{a b-c}{2 b}-\frac{L}{2}(\mu+2) r\right] z^{2}+\mu m|y|+m|z| . \tag{13}
\end{equation*}
$$

Now, a direct computation along $V_{2}(x, y, z)$ and solution the $(x(t), y(t), z(t))$ of system (3) yields:

$$
\begin{aligned}
& \frac{d}{d t} V_{2}(x, y, z)= \\
& \left\{\begin{array}{l}
\frac{1}{M}\left\{-\psi(y) z-g(y)-f(x)+\int_{t-r}^{t} g^{\prime}(y(s)) z(s) d s+p(t, x, x(t-r), y, y(t-r), z)\right\} \operatorname{sgn} x,|x| \geq 1,|z| \leq M \\
0,|x| \geq 1,|z| \geq M \\
\frac{y z}{M}+\frac{x}{M}\left\{-\psi(y) z-g(y)-f(x)+\int_{t-r}^{t} g^{\prime}(y(s)) z(s) d s+p(t, x, x(t-r), y, y(t-r), z)\right\},|x| \leq 1,|z| \leq M \\
y \cdot \operatorname{sgn} z,|x| \leq 1,|z| \geq M .
\end{array}\right.
\end{aligned}
$$

With help of the assumptions of Theorem 2, one can also obtain the following:

$$
\frac{d}{d t} V_{2}(x, y, z) \leq\left\{\begin{array}{l}
-\frac{1}{M} f(x) \operatorname{sgn} x+\left\{a+\delta+|g(y)|+m+L \int_{t-r}^{t}|z(s)| d s\right\},|x| \geq 1,|z| \leq M \\
0,|x| \geq 1,|z| \geq M \\
|y|+|g(y)|+a+\delta+|g(y)|+m+L \int_{t-r}^{t}|z(s)| d s,|x| \leq 1,|z| \leq M \\
|y|,|x| \leq 1,|z| \geq M
\end{array}\right.
$$

First, we consider $V=V\left(x_{t}, y_{t}, z_{t}\right)$ in the domain $\max \{|y|-K,|z|-M\} \geq 0$, where the constants K and M are large enough, which will be determined later. Hence, we have to consider the following two cases:

Case $\left.{ }^{0}\right):|y| \geq K \geq 1$, and x, z are arbitrary. Then, we have

$$
\begin{equation*}
\frac{d}{d t} V_{2}(x, y, z) \leq|y|+|g(y)|+a+\delta+m+L \int_{t-r}^{t}|z(s)| d s \tag{14}
\end{equation*}
$$

Now, by using (5), (13) and (14), we have

$$
\begin{aligned}
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) \leq & -\left[\mu y g(y)-c-\frac{\mu L}{2} r\right] y^{2}-\left[\frac{a b-c}{2 b}-\frac{L}{2}(\mu+2) r\right] z^{2} \\
& +(\mu m+1)|y|+m|z|+|g(y)|+a+\delta+m+L \int_{t-r}^{t}|z(s)| d s
\end{aligned}
$$

Therefore, one can obtain the following:

$$
\begin{aligned}
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) \leq & -\left[\mu y g(y)-\left(c+\frac{\mu L}{2} r\right) y^{2}\right]-\left[\frac{a b-c}{2 b}-\frac{L}{2}(\mu+2) r\right] z^{2} \\
& +|g(y)|+(\mu m+1)|y|+m|z|+a+\delta+m+L r|z|-L \int_{t-r}^{t}|z(s)| d s+L \int_{t-r}^{t}|z(s)| d s \\
= & -\left[\mu y g(y)-|g(y)|-\left(c+\frac{\mu L}{2} r\right) y^{2}\right]-\left[\frac{a b-c}{2 b}-\frac{L}{2}(\mu+2) r\right] z^{2} \\
& +(\mu m+1)|y|+m|z|+a+\delta+m+L r|z|
\end{aligned}
$$

Now, we consider the term:

$$
\mu y g(y)-|g(y)|-\left(c+\frac{\mu L}{2} r\right) y^{2} .
$$

Let us define

$$
h=\frac{a b+3 c}{2(a b+c)}<1 .
$$

Then, there exists a constant $K_{1},\left(K_{1}>1\right)$, satisfying $\left(1-\frac{1}{\mu|y|}\right) \geq h$ for $|y| \geq K_{1}$. Therefore, when $|y| \geq K_{1}$, it follows that

$$
\begin{aligned}
\mu y g(y) & -|g(y)|-\left(c+\frac{\mu L}{2} r\right) y^{2}=\mu \frac{g(y)}{y}\left(1-\frac{1}{\mu|y|}\right) y^{2}-\left(c+\frac{\mu L}{2} r\right) y^{2} \\
& \geq \frac{a b+c}{2 b} b \frac{a b+3 c}{2(a b+c)} y^{2}-\left(c+\frac{\mu L}{2} r\right) y^{2}=\left(\frac{a b-c}{4}-\frac{L \mu}{2} r\right) y^{2} .
\end{aligned}
$$

Thus, one can arrive:

$$
\begin{aligned}
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) \leq & -\left(\frac{a b-c}{4}-\frac{L \mu}{2} r\right) y^{2}-\left[\frac{a b-c}{2 b}-\frac{L}{2}(\mu+2) r\right] z^{2} \\
& +(\mu m+1)|y|+(m+L r)|z|+(a+\delta+m)|y|
\end{aligned}
$$

The above inequality implies

$$
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) \leq-\delta_{1}\left(y^{2}+z^{2}\right)+(\mu m+1)|y|+(m+L r)|z|+(a+\delta+m)|y|
$$

for a positive constant δ_{1} provided that

$$
r<\min \left\{\frac{a b-c}{b L(\mu+2)}, \frac{a b-c}{2 \mu L}\right\}
$$

Now, let

$$
\tau_{1}=\max \{\mu m+\delta+a+m+1, m+L r\}
$$

Hence, we have

$$
\begin{aligned}
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) & \leq-\delta_{1}\left(y^{2}+z^{2}\right)+\tau_{1}(|y|+|z|) \\
& =-\frac{\delta_{1}}{2}\left(y^{2}+z^{2}\right)-\frac{\delta_{1}}{2}\left[\left(|y|-\frac{\tau_{1}}{\delta_{1}}\right)^{2}+\left(|z|-\frac{\tau_{1}}{\delta_{1}}\right)^{2}-2 \frac{\tau_{1}^{2}}{\delta_{1}^{2}}\right] \leq-\frac{\delta_{1}}{2}\left(y^{2}+z^{2}\right)
\end{aligned}
$$

provided that $|y| \geq(\sqrt{2}+1) \tau_{1} \delta_{1}^{-1}$.
Let $K=\max \left\{(\sqrt{2}+1) \tau_{1} \delta_{1}^{-1}, K_{1}\right\}$. If $|y| \geq K$, then we have

$$
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) \leq-\frac{\delta_{1}}{2}\left(y^{2}+z^{2}\right) .
$$

Case $\left.2^{0}\right):|z| \geq M$, and x, y are arbitrary. Then, clearly, it follows that

$$
\frac{d}{d t} V_{2}(x, y, z) \leq|y| .
$$

Next, by following a similar way as afore mentioned, choosing $\gamma=\frac{L}{2}+\frac{L \mu}{2}$ and taking

$$
r<\min \left\{\frac{a b-c}{b L(\mu+2)}, \frac{a b-c}{2 \mu L}\right\}
$$

one can easily obtain that

$$
\begin{aligned}
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) & \leq-\delta_{2}\left(y^{2}+z^{2}\right)+(\mu m+1)|y|+(m+L r)|z| \\
& \leq-\delta_{2}\left(y^{2}+z^{2}\right)+\tau_{2}(|y|+|z|) \leq-\frac{\delta_{2}}{2}\left(y^{2}+z^{2}\right)
\end{aligned}
$$

for some positive constants δ_{2} and τ_{2} provided that $|z| \geq M=K$.
Finally, we consider V in $\max \{|y|-K,|z|-M\} \leq 0$. Now, we assume that $|x| \geq H>1$, where the constant H will be determined later. Then, we obtain

$$
\begin{equation*}
\frac{d}{d t} V_{2}(x, y, z) \leq-\frac{1}{M} f(x) \operatorname{sgn} x+\max _{|y| \leq K}|g(y)|+\left\{a+\delta+m+L \int_{t-r}^{t}|z(s)| d s\right\} \tag{15}
\end{equation*}
$$

Hence, we can conclude from (5), (13) and (15) that

$$
\begin{aligned}
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) \leq & -\left[\frac{a b-c}{2}-\frac{\mu L}{2} r\right] y^{2}-\left[\frac{a b-c}{2 b}-\frac{L}{2}(\mu+2) r\right] z^{2}+\mu m|y|+m|z| \\
& -\frac{1}{M} f(x) \operatorname{sgn} x+\max _{|y| \leq K}|g(y)|+\left\{a+\delta+m+L \int_{t-r}^{t}|z(s)| d s\right\}+L r|z|-L \int_{t-r}^{t}|z(s)| d s \\
\leq & -\left[\frac{a b-c}{2}-\frac{\mu L}{2} r\right] y^{2}-\left[\frac{a b-c}{2 b}-\frac{L}{2}(\mu+2) r\right] z^{2} \\
& -\frac{1}{M} f(x) \operatorname{sgn} x+\max _{|y| \leq K}|g(y)|+\mu m|y|+m|z|+(a+\delta+m+L M r) \\
\leq & -\left[\frac{a b-c}{2}-\frac{\mu L}{2} r\right] y^{2}-\left[\frac{a b-c}{2 b}-\frac{L}{2}(\mu+2) r\right] z^{2}
\end{aligned}
$$

$$
-\frac{1}{M} f(x) \operatorname{sgn} x+\max |\underset{|y| \leq K}{\mid g(y)}|+(a+\delta+m+L M r+\mu m K+m M)
$$

Now, since $f(x) \operatorname{sgn} x \rightarrow \infty$ as $|x| \rightarrow \infty$ and $|x| \geq H>1$, we can write that

$$
f(x) \operatorname{sgn} x \geq 2 M\{\underset{\max }{|g(y)|+a+\delta+m+L M r+\mu m K+m M\} . .} \mid
$$

Therefore

$$
-\frac{f(x) \operatorname{sgn} x}{2 M}+\max \underset{|y| \leq K}{|g(y)|}+(a+\delta+m+L M r+\mu m K+m M) \leq 0
$$

Now, in view of the above discussion, we have

$$
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) \leq-\left[\frac{a b-c}{2}-\frac{\mu L}{2} r\right] y^{2}-\left[\frac{a b-c}{2 b}-\frac{L}{2}(\mu+2) r\right] z^{2}-\frac{1}{2 M} f(x) \operatorname{sgn} x
$$

Subject to the above discussion, one can that there exists a positive constant R, which is large enough, such that

$$
\frac{d}{d t} V\left(x_{t}, y_{t}, z_{t}\right) \leq-w(u) \text { for } u^{2} \geq R^{2}
$$

where $u=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}$. Therefore, $V\left(x_{t}, y_{t}, z_{t}\right)$ satisfies all conditions of Theorem 1. Thus, the proof of Theorem 2 is now complete.

Example . Now, we consider nonlinear third order delay differential equation:

$$
\begin{align*}
x^{\prime \prime \prime}(t) & +\left(4+\frac{1}{1+\left(x^{\prime}(t)\right)^{2}}\right) x^{\prime \prime}(t)+4 x^{\prime}(t-r)+\sin x^{\prime}(t-r)+11 x(t-r) \\
& =\frac{1}{2+\cos t+x^{2}(t)+x^{2}(t-r)+\left(x^{\prime}(t)\right)^{2}+\left(x^{\prime}(t-r)\right)^{2}+\left(x^{\prime \prime}(t)\right)^{2}} \tag{16}
\end{align*}
$$

with the associated system

$$
\begin{aligned}
x^{\prime}(t)= & y(t), \quad y^{\prime}(t)=z(t) \\
z^{\prime}(t)= & -\left(4+\frac{1}{1+y^{2}(t)}\right) z(t)-(4 y(t)+\sin y(t)) \\
& -11 x(t)+11 \int_{t-r}^{t} y(s) d s+\int_{t-r}^{t}(4+\cos y(s)) z(s) d s \\
& +\frac{1}{2+\cos t+x^{2}(t)+x^{2}(t-r)+y^{2}(t)+y^{2}(t-r)+z^{2}(t)}
\end{aligned}
$$

Now, one can easily observe the following, respectively:

$$
\begin{aligned}
& \psi(y)=4+\frac{1}{1+y^{2}}, 0 \leq \psi(y)-4 \leq 1, \\
& a=4, \delta=1, g(y)=4 y+\sin y, g(0)=0, \\
& \frac{g(y)}{y}=4+\frac{\sin y}{y} \geq 3, b=3, g^{\prime}(y)=4+\cos y, \\
& \left|g^{\prime}(y)\right|=|4+\cos y| \leq 5=L, \\
& f(x)=11 x, f(0)=0, f(x) \operatorname{sgn} x=11 x \operatorname{sgn} x>0, \\
& f(x) \operatorname{sgn} x=11 x \operatorname{sgn} x \rightarrow \infty \text { as }|x| \rightarrow \infty, \\
& f^{\prime}(x)=11, c=11, a b-c=1>0, \\
& h=\frac{a b+3 c}{2(a b+c)}=\frac{45}{46}<1, \\
& p(t, x, x(t-r), y, y(t-r), z) \\
& \quad=\frac{1}{2+\cos t+x^{2}+x^{2}(t-r)+y^{2}+y^{2}(t-r)+z^{2}} \leq 1=m, \\
& p(t+2 \pi, x, x(t-r), y, y(t-r), z) \\
& \quad=\frac{1}{2+\cos (t+2 \pi)+x^{2}+x^{2}(t-r)+y^{2}+y^{2}(t-r)+z^{2}} \\
& \quad=\frac{1}{2+\cos t+x^{2}+x^{2}(t-r)+y^{2}+y^{2}(t-r)+z^{2}} \\
& \quad=p(t, x, x(t-r), y, y(t-r), z), T=2 \pi .
\end{aligned}
$$

Thus, all the assumptions of Theorem 2 hold. This fact shows that equation (16) has a periodic solution of period $T, T=2 \pi$.

References

[1] Burton, T. A., Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic Press, Orlando, pp. 1-337, (1985).
[2] Chukwu, E. N., On the boundedness and the existence of a periodic solution of some nonlinear third order delay differential equation. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 64 (1978), no. 5, 440-447.
[3] Tejumola, H. O.; Tchegnani, B., Stability, boundedness and existence of periodic solutions of some third and fourth order nonlinear delay differential equations. J. Nigerian Math. Soc. 19 (2000), 9-19.
[4] Yoshizawa, T., Stability theory by Liapunov's second method. The Mathematical Society of Japan, Tokyo, (1966).
[5] Zhu, Y. F., On stability, boundedness and existence of periodic solution of a kind of third order nonlinear delay differential system. Ann. Differential Equations 8 (2), 249-259, (1992).

Inverse limits on $[0,1]$ using sequence of N-type maps *

Xianjiu Huang ${ }^{1} \ddagger$ Chuanxi Zhu ${ }^{1}$; Xi Wen ${ }^{2}$
1. Department of Mathematics, NanChang University, NanChang, 330031, Jiangxi, P. R. China 2.Department of Computer, NanChang University, NanChang, 330031, Jiangxi, P. R. China

Abstract

We examine the inverse limits generated by inverse sequences on $[0,1]$ with N-type bonding maps chose from a four-parameter family of piecewise linear continuous functions. We analyze the continua generated by these sequences and obtain sufficient conditions for these sequences to give rise to indecomposable inverse limits.

Keyword: Inverse limits; N-type; Continua; Indecomposable; Two-pass condition
AMS(2000) Subject Classification: 54F15; 37E05; 37B45

§1 Introduction and some basic terminologies

Inverse limits, besides being of intrinsic interest to topologists, can often be used to represent attractors of dynamical systems. For example, the inverse limit space with a single full unimodal bonding map is homeomorphic to the attracting set of Smales horseshoe. In a sequence of papers [1,2,3], Ingram conducted an extensive investigation of inverse limit spaces generated by single bonding maps chosen from the two-parameter family $\mathcal{G}=\left\{g_{b, c} \mid 0 \leq b \leq 1,0<c<1\right\}$ where $g_{b, c}$ is given by

$$
g_{b, c}(x)=\left\{\begin{array}{cl}
\frac{1-b}{c} x+b & \text { if } x \leq c \\
\frac{1-x}{1-c} & \text { if } x \geq c
\end{array} .\right.
$$

Brian Raines [4] considered inverse limits of sequences of functions $g_{b_{i}, c_{i}}$ from the family \mathcal{G}. He gave several sufficient conditions such that the inverse limit generated by $g_{b_{i}, c_{i}}$ is indecomposable.

In this paper, we extended the two-parameter family $\mathcal{G}=\left\{g_{b, c} \mid 0 \leq b \leq 1,0<c<1\right\}$ to four-parameter family $\mathcal{G}^{\prime}=\left\{g_{a, b, c, d} \mid 0 \leq a, d \leq 1,0<b<c<1\right\}$ where $g_{a, b, c, d}$ is given by

$$
g_{a, b, c, d}(x)=\left\{\begin{array}{cl}
\frac{1-a}{b} x+a & \text { if } x \in[0, b] \\
\frac{x-c}{b-c} & \text { if } x \in[b, c] \\
\frac{d}{1-c}(x-c) & \text { if } x \in[c, 1]
\end{array} .\right.
$$

[^7]We consider inverse limit of sequences of function $g_{a_{i}, b_{i}, c_{i}, d_{i}}$. By looking at the behavior of certain iterates of these complicated N-type maps on particular subintervals of $[0,1]$, we can study the inverse limit generated by these sequences of function and obtain several sufficient conditions such that the inverse limit generated by $g_{a_{i}, b_{i}, c_{i}, d_{i}}$ is indecomposable.

Let X_{0}, X_{1}, \cdots be a sequence of metric spaces and f_{0}, f_{1}, \cdots be a sequence of maps (continuous functions) such that $f_{i}: X_{i+1} \rightarrow X_{i}$ for each $i \in N$. Define the inverse limit of the inverse sequence (X_{i}, f_{i}) by the following:

$$
\lim _{\leftarrow}\left(X_{i}, f_{i}\right)=\left\{x=\left(x_{0}, x_{1}, \cdots\right) \in \prod_{i=0}^{\infty} X_{i} \mid f_{i}\left(x_{i+1}\right)=x_{i}, \text { for } i=0,1, \cdots\right\}
$$

with metric given by $d(x, y)=\sum_{i=0}^{\infty} \frac{d_{i}\left(x_{i}, y_{i}\right)}{2^{i}}$, where d_{i} is a metric for X_{i} bounded by one. Each map f_{i} is called a bonding map. We denote the projection mapping from $\Pi_{i \in N} X_{i}$ to X_{i} by π_{i} where $\pi_{i}\left(x_{1}, x_{2}, x_{3}, \cdots\right)=x_{i}$. Often it will be convenient to consider, for $j>1$, the map $f_{i}^{j}=f_{i} \circ f_{i+1} \circ \cdots \circ f_{j-1}: X_{j} \rightarrow X_{i}$. Throughout this paper, a continuum is a nonempty, compact, connected metric space.

A continuum is decomposable if it is the union of two of its proper subcontinua, otherwise, it is indecomposable. An inverse sequence, $\left\{X_{i}, f_{i}\right\}$ is said to satisfy the two - pass condition provided that for each positive integer i whenever A_{i+1} and B_{i+1} are subcontinua of X_{i+1} such that $X_{i+1}=A_{i+1} \cup B_{i+1}$, then $f_{i}\left[A_{i+1}\right]=X_{i}$ or $f_{i}\left[B_{i+1}\right]=X_{i}$. The following theorems are well-known (see [5]).

Theorem 1.1 Suppose $\left\{X_{i}, f_{i}\right\}$ is an inverse sequence that satisfies the two-pass condition. Then $\lim _{\leftarrow}\left\{X_{i}, f_{i}\right\}$ is indecomposable.

Theorem 1.2 (The Subsequence Theorem). Suppose that $n_{1}, n_{2}, n_{3}, \cdots$ is an increasing sequence of positive integers. Then $\lim _{\leftarrow}\left\{X_{i}, f_{i}\right\}$ is homeomorphic to $\lim _{\leftarrow}\left\{X_{n_{j}}, f_{n_{i}}^{n_{j}}\right\}$.

Later we will use the subsequence theorem to show an inverse limit is indecomposable by showing that f_{i}^{j} meets the two - pass condition, for some $j>i$.

§2 Main results and their proofs

Firstly we assume that $f_{i}=g_{a_{i}, b_{i}, c_{i}, d_{i}}$ is a sequence of maps with $b_{i}=b, c_{i}=c \in(0,1)$ for every $i \in N$. This implies that if $p=\frac{c}{1-b+c}$ then $f_{i}(p)=p$ for every $i \in N$. The fact that each of these maps share the same fixed point makes determining when they give rise to an indecomposable inverse limit easier.

Theorem 2.1 Suppose that for every $i \in N, a_{i}>p>d_{i}$. Then $\lim _{\leftarrow}\left\{[0,1], f_{i}\right\}$ is decomposable.

Proof Notice that $f_{i}([0, p])=[p, 1]$ and that $f_{i}([p, 1])=[0, p]$ for every $i \in N$. For $n \in N$ let $X_{2 n-1}=Y_{2 n}=[0, p]$ and $Y_{2 n-1}=X_{2 n}=[p, 1]$. Let $g_{i}=\left.f_{i}\right|_{X_{i+1}}$ and $h_{i}=f_{i} \mid Y_{i+1}$. Then
$g_{i}\left(X_{i+1}\right)=X_{i}$ and $h_{i}\left(Y_{i+1}\right)=Y_{i}$. So $\lim _{\leftarrow}\left\{X_{i}, g_{i}\right\}$ and $\lim _{\leftarrow}\left\{Y_{i}, h_{i}\right\}$ are proper subcontinua of $\lim _{\leftarrow}\left\{[0,1], f_{i}\right\}$ and $\lim _{\leftarrow}\left\{[0,1], f_{i}\right\}=\lim _{\leftarrow}\left\{X_{i}, g_{i}\right\} \cup \lim _{\leftarrow}\left\{Y_{i}, h_{i}\right\}$. Thus $\lim _{\leftarrow}\left\{[0,1], f_{i}\right\}$ is decomposable.

In [6], Morton Brown shows that if $\lim _{i \rightarrow \infty} f_{i}=F$ at or above a certain rate, then $\lim _{\leftarrow}\left\{X_{i}, f_{i}\right\}$ is homeomorphic to $\lim _{\leftarrow}\left\{X_{i}, F\right\}$. In [1], Ingram shows that $\lim _{\leftarrow}\left\{[0,1], g_{b, c}\right\}$ is decomposable whenever $b=p=\frac{1}{2-c}$ and in [4] Brian Raines shows that if b_{i}^{\prime} s are converging from below to $\frac{1}{2-c}$ fast enough then $\lim _{\leftarrow}\left\{[0,1], g_{b_{i}, c_{i}}\right\}$ is decomposable, even though each b_{i} is less than $\frac{1}{2-c}$. As a result, he give a sufficient conditions for these inverse limits to be indecomposable. Now we will obtain a similar result for f_{i}.

Theorem 2.2 If one of the following two holds, then $\lim \left\{[0,1], f_{i}\right\}$ is indecomposable.
(1) there is an $\alpha<p=\frac{c}{1-b+c}$ with $a_{i} \leq \alpha$ for infinitely many $i \in N$;
(2) there is an $\beta>p=\frac{c}{1-b+c}$ with $d_{i} \geq \beta$ for infinitely many $i \in N$.

Proof We only prove the first case, the second case is similar.
First notice that $f_{i}^{-1}(x) \cap[b, c]=\{x(b-c)+c\}$, for all $i \in N$ and $x \in[0,1]$. Since this is singleton we will abuse the notation in the future and just write $f_{i}^{-1}(x) \cap[b, c]=x(b-c)+c$. So if $x, y \in[0,1]$, then $\left|f_{i}^{-1}(x) \cap[b, c]-f_{j}^{-1}(y) \cap[b, c]\right|=|b-c| \cdot|y-x|$. For a fixed $j \in N$, let $u_{i}^{j}=f_{i}^{-1}\left(u_{i-1}^{j}\right) \cap[b, c], u_{i-1}^{j}=b$ and $v_{i}^{j}=f_{i}^{-1}\left(v_{i-1}^{j}\right) \cap[b, c], v_{i-1}^{j}=c$, for all $i \in N, i \geq j$. Then $\left|u_{j+n-1}^{j}-p\right|=|b-c|^{n}|b-p|$ and $\left|v_{j+n-1}^{j}-p\right|=|b-c|^{n}|c-p|$. Since $|b-c|<1$, the sequence $u_{j}^{j}, u_{j+1}^{j}, \cdots$ and the sequence $v_{j}^{j}, v_{j+1}^{j}, \cdots$ both converges to p.

Let $n \in N$ such that $\left|u_{m}^{j}-p\right|<|p-\alpha|$ and $\left|v_{m}^{j}-p\right|<|p-\alpha|$ for all $m>n>j$. Then $u_{m}^{j} \in(\alpha, 1)$ and $v_{m}^{j} \in(\alpha, 1)$ for $m>n$. Notice that since for infinitely many $i \in N, a_{i}=f_{i}(0)<$ α, every point, x, of $(\alpha, 1) \subseteq\left(f_{i}(0), f_{i}(b)\right)$ has an inverse image, ${ }^{i} \widehat{x}$. Choose $i \in N$ large enough so that $i>n+1$, and $a_{i} \leq \alpha$. Then ${ }^{i} \widehat{u}_{i}^{j}$ and ${ }^{i} \widehat{v}_{i}^{j}$ are both in $(0, c)$, with the interval between them mapped across $[0,1]$ under the map f_{j}^{i+1}. Since $f_{i}([b, 1])=[0,1]$ for all $i \in N, f_{j}^{i+1}$ is a two - pass map, for infinitely many $i \in N, i>j$.

Let A, B be subcontinua of $X=\lim _{\leftarrow}\{[0,1]\}$ such that $A \cup B=X$. Since A and B are both connected, $\pi_{i}[A]$ and $\pi_{i}[B]$ are subintervals of $[0,1]$ for every $i \in N$. Since $A \cup B=$ $\left.X,[0,1]=\pi_{i}[A] \cup \pi_{[} B\right]$. If either $\pi_{i}[A]$ or $\pi_{i}[B]$ contains $[b, 1]$ for infinitely many $i \in N$, then, since $f_{i}([b, 1])=[0,1]$ for all $i \in N$, either $\pi_{i}[A]$ or $\pi_{i}[B]$ is $[0,1]$. This would imply that either $A=X$ or $B=X$. So suppose that for some $n \in N$, if $m>n$ then neither $\pi_{m}[A]$ nor $\pi_{m}[B]$ contains $[b, 1]$. Hence we have that for infinitely many $i \in N$, either $\pi_{i}[A]$ or $\pi_{i}[B]$ contains $[0, b]$, without loss of generality, assume $[0, b] \subseteq \pi_{i}[A]$ for infinitely many $i \in N$. Let $j \in N$, and define the sequence of points $\left\{{ }^{i} \widehat{u}_{i}^{j}\right\}_{i \in N}$ and $\left\{{ }^{i} \widehat{v}_{i}^{j}\right\}_{i \in N}$ as above. Choose $n, i \in N$ as was done above, such that $\pi_{i}[A]$ contains $[0, b]$. Then ${ }^{i} \widehat{u}_{i}^{j}$ and ${ }^{i} \widehat{v}_{i}^{j}$ are both in $\pi_{i}[A]$, and $\pi_{j}[A]=f_{j}^{i}\left(\pi_{i}[A]\right)=[0,1]$. Since this is true for any $j \in N, A=X$. Either A or B cannot be a proper subcontinuum of X, so X is indecomposable.

However the converse to Theorem 2.2 is not true.
Theorem 2.3 If $\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} d_{i}=p$ but for infinitely many $n \in N$, one of the following two holds, then $\lim \left\{[0,1], f_{i}\right\}$ is indecomposable.
(1) $a_{2 n} \leq p-(c-b)^{n}(p-b)$;
(2) $d_{2 n} \geq p+(c-b)^{n}(c-p)$.

Proof We only prove the first case, the second case is similar.
Let A and B be proper subcontinua of $X=\lim _{\leftarrow}\left\{[0,1], f_{i}\right\}$ with $X=A \cup B, X \neq A$ and $X \neq B$. Since A and B are proper subcontinua of X there must be some $n \in N$ with $\pi_{m}[A] \neq[0,1]$ and $\pi_{m}[B] \neq[0,1]$ for all $m>n$. Otherwise either $A=X$ or $B=X$. In fact since each f_{i} maps $[b, 1]$ across $[0,1]$, there must be some $m \in N$ with $\pi_{k}[A] \nsupseteq[b, 1]$ and $\pi_{k}[B] \nsupseteq[b, 1]$ for all $k \geq m$. Choose $q \in N, q>m$ such that $a_{2 q} \leq p-(c-b)^{q}(p-b)$. Since neither A nor B contain $[b, 1]$ in their $2 q$ th projection, one must contain $[0, b]$ in its $2 q$ th projection, without loss of generality, assure that A is this subcontinuum. Then $\pi_{q}[A]=f_{q}^{2 q+1}\left(\pi_{2 q}[A]\right) \supseteq f_{q}^{2 q+1}([0, b])$. Now building two sequences of pre-images of the critical points treating the q th factor space as the first. Let $u_{i}^{q}=f_{i}^{-1}\left(u_{i-1}^{q}\right) \cap[b, c], u_{q-1}^{q}=b$ and $v_{i}^{q}=f_{i}^{-1}\left(v_{i-1}^{q}\right) \cap[b, c], v_{q-1}^{q}=c$. Using the notation of the proof to the previous theorem, it is easy to see that both ${ }^{2 q} \widehat{u}_{2 q}^{q}$ and ${ }^{2 q} \widehat{v}_{2 q}^{q}$ are in $[0, c] \subseteq \pi_{2 q}[A]$. So $\pi_{q}[A]=f_{q}^{2 q+1}\left(\pi_{2 q}[A]\right) \supseteq f_{q}^{2 q+1}([0, c])=[0,1]$. This contradicts our observation that, $\pi_{k}[A] \nsupseteq[b, 1]$ and $\pi_{k}[B] \nsupseteq[b, 1]$ for all $k \geq m$, since A and B are proper subcontinua of X and q was chosen to be greater than n. Hence X is indecomposable.

So if $a_{i}>p$ or $d_{i}<p$ for co-finitely many $i \in N$, or if $a_{i} \rightarrow p$ or $d_{i} \rightarrow p$ fast enough, then the inverse limit is decomposable. But if $a_{i}<\alpha<p$ or $d_{i}>\beta>p$ for infinitely many $i \in N$ or if $a_{i} \rightarrow p$ or $d_{i} \rightarrow p$ slowly, then the inverse limit is indecomposable.

Finally, we present a sufficient condition for sequences of $g_{a_{i}, b_{i}, c_{i}, d_{i}}$ maps with varying critical points to give rise to indecomposable inverse limits.

Theorem 2.4 If for infinitely many $i \in N$, either $b_{i}>a_{i}$ or $d_{i}>c_{i}$. Then $\lim _{\leftarrow}\left\{[0,1], f_{i}\right\}$ is indecomposable.

Proof Suppose $b_{i}>a_{i}$ for infinitely many $i \in N$. Let $\left\{n_{i}\right\}_{i \in N}$ be a sequence in N such that $a_{n_{i}} \leq b_{n_{i}}$ for all $i \in N$. Define $A_{n_{i}+1}=\left[0, b_{n_{i}+1}\right]$ and $B_{n_{i}+1}=\left[b_{n_{i}+1}, 1\right]$. Then $f_{n_{i}}\left(B_{n_{i}+1}\right)=[0,1]$ for all $i \in N$, and $f_{n_{i}}\left(A_{n_{i}+1}\right)=\left[a_{n_{i}}, 1\right] \supseteq\left[b_{n_{i}}, 1\right]$. Thus $f_{n_{i}-1}^{n_{i}+1}\left(A_{n_{i}+1}\right) \supseteq f_{n_{i}-1}\left(\left[b_{n_{i}}, 1\right]\right)=[0,1]$, and $f_{n_{i}-1}^{n_{i}+1}$ is a two - pass map. By Theorem 1.1 and the Subsequence Theorem, $\lim \left\{[0,1], f_{i}\right\}$ is indecomposable.

The case of $d_{i}>c_{i}$ for infinitely many $i \in N$ is similar, we omit it.

Acknowledgments The authors would like to express their sincere appreciation to the referees for their very helpful suggestions and many kind comments.

References

[1] W.T. Ingram, Inverse limits on [0, 1] using piecewise linear unimodal bonding maps, Proc. Amer. Math. Soc. 128 (2000) 287-297.
[2] W.T. Ingram, Inverse limits on [0, 1] using piecewise linear unimodal bonding maps II, in:Wayne Lewis (Ed.), Proc. of Denton Meeting of the Amer. Math. Soc., Marcel Dekker, New York, to appear.
[3] W.T. Ingram, Periodicity and indecomposability, Proc. Amer.Math. Soc. 123 (1995) 19071916.
[4] Brian Raines, Inverse limits on [0, 1] using sequences of piecewise linear unimodal bonding maps, Topology Proc. 124 (2002) 159-170.
[5] S. Nadler, Continuum Theory, Marcel Dekker, New York, 1992.
[6] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer.Math. Soc. 11 (1960) 478-483.
[7] S. Willard, General Topology, Addison-Wesley, Reading, MA, 1970.
[8] R.Engelking, General topology, Heldermann, Berlin,1989.
[9] Xianjiu Huang, Xi Wen, Fanping Zeng, Topological Pressure of Nonautonomous Dynamical Systems, Nonlinear Dynamics and Systems Theory, 8(1) (2008),43-48
[10] Alekandrov, A.Yu. and Platonov, A.V. Construction of Lyapunovs function for a class of nonlinear systems. Nonlinear Dynamics and Systems Theory 6(1) (2006) 17-29.

Weighted composition operators between μ-Bloch type spaces on the polydisc of \mathbf{C}^{n}

Xiaomin Tang ${ }^{1,2}$, Zhangjian Hu^{2}
1. Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China;
2. Department of Mathematics, Huzhou Teachers College, Huzhou, Zhejiang, 313000, P. R. China
Email: txm@hutc.zj.cn, huzj@hutc.zj.cn

Abstract

In this paper, we study the weighted composition operators $T_{\psi, \varphi} f=\psi f \circ \varphi$ between μ-Bloch type spaces on the polydisc of \mathbf{C}^{n}. For normal functions μ and ω on $[0,1$), we characterize the boundedness and the compactness of $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ (respectively, $\left.\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)\right)$.

Keywords: Weighted composition operator, μ-Bloch type space, Polydisc
2000 MR Subject Classification: 47B33, 32A37

1 Introduction

Let \mathbf{D} be the unit disc in the complex plane \mathbf{C}, and let $\mathbf{D}^{n}=\left\{z=\left(z_{1}, z_{2}, \cdots, z_{n}\right) \in \mathbf{C}^{n}\right.$: $\left.z_{j} \in \mathbf{D}, j=1,2, \cdots, n\right\}$ be the polydisc of $\mathbf{C}^{n} . H\left(\mathbf{D}^{n}\right)$ and $H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$ denote the family of all holomorphic functions and holomorphic self-mappings on \mathbf{D}^{n} respectively.

A positive continuous function μ on $[0,1)$ is called normal if there are three constants $0 \leq$ $\delta<1$ and $0<a<b<\infty$ such that

$$
\begin{aligned}
& \frac{\mu(r)}{(1-r)^{a}} \text { is decreasing on }[\delta, 1) \text { and } \lim _{r \rightarrow 1^{-}} \frac{\mu(r)}{(1-r)^{a}}=0, \\
& \frac{\mu(r)}{(1-r)^{b}} \text { is increasing on }[\delta, 1) \text { and } \lim _{r \rightarrow 1^{-}} \frac{\mu(r)}{(1-r)^{b}}=\infty .
\end{aligned}
$$

The normal function μ, as a weight, has been usually used to defined the weighted Bergman space or mixed norm space. For example, $\mu(r)=\left(1-r^{2}\right)^{p}$ with $0<p<\infty, \mu(r)=\left(1-r^{2}\right) \log \frac{2}{1-r^{2}}$ and $\mu(r)=1 /\left\{\log \log e^{2}\left(1-r^{2}\right)^{-1}\right\}$ are all normal weights. Given μ we will extend it to \mathbf{D} by $\mu(z)=\mu(|z|)$. A function $f \in H\left(\mathbf{D}^{n}\right)$ is said to belong to the μ-Bloch type space $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$ if

$$
\|f\|_{\mathcal{B}_{\mu}}=\sup _{z \in \mathbf{D}^{n}} \sum_{j=1}^{n} \mu\left(z_{j}\right)\left|\frac{\partial f}{\partial z_{j}}(z)\right|<\infty
$$

It is easy to check that $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$ is a Banach space under the norm $\|f\|_{\mu}=|f(0)|+\|f\|_{\mathcal{B}_{\mu}}$. When $\mu(r)=1-r^{2}$ and $\omega(r)=\left(1-r^{2}\right)^{1-p}$ with $p \in(0,1)$, two typical normal weights, the induced spaces $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$ are the Bloch space and Lipschitz type space, respectively.

Notice that $\lim _{z \rightarrow \partial \mathbf{D}^{n}} \sum_{j=1}^{n} \mu\left(z_{j}\right)\left|\frac{\partial f}{\partial z_{j}}(z)\right|=0$ will imply f is a constant when $n \geq 2$ as pointed out by Timoney in [1]. Meanwhile, $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$ contains all polynomials in n complex variables. Hence, instead of using the limit in the above expression we define the little μ-Bloch type space as the following. The little μ-Bloch type space $\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$ is the closure of all polynomials in n complex variables in the Banach space $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$. Obvious, $\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$ is a closed subspace of $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$, and $\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$ is a Banach space also.

Let $\psi \in H\left(\mathbf{D}^{n}\right), \varphi(z)=\left(\varphi_{1}(z), \varphi_{2}(z), \cdots, \varphi_{n}(z)\right) \in H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$. The weighted composition operator $T_{\psi, \varphi}$ is defined by

$$
T_{\psi, \varphi} f(z)=\psi(z) f(\varphi(z)), \quad f \in H\left(\mathbf{D}^{n}\right), \quad z \in \mathbf{D}^{n}
$$

It is easy to see that an operator defined in this manner is linear. We can regard this operator as a generalization of a multiplication operator M_{ψ} and a composition operator C_{φ}. In one complex variable case, the behavior of these operators have been studied extensively in [2-8]. In several complex variables case, Zhang and Xiao [9] got the characterization on φ and ψ for which the induced weighted composition operator is bounded or compact from $\mathcal{B}_{\mu}(\mathbf{B})$ to $\mathcal{B}_{\omega}(\mathbf{B})$ in the unit ball. Luo and Ueki [10] discussed the same problems on the Bergman and Hardy spaces. And in the polydisc, Zhou and Shi [11] and Zhou [12] obtained the sufficient and necessary condition on φ such that C_{φ} is bounded or compact on $\mathcal{B}_{\left(1-r^{2}\right)}\left(\mathbf{D}^{n}\right)$ and $\mathcal{B}_{\left(1-r^{2}\right)^{p}}\left(\mathbf{D}^{n}\right)(0<p \leq 1)$ respectively. $\mathrm{Hu}[13]$ investigated the same problems between different μ-Bloch type spaces. And also, Xu and Liu [14] characterized the boundedness and the compactness of $T_{\psi, \varphi}$ between $\mathcal{B}_{\left(1-r^{2}\right)^{p}}\left(\mathbf{D}^{n}\right)$ and $\mathcal{B}_{\left(1-r^{2}\right)^{q}}\left(\mathbf{D}^{n}\right)$ for $0 \leq p, q \leq \infty$.

In what follows we always suppose that both of μ and ω are normal functions on $[0,1)$. The purpose of this work is to obtain the sufficient and necessary conditions on $\psi \in H\left(\mathbf{D}^{n}\right)$ and $\varphi(z) \in H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$, for which the operator $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ (respectively, $\left.\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)\right)$ is bounded or compact. Our work will generalize [5, 7, 11-14], and main results are the following:

Theorem A Let $\psi \in H\left(\mathbf{D}^{n}\right)$ and $\varphi \in H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$. Then
(1) $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is a bounded operator if and only if the following are all satisfied:
(i) $\sup _{z \in \mathbf{D}^{n}} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right|\left(1+\sum_{k=1}^{n} \int_{0}^{\left|\varphi_{k}(z)\right|} \frac{d t}{\mu(t)}\right)<\infty$,
(ii) $\sup _{z \in \mathbf{D}^{n}} \sum_{j, k=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|<\infty$.
(2) $T_{\psi, \varphi}: \mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ is a bounded operator if and only if (1.1) and (1.2) hold, and for each multi-index $\alpha, \psi \varphi^{\alpha} \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$.

Theorem B Let $\psi \in H\left(\mathbf{D}^{n}\right), \varphi \in H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$ and $\int_{0}^{1} \frac{d t}{\mu(t)}=\infty$. Then
(1) $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is a compact operator if and only if the following are all satisfied:
(i) $\lim _{\varphi(z) \rightarrow \partial \mathbf{D}^{n}} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right|\left(1+\sum_{k=1}^{n} \int_{0}^{\left|\varphi_{k}(z)\right|} \frac{d t}{\mu(t)}\right)=0$,
(ii) $\lim _{\varphi(z) \rightarrow \partial \mathbf{D}^{n}} \sum_{j, k=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|=0$,
(iii) $\psi \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ and $\psi \varphi_{k} \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ for all $k=1,2, \cdots, n$.
(2) $T_{\psi, \varphi}: \mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ is a compact operator if and only if (1.3) and (1.4) hold, and for each multi-index $\alpha, \psi \varphi^{\alpha} \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$.

Theorem C Let $\psi \in H\left(\mathbf{D}^{n}\right), \varphi \in H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$ and $\int_{0}^{1} \frac{d t}{\mu(t)}<\infty$. Then
(1) $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is a compact operator if and only if the following are all satisfied:
(i) $\lim _{\left|\varphi_{k}(z)\right| \rightarrow 1} \sum_{j=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|=0$ for all $k=1,2, \cdots, n$,
(ii) $\psi \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ and $\psi \varphi_{k} \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ for all $k=1,2, \cdots, n$.
(2) $T_{\psi, \varphi}: \mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ is a compact operator if and only if (1.5) holds, and for each multi-index $\alpha, \psi \varphi^{\alpha} \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$.

Throughout this paper, C, C_{1}, C_{2}, \cdots will stand for positive constants whose value may change from line to line but not depend on the functions in $H\left(\mathbf{D}^{n}\right)$.

2 The boundedness of $T_{\psi, \varphi}$

Lemma 2.1 Let $f \in \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$. Then for each $z \in \mathbf{D}^{n}$,

$$
|f(z)| \leq\left(1+\sum_{j=1}^{n} \int_{0}^{\left|z_{j}\right|} \frac{d t}{\mu(t)}\right)\|f\|_{\mu}
$$

Proof. Since

$$
\begin{aligned}
f(z)-f(0) & =\sum_{j=1}^{n}\left[f\left(0, \cdots, 0, z_{j}, \cdots, z_{n}\right)-f\left(0, \cdots, 0, z_{j+1}, \cdots, z_{n}\right)\right] \\
& =\sum_{j=1}^{n} \int_{0}^{1} \frac{d}{d t} f\left(0, \cdots, 0, t z_{j}, z_{j+1}, \cdots, z_{n}\right) d t \\
& =\sum_{j=1}^{n} z_{j} \int_{0}^{1} \frac{\partial}{d w_{j}} f\left(0, \cdots, 0, t z_{j}, z_{j+1}, \cdots, z_{n}\right) d t
\end{aligned}
$$

$|f(0)| \leq\|f\|_{\mu}$ and $\left|\frac{\partial f}{\partial z_{j}}(z)\right| \leq \frac{\|f\|_{\mu}}{\mu\left(z_{j}\right)}$, we can obtain the result by direct calculation.
Given a normal function μ, denote $k_{0}=\max \left(0,\left[\log _{2} \frac{1}{\mu(\delta)}\right]\right), r_{k}=\mu^{-1}\left(\frac{1}{2^{k}}\right)$ and $n_{k}=\left[\frac{1}{1-r_{k}}\right]$ for $k>k_{0}$, where the symbol $[x]$ means the greatest integer not more than x. In what follows, we set the function g, as in [15], to be

$$
g(z)=1+\sum_{k>k_{0}}^{\infty} 2^{k} z^{n_{k}}, \quad z \in \mathbf{D}
$$

Lemma 2.2 ([15]) Let μ be a normal function, then the function $g(z)$ is holomorphic on $\mathbf{D}, g(r)$ is increasing on $[0,1)$ and

$$
0<C_{1}=\inf _{r \in[0,1)} \mu(r) g(r) \leq \sup _{r \in[0,1)} \mu(r) g(r)=C_{2}<\infty
$$

Proof of Theorem A. (1) Suppose that (1.1) and (1.2) hold. Then for any $f \in \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$, by Lemma 2.1 we have

$$
\begin{align*}
& \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial(\psi \cdot f \circ \varphi)}{\partial z_{j}}(z)\right| \\
\leq & \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right||f(\varphi(z))|+\sum_{j, k=1}^{n} \omega\left(z_{j}\right)\left|\psi(z) \frac{\partial f}{\partial w_{k}}(\varphi(z))\right|\left|\frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right| \\
\leq & \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right|\left(1+\sum_{k=1}^{n} \int_{0}^{\left|\varphi_{k}(z)\right|} \frac{d t}{\mu(t)}\right)\|f\|_{\mu}+\sum_{j, k=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|\|f\|_{\mu} \\
\leq & C\|f\|_{\mu} . \tag{2.1}
\end{align*}
$$

Meanwhile,

$$
\begin{equation*}
\left|\left(T_{\psi, \varphi} f\right)(0)\right|=|\psi(0)||f(\varphi(0))| \leq|\psi(0)|\left(|f(0)|+\max _{\left|z_{k}\right| \leq\left|\varphi_{k}(0)\right|, j, k=1,2, \cdots, n}\left|\frac{\partial f}{\partial z_{j}}\right|\right) \leq C\|f\|_{\mu} . \tag{2.2}
\end{equation*}
$$

Hence, (2.1) and (2.2) yield that $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is bounded.
Conversely, suppose that $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is bounded. Then $\psi \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ and $\psi \varphi_{k} \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$, since $1, z_{k} \in \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$ for all $k=1,2, \cdots, n$. So, we obtain

$$
\begin{equation*}
\sup _{z \in \mathbf{D}^{n}} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right| \leq\|\psi\|_{\omega}+\left\|\psi \varphi_{k}\right\|_{\omega}<\infty, \quad k=1,2, \cdots, n . \tag{2.3}
\end{equation*}
$$

We claim that, there exist two constants C_{1} and C_{2} such that for $w \in \mathbf{D}^{n}$ and $k=1,2, \cdots, n$,

$$
\begin{equation*}
\sum_{j=1}^{n} \omega\left(w_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(w)\right| \int_{0}^{\left|\varphi_{k}(w)\right|} \frac{d t}{\mu(t)} \leq C_{1} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\omega\left(w_{j}\right)}{\mu\left(\varphi_{k}(w)\right)}\left|\psi(w) \frac{\partial \varphi_{k}}{\partial z_{j}}(w)\right| \leq C_{2} \tag{2.5}
\end{equation*}
$$

In fact, if $\left|\varphi_{k}(w)\right| \leq \frac{1}{2}$, then $\psi \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ and (2.3) imply these estimates (2.4) and (2.5). In the following, we always assume that $\left|\varphi_{k}(w)\right|>\frac{1}{2}$. First, we prove that (2.5) holds. Take the test function

$$
f(z)=\frac{\int_{0}^{\overline{\varphi_{k}(w)} z_{k}} g(t) d t \int_{\left|k_{k}(w)\right|^{2}}^{\overline{\varphi_{k}(w)} z_{k}} g(t) d t}{\overline{\varphi_{k}(w)} \int_{0}^{\left|\varphi_{k}(w)\right|^{2}} g(t) d t} .
$$

By the definition of normal weight and Lemma 2.2, we get

$$
\int_{\left|\varphi_{k}(w)\right|^{2}}^{\left|\varphi_{k}(w)\right|} g(t) d t \leq C g\left(\left|\varphi_{k}(w)\right|^{2}\right)\left[1-\left|\varphi_{k}(w)\right|\right] \leq C \int_{\left|\varphi_{k}(w)\right|^{4}}^{\left|\varphi_{k}(w)\right|^{2}} g(t) d t .
$$

Then

$$
\begin{equation*}
\int_{0}^{\left|\varphi_{k}(w)\right|^{2}} g(t) d t \leq \int_{0}^{\left|\varphi_{k}(w)\right|} g(t) d t \leq C \int_{0}^{\left|\varphi_{k}(w)\right|^{2}} g(t) d t \tag{2.6}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\sum_{j=1}^{n} \mu\left(z_{j}\right)\left|\frac{\partial f}{\partial z_{j}}(z)\right| & =\mu\left(z_{k}\right)\left|g\left(z_{k} \overline{\varphi_{k}(w)}\right)\right| \frac{\left|\int_{0}^{\overline{\varphi_{k}(w)} z_{k}} g(t) d t+\int_{\left|\varphi_{k}(w)\right|^{2}}^{\overline{\varphi_{k}(w)} z_{k}} g(t) d t\right|}{\int_{0}^{\left|\varphi_{k}(w)\right|^{2}} g(t) d t} \\
& \leq \frac{C \int_{0}^{\left|\varphi_{k}(w)\right|} g(t) d t}{\int_{0}^{\left|\varphi_{k}(w)\right|^{2}} g(t) d t} \leq C
\end{aligned}
$$

This means $f \in \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$ and $\|f\|_{\mu} \leq C$, where C does not depend on w. By the boundedness of $T_{\psi, \varphi}$ it is clear that $C\left\|T_{\psi, \varphi}\right\| \geq\left\|T_{\psi, \varphi} f\right\|_{\omega} \geq \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial(\psi \cdot f \circ \varphi)}{\partial z_{j}}(z)\right|$. In particular, when $z=w$ we obtain

$$
\begin{align*}
C\left\|T_{\psi, \varphi}\right\| & \geq \sum_{j=1}^{n} \omega\left(w_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(w) f(\varphi(w))+\psi(w) g\left(\left|\varphi_{k}(w)\right|^{2}\right) \frac{\partial \varphi_{k}}{\partial z_{j}}(w)\right| \\
& =\sum_{j=1}^{n} \omega\left(w_{j}\right)|\psi(w)| g\left(\left|\varphi_{k}(w)\right|^{2}\right)\left|\frac{\partial \varphi_{k}}{\partial z_{j}}(w)\right| \tag{2.7}
\end{align*}
$$

On the other hand, by the definition of normal weight, we always have $\frac{\mu\left(\varphi_{k}^{2}(w)\right)}{\mu\left(\varphi_{k}(w)\right)} \leq C_{3}$. This, together with (2.7) and Lemma2.2, gives

$$
\begin{aligned}
& \sum_{j=1}^{n} \frac{\omega\left(w_{j}\right)}{\mu\left(\varphi_{k}(w)\right)}\left|\psi(w) \frac{\partial \varphi_{k}}{\partial z_{j}}(w)\right| \\
= & \sum_{j=1}^{n} \frac{\omega\left(w_{j}\right)|\psi(w)| g\left(\left|\varphi_{k}(w)\right|^{2}\right)}{g\left(\left|\varphi_{k}(w)\right|^{2}\right) \mu\left(\varphi_{k}^{2}(w)\right)}\left|\frac{\partial \varphi_{k}}{\partial z_{j}}(w)\right| \frac{\mu\left(\varphi_{k}^{2}(w)\right)}{\mu\left(\varphi_{k}(w)\right)} \\
\leq & C \sum_{j=1}^{n} \omega\left(w_{j}\right)|\psi(w)| g\left(\left|\varphi_{k}(w)\right|^{2}\right)\left|\frac{\partial \varphi_{k}}{\partial z_{j}}(w)\right| \\
\leq & C\left\|T_{\psi, \varphi}\right\|<\infty
\end{aligned}
$$

This means the estimate (2.5) holds. Now, we prove that (2.4) holds. Take the test function

$$
f(z)=\frac{1}{\overline{\varphi_{k}(w)}} \int_{0}^{\overline{\varphi_{k}(w)} z_{k}} g(t) d t
$$

It is easy to check that $\|f\|_{\mu} \leq C$, where C dose not depend on w. Then

$$
\begin{aligned}
& C\left\|T_{\psi, \varphi}\right\| \geq\left\|T_{\psi, \varphi} f\right\|_{\omega} \geq\left(\sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial(\psi \cdot f \circ \varphi)}{\partial z_{j}}(z)\right|\right)_{z=w} \\
\geq & \sum_{j=1}^{n} \omega\left(w_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(w)\right| \frac{1}{\left|\varphi_{k}(w)\right|} \int_{0}^{\left|\varphi_{k}(w)\right|^{2}} g(t) d t-\sum_{j=1}^{n} \omega\left(w_{j}\right)|\psi(w)| g\left(\left|\varphi_{k}(w)\right|^{2}\right)\left|\frac{\partial \varphi_{k}}{\partial z_{j}}(w)\right| .
\end{aligned}
$$

So, by (2.7) we have

$$
\begin{equation*}
\sum_{j=1}^{n} \omega\left(w_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(w)\right| \int_{0}^{\left|\varphi_{k}(w)\right|^{2}} g(t) d t \leq C\left\|T_{\psi, \varphi}\right\|<\infty \tag{2.8}
\end{equation*}
$$

It follows from (2.6), (2.8) and Lemma 2.2 that

$$
\sum_{j=1}^{n} \omega\left(w_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(w)\right| \int_{0}^{\left|\varphi_{k}(w)\right|} \frac{d t}{\mu(t)} \leq C\left\|T_{\psi, \varphi}\right\|<\infty .
$$

This means the estimate (2.4) holds. Therefore, combining (2.4), (2.5) and the fact that $\psi \in$ $\mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$, (1.1) and (1.2) hold.
(2) Suppose that $T_{\psi, \varphi}: \mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ is bounded. For each multi-index α, because $z^{\alpha} \in \mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$ we have $\psi \varphi^{\alpha}=T_{\psi, \varphi} z^{\alpha} \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$. That the boundedness imply (1.1) and (1.2) can be proved in the same way as that in (1), as all the test functions defined in (1) are holomorphic on $\overline{\mathbf{D}^{n}}$ and hence in $\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$.

Conversely, suppose that (1.1) and (1.2) hold. From (1), we know that $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow$ $\mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is bounded. So, we only need to prove that $T_{\psi, \varphi} f \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ whenever $f \in \mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$. In fact, for $f \in \mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$ and any $\varepsilon>0$, by the definition of $\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$, there exists some polynomial p such that

$$
\|f-p\|_{\mu}<\frac{\varepsilon}{2\left\|T_{\psi, \varphi}\right\|+1} .
$$

By the boundedness of $T_{\psi, \varphi}$,

$$
\begin{equation*}
\left\|T_{\psi, \varphi} f-T_{\psi, \varphi} p\right\|_{\omega} \leq\left\|T_{\psi, \varphi}\right\| \cdot\|f-p\|_{\mu}<\frac{\varepsilon}{2} . \tag{2.9}
\end{equation*}
$$

Since $\mathcal{B}_{\mu, 0}$ is a linear space and $\psi \varphi^{\alpha} \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$, we have $T_{\psi, \varphi} p \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$. This means we have another polynomial q such that

$$
\left\|T_{\psi, \varphi} p-q\right\|_{\omega}<\frac{\varepsilon}{2} .
$$

This and (2.9) yield

$$
\left\|T_{\psi, \varphi} f-q\right\|_{\omega} \leq\left\|T_{\psi, \varphi} f-T_{\psi, \varphi} p\right\|_{\omega}+\left\|T_{\psi, \varphi} p-q\right\|_{\omega}<\varepsilon .
$$

That is, $T_{\psi, \varphi} f \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$. The proof is completed.

3 The compactness of $T_{\psi, \varphi}$

Lemma 3.1 Let $\psi \in H\left(\mathbf{D}^{n}\right), \varphi(z) \in H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$ and $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is a bounded operator. Then $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is a compact operator if and only if for any bounded sequence $\left\{f_{m}\right\}$ in $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$ which converges to 0 uniformly on any compact subset of \mathbf{D}^{n}, we have $\lim _{m \rightarrow \infty}\left\|T_{\psi, \varphi} f_{m}\right\|_{\omega}=0$.

Proof. It can be proved by Montel theorem and Lemma 2.1. The details are omitted here.
Lemma 3.2 ([13]) Suppose μ is normal with $\int_{0}^{1} \frac{1}{\mu(r)} d r<\infty$ and $\left\{f_{m}\right\}$ is a bounded sequence in $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$ which converges to 0 uniformly on any compact subset of \mathbf{D}^{n}. Then $\lim _{m \rightarrow \infty} \sup _{z \in \mathbf{D}^{n}}\left|f_{m}(z)\right|=0$. And, for each $\rho \in[0,1)$ and $j=1,2, \cdots, n, \lim _{m \rightarrow \infty} \sup _{z \in \mathbf{D}^{n},\left|z_{j}\right| \leq \rho}\left|\frac{\partial f_{m}}{\partial z_{j}}(z)\right|=0$.

Proof of Theorem B. (1) Suppose that ψ and φ satisfy conditions (i)-(iii). Then by Theorem $\mathrm{A}, T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is a bounded operator. Let $\left\{f_{m}\right\}$ be any a sequence
which converges to 0 uniformly on any compact subset of \mathbf{D}^{n} satisfying $\left\|f_{m}\right\|_{\mu} \leq 1$. We claim that

$$
\begin{equation*}
\left\|T_{\psi, \varphi} f_{m}\right\|_{\omega}=|\psi(0)| \cdot\left|f_{m}(\varphi(0))\right|+\sup _{z \in \mathbf{D}^{n}} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial\left(\psi \cdot f_{m} \circ \varphi\right)}{\partial z_{j}}(z)\right| \rightarrow 0 \quad(m \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

In fact, for each $\varepsilon>0$, by (i) there exists some compact subset $K \subset \mathbf{D}^{n}$ such that

$$
\sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right|\left(1+\sum_{k=1}^{n} \int_{0}^{\left|\varphi_{k}(z)\right|} \frac{d t}{\mu(t)}\right)<\varepsilon
$$

whenever $\varphi(z) \in \mathbf{D}^{n} \backslash K$. Thus, if $\varphi(z) \in \mathbf{D}^{n} \backslash K$ then by Lemma 2.1,

$$
\begin{equation*}
\sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right|\left|f_{m}(\varphi(z))\right| \leq\left\|f_{m}\right\|_{\mu} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right|\left(1+\sum_{k=1}^{n} \int_{0}^{\left|\varphi_{k}(z)\right|} \frac{d t}{\mu(t)}\right)<\varepsilon \tag{3.2}
\end{equation*}
$$

If $\varphi(z) \in K$, because $\psi \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ and $\left\{f_{m}\right\}$ converges to 0 uniformly on K we have

$$
\begin{equation*}
\sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right| \cdot\left|f_{m}(\varphi(z))\right| \leq\|\psi\|_{\omega} \cdot \max _{w \in K}\left|f_{m}(w)\right| \rightarrow 0(m \rightarrow \infty) \tag{3.3}
\end{equation*}
$$

On the other hand, for the above $\varepsilon>0$, by (ii) we have

$$
\begin{equation*}
\sum_{j, k=1}^{n} \omega\left(z_{j}\right)|\psi(z)|\left|\frac{\partial f_{m}}{\partial w_{k}}(\varphi(z))\right|\left|\frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right| \leq\left\|f_{m}\right\|_{\mu} \sum_{j, k=1}^{n} \frac{\omega\left(z_{j}\right)|\psi(z)|}{\mu\left(\varphi_{k}(z)\right)}\left|\frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|<\varepsilon \tag{3.4}
\end{equation*}
$$

whenever $\varphi(z) \in \mathbf{D}^{n} \backslash K$. If $\varphi(z) \in K$, because $\psi, \psi \varphi_{k} \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ and $\left\{f_{m}\right\}$ converges to 0 uniformly on K we have

$$
\begin{align*}
& \sum_{j, k=1}^{n} \omega\left(z_{j}\right)|\psi(z)|\left|\frac{\partial f_{m}}{\partial w_{k}}(\varphi(z))\right|\left|\frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right| \\
\leq & \max _{w \in K, 1 \leq k \leq n}\left|\frac{\partial f_{m}}{\partial z_{k}}(w)\right| \sum_{j, k=1}^{n} \omega\left(z_{j}\right)|\psi(z)|\left|\frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right| \rightarrow 0(m \rightarrow \infty) \tag{3.5}
\end{align*}
$$

From (3.2)-(3.5) and $\lim _{m \rightarrow \infty}\left|\psi(0) f_{m}(\varphi(0))\right|=0$, we can obtain (3.1).
Conversely, suppose that $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is a compact operator, then (iii) is trivial. Assume that (1.4) fails. Then there exists some $\varepsilon_{0}>0$ and some sequence $\left\{z^{(m)}\right\} \subset \mathbf{D}^{n}$ such that $\varphi\left(z^{(m)}\right) \rightarrow z_{0} \in \partial \mathbf{D}^{n}(m \rightarrow \infty)$ and

$$
\sum_{j, k=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{k}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{k}}{\partial z_{j}}\left(z^{(m)}\right)\right| \geq n \varepsilon_{0}
$$

Without loss of generality, we may assume that

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{1}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right| \geq \varepsilon_{0} \tag{3.6}
\end{equation*}
$$

Set $\lim _{m \rightarrow \infty}\left|\varphi_{1}\left(z^{(m)}\right)\right|=d \leq 1$. The construction of the function f_{m} will be carried out in two cases.

Case 1. If $d=1$, we may assume that $\left|\varphi_{1}\left(z^{(m)}\right)\right|>\frac{1}{2}, m=1,2, \cdots$. Take

$$
f_{m}(z)=\frac{\int_{0}^{\overline{\varphi_{1}\left(z^{(m)}\right)} z_{1}} g(t) d t \int_{\bar{\varphi}_{\varphi_{1}\left(z^{(m)}\right.}^{\varphi_{1}}}{ }^{2} z_{1}^{2}}{z^{(m)}\left|\varphi_{1}\left(z^{(m)}\right)\right|^{2} z_{1}} g(t) d t .
$$

Then by Lemma 2.2 and (2.6) we obtain

$$
\begin{aligned}
& \sum_{j=1}^{n} \mu\left(z_{j}\right)\left|\frac{\partial f_{m}}{\partial z_{j}}(z)\right| \\
= & \left.\frac{\mu\left(z_{1}\right)}{\int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|^{2}} g(t) d t} \right\rvert\, g\left(\overline{\varphi_{1}\left(z^{(m)}\right)} z_{1}\right) \overline{\varphi_{1}\left(z^{(m)}\right)} \int_{\overline{\varphi_{1}\left(z^{(m)}\right)}\left|\varphi_{1}\left(z^{(m)}\right)\right|^{2} z_{1}}^{\overline{\varphi_{1}\left(z^{(m)}\right.} z^{2}} g(t) d t+\int_{0}^{\overline{\varphi_{1}\left(z^{(m)}\right)} z_{1}} g(t) d t \\
& \cdot\left(g\left(\overline{\varphi_{1}\left(z^{(m)}\right)^{2}} z_{1}^{2}\right) \cdot 2 z_{1} \overline{\varphi_{1}\left(z^{(m)}\right)^{2}}-g\left(z_{1} \overline{\varphi_{1}\left(z^{(m)}\right)}\left|\varphi_{1}\left(z^{(m)}\right)\right|^{2}\right) \overline{\varphi_{1}\left(z^{(m)}\right)}\left|\varphi_{1}\left(z^{(m)}\right)\right|^{2}\right) \mid \\
\leq & \frac{C \mu\left(z_{1}\right) g\left(\left|z_{1}\right|\right)}{\int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|^{2}} g(t) d t}\left(\mid \int_{\overline{\varphi_{1}\left(z^{(m)}\right)}} z_{1}^{2}\right. \\
\leq & \frac{C \int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right| \varphi_{1}\left(\left.z^{(m)}\right|^{2} z_{1}\right.} g(t) d t\left|+\left|\int_{0}^{\overline{\varphi_{1}\left(z^{(m)}\right)} z_{1}} g(t) d t\right|\right)}{\int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|^{2}} g(t) d t} \leq C .
\end{aligned}
$$

Because

$$
\lim _{m \rightarrow \infty} \int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|} g(t) d t=\lim _{m \rightarrow \infty} \int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|} \frac{d t}{\mu(t)}=\infty,
$$

we know that $\left\{f_{m}\right\}$ converges to 0 uniformly on any compact subset of \mathbf{D}^{n}. Hence, from Lemma 3.1, $\lim _{m \rightarrow \infty}\left\|T_{\psi, \varphi} f_{m}\right\|_{\omega}=0$. But by (3.6), definition of normal weight and Lemma 2.2,

$$
\begin{aligned}
& \left\|T_{\psi, \varphi} f_{m}\right\|_{\omega} \geq \sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial\left(\psi \cdot f_{m} \circ \varphi\right)}{\partial z_{j}}\left(z^{(m)}\right)\right| \\
& =\sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\psi\left(z^{(m)}\right)\right| g\left(\left|\varphi_{1}\left(z^{(m)}\right)\right|^{4}\right)\left|\varphi_{1}\left(z^{(m)}\right)\right|^{3}\left|\frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right| \\
& =\sum_{j=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)\left|\psi\left(z^{(m)}\right)\right|\left|\frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right|}{\mu\left(\varphi_{1}\left(z^{(m)}\right)\right)} \cdot \frac{\mu\left(\varphi_{1}\left(z^{(m)}\right)\right)}{\mu\left(\varphi_{1}^{4}\left(z^{(m)}\right)\right)} g\left(\left|\varphi_{1}\left(z^{(m)}\right)\right|^{4}\right) \mu\left(\varphi_{1}^{4}\left(z^{(m)}\right)\right)\left|\varphi_{1}\left(z^{(m)}\right)\right|^{3} \\
& \geq \frac{C}{4^{4}}\left|\varphi_{1}\left(z^{(m)}\right)\right|^{3} \sum_{j=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)\left|\psi\left(z^{(m)}\right)\right|\left|\frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right|}{\mu\left(\varphi_{1}\left(z^{(m)}\right)\right)} \\
& \geq C \varepsilon_{0} .
\end{aligned}
$$

This leads a contradiction.
Case 2. If $d<1$, we have some $s(1<s \leq n)$ such that $\lim _{m \rightarrow \infty}\left|\varphi_{s}\left(z^{(m)}\right)\right|=1$ since $\varphi\left(z^{(m)}\right) \rightarrow$ $z_{0} \in \partial \mathbf{D}^{n}(m \rightarrow \infty)$. Similar to that in Case 1 (replace 1 with s there), we can get

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{j=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{s}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{s}}{\partial z_{j}}\left(z^{(m)}\right)\right|=0 . \tag{3.7}
\end{equation*}
$$

We may also assume $\left|\varphi_{s}\left(z^{(m)}\right)\right|>\frac{1}{2}$, and take

$$
f_{m}(z)=\frac{z_{1}}{\int_{0}^{\left|\varphi_{s}\left(z^{(m)}\right)\right|} g(t) d t} \int_{0}^{\overline{\varphi_{s}\left(z^{(m)}\right)} z_{s}} g(t) d t .
$$

It is easy to check that $\left\|f_{m}\right\|_{\mu} \leq C$ and $\left\{f_{m}\right\}$ converges to 0 uniformly on any compact subset of \mathbf{D}^{n}. So, $\lim _{m \rightarrow \infty}\left\|T_{\psi, \varphi} f_{m}\right\|_{\omega}=0$ by Lemma 3.1. Notice that a compact operator is a bounded operator. Hence, Theorem A and $\int_{0}^{1} \frac{d t}{\mu(t)}=\infty$ imply

$$
\begin{equation*}
\lim _{\varphi(z) \rightarrow \partial \mathbf{D}^{n}} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right|=0 \tag{3.8}
\end{equation*}
$$

But it follows from (2.6), (3.6), (3.7) and (3.8) that

$$
\begin{aligned}
& \left\|T_{\psi, \varphi} f_{m}\right\|_{\omega} \\
\geq & \sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\psi\left(z^{(m)}\right) \sum_{k=0}^{n} \frac{\partial f_{m}}{\partial w_{k}}\left(\varphi\left(z^{(m)}\right)\right) \frac{\partial \varphi_{k}}{\partial z_{j}}\left(z^{(m)}\right)+\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right) f_{m}\left(\varphi\left(z^{(m)}\right)\right)\right| \\
= & \sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right) \left\lvert\, \psi\left(z^{(m)}\right) \frac{\partial f_{m}}{\partial w_{1}}\left(\varphi\left(z^{(m)}\right)\right) \frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)+\psi\left(z^{(m)}\right) \frac{\partial f_{m}}{\partial w_{s}}\left(\varphi\left(z^{(m)}\right)\right) \frac{\partial \varphi_{s}}{\partial z_{j}}\left(z^{(m)}\right)\right. \\
& \left.+\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right) f_{m}\left(\varphi\left(z^{(m)}\right)\right) \right\rvert\, \\
\geq & \sum_{j=1}^{n} \mu\left(\varphi_{1}\left(z^{(m)}\right)\right)\left|\frac{\partial f_{m}}{\partial w_{1}}\left(\varphi\left(z^{(m)}\right)\right)\right| \cdot \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{1}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right| \\
& -\sum_{j=1}^{n} \mu\left(\varphi_{s}\left(z^{(m)}\right)\right)\left|\frac{\partial f_{m}}{\partial w_{s}}\left(\varphi\left(z^{(m)}\right)\right)\right| \cdot \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{s}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{s}}{\partial z_{j}}\left(z^{(m)}\right)\right| \\
& -\sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right)\right| \frac{\left|\varphi_{1}\left(z^{(m)}\right)\right|}{\int_{0}^{\left|\varphi_{s}\left(z^{(m)}\right)\right|} g(t) d t} \int_{0}^{\left|\varphi_{s}\left(z^{(m)}\right)\right|^{2}} g(t) d t \\
\geq & \varepsilon_{0}\left[\min _{t \in\left[0, \frac{d+1}{2}\right]} \mu(t)\right] \frac{\int_{0}^{\left|\varphi_{s}\left(z^{(m)}\right)\right|^{2}} g(t) d t}{\int_{0}^{\left|\varphi_{s}\left(z^{(m)}\right)\right|} g(t) d t}-\left\|f_{m}\right\|_{\mu} \sum_{j=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{s}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{s}}{\partial z_{j}}\left(z^{(m)}\right)\right| \\
& -\sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right)\right| \frac{\int_{0}^{\left|\varphi_{s}\left(z^{(m)}\right)\right|^{2}} g(t) d t}{\int_{0}^{\left|\varphi_{s}\left(z^{(m)}\right)\right|} g(t) d t} \rightarrow C \varepsilon_{0} \quad(m \rightarrow \infty) .
\end{aligned}
$$

This leads a contradiction. This shows that (1.4) holds.
Now we prove (1.3) holds. By (3.8), we only need to claim that

$$
\lim _{\varphi(z) \rightarrow \partial \mathbf{D}^{n}} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right| \sum_{k=1}^{n} \int_{0}^{\left|\varphi_{k}(z)\right|} \frac{d t}{\mu(t)}=0
$$

Assume this expression fails. Similarly, there exists some $\varepsilon_{0}>0$ and some sequence $\left\{z^{(m)}\right\} \subset \mathbf{D}^{n}$ such that $\varphi\left(z^{(m)}\right) \rightarrow z_{0} \in \partial \mathbf{D}^{n}(m \rightarrow \infty)$ and

$$
\sum_{j, k=1}^{n} \omega\left(z_{j}^{m}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{m}\right)\right| \int_{0}^{\left|\varphi_{k}\left(z^{m}\right)\right|} \frac{d t}{\mu(t)} \geq n \varepsilon_{0}
$$

Without loss of generality, we may assume that

$$
\sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right)\right| \int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|} \frac{d t}{\mu(t)} \geq \varepsilon_{0}
$$

Since $\varphi\left(z^{(m)}\right) \rightarrow z_{0} \in \partial \mathbf{D}^{n}$, by (3.8) we can get

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right)\right|=0 . \tag{3.9}
\end{equation*}
$$

If $\lim _{m \rightarrow \infty}\left|\varphi_{1}\left(z^{(m)}\right)\right|=d<1$, then by (3.9)

$$
\lim _{m \rightarrow \infty} \sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right)\right| \int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|} \frac{d t}{\mu(t)}=0
$$

This contradicts the assumption. If $d=1$, we may assume $\left|\varphi_{1}\left(z^{(m)}\right)\right|>\frac{1}{2}$. Take

$$
f_{m}(z)=\frac{\left(\int_{0}^{\overline{\varphi_{1}\left(z^{(m)}\right)} z_{1}} g(t) d t\right)^{2}}{\int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|^{2}} g(t) d t}
$$

then $\left\|f_{m}\right\|_{\mu} \leq C$ and $\left\{f_{m}\right\}$ converges to 0 uniformly on any compact subset of \mathbf{D}^{n}. So $\lim _{m \rightarrow \infty}\left\|T_{\psi, \varphi} f_{m}\right\|_{\omega}=0$. But (2.6) and (1.4) imply

$$
\begin{aligned}
\left\|T_{\psi, \varphi} f_{m}\right\|_{\omega} \geq & \sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right) \int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|^{2}} g(t) d t\right| \\
& -\sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\psi\left(z^{(m)}\right) \frac{\partial f_{m}}{\partial w_{1}}\left(\varphi\left(z^{(m)}\right)\right) \frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right| \\
\geq & C \sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right) \int_{0}^{\left|\varphi_{1}\left(z^{(m)}\right)\right|} g(t) d t\right| \\
& -\sum_{j=1}^{n} \mu\left(\varphi_{1}\left(z^{(m)}\right)\right)\left|\frac{\partial f_{m}}{\partial w_{1}}\left(\varphi\left(z^{(m)}\right)\right)\right| \cdot \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{1}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right| \\
\geq & C \varepsilon_{0}-\left\|f_{m}\right\|_{\mu} \sum_{j=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right|}{\mu\left(\varphi_{1}\left(z^{(m)}\right)\right)} \rightarrow C \varepsilon_{0} \quad(m \rightarrow \infty) .
\end{aligned}
$$

This leads a contradiction. This means that (1.3) holds.
(2) Notice that all the test function sequences defined in (1) are holomorphic on $\overline{\mathbf{D}^{n}}$ and hence in $\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$. Therefore, by proof of (1) and Theorem A, the result (2) holds. The proof is completed.

Proof of Theorem C. Suppose that $\psi, \psi \varphi_{k} \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ and (1.5) holds. Then for each $\varepsilon>0$, there exists some $\eta \in(0,1)$ such that for all k, we have

$$
\begin{equation*}
\sup _{\left|\varphi_{k}(z)\right|>\eta} \sum_{j=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|<\varepsilon . \tag{3.10}
\end{equation*}
$$

Meanwhile,

$$
\begin{equation*}
\sup _{\left|\varphi_{k}(z)\right| \leq \eta} \sum_{j=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|<C\left(\|\psi\|_{\omega}+\left\|\psi \varphi_{k}\right\|_{\omega}\right) . \tag{3.11}
\end{equation*}
$$

From (3.10), (3.11) and Theorem A, we obtain that $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is bounded.

Suppose $\left\{f_{m}\right\}$ is a bounded sequence in $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$ which converges to 0 uniformly on any compact subset of \mathbf{D}^{n}. By Lemma 3.2 and $\psi \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$, we can get

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{z \in \mathbf{D}^{n}} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z) f_{m}(\varphi(z))\right|=0 \tag{3.12}
\end{equation*}
$$

On the other hand, for any $\varepsilon>0$, from (1.5), we have some $\rho \in(0,1)$ such that for all k

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|<\frac{\varepsilon}{M+1} \tag{3.13}
\end{equation*}
$$

whenever $\left|\varphi_{k}(z)\right|>\rho$, where $M=\sup \left\{\left\|f_{m}\right\|_{\mu}: m=1,2, \cdots\right\}$. Set

$$
I_{k}=\sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\psi(z) \frac{\partial f_{m}}{\partial w_{k}}(\varphi(z)) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|, \quad k=1,2, \cdots, n
$$

Then by Lemma 3.2 and $\psi, \psi \varphi_{k} \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$, we have

$$
\begin{equation*}
\sup _{\left|\varphi_{k}(z)\right| \leq \rho} I_{k} \leq\left(\|\psi\|_{\omega}+\left\|\psi \varphi_{k}\right\|_{\omega}\right) \sup _{w \in \mathbf{D}^{n},\left|w_{k}\right|<\rho}\left|\frac{\partial f_{m}}{\partial w_{k}}(w)\right| \rightarrow 0(m \rightarrow \infty) \tag{3.14}
\end{equation*}
$$

Thus as m is sufficiently large, from (3.13) and (3.14),

$$
\begin{equation*}
\sup _{z \in \mathbf{D}^{n}} I_{k}<\sup _{\left|\varphi_{k}(z)\right| \leq \rho} I_{k}+\sup _{\left|\varphi_{k}(z)\right|>\rho} I_{k}<2 \varepsilon \tag{3.15}
\end{equation*}
$$

Hence, (3.12) and (3.15), together with the fact that $\lim _{m \rightarrow \infty}\left|\psi(0) f_{m}(\varphi(0))\right|=0$, yield $\lim _{m \rightarrow \infty}\left\|T_{\psi, \varphi} f_{m}\right\|_{\omega}=$ 0 . This means $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is compact.

Conversely, we only need to prove that (1.5) holds. If there exists some k such that (1.5) fails. Then we would have some constant $\varepsilon_{0}>0$ and a sequence $\left\{z^{(m)}\right\}$ in \mathbf{D}^{n} such $\lim _{m \rightarrow \infty}\left|\varphi_{k}\left(z^{(m)}\right)\right|=1$ and

$$
\sum_{j=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{k}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{k}}{\partial z_{j}}\left(z^{(m)}\right)\right| \geq \varepsilon_{0}
$$

Without loss of generality, we may assume $k=1$, that is

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{1}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right| \geq \varepsilon_{0} \tag{3.16}
\end{equation*}
$$

Writing $\rho_{m}=\varphi_{1}\left(z^{(m)}\right)$, we also may assume that

$$
\begin{equation*}
1-\frac{1}{(m+1)^{2}}<\left|\rho_{m}\right|<1, \quad \lim _{m \rightarrow \infty} \rho_{m}=\rho_{0} \in \partial \mathbf{D} \tag{3.17}
\end{equation*}
$$

Take

$$
\begin{equation*}
f_{m}(z)=\frac{1}{\overline{\rho_{m}}} \int_{0}^{\overline{\rho_{m}} z_{1}} g(t) d t-\frac{1}{\left|\rho_{m}\right|^{m} \overline{\rho_{m}}} \int_{0}^{\left|\rho_{m}\right|^{m} \overline{\rho_{m}} z_{1}} g(t) d t \tag{3.18}
\end{equation*}
$$

Then $\left\|f_{m}\right\|_{\mu} \leq C$. From (3.17) we get

$$
\begin{equation*}
1>\left|\rho_{m}\right|^{2}>\left|\rho_{m}\right|^{m+2}>\left(1-\frac{1}{m^{2}}\right)^{m+2} \rightarrow 1(m \rightarrow \infty) \tag{3.19}
\end{equation*}
$$

Hence, for fixed $r \in(0,1)$ and any $z \in \overline{\mathbf{D}_{r}^{n}}$,

$$
\begin{aligned}
\left|f_{m}(z)\right| & \leq\left|\frac{1}{\overline{\rho_{m}}} \int_{0}^{\overline{\rho_{m}} z_{1}} g(t) d t-\frac{1}{\overline{\rho_{m}}} \int_{0}^{\left|\rho_{m}\right|^{m} \overline{\overline{\rho_{m}}} z_{1}} g(t) d t\right| \\
& +\left\lvert\, \frac{1}{\overline{\rho_{m}}} \int_{0}^{\left|\rho_{m}\right|^{m} \overline{\rho_{m}} z_{1}} g(t) d t-\frac{1}{\left|\rho_{m}\right|^{m} \overline{\rho_{m}}} \int_{0}^{\left.\left|\rho_{m}\right|^{m} \frac{\overline{\rho_{m}} z_{1}}{} g(t) d t \right\rvert\,}\right. \\
& \leq\left|z_{1}\right|\left[\left(1-\left|\rho_{m}\right|^{m}\right)+\left(\frac{1}{\left|\rho_{m}\right|^{m}}-1\right)\right] \max _{t \in[0, r]} g(t) \\
& \leq C_{1}\left[\frac{1}{\left|\rho_{m}\right|^{m}}-\left|\rho_{m}\right|^{m}\right]
\end{aligned}
$$

where $\mathbf{D}_{r}^{n}=\left\{z \in \mathbf{C}^{n} ;\left|z_{j}\right|<r, j=1,2, \cdots, n\right\}$ and the constant C_{1} depends only on r. So, by (3.19) we obtain

$$
\lim _{m \rightarrow \infty} \max _{z \in \overline{\mathbf{D}_{r}^{n}}}\left|f_{m}(z)\right|=0 .
$$

That is, $\left\{f_{m}\right\}$ converges to 0 uniformly on any compact subset of \mathbf{D}^{n}. By (3.19), we may assume $\left|\rho_{m}\right|^{m+1} \geq \frac{1}{2}$, then this and the definition of normal weight imply

$$
\begin{aligned}
0 & \leq \frac{\mu\left(\rho_{m}\right)}{\mu\left(\rho_{m}^{m+2}\right)}=\frac{\frac{\mu\left(\rho_{m}\right)}{\left(1-\left|\rho_{m}\right|\right)^{a}\left(1+\left|\rho_{m}\right|+\cdots+\left|\rho_{m}\right|^{m+1}\right)^{a}}}{\frac{\mu\left(\rho_{m}^{m+2}\right)}{\left(1-\left|\rho_{m}\right|^{m+2}\right)^{a}}} \\
& \leq \frac{1}{\left(1+\left|\rho_{m}\right|+\cdots+\left|\rho_{m}\right|^{m+1}\right)^{a}} \leq\left(\frac{2}{m+2}\right)^{a} \rightarrow 0(m \rightarrow \infty) .
\end{aligned}
$$

This, together the estimate $\liminf _{m \rightarrow \infty} \frac{\mu\left(\rho_{m}\right)}{\mu\left(\rho_{m}^{2}\right)} \geq \frac{1}{2^{6}}$, yield

$$
\begin{align*}
& \mu\left(\varphi_{1}\left(z^{(m)}\right)\right)\left|\frac{\partial f_{m}}{\partial w_{1}}\left(\varphi\left(z^{(m)}\right)\right)\right| \\
\geq & \left(\mu\left(\rho_{m}^{2}\right) g\left(\left|\rho_{m}\right|^{2}\right) \frac{\mu\left(\rho_{m}\right)}{\mu\left(\rho_{m}^{2}\right)}-\mu\left(\rho_{m}^{m+2}\right) g\left(\left|\rho_{m}\right|^{m+2}\right) \frac{\mu\left(\rho_{m}\right)}{\mu\left(\rho_{m}^{m+2}\right)}\right) \\
\geq & \frac{C}{2^{b}}-0 \tag{3.20}
\end{align*}
$$

as m is sufficiently large. Because $\psi \in \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ we have

$$
\begin{equation*}
0<\sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right) f_{m}\left(\varphi\left(z^{(m)}\right)\right)\right| \leq\|\psi\|_{\omega}\left|f_{m}\left(\varphi\left(z^{(m)}\right)\right)\right| \rightarrow 0 \quad(m \rightarrow \infty) \tag{3.21}
\end{equation*}
$$

Therefore, (3.16), (3.20) and (3.21) imply

$$
\begin{aligned}
& \left\|T_{\psi, \varphi} f_{m}\right\|_{\omega} \\
\geq & \sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\psi\left(z^{(m)}\right) \frac{\partial f_{m}}{\partial w_{1}}\left(\varphi\left(z^{(m)}\right)\right) \frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)+\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right) f_{m}\left(\varphi\left(z^{(m)}\right)\right)\right| \\
\geq & \sum_{j=1}^{n} \frac{\omega\left(z_{j}^{(m)}\right)}{\mu\left(\varphi_{1}\left(z^{(m)}\right)\right)}\left|\psi\left(z^{(m)}\right) \frac{\partial \varphi_{1}}{\partial z_{j}}\left(z^{(m)}\right)\right| \mu\left(\varphi_{1}\left(z^{(m)}\right)\right)\left|\frac{\partial f_{m}}{\partial w_{1}}\left(\varphi\left(z^{(m)}\right)\right)\right| \\
& \quad-\sum_{j=1}^{n} \omega\left(z_{j}^{(m)}\right)\left|\frac{\partial \psi}{\partial z_{j}}\left(z^{(m)}\right) f_{m}\left(\varphi\left(z^{(m)}\right)\right)\right| \geq C \varepsilon_{0}
\end{aligned}
$$

as m is sufficiently large. This contradicts the $\lim _{m \rightarrow \infty}\left\|T_{\psi, \varphi} f_{m}\right\|_{\omega}=0$.
(2) Suppose that $\psi \varphi^{\alpha} \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ and (1.5) holds. Then by (3.10), (3.11) and Theorem A, $T_{\psi, \varphi}: \mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ is bounded. Hence $T_{\psi, \varphi}\left(\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)\right) \subset \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$. From (1) we know $T_{\psi, \varphi}: \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$ is compact. Because $\mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ is a closed subspace of the Banach space $\mathcal{B}_{\omega}\left(\mathbf{D}^{n}\right)$, we know that $T_{\psi, \varphi}: \mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ is compact. Conversely, it is trivial that $\psi \varphi^{\alpha} \in \mathcal{B}_{\omega, 0}\left(\mathbf{D}^{n}\right)$ for all multi-index α. Assume ψ and φ violate (1.5). Then we only define the test function as (3.18), then f_{m} is holomorphic on $\overline{\mathbf{D}^{n}}$ and hence in $\mathcal{B}_{\mu, 0}\left(\mathbf{D}^{n}\right)$. Similar to that in the proof of (1), we can get a contradiction. The proof is completed.

4 Final remarks

Let $\partial^{*} \mathbf{D}^{n}=\left\{z \in \mathbf{C}^{n}:\left|z_{j}\right|=1, j=1,2, \cdots, n\right\}$ be the Shilov boundary of \mathbf{D}^{n}. Instead of using the closure of all polynomials in n complex variables under $\|\cdot\|_{\mu}$, we also define the other little μ-Bloch type space $\mathcal{B}_{\mu, *}\left(\mathbf{D}^{n}\right)$ as

$$
\mathcal{B}_{\mu, *}\left(\mathbf{D}^{n}\right)=\left\{f \in \mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right): \lim _{z \rightarrow \partial^{*} \mathbf{D}^{n}} \sum_{j=1}^{n} \mu\left(z_{j}\right)\left|\frac{\partial f}{\partial z_{j}}(z)\right|=0\right\} .
$$

It is clear that $\mathcal{B}_{\mu, *}\left(\mathbf{D}^{n}\right)$ is a closed subspace of $\mathcal{B}_{\mu}\left(\mathbf{D}^{n}\right)$. Similarly, we have the following theorems.

Theorem 4.1 Let $\psi \in H\left(\mathbf{D}^{n}\right)$ and $\varphi \in H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$. Then $T_{\psi, \varphi}: \mathcal{B}_{\mu, *}\left(\mathbf{D}^{n}\right) \longrightarrow \mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ is bounded if and only if the following conditions are all satisfied:
(1) $\sup _{z \in \mathbf{D}^{n}} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right|\left(1+\sum_{k=1}^{n} \int_{0}^{\left|\varphi_{k}(z)\right|} \frac{d t}{\mu(t)}\right)<\infty$,
(2) $\sup _{z \in \mathbf{D}^{n}} \sum_{j, k=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|<\infty$,
(3) $\psi \in \mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ and $\psi \varphi_{k} \in \mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ for all $k=1,2, \cdots, n$.

Theorem 4.2 Let $\psi \in H\left(\mathbf{D}^{n}\right), \varphi \in H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$ and $\int_{0}^{1} \frac{d t}{\mu(t)}=\infty$. Then $T_{\psi, \varphi}: \mathcal{B}_{\mu, *}\left(\mathbf{D}^{n}\right) \longrightarrow$ $\mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ is compact if and only if the following conditions are all satisfied:
(1) $\lim _{\varphi(z) \rightarrow \partial \mathbf{D}^{n}} \sum_{j=1}^{n} \omega\left(z_{j}\right)\left|\frac{\partial \psi}{\partial z_{j}}(z)\right|\left(1+\sum_{k=1}^{n} \int_{0}^{\left|\varphi_{k}(z)\right|} \frac{d t}{\mu(t)}\right)=0$,
(2) $\lim _{\varphi(z) \rightarrow \partial \mathbf{D}^{n}} \sum_{j, k=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|=0$,
(3) $\psi \in \mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ and $\psi \varphi_{k} \in \mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ for all $k=1,2, \cdots, n$.

Theorem 4.3 Let $\psi \in H\left(\mathbf{D}^{n}\right), \varphi \in H\left(\mathbf{D}^{n}, \mathbf{D}^{n}\right)$ and $\int_{0}^{1} \frac{d t}{\mu(t)}<\infty$. Then $T_{\psi, \varphi}: \mathcal{B}_{\mu, *}\left(\mathbf{D}^{n}\right) \longrightarrow$ $\mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ is compact if and only if the following conditions are all satisfied:
(1) $\lim _{\left|\varphi_{k}(z)\right| \rightarrow 1} \sum_{j=1}^{n} \frac{\omega\left(z_{j}\right)}{\mu\left(\varphi_{k}(z)\right)}\left|\psi(z) \frac{\partial \varphi_{k}}{\partial z_{j}}(z)\right|=0, k=1,2, \cdots, n$,
(2) $\psi \in \mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ and $\psi \varphi_{k} \in \mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ for all $k=1,2, \cdots, n$.

The proof of these theorems goes as the proof of Theorem A, Theorem B and Theorem C in Sect. 2 and Sect. 3 respectively. We only need to notice that if conditions (1)-(3) hold in Theorem 4.1, then similar to that in the proof of Theorem 2.3 in [14], we also can obtain $T_{\psi, \varphi} f \in \mathcal{B}_{\omega, *}\left(\mathbf{D}^{n}\right)$ for any $f \in \mathcal{B}_{\mu, *}\left(\mathbf{D}^{n}\right)$.

Acknowledgement This research is partially supported by the National Natural Science Foundation of China (No.10771064, 10971063) and the Natural Science Foundation of Zhejiang Province (No.Y606197, Y7080197, Y6090036, D7080080).

References

[1] R. M. Timoney, Bloch functions in several complex variables II, J. Reine Angew. Math., 319(1980), 1-32.
[2] K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Func. Anal., 87(1989), 31-50.
[3] K. Madigan, A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347(1995), 2679-2687.
[4] R. H. Zhao, Composition operators from Bloch type spaces to Hardy and Besov spaces, J. Math. Anal. Appl., 233(1999), 749-766.
[5] S. Ohno, R. H. Zhao, Weighted composition operators on the Bloch space, Bull Austral Math Soc, 63(2)(2001), 177-185.
[6] X. J. Zhang, Composition and weighted composition operators on p-Bloch space, Chinese Ann. of Math. (in Chinese), 24(6)(2003), 711-720.
[7] S. Ohno, K. Stroethoff, R. H. Zhao, Weighted composition operators between Bloch-type spaces, Rochy Mountain J. Math., 33(1)(2003), 191-215.
[8] \breve{Z} eljko \breve{C} uc̆ković , R. H. Zhao, Weighted composition operators on the Bergman space, J. London Math. Soc. (2), 70(2)(2004), 499-511.
[9] X. J. Zhang, J. B. Xiao, Weighted composition operators between μ-Bloch spaces on the unit ball, Science in China, Ser. A, 48(10)(2005), 1349-1368.
[10] L. Luo, S. Ueki, Weighted Composition operators between weighted Bergman spaces and Hardy spaces on the unit ball of \mathbf{C}^{n}, J. Math. Anal. Appl., 326(1)(2007), 88-100.
[11] Z. H. Zhou, J. H. Shi, Compact composition operators on the Bloch space in polydiscs, Science in China, Ser. A , 44(3)(2001), 286-291.
[12] Z. H. Zhou, Composition operators on the Lipschitz space in polydiscs, Science in China, Ser. A, 46(1)(2003), 33-38.
[13] Z. J. Hu, Composition operators between Bloch-type spaces in the polydisc, Science in China, Ser. A, 48(Supp.)(2005), 268-282.
[14] H. M. Xu, T. S. Liu, Weighted composition operators between different Bloch-type spaces on the unit polydisc, Chinese Ann. of Math.(in Chinese), 26(1)(2005), 61-72.
[15] Z. J. Hu, S. S. Wang, Composition operators on Bloch-type spaces, Proc. Roy. Soc. Edinburgh Sect. A, 135(2005), 1229-1239.

COMPACTNESS OF COMPOSITION OPERATOR IN THE LIPSCHITZ SPACE OF THE POLYDISC

ZHONG-SHAN FANG AND ZE-HUA ZHOU*

Abstract

In 1987, Shapiro showed that composition operator induced by symbol φ is compact on the Lipschitz space if and only if the infinity norm of φ is less than 1 by a spectral-theoretic argument, where φ is a holomorphic self-map of the unit disk. In this note, we shall generalize Shapiro's result to the n-dimensional case.

1. Introduction

Let U^{n} be the unit polydisc of n-dimensional complex spaces C^{n} with boundary ∂U^{n}, the class of all holomorphic functions on domain U^{n} will be denoted by $H\left(U^{n}\right)$. Let $\varphi(z)=\left(\varphi_{1}(z), \cdots, \varphi_{n}(z)\right)$ be a holomorphic self-map of U^{n}, composition operator is defined by

$$
C_{\varphi}(f)(z)=f(\varphi(z))
$$

for any $f \in H\left(U^{n}\right)$ and $z \in U^{n}$.
During the past years much effort has been devoted to the research of such operators on a variety of Banach spaces of holomorphic functions with the goal of explaining the operator-theoretic behavior of C_{φ}, such as boundedness and compactness, in terms of the function-theoretic properties of the symbol φ. We recommend the interested readers refer to the books by J. H. Shapiro [9] and Cowen and MacCluer [2], which are good sources for information on much of the developments in the theory of composition operators up to the middle of last decade, as well as some papers for n-dimensional case by Zhou et all $[4,11,12,13,14,15,16]$ on the Bloch space in polydiscs or classical symmetric domains, Gorkin and MacCluer [4] between Hardy spaces in the unit ball.

To our surprise, by a spectral-theoretic argument, Shapiro [10] obtained the following fact: C_{φ} is compact on the Lipschitz space $L_{1-\alpha}(D)$ if and only if $\|\varphi\|_{\infty}<1$. In this paper, we shall generalize Shapiro's result to the unit polydisc.

[^8]
2. Notation and background

Throughout the paper, D is the unit disk in one dimensional complex plane, and $\mid\|z\| \|=\max _{1 \leq j \leq n}\left\{\left|z_{j}\right|\right\}$ stands for the supremum norm on the unit polydisc. Define $R f(z)=\langle\nabla f(z), \bar{z}\rangle$ where $z=\left(z_{1}, \cdots, z_{n}\right) \in U^{n}$, and $H\left(U^{n}, D\right)$ for the class of the holomorphic mappings from U^{n} to D. For $0<\alpha<1$, it is well known that the Lipschitz space $L_{1-\alpha}\left(U^{n}\right)$ is equivalent to $\alpha-$ Bloch space, which is defined to be the space of holomorphic functions $f \in H\left(U^{n}\right)$ such that

$$
\|f\|_{1-\alpha}=\sup _{z \in U^{n}} \sum_{j=1}^{n}\left(1-\left|z_{j}\right|^{2}\right)^{\alpha}\left|\frac{\partial f}{\partial z_{j}}(z)\right|<\infty
$$

Here, Lipschitz space $L_{1-\alpha}\left(U^{n}\right)$ is a Banach space with the equivalent norm

$$
\|f\|=|f(0)|+\|f\|_{1-\alpha}
$$

Moreover, one should note that every holomorphic function in Lipschitz space extends continuously to the closed unit polydisc.

The Kobayashi distance $k_{U^{n}}$ of U^{n} is given by

$$
k_{U^{n}}(z, w)=\frac{1}{2} \log \frac{1+\left\|\left|\phi_{z}(w)\right|\right\|}{1-\left\|\left|\phi_{z}(w)\right|\right\|}
$$

where $\phi_{z}: U^{n} \rightarrow U^{n}$ is the automorphism of U^{n} given by

$$
\phi_{z}(w)=\left(\frac{w_{1}-z_{1}}{1-\overline{z_{1}} w_{1}}, \cdots, \frac{w_{n}-z_{n}}{1-\overline{z_{n}} w_{n}}\right)
$$

Since the map $t \rightarrow \log \frac{1+t}{1-t}$ is strictly increasing on $[0,1)$, it follows that

$$
k_{U^{n}}(z, w)=\max _{1 \leq j \leq n}\left\{\frac{1}{2} \log \frac{1+\left|\frac{w_{j}-z_{j}}{1-\overline{z_{j}} w_{j}}\right|}{1-\left|\frac{w_{j}-z_{j}}{1-\overline{z_{j}} w_{j}}\right|}\right\}=\max _{1 \leq j \leq n}\left\{\rho\left(z_{j}, w_{j}\right)\right\}
$$

where ρ is the Poincaré distance on the unit disk $D \subset C$.
Following [1], the horosphere $E(x, R)$ of center $x \in \partial U^{n}$ and radius R and the Korányi region $H(x, M)$ of vertex x and amplitude M are defined by

$$
E(x, R)=\left\{z \in U^{n}: \limsup _{w \rightarrow x}\left[k_{U^{n}}(z, w)-k_{U^{n}}(0, w)\right]<\frac{1}{2} \log R\right\}
$$

and

$$
H(x, M)=\left\{z \in U^{n}: \limsup _{w \rightarrow x}\left[k_{U^{n}}(z, w)-k_{U^{n}}(0, w)\right]+k_{U^{n}}(0, z)<\log M\right\}
$$

We say that f has K - limit $L \in C$ at x if $f(z) \rightarrow L$ as $z \rightarrow x$ inside any Korányi region $H(x, M)$, we shall write $\widetilde{K}-\lim _{z \rightarrow x} f(z)=L$.

Let $f \in H\left(U^{n}, D\right)$ and $x \in \partial U^{n}$. If there is δ such that

$$
\liminf _{w \rightarrow x} \frac{1-|f(w)|}{1-|||w|||}=\delta<\infty
$$

COMPACTNESS OF COMPOSITION OPERATOR

we call f is $\delta-$ Julia at x. If there exists $\tau \in \partial U^{n}$ such that

$$
f(E(x, R)) \subseteq E(\tau, \delta R)
$$

for all R, we call this τ is the restricted E-limit of f at x.
It should be noticed that $\delta>0$. In fact,

$$
\rho(0, f(w)) \leq \rho(0, f(0))+\rho(f(0), f(w)) \leq \rho(0, f(0))+k_{U^{n}}(0, w)
$$

therefore $\frac{1-|f(w)|}{1-|||w|||} \geq \frac{1-|f(0)|}{2(1+|f(0)|)}>0$.

3. Some Lemmas

Lemma 1. (Julia-Wolff-Carathéodory Theorem, Theorem 4.1 in [1]) Let $f \in H\left(U^{n}, D\right)$ be $\delta-$ Julia at $x \in \partial U^{n}$, and $\tau \in \partial U$ be the restricted E-limit of f at x, then

$$
\widetilde{K}-\lim _{z \rightarrow x} \frac{\partial f}{\partial x}(z)=\delta \tau
$$

Lemma 2. (Theorem 1 in [11] or Corollary 4.1 in [14]) Composition operator C_{φ} is bounded on the Lipschitz space $L_{1-\alpha}\left(U^{n}\right)$ if and only if there is a constant $M>0$ such that

$$
\sum_{k, l=1}^{n}\left|\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\left(\frac{1-\left|z_{k}\right|^{2}}{1-\left|\varphi_{l}(z)\right|^{2}}\right)^{\alpha} \leq M
$$

for $z \in U^{n}$.
Lemma 3. (Theorem 2 in [11] or Corollary 4.2 in [14]) Composition operator C_{φ} is compact on the Lipschitz space $L_{1-\alpha}\left(U^{n}\right)$ if and only if

$$
\lim _{\delta \rightarrow 0} \sup _{\operatorname{dist}\left(\varphi(z), \partial U^{n}\right)<\delta} \sum_{k, l=1}^{n}\left|\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-\left|z_{k}\right|^{2}\right)^{\alpha}}{\left(1-\left|\varphi_{l}(z)\right|^{2}\right)^{\alpha}}=0
$$

Lemma 4. (Lemma 3.2 in [1]) Let $f \in H\left(U^{n}, D\right)$ and $x \in \partial U^{n}$. Then

$$
\liminf _{w \rightarrow x} \frac{1-|f(w)|}{1-|||w|||}=\liminf _{t \rightarrow 1^{-}} \frac{1-\left|f\left(\varphi_{x}(t)\right)\right|}{1-t}
$$

where $\varphi_{x}(t)=t x$ for any $t \in[0,1)$.

4. Main theorem

Theorem 1. Suppose C_{φ} is bounded on $L_{1-\alpha}\left(U^{n}\right)$, then for every $1 \leq l \leq n$ and $\xi \in \partial U^{n}$ with $\left|\varphi_{l}(\xi)\right|=1, \varphi_{l}$ is $\delta-$ Julia at ξ.

Proof. For every $1 \leq l \leq n$ and $\xi \in \partial U^{n}$ with $\varphi_{l}(\xi)=\eta$ and $\eta=e^{\theta_{0}}$, we will show that φ_{l} is $\delta-J u l i a$ at ξ according to the following cases.

Case 1: $\xi=\left(\xi_{1}, \xi^{\prime}\right), \xi_{1}=e^{\theta_{1}}$ and $\left\|\left\|\xi^{\prime}\right\|\right\|<1$.
First we consider the special case for $\xi=e_{1}=(1,0, \cdots, 0)$ and $\eta=1$.

For $r \in(1 / 2,1)$, define $\sigma(r)=(r, 0, \cdots, 0)=r e_{1}$ and set $g(r)=\varphi_{l}\left(r e_{1}\right)$, then $g^{\prime}(r)=\frac{\partial \varphi_{l}}{\partial z_{1}}\left(r e_{1}\right)$. It follows from Lemma 2 that the boundedness of C_{φ} implies that

$$
h(r)=R \varphi_{l}\left(r e_{1}\right)\left(\frac{1-r}{1-\varphi_{l}\left(r e_{1}\right)}\right)^{\alpha}=r g^{\prime}(r)\left(\frac{1-r}{1-g(r)}\right)^{\alpha}
$$

is bounded.
Putting $u(r)=\frac{1-g(r)}{1-r}$, it is easy to see that $g^{\prime}(r)=-(1-r) u^{\prime}(r)+u(r)$ and

$$
h(r)=r u(r)^{-\alpha}\left[-(1-r) u^{\prime}(r)+u(r)\right] .
$$

If we write $v(r)=u(r)^{1-\alpha}$, then

$$
-\frac{1}{1-\alpha}(1-r) v^{\prime}(r)+v(r)=\frac{h(r)}{r}
$$

the general solution of this differential equation is

$$
v(r)=-\frac{1-\alpha}{(1-r)^{1-\alpha}} \int_{1}^{r} \frac{h(s)}{s(1-s)^{\alpha}} d s+\frac{C}{(1-r)^{1-\alpha}}
$$

Since h is bounded, the first term in the right above is a bounded function of r, and moreover $v(r)$ is of the order $o\left(\frac{1}{(1-r)^{1-\alpha}}\right)$ as $r \rightarrow 1^{-}$, so we have $C=0$. Hence v, and moreover u is also bounded, according to Lemma 4, for some δ, φ_{l} is $\delta-$ Julia at e_{1}.

Now we return to the proof in case 1. Considering the mapping $\tilde{\varphi}_{l}: U^{n} \rightarrow$ U^{n}, where

$$
\tilde{\varphi}_{l}\left(z_{1}, z^{\prime}\right)=e^{-i \theta_{0}} \cdot \varphi_{l}\left(e^{i \theta_{1}} z_{1}, \phi_{\xi^{\prime}}\left(z^{\prime}\right)\right)
$$

for $z=\left(z_{1}, z^{\prime}\right) \in U^{n}$. It is easy to check that $C_{\tilde{\varphi}_{l}}$ is bounded on $L_{1-\alpha}\left(U^{n}\right)$ and $\tilde{\varphi}_{l}\left(e_{1}\right)=1$.

By the above argument, we get $\liminf _{t \rightarrow 1^{-}} \frac{1-\left|\tilde{\varphi}_{l}\left(t e_{1}\right)\right|}{1-t}=\delta<+\infty$, that is

$$
\begin{aligned}
\liminf _{t \rightarrow 1^{-}} \frac{\left.1-\mid \varphi_{l}\left(t \xi_{1}, \xi^{\prime}\right)\right) \mid}{1-t} & =\liminf _{t \rightarrow 1^{-}} \lim _{r \rightarrow 1^{-}} \frac{\left.1-\mid \varphi_{l}\left(t \xi_{1}, r \xi^{\prime}\right)\right) \mid}{1-t} \\
& \geq \liminf _{t \rightarrow 1^{-}} \frac{\left.1-\mid \varphi_{l}\left(t \xi_{1}, t \xi^{\prime}\right)\right) \mid}{1-t}
\end{aligned}
$$

It follows from Lemma 4 that

$$
\liminf _{w \rightarrow \xi} \frac{1-\left|\varphi_{l}(\xi)\right|}{1-||\xi|| \mid}=\delta<+\infty
$$

Case2: $\xi=\left(\xi_{1}, \xi_{2}, \xi^{\prime}\right), \xi_{1}=e^{\theta_{1}}, \xi_{2}=e^{\theta_{2}}$ and $\left\|\mid \xi^{\prime}\right\| \|<1$.
Now assume $\varphi_{l}(1,1,0, \cdots, 0)=1$, and set $g(r)=\varphi_{l}(r, r, 0, \cdots, 0)$ for $r \in(1 / 2,1)$. then $g^{\prime}(r)=\frac{\partial \varphi_{l}}{\partial z_{1}}(r, r, 0, \cdots, 0)+\frac{\partial \varphi_{l}}{\partial z_{2}}(r, r, 0, \cdots, 0)$, and so $R \varphi_{l}(r, r, 0, \cdots, 0)=r g^{\prime}(r)$, we can deal with it as in the case 1 , and we can get u is bounded, furthermore

$$
\liminf _{w \rightarrow \xi} \frac{1-\left|\varphi_{l}(\xi)\right|}{1-|||\xi|||}=\delta<+\infty
$$

COMPACTNESS OF COMPOSITION OPERATOR

Case 3: For the case $\varphi_{l}(\xi)=1$ with $\xi=\sum_{k=1}^{n} \beta_{k} e_{k}$, where $\beta_{k}=0$ or 1 , and $e_{k}=(0,, 0, \cdots, 1,0, \cdots, 0)$ with the $k-t h$ component is 1 , otherwise 0 ; and even more general case, in a similar argument with the cases 1 and 2 , we can also show

$$
\liminf _{w \rightarrow \xi} \frac{1-\left|\varphi_{l}(\xi)\right|}{1-|||\xi|||}=\delta<+\infty
$$

This completes the proof of this theorem.
Remark. Here $\left|\varphi_{l}(\xi)\right|=1$ means the continuous extension of φ_{l} on the closed unit polydisc, since for each $1 \leq l \leq n, \varphi_{l} \in L_{1-\alpha}\left(U^{n}\right)$. And by Theorem 3.1 in [1], if φ_{l} is $\delta-$ Julia at ξ, then φ_{l} has restricted E-limit $\tau \in \partial U^{n}$ at ξ. Moreover, $\varphi_{l}(\xi)=\tau$ as a non-tangential limit.
Theorem 2. C_{φ} is compact on $L_{1-\alpha}\left(U^{n}\right)$ if and only if $\varphi_{l} \in L_{1-\alpha}\left(U^{n}\right)$ and $\left\|\varphi_{l}\right\|_{\infty}<1$ for each $l=1,2, \cdots, n$.
Proof. Sufficiency is obvious. Now we just turn to the necessity. Suppose to the contrary that there exists $l(1 \leq l \leq n)$ satisfying $\left|\varphi_{l}(\xi)\right|=1$ for some $\xi \in \partial U^{n}$. It follows from Theorem 1 that φ_{l} is $\delta-$ Julia at ξ, therefore by Lemma 1, we have $R \varphi_{l}(z)$ has K - limit at ξ. Hence

$$
\begin{aligned}
& \sum_{k, l=1}^{n}\left|\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-\left|z_{k}\right|^{2}\right)^{\alpha}}{\left(1-\left|\varphi_{l}(z)\right|^{2}\right)^{\alpha}} \\
\geq & \sum_{k, l=1}^{n}\left|\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-|||z|||^{2}\right)^{\alpha}}{\left(1-\left|\varphi_{l}(z)\right|^{2}\right)^{\alpha}} \\
\geq & \sum_{k, l=1}^{n}\left|z_{k} \cdot \frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-\left|\left||z| \|^{2}\right)^{\alpha}\right.\right.}{\left(1-\left|\varphi_{l}(z)\right|^{2}\right)^{\alpha}} \\
\geq C & \sum_{l=1}^{n}\left|R \varphi_{l}(z)\right| \frac{(1-|||z|||)^{\alpha}}{\left(1-\left|\varphi_{l}(z)\right|\right)^{\alpha}} \geq C \delta^{1-\alpha} .
\end{aligned}
$$

as $z \rightarrow \xi$ inside any Korányi region, where we can take $C=\frac{1}{2^{\alpha}}$. It is a contradiction to the compactness of C_{φ} by Lemma 3. Now the proof of Theorem 2 is completed.

References

[1] M. Abate, The Julia-wolff-Caratheéory theorem in polydisks, Journal d'analyse mathématique 74(1998):275-306.
[2] C. C. Cowen and B. D. MacCluer,Composition operators on spaces of analytic functions, CRC Press, Boca Raton, FL (1995).
[3] Dana D. Clahane and Stevo Stević, Norm equivalence and composition operators between Bloch/Lipschitz spaces of the ball, Journal of Inequalities and Applications 2006, Article ID 61018, 11 pages (2006).
[4] P. Gorkin and B. D. MacCluer, Essential norms of composition operators, Integr. Equ. Oper. Theory 48 (2004): 27-40.
[5] H. Jarchow and R. Riedl, Factorization of composition operators through Bloch space, Illinois J. Math. 39 (1995): 431-440.
[6] M. Mackey and P. Mellon, A schwarz lemma and composition operators, Integr. Equ. Oper. Theory 48, 511-524 (2004).
[7] K. M. Madigan, Composition operatorson analytic Lipschitz spaces, Proc. Amer. Math. Soc. 119 (1993): 465-473.
[8] Pekka J. Nieminen, Compact differences of composition operators on Bloch and Lipschitz spaces, CMFT 7 (2) (2007): 325-344.
[9] J. H. Shapiro, Composition operators and classical function theory, Spriger-Verlag (1993).
[10] J. H. Shapiro, Compact composition operators on spaces of boundary regular holomorphic functions, Proc. Amer. Math. Soc. 100 (1987): 49-57.
[11] Z. H. Zhou, Composition operators on the Lipschitz space in polydiscs, Sci. China Ser. A 46 (1) (2003): 33-38.
[12] Z. H. Zhou and R. Y. Chen, On the composition operators on the Bloch space of several complex variables, Sci. China Ser. A 48 (Supp.)(2005): 392-399.
[13] Z. H. Zhou and R. Y. Chen, Weighted composition operators fom $F(p, q, s)$ to Bloch type spaces, International Jounal of Mathematics 19 (8) (2008): 899-926.
[14] Z. H. Zhou and Yan Liu, The essential norms of composition operators between generalized Bloch spaces in the polydiscs and their applications, Journal of Inequalities and Applications 2006 (2006), Article ID 90742, 22 pages.
[15] Z. H. Zhou and J. H. Shi, Compact composition operators on the Bloch space in polydiscs, Sci. China Ser. A 44 (2001): 286-291.
[16] Z. H. Zhou and J. H. Shi, Compactness of composition operators on the Bloch space in classical bounded symmetric domains, Michigan Math. J. 50 (2002): 381-405

Department of Mathematics
Tianjin Polytechnic University
Tianjin 300160
P.R. China.

E-mail address: fangzhongshan@yahoo.com.cn

Department of Mathematics

Tianjin University
Tianjin 300072
P.R. China.

E-mail address: zehuazhou2003@yahoo.com.cn

INTERPOLATION FUNCTIONS OF THE q-GENOCCHI AND THE q-EULER POLYNOMIALS OF HIGHER ORDER

YOUNG-HEE KIM, KYUNG-WON HWANG, AND TAEKYUN KIM

Abstract

Cangul-Ozden-Simsek [1] constructed the q-Genocchi numbers of high order using a fermionic p-adic integral on \mathbb{Z}_{p}, and gave Witt's formula and the interpolation functions of these numbers. In this paper, we present the generalization of the higher order q-Euler numbers and q-Genocchi numbers of Cangul-Ozden-Simsek. We define q-extensions of w-Euler numbers and polynomials, and w-Genocchi numbers and polynomials of high order using the multivariate fermionic p-adic integral on \mathbb{Z}_{p}. We have the interpolation functions of these numbers and polynomials. We obtain the distribution relations for q-extensions of w-Euler and w-Genocchi polynomials. We also have the interesting relation for q-extensions of these polynomials. We define (h, q)-extensions of w-Euler and w-Genocchi polynomials of high order. We have the interpolation functions for (h, q)-extensions of these polynomials. Moreover, we obtain some meaningful results of (h, q)-extensions of w-Euler and w-Genocchi polynomials

2000 Mathematics Subject Classification : 11S80, 11B68
Key words and phrases : Genocchi numbers and polynomials, Euler numbers and polynomials, q-Genocchi numbers, q-Euler numbers, fermionic p-adic integral

1. Introduction, Definitions and Notations

Many authors have been studied on the multiple Genocchi and Euler numbers, and multiple zeta functions (cf. [1-2], [4-6], [9-10], [14], [17], [19], [22], [24]). In [10], Kim, the first author of this paper, presented a systematic study of some families of multiple q-Euler numbers and polynomials. By using the q-Volkenborn integration on \mathbb{Z}_{p}, Kim constructed the p-adic q-Euler numbers and polynomials of higher order, and gave the generating function of these numbers and the Euler q -ζ-function. In [14], Kim studied some families of multiple q-Genocchi and q-Euler numbers by using the multivariate p-adic q-Volkenborn integral on \mathbb{Z}_{p}, and gave interesting identities related to these numbers.

Recently, Cangul-Ozden-Simsek [1] constructed the q-Genocchi numbers of high order by using a fermionic p-adic integral on \mathbb{Z}_{p}, and gave Witt's formula and the interpolation functions of these numbers. In [17], Kim gave another constructions of the q-Euler and q-Genocchi numbers, which were different from those of Cangul-Ozden-Simsek. Kim obtained the interesting relationship between the q - w-Euler numbers and q - w-Genocchi numbers, and gave the interpolation functions of these numbers. In this paper, we will present the generalization of the higher order q Euler numbers and q-Genocchi numbers of Cangul-Ozden-Simsek approaching as Kim did in [17].

Let p be a fixed odd prime number. Throughout this paper, the symbols $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$ and \mathbb{C}_{p} denote the ring of p-adic rational integers, the field of p-adic
rational numbers, the complex number field and the completion of algebraic closure of \mathbb{Q}_{p}, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. Let v_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-v_{p}(p)}=\frac{1}{p}$.

The symbol q can be treated as a complex number, $q \in \mathbb{C}$, or as a p-adic number, $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, then we always assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, then we usually assume that $|1-q|_{p}<1$.

Now we will recall some q-notations. The q-basic natural numbers are defined by $[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+q^{2}+\cdots+q^{n-1}(n \in \mathbb{N}),[n]_{-q}=\frac{1-(-q)^{n}}{1+q}$ and the q-factorial by $[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q}$. In this paper, we use the notation $[x]_{q}=\frac{1-q^{x}}{1-q}$ and $[x]_{-q}=\frac{1-(-q)^{x}}{1+q}$. Hence $\lim _{q \rightarrow 1}[x]_{q}=x$ for any x with $|x|_{p} \leq 1$ in the present p-adic case (cf. [1-25]).

The q-shift factorial is given by

$$
(a ; q)_{0}=1, \quad(a ; q)_{k}=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right)
$$

We note that $\lim _{q \rightarrow 1}(a ; q)_{k}=(1-a)^{k}$. It is known that

$$
(a ; q)_{\infty}=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots=\prod_{i=1}^{\infty}\left(1-a q^{i-1}\right) \quad(\text { see }[8])
$$

From the definition of the q-shift factorial, we note that

$$
(a ; q)_{k}=\frac{(a ; q)_{\infty}}{\left(a q^{k} ; q\right)_{\infty}}
$$

Since $\binom{-\alpha}{l}=(-1)^{l}\binom{\alpha+l-1}{l}$, it follows that

$$
\frac{1}{(1-z)^{\alpha}}=(1-z)^{-\alpha}=\sum_{l=0}^{\infty}\binom{-\alpha}{l}(-z)^{l}=\sum_{l=0}^{\infty}\binom{\alpha+l-1}{l} z^{l}
$$

The q-binomial theorem is given by

$$
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} z^{n}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}
$$

where $z, q \in \mathbb{C}$ with $|z|<1,|q|<1$. For the special case, when $a=q^{\alpha}(\alpha \in \mathbb{C})$, we can write as follows:

$$
\begin{aligned}
\frac{1}{(z ; q)_{\alpha}} & =\frac{\left(z q^{\alpha} ; q\right)_{\infty}}{(z ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{\left(q^{\alpha} ; q\right)_{n}}{(q ; q)_{n}} z^{n} \\
& =\sum_{n=0}^{\infty} \frac{\left(1-q^{\alpha}\right)\left(1-q^{\alpha+1}\right) \cdots\left(1-q^{\alpha+n-1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)} z^{n} \\
& =\sum_{n=0}^{\infty} \frac{[\alpha]_{q}[\alpha+1]_{q} \cdots[\alpha+n-1]_{q}}{[1]_{q}[2]_{q} \cdots[n]_{q}} z^{n} \\
& =\sum_{n=0}^{\infty} \frac{[\alpha]_{q}[\alpha+1]_{q} \cdots[\alpha+n-1]_{q}}{[n]_{q}!} z^{n} .
\end{aligned}
$$

The q-binomial coefficients are defined by

$$
\binom{n}{k}_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}=\frac{[n]_{q}[n-1]_{q} \cdots[n-k+1]_{q}}{[k]_{q}!} \quad(\text { see }[14],[16])
$$

Hence it follows that

$$
\frac{1}{(z ; q)_{\alpha}}=\sum_{n=0}^{\infty}\binom{n+\alpha-1}{n}_{q} z^{n}
$$

which converges to $\frac{1}{(1-z)^{\alpha}}=\sum_{n=0}^{\infty}\binom{n+\alpha-1}{n} z^{n}$ as $q \rightarrow 1$.
We say that f is a uniformly differentiable function at a point $a \in \mathbb{Z}_{p}$, and write $f \in U D\left(\mathbb{Z}_{p}\right)$, the set of uniformly differentiable function, if the difference quotients $F_{g}(x, y)=\frac{f(x)-f(y)}{x-y}$ have a limit $l=f^{\prime}(a)$ as $(x, y) \rightarrow(a, a)$. For $f \in U D\left(\mathbb{Z}_{p}\right)$, the q-deformed bosonic p-adic integral is defined as

$$
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x) \frac{q^{x}}{\left[p^{N}\right]_{q}}
$$

and the q-deformed fermonic p-adic integral is defined by

$$
I_{-q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x) \frac{(-q)^{x}}{\left[p^{N}\right]_{-q}} .
$$

The fermionic p-adic integral on \mathbb{Z}_{p} is defined as

$$
I_{-1}(f)=\lim _{q \rightarrow 1} I_{-q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)
$$

It follows that $I_{-1}\left(f_{1}\right)=-I_{-1}(f)+2 f(0)$, where $f_{1}(x)=f(x+1)$ (cf. [4-17]).
The classical Euler polynomials $E_{n}(x)$ are defined as

$$
\frac{2}{e^{t}+1} e^{x t}=\sum_{x=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!},
$$

and the Euler numbers E_{n} are defined as $E_{n}=E_{n}(0)$ (cf. [1-25]). The Genocchi numbers are defined as

$$
\frac{2 t}{e^{t}+1}=\sum_{n=0}^{\infty} G_{n} \frac{t^{n}}{n!} \quad \text { for } \quad|t|<\pi
$$

and the Genocchi polynomials $G_{n}(x)$ are defined as

$$
\frac{2 t}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!} \quad(\text { see }[12],[14],[21])
$$

It is known that the w-Euler polynomials $E_{n, w}(x)$ are defined as

$$
\frac{2}{w e^{t}+1} e^{x t}=\sum_{x=0}^{\infty} E_{n, w}(x) \frac{t^{n}}{n!}
$$

and $E_{n, w}=E_{n, w}(0)$ are called the w-Euler numbers. The w-Genocchi polynomials $G_{n, w}(x)$ are defined as

$$
\frac{2 t}{w e^{t}+1} e^{x t}=\sum_{x=0}^{\infty} G_{n, w}(x) \frac{t^{n}}{n!},
$$

and $G_{n, w}=G_{n, w}(0)$ are called the w-Genocchi numbers (see [1]).

The w-Euler polynomials $E_{n, w}^{(r)}(x)$ of order r are defined as

$$
\left(\frac{2}{w e^{t}+1}\right)^{r} e^{x t}=\sum_{x=0}^{\infty} E_{n, w}^{(r)}(x) \frac{t^{n}}{n!} \quad(\text { see }[1])
$$

and $E_{n, w}^{(r)}=E_{n, w}^{(r)}(0)$ are called the w-Euler numbers of order r. The w-Genocchi polynomials $G_{n, w}^{(r)}(x)$ of order r are defined as

$$
\frac{2 t}{w e^{t}+1} e^{x t}=\sum_{x=0}^{\infty} G_{n, w}^{(r)}(x) \frac{t^{n}}{n!} \quad(\text { see }[1])
$$

and $G_{n, w}^{(r)}=G_{n, w}^{(r)}(0)$ are called the w-Euler numbers of order r. When $r=1$ and $w=1, E_{n, w}^{(r)}(x)$ and $E_{n, w}^{(r)}$ are the ordinary Euler polynomials and numbers, and $G_{n, w}^{(r)}(x)$ and $G_{n, w}^{(r)}$ are the ordinary Genocchi polynomials and numbers, respectively.

In Section 2, we define q-extensions of w-Euler numbers and polynomials of order r and w-Genocchi numbers and polynomials of order r, respectively, using the multivariate fermionic p-adic integral on \mathbb{Z}_{p}. We obtain the interpolation functions of these numbers and polynomials. We have the distribution relations for q-extensions of w-Euler polynomials and those of w-Genocchi polynomials. We obtain the interesting relation for q-extensions of these polynomials. We also define (h, q)-extensions of w-Euler and w-Genocchi polynomials of order r. We have the interpolation functions for (h, q)-extensions of these polynomials. Moreover, we obtain some meaningful results of (h, q)-extensions of w-Euler and w-Genocchi polynomials when $h=r-1$.

2. On the extension of the higher order q-Genocchi numbers and q-Euler numbers of Cangul-Ozden-Simsek

In this section, we assume that $w \in \mathbb{C}_{p}$ with $|1-w|_{p}<1$ and $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$. Recently, Cangul-Ozden-Simsek [1] constructed w-Genocchi numbers of order $r, G_{n, w}^{(r)}$, as follows:

$$
\begin{align*}
& t^{r} \int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+\cdots+x_{r}} e^{t\left(x_{1}+\cdots+x_{r}\right)} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \tag{1}\\
& \quad=2^{r}\left(\frac{t}{w e^{t}+1}\right)^{r}=\sum_{n=0}^{\infty} G_{n, w}^{(r)} \frac{t^{n}}{n!}
\end{align*}
$$

where $\int_{\mathbb{Z}_{p}^{r}}=\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}(r$-times $)$ and $r \in \mathbb{N}$. They also consider the q-extension of $G_{n, w}^{(r)}$ as follows:

$$
\begin{align*}
& t^{r} \int_{\mathbb{Z}_{p}^{r}} q^{\sum_{i=1}^{r}(h-i+1) x_{i}} e^{t\left(\sum_{i=1}^{r} x_{i}\right)} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \tag{2}\\
& \quad=\frac{2^{r} t^{r}}{\left(q^{h} e^{t}+1\right) \cdots\left(q^{h-r+1} e^{t}+1\right)}=\sum_{n=0}^{\infty} G_{n, q}^{(h, r)} \frac{t^{w}}{n!} .
\end{align*}
$$

From (2), they obtained the following interesting formula:

$$
\begin{equation*}
G_{n+r, q}^{(r-1, r)}=2^{r} r!\binom{n+r}{r} \sum_{v=0}^{\infty}\binom{r+v-1}{v}_{q}(-1)^{v} v^{n} \tag{3}
\end{equation*}
$$

The following similar formula obtains from the above formula. We are very interested to study the following formula using $[v]_{q}$ instead of v in the (3).

$$
2^{r} r!\binom{n+r}{r} \sum_{v=0}^{\infty}\binom{r+v-1}{v}_{q}(-1)^{v}[v]_{q}^{n} .
$$

In the viewpoint of the q-extension of (1) using the multivariate p-adic integral on \mathbb{Z}_{p}, we define the q-analogue of w-Euler numbers of order $r, E_{n, w, q}^{(r)}$, as follows:

$$
\begin{equation*}
E_{n, w, q}^{(r)}=\int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+\cdots+x_{r}}\left[x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) . \tag{4}
\end{equation*}
$$

From (4), we derive that

$$
\begin{aligned}
E_{n, w, q}^{(r)} & =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l}\left(\frac{1}{1+q^{l} w}\right)^{r} \\
& =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} q^{l m} w^{m} \\
& =2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m}[m]_{q}^{n}
\end{aligned}
$$

Therefore, we obtain the following theorem.
Theorem 1. Let $r \in \mathbb{N}$ and $n \in \mathbb{Z}_{+}$. Then we have

$$
\begin{equation*}
E_{n, w, q}^{(r)}=2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m}[m]_{q}^{n} \tag{5}
\end{equation*}
$$

Let $F^{(r)}(t, w \mid q)=\sum_{n=0}^{\infty} E_{n, w, q}^{(r)} \frac{t^{n}}{n!}$. By (4) and (5), we see that

$$
\begin{aligned}
F^{(r)}(t, w \mid q) & =\int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+\cdots+x_{r}} e^{t\left[x_{1}+\cdots+x_{r}\right]_{q}} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
& =2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m} e^{t[m]_{q}} .
\end{aligned}
$$

Thus we obtain the following corollary.
Corollary 2. Let $F^{(r)}(t, w \mid q)=\sum_{n=0}^{\infty} E_{n, w, q}^{(r)} \frac{t^{n}}{n!}$. Then we have

$$
F^{(r)}(t, w \mid q)=2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m} e^{t[m]_{q}} .
$$

Let us define the q-extension of w-Euler polynomials of order r as follows:
(6) $\quad E_{n, w, q}^{(r)}(x)=\int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+\cdots+x_{r}}\left[x+x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right)$.

By (6), we have that

$$
\begin{aligned}
E_{n, w, q}^{(r)}(x) & =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x}\left(\frac{1}{1+q^{l} w}\right)^{r} \\
& =2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m}[m+x]_{q}^{n}
\end{aligned}
$$

Therefore, we obtain the following theorem.
Theorem 3. Let $r \in \mathbb{N}$ and $n \in \mathbb{Z}_{+}$. Then we have

$$
\begin{equation*}
E_{n, w, q}^{(r)}(x)=2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m}[m+x]_{q}^{n} . \tag{7}
\end{equation*}
$$

Let $F^{(r)}(t, w, x \mid q)=\sum_{n=0}^{\infty} E_{n, w, q}^{(r)}(x) \frac{t^{n}}{n!}$. By (6) and (7), we have

$$
\begin{aligned}
F^{(r)}(t, w, x \mid q) & =\int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+\cdots+x_{r}} e^{t\left[x+x_{1}+\cdots+x_{r}\right]_{q}} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
& =2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m} e^{t[m+x]_{q}} .
\end{aligned}
$$

Therefore we have the following corollary.
Corollary 4. Let $F^{(r)}(t, w, x \mid q)=\sum_{n=0}^{\infty} E_{n, w, q}^{(r)}(x) \frac{t^{n}}{n!}$. Then we have

$$
\begin{equation*}
F^{(r)}(t, w, x \mid q)=2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m} e^{t[m+x]_{q}} . \tag{8}
\end{equation*}
$$

Now we define the q-extension of w-Genocchi polynomials of order $r, G_{n, w, q}^{(r)}(x)$, as follows:

$$
\begin{equation*}
2^{r} t^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m} e^{t[m+x]_{q}}=\sum_{n=0}^{\infty} G_{n, w, q}^{(r)}(x) \frac{t^{n}}{n!} . \tag{9}
\end{equation*}
$$

Then we have
(10) $\sum_{n=0}^{\infty} G_{n, w, q}^{(r)}(x) \frac{t^{n}}{n!}$

$$
\begin{aligned}
& =t^{r} \int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+\cdots+x_{r}} e^{t\left[x+x_{1}+\cdots+x_{r}\right]_{q}} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
& =\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+\cdots+x_{r}}\left[x+x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) r!\binom{n+r}{r} \frac{t^{n+r}}{(n+r)!} .
\end{aligned}
$$

By comparing the coefficients on the both sides of (10), we see that

$$
G_{0, w, q}^{(r)}(x)=G_{1, w, q}^{(r)}(x)=\cdots=G_{r-1, w, q}^{(r)}(x)=0
$$

and

$$
\begin{align*}
& G_{n+r, w, q}^{(r)}(x) \tag{11}\\
= & r!\binom{n+r}{r} \int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+x_{2}+\cdots+x_{r}}\left[x+x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
= & r!\binom{n+r}{r} E_{n, w, q}^{(r)}(x) .
\end{align*}
$$

In the special case of $x=0, G_{n, w, q}^{(r)}(0)=G_{n, w, q}^{(r)}$ are called the q-extension of w-Genocchi numbers of order r. By (11), we have the following theorem.

Theorem 5. Let $r \in \mathbb{N}$ and $n \in \mathbb{Z}_{+}$. Then we have

$$
\begin{aligned}
\frac{G_{n+r, w, q}^{(r)}(x)}{r!\binom{n+r}{r}} & =\int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+\cdots+x_{r}}\left[x+x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
& =E_{n, w, q}^{(r)}(x),
\end{aligned}
$$

and $G_{0, w, q}^{(r)}(x)=G_{1, w, q}^{(r)}(x)=\cdots=G_{r-1, w, q}^{(r)}(x)=0$.

Now we consider the distribution relation for the q-extension of w-Euler polynomials of order r. For $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, by (8), we see that

$$
\begin{aligned}
& (12) \quad F^{(r)}(t, w, x \mid q) \\
= & 2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m} e^{t[m+x]_{q}} \\
= & \sum_{a_{1}, \cdots a_{r}=0}^{d-1}\left(\prod_{i=1}^{r} w^{a_{i}}\right)(-1)^{a_{1}+\cdots+a_{r}} 2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}(-1)^{m} w^{m d} e^{t[d]]_{q}\left[m+\frac{a_{1}+\cdots+a_{r}+x}{d}\right]_{q^{d}}} \\
= & \sum_{a_{1}, \cdots a_{r}=0}^{d-1}\left(\prod_{i=1}^{r} w^{a_{i}}\right)(-1)^{a_{1}+\cdots+a_{r}} F^{(r)}\left([d]_{q} t, w^{d}, \left.\frac{a_{1}+\cdots+a_{r}+x}{d} \right\rvert\, q^{d}\right) .
\end{aligned}
$$

By (12), we obtain the following distribution relations for $E_{n, w, q}^{(r)}(x)$ and $G_{n+r, w, q}^{(r)}(x)$, respectively.

Theorem 6. Let $r \in \mathbb{N}, n \in \mathbb{Z}_{+}$and $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. Then we have

$$
E_{n, w, q}^{(r)}(x)=[d]_{q}^{n} \sum_{a_{1}, \cdots a_{r}=0}^{d-1}\left(\prod_{i=1}^{r} w^{a_{i}}\right)(-1)^{a_{1}+\cdots+a_{r}} E_{n, w^{d}, q^{d}}^{(r)}\left(\frac{a_{1}+\cdots+a_{r}+x}{d}\right) .
$$

Furthermore,

$$
G_{n+r, w, q}^{(r)}(x)=[d]_{q}^{n} \sum_{a_{1}, \cdots a_{r}=0}^{d-1}\left(\prod_{i=1}^{r} w^{a_{i}}\right)(-1)^{a_{1}+\cdots+a_{r}} G_{n+r, w^{d}, q^{d}}^{(r)}\left(\frac{a_{1}+\cdots+a_{r}+x}{d}\right) .
$$

For the extension of (2), we consider the (h, q)-extension of w-Euler polynomials of order r. For $h \in \mathbb{Z}, r \in \mathbb{N}$ and $n \in \mathbb{Z}_{+}$, let us define the (h, q)-extension of w-Euler polynomial of order r as follows:

$$
\begin{align*}
& E_{n, w, q}^{(h, r)}(x) \tag{13}\\
& =\int_{\mathbb{Z}_{p}^{r}} w^{x_{1}+\cdots+x_{r}}\left[x+x_{1}+\cdots+x_{r}\right]_{q}^{n} q^{\sum_{i=1}^{r}(h-i+1) x_{i}} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right)
\end{align*}
$$

From (13), we obtain that

$$
\begin{aligned}
E_{n, w, q}^{(h, r)}(x) & =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n} \frac{\binom{n}{l}(-1)^{l} q^{l x}}{\left(1+q^{l+h} w\right)\left(1+q^{l+h-1} w\right) \cdots\left(1+q^{l+h-r+1} w\right)} \\
& =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n} \frac{\binom{n}{l}(-1)^{l} q^{l x}}{\left(-q^{l+h} w: q^{-1}\right)_{r}} \\
& =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q^{-1}}(-1)^{m} q^{(l+h) m} w^{m} \\
& =2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q^{-1}}(-1)^{m} q^{h m} w^{m}[m+x]_{q}^{n}
\end{aligned}
$$

Therefore, we have the following theorem.
Theorem 7. Let $h \in \mathbb{Z}, r \in \mathbb{N}$ and $n \in \mathbb{Z}_{+}$. Then we have

$$
\begin{align*}
E_{n, w, q}^{(h, r)}(x) & =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n} \frac{\binom{n}{l}(-1)^{l} q^{l x}}{\left(-q^{l+h} w: q^{-1}\right)_{r}} \tag{15}\\
& =2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q^{-1}}(-1)^{m} q^{h m} w^{m}[m+x]_{q}^{n}
\end{align*}
$$

We also have the following result.
Corollary 8. Let $F^{(h, r)}(t, w, x \mid q)=\sum_{n=0}^{\infty} E_{n, w, q}^{(h, r)}(x) \frac{t^{n}}{n!}$. Then we have

$$
\begin{equation*}
F^{(h, r)}(t, w, x \mid q)=2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q^{-1}}(-1)^{m} q^{h m} w^{m} e^{t[m+x]_{q}} \tag{16}
\end{equation*}
$$

Remark 1. In the special case $x=0, E_{n, w, q}^{(h, r)}(0)=E_{n, w, q}^{(h, r)}$ are called the (h, q) extension of w-Euler numbers of order r.

If we take $h=r-1$ in (14), then we have

$$
\begin{aligned}
E_{n, w, q}^{(r-1, r)}(x) & =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n} \frac{\binom{n}{l}(-1)^{l} q^{l x}}{\left(1+q^{l+r-1} w\right)\left(1+q^{l+r-2} w\right) \cdots\left(1+q^{l} w\right)} \\
& =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n} \frac{\binom{n}{l}(-1)^{l} q^{l x}}{\left(-q^{l} w: q\right)_{r}} \\
& =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q}(-1)^{m} q^{l m} w^{m} \\
& =2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q}(-1)^{m} w^{m}[m+x]_{q}^{n}
\end{aligned}
$$

Then we have the following theorem.
Theorem 9. Let $r \in \mathbb{N}$ and $n \in \mathbb{Z}_{+}$. Then we have

$$
\begin{aligned}
E_{n, w, q}^{(r-1, r)}(x) & =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n} \frac{\binom{n}{l}(-1)^{l} q^{l x}}{\left(-q^{l} w: q\right)_{r}} \\
& =2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q}(-1)^{m} w^{m}[m+x]_{q}^{n} .
\end{aligned}
$$

We also the following corollary.
Corollary 10. Let $F^{(r-1, r)}(t, w, x \mid q)=\sum_{n=0}^{\infty} E_{n, w, q}^{(r-1, r)}(x) \frac{t^{n}}{n!}$. Then we have

$$
\begin{equation*}
F^{(r-1, r)}(t, w, x \mid q)=2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q}(-1)^{m} w^{m} e^{t[m+x]_{q}} . \tag{18}
\end{equation*}
$$

From (18), we note that

$$
\begin{aligned}
F^{(r-1, r)}(t, w, x \mid q)= & 2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q}(-1)^{m} w^{m} e^{t[m+x]_{q}} \\
= & \sum_{a_{1}, \cdots a_{r}=0}^{d-1} q^{\sum_{i=0}^{r}(r-i) a_{i}}(-1)^{a_{1}+\cdots+a_{r}} w^{a_{1}+\cdots+a_{r}} \\
& \times 2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q^{d}}(-1)^{m} w^{m d} e^{t[d]_{q}\left[m+\frac{a_{1}+\cdots+a_{r}+x}{d}\right]_{q^{d}}} \\
= & \sum_{a_{1}, \cdots a_{r}=0}^{d-1} q^{\sum_{i=0}^{r}(r-i) a_{i}}(-1)^{a_{1}+\cdots+a_{r}} w^{a_{1}+\cdots+a_{r}} \\
& \times F^{(r-1, r)}\left([d]_{q} t, w^{d}, \left.\frac{a_{1}+\cdots+a_{r}+x}{d} \right\rvert\, q^{d}\right),
\end{aligned}
$$

where $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. By (19), we obtain the following the distribution relation for $E_{n, w, q}^{(r-1, r)}(x)$.

Theorem 11. For $r \in \mathbb{N}, n \in \mathbb{Z}_{+}$and $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. Then we have

$$
\begin{aligned}
& E_{n, w, q}^{(r-1, r)}(x) \\
& =[d]_{q}^{n} \sum_{a_{1}, \cdots a_{r}=0}^{d-1} q^{\sum_{i=0}^{\infty}(r-i) a_{i}}(-1)^{a_{1}+\cdots+a_{r}} w^{a_{1}+\cdots+a_{r}} E_{n, w^{d}, q^{d}}^{(r-1, r)}\left(\frac{a_{1}+\cdots+a_{r}+x}{d}\right) .
\end{aligned}
$$

Now we define the (h, q)-extension of w-Genocchi polynomials $G_{n, w, q}^{(h, r)}(x)$ of order r as follows:
(20) $\quad 2^{r} t^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q^{-1}}(-1)^{m} q^{h m} w^{m} e^{t[m+x]_{q}}=\sum_{n=0}^{\infty} G_{n, w, q}^{(h, r)}(x) \frac{t^{n}}{n!}$.

Then we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} G_{n, w, q}^{(h, r)}(x) \frac{t^{n}}{n!} \\
& \quad=t^{r} \int_{\mathbb{Z}_{p}^{r}} q^{\sum_{i=0}^{\infty}(h-i+1) x_{i}} w^{x_{1}+\cdots+x_{r}} e^{t\left[x+x_{1}+\cdots+x_{r}\right]_{q}} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \tag{21}\\
& =\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}^{r}} q^{\sum_{i=0}^{\infty}(h-i+1) x_{i}} w^{x_{1}+\cdots+x_{r}}\left[x+x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
& \quad \times r!\binom{n+r}{r} \frac{t^{n+r}}{(n+r)!} .
\end{align*}
$$

From (13) and (21), we derive the following result.
Theorem 12. Let $r \in \mathbb{N}$ and $n \in \mathbb{Z}_{+}$. Then we have

$$
\begin{aligned}
\frac{G_{n+r, w, q}^{(h, r)}(x)}{r!\binom{n+r}{r}} & =\int_{\mathbb{Z}_{p}^{r}} q^{\sum_{i=0}^{\infty}(h-i+1) x_{i}} w^{x_{1}+\cdots+x_{r}}\left[x+x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
& =E_{n, w, q}^{(h, r)}(x),
\end{aligned}
$$

and $G_{0, w, q}^{(h, r)}(x)=G_{1, w, q}^{(h, r)}(x)=\cdots=G_{r-1, w, q}^{(h, r)}(x)=0$.

When $h=r-1$ in Theorem 12, we have

$$
\begin{aligned}
\frac{G_{n+r, r, q}^{(r-1, r)}(x)}{r!\binom{n+r}{r}} & =\int_{\mathbb{Z}_{p}^{r}} q^{\sum_{i=0}^{\infty}(r-i) x_{i}} w^{x_{1}+\cdots+x_{r}}\left[x+x_{1}+\cdots+x_{r}\right]_{q}^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
& =2^{r} \sum_{m=0}^{\infty}\binom{m+r-1}{m}_{q}(-1)^{m} w^{m}[m+x]_{q}^{n} \\
& =\frac{2^{r}}{(1-q)^{n}} \sum_{l=0}^{n} \frac{\binom{n}{l}(-1)^{l} q^{l x}}{\left(-q^{l} w: q\right)_{r}} \\
& =E_{n, w, q}^{(r-1, r)}(x) .
\end{aligned}
$$

Remark 2. In the special case $x=0, G_{n, w, q}^{(h, r)}(0)=G_{n, w, q}^{(h, r)}$ are called the (h, q) extension of w-Genocchi numbers of order r.

References

[1] I. N. Cangul, H. Ozden, Y. Simsek, A new approach to q-Genocchi numbers and their interpolations, Nonlinear Analysis (2008), doi:10.1016/j.na.2008.11.040.
[2] M. Cenkci, Y. Simsek, V. Kurt, Multiple two-variable p-adic q-L-function and its behavior at $s=0$, Russ. J. Math. Phys. 15 (2008) no. 4, 447-459.
[3] G. Kim, B. Kim, J. Choi, The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 137-145.
[4] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.
[5] T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267.
[6] T. Kim, Analytic continuation of multiple q-zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004), no. 12, 71-76.
[7] T. Kim, Power series and asymptotic series associated with the q-analog of the two-variable p-adic L-function, Russ. J. Math. Phys. 12 (2005), no. 2, 186-196.
[8] T. Kim, q-Generalized Euler numbers and polynomials, Russ. J. Math. Phys. 13 (2006), no. 3, 293-298.
[9] T. Kim, Multiple p-adic L-function, Russ. J. Math. Phys. 13 (2006), no. 2, 151-157.
[10] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), no. 1, 15-27.
[11] T. Kim, A note on p-adic q-integral on \mathbb{Z}_{p} associated with q-Euler numbers, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), 133-138.
[12] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), 1458-1465.
[13] T. Kim, q-Extension of the Euler formula and trigonometric functions, Russ. J. Math. Phys. 14 (2007), no. 3, 275-278.
[14] T. Kim, On the multiple q-Genocchi and Euler numbers, Russ. J. Math. Phys. 15 (2008) no.4, 481-486.
[15] T. Kim, The modified q-Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) $\mathbf{1 6}$ (2008), 161-170.
[16] T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15 (2008), no.1, 51-57.
[17] T. Kim, New approach to q-Euler, Genocchi numbers and their interpolation functions, arXiv:0901.0353v1 [math.NT].
[18] Y.-H. Kim, W. Kim, L.-C. Jang, On the q-extension of Apostol-Euler numbers and polynomials, Abstr. Appl. Anal. 2008 (2008), Article ID 296159, 10 pages.
[19] H. Ozden, I. N. Cangul, Y. Simsek, Multivariate interpolation functions of higher-order q Euler numbers and their applications, Abstr. Appl. Anal. 2008 (2008), Art. ID 390857, 16 pages.
[20] H. Ozden, Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008), 934-939.
[21] K. H. Park, Y.-H. Kim, On some arithmetical properties of the Genocchi numbers and polynomials, Advances in Difference Equations (2008), http://www.hindawi.com/journals/ ade/aip.195049.html.
[22] Y. Simsek, Complete sum of products of (h, q)-extension of the Euler polynomials and numbers, arXiv:0707.2849v1 [math.NT].
[23] J. V. Leyendekkers, A. G. Shannon, C. K. Wong, Integer structure analysis of the product of adjacent integers and Euler's extension of Fermat's last theorem, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 221-229.
[24] H.M. Srivastava, T. Kim, Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math. Phys. 12 (2005), no. 2, 241-268.
[25] Z. Zhang, Y. Zhang, Summation formulas of q-series by modified Abel's lemma, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 119-129.

Young-Hee Kim. Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea,

E-mail address: yhkim@kw.ac.kr
Kyung-Won Hwang. Department of General education, Kookmin university, Seoul 136-702, Republic of Korea,

E-mail address: khwang7@kookmin.ac.kr
Taekyun Kim. Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea,

E-mail address: tkkim@kw.ac.kr

The improved preconditioned AOR method for irreducible L-matrices *

Yu-Qin Bai† Ting-Zhu Huang ${ }^{\ddagger}$
School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, PR China

Abstract

In this paper, we first improve the preconditioned AOR method for irreducible L-matrices considered by Yun and Kim [Convergence of the preconditioned AOR method for irreducible L-matrices, Appl. Math. Comput., (2008), doi:10.1016/j.amc.2007.11.045], and then we prove the convergence of our method. Lastly, numerical experiments to illustrate the theoretical results are provided. When choosing the approximately optimal parameters, our method has smaller spectral radii of the iterative matrices than the method provided in Yun and Kim's, which is shown through numerical examples.

Keywords: AOR method; Linear system; L-matrix; Preconditioned AOR method;

MSC: 65F10

1 Introduction

For solving the linear system

$$
\begin{equation*}
A x=b, \quad x, b \in \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

[^9]where $A=\left(a_{i, j}\right) \in \mathbb{R}^{n \times n}$ is a nonsingular matrix. An iteration method is often considered. For any splitting, $A=M-N$ with $\operatorname{det}(M) \neq 0$, the basic iterative method for system (1) is
$$
x^{i+1}=M^{-1} N x^{k}+M^{-1} b, \quad k=0,1, \ldots
$$

For simplicity, without loss of generality, we assume that A has a splitting of the form $A=I-L-U$, where I denotes $n \times n$ identity matrix, $-L$ and $-U$ are the strictly lower, and upper triangular parts of A, respectively. In [2], the AOR iterative method is defined

$$
\begin{equation*}
x^{(i+1)}=(I-r L)^{-1}[(1-\omega) I+(\omega-r) L+\omega U] x^{(i)}+(I-r L)^{-1} \omega b . \tag{2}
\end{equation*}
$$

Then the iteration matrix of the AOR iterative method is

$$
\begin{equation*}
T_{r \omega}=(I-r L)^{-1}[(1-\omega) I+(\omega-r) L+\omega U], \tag{3}
\end{equation*}
$$

where ω and r are real parameters with $\omega \neq 0$.
We now transform the original linear system (1) into the preconditioned linear system

$$
\begin{equation*}
P A x=P b \tag{4}
\end{equation*}
$$

where P is called a preconditioner. Then the basic iterative method for solving the linear system (1) is

$$
\begin{equation*}
x_{k+1}=M_{p}^{-1} N_{p} x_{k}+M_{p}^{-1} P b, \quad k=0,1, \ldots, \tag{5}
\end{equation*}
$$

where x_{0} is an initial vector and $P A=M_{p}-N_{p}$ is a splitting of $P A$.
In this paper, we consider the following two cases where

$$
P=P_{S_{1}} \text { or } P=P_{S_{2}}
$$

The preconditioner $P_{S_{1}}$ is of the form $P_{S_{1}}=I+S_{1}$, where

$$
S_{1}=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
-\alpha_{2} a_{21} & 0 & \ldots & 0 \\
-\alpha_{3} a_{31} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
-\alpha_{n} a_{n 1} & 0 & \ldots & 0
\end{array}\right)
$$

The preconditioner $P_{S_{2}}$ is of the form $P_{S_{2}}=I+S_{2}$, where

$$
S_{2}=\left(\begin{array}{ccccc}
0 & -\alpha_{2} a_{12} & 0 & \ldots & 0 \\
0 & 0 & -\alpha_{3} a_{23} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -\alpha_{n} a_{n-1, n} \\
0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

Here, $\alpha_{i}(i=2,3, \ldots n)$ are real parameters and $\alpha_{i}>0$ for $i=2,3, \ldots n$. Especially, if $\alpha_{i}=1(i=2,3, \ldots n)$, then the preconditioners are the case in Yun and Kim [1]. Let

$$
\widetilde{A}=P_{S_{1}} A, \text { and } S_{1} U=D^{\prime}+L^{\prime}+U^{\prime}
$$

where D^{\prime} is a diagonal matrix, L^{\prime} is a strictly lower triangular matrix, and U^{\prime} is a strictly upper triangular matrix. Then, from $S_{1} L=0$ we can obtain

$$
\begin{equation*}
\widetilde{A}=\left(I+S_{1}\right)(I-L-U)=I-L-U+S_{1}-S_{1} U=\widetilde{D}-\widetilde{L}-\widetilde{U}, \tag{6}
\end{equation*}
$$

where $\widetilde{D}=I-D^{\prime}, \widetilde{L}=L-S_{1}+L^{\prime}$, and $\widetilde{U}=U+U^{\prime}$.
Let $A=P_{S_{2}} A$ and $S_{2} L=D^{*}+L^{*}$, where D^{*} is a diagonal matrix and L^{*} is a strictly lower triangular matrix. Then, we obtains

$$
\begin{equation*}
\bar{A}=\left(I+S_{2}\right)(I-L-U)=I-L-U+S_{2}-S_{2} L-S_{2} U=\bar{D}-\bar{L}-\bar{U} \tag{7}
\end{equation*}
$$

where $\bar{D}=I-D^{*}, \bar{L}=L+L^{*}$, and $\bar{U}=U-S_{2}+S_{2} U$.
If we apply the AOR iterative method to the preconditioned linear system (4), then we get the preconditioned AOR iterative method whose iteration matrix is

$$
\begin{equation*}
\widetilde{T}_{r \omega}=(\widetilde{D}-r \widetilde{L})^{-1}((1-\omega) \widetilde{D}+(\omega-r) \widetilde{L}+\omega \widetilde{U}) \quad \text { if } P=P_{S_{1}}, \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{T}_{r \omega}=(\bar{D}-r \bar{L})^{-1}((1-\omega) \bar{D}+(\omega-r) \bar{L}+\omega \bar{U}) \quad \text { if } P=P_{S_{2}} \tag{9}
\end{equation*}
$$

When $\omega=r$, the (preconditioned) AOR iterative method reduces to the (preconditioned) SOR iterative method [5]. For $\omega=r, T_{r \omega}, \widetilde{T}_{r \omega}$ and $\bar{T}_{r \omega}$ defined by (3), (8) and (9) are denoted by $T_{\omega}, \widetilde{T}_{\omega}$ and \bar{T}_{ω}, respectively. That is,

$$
\begin{align*}
T_{\omega} & =(I-\omega L)^{-1}((1-\omega) I+\omega U) \tag{10}\\
\widetilde{T}_{\omega} & =(\widetilde{D}-\omega \widetilde{L})^{-1}((1-\omega) \widetilde{D}+\omega \widetilde{U}), \tag{11}\\
\bar{T}_{\omega} & =(\bar{D}-\omega \bar{L})^{-1}((1-\omega) \bar{D}+\omega \bar{U}), \tag{12}
\end{align*}
$$

In this paper, first in section 2, we present some notation, definitions and preliminary results. Next, we discuss the convergence of the preconditioned AOR iterative method which uses

$$
P=I+S_{1} \text { or } P=I+S_{2}
$$

as a preconditioner in section 3. Furthermore, in section 4, we provide numerical experiments to illustrate the theoretical results obtained in Section 3, and we find if we choose the set of parameters then our method has smaller spectral radii of the iterative matrices than the method provided in [1], which is shown through numerical examples. Lastly, in section 5, we obtain some conclusions.

2 Preliminaries

We shall use the following notations and lemmas. A matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is called a Z-matrix if $a_{i j} \leq 0$ for $i \neq j$, and it is called an L-matrix if A is a Z-matrix and $a_{i i}>0$ for $i=1,2, \ldots$. For a vector $x \in \mathbb{R}^{n}, x \geq 0(x>0)$ denotes that all components of x are nonnegative (positive). For two vectors $x, y \in \mathbb{R}^{n}$, $x \geq y(x>y)$ means that $x-y \geq 0,(x-y>0)$. These definitions carry immediately over to matrices. $A(2: n, 2: n)$ denotes the submatrix of $A \in \mathbb{R}^{n \times n}$ whose rows are indexed by $2,3, \ldots, n$ and columns by $2,3, \ldots n$. Let $\rho(A)$ denotes the spectral radius of A, and A is called irreducible if the directed graph of A is strongly connected [3].

We first refer to the following result which is essentially.
Theorem 2.1 ([3]). Let $A \geq 0$ be an irreducible matrix. Then
(a) A has a positive eigenvalue equal to $\rho(A)$;
(b) A has an eigenvector $x>0$ corresponding to $\rho(A)$;
(c) $\rho(A)$ is a simple eigenvalue of A.

Theorem 2.2 ([4]). Let $A \geq 0$ be a matrix. Then the following hold.
(a) If $A x \geq \beta x$ for a vector $x \geq 0$ and $x \neq 0$, then $\rho(A) \geq \beta$;
(b) If $A x \leq \gamma x$ for a vector $x>0$, then $\rho(A) \leq \gamma$. Moreover, if A is irreducible and if $\beta x \leq A x \leq \gamma x$, equality excluded, for a vector $x \geq 0$ and $x \neq 0$ and $x \neq 0$, then $\beta<\rho(A)<\gamma$ and $x>0$.

3 Main results

Theorem 3.1. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be an L-matrix and $A(2: n, 2: n)$ be an irreducible submatrix of A. Suppose that there exists a nonempty set $\beta \subset N_{1}=$ $\{2,3, \ldots, n\}$ and real parameters $\alpha_{i}>0$ for $i=2,3, \ldots, n$ such that

$$
\begin{cases}0<\alpha_{i} a_{1 i} a_{i 1}<1, & \text { if } i \in \beta, \\ a_{1 i} a_{i 1}=0, & \text { if } i \in N_{1}-\beta\end{cases}
$$

Let $T_{r \omega}$ and $\widetilde{T}_{r \omega}$ be defined by (3) and (8). If $0 \leq r \leq \omega \leq 1(\omega \neq 0, r \neq 1)$, then
(a) $\rho\left(\widetilde{T}_{r \omega}\right)<\rho\left(T_{r \omega}\right)$ if $\rho\left(T_{r \omega}\right)<1$;
(b) $\rho\left(\widetilde{T}_{r \omega}\right)=\rho\left(T_{r \omega}\right)$ if $\rho\left(T_{r \omega}\right)=1$;
(c) $\rho\left(\widetilde{T}_{r \omega}\right)>\rho\left(T_{r \omega}\right)$ if $\rho\left(T_{r \omega}\right)>1$.

Proof. By (3), $T_{r \omega}$ can be expressed as

$$
\begin{equation*}
T_{r \omega}=(1-\omega) I+\omega(1-r) L+\omega U+H \tag{13}
\end{equation*}
$$

where H is a nonnegative matrix. Since A is an L-matrix, L and U are nonnegative. From (13), $T_{r \omega} \geq 0$. Since $A(2: n, 2: n)$ is irreducible and $a_{1 i} a_{i 1} \neq 0$ for $i \in \beta$, it is easy to show that A is irreducible. Since $\omega \neq 0, r \neq 1$ and A is irreducible, $\omega(1-r) L+\omega U$ is irreducible. Hence, $T_{r \omega}$ is irreducible from (13). From Theorem 2.1, there exists a vector $x>0$ such that $T_{r \omega} x=\lambda x$, where $\lambda=\rho\left(T_{r \omega}\right)$. Since L is a strictly lower triangular matrix, $S_{1} L=0$. From $T_{r \omega} x=\lambda x$, one easily obtains

$$
\begin{align*}
((1-\omega) I+(\omega-r) L+\omega U) x & =\lambda(I-r L) x \\
\omega S_{1} U x & =(\lambda+\omega-1) S_{1} x . \tag{14}
\end{align*}
$$

Using (8) and (14),

$$
\begin{align*}
\widetilde{T}_{r \omega} x-\lambda x & =(\widetilde{D}-r \widetilde{L})^{-1}((1-\omega) \widetilde{D}+(\omega-r) \widetilde{L}+\omega \widetilde{U}-\lambda(\widetilde{D}-r \widetilde{L})) x \\
& =(\widetilde{D}-r \widetilde{L})^{-1}((1-\omega-\lambda) \widetilde{D}+(\omega-r+\lambda r) \widetilde{L}+\omega \widetilde{U}) x \\
& =(\widetilde{D}-r \widetilde{L})^{-1}\left((\omega+\lambda-1) D^{\prime}+(\omega-r+\lambda r)\left(L^{\prime}-S_{1}\right)+\omega U^{\prime}\right) x \\
& =(\widetilde{D}-r \widetilde{L})^{-1}\left((\lambda-1) D^{\prime}+(\lambda-1) r L^{\prime}+(r-\omega-\lambda r) S_{1}+\omega S_{1} U\right) x \\
& =(\widetilde{D}-r \widetilde{L})^{-1}\left((\lambda-1)\left(D^{\prime}+r L^{\prime}\right)+(-\lambda r+\lambda+r-1) S_{1}\right) x \\
& =(\lambda-1)(\widetilde{D}-r \widetilde{L})^{-1}\left(D^{\prime}+r L^{\prime}+(1-r) S_{1}\right) x . \tag{15}
\end{align*}
$$

Since $0<\alpha_{i} a_{1 i} a_{i \mathcal{1}}<1, D^{\prime}, L^{\prime}$ and S_{1} are nonnegative. Since $\widetilde{A}=\widetilde{L}-\widetilde{U}$ is also an L-matrix, $\widetilde{D}, \widetilde{L}$ and \widetilde{U} are all nonnegative. By simple calculation, $\widetilde{T}_{r \omega}$ can be expressed as

$$
\widetilde{T}_{r \omega}=(1-\omega) I+\omega(1-r) \widetilde{D}^{-1} \widetilde{L}+\omega \widetilde{D}^{-1} \widetilde{U}+\widetilde{H}=\left(\begin{array}{cc}
1-\omega & \widetilde{T}_{12} \tag{16}\\
0 & \widetilde{T}_{22}
\end{array}\right)
$$

where \widetilde{H} is a nonnegative matrix, $T_{12} \geq 0$ is an $1 \times(n-1)$ matrix and $\widetilde{T}_{22} \geq 0$ is an $(n-1) \times(n-1)$ matrix. Since $a_{1 i} \neq 0$ for $i \in \beta, \widetilde{T}_{12}$ is a nonzero matrix. Since $A(2: n, 2: n)$ is irreducible, it is easy to show that $\widetilde{A}(2: n, 2: n)$ is irreducible. Since $\omega \neq 0$ and $r \neq 1$, from (16) $\widetilde{T}_{r \omega}(2: n, 2: n)=\widetilde{T}_{22}$ is irreducible. Let

$$
\begin{equation*}
y=\left(D^{\prime}+r L^{\prime}+(1-r) S_{1}\right) x \text { and } z=(\widetilde{D}-r \widetilde{L})^{-1} y \tag{17}
\end{equation*}
$$

Since $a_{i 1} \neq 0$ for $i \in \beta, r \neq 1$ and $x>\underset{\sim}{0}, y \geq 0$ is a nonzero vector and the first component of y is zero. Since $(\widetilde{D}-r \widetilde{L})^{-1}$ is a nonnegative lower triangular matrix, $z \geq 0$ is also a nonzero vector and the first component of z is zero. Thus, we can set

$$
\begin{equation*}
x=\binom{x_{1}}{x_{2}} \quad \text { and } z=\binom{0}{z_{2}} \tag{18}
\end{equation*}
$$

where $x_{1} \in \mathbb{R}^{1}>\mathbb{O}, x_{2} \in \mathbb{R}^{n-1}>\mathbb{O}$, and $z_{2} \in \mathbb{R}^{n-1} \geq \mathbb{O}$ is a nonzero vector. From (15)-(18), $\widetilde{T}_{r \omega} x-\lambda x=(\lambda-1) z$ and hence

$$
\begin{equation*}
(1-\omega) x_{1}+\widetilde{T}_{12} x_{2}=\lambda_{1} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{T}_{22} x_{2}-\lambda x_{2}=(\lambda-1) z_{2} \tag{20}
\end{equation*}
$$

If $\lambda>1$, then from (20) one obtains

$$
\begin{equation*}
\widetilde{T}_{22} x_{2} \geq \lambda x_{2} \text { and } \widetilde{T}_{22} x_{2} \neq \lambda x_{2} \tag{21}
\end{equation*}
$$

From (20) and Theorem 2.2, $\rho\left(\widetilde{T}_{22}\right)>\lambda$. Since $0 \leq(1-\omega)<1, \rho\left(\widetilde{T}_{r \omega}\right)=\rho\left(\widetilde{T}_{22}\right)>$ $\lambda=\rho\left(T_{r \omega}\right)$.

If $\lambda<1$, then from (20) one obtains

$$
\begin{equation*}
\widetilde{T}_{22} x_{2} \leq \lambda x_{2}, \quad \widetilde{T}_{22} x_{2} \neq \lambda x_{2} . \tag{22}
\end{equation*}
$$

Since $\widetilde{T}_{22} \geq 0$ is irreducible and $x_{2}>0$, from (22) and Theorem 2.2

$$
\begin{equation*}
\rho\left(\widetilde{T}_{22}\right)<\lambda . \tag{23}
\end{equation*}
$$

Since $\widetilde{T}_{12} \geq 0$ is nonzero and $x_{2}>0, \widetilde{T}_{12} x_{2}>0$. From (19) $(1-\omega) x_{1}<\lambda x_{1}$ and thus

$$
\begin{equation*}
(1-\omega)<\lambda . \tag{24}
\end{equation*}
$$

Since $\rho\left(\widetilde{T}_{r \omega}\right)=\max \left\{(1-\omega), \rho\left(\widetilde{T}_{22}\right)\right\}$, from (23) and (24) $\rho\left(\widetilde{T}_{r \omega}\right)<\lambda=\rho\left(T_{r \omega}\right)$.
If $\lambda=1$, from (15) $\widetilde{T}_{r \omega} x=\lambda x$. Hence, from Theorem $2.2 \rho\left(\widetilde{T}_{r \omega}\right)=\lambda=\rho\left(T_{r \omega}\right)$ is obtained.

Corollary 3.2. Let $A=\left(a_{i j}\right) \in R^{n \times n}$ be an L-matrix and $A(2: n, 2: n)$ be an irreducible submatrix of A. Suppose that there exists a nonempty set $\beta \subset N_{1}=\{2,3, \ldots, n\}$ and real parameters $\alpha_{i}>0$ for $i=2,3, \ldots, n$ such that

$$
\begin{cases}0<\alpha_{i} a_{1 i} a_{i 1}<1, & \text { if } i \in \beta, \\ a_{1 i} a_{i 1}=0, & \text { if } i \in N_{1}-\beta .\end{cases}
$$

Let T_{ω} and \widetilde{T}_{ω} be defined by (10) and (11). If $0<\omega<1$, then
(a) $\rho\left(\widetilde{T}_{\omega}\right)<\rho\left(T_{\omega}\right)$ if $\rho\left(T_{\omega}\right)<1$.
(b) $\rho\left(\widetilde{T}_{\omega}\right)=\rho\left(T_{\omega}\right)$ if $\rho\left(T_{\omega}\right)=1$.
(c) $\rho\left(\widetilde{T}_{\omega}\right)>\rho\left(T_{\omega}\right)$ if $\rho\left(T_{\omega}\right)>1$.

Remark 3.3. If $r=\omega=1$, then the (preconditioned) AOR method reduces to the (preconditioned) Gauss-Seidel method. For $r=\omega=1$, since $T_{r \omega}$ and \widetilde{T}_{22} used in the proof of Theorem 3.1 are not necessarily irreducible, the proof of Theorem 3.1 does not make sense . Hence, it can not be guaranteed that Corollary 3.2 holds for $r=\omega=1$. Further work will discuss the case of $r=\omega=1$ under the similar assumptions used in Corollary 3.2.

Lemma 3.4. Let $A=\left(a_{i j}\right) \in R^{n \times n}$ be an L-matrix. Suppose that there exist a nonempty set $\gamma \subset N_{2}=\{1,2, \ldots, n-1\}$ and real parameters $\alpha_{i}>0$ for $i=2,3, \ldots, n$ such that $\alpha_{i+1} a_{i, i+1} a_{i+1, i}<1$ for all $i \in N_{2}$. Let $T_{r \omega}$ and $\bar{T}_{r \omega}$ be defined by (3) and (9). If $0 \leq r \leq \omega \leq 1(\omega \neq 0, r \neq 1)$ and A is irreducible even for $a_{i, i+1}$ set to 0 for every $i \in \gamma$, then $T_{r \omega}$ and $\bar{T}_{r \omega}$ are nonnegative and irreducible.

Proof. Since A is irreducible even for $a_{i, i+1}$ set to zero for every $i \in \gamma, A=$ $I-L-U$ is irreducible. Hence, $T_{r \omega}$ is irreducible and nonnegative from (13). Let

$$
\bar{A}=P_{2} A=\left(I+S_{2}\right) A=\bar{D}-\bar{L}-\bar{U}
$$

where \bar{D}, \bar{L} and \bar{U} are defined as in (7). Since A is an L-matrix and $\alpha_{i+1} a_{i, i+1} a_{i+1, i}<$ 1 for all $i \in N_{2}, \bar{A}$ is also an L-matrix and thus \bar{D}, \bar{L} and \bar{U} are all nonnegative. Since the nonzero structure of \bar{A} is the same as that of A with $a_{i, i+1}$ set to zero for every $i \in \gamma, \bar{A}$ is also irreducible by assumption. Note that $\bar{T}_{r \omega}$ can be expressed as

$$
\begin{equation*}
\bar{T}_{r \omega}=(1-\omega) I+\omega(1-r) \bar{D}^{-1} \bar{L}^{-1}+\omega \bar{D}^{-1} \bar{U}^{-1}+\bar{H} \tag{25}
\end{equation*}
$$

where \bar{H} is a nonnegative matrix. From (25), $\bar{T}_{r \omega}$ is nonnegative. Since $\omega \neq 0$, $r \neq 1$ and \bar{A} is irreducible, $\omega(1-r) \bar{D}^{-1} \bar{L}^{-1}+\omega \bar{D}^{-1} \bar{U}^{-1}$ is irreducible. Hence, $\bar{T}_{r \omega}$ is irreducible from (25).

Theorem 3.5. Let $A=\left(a_{i j}\right) \in R^{n \times n}$ be an L-matrix. Suppose that there exists a nonempty set $\gamma \subset N_{2}=\{1,2, \ldots, n-1\}$ such that $a_{i, i+1} \neq 0$ for all $i \in \gamma$ and real parameters $\alpha_{i}>0$ for $i=2,3, \ldots, n$ such that $\alpha_{i+1} a_{i, i+1} a_{i+1, i}<1$ for all $i \in N_{2}$. Let $T_{r \omega}$ and $\bar{T}_{r \omega}$ be defined by (3) and (9). If $0 \leq r \leq \omega \leq 1(\omega \neq 0, r \neq 1)$ and A is irreducible even for $a_{i, i+1}$ set to 0 for every $i \in \gamma$, then
(a) $\rho\left(\bar{T}_{r \omega}\right)<\rho\left(T_{r \omega}\right)$ if $\rho\left(T_{r \omega}\right)<1$.
(b) $\rho\left(\bar{T}_{r \omega}\right)=\rho\left(T_{r \omega}\right)$ if $\rho\left(T_{r \omega}\right)=1$.
(c) $\rho\left(\bar{T}_{r \omega}\right)>\rho\left(T_{r \omega}\right)$ if $\rho\left(T_{r \omega}\right)>1$.

Proof. From Lemma 3.4, $T_{r \omega}$ is nonnegative and irreducible. By Theorem 2.1, there exists a vector $x>0$ such that $T_{r \omega} x=\lambda x$, where $\lambda=\rho\left(T_{r \omega}\right)$. From $T_{r \omega} x=\lambda x$, one easily obtains

$$
\begin{align*}
((1-\omega) I+(\omega-r) L+\omega U) x & =\lambda(I-r L) x \tag{26}\\
\left((\lambda+\omega-I) S_{2}+(r-\omega-\lambda r) S_{2} L\right) x & =\omega S_{2} U x .
\end{align*}
$$

Using (9) and (26),

$$
\begin{align*}
\bar{T}_{r \omega} x-\lambda x & =(\bar{D}-r \bar{L})^{-1}((1-\omega) \bar{D}+(\omega-r) \bar{L}+\omega \bar{U}-\lambda(\bar{D}-r \bar{L})) x \\
& =(\bar{D}-r \bar{L})^{-1}((1-\omega-\lambda) \bar{D}+(\omega-r+\lambda r) \bar{L}+\omega \bar{U}) x \\
& =(\bar{D}-r \bar{L})^{-1}\left((\omega+\lambda-1) D^{*}+(\omega-r+\lambda r) L^{*}+\omega\left(S_{2} U-S_{2}\right)\right) x \\
& =(\bar{D}-r \bar{L})^{-1}\left((\omega+\lambda-1)\left(D^{*}+S_{2}\right)+(\omega-r+\lambda r)\left(L^{*}-S_{2} L\right)-\omega S_{2}\right) x \\
& =(\bar{D}-r \bar{L})^{-1}\left((\omega+\lambda-1) D^{*}+(\lambda-1) S_{2}-(\omega-r+\lambda r) D^{*}\right) x \\
& =(\bar{D}-r \bar{L})^{-1}\left((-\lambda r+\lambda+r-1) D^{*}+(\lambda-1) S_{2}\right) x \\
& =(\lambda-1)(\bar{D}-r \bar{L})^{-1}\left((1-r) D^{*}+S_{2}\right) x . \tag{27}
\end{align*}
$$

Since $0<\alpha_{i} a_{1 i} a_{i 1}<1, \bar{D}, D^{*}, \bar{L}$ and S_{2} are all nonnegative. Let

$$
\begin{equation*}
y=\left((1-r) D^{*}+S_{2}\right) x \text { and } z=(\bar{D}-r \bar{L})^{-1} y . \tag{28}
\end{equation*}
$$

Since $a_{i, i+1} \neq 0$ for $i \in \gamma$ and $x>0, y=\left(y_{i}\right) \geq 0$ and y_{i} is nonzero for $i \in \gamma$. Since $(\bar{D}-r \bar{L})^{-1}$ is a nonnegative lower triangular matrix, $z=\left(z_{i}\right) \geq 0$ and z_{i} is also nonzero for $i \in \gamma$. From (27) and (28), one obtains

$$
\begin{equation*}
\bar{T}_{r \omega} x-\lambda x=(\lambda-1) z . \tag{29}
\end{equation*}
$$

For the case of $\lambda=1$ and $\lambda>1, \bar{T}_{r \omega} x=\lambda x$ and $\bar{T}_{r \omega} x \geq \lambda x$ (with $\bar{T}_{r \omega} x \neq \lambda x$) are obtained directly from Theorem 3.1 and 3.3 , respectively. If $\lambda<1$, then from (29) $\bar{T}_{r \omega} x \leq \lambda x$ and $\bar{T}_{r \omega} x \neq \lambda x$. Since $\bar{T}_{r \omega}$ is irreducible from Lemma 3.3, Theorem 2.2 implies that $\rho\left(\bar{T}_{r \omega}\right)<\lambda=\rho\left(T_{r \omega}\right)$. Hence, the theorem follows from Theorem 2.2.

Corollary 3.6. Let $A=\left(a_{i j}\right) \in R^{n \times n}$ be an L-matrix. Suppose that there exists a nonempty set $\gamma \subset N_{2}=\{1,2, \ldots, n-1\}$ such that $a_{i, i+1} \neq 0$ for all $i \in \gamma$ and real parameters $\alpha_{i}>0$ for $i=2,3, \ldots, n$ such that $\alpha_{i+1} a_{i, i+1} a_{i+1, i}<1$ for all $i \in N_{2}$. Let T_{ω} and \bar{T}_{ω} be defined by (10) and (12). If $0<\omega<1$ and A is irreducible even for $a_{i, i+1}$ set to 0 for every $i \in \gamma$, then
(a) $\rho\left(\bar{T}_{\omega}\right)<\rho\left(T_{\omega}\right)$ if $\rho\left(T_{\omega}\right)<1$.
(b) $\rho\left(\bar{T}_{\omega}\right)=\rho\left(T_{\omega}\right)$ if $\rho\left(T_{\omega}\right)=1$.
(c) $\rho\left(\bar{T}_{\omega}\right)>\rho\left(T_{\omega}\right)$ if $\rho\left(T_{\omega}\right)>1$.

Remark 3.7. If $r=\omega=1$, then the proof of Theorem 3.4 does not make sense since it is not generally true that $T_{r \omega}$ and $\bar{T}_{r \omega}$ are irreducible. Hence, it can not be guaranteed that Corollary 3.6 holds for $\omega=1$. Further work will discuss the case of $r=\omega=1$ under the similar assumptions used in Corollary 3.6.

4 Numerical experiments

In this section, we provide numerical experiments to illustrate the theoretical results obtained in Section 3. If we choose the set of parameters, then our method has smaller spectral radii of the iterative matrices than the method provided in [1]. All numerical experiments are carried out using MATLAB 7.1. For simplicity of comparison, suppose that all of α_{i} are equal and let $\alpha=\alpha_{i}$ for $i=2,3, \ldots, n$. Let $\rho\left(\widetilde{T}_{r \omega}\right)$ and $\rho\left(\bar{T}_{r \omega}\right)$ denote the spectral radii of the corresponding iteration matrices for $\alpha=1$. Let $\rho_{o p t}\left(\widetilde{T}_{r \omega}\right)$ and $\rho_{o p t}\left(\bar{T}_{r \omega}\right)$ denote the spectral radii of the corresponding iteration matrices when using approximately optimal parameters $\alpha_{\left(\widetilde{T}_{r \omega}\right)}$ and $\alpha_{\left(\bar{T}_{r \omega}\right)}$, respectively.

Example 4.1.[1] Consider a 4×4 matrix A of the form

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & -0.3 \\
-0.3 & 1 & -0.3 & -0.3 \\
0 & -0.3 & 1 & -0.3 \\
-0.3 & 0 & -0.3 & 1
\end{array}\right)
$$

It is easy to see that the matrix A satisfies all assumption of Theorems 3.1 and 3.5. Note that $\beta=\{4\} \subset N_{1}$ and $\gamma=\{2,3\} \subset N_{2}$. Since the smaller spectral radius of the iteration matrix is, the faster the convergence rate is, we compare spectral radii of the iterative matrices in tables 1 and 2 for example 4.1.

Table 1 Spectral radii of the iterative matrices $\rho\left(T_{r \omega}\right), \rho\left(\widetilde{T}_{r \omega}\right)$ and $\rho\left(\bar{T}_{r \omega}\right)$ with various of r and ω

r	ω	$\rho\left(T_{r \omega}\right)$	$\rho\left(\widetilde{T}_{r \omega}\right)$	$\rho\left(\bar{T}_{r \omega}\right)$	$\rho_{o p t}\left(\widetilde{T}_{r \omega}\right)$	$\alpha_{\left(\widetilde{T}_{r \omega}\right)}$	$\rho\left(\bar{T}_{r \omega}\right)$	$\alpha_{\left(\bar{T}_{r \omega}\right)}$
0.9	1	0.3406	0.2937	0.2331	0.1881	4.5	0.1557	2.3
0.8	1	0.3852	0.3377	0.2844	0.2290	4.0	0.2111	2.1
0.7	1	0.4201	0.3721	0.3240	0.2599	3.7	0.2546	2.0
0.7	0.8	0.5361	0.4977	0.4592	0.3662	7.2	0.3679	4.5
0.6	0.8	0.5593	0.5204	0.4854	0.3850	6.0	0.3952	3.7
0.5	0.8	0.5793	0.5400	0.5079	0.3998	5.4	0.4214	3.3
0.5	0.6	0.6845	0.6550	0.6309	0.5297	8.4	0.5562	5.5
0.4	0.6	0.6976	0.6680	0.6458	0.5372	7.2	0.5706	4.8
0.3	0.6	0.7093	0.6795	0.6590	0.5425	6.5	0.5855	4.2
0.3	0.4	0.8062	0.7863	0.7727	0.6844	9.0	0.7209	5.7
0.2	0.4	0.8133	0.7933	0.7807	0.6855	7.9	0.7284	5.6
0.1	0.4	0.8197	0.7997	0.7879	0.6852	7.1	0.7364	4.9

Table 2 Spectral radii of the iterative matrices $\rho\left(T_{r \omega}\right), \rho\left(\widetilde{T}_{r \omega}\right)$ and $\rho\left(\bar{T}_{r \omega}\right)$ with various of ω, where $r=\omega$

ω	$\rho\left(T_{r \omega}\right)$	$\rho\left(\widetilde{T}_{r \omega}\right)$	$\rho\left(\bar{T}_{r \omega}\right)$	$\rho_{o p t}\left(\widetilde{T}_{r \omega}\right)$	$\alpha_{\left(\widetilde{T}_{r \omega}\right)}$	$\rho\left(\bar{T}_{r \omega}\right)$	$\alpha_{\left(\bar{T}_{r \omega}\right)}$
0.95	0.3465	0.3018	0.2391	0.2082	4.4	0.1645	2.5
0.9	0.4066	0.3643	0.3098	0.2585	5.5	0.2273	3.2
0.8	0.5081	0.4702	0.4275	0.3521	7.3	0.3416	4.6
0.7	0.5941	0.5604	0.5268	0.4396	8.6	0.4460	5.3
0.6	0.6695	0.6403	0.6140	0.5230	9.5	0.5416	5.4
0.5	0.7371	0.7125	0.6924	0.6036	10.1	0.6301	5.6
0.4	0.7984	0.7786	0.7638	0.6824	10.5	0.7129	5.5
0.3	0.8547	0.8398	0.8295	0.7607	10.5	0.7907	5.6
0.2	0.9066	0.8967	0.8903	0.8382	11.0	0.8641	5.9
0.1	0.9549	0.9499	0.9470	0.9175	10.9	0.9338	5.6

Example 4.2. Consider a $n \times n$ matrix A of the form

$$
A=\left(\begin{array}{cccccc}
1 & c_{1} & c_{2} & c_{3} & c_{1} & \ldots \\
c_{3} & 1 & c_{1} & c_{2} & \ddots & c_{1} \\
c_{2} & c_{3} & \ddots & \ddots & \ddots & c_{3} \\
c_{1} & \ddots & \ddots & 1 & c_{1} & c_{2} \\
c_{3} & \ddots & c_{2} & c_{3} & 1 & c_{1} \\
\ldots & c_{3} & c_{1} & c_{2} & c_{3} & 1
\end{array}\right)
$$

where $c_{1}=-2 / n, c_{2}=0, c_{3}=-1 /(n+2)$. Clearly, the matrix A satisfies all assumptions of Theorems 3.1 and 3.5. Note that $\beta=\{2,4,5,7,9,10, \ldots\} \subset N_{1}$ and $\gamma=\{1,2,3, \ldots n-1\} \subset N_{2}$. Numerical results for this matrix A are provided in Tables 3 and 4 for $n=30$ and in Tables 5 and 6 for $n=100$.
Table 3 Spectral radii of the iterative matrices $\rho\left(T_{r \omega}\right), \rho\left(\widetilde{T}_{r \omega}\right)$ and $\rho\left(\bar{T}_{r \omega}\right)$ with various of r and ω

r	ω	$\rho\left(T_{r \omega}\right)$	$\rho\left(\widetilde{T}_{r \omega}\right)$	$\rho\left(\bar{T}_{r \omega}\right)$	$\rho_{\text {opt }}\left(\widetilde{T}_{r \omega}\right)$	$\alpha_{\left(\widetilde{T}_{r \omega}\right)}$	$\rho\left(\bar{T}_{r \omega}\right)$	$\alpha_{\left(\bar{T}_{r \omega}\right)}$
0.9	1	0.9076	0.9047	0.8966	0.6781	19.0	0.1557	2.3
0.8	1	0.9147	0.9120	0.9054	0.6906	19.3	0.2111	2.1
0.7	1	0.9207	0.9182	0.9128	0.7032	19.6	0.2546	2.0
0.7	0.8	0.9365	0.9345	0.9302	0.7624	19.6	0.3679	4.5
0.6	0.8	0.9407	0.9388	0.9352	0.7712	19.8	0.3952	3.7
0.5	0.8	0.9443	0.9426	0.9395	0.7788	19.9	0.4214	3.3
0.5	0.6	0.9583	0.9569	0.9546	0.8340	19.9	0.5562	5.5
0.4	0.6	0.9607	0.9594	0.9574	0.8395	20.0	0.5706	4.8
0.3	0.6	0.9628	0.9616	0.9599	0.8448	20.1	0.5855	4.2
0.3	0.4	0.9752	0.9744	0.9733	0.8966	20.1	0.7209	5.7
0.2	0.4	0.9765	0.9757	0.9747	0.8999	20.2	0.7284	5.6
0.1	0.4	0.9776	0.9769	0.9761	0.9032	20.3	0.7364	4.9

Table 4 Spectral radii of the iterative matrices $\rho\left(T_{r \omega}\right), \rho\left(\widetilde{T}_{r \omega}\right)$ and $\rho\left(\bar{T}_{r \omega}\right)$ with various of ω, where $r=\omega$

ω	$\rho\left(T_{r \omega}\right)$	$\rho\left(\widetilde{T}_{r \omega}\right)$	$\rho\left(\bar{T}_{r \omega}\right)$	$\rho_{\text {opt }}\left(\widetilde{T}_{r \omega}\right)$	$\alpha_{\left(\widetilde{T}_{r \omega}\right)}$	$\rho\left(\bar{T}_{r \omega}\right)$	$\alpha_{\left(\bar{T}_{r \omega}\right)}$
0.95	0.9083	0.9055	0.8969	0.6908	19.0	0.6308	9.8
0.9	0.9168	0.9142	0.9069	0.7109	19.0	0.6812	10.4
0.8	0.9317	0.9296	0.9243	0.7524	19.3	0.7588	11.3
0.7	0.9445	0.9427	0.9389	0.7921	19.6	0.8195	12.1
0.6	0.9555	0.9541	0.9514	0.8284	19.8	0.8622	12.6
0.5	0.9652	0.9641	0.9622	0.8617	19.9	0.8980	13.1
0.4	0.9738	0.9729	0.9716	0.8930	20.0	0.9265	13.5
0.3	0.9814	0.9808	0.9800	0.9224	20.1	0.9493	13.8
0.2	0.9882	0.9878	0.9874	0.9500	20.2	0.9690	14.1
0.1	0.9944	0.9942	0.9940	0.9758	20.3	0.9858	14.4

Table 5 Spectral radii of the iterative matrices $\rho\left(T_{r \omega}\right), \rho\left(\widetilde{T}_{r \omega}\right)$ and $\rho\left(\bar{T}_{r \omega}\right)$ with various of r and ω

r	ω	$\rho\left(T_{r \omega}\right)$	$\rho\left(\widetilde{T}_{r \omega}\right)$	$\rho\left(\bar{T}_{r \omega}\right)$	$\rho_{o p t}\left(\widetilde{T}_{r \omega}\right)$	$\alpha_{\left(\widetilde{T}_{r \omega}\right)}$	$\rho\left(\bar{T}_{r \omega}\right)$	$\alpha_{\left(\bar{T}_{r \omega}\right)}$
0.9	1	0.9705	0.9702	0.9694	0.8208	75.0	0.8576	38.8
0.8	1	0.9729	0.9726	0.9720	0.8228	75.2	0.8981	39.9
0.7	1	0.9749	0.9747	0.9742	0.8296	76.1	0.9210	40.5
0.7	0.8	0.9799	0.9797	0.9793	0.8637	76.1	0.9259	45.4
0.6	0.8	0.9813	0.9812	0.9808	0.8687	76.8	0.9419	45.8
0.5	0.8	0.9826	0.9824	0.9821	0.8735	77.4	0.9524	45.8
0.5	0.6	0.9869	0.9868	0.9866	0.9051	77.4	0.9584	47.9
0.4	0.6	0.9877	0.9876	0.9874	0.9083	77.8	0.9639	48.5
0.3	0.6	0.9884	0.9883	0.9881	0.9115	78.2	0.9676	48.9
0.3	0.4	0.9923	0.9922	0.9921	0.9410	78.2	0.9784	48.9
0.2	0.4	0.9927	0.9926	0.9925	0.9430	78.5	0.9807	49.3
0.1	0.4	0.9931	0.9930	0.9929	0.9449	78.8	0.9824	49.6

Table 6 Spectral radii of the iterative matrices $\rho\left(T_{r \omega}\right), \rho\left(\widetilde{T}_{r \omega}\right)$ and $\rho\left(\bar{T}_{r \omega}\right)$ with various of ω, where $r=\omega$

ω	$\rho\left(T_{r \omega}\right)$	$\rho\left(\widetilde{T}_{r \omega}\right)$	$\rho\left(\bar{T}_{r \omega}\right)$	$\rho_{\text {opt }}\left(\widetilde{T}_{r \omega}\right)$	$\alpha_{\left(\widetilde{T}_{r \omega}\right)}$	$\rho\left(\bar{T}_{r \omega}\right)$	$\alpha_{\left(\bar{T}_{r \omega}\right)}$
0.95	0.9707	0.9704	0.9696	0.8218	73.5	0.8185	38.8
0.9	0.9735	0.9732	0.9725	0.8342	74.1	0.8532	40.9
0.8	0.9783	0.9781	0.9776	0.8583	75.2	0.8961	44.3
0.7	0.9825	0.9823	0.9819	0.8807	76.1	0.9296	46.0
0.6	0.9860	0.9859	0.9856	0.9015	76.8	0.9507	47.1
0.5	0.9891	0.9890	0.9888	0.9209	77.4	0.9653	47.9
0.4	0.9918	0.9917	0.9916	0.9389	77.8	0.9759	48.5
0.3	0.9942	0.9942	0.9941	0.9558	78.2	0.9838	48.9
0.2	0.9963	0.9963	0.9963	0.9715	78.5	0.9903	49.3
0.1	0.9983	0.9983	0.9982	0.9862	78.8	0.9956	49.6

Remark 4.3. When $\alpha=1$, in this case, the preconditioner is the one in [1]. The above numerical experiments indicate that the spectral radii of iterative matrices with the proposed preconditioners achieve significant improvement over the spectral radii of iterative matrices with the existing preconditioners in [1].

5 Conclusions

In this paper, we improve the preconditioned AOR method for irreducible L-matrices and analyze the convergence of our method. When choosing the various parameters, the spectral radii of the iteration matrices with the proposed preconditioner is smaller than those in [1], which is shown through numerical experiments. Particularly, one may discuss how choose the set of parameters in order to really accelerate the convergence of the considered method. Furthermore, the optimal choice of this set of parameters is valuably studied.

References

[1] J.H. Yun, S. W. Kim, Convergence of the preconditioned AOR method for irreducible L-matrices, Appl. Math. Comput., (2008), doi:10,1016/j.amc.2007.11.045.
[2] A. Hadjimos, Accelerated overelaxation method, Math. Comp., 32 (1978): 149-157.
[3] R.S. Varga, Matrix Iterative Analysis, Springer, Berlin, 2000.
[4] A. Berman, R.J. Plemmoms, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadephis, PA, 1994.
[5] D.M. Young, Iterative Solution of Large Linear systems, Academic Press, New York, 1971.

SOME RESULTS IN FUZZY COMPACT LINEAR OPERATORS

HAKAN EFE AND CEMIL YILDIZ

Abstract

In this paper we introduce the concept of fuzzy compact operators between fuzzy n-normed linear spaces in the sense of Narayanan and Vijayabalaji [12].

1. Introduction

The concept of 2-norm and n-norm on a linear space has been introduced and developed by Gähler in [5, 6]. After that Misiak [11], Kim and Cho [8] and Malčeski [10] developed the theory of n-normed space. In [7], Gunawan and Mashadi gave a simple way to derive an $(n-1)$-norm from the n-norm and realized that any n normed space is an ($n-1$)-normed space.

In 2003, Bag and Samanta [1] introduced a definition of a fuzzy norm and proved a decomposition theorem of a fuzzy norm into a family of crisp norms. Also they [2, 3] gave some important properties on fuzzy norms. Lael and Nourouzi [9] introduced the fuzzy compact linear operators between fuzzy normed linear spaces.

Narayanan and Vijayabalaji [12] introduced the concept of fuzzy n-normed linear space as a generalization of fuzzy normed linear space. In [4], Efe defined various types of continuities of operators and boundedness of linear operators over fuzzy n-normed linear spaces such as fuzzy continuity, sequential fuzzy continuity, weakly fuzzy continuity, strongly fuzzy continuity, weakly fuzzy boundedness and strongly fuzzy boundedness.

In this paper we study on fuzzy compact operator between fuzzy n-normed linear spaces in the sense of Narayanan and Vijayabalaji [12]. Some definitions and theorems are generalized in fuzzy n-normed linear space.

2. FUZZY n-NORMED LINEAR SPACES

Definition 1 ([7]). Let $n \in \mathbb{N}$ and let X be a real vector space of dimension $d \geq n$. (Here we allow d to be infinite.) A real-valued function $\|\cdot, \ldots, \cdot\|$ on $\underbrace{X \times \cdots \times X}_{n}$ satisfying the following four properties,
(1) $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|=0$ if and only if $x_{1}, x_{2}, \ldots, x_{n}$ are linearly dependent,
(2) $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|$ is invariant under any permutation,
(3) $\left|\left|x_{1}, x_{2}, \ldots, \alpha x_{n}\|=|\alpha|\| x_{1}, x_{2}, \ldots, x_{n} \|\right.\right.$ for any $\alpha \in \mathbb{R}$,
(4) $\left\|x_{1}, x_{2}, \ldots, x_{n-1}, y+z\right\| \leq\left\|x_{1}, x_{2}, \ldots, x_{n-1}, y\right\|+\left\|x_{1}, x_{2}, \ldots, x_{n-1}, z\right\|$,
is called an n-norm on X and the pair $(X,\|\cdot, \ldots, \cdot\|)$ is called an n-normed space.

[^10]
HAKAN EFE AND CEMIL YILDIZ

Definition 2 ([12]). Let X be a linear space over a real field F. A fuzzy subset N of $\underbrace{X \times \cdots \times X}_{n} \times \mathbb{R}(\mathbb{R}$, set of real numbers) is called a fuzzy n-norm on X if and only if
(N1) for all $t \in \mathbb{R}$ with $t \leq 0, N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=0$,
(N2) for all $t \in \mathbb{R}$ with $t>0, N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=1$ if and only if $x_{1}, x_{2}, \ldots, x_{n}$ are linearly dependent,
(N3) $N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)$ is invariant under any permutation of x_{1}, \ldots, x_{n},
(N4) for all $t \in \mathbb{R}$ with $t>0, N\left(x_{1}, x_{2}, \ldots, c x_{n}, t\right)=N\left(x_{1}, x_{2}, \ldots, x_{n}, t /|c|\right)$, if $c \neq 0, c \in F$,
(N5) for all $s, t \in \mathbb{R}$,

$$
N\left(x_{1}, x_{2}, \ldots, x_{n}+x_{n}^{\prime}, s+t\right) \geq \min \left\{\begin{array}{c}
N\left(x_{1}, x_{2}, \ldots, x_{n}, s\right) \\
N\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}, t\right)
\end{array}\right\}
$$

(N6) $N\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right)$ is a nondecreasing function of \mathbb{R} and

$$
\lim _{t \rightarrow \infty} N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=1
$$

Then (X, N) is called a fuzzy n-normed linear space or in short $\mathrm{f}-\mathrm{n}$-NLS.
Remark 1. From (N3), it follows that in a $f-n-N L S$,
(N4) for all $t \in \mathbb{R}$ with $t>0$,

$$
N\left(x_{1}, x_{2}, \ldots, c x_{i}, \ldots, x_{n}, t\right)=N\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}, t /|c|\right)
$$

if $c \neq 0$,
(N5) for all $s, t \in \mathbb{R}$,

$$
N\left(x_{1}, x_{2}, \ldots, x_{i}+x_{i}^{\prime}, \ldots, x_{n}, s+t\right) \geq \min \left\{\begin{array}{c}
N\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}, s\right) \\
N\left(x_{1}, x_{2}, \ldots, x_{i}^{\prime}, \ldots, x_{n}, t\right)
\end{array}\right\} .
$$

Example 1. Let $(X,\|\cdot, \cdot, \ldots, \cdot\|)$ be an n-normed space as in Definition 1. Define,

$$
N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=\left\{\begin{array}{clc}
\frac{t}{t+\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|} & \text { if } & t>0, t \in \mathbb{R} \\
0 & \text { if } & t \leq 0
\end{array}\right.
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$. Then (X, N) is a $f-n-N L S$.
Theorem 1 ([12]). Let (X, N) be a f-n-NLS. Assume further those
(N7) $N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)>0$ for all $t>0$ implies $x_{1}, x_{2}, \ldots, x_{n}$ are linearly dependent.
Define

$$
\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|_{\alpha}=\inf \left\{t: N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \geq \alpha\right\}, \alpha \in(0,1)
$$

Then $\left\{\|\cdot, \cdot, \ldots, \cdot\|_{\alpha}: \alpha \in(0,1)\right\}$ ascending family of n-norms on X. These n norms are called $\alpha-n$-norms on X corresponding to the fuzzy n-norm on X.
(N8) We assume that, for $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent,
$N\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right)$ is a continuous function of \mathbb{R} and strictly increasing on the subset $\left\{t: 0<N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)<1\right\}$ of \mathbb{R}.

FUZZY n-NORMED LINEAR SPACES

Definition $3([4])$. Let (X, N) be a $f-n-N L S$ and $\{x(k)\}$ be a sequence in X. Then $\{x(k)\}$ is said to be convergent if there exists a $x \in X$ such that

$$
\lim _{k \rightarrow \infty} N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x, t\right)=1
$$

for every $x_{1}, x_{2}, \ldots, x_{n-1}, x \in X$ and for all $t>0$. Then $x \in X$ called limit of the sequence $\{x(k)\}$ and denoted by $\lim x(k)=x$ or $x(k) \longrightarrow x$.

Definition $4([4])$. A sequence $\{x(k)\}$ in (X, N) is called Cauchy sequence, if

$$
\lim _{k, l \rightarrow \infty} N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x(l), t\right)=1
$$

for every $x_{1}, x_{2}, \ldots, x_{n-1} \in X$ and for all $t>0, k, l \in \mathbb{N}$.
Definition 5 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S . A$ mapping $T: X \longrightarrow$ Y is said to be fuzzy continuous at $z \in X$, if for given $\varepsilon>0, \alpha \in(0,1)$, there exists $\delta=\delta(\alpha, \varepsilon)>0, \beta=\beta(\alpha, \varepsilon) \in(0,1)$ such that for all $x_{1}, x_{2}, \ldots, x_{n-1}, y \in X$, $y_{1}, y_{2}, \ldots, y_{n-1} \in Y$,

$$
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y-z, \delta\right)>\beta \Rightarrow N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T y-T z, \varepsilon\right)>\alpha
$$

If T is fuzzy continuous at each point of X, then T is said to be fuzzy continuous on X.

Definition 6 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S . A$ mapping $T: X \longrightarrow$ Y is said to be strongly fuzzy continuous at $z \in X$, if for each $\varepsilon>0$, there exists $\delta>0$ such that for all $x_{1}, x_{2}, \ldots, x_{n-1}, y \in X, y_{1}, y_{2}, \ldots, y_{n-1} \in Y$,

$$
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T y-T z, \varepsilon\right) \geq N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y-z, \delta\right)
$$

If T is strongly fuzzy continuous at each point of X, then T is said to be strongly fuzzy continuous on X.

Definition $7([4])$. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S . A$ mapping $T: X \longrightarrow$ Y is said to be weakly fuzzy continuous at $z \in X$, if for a given $\varepsilon>0, \alpha \in(0,1)$, there exists $\delta=\delta(\alpha, \varepsilon)>0$ such that for all $x_{1}, x_{2}, \ldots, x_{n-1}, y \in X, y_{1}, y_{2}, \ldots, y_{n-1} \in$ Y,

$$
\begin{aligned}
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y-z, \delta\right) & \geq \alpha \Rightarrow \\
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T y-T z, \varepsilon\right) & \geq \alpha .
\end{aligned}
$$

If T is weakly fuzzy continuous at each point of X, then T is said to be weakly fuzzy continuous on X.

Definition 8 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S . A$ mapping $T: X \longrightarrow$ Y is said to be sequentially fuzzy continuous at $z \in X$, if for any sequence $\{x(k)\}$ in X with $x(k) \longrightarrow z$ implies $T x(k) \longrightarrow T z, k \in \mathbb{N}$. I.e., for all $t>0$,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-z, t\right) & =1 \Rightarrow \\
\lim _{k \rightarrow \infty} N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T x(k)-T z, t\right) & =1
\end{aligned}
$$

for all $x_{1}, x_{2}, \ldots, x_{n-1}, y \in X, y_{1}, y_{2}, \ldots, y_{n-1} \in Y$. If T is sequentially fuzzy continuous at each point of X, then T is said to be sequentially fuzzy continuous on X.

Remark 2. It is easy to see that if a mapping is strongly fuzzy continuous then it is weakly fuzzy continuous.

HAKAN EFE AND CEMIL YILDIZ

Theorem $2([4])$. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ and $T: X \longrightarrow Y$ be a mapping. If T is strongly fuzzy continuous then it is sequentially fuzzy continuous.

Theorem 3 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ and $T: X \longrightarrow Y$ be a mapping. Then T is fuzzy continuous iff it is sequentially fuzzy continuous.

Definition $9([4])$. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ and $T: X \longrightarrow Y$ be a linear operator. T is said to be strongly fuzzy bounded on X iff there exists positive real number M such that for all $x_{1}, x_{2}, \ldots, x_{n-1}, y \in X, y_{1}, y_{2}, \ldots, y_{n-1} \in Y$ and for all $s \in \mathbb{R}$,

$$
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T y, s\right) \geq N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{s}{M}\right)
$$

Let us denote the set of all strongly fuzzy bounded linear operators from a $\mathrm{f}-\mathrm{n}$ $\mathrm{NLS}\left(X, N_{1}\right)$ to $\left(Y, N_{2}\right)$ by $\mathcal{F}(X, Y)$.

Theorem 4. $\mathcal{F}(X, Y)$ is a linear space.
Proof. First note that for $T_{1}, T_{2} \in \mathcal{F}(X, Y)$ and $y \in X$, we have $\left(T_{1}+T_{2}\right)(y)=$ $T_{1}(y)+T_{2}(y)$ and $\left(\lambda T_{1}\right)(y)=\lambda T_{1}(y)$. Since T_{1} and T_{2} are strongly fuzzy bounded, then there exist positive numbers M_{1} and M_{2} such that

$$
\begin{aligned}
& N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{1} y, t\right) \geq N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M_{1}}\right) \text { and } \\
& N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{2} y, t\right) \geq N_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, \frac{t}{M_{2}}\right)
\end{aligned}
$$

for all $x_{1}, x_{2}, \ldots, x_{n-1}, y \in X$ and $y_{1}, y_{2}, \ldots, y_{n-1} \in Y$ and for all $t \in \mathbb{R}$. Now for any scalars α, β and for all $x \in X$ we have

$$
\begin{aligned}
& N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1},\left(\alpha T_{1}+\beta T_{2}\right) y, t\right) \\
= & N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, \alpha T_{1}(y)+\beta T_{2}(y), t\right) \\
\geq & \min \left\{\begin{array}{c}
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{1}(\alpha y), \frac{t}{2}\right), \\
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{2}(\beta y), \frac{t}{2}\right)
\end{array}\right\} \\
\geq & \min \left\{\begin{array}{c}
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, \alpha y, \frac{t}{2 M_{1}}\right), \\
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, \beta y, \frac{t}{2 M_{2}}\right)
\end{array}\right\} \\
= & \min \left\{\begin{array}{c}
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2|\alpha| M_{1}}\right) \\
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2|\beta| M_{2}}\right)
\end{array}\right\} .
\end{aligned}
$$

Choose $M=\max \left\{2|\alpha| M_{1}, 2|\beta| M_{2}\right\}+1$. Thus $M \geq 2|\alpha| M_{1}$ and $M \geq 2|\beta| M_{2}$ and this shows that

$$
\frac{t}{2|\alpha| M_{1}} \geq \frac{t}{M} \text { and } \frac{t}{2|\beta| M_{2}} \geq \frac{t}{M}
$$

for all $t \geq 0$. Hence

$$
\begin{aligned}
& N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2|\alpha| M_{1}}\right) \geq N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M}\right) \text { and } \\
& N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2|\beta| M_{2}}\right) \geq N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M}\right)
\end{aligned}
$$

which implies

$$
\min \left\{\begin{array}{c}
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2|\alpha| M_{1}}\right), \\
\\
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2|\beta| M_{2}}\right)
\end{array}\right\} \geq N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M}\right)
$$

Then we have

$$
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1},\left(\alpha T_{1}+\beta T_{2}\right) y, t\right) \geq N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M}\right)
$$

for all $t \geq 0$. If $t<0$, then the relation is obvious.
Thus, there exists $M>0$ such that

$$
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1},\left(\alpha T_{1}+\beta T_{2}\right) y, t\right) \geq N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{n-1}, y \in X, y_{1}, y_{2}, \ldots, y_{n-1} \in Y$ and for all $t \in \mathbb{R}$. This implies that $\alpha T_{1}+\beta T_{2} \in \mathcal{F}(X, Y)$. Hence $\mathcal{F}(X, Y)$ is a linear space.

Definition $10([4])$. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ and $T: X \longrightarrow Y$ be a linear operator. T is said to be weakly fuzzy bounded on X if for any $\alpha \in(0,1)$, there exists $M_{\alpha}>0$ such that for all $x_{1}, x_{2}, \ldots, x_{n-1}, y \in X, y_{1}, y_{2}, \ldots, y_{n-1} \in Y$ and for all $t \in \mathbb{R}$,

$$
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M_{\alpha}}\right) \geq \alpha \Rightarrow N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T y, t\right) \geq \alpha
$$

Let us denote the set of all weakly fuzzy bounded linear operators from a f - n-NLS $\left(X, N_{1}\right)$ to $\left(Y, N_{2}\right)$ by $\mathcal{F}^{\prime}(X, Y)$.

Theorem 5. $\mathcal{F}^{\prime}(X, Y)$ is a linear space.
Proof. First note that for $T_{1}, T_{2} \in \mathcal{F}^{\prime}(X, Y)$ and $y \in X$, we have $\left(T_{1}+T_{2}\right)(y)=$ $T_{1}(y)+T_{2}(y)$ and $\left(\lambda T_{1}\right)(y)=\lambda T_{1}(y)$. Since T_{1} and T_{2} are weakly fuzzy bounded, for all $\alpha \in(0,1)$, there exist positive numbers $M_{\alpha}^{1}, M_{\alpha}^{2}$ such that

$$
\begin{aligned}
& N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M_{\alpha}^{1}}\right) \geq \alpha \Longrightarrow N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{1}(y), t\right) \geq \alpha \\
& N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M_{\alpha}^{2}}\right) \geq \alpha \Longrightarrow N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{2}(y), t\right) \geq \alpha
\end{aligned}
$$

for all $x_{1}, x_{2}, \ldots, x_{n-1}, y \in X, y_{1}, y_{2}, \ldots, y_{n-1} \in Y$ and for all $t \in \mathbb{R}$.
Let k_{1} and k_{2} be any two arbitrary nonzero scalars. Then,

$$
\begin{aligned}
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2\left|k_{1}\right| M_{\alpha}^{1}}\right) & =N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, k_{1} y, \frac{t}{2 M_{\alpha}^{1}}\right) \geq \alpha \\
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2\left|k_{2}\right| M_{\alpha}^{2}}\right) & =N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, k_{2} y, \frac{t}{2 M_{\alpha}^{2}}\right) \geq \alpha
\end{aligned}
$$

Choose $M_{\alpha}=2\left|k_{1}\right| M_{\alpha}^{1}+2\left|k_{2}\right| M_{\alpha}^{2}$. Then

$$
\left.\begin{array}{rl}
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{M_{\alpha}}\right) & =N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2\left|k_{1}\right| M_{\alpha}^{1}+2\left|k_{2}\right| M_{\alpha}^{2}}\right) \geq \alpha \\
& \Longrightarrow\left\{\begin{array}{l}
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2\left|k_{1}\right| M_{\alpha}^{1}}\right) \geq \alpha \\
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, y, \frac{t}{2\left|k_{2}\right| M_{\alpha}^{2}}\right) \geq \alpha
\end{array}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{1}\left(k_{1} y\right), \frac{t}{2}\right) \geq \alpha \\
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{2}\left(k_{2} y\right), \frac{t}{2}\right) \geq \alpha
\end{array}\right. \\
& \Longrightarrow N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1},\left(k_{1} T_{1}+k_{2} T_{2}\right) y, t\right) \geq \alpha
\end{array}\right\}
$$

If $k_{1}=k_{2}=0$, obviously $k_{1} T_{1}+k_{2} T_{2} \in \mathcal{F}^{\prime}(X, Y)$. Hence $\mathcal{F}^{\prime}(X, Y)$ is a linear space.

Theorem 6 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ are $f-n-N L S$ and $T: X \longrightarrow Y$ be a linear operator. If T is strongly fuzzy bounded then it is weakly fuzzy bounded but not conversely.
Definition 11 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ and $T: X \longrightarrow Y$ be a linear operator. T is said to be uniformly bounded if there exists $M>0$ such that for all $\alpha \in(0,1)$,

$$
\left\|y_{1}, y_{2}, \ldots, y_{n-1}, T y\right\|_{\alpha}^{2} \leq M\left\|x_{1}, x_{2}, \ldots, x_{n-1}, y\right\|_{\alpha}^{1}
$$

where $\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{1}$ and $\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{2}$ are α-n-norms of N_{1} and N_{2} respectively.
Theorem 7 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ and $T: X \rightarrow Y$ be a linear operator. Then
(i) T is strongly fuzzy continuous everywhere on X if T is strongly fuzzy continuous at a point $z \in X$.
(ii) T is strongly fuzzy continuous iff T is strongly fuzzy bounded.

Theorem 8 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two f-n-NLS satisfying ($N 7$) and (N8). Let $T: X \longrightarrow Y$ be a linear operator. Then T is strongly fuzzy bounded iff it is uniformly bounded with respect to α-n-norms of N_{1} and N_{2}.

Remark 3. If T is strongly fuzzy bounded then it is sequentially fuzzy continuous on X.

Theorem 9 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ and $T: X \longrightarrow Y$ be a linear operator. If T is sequentially fuzzy continuous at a point then it is sequentially fuzzy continuous on X.
Theorem 10 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n$-NLS and $T: X \longrightarrow Y$ be a linear operator. Then
(i) T is weakly fuzzy continuous everywhere on X if T is weakly fuzzy continuous at a point $y_{0} \in X$.
(ii) T is weakly fuzzy continuous iff T is weakly fuzzy bounded.

Theorem 11 ([4]). Let (X, N_{1}) and (Y, N_{2}) be two $f-n-N L S$ satisfying ($N 7$) and (N8). Let $T: X \longrightarrow Y$ be a linear operator. Then T is weakly fuzzy bounded iff T be bounded w.r.t. α-n-norms of N_{1} and $N_{2}, \alpha \in(0,1)$.

FUZZY n-NORMED LINEAR SPACES

Theorem 12 ([4]). Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two f-n-NLS satisfying (N7) and (N8). Let $T: X \longrightarrow Y$ be a linear operator. If X is of finite dimension then T is weakly fuzzy bounded.

Definition 12. Let (X, N) be a fuzzy n-normed linear space. A subset B of X is said to be the closure of $K \subset X$ if for any $x \in B$, there exists a sequence $\{x(k)\}$ in K such that

$$
\lim _{k \rightarrow \infty} N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x, t\right)=1
$$

for all $t>0$. We denote the set B by \bar{K}.
Definition 13. A subset A of a fuzzy n-normed linear space (X, N) is said to be bounded iff there exist $t>0$ and $0<r<1$ such that

$$
N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)>1-r
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in A$.
Definition 14. A subset A of a fuzzy n-normed linear space (X, N) is said to be compact if any sequence $\{x(k)\}$ in A has a subsequence converging to an element of A.

3. Main Results

Definition 15. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$. A linear operator T : $X \longrightarrow Y$ is called fuzzy compact operator if for every fuzzy bounded subset M of X the subset of $T(M) \subset Y$ is relatively compact, i.e., the fuzzy closure of $T(M)$ is a fuzzy compact set.

Example 2. Let $\left(X,\|\cdot, \cdot, \ldots, \cdot \cdot\|_{1}\right)$ and $\left(Y,\|\cdot, \cdot, \ldots,, \cdot\|_{2}\right)$ be two ordinary n-normed linear spaces, and $T: X \longrightarrow Y$ be a compact operator. Then $T:\left(X, N_{1}\right) \longrightarrow$ $\left(Y, N_{2}\right)$ is a fuzzy compact operator, where N_{1} and N_{2} are the standard fuzzy norms induced by ordinary norms $\|\cdot, \cdot, \ldots,, \cdot\|_{1}$ and $\|\cdot, \cdot, \ldots,, \cdot\|_{2}$, respectively, i.e.,

$$
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=\left\{\begin{array}{cl}
\frac{t}{t+\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|_{1}} & \text { if } t>0, t \in \mathbb{R} \\
0 & \text { if } \\
t \leq 0
\end{array}\right.
$$

and

$$
N_{2}\left(y_{1}, y_{2}, \ldots,, y_{n}, t\right)=\left\{\begin{array}{clc}
\frac{t}{t+\left\|y_{1}, y_{2}, \ldots,, y_{n}\right\|_{2}} & \text { if } & t>0, t \in \mathbb{R} \\
0 & \text { if } & t \leq 0
\end{array}\right.
$$

Theorem 13. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ and $T: X \longrightarrow Y$ be a linear operator. Then T is fuzzy compact iff it maps every fuzzy bounded sequence $\{x(k)\}$ in X onto a sequence $\{T x(k)\}$ in Y which has a fuzzy convergent subsequence.

Proof. Suppose that T be a fuzzy compact operator and $\{x(k)\}$ be a fuzzy bounded sequence in X. The fuzzy closure of $\{T x(k): k \in \mathbb{N}\}$ is a fuzzy compact set. So $\{T x(k)\}$ has a fuzzy convergent subsequence by definition.

Conversely, let A be a fuzzy bounded subset of X. We show that the fuzzy closure of $T(A)$ is fuzzy compact. Let $\{x(k)\}$ be a sequence in the closure of $T(A)$. For given $\varepsilon>0, k \in \mathbb{N}$ and $t>0$, there exists $\{y(k)\}$ in $T(A)$ such that $N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, x(k)-y(k), \frac{t}{2}\right)>1-\varepsilon$. Let $y(k)=T z(k)$, where $z(k) \in A$. Since A is fuzzy bounded set, so is $\{z(k)\}$. On the other hand, since T is a fuzzy compact operator, $\{T z(k)\}$ has a fuzzy convergent subsequence $y\left(k_{i}\right)=T z\left(k_{i}\right)$.

HAKAN EFE AND CEMIL YILDIZ

Let $y\left(k_{i}\right) \longrightarrow y$ for some $y \in Y$. Hence $N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, y\left(k_{i}\right)-y, \frac{t}{2}\right)>1-\varepsilon$ for all $n_{i}>n_{0}$. Then we get

$$
\begin{aligned}
& N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, x\left(k_{i}\right)-y, \frac{t}{2}\right) \\
\geq & \min \left\{\begin{array}{c}
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, x\left(k_{i}\right)-y\left(k_{i}\right), \frac{t}{2}\right), \\
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, y\left(k_{i}\right)-y, \frac{t}{2}\right)
\end{array}\right\} \\
> & 1-\varepsilon
\end{aligned}
$$

for all $n_{i}>n_{0}$. Hence $\left\{x\left(k_{i}\right)\right\}$ is a fuzzy convergent subsequence of $\{x(k)\}$. Thus the fuzzy closure of $T(A)$ is a fuzzy compact set.

Lemma 1. Let (X, N) be a fuzzy n-normed space satisfying ($N^{\prime} 7$) and $\{x(k)\}$ be a sequence in X. Then
$\lim _{k \rightarrow \infty} N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x, t\right)=1$ iff $\lim _{k \rightarrow \infty}\left\|x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x\right\|_{\alpha}=0$
for all $\alpha \in(0,1)$.
Proof. Suppose that $x(k) \xrightarrow{N} x$. Choose $\alpha \in(0,1)$ and $t>0$. Then there exists $k_{0} \in \mathbb{N}$ such that

$$
N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x, t\right)>1-\alpha
$$

for all $k \geq k_{0}$. It follows that

$$
\left\|x_{1}, x_{2}, \ldots, x_{n-1}, x_{k}-x\right\|_{1-\alpha} \leq t
$$

for all $k \geq k_{0}$. Thus

$$
\left\|x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x\right\|_{1-\alpha} \rightarrow 0
$$

Conversely, let

$$
\left\|x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x\right\|_{\alpha} \rightarrow 0
$$

for all $\alpha \in(0,1)$. Fix $\alpha \in(0,1)$ and $t>0$. There exists $k_{0} \in \mathbb{N}$ such that

$$
\wedge\left\{r>0: N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x, t\right) \geq 1-\alpha\right\}<t
$$

for all $k \geq k_{0}$. This implies that

$$
N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k)-x, t\right) \geq 1-\alpha
$$

for all $k \geq k_{0}$, i.e., $x(k) \xrightarrow{N} x$.
Definition 16. Let (X, N) be a fuzzy n-normed space. We define the following subset of X :

$$
B_{\alpha}[x, r]=\left\{y \in X: N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x-y, t\right) \geq \alpha\right\}
$$

where $x_{1}, x_{2}, \ldots, x_{n-1}, x \in X, \alpha \in(0,1)$ and $r>0$.
Theorem 14. Let (X, N) be a fuzzy n-normed space satisfying (N^{7}) and
$N\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right)$ is a continuous function on \mathbb{R}. Then X is finite dimensional iff $B_{\alpha}[x, r]$ is a fuzzy compact set in X, for each $\alpha \in(0,1)$ and $r>0$.

Proof. Let

$$
A_{\alpha}[x, r]=\left\{y \in X:\left\|x_{1}, x_{2}, \ldots, x_{n-1}, x-y\right\|_{\alpha} \leq r\right\}
$$

where $\alpha \in(0,1)$ and $r>0$.
We first show that $B_{\alpha}[x, r]=A_{\alpha}[x, r]$. If $y \in B_{\alpha}[x, r]$, then

$$
N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x-y, t\right) \geq \alpha
$$

Since $\left\|x_{1}, x_{2}, \ldots, x_{n-1}, x-y\right\|_{\alpha} \leq r$, then $y \in A_{\alpha}[x, r]$.
Now if $y \in A_{\alpha}[x, r]$, then
$\left\|x_{1}, x_{2}, \ldots, x_{n-1}, x-y\right\|_{\alpha} \leq r$ or $\wedge\left\{t>0: N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x-y, t\right) \geq \alpha\right\} \leq r$.
If

$$
\wedge\left\{t>0: N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x-y, t\right) \geq \alpha\right\}<r
$$

then

$$
N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x-y, t\right) \geq \alpha
$$

Thus $y \in B_{\alpha}[x, r]$.
If

$$
\wedge\left\{t>0: N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x-y, t\right) \geq \alpha\right\}=r
$$

there exists a sequence $\left\{t_{k}\right\}$ in \mathbb{R} such that $t_{k} \rightarrow r$, and $N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x-y, t_{k}\right) \geq$ α. By continuity of $N\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right)$ we get

$$
N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x-y, r\right)=\lim _{k \rightarrow \infty} N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x-y, t_{k}\right) \geq \alpha
$$

Hence $y \in B_{\alpha}[x, r]$ and therefore $B_{\alpha}[x, r]=A_{\alpha}[x, r]$.
Now suppose that $\operatorname{dim} X<\infty, x_{1}, x_{2}, \ldots, x_{n-1}, x \in X$, and $r>0$. Choose the sequence $\{x(k)\}$ in $B_{\alpha}[x, r]$. It is clear that $A_{\alpha}[x, r]$ is a compact subset of $\left(X,\|\cdot, \cdot, \ldots, \cdot \cdot\|_{\alpha}\right)$. Hence there exists a subsequence $\left\{x\left(k_{i}\right)\right\}$ of $\{x(k)\}$ and $v \in$ $A_{\alpha}[x, r]$ such that $x\left(k_{i}\right) \xrightarrow{\|\cdot \cdot, \ldots, \cdot \cdot\|_{\alpha}} v$. Since all norms are equivalent in finite dimensional spaces, $x\left(k_{i}\right) \xrightarrow{\|\cdot \cdot, \ldots, \cdot\|_{\beta}} v$, for all $\beta \in(0,1)$. Thus, we obtain $x\left(k_{i}\right) \xrightarrow{N} v$ by Lemma 1. Since $B_{\alpha}[x, r]=A_{\alpha}[x, r]$, we have $v \in B_{\alpha}[x, r]$.

Conversely, let $B_{\alpha}[x, r]$ be fuzzy compact. To show that X is finite dimensional, it suffices to prove that $A_{\alpha}[x, r]$ is compact with respect to α-n-norm. Choose a sequence $\{x(k)\}$ in $A_{\alpha}[x, r]$. Since $B_{\alpha}[x, r]$ is fuzzy compact, it has a fuzzy convergent subsequence $\left\{x\left(k_{i}\right)\right\}$. Lemma 1 implies that $\left\{x\left(k_{i}\right)\right\}$ is convergent under $\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}$. Thus $A_{\alpha}[x, r]$ is compact in n-normed linear space $\left(X,\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}\right)$ which shows that X is finite dimensional.

Lemma 2. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ satisfying ($N 7$) and $T: X \longrightarrow$ Y be a fuzzy compact operator. Then

$$
T:\left(X,\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{1}\right) \rightarrow\left(Y,\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{2}\right)
$$

is an ordinary compact operator for all $\alpha \in(0,1)$.
Proof. We show that for each bounded sequence $\{x(k)\}$ in $\left(X,\|\cdot, \cdot, \ldots,, \cdot\| \|_{\alpha}^{1}\right)$, the sequence $\{T x(k)\}$ has a convergent subsequence in $\left(Y,\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{2}\right)$. Let $\{x(k)\}$ be a bounded sequence in $\left(X,\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{1}\right)$. There exists $M>0$ such that

$$
\left\|x_{1}, x_{2}, \ldots, x_{n-1}, x(k)\right\|_{\alpha}^{1}<M
$$

for all $k \in \mathbb{N}$. Hence

$$
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k), M\right) \geq \alpha
$$

HAKAN EFE AND CEMIL YILDIZ
for all k, that is $\{x(k)\}$ is fuzzy bounded. Thus $\{T x(k))\}$ has a fuzzy convergent subsequence $\left\{T x\left(k_{i}\right)\right\}$. By Lemma $1,\left\{T x\left(k_{i}\right)\right\}$ is convergent under $\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{2}$.
Theorem 15. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ satisfying ($N 7$) and (N8). Then
(a) Every fuzzy compact operator $T:\left(X, N_{1}\right) \longrightarrow\left(Y, N_{2}\right)$ is weakly fuzzy continuous.
(b) If $\operatorname{dim} X=\infty$ then the identity operator $I:\left(X, N_{1}\right) \longrightarrow\left(X, N_{1}\right)$ is not a fuzzy compact operator.

Proof. (a) Choose $\alpha \in(0,1)$. Let $\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{1}$ and $\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{2}$ are α-n-norms on X and Y corresponding to the fuzzy n-norms N_{1} and N_{2}, respectively. By Lemma 2 ,

$$
T:\left(X,\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{1}\right) \longrightarrow\left(Y,\|\cdot, \cdot, \ldots,, \cdot\|_{\alpha}^{2}\right)
$$

is a compact operator. Since compact operator is bounded, there exists $M_{\alpha}>0$ such that

$$
\left\|y_{1}, y_{2}, \ldots, y_{n-1}, T x\right\|_{\alpha}^{2} \leq M_{\alpha}\left\|x_{1}, x_{2}, \ldots, x_{n-1}, x\right\|_{\alpha}^{1}
$$

Hence T is weakly fuzzy bounded by Theorem 11. Now Theorem 10(ii) implies that T is weakly fuzzy bounded.
(b) The identity operator I maps $B_{\alpha}[0,1]$ to itself. Suppose on the contrary that I is a fuzzy compact operator. Then $\bar{B}[0,1]$ is fuzzy compact for all $\alpha \in(0,1)$. Now $\bar{B}_{\alpha}[0,1] \subseteq A_{\alpha}[0,1]=B_{\alpha}[0,1]$ implies that $B_{\alpha}[0,1]$ is closed and so fuzzy compact. Thus X is finite dimensional by Theorem 14, which is a contradiction.

Theorem 16. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$. Then the set of all fuzzy compact linear operators from X to Y is a linear subspace of $\mathcal{F}^{\prime}(X, Y)$.

Proof. Suppose that T_{1} and T_{2} are fuzzy compact linear operators from X to Y and $\{x(k)\}$ be any fuzzy bounded sequence in X. Then the sequence $\left\{T_{1} x(k)\right\}$ has a fuzzy convergent subsequence $\left\{T_{1} x\left(k_{i}\right)\right\}$. The sequence $\left\{T_{2} x\left(k_{i}\right)\right\}$ also has a fuzzy convergent subsequence $\left\{T_{2} z(k)\right\}$. Hence $\left\{T_{1} z(k)\right\}$ and $\left\{T_{2} z(k)\right\}$ are fuzzy convergent sequences. Let $T_{1} z(k) \longrightarrow u$, and $T_{2} z(k) \longrightarrow v$. If $t>0$, we have

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1},\left(T_{1}+T_{2}\right) z(k)-u-v, t\right) \\
\geq & \lim _{k \rightarrow \infty} \min \left\{\begin{array}{c}
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{1} z(k)-u, \frac{t}{2}\right) \\
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{2} z(k)-v, \frac{t}{2}\right)
\end{array}\right\} .
\end{aligned}
$$

for all $y_{1}, y_{2}, \ldots, y_{n-1} \in Y$. Thus, $\lim _{k \rightarrow \infty} N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1},\left(T_{1}+T_{2}\right) z(k)-u-\right.$ $v, t)=1$, for all $t>0$. This implies $T_{1}+T_{2}$ is a fuzzy compact operator. Now if $T_{1} x\left(k_{i}\right) \longrightarrow y$, then

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, \alpha T_{1} x\left(k_{i}\right)-\alpha y, t\right) \\
= & \lim _{k \rightarrow \infty} N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T_{1} x\left(k_{i}\right)-y, \frac{t}{|\alpha|}\right)=1,
\end{aligned}
$$

for all $\alpha \in \mathbb{R} \backslash\{0\}$, and $t>0$. Hence αT_{1} is also a fuzzy compact operator which completes the proof.

Theorem 17. Let (X, N) be a $f-n-N L S, T: X \longrightarrow X$ be a fuzzy compact linear operator, and $S: X \rightarrow X$ be a strongly fuzzy continuous linear operator. Then $S T$ and $T S$ are fuzzy compact operators.

FUZZY n-NORMED LINEAR SPACES

Proof. Let $\{x(k)\}$ be any fuzzy bounded sequence in X. Then $\{T x(k)\}$ has a fuzzy convegent subsequence $\left\{T x\left(k_{i}\right)\right\}$. Let $\lim _{k \rightarrow \infty} T x\left(k_{i}\right)=y$. Since S is strongly fuzzy continuous, by Theorem 2 we have $S T\left(x\left(k_{i}\right)\right) \rightarrow S(y)$. Hence $S T(x(k))$ has a fuzzy convergent subsequence. This proves $S T$ is fuzzy compact.

Next we show that $T S$ is fuzzy compact. Let choose any fuzzy bounded sequence $\{x(k)\}$ in X. Then there exist $t_{0}>0$ and $r_{0} \in(0,1)$ such that

$$
N_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k), t_{0}\right)>1-r_{0}
$$

for all $k \geq 1$. By Theorem 7 (ii) we conclude that the operator S is a strongly fuzzy bounded linear operator. Thus there exists $M>0$ such that

$$
\left.N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, S x(k)\right), t_{0} M\right)>1-r_{0}
$$

for all k. It follows that $\{S x(k)\}$ is fuzzy bounded sequence in $S(X)$. Because T is fuzzy compact, $\{T S x(k)\}$ has a fuzzy convergent subsequence. This completes the proof.

Lemma 3. Let (X, N) be a $f-n-N L S$ satisfying (N^{7}), $N\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right)$ be a continuous function on \mathbb{R} and $\operatorname{dim} X<\infty$. Then each fuzzy bounded sequence $\{x(k)\}$ in (X, N) has a fuzzy convergent subsequence.

Proof. Let $\{x(k)\}$ be a fuzzy bounded sequence in (X, N). There exist $t_{0}>0$ and $r_{0} \in(0,1)$ such that

$$
N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k), t_{0}\right)>1-r_{0}
$$

for all $k \in \mathbb{N}$. Hence $x(k) \in B_{1-r_{0}}\left[0, t_{0}\right]$, for all $k \in \mathbb{N}$. By Theorem $14, B_{1-r_{0}}\left[0, t_{0}\right]$ is a fuzzy compact set, so $\{x(k)\}$ has a fuzzy convergent subsequence.

Theorem 18. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ satisfying (N^{7}) and (N8). If $T: X \longrightarrow Y$ is a linear operator where $\operatorname{dim} X<\infty$, then T is weakly fuzzy continuous.

Proof. It is clear from Theorem 12 and Theorem 10(ii).
Theorem 19. Let $\left(X, N_{1}\right)$ and $\left(Y, N_{2}\right)$ be two $f-n-N L S$ satisfying ($N 7$) and
$N_{2}\left(y_{1}, y_{2}, \ldots, y_{n}, \cdot\right)$ is continuous function on \mathbb{R}, and $T:\left(X, N_{1}\right) \longrightarrow\left(Y, N_{2}\right)$ a linear operator. Then the following hold:
(a) If T is weakly fuzzy bounded and $\operatorname{dim} T(X)<\infty$, then T is a fuzzy compact operator.
(b) In addition if $\left(X, N_{1}\right)$ and (Y, N_{2}) satisfying (N8) and $\operatorname{dim} T(X)<\infty$, then T is a fuzzy compact operator.

Proof. (a) Let $\{x(k)\}$ be a fuzzy bounded sequence of $\left(X, N_{1}\right)$. There exist $t_{0}>0$ and $r_{0} \in(0,1)$ such that

$$
N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k), t_{0}\right)>1-r_{0}
$$

for all $k \in \mathbb{N}$. Since T is weakly fuzzy bounded, there exists $M_{1-r_{0}}>0$ such that for all k,

$$
\begin{aligned}
N\left(x_{1}, x_{2}, \ldots, x_{n-1}, x(k), t_{0}\right) & \geq 1-r_{0} \Rightarrow \\
N_{2}\left(y_{1}, y_{2}, \ldots, y_{n-1}, T x(k), \frac{t_{0}}{M_{1-r_{0}}}\right) & \geq 1-r_{0} .
\end{aligned}
$$

It follows that $\{T x(k)\}$ is a fuzzy bounded sequence in $T(X)$. Since $\operatorname{dim} T(X)<\infty$, the sequence $\{T x(k)\}$ has a convergent subsequence by Lemma 3. Hence T is fuzzy compact.
(b) T is weakly fuzzy continuous by Theorem 18. Furthermore Theorem 10(ii) implies that T is weakly fuzzy bounded. Since $\operatorname{dim} T(X)<\infty$, by the (a) we conclude that T is a fuzzy compact operator.

References

[1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003), $687-705$.
[2] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005), $513-547$.
[3] T. Bag and S. K. Samanta, Product fuzzy normed linear spaces, J. Fuzzy Math. 13 (3) (2005), 545-565.
[4] H.Efe, Continuous mappings and bounded linear operators in fuzzy n-normed linear spaces, Ars Combinatoria, accepted.
[5] S. Gähler, Lineare 2-normierte Räume, Math.Nachr. 28 (1964), 1 - 43 .
[6] S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume, I, Math.Nachr. 40 (1969), $165-189$.
[7] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (10) (2001), 631-639.
[8] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math. 29 (4) (1996), $739-744$.
[9] F. Lael and K. Nourouzi, Fuzzy compact linear operators, Chaos, Solitons and Fractals, doi: 10.1016/j.chaos.2006.04.055.
[10] R. Malčeski, Strong n-convex n-normed spaces, Mat. Bilten 21 (47) (1997), $81-102$.
[11] A. Misiak, n-inner product spaces, Math.Nachr. 140(1989), $299-319$.
[12] Al. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. Math. Sci. 24(2005), $3963-3977$.
(Hakan Efe), Department of Mathematics, Faculty of Science and Arts, Gazi UniverSity, Teknikokullar, 06500 Ankara, Turkey

E-mail address: hakanefe@gazi.edu.tr, hakanefe1972@yahoo.com.tr
(Cemil Yildiz), Department of Mathematics, Faculty of Science and Arts, Gazi University, Teknikokullar, 06500 Ankara, Turkey

E-mail address: cyildiz@gazi.edu.tr

A Note on Shape Preserving Weighted Uniform Approximation *

George A. Anastassiou, Sorin G. Gal and Michael I. Ganzburg

Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu
Department of Mathematics and Computer Science
University of Oradea
Str. Armatei Romane 5
410087 Oradea, ROMANIA
galso@uoradea.ro
and
Department of Mathematics
Hampton University
Hampton, Virginia 23668, USA
michael.ganzburg@hamptonu.edu

Abstract

In this paper, new results concerning shape preserving weighted uniform approximation on the real line are presented.

[^11]AMS 2000 Mathematics Subject Classification : 41A10, 41A29, 41A25.
Key words and phrases : Weighted polynomial approximation on the real line, shape preserving approximation.

1 Introduction

Shape preserving approximation by real polynomials of real variables on the compact interval $[a, b]$ in the classical non-weighted $L^{p}[a, b]$-norms with $0<p \leq \infty$, is a well developed topic in mathematics (for a comprehensive treatment of the subject see for example the very recent book [3]).

But papers concerning shape preserving weighted approximation on the real line seem to be almost nonexistent. In fact, the only paper we found on the topic is the very recent paper [5].

The aim of this paper is to show that the so-called L-positive approximation method developed in [1] is powerful enough to produce new results in shape preserving weighted approximation.

2 Shape Preserving Weighted Uniform Approximation

For a continuous weight function $w: \mathbb{R} \rightarrow(0,1]$, define the weighted space

$$
C_{w}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; f-\text { continuous on } \mathbb{R} \text { and } \lim _{x \rightarrow \pm \infty} f(x) w(x)=0\right\}
$$

It is a linear space endowed with the norm $\|f\|_{C_{w}(\mathbb{R})}=\sup \{w(x)|f(x)| ; x \in$ $\mathbb{R}\}$.

Also, for any $r \in \mathbb{N} \bigcup\{0\}$ define the space

$$
C_{w}^{r}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; f^{(\gamma)} \in C_{w}(\mathbb{R}), \text { for all } \gamma=0,1, \ldots, r\right\}
$$

endowed with the norm $\|f\|_{C_{w}^{r}}=\max \left\{\left\|f f^{(\gamma)}\right\|_{C_{w}(\mathbb{R})} ; \gamma=0,1, \ldots, r\right\}$. Clearly we have $C_{w}^{0}(\mathbb{R})=C_{w}(\mathbb{R})$.

In all what follows we will consider the exponential (Freud) weight

$$
w_{\alpha}(x)=e^{-|x|^{\alpha}}, \text { with } \alpha \geq 1 .
$$

The general results in [1] will allow us to obtain in an easy way shape preserving results in weighted approximation. Thus, first we obtain the following results in simultaneous shape preserving weighted approximation.

Theorem 2.1. Let $r \geq 0$ be an even number. For any $f \in C_{w_{\alpha}}^{r}(\mathbb{R})$ satisfying $f^{(j)}(x) \geq 0$, for all $x \in \mathbb{R}$ and $j=0,2,4, \ldots, r$, there exists a sequence of polynomials $\left(P_{n}\right)_{n}$ with degree $\left(P_{n}\right) \leq n$, such that $P_{n}^{(j)}(x) \geq 0$, for all $x \in \mathbb{R}, n \in \mathbb{N}$ and $j=0,2,4, \ldots, r$ and

$$
\left\|f-P_{n}\right\|_{C_{w_{\alpha}}^{r}} \leq C E_{n}\left(f ; C_{w_{\alpha}}^{r}(\mathbb{R})\right), \text { for all } n \in \mathbb{N},
$$

where $C>0$ is independent of n and f and

$$
E_{n}\left(f ; C_{w_{\alpha}}^{r}(\mathbb{R})\right):=\inf \left\{\|f-P\|_{C_{w_{\alpha}}^{r}} ; P \in \mathcal{P}_{n}\right\}
$$

Proof. If we fix r an even number and in Corollary 2.1 in [1] we take $L_{\gamma}(f)=f^{(\gamma)}, \gamma=0,2,4, \ldots, r, F=C_{w_{\alpha}}^{r}(\mathbb{R})$ and define $\rho(x)=\sum_{j=0}^{r} x^{2 j} \in$ $C_{w_{\alpha}}^{r}(\mathbb{R})$, then we immediately obtain the conclusion in the theorem.

As an immediate consequence we obtain the following result.
Corollary 2.2. Let $r \geq 0$ be an even number and $f \in C_{w_{\alpha}}^{r}(\mathbb{R})$ satisfying $f^{(j)}(x) \geq 0$, for all $x \in \mathbb{R}$ and $j=0,2,4, \ldots, r$. There exists a sequence of polynomials $\left(P_{n}\right)_{n \in \mathbb{N}}$ with degree $\left(P_{n}\right) \leq n$, such that for every $j=0,2,4, \ldots, r$ we have

$$
\lim _{n \rightarrow \infty}\left\|P_{n}^{(j)}-f^{(j)}\right\|_{C_{w_{\alpha}}(\mathbb{R})}=0 \text { and } P_{n}^{(j)}(x) \geq 0, \forall x \in \mathbb{R}
$$

Proof. Taking into account Theorem 2.1, clearly that it is sufficient to prove that for any fixed even number r, we have

$$
\lim _{n \rightarrow \infty} E_{n}\left(f ; C_{w_{\alpha}}^{r}(\mathbb{R})\right)=0
$$

For this purpose, let us denote by Q_{n} a polynomial of degree $\leq n$ attached to f such that

$$
\left\|f-Q_{n}\right\|_{C_{w_{\alpha}}(\mathbb{R})} \leq c \inf _{Q \in \mathcal{P}_{n}}\|f-Q\|_{C_{w_{\alpha}}(\mathbb{R})}
$$

with a constant $c \geq 1$. We clearly have $\lim _{n \rightarrow \infty}\left\|f-Q_{n}\right\|_{C_{w_{\alpha}}(\mathbb{R})}=0$.

But according to a classical result of Freud ([2, Theorem 4.1]) (see also for example [4, p. 90, Theorem 4.1.7]), this immediately will imply that

$$
\lim _{n \rightarrow \infty}\left\|f^{(j)}-Q_{n}^{(j)}\right\|_{C_{w_{\alpha}}(\mathbb{R})}=0, \text { for all } 1 \leq j \leq r
$$

Since

$$
E_{n}\left(f ; C_{w_{\alpha}}^{r}(\mathbb{R})\right) \leq \max _{0 \leq j \leq r}\left\{\left\|f^{(j)}-Q_{n}^{(j)}\right\|_{C_{w_{\alpha}}(\mathbb{R})}\right\},
$$

passing to limit with $n \rightarrow \infty$ we get the desired conclusion.
Remark. Given $r \in \mathbb{N}$ and f with $f^{(r)} \geq 0$ on \mathbb{R} and denoting

$$
E_{n}^{r}\left(f, C_{w_{\alpha}}(\mathbb{R})\right):=\inf \left\{\|f-P\|_{C_{w_{\alpha}}(\mathbb{R})} ; P \in \mathcal{P}_{n}, P^{(r)}(x) \geq 0\right\}
$$

the main result in [5, Theorem 1] is that we have

$$
\lim _{n \rightarrow \infty} E_{n}^{r}\left(f, C_{w_{\alpha}}(\mathbb{R})\right)=0
$$

or equivalently, that there exists a sequence of polynomials $\left(P_{n}\right)_{n \in \mathbb{N}}$ with degree $\left(P_{n}\right) \leq n$, such that we have

$$
\lim _{n \rightarrow \infty}\left\|P_{n}-f\right\|_{C_{w_{\alpha}}(\mathbb{R})}=0 \text { and } P_{n}^{(r)}(x) \geq 0, \forall x \in \mathbb{R}
$$

It is clear that for even $r \in \mathbb{N}$, Corollary 2.2 is a simultaneous approxi-mation-type result corresponding to Theorem 1 in [5].

Now, if for fixed $\delta \geq 0$ we define as in $\left[1, \mathrm{p}\right.$. 483] the set $M_{\delta}(\mathbb{R})$ of all δ-increasing functions, by the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the property

$$
\frac{f(x)-f(\gamma)}{x-\gamma} \geq 0, \text { for all } x, \gamma \in \mathbb{R},|x-\gamma| \geq \delta, x \neq \gamma
$$

applying Corollary 2.2 in [1] we immediately obtain the following.
Theorem 2.2. For any $\delta>0, f \in C_{w_{\alpha}}(\mathbb{R}) \bigcap M_{\delta}(\mathbb{R})$, there exists a sequence of polynomials $\left(P_{n}\right)_{n}$ with degree $\left(P_{n}\right) \leq n$ such that $P_{n} \in M_{\delta}(\mathbb{R})$ for all $n \in \mathbb{N}$ and

$$
\left\|f-P_{n}\right\|_{w_{\alpha}} \leq C E_{n}\left(f ; C_{w_{\alpha}}(\mathbb{R})\right), \text { for all } n \in \mathbb{N}
$$

where $C>0$ is independent of f and n.
Remarks. 1). Theorem 2.2 is the weighted correspondent of the nonweighted approximation result in [1, Corollary 3.6].
2) In fact, all the applicative results in the Sections 3 and 4 in [1] can be re-written in the weighted approximation setting, at least for Freud-type weights of one or several variables.

References

[1] Anastassiou, G.A. and Ganzburg, M.I., L-positive approximation, Romanian J. Pure and Applied Math., XLIII(1998), No. 5-6, 475-494.
[2] Freud, G., On Markov-Bernstein-type inequalities and their applications, J. Aprox. Theory, 19(1977), 23-37.
[3] Gal, S.G., Shape Preserving Approximation by Real and Complex Polynomials, Birkhauser Publ., Boston, 2008.
[4] Mhaskar, H.N., Introduction to the Theory of Weighted Polynomial Approximation, World Scientific, Series in Approximations and Decompositions, vol. 7, Singapore-New Jersey-London-Hong Kong, 1996.
[5] Maizlish, O., Shape preserving approximation on the real line with exponential weights, J. Approx. Theory, 157(2009), 127-133.

STABLE MIXTURE MODEL WITH DEPENDENT STATES FOR FINANCIAL RETURN SERIES EXHIBITING SHORT HISTORIES AND PERIODS OF STRONG PASSIVITY

AUDRIUS KABAŠINSKAS, SVETLOZAR T. RACHEV, LEONIDAS SAKALAUSKAS, WEI SUN, AND IGORIS BELOVAS

Abstract

The paper provides some analysis solutions for financial return series exhibiting short histories and periods of strong passivity. The mixedstable law is used to fit the forex data and the self-similarity analysis is made as well. The power-corelation measure is used to describe the relation between the presented series.

1. Introduction

Adequate distributional fitting of empirical financial series for financial risk factors, such as asset returns, fix income rates, FX-rates, implied volatilities, etc., has a great influence on forecasting and investment decisions. Gaussian models were the first to be applied and became the cornerstone of much of financial economic theory. However, there is no sufficient empirical evidence that the classical Gaussian models adequately describe the behavior of financial series. More specifically, real-world financial time series are often characterized by skewness, kurtosis, heavy tails, self-similarity and multifractality. Alternative distributions have been proposed. One distribution supported by empirical evidence, first observed more than 45 years ago by Mandelbrot (1963), is the stable distribution. The advantages of the stable distribution for modeling financial risk factors are now well documented (see, for example, Rachev and Mitnik, 2000 and Rachev et al., 2005).

A limitation of the wide spread usage of stable distributions in the financial industry is that, with the exception of a few special cases, they do not have analytical distribution and density functions. They are however easily described by their characteristic functions (CF). Today, this limitation is overcome due to the availability of various numerical methods to estimate the parameters of the stable distribution (see Rachev and Mitnik, 2000, Stoyanov and Racheva-Iotova, 2004, and Nolan, 2007).

In this paper, we look at two specific problems associated with the analysis of the distribution of assets financial risk factors: the short series problem and the stagnation problem. To overcome the short series problem, the bootstrap method can be employed (see Hesterberg et al., 2003). Bootstrapping is a method for estimating the distribution of an estimator or test statistic by treating the data as if they were the population of interest. That is, the bootstrap method allows one to "create" from the short series a long enough series such that the series exhibits

[^12]multifractality and self-similarity, two characteristics that have been often observed for real-world financial risk factors.

The stagnation problem is due to the fact that a time series for some financial risk factors exhibit extremely strong passivity. That is, for some time periods, the financial risk factor does not change because there are no transactions. Assets such as corporate bonds, real estate, and illiquid stocks exhibit this trait, as well as the market for foreign exchange (forex). The same is valid for some implied volatility time series. The stagnation problem, which can also be referred to as the zero financial return/rate/volatility problems, is potentially more serious than it may seem. In this paper, we provide a model for dealing with this problem. We do so by including the following additional condition into the traditional (continuously distributed random variable modeling) model: The random variable is equal to zero with a certain (rather high) probability, otherwise it is distributed by the continuous (normal, stable etc.) law. More formally, we can say that we are extending a continuous model to the mixed one (probability mixture model).

Our model is applied to various daily FX and implied volatility time series and the distribution used is the stable distribution. After examining more than 20,000 risk factors of a large Hedge Fund (HF) we were offered the selected 14 time series that are difficult to be modeled with other classical methods. Those series are daily implied volatilities and FX-rates. We fit stable distribution using maximal likelihood method (MLE). Goodness of fit is verified by the Anderson-Darling distributional adequacy test. The stability is also tested by the homogeneity test, based on the fundamental property of stable laws. Unfortunately, because of the high probability of zero value (financial risk factor is equal to zero), continuous distribution fitting tests (Anderson-Darling, Kolmogorov-Smirnov, etc) are hardly applicable (they are used only for continuous distributions). Since the mixed-stable is not a continuous model, in this paper the Koutrouvelis goodness-of-fit, test based on the empirical characteristic function and modified χ^{2} (Romanovski) test were used.

Similarly with emerging stock markets Belov et al. (2006), the data set we are using exhibits long strings of zeros and heavy tailed distributed values outside the zero-strings.

Section 2.3 deals with the distributional analysis of constancy period lengths of zeros. The empirical study of the 14 time series and modeling experiments have showed that constancy period lengths are distributed by the Hurwitz zeta distribution instead of the commonly used geometric distribution. Considering these results an improved mixed-stable model with dependent states of the logchanges is proposed.

When constructing a portfolio, it is essential to determine relationships between underlying financial risk factors. In classical economics and statistics (i.e., where the data have finite first and second moments), the relationship between random variables (log-volatility changes, log-FX rates, returns etc.) is characterized by covariance or correlation. However under the assumption of stability (non-Gaussian stable models) covariance and correlation (Pearson correlation coefficient) cannot be applied, since the variance (if the index of stability $\alpha<2$) and the mean (if the index of stability $\alpha \leqslant 1$) do not exist. In this case, we can apply rank correlation coefficients (ex. Spearman or Kendall [19, 20]) or the contingency coefficient.

STABLE MIXTURE MODEL

Under the assumption of stability, it is reasonable to apply generalized covariance coefficients - codifference [33] or power correlation measures [5].

2. Methodology

Quantative analysis methods of financial data (returns, rates, log-volatility changes, etc.) usually start with its distributional description and empirical parameter estimation. But in problematic cases, e.g. some analyzed value repeats numerous times, and traditional analysis cannot be accomplished. Theoretically, probability that continuous random variable X is equal to any value a supposed to be equal 0 , i.e. $P(X=a)=0$, but in practice (in stock and forex markets, computer networks etc.) this rule is broken $[2,3,4,5]$ and [18]. In such cases none of the continuous distributions can be used to describe the given data series. This problem is poorly analyzed in literature, but one approach was proposed by Belovas et al. [2]. In this paper we borrow the main ideas from [2] applied to the new data of interest to us.

We analyze the following random variables

$$
X_{i}=\log P_{i+1}-\log P_{i}
$$

where P_{i} is either implied volatility value at day i, or FX-rate at day i.
We start the analysis of our data set of 14 time series with empirical parameters estimation (mean, standard deviation, skewness, kurtosis etc.) and goodness-of-fit hypothesis testing ${ }^{1}$ (Anderson-Darling). Our further analysis includes:
(1) fit alternative non-Gaussian distributions, e.g. alpha-stable, hyperbolic etc.;

- in case the data are α-stable distributed, with alpha less than 2 (second moment of the random variable do not exist), relations between series are discussed;
(2) analyzing the self-similarity and multifractality of our time-series and calculating Hurst index H. Recall that for Gaussian processes, $H=0.5$ indicates Brownian motion; $0.5<H<1$ indicates long time memory processes and "persistent behavior"; $0<H<0.5$ shows "anti-persistent behavior", see for example [33];
(3) calculating how many times the time series value is equal to zero and fitting the mixed distribution to the data. We are also analyzing the behavior of zeros in the series (how they are distributed and occur in the series, are they random, how they can be simulated, etc.).
2.1. The stable distributions and an overview of their properties. Following the well-known definition, see [32, 33], a r.v. X has stable distribution and denoted

$$
X \stackrel{d}{=} S_{\alpha}(\sigma, \beta, \mu)
$$

where S_{α} is the probability density function, if X has a characteristic function of the form:

$$
\phi(t)=\left\{\begin{array}{l}
\exp \left\{-\sigma^{\alpha} \cdot|t|^{\alpha} \cdot\left(1-i \beta \operatorname{sgn}(t) \tan \left(\frac{\pi \alpha}{2}\right)\right)+i \mu t\right\}, \text { if } \alpha \neq 1 \\
\exp \left\{-\sigma \cdot|t| \cdot\left(1+i \beta \operatorname{sgn}(t) \frac{2}{\pi} \cdot \log |t|\right)+i \mu t\right\}, \text { if } \alpha=1
\end{array} .\right.
$$

Each stable distribution is described by 4 parameters: the first one and most important is the stability index $\alpha \in(0 ; 2]$, which is essential when characterizing

[^13]
A. KABAŠINSKAS, S. RACHEV, L. SAKALAUSKAS, W. SUN, AND I. BELOVAS

financial data. The others, respectively are: skewness $\beta \in[-1,1]$, a position $\mu \in \mathbf{R}$, the parameter of scale $\sigma>0$.

The probability density function is

$$
p(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \phi(t) \cdot \exp (-i x t) d t
$$

In the general case, this function cannot be expressed in closed form. The infinite polynomial expressions of the density function are well known, but it is not very useful for Maximal Likelihood Estimation (MLE) because of the error estimation in the tails, the difficulties with truncating the infinite series, and so on. We use an integral expression of the PDF in standard parameterization

$$
p(x, \alpha, \beta, \mu, \sigma)=\frac{1}{\pi \sigma} \int_{0}^{\infty} e^{-t^{\alpha}} \cdot \cos \left(t \cdot\left(\frac{x-\mu}{\sigma}\right)-\beta t^{\alpha} \tan \left(\frac{\pi \alpha}{2}\right)\right) d t .
$$

Figure 1. Logarithm of the probability density function $S_{1.5}(1,0,0)$

It is important to note that the Fourier integrals are not always convenient to calculate PDF because the integrated function oscillates (Figure 1). That is why a new Zolotarev-type formula is proposed which does not have this problem:

$$
\begin{gathered}
p(x, \alpha, \beta, \mu, \sigma)=\left\{\begin{array}{l}
\frac{\alpha\left|\frac{x-\mu}{\sigma}\right| \frac{1}{\alpha-1}}{2 \sigma \cdot|\alpha-1|} \int_{-\theta}^{1} U_{\alpha}(\varphi, \theta) \exp \left\{-\left|\frac{x-\mu}{\sigma}\right|^{\frac{a}{\alpha-1}} U_{\alpha}(\varphi, \theta)\right\} d \varphi, \text { if } x \neq \mu \\
\frac{1}{\pi \sigma} \cdot \Gamma\left(1+\frac{1}{\alpha}\right) \cdot \cos \left(\frac{1}{\alpha} \arctan \left(\beta \cdot \tan \left(\frac{\pi \alpha}{2}\right)\right)\right), \text { if } x=\mu
\end{array}\right. \\
U_{\alpha}(\varphi, \vartheta)=\left(\frac{\sin \left(\frac{\pi}{2} \alpha(\varphi+\vartheta)\right)}{\cos \left(\frac{\pi \varphi}{2}\right)}\right)^{\frac{\alpha}{1-\alpha}} \cdot\left(\frac{\cos \left(\frac{\pi}{2}((\alpha-1) \varphi+\alpha \vartheta)\right)}{\cos \left(\frac{\pi \varphi}{2}\right)}\right),
\end{gathered}
$$

where $\theta=\arctan \left(\beta \tan \frac{\pi \alpha}{2}\right) \frac{2}{\alpha \pi} \cdot \operatorname{sgn}(x-\mu)($ for properties see $[2,3])$.
If $\mu=0$ and $\sigma=1$, then $p(x, \alpha, \beta)=p(-x, \alpha,-\beta)$.

A stable r.v. exhibit two important properties (see [18]):
(1) If $X_{1}, X_{2}, \ldots, X_{n}$ are independent r.vs. distributed as $S_{\alpha}(\sigma, \beta, \mu)$, then $\sum_{i=1}^{n} X_{i}$ will be distributed as $S_{\alpha}\left(\sigma \cdot n^{1 / a}, \beta, \mu \cdot n\right)$.
(2) If $X_{1}, X_{2}, \ldots, X_{n}$ are independent r.vs. distributed as $S_{\alpha}(\sigma, \beta, \mu)$, then

$$
\sum_{i=1}^{n} X_{i} \stackrel{d}{=}\left\{\begin{array}{l}
n^{1 / \alpha} \cdot X_{1}+\mu \cdot\left(n-n^{1 / \alpha}\right), \text { if } \alpha \neq 1 \\
n \cdot X_{1}+\frac{2}{\pi} \cdot \sigma \cdot \beta \cdot n \ln n, \text { if } \alpha=1
\end{array}\right.
$$

Another important property is the following one:
Let $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ be independent identically distributed random variables and

$$
\eta_{n}=\frac{1}{B_{n}} \sum_{k=1}^{n} X_{k}+A_{n}
$$

where $B_{\mathrm{n}}>0$ and A_{n} are constants of scaling and centering. If $F_{n}(x)$ is a cumulative distribution function of the r.v. η_{n}, then the asymptotic distribution of functions $F_{n}(x)$, as $n \rightarrow \infty$, is stable. Furthermore, for any stable distribution $F(x)$, there exists a series of random variables η_{n}, such that their distribution functions $F_{n}(x)$ converge to $F(x)$, as $n \rightarrow \infty$.

The p th moment $E|X|^{p}=\int_{0}^{\infty} P\left(|X|^{p}>y\right) d y$ of the random variable X exists and is finite only if $0<p<\alpha$. Otherwise, it does not exist.
2.1.1. Stable processes. A stochastic process $\{X(t), t \in T\}$ is stable if all its finite dimensional distributions are stable [18, 33].

Let $\{X(t), t \in T\}$ be a stochastic process. $\{X(t), t \in T\}$ is α-stable if and only if all linear combinations $\sum_{k=1}^{d} b_{k} X\left(t_{k}\right)$ (here $d \geqslant 1 t_{1}, t_{2}, \ldots, t_{d} \in T, \quad b_{1}, b_{2}, \ldots, b_{d}$ - real) are α-stable. A stochastic process $\{X(t), t \in T\}$ is called the (standard) α-stable Levy motion if:
(1) $X(0)=0$ (almost surely);
(2) $\{X(t): t \geqslant 0\}$ has independent increments;
(3) $X(i)-X(s) \sim S_{\alpha}\left((t-s)^{1 / \alpha}, \beta, 0\right)$, for any $0 \leqslant s<t<\infty$ and $0<\alpha \leqslant$ $2,-1 \leqslant \beta \leqslant 1$.
Note that the α-stable Levy motion has stationary increments. As $\alpha=2$, we have the Brownian motion.
2.1.2. Parameter Estimation Methods. The problem of estimating the parameters of stable distribution is usually severely hampered by the lack of known closed form density functions for almost all stable distributions [3]. Most of the methods in mathematical statistics cannot be used in this case, since these methods depend on an explicit form of the PDF. However, there are numerical methods that have been found useful in practice and are described in [31, 34, 35, 36] and [28].

Given a sample x_{1}, \ldots, x_{n} from the stable law, we provide estimates $\hat{\alpha}, \hat{\beta}, \hat{\mu}$, and $\hat{\sigma}$ of α, β, μ, and σ via

- Method of Moments (empirical CF);
- Regression method.
- MLE method
2.1.3. Comparison of estimation methods. We simulated a sample of 10 thousand members with the parameters $\alpha=1.75, \beta=0.5, \mu=0$ and $\sigma=1$ (see [18]). Afterwards we estimated the parameters of a stable random variable with different estimators. All the methods are statistically acceptable, but the maximal likelihood estimator yields the best results. From the practical point-of-view, MLE is the worst method, because it is very time-consuming. For large sets (~ 10.000 and more) we suggest using the regression (or moments) method to estimate α, β and σ, then estimate μ by MLM (optimization only by μ). As a starting point you should choose α, β, σ and sample mean, if $\alpha>1$ and a median, otherwise, for μ. For short time series, use MLE with any starting points (optimization by all 4 parameters).
2.2. Analysis of process behavior. Examples of stability analysis can be found in the works of Rachev $[6,17,37]$ and Weron [41]. In the latter paper, Weron analyzed the DJIA index (from 1985-01-02 to 1992-11-30. 2000 data points in all). The stability analysis was based on the Anderson-Darling criterion and by the weighted Kolmogorov criterion (D‘Agostino), the parameters of stable distribution were estimated by the regression method proposed by Koutrouvelis [21]. The author states that DJIA characteristics perfectly correspond to stable distribution.

We also verify two hypotheses: the first one $-\mathrm{H}_{0}^{1}$ is that our sample (with empirical mean $\hat{\mu}$ and empirical variance $\hat{\sigma}$) follows Gaussian distribution. The second $-\mathrm{H}_{0}^{2}$ is that our sample (with parameters α, β, μ and σ) follows the stable (non-Gaussian) distribution. Both hypotheses are examined by two criteria: the Anderson-Darling (A-D) method and Kolmogorov-Smirnov (K-S) method. The first criterion is more sensitive to the difference between empirical and theoretical distribution functions in far quantiles (tails), in contrast to the K-S criterion that is more sensitive to the difference in the central part of distribution.

To prove the stability hypothesis, other researchers [14, 27] applied the method of infinite variance, because non-Gaussian stable r.vs have infinite variance and thus the set of empirical variances S_{n}^{2} of the random variable X with infinite variance diverges.

Let $x_{1}, \ldots x_{\mathrm{n}}$ be a series of i.i.d.r.vs X. Let $n \leq N<\infty$ and \bar{x}_{n} be the mean of the first n observations, $S_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}, 1 \leqslant n \leqslant N$. If a distribution has finite variance, then there exists a finite constant $c<\infty$ such that $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \rightarrow c$ (almost surely), as $n \rightarrow \infty$. Additionally, if the series is simulated by the nonGaussian stable law, then the series S_{n}^{2} diverges. Fofack [12] has applied this assumption to a series with finite variance (standard normal, Gamma) and with infinite variance (Cauchy and totally skewed stable). In the first case, the series of variances converged quickly and, in the second case, the series of variances oscillated with a high frequency, as $n \rightarrow \infty$. Fofack and Nolan [13] applied this method in the analysis of distribution of Kenyan shilling and Morocco dirham exchange rates in the black market. Their results allow us to affirm that the exchange rates of those currencies in the black market change with infinite variance, and even worse - the authors state that distributions of parallel exchange rates of some other countries do not have the mean ($\alpha<1$ in the stable case). We present, as an example, a graphical analysis of the variance process of one of our analyzed series (Figure 2).

STABLE MIXTURE MODEL

Figure 2. Series of empirical variance of the USD.NOK.FXO.0.0.10.25C.CP log-volatility changes

The columns in this graph show the variance at different time intervals (5 days period), and the solid line shows the series of variances S_{n}^{2} (up to time n). One can see that, as n increases, i.e. $n \rightarrow \infty$, the series of empirical variance S_{n}^{2} not only diverges, but also oscillates with a high frequency. The same situation is for mostly all the data sets we presented (for more see [18]).
2.2.1. Stability by homogeneity of the data series and aggregated series. The third method to verify the stability hypothesis is based on the following property for stable iid (independent identically distributed) rv's. Suppose we have an original financial series (log-volatility changes and log-FX rates) $X_{1}, X_{2}, \ldots, X_{n}$ which we assume are iid and stable distributed. Let us calculate the partial sums $Y_{1}, Y_{2}, \ldots, Y_{[n / d]}$, where $Y_{k}=\sum_{i=(k-1) \cdot d+1}^{k \cdot d} X_{i}, k=1 \ldots[n / d]$, and d is the number of sum components (freely chosen). The stability implies that original X_{i} and derivative series Y_{i} must be homogeneous (they must behave similarly and have the same properties). Homogeneity of original and derivative (aggregated) sums was tested by the Smirnov and Anderson criteria $\left(\omega^{2}\right)$.

The accuracy of both methods was tested with generated sets, that were distributed by the uniform $\mathrm{R}(-1,1)$, Gaussian $\mathrm{N}(0,1 / \sqrt{3})$, Cauchy $\mathrm{C}(0,1)$ and stable $S_{1.75}(1,0.25,0)$ distributions. Partial sums were scaled, respectively, by \sqrt{d}, \sqrt{d}, d, $d^{1 / 1.75}$. The test was repeated for a total 100 times. The results of this modeling show that the Anderson criterion (with confidence levels $0.01,0.05$ and 0.1) is more precise than that of Smirnov with the additional confidence level.

It should be noted that these criteria require large samples (of size no less than 200), which is why the original sample must be large enough. The best choice would be if one could satisfy the condition $n / d>200$.
2.2.2. Self-similarity and multifractality. Often financial time series exhibit fractionallity or self-similarity, see for example $[18,37]$ and the references therein. The Hurst indicator (or exponent) is used to characterize fractionallity.

There are a number of equivalent definitions of self-similarity [39]. The standard one states that a continuous time process $Y=\{Y(t), t \in T\}$ is self-similar, with the self-similarity parameter H (Hurst index), if it satisfies the condition:

$$
\begin{equation*}
Y(t) \stackrel{d}{=} a^{-H} Y(a t), \quad \forall t \in T, \forall a>0,0 \leqslant H<1 \tag{1}
\end{equation*}
$$

where the equality is in the sense of finite-dimensional distributions. The canonical example of such a process is Fractional Brownian Motion ($H=1 / 2$). Since the process Y satisfying (1) can never be stationary, it is typically assumed to have stationary increments [9].

Figure 3 shows that stable processes are the product of a class of self-similar processes and also that of Levy processes [10]. Suppose a Levy process $X=\{X(t)$, $t \geqslant 0\}$. Then X is self-similar if and only if each $X(t)$ is strictly stable. The index α of stability and the exponent H of self-similarity satisfy $\alpha=1 / H$.

Figure 3. Self-similar processes and their relation to Levy and Gaussian processes

Consider the aggregated series $X^{(m)}$, obtained by dividing a given series of length N into blocks of length m and averaging the series over each block.

$$
X^{(m)}(k)=\frac{1}{m} \sum_{i=(k-1) m+1}^{k m} X_{i}, \text { here } k=1,2 \ldots[N / m] .
$$

Self-similarity is often investigated not through the equality of finite-dimensional distributions, but through the behavior of the absolute moments. Thus, consider

$$
A M^{(m)}(q)=E\left|\frac{1}{m} \sum_{i=1}^{m} X(i)\right|^{q}=\frac{1}{m} \sum_{k=1}^{m}\left|X^{(m)}(k)-\bar{X}\right|^{q}
$$

If X is self-similar, then $A M^{(m)}(q)$ is proportional to $m^{\beta(q)}$, which means that $\ln A M^{(m)}(q)$ is linear in $\ln m$ for a fixed q :

$$
\begin{equation*}
\ln A M^{(m)}(q)=\beta(q) \ln m+C(q) \tag{2}
\end{equation*}
$$

In addition, the exponent $\beta(q)$ is linear with respect to q. In fact, since $X^{(m)}(i) \stackrel{d}{=} m^{1-H} X(i)$, we have

$$
\begin{equation*}
\beta(q)=q(H-1) \tag{3}
\end{equation*}
$$

Thus, the definition of self-similarity is simply that the moments must be proportional as in (2) and that $\beta(q)$ satisfies (3).

This definition of a self-similar process given above can be generalized to that of multifractal processes. A non-negative process $X(t)$ is called multifractal if the logarithms of the absolute moments scale linearly with the logarithm of the aggregation level m. Multifractals are commonly constructed through multiplicative cascades [11]. If a multifractal can take positive and negative values, then it is referred to as a signed multifractal (the term "multiaffine" is sometimes used instead of "signed multifractal"). The key point is that, unlike self-similar processes, the scaling exponent $\beta(q)$ in (2) is not required to be linear in q. Thus, signed multifractal processes are a generalization of self-similar processes. To discover whether a process is (signed) multifractal or self-similar, it is not enough to examine the second moment properties. One must analyze higher moments as well.

However this method is only graphical and linearity is only visual.
2.2.3. Hurst exponent estimation. There are many methods to evaluate this index, but in literature the following are usually used [39]:

- Time-domain estimators,
- Frequency-domain/wavelet-domain estimators.

The methods: absolute value method (absolute moments), variance method (aggregate variance), R / S method and variance of residuals are known as time domain estimators. Estimators of this type are based on investigating the power law relationship between a specific statistic of the series and the so-called aggregation block of size m.

The following three methods and their modifications are usually presented as time-domain estimators:

- Periodogram method;
- PWhittle;
- PAbry-Veitch (AV).

The methods of this type are based on the frequency properties of wavelets.
All Hurst exponent estimates were calculated using SELFIS software, which is freeware and can be found on the web page http://www.cs.ucr.edu/~tkarag.
2.3. A mixed stable distribution model. Let $Y \sim B(1, p)$ and $X \sim S_{a}$ [2]. Let a mixed stable r. v. Z take the value 0 with probability 1 if $Y=0$, else $Y=1$ and $Z=X$. Then we can write the distribution function of the mixed stable distribution as
(4)
$P(Z<z)=P(Y=0) \cdot P(Z<z \mid Y=0)+P(Y=1) \cdot P(Z<z \mid Y=1)=p \cdot \varepsilon(z)+(1-p) \cdot S_{\alpha}(z)$
where $\varepsilon(\mathrm{x})=\left\{\begin{array}{ll}0, & x \leqslant 0 \\ 1, & x>0\end{array}\right.$, is the cumulative distribution function (CDF) of the degenerate distribution. The PDF of the mixed-stable distribution is

$$
f(x)=p \cdot \delta(x)+(1-p) \cdot p_{\alpha}(x)
$$

where $\delta(x)$ is the Dirac delta function.
2.3.1. Cumulative density, probability density and characteristic functions of mixed distribution. For a given set of log-changes $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, let us construct a set of nonzero values $\left\{\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{n-k}\right\}$. The implied log-volatility of USD.CAD.FXO.0.0.7.25C.CP is given as an example ($p=0.402$, see Figure 4). Then the likelihood function is given by

$$
\begin{equation*}
L(\bar{x}, \theta, p) \sim(1-p)^{k} p^{n-k} \prod_{i=1}^{n-k} p_{\alpha}\left(\bar{x}_{i}, \theta\right) \tag{5}
\end{equation*}
$$

where θ is the vector of parameters (in the stable case, $\theta=(\alpha, \beta, \mu, \sigma)$). The function $(1-p)^{k} p^{n-k}$ is easily optimized: $p_{\max }=\frac{n-k}{n}$. So we can write the optimal CDF as

$$
\begin{equation*}
F(z)=\frac{n-k}{n} S_{\alpha}\left(z, \theta_{\max }\right)+\frac{k}{n} \epsilon(z), \tag{6}
\end{equation*}
$$

Figure 4. CDF of USD.CAD.FXO.0.0.7.25C.CP.
where the vector $\theta_{\max }$ of parameters is estimated with nonzero data.
The probability density function (see Figure 5)

$$
\begin{equation*}
p(z)=\frac{n-k}{n} p_{\alpha}\left(z, \theta_{\max }\right)+\frac{k}{n} \delta(z) . \tag{7}
\end{equation*}
$$

Figure 5. PDF and a histogram of USD.CAD.FXO.0.0.7.25C.CP.

Finally we can write down and plot (Figure 6) the characteristic function (CF) of the mixed distribution.

$$
\phi_{\operatorname{mix}}(t)=\frac{n-k}{n} \cdot \phi(t)+\frac{k}{n}
$$

Figure 6. Empirical, Gaussian, Stable mixed, and Stable continuous CF of USD.CAD.FXO.0.0.7.25C.CP

The empirical characteristic function is equal to $\hat{\phi}(t, X)=\frac{1}{n} \sum_{j=1}^{n} e^{i t X_{j}}$.
2.3.2. Mixed model adequacy. Since we have a discontinuous distribution function, the classic methods (Kolmogorov-Smirnov, Anderson-Darling) do not work, and choose a goodness-of-fit test based on the empirical characteristic function [22, 23], or use a modified χ^{2} (Romanovski) method [20].

The CF-based test of Brown and Saliu [7] is not applicable, since it was developed for symmetric distributions. A new stability test for asymmetric (skewed) alpha-stable distribution functions, based on the characteristic function, should be developed, since the existing tests are not reliable.

A mixed-stable model of risk factor log-changes distribution was proposed in [2]. Since the goodness-of-fit tests for continuous distribution functions cannot be implemented, the tests, based on the empirical characteristic function and a modified χ^{2} test, are used, see [2].
2.3.3. Modeling of stagnation intervals. We analyzed (see [18]) the following r.vs $X_{i}=0$, if $P_{i+1}=P_{i}$ and $X_{i}=1$, if $P_{i+1} \neq P_{i}$, where $\left\{P_{i}\right\}$ is a set of exchange rates and $\left\{X_{i}\right\}$ is a set of discrete states, following our time series (change $=1$ or not $=0$).
Empirical study of lengths distribution of zero state runs. Theoretically if states are independent (Bernoulli scheme), then the series of lengths of zero state runs should be distributed by geometrical law. However, the results of empirical tests do not corroborate this assumption. We have fitted the series distribution of lengths of zero state runs by discrete laws (generalized logarithmic, generalized Poisson, Hurwitz zeta, generalized Hurwitz zeta, and discrete stable). The probability mass function of Hurwitz zeta law is

$$
P(\xi=k)=\nu_{s, q}(k+q)^{-s}
$$

where $\nu_{s, q}=\left(\sum_{i=0}^{\infty}(i+q)^{-s}\right)^{-1}, k \in N, q>0, s>1$. The parameters of all discrete distributions were estimated by the ML-method.
Transformation and distribution fitting. First of all, we will show how financial data from our data sample are transformed to subsets length of zero state series and then we will fit each of the discrete distributions mentioned in above section. Carvalho, Angeja and Navarro have showed that data in network engineering fit the discrete logarithmic distribution better than the geometrical law. So we intend to test whether such a property is valid for our financial data.

A set of zeros between two units is called a run. The first run is a set of zeros before the first unit and the last one after the last unit. The length of the run is equal to the number of zeros between two units. If there are no zeros between two units, then an empty set has zero length (Figure 7).

Figure 7. Data transformation

To transform our data (from the state series, e.g., 010011101011100110) the two following steps should be taken: (a) extract the zero state runs (e.g., 0.00.0.0.000.0) from the states series; (b) calculate the length of each run (1,2,0.0.1,1,0.0.3,0.1,). After the transformation, we estimated the parameters of each discrete distribution mentioned above and tested the nonparametric χ^{2} distribution fitting hypothesis. The mixed stable model with dependent states. Since the runs test rejects the randomness hypothesis of the sequence of states, the probability of states (zeros and ones) depends on the position in the sequence. If the lengths of states sequences are distributed by Hurwitz zeta law, then the probabilities of states are

$$
P(X_{n}=1 \mid \ldots, X_{n-k-1}=1, \underbrace{X_{n-k}=0, \ldots, X_{n-1}=0}_{k})=\frac{p_{k}}{1-\sum_{j=0}^{k-1} p_{j}}, n \in N, k \in Z_{0}
$$

where p_{k} are probabilities of Hurwitz zeta law; $P\left(X_{0}=1\right)=p_{0}$. It should be noted that $P\left(X_{n}=0 \mid \ldots\right)=1-P\left(X_{n}=1 \mid \ldots\right), n, k \in Z_{0}$.

With the probabilities of states and distribution of nonzero data, we can generate sequences of log-changes (interchanging in the state sequence units with a stable r.v.) see Figure 8 and [18].

Figure 8. Simulation of passive stable series

So, the mixed-stable modeling with dependent states is more advanced than that of independent (Bernoulli) states, and it requires parameter estimation by both the stable $(\alpha, \beta, \mu, \sigma)$ and Hurwitz zeta (q, s) law.
2.4. Relationship measures. In constructing a financial portfolio, it is essential to determine relationships between different series [18, 30]. However, under the assumption of stability (sets of log-volatility changes and log-FX rates are modeled by stable laws), the classical relationship measures (covariance, correlation) cannot be applied. Therefore the generalized Markowitz problem is solved by generalized relationship measures (covariation, codifference).

In the classical economic statistics (when the distributional law has two first moments, i.e., mean and variance), relations between two random variables are described by covariance or correlation. But if we assume that financial data follow the stable non-Gaussian law (empirical studies corroborate this assumption), covariance and especially correlation (Pearson) cannot be calculated. In a case when
A. KABAŠINSKAS, S. RACHEV, L. SAKALAUSKAS, W. SUN, AND I. BELOVAS
the first $(\alpha \leqslant 1)$ and the second $(\alpha<2)$ moments do not exist, other correlation (rank, e.g., Spearman, Kendall, etc. [19]) and contingency coefficients are proposed. However, in the portfolio selection problem Samorodnitsky and Taqqu [33] suggest better alternatives, even when mean and variance do not exist. They have proposed alternative relation measures: covariation and codifference.
2.4.1. Codifference. If X_{1} and X_{2} are two symmetric i.d. [33] (with $\alpha_{1}=\alpha_{2}=\alpha$) stable random variables, then the covariation is equal to

$$
\left[X_{1}, X_{2}\right]_{\alpha}=\int_{S_{2}} s_{1} s_{2}^{\langle\alpha-1\rangle} \Gamma(d s)
$$

where $\alpha>1, y^{\langle\alpha\rangle}=|y|^{\alpha} \operatorname{sign}(\alpha)$ and Γ is a spectral measure of $\left(X_{1}, X_{2}\right)$.
In such a parameterization, the scale parameter $\sigma_{X_{1}}^{\alpha}$ of symmetric stable r.v. can be calculated from $\left[X_{1}, X_{1}\right]_{\alpha}=\sigma_{X_{1}}^{\alpha}$. If $\alpha=2$ (Gaussian distribution), the covariation is equal to half of the covariance $\left[X_{1}, X_{2}\right]_{2}=\frac{1}{2} \operatorname{Cov}\left(X_{1}, X_{2}\right)$ and $\left[X_{1}, X_{1}\right]_{2}=\sigma_{X_{1}}^{2}$ becomes equal to the variance of X_{1}. However, the covariation norm of $X \in S_{\alpha}(\alpha>1)$ can be calculated as $\|X\|=\left([X, X]_{\alpha}\right)^{1 / \alpha}$. If $X \sim S_{\alpha}(\sigma, 0,0)$ (S α S case), then the norm is equivalent to the scale parameter of the stable distribution $\|X\|_{\alpha}=\sigma$.

In a general case [29] the codifference is defined through characteristic functions

$$
\begin{aligned}
\operatorname{cod}_{X, Y} & =\ln (E \exp \{i(X-Y))\})-\ln (E \exp \{i X\})-\ln (E \exp \{-i Y\}) \\
& =\ln \left(\frac{E \exp \{i(X-Y)\}}{E \exp \{i X\} \cdot E \exp \{-i Y\}}\right)=\ln \left(\frac{\phi_{X-Y}}{\phi_{X} \cdot \phi_{-Y}}\right)
\end{aligned}
$$

or empirical characteristic functions

$$
\operatorname{cod}_{X, Y}=\ln \left(\frac{n \cdot \sum_{j=1}^{n} e^{i\left(X_{j}-Y_{j}\right)}}{\sum_{j=1}^{n} e^{i X_{j}} \cdot \sum_{j=1}^{n} e^{-i Y_{j}}}\right)
$$

The codifference of two symmetric $(S \alpha S)$ r.vs X and $Y(0<\alpha \leqslant 2)$ can be expressed through the scale parameters

$$
\operatorname{cod}_{X, Y}=\|X\|_{\alpha}^{\alpha}+\|Y\|_{\alpha}^{\alpha}-\|X-Y\|_{\alpha}^{\alpha}
$$

If $\alpha=2$, then $\operatorname{cod}_{X, Y}=\operatorname{Cov}(X, Y)$.
Samorodnitsky and Taqqu have showed that

$$
\left(1-2^{\alpha-1}\right)\left(\|X\|_{\alpha}^{\alpha}+\|Y\|_{\alpha}^{\alpha}\right) \leqslant \operatorname{cod}_{X, Y} \leqslant\|X\|_{\alpha}^{\alpha}+\|Y\|_{\alpha}^{\alpha}
$$

here $1 \leqslant \alpha \leqslant 2$, and, if we normalize (divide by $\|X\|_{\alpha}^{\alpha}+\|Y\|_{\alpha}^{\alpha}$), we will get a generalized correlation coefficient.

In the general case [29], the following inequalities

$$
\begin{aligned}
\left(1-2^{\alpha-1}\right) \ln \left(\frac{1}{E \exp \{i X\} \cdot E \exp \{-i Y\}}\right) & \leqslant \operatorname{cod}_{X, Y}=\ln \left(\frac{E \exp \{i(X-Y)\}}{E \exp \{i X\} \cdot E \exp \{-i Y\}}\right) \\
\leqslant & \ln \left(\frac{1}{E \exp \{i X\} \cdot E \exp \{-i Y\}}\right)
\end{aligned}
$$

are proper, and if we divide both sides by $\ln (E \exp \{i X\} \cdot E \exp \{-i Y\})$, we will get the following system of inequalities for the correlation coefficient

$$
\left(1-2^{\alpha-1}\right) \leqslant \operatorname{corr}_{X, Y}=\frac{\ln \left(\frac{E \exp \{i X\} \cdot E \exp \{-i Y\}}{E \exp \{i(X-Y)\}}\right)}{-\ln (E \exp \{i X\} \cdot E \exp \{-i Y\})} \leqslant 1
$$

STABLE MIXTURE MODEL

If $0<\alpha \leqslant 1$ this correlation coefficient is only non-negative, and if $\alpha=2, \beta=0$, then $-1 \leqslant \operatorname{corr}_{X, Y}=\rho_{X, Y} \leqslant 1$ is equivalent to the Pearson correlation coefficient. Significance of codifference. The significance of the Pearson correlation coefficient is tested using Fisher statistics and that of the Spearman and Kendall coefficients, respectively, are tested using Student and Gaussian distributions. But it is likely that there are no codifference significance tests created. In such a case, we use the bootstrap method (one of the Monte-Carlo style methods). The following algorithm to test the codifference significance is proposed:
(1) Estimate stable parameters $(\alpha, \beta, \sigma$ and $\mu)$ and stagnation probability p of all equity series;
(2) Estimate relation matrix of measure ρ (covariation or codifference) for every pair of equities series;
(3) Test the significance of each $\rho_{i j}$ by the bootstrap method:
(a) generate a pair of two i th and j th mixed-stable (with estimated parameters) series, and proceed to the next step;
(b) calculate the k th relation measure $\rho_{i j}^{k}$, between the i th and j th series;
(c) repeat (a) and (b) steps for $k=1, \ldots, N$ (for example, 10000) times;
(d) construct ordered series of estimates $\rho_{i j}^{(k)}$;
(e) if $\rho_{i j}^{([N \cdot 0.025])} \leqslant \rho_{i j} \leqslant \rho_{i j}^{([N \cdot 0.975])}$, then the significance of $\rho_{i j}$ is rejected with the confidence level 0.05 , i.e., it is assumed that $\rho_{i j}=0$.
(f) repeat $3 \mathrm{a}-3 \mathrm{f}$ steps for each pair of equities i and j.
2.4.2. Generalized power-correlation measures. In [5] the power correlation measures was introduced, with three standardizations (absolute and median deviation, and universal).
Definition 1. The power-correlation measure is defined as a function of two random variables X and Y

$$
\rho(X, Y)=1-\frac{\sum_{i=1}^{N}\left|\frac{X_{i}-\hat{\mu}_{X}}{\hat{s}_{X}}-\frac{Y_{i}-\hat{\mu}_{Y}}{\hat{s}_{Y}}\right|^{\gamma}}{\sum_{i=1}^{N}\left|\frac{X_{i}-\hat{\mu}_{X}}{\hat{s}_{X}}\right|^{\gamma}+\left|\frac{Y_{i}-\hat{\mu}_{Y}}{\hat{s}_{Y}}\right|^{\gamma}},
$$

here $\gamma=\min \left(\alpha_{X}, \alpha_{Y}\right)$ is an existing moment of r.v., $\hat{\mu}_{\bullet}$ and \hat{s}_{\bullet} are standardization constants, α_{X} and α_{Y} are estimates of stability parameters of random variables X and Y respectively.

In the general case, $\hat{\mu}_{\bullet}$ is the estimate of the location parameter, $\hat{s}_{\bullet}=\hat{\sigma}_{\bullet}$ is the estimate of the scale parameter. Depending on γ three standardizations was proposed [5]: the universal one (for general case), and two special standardizations: absolute deviation standardization (for $1<\gamma<2$, when the mean exists) and median standardization (for $\gamma<1$).

Definition 2 (Universal standardization). The centering and normalization constants ($\hat{\mu}_{\bullet}$ and \hat{s}_{\bullet} respectively) are equal to the estimates of the location and scale parameters respectively.

This standardization method could be applied with every possible stability index. Note that if $\gamma=2$, then $\hat{\mu}_{\bullet}$ and \hat{s}_{\bullet} can be replaced by the mean and the standard deviation respectively.

Definition 3 (Absolute deviation standardization). In the case when $\gamma \in(1 ; 2)$, then the centering and normalization constants ($\hat{\mu}_{\bullet}$ and \hat{s}_{\bullet} respectively) are equal to the mean $\bar{\mu}_{X}$ of underlying series X and the absolute deviation $\hat{s}_{X}=\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{\mu}_{X}\right|$ respectively.

Definition 4 (Median standardization). In the case when $\gamma<1$ (as well as in the general case), then the centering constant $\hat{\mu}_{\bullet}$ can be replaced by the median m_{\bullet} and the normalization constant \hat{s}_{\bullet} by the following normalization constant $\hat{s}_{X}=$ median $\left|X-m_{X}\right|$.

The norm of codifference and power correlation measures indicates the strength and direction of a linear relationship between two random variables. Depending on the moment γ, these relation measures are bounded [33]:

$$
1-2^{\gamma-1} \leqslant \rho(X, Y) \leqslant 1
$$

In the general statistical usage, they refer to the departure of two variables from independence. However, if $\rho(X, Y)=0$, we cannot say that random variables X and Y are independent.

3. Description of the data

As we already mentioned in the introduction, a large HF will model and forecast around 20,000 risk variables such as equity returns, interest rates, bond yields, FX rates, volatility surfaces, etc. Very often such series exhibit strings of zero values and heavy tailed distributed values otherwise. An example of such daily time series selected from those 20,000 was offered to be analyzed and it is given in Table 1.

Table 1. Empirical characteristics of data sets and criterion probabilities of Anderson - Darling

Nr Data set	Empirical characteristics						Nr. of obs.	Nr. of zero daily data
		$\hat{\mu}$	$\hat{\sigma}$	$\hat{\gamma}_{1}$	$\hat{\gamma}_{2}$	Probab. of A-D		
							crit.	
1	CHF.JPY.FXO.0.0.10.25C.CP	0	0.028	1.176	32.34	-	1439	520
2	CHF.JPY.FXO.0.0.7.ATM.CP	-0.0002	0.020	0.642	32.19	-	1439	521
3	EUR.JPY.FXO.0.0.10.25C.CP	0.0001	0.028	2.692	44.12	-	1640	502
4	GBP.NOK.FXO.0.0.3.25C.CP	-0.0001	0.013	1.596	24.46	-	1439	69
5	USD.CAD.FXO.0.0.7.25C.CP	0.0004	0.019	2.040	55.45	-	1443	580
6	USD.GBP.FXO.0.0.10.25C.CP	0.0001	0.012	0.807	19.03	-	1443	564
7	USD.JOD.CCY.CP	0	0.001	-0.101	27.25	-	2488	1773
8	USD.MXN.FXO.0.0.5.25C.CP	-0.0004	0.014	-1.467	32.17	0.999	1640	672
9	USD.MXN.FXO.0.0.5.ATM.CP	-0.0003	0.014	-1.115	31.49	0.999	1640	687
10	USD.NOK.FXO.0.0.10.25C.CP	0.0001	0.021	0.814	16.23	0.999	1443	277
11	USD.NZD.FXO.0.0.3.ATM.CP	0.0004	0.014	6.300	123.1	-	2288	1044
12	USD.NZD.FXO.0.0.7.ATM.CP	0	0.016	-1.45	34.71	0.999	1443	514
13	USD.SEK.FXO.0.0.10.25C.CP	0.0001	0.018	0.695	15.61	0.999	1443	233
14	USD.UAG.CCY.CP.	-0.0004	0.009	-4.350	82.39	-	2488	189

${ }^{\text {a }}$ CHF.JPY.FXO.0.0.10.25C.CP means that we analyze JPY/CHF implied volatility of call option, with a delta equal to 0.25 , with 10 days to maturity. The probability of A-D crit. shows the p probability of Anderson-Darling adequacy test with normal distribution. (-) means that A-D goodness-of-fit test is completely rejected for any significance level. Here $\hat{\mu}$ is an empirical mean, $\hat{\sigma}$ is a standard deviation, $\hat{\gamma}_{1}$ is empirical skewness and $\hat{\gamma}_{2}$ is empirical kurtosis.

In our illustrations, we use a data series for daily foreign exchange rates (series 7 and 14) and option volatilities of foreign exchange rates (other series in Table 1). The first three symbols are ticker of the first currency; the second three symbols are ticker of the second currency; the next three symbols FXO means implied volatility and CCY means the spot exchange rate; the numbers following FXO indicate the time to maturity of the option in terms of years, months, and days (for example, 0.0 .10 would mean option with a time to maturity of 0 years, 0 months and 10 days, see note of Table 1). "ATM" means an at-the-money call option and " 25 C " is a call option with a delta equal to 0.25 . We use different pairs of exchange rates with the length of each series being different and ranging from 1,439 observations to 2,488 observations. The average number of observations is 1,694 . Most importantly for our study, the number of zero daily data differs, from as few as 4.79% to a high of 71.26% with an average of 33.23%. Information about the data series length is provided in Table 1.

As Table 1 shows, some of the data series are strongly asymmetric $\left(\hat{\gamma}_{1}\right)$, and the empirical kurtosis $\left(\hat{\gamma}_{2}\right)$ shows that density functions of the series are more peaked than that of the Gaussian distribution. Consequently, consistent with the findings of other studies and Anderson-Darling goodness-of-fit test, we conclude that the Gaussian models are inappropriate. So we proceed to the stability (non-Gaussian) analysis of the series.
3.1. Application of mixed-stable model. Since we have found several zeros (repeating value) in our series (see Table 1) we start with the mixed-stable ${ }^{2}$ model parameters estimation (see Section 2.3.1). The results of parameter estimation for 14 forex implied volatility and exchange rate series are given in Table 2.

Table 2. Stability parameters of 14 series.

Nr.	Series	α	β	μ	σ	p
1.	CHF.JPY.FXO.0.0.10.25C.CP	$1.05<$	-0.00387	$-4.3 \mathrm{E}-05$	0.001165	0.361
2.	CHF.JPY.FXO.0.0.7.ATM.CP	1.255604	0.021663	-0.00181	0.001915	0.362
3.	EUR.JPY.FXO.0.0.10.25C.CP	1.146631	-0.47731	-0.03653	0.012211	0.306
4.	GBP.NOK.FXO.0.0.3.25C.CP	$1.05<$	-0.02908	-0.0016	0.003229	0.048
5.	USD.CAD.FXO.0.0.7.25C.CP	1.066127	0.047113	0.000873	0.001951	0.402
6.	USD.GBP.FXO.0.0.10.25C.CP	$1.05<$	0.101149	0.003961	0.002856	0.391
7.	USD.JOD.CCY.CP	1.186602	-0.02678	$-6.1 \mathrm{E}-05$	$9.78 \mathrm{E}-05$	0.713
8.	USD.MXN.FXO.0.0.5.25C.CP	$1.05<$	-0.10462	-0.00289	0.001925	0.410
9.	USD.MXN.FXO.0.0.5.ATM.CP	$1.05<$	0.120186	0.002893	0.00174	0.419
10.	USD.NOK.FXO.0.0.10.25C.CP	1.12673	0.131193	0.002027	0.004701	0.192
11.	USD.NZD.FXO.0.0.3.ATM.CP	1.184021	-0.4117	-0.00182	0.001925	0.456
12.	USD.NZD.FXO.0.0.7.ATM.CP	1.186487	0.752788	0.031052	0.008517	0.356
13.	USD.SEK.FXO.0.0.10.25C.CP	1.199201	-0.06614	-0.00175	0.005031	0.161
14.	USD.UAG.CCY.CP	1.475154	0.471805	0.001717	0.001316	0.076

The results of goodness-of-fit test based on the empirical characteristic function and modified χ^{2} (Romanovski) methods are similar (match in 9 and 12 cases) and presented in Table 3. The result shows that in 12 cases out of 14 the goodness-of-fit hypothesis were not rejected for mixed-stable law. More detailed results of stablemixed model fitting are given in Table 4 . One can see that when the number of "zeros" increases, the mixed model fits the empirical data "better".

[^14]Table 3. Results of goodness-of-fit tests (accepted/rejected cases)

Fit Method	Gaussian	Mixed Gaussian	Stable	Mixed-stable
Modified χ^{2}	$0 / 14$	$0 / 14$	$0 / 14$	$9 / 14$
Empirical CF	$0 / 14$	$0 / 14$	$0 / 14$	$12 / 14$
Anderson-Darling	$0 / 14$	-	$0 / 14$	-

Table 4. Mixed model fit dependence on the number of zeros in series

Number of "zeros"	Number of such series	Fits model $\left(\chi^{2}, \%\right)$	mixed (Empirical CF, \% $)$
<0.1	2	0	100
$0.1-0.2$	2	50	50
$0.2-0.3$	0	-	-
$0.3-0.4$	5	60	80
$0.4-0.5$	4	100	100
$0.5-0.6$	0	-	-
$0.6-0.7$	0	-	-
$0.7-0.8$	1	100	100
$0.8-0.9$	0	-	-

3.1.1. Analysis of zeros distribution. As mentioned in Section 2.3.3, theoretically the series of zeros should be distributed by the binomial law and the lengths of these series should be distributed by the geometrical law, however, from Table 5 we can see that other laws fit our data (12 series) much better. It means that zero state series from our data are better described by the Hurwitz zeta distribution.

TABLE 5. Distribution of zero state series

Signif. Hurwitz level zeta	Generalized Hurwitz zeta	Generalized logarithmic	Discrete stable	Poisson	Generalized Poisson	Geometrical	
0.01	92.86%	85.71%	0.00%	21.43%	57.14%	0.00%	0.00%
0.025	92.86%	78.57%	0.00%	7.14%	42.86%	0.00%	0.00%
0.05	78.57%	71.43%	0.00%	7.14%	28.57%	0.00%	0.00%
0.1	71.43%	64.29%	0.00%	7.14%	28.57%	0.00%	0.00%

This result allows us to assume that zero-unit states are not purely independent. The Wald-Wolfowitz runs test [24] corroborates this assumption for almost all series from the given Forex list. The inner series dependence was tested by the Hoel [16] criterion on the order of the Markov chain. It has been concluded that there are no zero order series or Bernoulli scheme series. 99% of given series are higher than 4 th-order Markov chains with $\phi=0.1 \%$ significance level.
3.2. Analysis of series behavior. There was performed a test described in Section 2.2.1. The homogeneity of aggregated and full series was tested only by the Anderson criterion. Partial series were calculated by summing $d=10$ and 15 elements and scaling with $d^{1 / \alpha}$. Following the fundamental stability statement, one may draw a conclusion that for USD.GBP.FXO.0.0.10.25C.CP and USD.NOK.FXO.0.0.10. $25 \mathrm{C} . \mathrm{CP}$ the hypothesis on stability is acceptable. However, if we remove the zeros from the series we will also see that the hypothesis on stability cannot be rejected for USD.NZD.FXO.0.0.7. ATM.CP, USD.NZD.FXO.0.0.3.ATM.CP, USD.MXN.FXO.0.0.5.ATM.CP, USD.MXN.FXO.0.0.5.25C.CP, USD.JOD.CCY.CP,

USD.GBP.FXO.0.0.10.25C.CP, USD.CAD.FXO.0.0.7.25C.CP and CHF.JPY.FXO.0. 0.7.ATM.CP.

Having these results we may then proceed to analysis of multifractality and selfsimilarity. Result of absolute moments method for full series and series without zeros is given in Table 6.

TABLE 6. Results of multifractality and self-similarity analysis for full series and series without zeros

Nr.	Series	Full series		Without zeros	
		Multifractal	Self-similar	Multifractal	Self-similar
1.	CHF.JPY.FXO.0.0.10.25C.CP	0	0	0	0
2.	CHF.JPY.FXO.0.0.7.ATM.CP	0	0	0	0
3.	EUR.JPY.FXO.0.0.10.25C.CP	0	0	0	0
4.	GBP.NOK.FXO.0.0.3.25C.CP	1	1	1	1
5.	USD.CAD.FXO.0.0.7.25C.CP	1	0	0	0
6.	USD.GBP.FXO.0.0.10.25C.CP	1	0	0	0
7.	USD.JOD.CCY.CP	1	0	0	0
8.	USD.MXN.FXO.0.0.5.25C.CP	1	0	1	0
9.	USD.MXN.FXO.0.0.5.ATM.CP	1	1	0	0
10.	USD.NOK.FXO.0.0.10.25C.CP	1	0	1	0
11.	USD.NZD.FXO.0.0.3.ATM.CP	1	0	0	0
12.	USD.NZD.FXO.0.0.7.ATM.CP	0	0	1	1
13.	USD.SEK.FXO.0.0.10.25C.CP	1	0	1	0
14.	USD.UAG.CCY.CP	1	0	0	0
	Total	10	2	5	2

Finally, only 2 indices are self-similar (Table 6): GBP.NOK.FXO.0.0.3.25C.CP and USD.MXN.FXO.0.0.5.ATM.CP. However if we remove the zeros from the series GBP.NOK.FXO.0.0.3.25C.CP. and USD.NZD.FXO.0.0.7.ATM.CP are self-similar.
3.3. Relation analysis. In this section tables of following relation measures are given:

- norm of codifference (Table 7);
- Pearson correlation coefficient (Table 8);
- power-correlation coefficient in universal case (Table 9);
- power-correlation coefficient with absolute deviation standardization (Table 10);
- power-correlation coefficient with median standardization (Table 11);

The first one is used only for alpha-stable distributed data. The second one is used in case the second moment of an underlying random variable exists. The three last relation measures may be used for any data, if the highest existing moment of the series is known. The latest measures (as also the first one) are bounded $1-2^{\gamma-1} \leqslant \rho(X, Y) \leqslant 1$ (here $\gamma=\min \left(\alpha_{X}, \alpha_{Y}\right)>1$ is an existing moment), and, when $\gamma \leqslant 1$, these measures gives only a non-negative results.

The risk factor sets of CHF.JPY.FXO.0.0.10.25C.CP, CHF.JPY.FXO.0.0.7.ATM. CP, and EUR.JPY.FXO.0.0.10.25C.CP have large correlation, USD.MXN.FXO.0.0. 5.25C.CP and USD.MXN.FXO.0.0.5.ATM.CP have large correlation, USD.NOK. FXO.0.0.10.25C.CP and USD.SEK.FXO.0.0.10.25C.CP have large correlation, USD.NZD.FXO.0.0.3. ATM.CP and USD.NZD.FXO.0.0.7.ATM.CP have large correlation. The other pairs have small correlation or are uncorrelated. The factors power-relation measures are given (Tables 9-11).

Table 7. Norm of codifference for 14 series

	1^{a}	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1.00	0.66	0.80	0.01	0.00	-0.03	0.00	-0.01	0.00	0.00	0.00	0.05	-0.03	0.00
2	0.66	1.00	0.62	0.05	-0.02	0.05	0.00	0.02	0.04	0.14	0.02	0.05	0.08	0.00
3	0.80	0.62	1.00	0.00	0.01	-0.02	0.00	-0.01	-0.01	0.11	-0.02	0.05	0.10	0.00
4	0.01	0.05	0.00	1.00	-0.01	0.20	0.00	0.10	0.10	0.03	0.11	0.05	0.08	0.00
5	0.00	-0.02	0.01	-0.01	1.00	0.01	0.00	0.03	0.03	0.05	0.01	0.04	0.06	-0.01
6	-0.03	0.05	-0.02	0.20	0.01	1.00	0.00	0.16	0.17	0.10	0.06	0.02	0.07	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	-0.01	0.02	-0.01	0.10	0.03	0.16	0.00	1.00	0.98	0.05	0.11	0.01	0.07	0.00
9	0.00	0.04	-0.01	0.10	0.03	0.17	0.00	0.98	1.00	0.05	0.11	0.01	0.07	0.00
10	0.00	0.14	0.11	0.03	0.05	0.10	0.00	0.05	0.05	1.00	-0.02	0.00	0.86	0.00
11	0.00	0.02	-0.02	0.11	0.01	0.06	0.00	0.11	0.11	-0.02	1.00	0.52	0.00	-0.01
12	0.05	0.05	0.05	0.05	0.04	0.02	0.00	0.01	0.01	0.00	0.52	1.00	0.04	-0.01
13	-0.03	0.08	0.10	0.08	0.06	0.07	0.00	0.07	0.07	0.86	0.00	0.04	1.00	0.00
14	0.00	0.00	0.00	0.00	-0.01	0.00	0.00	0.00	0.00	0.00	-0.01	-0.01	0.00	1.00

${ }^{\text {a }}$ Note: For numeration see Table 1.
TABLE 8. Pearson correlation coefficient

	1^{a}	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1.00	0.70	0.80	0.02	0.01	-0.05	0.00	-0.02	0.00	-0.01	0.00	0.06	-0.03	-0.02
2	0.70	1.00	0.65	0.06	-0.02	0.06	0.00	0.03	0.05	0.14	0.03	0.05	0.09	-0.02
3	0.80	0.65	1.00	0.00	0.01	-0.03	0.00	-0.02	-0.01	0.12	-0.03	0.06	0.11	-0.02
4	0.02	0.06	0.00	1.00	-0.01	0.20	0.04	0.10	0.10	0.03	0.11	0.05	0.08	-0.01
5	0.01	-0.02	0.01	-0.01	1.00	0.01	0.01	0.03	0.03	0.05	0.01	0.04	0.06	-0.08
6	-0.05	0.06	-0.03	0.20	0.01	1.00	0.01	0.16	0.17	0.13	0.06	0.02	0.09	-0.01
7	0.00	0.00	0.00	0.04	0.01	0.01	1.00	0.01	0.00	0.05	0.02	-0.03	0.05	0.00
8	-0.02	0.03	-0.02	0.10	0.03	0.16	0.01	1.00	0.99	0.06	0.11	0.01	0.08	-0.01
9	0.00	0.05	-0.01	0.10	0.03	0.17	0.00	0.99	1.00	0.06	0.11	0.01	0.08	-0.01
10	-0.01	0.14	0.12	0.03	0.05	0.13	0.05	0.06	0.06	1.00	-0.02	0.00	0.87	-0.01
11	0.00	0.03	-0.03	0.11	0.01	0.06	0.02	0.11	0.11	-0.02	1.00	0.55	0.00	-0.02
12	0.06	0.05	0.06	0.05	0.04	0.02	-0.03	0.01	0.01	0.00	0.55	1.00	0.04	-0.03
13	-0.03	0.09	0.11	0.08	0.06	0.09	0.05	0.08	0.08	0.87	0.00	0.04	1.00	0.01
14	-0.02	-0.02	-0.02	-0.01	-0.08	-0.01	0.00	-0.01	-0.01	-0.01	-0.02	-0.03	0.01	1.00

${ }^{\text {a }}$ Note: For numeration see Table 1.

One can easily compare the traditional relation measures (see Tables 7 and 8) with the presented power-correlation measures (see Tables 9-11). The risk factors sets of CHF.JPY.FXO.0.0.10.25C.CP, CHF.JPY.FXO.0.0.7.ATM.CP, and EUR.JPY.FXO.0.0.10.25C.CP have strong relation, USD.MXN.FXO.0.0.5.25C.CP and USD.MXN.FXO.0.0.5.ATM.CP have strong relation, USD.NOK.FXO.0.0.10. 25C.CP and USD.SEK.FXO.0.0.10.25C.CP have strong relation, USD.NZD.FXO.0. 0.3.ATM.CP and USD.NZD.FXO.0.0.7.ATM.CP have strong relation. The other pairs have weak relation or are unrelated. This means that it is more correct to use power-correlation measures for series that are stable distributed instead of Pearson correlation.

4. Conclusions

Parameter estimation methods and software have been developed for models with asymmetric stable distributions. The efficiency of estimation methods was tested by simulating the series. Empirical methods are more effective in time, but

STABLE MIXTURE MODEL
Table 9. Power-correlation coefficient in universal case

	1^{a}	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1.00	0.70	0.78	0.26	0.19	0.15	0.10	0.14	0.14	0.22	0.17	0.16	0.21	0.20
2	0.70	1.00	0.61	0.27	0.22	0.21	0.12	0.19	0.19	0.27	0.21	0.18	0.26	0.22
3	0.78	0.61	1.00	0.26	0.19	0.15	0.10	0.14	0.14	0.24	0.17	0.16	0.24	0.20
4	0.26	0.27	0.26	1.00	0.21	0.21	0.12	0.18	0.18	0.22	0.22	0.18	0.25	0.22
5	0.19	0.22	0.19	0.21	1.00	0.16	0.07	0.14	0.14	0.19	0.14	0.14	0.18	0.11
6	0.15	0.21	0.15	0.21	0.16	1.00	0.04	0.22	0.22	0.26	0.15	0.12	0.20	0.07
7	0.10	0.12	0.10	0.12	0.07	0.04	1.00	0.06	0.06	0.08	0.06	0.03	0.07	0.11
8	0.14	0.19	0.14	0.18	0.14	0.22	0.06	1.00	0.99	0.15	0.15	0.11	0.15	0.07
9	0.14	0.19	0.14	0.18	0.14	0.22	0.06	0.99	1.00	0.15	0.14	0.11	0.15	0.07
10	0.22	0.27	0.24	0.22	0.19	0.26	0.08	0.15	0.15	1.00	0.16	0.14	0.83	0.12
11	0.17	0.21	0.17	0.22	0.14	0.15	0.06	0.15	0.14	0.16	1.00	0.67	0.17	0.08
12	0.16	0.18	0.16	0.18	0.14	0.12	0.03	0.11	0.11	0.14	0.67	1.00	0.15	0.07
13	0.21	0.26	0.24	0.25	0.18	0.20	0.07	0.15	0.15	0.83	0.17	0.15	1.00	0.11
14	0.20	0.22	0.20	0.22	0.11	0.07	0.11	0.07	0.07	0.12	0.08	0.07	0.11	1.00

${ }^{\text {a }}$ Note: For numeration see Table 1.
Table 10. Power-correlation coefficient with absolute deviation standardization

	1^{a}	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1.00	0.69	0.76	0.17	0.13	0.16	0.04	0.12	0.13	0.19	0.15	0.15	0.18	0.10
2	0.69	1.00	0.62	0.19	0.14	0.22	0.03	0.17	0.17	0.23	0.18	0.16	0.21	0.11
3	0.76	0.62	1.00	0.16	0.14	0.17	0.03	0.13	0.13	0.23	0.15	0.16	0.23	0.11
4	0.17	0.19	0.16	1.00	0.18	0.27	0.07	0.22	0.21	0.22	0.25	0.20	0.25	0.17
5	0.13	0.14	0.14	0.18	1.00	0.16	0.03	0.13	0.13	0.18	0.13	0.13	0.17	0.06
6	0.16	0.22	0.17	0.27	0.16	1.00	0.03	0.22	0.22	0.27	0.15	0.12	0.20	0.06
7	0.04	0.03	0.03	0.07	0.03	0.03	1.00	0.04	0.04	0.05	0.04	0.02	0.04	0.06
8	0.12	0.17	0.13	0.22	0.13	0.22	0.04	1.00	0.99	0.15	0.15	0.11	0.15	0.05
9	0.13	0.17	0.13	0.21	0.13	0.22	0.04	0.99	1.00	0.15	0.14	0.11	0.15	0.05
10	0.19	0.23	0.23	0.22	0.18	0.27	0.05	0.15	0.15	1.00	0.17	0.14	0.84	0.10
11	0.15	0.18	0.15	0.25	0.13	0.15	0.04	0.15	0.14	0.17	1.00	0.67	0.17	0.06
12	0.15	0.16	0.16	0.20	0.13	0.12	0.02	0.11	0.11	0.14	0.67	1.00	0.14	0.05
13	0.18	0.21	0.23	0.25	0.17	0.20	0.04	0.15	0.15	0.84	0.17	0.14	1.00	0.08
14	0.10	0.11	0.11	0.17	0.06	0.06	0.06	0.05	0.05	0.10	0.06	0.05	0.08	1.00

${ }^{\text {a }}$ Note: For numeration see Table 1.
the maximal likelihood method (MLM) is more effective (for real data) in the sense of accuracy (Anderson-Darling goodness-of-fit test corroborate that). It should be noted that MLM is more sensitive to changes of the parameters α and σ.

Empirical parameters of 14 risk factors series have been estimated. Most of the series are very asymmetric $\left(0.5<\left|\gamma_{1}\right|<6\right)$, and the empirical kurtosis $\left(\gamma_{2} \neq 0\right)$ suggests that the probability density function of the series is more peaked and exhibits fatter tails than the Gaussian one. The normality hypothesis is rejected by the Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit tests.

An experimental test of the series homogeneity shows that for the stable series with asymmetry, the Anderson test is more powerful than the Smirnov one. The Anderson test for the 14 series shows that 2 series are homogeneous with their aggregated series and 8 series when the zeros are removed are homogeneous with their aggregate series.

The analysis of self-similarity and multifractality, by the absolute moments method, indicates that 10 series are multifractal and concurrently 2 of them are

Table 11. Power-correlation coefficient with median standardization

	1^{a}	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1.00	0.72	0.71	0.12	0.12	0.16	0.01	0.09	0.09	0.13	0.09	0.12	0.11	0.06
2	0.72	1.00	0.62	0.16	0.13	0.22	0.01	0.10	0.10	0.17	0.12	0.14	0.15	0.07
3	0.71	0.62	1.00	0.13	0.12	0.17	0.01	0.07	0.07	0.16	0.11	0.14	0.15	0.07
4	0.12	0.16	0.13	1.00	0.14	0.21	0.01	0.06	0.06	0.22	0.24	0.20	0.25	0.16
5	0.12	0.13	0.12	0.14	1.00	0.18	0.01	0.08	0.08	0.13	0.09	0.12	0.12	0.08
6	0.16	0.22	0.17	0.21	0.18	1.00	0.00	0.11	0.11	0.20	0.09	0.11	0.14	0.09
7	0.01	0.01	0.01	0.01	0.01	0.00	1.00	0.01	0.01	0.00	0.00	0.00	0.00	0.01
8	0.09	0.10	0.07	0.06	0.08	0.11	0.01	1.00	0.99	0.03	0.02	0.03	0.02	0.04
9	0.09	0.10	0.07	0.06	0.08	0.11	0.01	0.99	1.00	0.03	0.02	0.03	0.03	0.04
10	0.13	0.17	0.16	0.22	0.13	0.20	0.00	0.03	0.03	1.00	0.16	0.13	0.82	0.13
11	0.09	0.12	0.11	0.24	0.09	0.09	0.00	0.02	0.02	0.16	1.00	0.52	0.17	0.15
12	0.12	0.14	0.14	0.20	0.12	0.11	0.00	0.03	0.03	0.13	0.52	1.00	0.14	0.11
13	0.11	0.15	0.15	0.25	0.12	0.14	0.00	0.02	0.03	0.82	0.17	0.14	1.00	0.14
14	0.06	0.07	0.07	0.16	0.08	0.09	0.01	0.04	0.04	0.13	0.15	0.11	0.14	1.00

${ }^{\text {a }}$ Note: For numeration see Table 1.
self-similar. On the other hand, if we remove the zeros from the series, there remain only 5 multifractal and 2 self-similar series. This is because the series becomes too short for multifractality analysis.

A mixed stable model of log-volatility changes and log-FX rates distribution has been proposed. We introduced the probability density, cumulative density, and the characteristic functions. Empirical results show that this kind of distribution fits the empirical data better than any other.

Since goodness-of-tests tests for continuous distribution functions cannot be implemented, the tests, based on the empirical characteristic function (Koutrouvelis) as well as modified χ^{2}, are used. The experimental tests have shown that, if the stability parameter α and the number of zeros are increasing, than the validity of the tests is also increasing.

The statistical analysis of the stagnation intervals has been made. Empirical studies showed that the length series of the state runs of our financial data are better described by the Hurwitz zeta distribution, rather than by geometric distribution. Since series of the lengths of each run are not geometrically distributed, the state series must have some internal dependence (Wald-Wolfowitz runs test corroborates this assumption). A new mixed-stable model with dependent states has been proposed and the formulas for probabilities of calculating states (zeros and units) have been obtained. Adequacy tests of this model are hampered by inner series dependence.

The inner series dependence was tested by the Hoel [16] criterion on the order of the Markov chain. It has been concluded that there are no zero order series or Bernoulli scheme series.

When constructing an optimal portfolio, it is essential to determine possible relationships between different data series. However, under the assumption of stability traditional relationship measures (covariance, correlation) which cannot be applied, since $(1.26<\alpha<1.78)$. In such a case, codifference and power-correlation measures are offered. The significance of these measures can be tested by the bootstrap method.

STABLE MIXTURE MODEL

5. Acknowledgments

Dr. Audrius Kabašinskas gratefully acknowledges Prof. Frank J. Fabozzi from the Yale School of Management (USA) for his valuable comments and recommendations.

Rachev's research was supported by grants from Division of Mathematical, Life and Physical Sciences, College of Letters and Science, University of California, Santa Barbara and the Deutschen Forschungsgemeinschaft.

References

[1] O.E.Barndorff-Nielsen, Normal inverse Gaussian processes and the modeling of stock returns, Rep. No. 300. Dept. of Theor. Stat., Inst. of Math., Univ. of Aarhus, Denmark, 1995.
[2] I.Belovas, A.Kabašinskas, L.Sakalauskas, Returns modelling problem in the Baltic equity market, Simulation and optimisation in business and industry : International conference on operational research: May 17-20. 2006, Tallinn, Estonia, Technologija, Kaunas, 2006,pp 3-8.
[3] I.Belovas, A.Kabašinskas, L.Sakalauskas, A study of stable models of stock markets, Information technology and control, 35(1),34-56(2006).
[4] I.Belovas, A.Kabašinskas, L.Sakalauskas, On the modelling of stagnation intervals in emerging stock markets, Computer Data Analysis and Modeling: Complex Stochastic Data and Systems. Proceedings of the 8th International Conference, Minsk, 2007, 52-56.
[5] I.Belovas, A.Kabašinskas, L.Sakalauskas. Empirical study of relation measures of stable distributed stock returns, Lithuanian Mathematical Journal,48-49 (spec. nr.),1-8(2008).
[6] M.Bertocchi, R.Giacometti, S.Ortobelli, S.Rachev, The impact of different distributional hypothesis on returns in asset allocation, Finance Letters 3(1), 17-27 (2005)
[7] C.L.Brown and S.Saliu, Testing of alpha-stable distributions with the characteristic function. Higher-order statistics. Proceedings of the IEEE Signal Processing Workshop on 14-16 June 1999, pp. 224-227.
[8] L.Carvalho, J.Angeja, A.Navarro, A new packet loss model of the IEEE 802.11 g wireless network for multimedia communications. Consumer Electronics,IEEE Transactions, 51(3), 809-814(2005).
[9] R.Cont, Long range dependence in financial markets, Centre de Mathématiques Appliquées, Ecole Polytechnique, France,www.cmap.polytechnique.fr/~rama/
[10] P.Embrechts, Selfsimilar Processes, Princeton University Press, 2002.
[11] J.G.Evertsz, B.B.Mandelbrot, Multifractal measures, in Chaos and Fractals (H. O. Peitgen, H. Jurgens, and D. Saupe, eds.), Springer-Verlag, New York,1992,pp 921-953, Appendix B.
[12] H.Fofack, Distribution of parallel market premium under stable alternative modeling, PhD thesis, American University, Department of Statistics, 1998.
[13] H.Fofack, J.P.Nolan, Distribution of parallel exchange rates in African countries, Journal of International Money and Finance 20, 987-1001 (2001).
[14] C.W. Granger, D.Orr, Infinite variance and research strategy in time series analysis, Journal of the American statistical society 67(338), 275-285 (1972).
[15] T.Hesterberg, S.Monaghan, D. S.Moore, A.Clipson, R.Epstein, Bootstrap Methods and Permutation Tests. Companion Chapter 18 to The Practice of Business Statistics, W. H. Freeman and Company, New York,2003.
[16] P.G.Hoel, A test for Markoff chains, Biometrika, 41(3/4), 430-433(1954)
[17] M.Hoechstoetter, S.Rachev, F.J.Fabozzi, Distributional Analysis of the Stocks Comprising the DAX 30, PROBABILITY AND MATHEMATICAL STATISTICS,25(2),363383,(2005).
[18] A. Kabasinskas, S.T. Rachev, L.Sakalauskas, W.Sun, I.Belovas, Alpha-stable paradigm in financial markets, Journal of Computational Analysis and Applications 11(4), 641-668, 2009.
[19] M.G.Kendall, A.Stuart, The Advanced Theory of Statistics, Vol 2, 2nd Edition, Griffin, London,1967.
[20] A.I.Kobzar, Matematiko.Statisticheskie Metody v Elektronnoj Technike, Nauka, Moskva,1978. (in Russian)
[21] I.A.Koutrouvelis, Regression - type estimation of the parameters of stable laws, J. Amer. Statist. Assoc, 75,918-928(1980).
[22] I.A.Koutrouvelis, A goodness-of-fit test of simple hypotheses based on the empirical characteristic function, Biometrika, 67(1), 238-240(1980).
[23] I.A.Koutrouvelis and J.A.Kellermeier, Goodness-of-fit test based on the empirical characteristic function when parameters must be estimated, Journal of the Royal Statistical Society, Series B (Methodological), 43(2), 173-176(1981).
[24] I.P.Levin, Relating statistics and experimental design: An introduction. Quantitative Applications in the Social Sciences, Series 125, Sage Publications, Thousand Oaks, CA, 1999; Wald-Wolfowitz runs test, Wikipedia, the free encyclopedia: http://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test.
[25] B.Mandelbrot, The Pareto-Levy law and the distribution of income, International Economic Revue, 1, 79-106(1960).
[26] B.Mandelbrot, The variation of certain speculative prices, Journal of Business, 36, 394419(1963).
[27] C. L.Nikias, M. Shao, Signal Processing with alpha-stable distributions and applications, Wiley, NY, 1995.
[28] J.P.Nolan, Stable Distributions - Models for Heavy Tailed Data, Birkhauser, Boston, 2007.
[29] J.Nowicka-Zagrajek, A.Wylomanska, The dependence structure for PARMA models with α - stable innovations, Acta Physica Polonica B37(11), 3071-3081(2006).
[30] S.Rachev, D. Martin, B. Racheva-Iotova and S. Stoyanov ,Stable ETL optimal portfolios and extreme risk management, in Series:Contributions to Economics, Risk Assessment Decisions in Banking and Finance, Physica-Verlag HD,2008,pp 235-262
[31] S.Rachev and S.Mitnik, Stable Paretian Models in Finance, John Wiley, Series in Financial Economics and Quantitative Analysis, Chechester, New York,2000.
[32] S.T.Rachev, Y.Tokat, E.S.Schwatz, The stable non-Gaussian asset allocation: a comparison with the classical Gaussian approach, Journal of Economic Dynamics \& Control, 27,937969(2003).
[33] G.Samorodnitsky, M.S.Taqqu, Stable non-Gaussian random processes, stochastic models with infinite variance, Chapman \& Hall, New York-London, 2000.
[34] S.Stoyanov, B.Racheva-Iotova, Numerical methods for stable modelling in financial risk management. in Handbook of Computational and Numerical Methods in Finance (S.Rachev, ed.), Birkhauser,2004, pp. 299-329.
[35] S.Stoyanov, B.Racheva-Iotova, Univariate stable laws in the field of finance - parameter estimation. Journal of Concrete and Applicable Mathematics, 2(4), (NOVA), 24-49(2004).
[36] S.Stoyanov, B.Racheva-Iotova, Univariate stable laws in the field of finance - approximations of density and distribution functions. Journal of Concrete and Applicable Mathematics, 2(1), (NOVA), 38-57(2004).
[37] W.Sun, S.Rachev, and F.Fabozzi, Fractals or I.I.D.: Evidence of Long-Range Dependence and Heavy Tailedness from Modeling German Equity Market Returns, Journal of Economics and Business, 59(6), 575-595(2007).
[38] W.Sun, S.Rachev, and F.Fabozzi, Long-Range Dependence, Fractal Processes, and Intra-daily Data, Handbook of IT and Finance, Springer, 2008.
[39] M.S.Taqqu, V.Teverovsky, W.Willinger. Is network traffic self-similar or multifractal? Fractals 5, 63-73 (1997).
[40] Web page of the Baltic States Stock exchanges http://www.omxgroup.com.
[41] R.Weron. Computationally intensive value at risk calculations. In Handbook of Computational Statistics: Concepts and Methods, (J.E. Gentle, W. Haerdle, Y. Mori eds.), Springer, Berlin, 2004,pp 911-950.

STABLE MIXTURE MODEL
(A. Kabašinskas) Kaunas University of Technology, Department of Mathematical Research in Systems, Studentu str. 50. Kaunas, LT - 51368, Lithuania

E-mail address, A. Kabašinskas: audrius.kabasinskas@ktu.lt
(S. Rachev) School of Economics and Business Engineering, University of Karlsruhe, and KIT, Kollegium am Schloss, Bau II, 20.12, R210. Postfach 6980. D-76128, Karlsruhe, Germany \& Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106-3110 and Chief-Scientist, FinAnalytica InC.

E-mail address, S. Rachev: rachev@statistik.uni-karlsruhe.de
(L. Sakalauskas) Institute of Mathematics and Informatics, Operational Research Sector at Data Analysis Department, Akademijos 4, Vilnius LT-08663, Lithuania

E-mail address, L. Sakalauskas: sakal@ktl.mii.lt
(W. Sun) School of Economics and Business Engineering University of Karlsruhe, Kollegium am Schloss, Bau II, 20.12, R210 Postfach 6980. D-76128, Karlsruhe, Germany

E-mail address, W. Sun: wei.sun@statistik.uni-karlsruhe.de
(I. Belovas) Institute of Mathematics and Informatics, Operational Research Sector at Data Analysis Department, Akademijos 4, Vilnius LT-08663, Lithuania

E-mail address, I. Belovas: igor_belov@takas.lt

Unique Continuation on the Gradient for Second Order Elliptic Equations with Lower Order Terms

M. N. NKASHAMA
Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
E-mail: nkashama@math.uab.edu

Abstract

We prove unique continuation results for the gradient of solutions to second order elliptic equations with a strict sign condition on the potential. Some information on the Lebesgue measure of the nodal set of the gradient of solutions is also obtained. Such results are useful in nonlinear partial differential equations. A counterexample of Hartman and Wintner suggests that our results are sharp in some sense. Our method of proof is based in part on L^{p}-estimates, a "reverse" Caccioppoli's type inequality derived herein, a doubling condition established by Garofalo and Lin, and the de Giorgi-Nash-Moser type iteration procedure.

Keywords: Elliptic equations; Gradient unique continuation; Sign condition; L^{p}-estimates; Doubling condition; Iteration procedure.

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 3$, be a connected open set. We consider the second order elliptic partial differential equation

$$
\begin{equation*}
H u:=-\operatorname{div}(A(x) \nabla u)+b(x) \cdot \nabla u+V(x) u=0 \quad \text { in } \Omega, \tag{1}
\end{equation*}
$$

where $|b| \in L_{\mathrm{loc}}^{N}(\Omega), V \in L_{\mathrm{loc}}^{N / 2}(\Omega)$, and $A(x)=\left(a_{i j}(x)\right)$ is a real symmetric matrix with (uniformly) Lipschitz continuous entries such that there exists a constant $\mu \in(1, \infty)$ with

$$
\begin{equation*}
\mu^{-1}|\xi|^{2} \leq\langle A(x) \xi, \xi\rangle \leq \mu|\xi|^{2} \tag{2}
\end{equation*}
$$

for all $x \in \Omega$ and all $\xi \in \mathbb{R}^{N}$.
We are interested in studying different types of unique continuation property on the gradient $|\nabla u|$ of nontrivial solutions to Eq. (1). We first give some relevant definitions.

By a solution to Eq. (1) we mean a function $u \in H_{\mathrm{loc}}^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega}\langle A(x) \nabla u, \nabla \varphi\rangle+\int_{\Omega}\langle b(x), \nabla u\rangle \varphi+\int_{\Omega} V(x) u \varphi=0 \quad \text { for all } \varphi \in C_{0}^{1}(\Omega) . \tag{3}
\end{equation*}
$$

UNIQUE CONTINUATION ON THE GRADIENT

Note that by the interior regularity properties of (weak) solutions to Eq. (1) (see e.g. [6], Theorem 8.8, or more precisely [12], Chapter 3, Section 10), it follows that $u \in H_{\mathrm{loc}}^{2}(\Omega)$. Actually, it is also known that $u \in L_{\text {loc }}^{\infty}(\Omega)$ (see e.g. [12], Chapter 3, Section 14, Theorem 14.1 and Remark 1).

Definition 1 A function $v \in L_{\text {loc }}^{2}(\Omega)$ vanishes of infinite order at a point $x_{0} \in \Omega$ if for each $k \in \mathbb{N}$,

$$
\begin{equation*}
\int_{\left|x-x_{0}\right|<R} v^{2} d x=O\left(R^{k}\right) \quad \text { as } R \rightarrow 0 . \tag{4}
\end{equation*}
$$

Definition 2 The operator H has the strong unique continuation property on the gradient in Ω if the only solution to $H u=0$ such that $|\nabla u|$ vanishes of infinite order at a point $x_{0} \in \Omega$ is $u \equiv 0$.

Definition 3 The operator H has the unique continuation property on the gradient in Ω if the only solution to $H u=0$ such that $|\nabla u|$ vanishes in a subset of Ω of positive (Lebesgue) measure is $u \equiv 0$.

Definition 4 The operator H has the weak unique continuation property on the gradient in Ω if the only solution to $H u=0$ such that $|\nabla u|$ vanishes in an open subset of Ω is $u \equiv 0$.

There is an extensive literature on the unique continuation property of nontrivial solutions, u, to Eq. (1). Significantly improving upon previous results obtained by Amrein, Berthier and Georgescu [1], Hörmander [9], Protter [16], Schechter and Simon [17] and others, Jerison and Kenig [11] proved sharp unique continuation results in L^{p}-spaces $\left(V \in L_{\text {loc }}^{N / 2}(\Omega)\right)$ for nontrivial solutions, u, to the Schrödinger operator $-\Delta u+V(x) u$. (Also see Jerison [10] for a simpler proof.) Their result was extended by Stein [21] to the case of the Lorentz space, $V \in L_{\text {loc }}^{N / 2, \infty}(\Omega)$, with a "small norm" condition. Their method of proof was linked to Carleman's type inequalities and the harmonic analysis of the Laplace operator. These results were shown to be sharp in that context by counterexamples constructed by Wolff [22]. The variable coefficients case was taken up in Sogge [20] where it is assumed that $a_{i j} \in C^{\infty}(\Omega)$ (also see Hartman and Wintner [8]), and Garofalo and Lin [4, 5] and Hörmander [9] where it is assumed that the entries $a_{i j}(x)$ are (uniformly) Lipschitz continuous, with additional growth conditions on the potential V and the drift coefficient b in Eq. (1). In an other context, the ($N-1$)-dimensional Hausdorff measure of the nodal set of solutions was considered by Hardt and Simon in [7]. More references may be found in these papers.

However, to our knowledge, very little has been done concerning unique continuation property on the gradient, $|\nabla u|$, of nontrivial solutions to Eq. (1). In [4], Garofalo and Lin proved that, if $b \equiv 0$ and $V \equiv 0$, then the gradient, $|\nabla u|$, of a solution cannot vanish of infinite order at a point, unless $u \equiv$ constant. Since the gradient of the solution was shown in [5] to be an A_{q} weight of Muckenhoupt, it cannot vanish on a set of positive (Lebesgue) measure either, provided $u \not \equiv$ constant.

Their approach cannot be extended to problems with lower order terms, i.e. with $V \not \equiv 0$ for instance. Actually, they mentioned (without references) in [5], p. 352, that these statements may not be true for $V \not \equiv 0$, even when $V \in C^{\infty}(\Omega)$ and $N=1$. It appears to us that this

UNIQUE CONTINUATION ON THE GRADIENT

fact may have been suggested by a 1955 paper of Hartman and Wintner [8] (see e.g. Sections 1 and 2 in [8]).

For problems with lower order terms, an obvious way to prevent constant functions from being (local) eigenfunctions of Eq. (1) is to assume that $V(x) \neq 0$ a.e. in Ω. However, as suggested by a counterexample in [8], p. 452, this condition may not be sufficient for strong unique continuation property on the gradient. The counterexample in [8] is of the form $V(x)=u^{\prime \prime}(x) / u(x)$, where $u(0)=1$ and $u(x)=1 \pm \exp \left(-x^{-2}\right)$ for $x \neq 0$. An analysis of this counterexample shows that the potential V does not change sign in a neighborhood of the point $x=0$, where the gradient (of the solution) vanishes of infinite order. However, V does not satisfy a strict sign condition in that neighborhood either. Slightly modifying this example by considering $V(x)=u^{\prime \prime}(x) / u(x)$, where now $u(x)=1+x \exp \left(-x^{-2}\right)$ for $x \neq 0$, it is easy to see that V changes sign in every neighborhood of $x=0$. In either case, the nonconstant function u satisfies the differential equation $-u^{\prime \prime}+V(x) u=0$ and $u^{\prime}(x)$ vanishes of infinite order at $x=0$. Thus, the strong unique continuation property on the gradient does not hold. This discussion clearly shows that the problem of unique continuation of the gradient, $|\nabla u|$, has different features than that of unique continuation of the solution, u, itself.

Therefore, unless otherwise mentioned, we shall assume throughout that the potential V satisfies the following strict sign condition:

$$
\begin{equation*}
V(x) \leq-\varepsilon \quad \text { a.e. in } \Omega \tag{5}
\end{equation*}
$$

for some real number $\varepsilon>0$. (The case $V(x) \geq \varepsilon$ a.e. in Ω will be treated in a similar way.)
It is the purpose of this paper to show that this (natural) strict sign condition implies the (strong) unique continuation property on the gradient of solutions to Eq. (1) (see Section 2). Furthermore, we obtain some information on the (Lebesgue) measure of the nodal set (the set of zeros) of the gradient of nontrivial solutions. More precisely, we prove that this set has (Lebesgue) measure zero (see Section 3). Such results are also useful in nonlinear boundary value problems (see e.g. Nkashama and Robinson [14, 15] and references therein). The above counterexample of Hartman and Wintner seems to indicate that our results are sharp in the sense that a strict sign condition on the potential V is needed for strong unique continuation property on the gradient.

Let us mention that, in a different setting, namely in scattering theory, a (strict) sign condition (in some sense) plays an important role in proving the absence of positive eigenvalues (that is, eigenvalues embedded in the continuous spectrum) for Schrödinger operators. The eigenfunctions (and their first order derivatives) associated with such eigenvalues are rapidly decreasing at infinity in the L^{2}-sense, provided the potential has a certain decaying behavior at infinity. We refer to Hörmander [9], Section 5, and Simon [18, 19].

Our method of proof is based in part on L^{p}-estimates, a "reverse" Caccioppoli's type inequality derived in Section 2, a doubling condition established by Garofalo and Lin [4, 5], and the de Giorgi-Nash-Moser type iteration procedure which we use in Section 3.

Furthermore, unless otherwise indicated, we shall assume throughout that the drift coefficient b and the potential V satisfy the following additional growth conditions in the neighborhood of a possible point of singularity (see e.g. Garofalo and Lin [5] and Hörmander [9]).

UNIQUE CONTINUATION ON THE GRADIENT

For every $x_{0} \in \Omega$, there exist a constant $r_{0}>0$, an increasing function $h:\left(0, r_{0}\right) \rightarrow \mathbb{R}^{+}$with

$$
\int_{0}^{r_{0}} \frac{h(r)}{r} d r<\infty
$$

and a constant $C_{0}>0$ such that

$$
\begin{equation*}
|b(x)| \leq C_{0} \frac{h\left(\left|x-x_{0}\right|\right)}{\left|x-x_{0}\right|} \quad \text { and } \quad|V(x)| \leq C_{0} \frac{h\left(\left|x-x_{0}\right|\right)}{\left|x-x_{0}\right|^{2}} \tag{6}
\end{equation*}
$$

for all $x \in B_{r_{0}}\left(x_{0}\right) \cap \Omega$, where $B_{r_{0}}\left(x_{0}\right)=\left\{x \in \mathbb{R}^{N}:\left|x-x_{0}\right|<r_{0}\right\}$. (Note that this condition is in particular satisfied if $|b| \in L_{\mathrm{loc}}^{\infty}(\Omega)$ and $V \in L_{\mathrm{loc}}^{\infty}(\Omega)$.)

As mentioned above, it is known that, under the above conditions, with the exception of the sign condition (5), the operator H enjoys all of the above three types of unique continuation property on the solution u itself. We refer to de Figueiredo and Gossez [3], Garofalo and Lin [4], [5], Hörmander [9], Jerison [10], Jerison and Kenig [11], Sogge [20] and references therein.

2 Strong Unique Continuation

We wish to prove the following main result of this section.
Theorem 1 The operator H has the strong unique continuation property on the gradient in Ω; that is, $|\nabla u|$ cannot vanish of infinite order at a point, unless $u \equiv 0$.

The following result is an immediate consequence of Theorem 1.
Corollary 1 The operator H has the weak unique continuation property on the gradient in Ω.

A more general result than Corollary 1 actually holds. Indeed, it is obvious that the operator H has the weak unique continuation property on the gradient in Ω if $V(x) \neq 0$ a.e. in Ω.

The following result will be useful in the proof of Theorem 1. (Note that this result does not require the growth conditions (6) on b and V.)

Lemma 1 Let $u \in H_{\mathrm{loc}}^{1}(\Omega)$ be a solution to Eq. (1), and let $B_{r_{0}} \subset \Omega$ be an open ball. Then there exist a positive constant C_{2}, depending on A and V, and a positive constant C_{3}, depending on u, b, V and $B_{r_{0}}$, such that for every concentric balls B_{r} and $B_{2 r}$ contained in $B_{r_{0}}$, we have

$$
\begin{equation*}
\int_{B_{r}} u^{2} \leq C_{2}\left[\frac{1}{r^{2}} \int_{B_{2 r}}|\nabla u|^{2}+\int_{B_{2 r}}|\nabla u|^{2}\right]+C_{3}\left(\int_{B_{2 r}}|\nabla u|^{2}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

The constants C_{2} and C_{3} do not depend on r.

UNIQUE CONTINUATION ON THE GRADIENT

Proof. Pick $\varphi \in C_{0}^{\infty}(\Omega)$ with $\varphi \in C_{0}^{\infty}\left(B_{2 r}\right)$ such that $\varphi \equiv 1$ in B_{r}, and $|\nabla \varphi| \leq 2 / r$. Using the function $u \varphi^{2}$ as a test function in the definition (3) by density, we get

$$
-\int_{\Omega} V(x) u^{2} \varphi^{2}=\int_{\Omega}\langle A(x) \nabla u, \nabla u\rangle \varphi^{2}+2 \int_{\Omega}\langle A(x) \nabla u, \nabla \varphi\rangle u \varphi+\int_{\Omega}\langle b(x), \nabla u\rangle u \varphi^{2}
$$

that is,

$$
-\int_{B_{2 r}} V(x) u^{2} \varphi^{2}=\int_{B_{2 r}}\langle A(x) \nabla u, \nabla u\rangle \varphi^{2}+2 \int_{B_{2 r}}\langle A(x) \nabla u, \nabla \varphi\rangle u \varphi+\int_{B_{2 r}}\langle b(x), \nabla u\rangle u \varphi^{2}
$$

Using Cauchy-Schwarz and Young inequalities, it follows that for every $\delta>0$ there is a constant $C_{\delta}>0$ such that

$$
\begin{gathered}
-\int_{B_{2 r}} V(x) u^{2} \varphi^{2} \leq \int_{B_{2 r}} \mu|\nabla u|^{2} \varphi^{2}+2 \delta \int_{B_{2 r}} u^{2} \varphi^{2}+C_{\delta} \int_{B_{2 r}} \mu^{2}|\nabla \varphi|^{2}|\nabla u|^{2} \\
+\left|\varphi^{2}\right|_{L^{\infty}(\Omega)} \int_{B_{2 r}}(|u||b(x)|)|\nabla u|
\end{gathered}
$$

which, by the inequality (5) and Hölder's inequality (used twice), implies that

$$
\begin{aligned}
& \varepsilon \int_{B_{2 r}} u^{2} \varphi^{2} \leq \int_{B_{2 r}}\left(\mu \varphi^{2}+\mu^{2} C_{\delta}|\nabla \varphi|^{2}\right)|\nabla u|^{2}+2 \delta \int_{B_{2 r}} u^{2} \varphi^{2} \\
&+\left|\varphi^{2}\right|_{L^{\infty}(\Omega)}|u|_{L^{2^{*}\left(B_{\left.r_{0}\right)}\right)}}|b|_{L^{N}\left(B_{r_{0}}\right)}\left(\int_{B_{2 r}}|\nabla u|^{2}\right)^{1 / 2}
\end{aligned}
$$

where $2^{*}=2 N /(N-2)$ is the Sobolev critical exponent, and $\mu>0$ is the ellipticity constant appearing in the inequality (2). Therefore, choosing δ sufficiently small such that $2 \delta<\varepsilon$, and taking into account the fact that $\varphi \equiv 1$ in B_{r} and $|\nabla \varphi| \leq 2 / r$ in $B_{2 r}$, we deduce that there exit a constant $C_{2}>0$, depending on A and V, and a constant $C_{3}>0$, depending on u, b, V and $B_{r_{0}}$, such that

$$
\int_{B_{r}} u^{2} \leq \frac{C_{2}}{r^{2}} \int_{B_{2 r}}|\nabla u|^{2}+C_{2} \int_{B_{2 r}}|\nabla u|^{2}+C_{3}\left(\int_{B_{2 r}}|\nabla u|^{2}\right)^{1 / 2}
$$

The proof is complete.
Remark 1 An analysis of the proof of Lemma 1 shows that, if $|b| \in L_{\text {loc }}^{\infty}(\Omega)$, the third term in the right hand side of the inequality (7) may be omitted. Thus, the constant appearing in Lemma 1 would be independent of r and u as well. It suffices to use Young's inequality on $\int_{B_{2 r}}(u \varphi)(\varphi|b(x)||\nabla u|)$. In this case the constant $C_{2}>0$ also depends on $|b|_{L^{\infty}\left(B_{r_{0}}\right)}$.

Proof. (Theorem 1) Let $u \in H_{\mathrm{loc}}^{1}(\Omega)$ be a solution to Eq. (1). If $|\nabla u|$ vanishes of infinite order at some point x_{0}, it follows from the definition (4) and the inequality (7) that for $k=3$, we have

$$
\int_{\left|x-x_{0}\right|<R} u^{2} d x=O\left(R^{3-2}\right)+O\left(R^{3}\right)+O\left(R^{3 / 2}\right)=O(R) \quad \text { as } R \rightarrow 0
$$

UNIQUE CONTINUATION ON THE GRADIENT

since $R \leq 1$. Moreover, for each $k \in N, k$ even with $k \geq 4$, we have

$$
\int_{\left|x-x_{0}\right|<R} u^{2} d x=O\left(R^{k-2}\right)+O\left(R^{k}\right)+O\left(R^{k / 2}\right)=O\left(R^{k / 2}\right) \quad \text { as } R \rightarrow 0
$$

since $R \leq 1$, and $k-2 \geq k / 2$ for $k \geq 4$.
Thus, the solution u vanishes of infinite order at x_{0}. The conclusion of Theorem 1 then follows from the results on strong unique continuation property on the solution u. We refer to Garofalo and Lin [5] and Hörmander [9] (also see Jerison and Kenig [11], and Sogge [20]). The proof is complete.

Note that if $b \equiv 0$, then Theorem 1 holds true when $a_{i j} \in C^{\infty}(\Omega)$ and $V \in L_{\text {loc }}^{N / 2}(\Omega)$, without assuming the growth condition (6) on the potential V. This follows from Remark 1 and the results of Sogge [20]. (Also see Jerison [10], and Jerison and Kenig [11].)

In order to obtain some information on the Lebesgue measure of the set of zeros of the gradient of nontrivial solutions to Eq. (1), we have, in the spirit of Remark 1, the following result; which may be thought of as a "reverse" Caccioppoli's type inequality (see Section 3). It is motivated by Poincaré and Wirtinger's type inequalities.

Lemma 2 Let $u \in H_{\mathrm{loc}}^{1}(\Omega)$ be a solution to Eq. (1), and let $B_{r_{0}} \subset \Omega$ be an open ball, where without loss of generality we assume that $r_{0} \leq 1$. Then there exists a positive constant C_{4}, depending on u, A, b, V and $B_{r_{0}}$, such that for every concentric balls B_{r} and $B_{2 r}$ contained in $B_{r_{0}}$, we have

$$
\begin{equation*}
\int_{B_{r}} u^{2} \leq \frac{C_{4}}{r^{2}} \int_{B_{2 r}}|\nabla u|^{2} . \tag{8}
\end{equation*}
$$

The constant C_{4} does not depend on r.
The proof of Lemma 2 will depend in part on the following doubling condition which was established in [5].

Lemma 3 [5] Let $u \in H_{\mathrm{loc}}^{1}(\Omega)$ be a solution to Eq. (1), and let $B_{r_{0}} \subset \Omega$ be an open ball, where without loss of generality r_{0} is sufficiently small. Then there exists a positive constant C_{1}, depending on u, N, A, b, V and $B_{r_{0}}$, such that for every concentric balls B_{R} and $B_{2 R}$ contained in $B_{r_{0}}$, we have

$$
\begin{equation*}
\int_{B_{2 R}} u^{2} \leq C_{1} \int_{B_{R}} u^{2} \tag{9}
\end{equation*}
$$

The constant C_{1} does not depend on R.
Proof. (Lemma 2) An analysis of the proof of Lemma 1 shows that

$$
\begin{aligned}
\varepsilon \int_{B_{2 r}} u^{2} \varphi^{2} \leq & \int_{B_{2 r}}\left(\mu \varphi^{2}+\mu^{2} C_{\delta}|\nabla \varphi|^{2}\right)|\nabla u|^{2}+2 \delta \int_{B_{2 r}} u^{2} \varphi^{2} \\
& +\left|\varphi^{2}\right|_{L^{\infty}(\Omega)}|u|_{L^{2^{*}}\left(B_{2 r}\right)}|b|_{L^{N}\left(B_{r_{0}}\right)}\left(\int_{B_{2 r}}|\nabla u|^{2}\right)^{1 / 2}
\end{aligned}
$$

UNIQUE CONTINUATION ON THE GRADIENT

By the Sobolev Imbedding Theorem, there is a constant $C^{\prime}>0$, which may be chosen independent of r, such that

$$
\begin{gathered}
\varepsilon \int_{B_{2 r}} u^{2} \varphi^{2} \leq \int_{B_{2 r}}\left(\mu \varphi^{2}+\mu^{2} C_{\delta}|\nabla \varphi|^{2}\right)|\nabla u|^{2}+2 \delta \int_{B_{2 r}} u^{2} \varphi^{2}+C^{\prime}\left|\varphi^{2}\right|_{L^{\infty}(\Omega)} \int_{B_{2 r}}|\nabla u|^{2} \\
+C^{\prime}\left|\varphi^{2}\right|_{L^{\infty}(\Omega)}\left(\frac{1}{r^{2}} \int_{B_{2 r}} u^{2}\right)^{1 / 2}\left(\int_{B_{2 r}}|\nabla u|^{2}\right)^{1 / 2}
\end{gathered}
$$

Using Young's inequality once more and the doubling condition (9), we get

$$
\begin{gathered}
\varepsilon \int_{B_{2 r}} u^{2} \varphi^{2} \leq \int_{B_{2 r}}\left(\mu \varphi^{2}+\mu^{2} C_{\delta}|\nabla \varphi|^{2}\right)|\nabla u|^{2}+2 \delta \int_{B_{2 r}} u^{2} \varphi^{2}+C^{\prime}\left|\varphi^{2}\right|_{L^{\infty}(\Omega)} \int_{B_{2 r}}|\nabla u|^{2} \\
+C_{\gamma} C^{\prime}\left|\varphi^{2}\right|_{L^{\infty}(\Omega)} \frac{1}{r^{2}} \int_{B_{2 r}}|\nabla u|^{2}+\gamma C C^{\prime}\left|\varphi^{2}\right|_{L^{\infty}(\Omega)} \int_{B_{r}} u^{2} .
\end{gathered}
$$

Therefore, by choosing $\delta>0$ and $\gamma>0$ sufficiently small such that

$$
2 \delta+\gamma C C^{\prime}\left|\varphi^{2}\right|_{L^{\infty}(\Omega)}<\varepsilon / 2
$$

the inequality (8) follows. The proof is complete.
Remark 2 It is easy to see that all the above results hold true if the potential $V \in L_{\text {loc }}^{N / 2}(\Omega)$ satisfies the growth condition (6) with V positive; that is, $V(x) \geq \varepsilon$ a.e. in Ω, for some real number $\varepsilon>0$.

3 Nodal Set of the Gradient

Next, we will be interested in getting some information on the Lebesgue measure of the nodal set; that is, the zero set of the gradient $|\nabla u|$ of solutions to Eq. (1). To do so, we assume that $V \in L_{\mathrm{loc}}^{\infty}(\Omega)$ and $|b| \in L_{\mathrm{loc}}^{N}(\Omega)$. We have the following result.

Proposition 1 Let $u \in H_{\mathrm{loc}}^{1}(\Omega)$ be a solution to Eq. (1). If $|\nabla u|=0$ on a set $S \subset \Omega$ of positive (Lebesgue) measure, then both $|\nabla u|$ and $|u|$ vanish of infinite order at a.e. point of S.

As an immediate consequence of Proposition 1 and Theorem 1 we deduce the following main result of this section.

Theorem 2 The operator H has the unique continuation property on the gradient in Ω; that is, $|\nabla u|$ cannot vanish on a set of positive (Lebesgue) measure, unless $u \equiv 0$.

To prove Proposition 1, we wish to first derive interior estimates of the L^{2}-norm of the second derivatives of an arbitrary function $u \in H_{\text {loc }}^{2}(\Omega)$ in terms of the L^{2}-norms of the functions $u,|\nabla u|$ and the values of the elliptic operator $H u$. For that purpose, let us write the elliptic operator $H u$ in the following equivalent form (for $u \in H_{\mathrm{loc}}^{2}(\Omega)$):

$$
H u:=-a_{i j}(x) D_{i j} u+a_{i}(x) D_{i} u+V(x) u
$$

UNIQUE CONTINUATION ON THE GRADIENT

where $a_{i}(x)=-D_{j}\left(a_{i j}(x)\right)+b_{i}(x), D_{i} u=\partial u / \partial x_{i}, D_{i j} u=\partial^{2} u / \partial x_{i} \partial x_{j}$, etc. \ldots, and the summation convention is understood. We have the following interior estimate. (Note that in obtaining this interior estimate we may assume that $V \in L_{\mathrm{loc}}^{N / 2}(\Omega),|b| \in L_{\mathrm{loc}}^{N}(\Omega)$, and the growth conditions (6) are not required.)

Lemma 4 There exists a constant $C>0$ such that for all $u \in H_{\mathrm{loc}}^{2}(\Omega)$,

$$
\begin{gather*}
\int_{\Omega} \sum_{i, j=1}^{N}\left|D_{i j} u\right|^{2} \varphi^{2} \leq C\left(\int_{\Omega}(H u)^{2} \varphi^{2}+\int_{\Omega}|\nabla \varphi|^{2}|\nabla u|^{2}+\int_{\Omega}|\nabla u|^{2} \varphi^{2}\right) \\
+\int_{\Omega}(V(x) u)^{2} \varphi^{2} \tag{10}
\end{gather*}
$$

where $\varphi \in C_{0}^{\infty}(\Omega)$ is any given function. The constant

$$
C=C\left(\mu^{-1}, N,\left|a_{i j}\right|_{C^{0,1}(\Omega)},|b|_{L_{\mathrm{loc}}^{N}(\Omega)}\right)
$$

is independent of u and the values of φ on its support. (In $|b|_{L_{\mathrm{loc}}^{N}(\Omega)}$, the word "loc" refers to a subset of Ω containing the support of φ in Ω.)

Proof. It suffices to prove (10) for all $u \in C^{\infty}(\Omega) \cap H_{\text {loc }}^{2}(\Omega)$, since the inequality (10) for $u \in H_{\text {loc }}^{2}(\Omega)$ follows from a density argument (see e.g. Theorem 7.9 in [6], p. 154).

Using the above definition of the operator $H u$, we obtain

$$
\begin{aligned}
\int_{\Omega}(H u)^{2} \varphi^{2}= & \int_{\Omega} a_{i j}\left(D_{i j} u\right) a_{k l}\left(D_{k l} u\right) \varphi^{2}+2 \int_{\Omega}\left(a_{i j} D_{i j} u\right)\left(a_{k} D_{k} u+V u\right) \varphi^{2} \\
& +\int_{\Omega}\left(a_{k} D_{k} u+V u\right)^{2} \varphi^{2}
\end{aligned}
$$

By twice integrating by parts the first term on the right, we get

$$
\begin{align*}
\int_{\Omega} a_{i j}\left(D_{i j} u\right) a_{k l}\left(D_{k l} u\right) \varphi^{2}= & -\int_{\Omega}\left[a_{i j} a_{k l} D_{k l j} u\left(D_{i} u\right) \varphi^{2}+D_{j}\left(a_{i j} a_{k l} \varphi^{2}\right) D_{k l} u D_{i} u\right] \\
= & \int_{\Omega}\left[a_{i j} a_{k l}\left(D_{i k} u\right)\left(D_{j l} u\right) \varphi^{2}-D_{j}\left(a_{i j} a_{k l} \varphi^{2}\right) D_{k l} u D_{i} u\right. \\
& \left.+D_{k}\left(a_{i j} a_{k l} \varphi^{2}\right) D_{l j} u D_{i} u\right] \tag{11}
\end{align*}
$$

Using the inequality (7.6) in [12], Chapter 3, Section 7, the first term in the right hand side of (11) may be estimated by

$$
\int_{\Omega} a_{i j} a_{k l} D_{i k} u D_{j l} u \varphi^{2} \geq \mu^{-2} \int_{\Omega} \sum_{i, j=1}^{N}\left|D_{i j} u\right|^{2} \varphi^{2}
$$

Therefore,

$$
\begin{align*}
\frac{1}{\mu^{2}} \int_{\Omega} \sum_{i, j=1}^{N}\left|D_{i j} u\right|^{2} \varphi^{2} \leq & \int_{\Omega}(H u)^{2} \varphi^{2} \\
& +\int_{\Omega}\left[D_{j}\left(a_{i j} a_{k l} \varphi^{2}\right) D_{k l} u D_{i} u-D_{k}\left(a_{i j} a_{k l} \varphi^{2}\right) D_{l j} u D_{i} u\right] \tag{12}\\
& -2 \int_{\Omega}\left(a_{i j} D_{i j} u\right)\left(a_{k} D_{k} u+V u\right) \varphi^{2}-\int_{\Omega}\left(a_{k} D_{k} u+V u\right)^{2} \varphi^{2} .
\end{align*}
$$

UNIQUE CONTINUATION ON THE GRADIENT

Let us consider the terms containing the derivatives of φ; that is, part of the second term in the right hand side of the inequality (12). By Young's inequality, we have that, for every $\delta>0$,

$$
\int_{\Omega} a_{i j} a_{k l}\left(D_{k l} u D_{j} \varphi-D_{l j} u D_{k} \varphi\right) 2 \varphi D_{i} u \leq \delta \int_{\Omega} \sum_{i, j=1}^{N}\left|D_{i j} u\right|^{2} \varphi^{2}+\delta^{-1} C^{\prime} \int_{\Omega}|\nabla \varphi|^{2}|\nabla u|^{2},
$$

where the constant $C^{\prime}=C^{\prime}\left(N,\left|a_{i j}\right|_{L^{\infty}(\Omega)}\right)>0$. Similarly, the remaining terms of the second term in the right hand side of the inequality (12) may be estimated by

$$
\int_{\Omega}\left[D_{j}\left(a_{i j} a_{k l}\right) \varphi D_{k l} u-D_{k}\left(a_{i j} a_{k l}\right) \varphi D_{l j} u\right] \varphi D_{i} u \leq \delta \int_{\Omega} \sum_{i, j=1}^{N}\left|D_{i j} u\right|^{2} \varphi^{2}+\delta^{-1} C^{\prime \prime} \int_{\Omega}|\nabla u|^{2} \varphi^{2}
$$

where the constant $C^{\prime \prime}=C^{\prime \prime}\left(N,\left|a_{i j}\right|_{C^{0,1}(\Omega)}\right)>0$.
Now, let us consider the term $\int_{\Omega} a_{k}^{2}\left|D_{k} u\right|^{2} \varphi^{2}$ that appears in the third and last terms in the right hand side of the inequality (12), and let us estimate the term $\int_{\Omega}\left|b_{k}\right|^{2}\left|D_{k} u\right|^{2} \varphi^{2}$ included in it.

Since $|b| \in L_{\mathrm{loc}}^{N}(\Omega)$ and φ has compact support in Ω, it follows from a result of Brézis and Kato [2], p. 139, Lemma 2.1, that for every $\delta>0$,

$$
\int_{\Omega}\left|b_{k}\right|^{2}\left|\varphi D_{k} u\right|^{2} \leq \delta \int_{\Omega}\left|\nabla\left(\varphi D_{k} u\right)\right|^{2}+C_{\delta} \int_{\Omega}\left|\varphi D_{k} u\right|^{2}
$$

where the constant $C_{\delta}=C_{\delta}\left(N,\left|b_{k}\right|_{L_{\mathrm{loc}}^{N}(\Omega)}\right)>0$. (In $\left|b_{k}\right|_{L_{\mathrm{loc}}^{N}(\Omega)}$, the word "loc" refers to a subset of Ω containing the support of φ in Ω.) Thus,

$$
\int_{\Omega}\left|b_{k}\right|^{2}\left|\varphi D_{k} u\right|^{2} \leq \delta \int_{\Omega} \sum_{i, j=1}^{N}\left|D_{i j} u\right|^{2} \varphi^{2}+\delta \int_{\Omega}|\nabla \varphi|^{2}\left|D_{k} u\right|^{2}+C_{\delta} \int_{\Omega}\left|D_{k} u\right|^{2} \varphi^{2} .
$$

Finally, collecting all the above estimates (and similar ones), where $\delta>0$ is chosen sufficiently small, and using the inequality (12), we have that the inequality (10) follows. The proof is complete.

Proof. (Proposition 1) For a.e. point $x_{0} \in S$, let us set

$$
\omega_{0}(R):=\int_{B_{R}}|\nabla u|^{2},
$$

where $B_{R}=\left\{x \in \Omega:\left|x-x_{0}\right|<R\right\}$. We will show that for every $k \in \mathbb{N}$,

$$
\begin{equation*}
\omega_{0}(R)=O\left(R^{k}\right) \quad \text { as } \quad R \rightarrow 0 \tag{13}
\end{equation*}
$$

which implies that $|\nabla u|$ vanishes of infinite order at x_{0}.
Since S is a set of positive (Lebesgue) measure, it is known that a.e. point $x_{0} \in S$ is a cluster point in measure (also referred to as a point of density of S); that is,

$$
\lim _{R \rightarrow 0} \lambda\left(S \cap B_{R}\right) / \lambda\left(B_{R}\right)=1, \quad \text { and henceforth, } \quad \lim _{R \rightarrow 0} \lambda\left([\Omega \backslash S] \cap B_{R}\right) / \lambda\left(B_{R}\right)=0
$$

where as above $B_{R}=\left\{x \in \Omega:\left|x-x_{0}\right|<R\right\}$, and $\lambda\left(B_{R}\right)$ denotes the (Lebesgue) measure of B_{R}. Note that the latter is equivalent to saying that for every $\eta>0$ there exists $R_{0}=$ $R_{0}(\eta)>0$ such that

$$
\begin{equation*}
\lambda\left([\Omega \backslash S] \cap B_{R}\right) \leq \eta \lambda\left(B_{R}\right) \quad \text { for all } R \leq R_{0} . \tag{14}
\end{equation*}
$$

Without loss of generality, we may asssume that $R_{0} \leq 1$. Using Hölder's inequality, the inequality (14), and the Sobolev Imbedding Theorem, we deduce that

$$
\begin{align*}
\omega_{0}(R) & \leq C^{\prime}\left(\eta \lambda\left(B_{R} \cap[\Omega \backslash S]\right)\right)^{2 / N}|\nabla u|_{L^{2^{*}}\left(B_{R} \cap[\Omega \backslash S]\right)}^{2} \\
& \leq C^{\prime \prime} \eta^{2 / N} R^{2}\left(\frac{1}{R^{2}}|\nabla u|_{L^{2}\left(B_{R}\right)}^{2}+\int_{B_{R}} \sum_{i, j=1}^{N}\left|D_{i j} u\right|^{2}\right) \tag{15}
\end{align*}
$$

for all $R \leq R_{0}$, since $|\nabla u|=0$ on S. (The constant $C^{\prime \prime}>0$ is also independent of R.)
Moreover, by (local) L^{2}-estimates for elliptic operators; i.e. Lemma 4 where φ is picked as a cut-off function; that is $\varphi \in C_{0}^{\infty}\left(B_{2 R}\right), \varphi \equiv 1$ in B_{R} and $|\nabla \varphi| \leq 2 / R$, we have

$$
\begin{equation*}
\int_{B_{R}} \sum_{i, j=1}^{N}\left|D_{i j} u\right|^{2} \leq C\left(\frac{1}{R^{2}}|\nabla u|_{L^{2}\left(B_{2 R}\right)}^{2}+|\nabla u|_{L^{2}\left(B_{2 R}\right)}^{2}+|V u|_{L^{2}\left(B_{2 R}\right)}^{2}\right), \tag{16}
\end{equation*}
$$

where $C=C\left(N, \mu^{-1},\left|a_{i j}\right|_{C^{0,1}\left(B_{R_{0}}\right)},|b|_{L^{N}\left(B_{R_{0}}\right)}\right)>0$ is a constant independent of R, as $R \rightarrow 0$.
Using the estimate (16) with $V \in L_{\text {loc }}^{\infty}(\Omega)$, and the fact that, by Lemma 2 ,

$$
\int_{B_{2 R}} u^{2} \leq \frac{C^{\prime}}{R^{2}} \int_{B_{4 R}}|\nabla u|^{2},
$$

for some constant $C^{\prime}>0$ independent of R, as $R \rightarrow 0$, we deduce from the inequality (15) that $\omega_{0}(R) \leq K_{1} \eta^{2 / N} \omega_{0}(4 R)$ for all R such that $4 R \leq R_{0}$; that is,

$$
\begin{equation*}
\omega_{0}(R / 4) \leq K_{1} \eta^{2 / N} \omega_{0}(R) \quad \text { for all } R \leq R_{0}, \tag{17}
\end{equation*}
$$

where $K_{1}>0$ is a constant independent of R, as $R \rightarrow 0$.
Note that the inequality (17) implies that ω_{0} satisfies the assumptions of Lemma 8.23 in [6], where $\tau \in(0,1 / 4]$ is any number, $\gamma=K_{1} \eta^{2 / N}$ and $\sigma \equiv 0$. Therefore, $\omega_{0}(\tau R) \leq \gamma \omega_{0}(R)$ for all $R \leq R_{0}$.

Now, we shall use the inequality (17) to prove the assertion (13). To do so, let $k \in \mathbb{N}$ be given, and let us pick $\eta>0$ sufficiently small such that $(1 / 4)^{k} \leq K_{1} \eta^{2 / N}<1$. (Note that, in this way, R_{0} depends on k.) Since $\tau \leq 1 / 4$, it follows that, for any $\beta \in(0,1)$,

$$
\tau^{(1-\beta)^{-1} k} \leq(1 / 4)^{(1-\beta)^{-1} k}<(1 / 4)^{k} \leq K_{1} \eta^{2 / N}=\gamma,
$$

which immediately implies that

$$
k \leq(1-\beta)(\log \gamma / \log \tau)
$$

UNIQUE CONTINUATION ON THE GRADIENT

Therefore, the conclusion of the (short) proof of Lemma 8.23 in [6] (see e.g. [6], p. 202), which uses the de Giorgi-Nash-Moser type iteration procedure, yields

$$
\omega_{0}(R) \leq \frac{1}{\gamma} \omega_{0}\left(R_{0}\right)\left(\frac{R}{R_{0}}\right)^{(1-\beta)(\log \gamma / \log \tau)} \leq \frac{1}{\gamma} \omega_{0}\left(R_{0}\right)\left(\frac{R}{R_{0}}\right)^{k} \quad \text { for all } R \leq R_{0}
$$

Thus, the assertion (13) follows. Finally, the inequality

$$
\int_{B_{R}} u^{2} \leq \frac{C^{\prime}}{R^{2}} \int_{B_{2 R}}|\nabla u|^{2}
$$

and the assertion (13) imply that for every $k \in \mathbb{N}, k \geq 3$,

$$
\int_{B_{R}} u^{2}=O\left(R^{k-2}\right) \quad \text { as } \quad R \rightarrow 0
$$

which shows that u also vanishes of infinite order at x_{0}. The proof is complete.
Remark 3 It is easy to see that all the above results hold true if the potential $V \in L_{\text {loc }}^{\infty}(\Omega)$ with V positive; that is, $V(x) \geq \varepsilon$ a.e. in Ω, for some real number $\varepsilon>0$.

References

[1] W. O. Amrein, A. M. Berthier, and V. Georgescu, L^{p} inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble) 31 (1981), 153-168.
[2] H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137-151.
[3] D. G. de Figueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations 17 (1992), 339-346.
[4] N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, A_{p} weights and unique continuation, Indiana Univ. Math. J. 35 (1986), 245-268.
[5] N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: A geometricvariational approach, Comm. Pure Appl. Math. XL (1987), 347-366.
[6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second Edition, Springer-Verlag, New York, 1983.
[7] R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, J. Differential Geometry 30 (1989), 505-522.
[8] P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, American J. Math. 77 (1955), 449-476.
[9] L. Hörmander, Uniqueness theorems for second-order elliptic equations, Comm. Partial Differential Equations 8 (1983), 21-64.

UNIQUE CONTINUATION ON THE GRADIENT

[10] D. Jerison, Carleman inequalities for the Dirac and Laplace operators and unique continuation, Advances Math. 62 (1986), 118-134.
[11] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math. 121 (1985), 463-494.
[12] O. A. Ladyzhenskaya and N. N. Uralt'seva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
[13] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Applied Math. XIV (1961), 577-591.
[14] M. N. Nkashama and S. B. Robinson, Resonance and nonresonance in terms of average values, J. Differential Equations 132 (1996), 46-65.
[15] M. N. Nkashama and S. B. Robinson, Resonance and non-resonance in terms of average values II, Proceedings Royal Soc. Edinburgh 131A (2001), 1217-1235.
[16] M. H. Protter, Unique continuation for elliptic equations, Trans. American Math. Soc. 95 (1960), 81-91.
[17] M. Schechter and B. Simon, Unique continuation for Schrödinger operators with unbounded potentials, J. Math. Anal. Appl. 77 (1980), 482-482.
[18] B. Simon, Essential self-adjointness of Schrödinger operators with positive potentials, Math. Annalen 201 (1973), 211-220.
[19] B. Simon, Schrödinger semigroups, Bull. American Math. Soc. 7 (1983), 447-526.
[20] C. D. Sogge, Strong uniqueness theorems for second order elliptic differential equations, American J. Math. 112 (1990), 943-984.
[21] E. M. Stein, Appendix to "Unique continuation", Ann. Math. 121 (1985),489-494.
[22] T. H. Wolff, Note on counterexamples in strong unique continuation problems, Proc. American Math. Soc. 114 (1992), 351-356.

COMPOSITION OPERATORS FROM THE HARDY SPACE TO ZYGMUND-TYPE SPACES ON THE UPPER HALF-PLANE AND THE UNIT DISC

STEVO STEVIĆ

Abstract

The paper characterizes the boundedness of the composition operator $C_{\varphi} f(z)=f(\varphi(z))$ from the Hardy space $H^{p}(X), p>0$, where X is the upper half-plane $\Pi_{+}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ or the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ in the complex plane \mathbb{C}, to Zygmund-type spaces, where φ is an analytic selfmap of X.

1. Introduction

Let Π_{+}be the upper half-plane, that is, the set $\{z \in \mathbb{C}: \operatorname{Im} z>0\}, \mathbb{D}$ the open unit disc in $\mathbb{C}, d m(z)$ the normalized Lebesgue area measure on \mathbb{D}, i.e. $m(\mathbb{D})=1$, and $H(X)$ the space of all analytic functions on X which may be Π_{+}or \mathbb{D}.

The Hardy space $H^{p}\left(\Pi_{+}\right), p>0$, consists of all $f \in H\left(\Pi_{+}\right)$such that

$$
\|f\|_{H^{p}\left(\Pi_{+}\right)}^{p}=\sup _{y>0} \int_{-\infty}^{\infty}|f(x+i y)|^{p} d x<\infty .
$$

With this norm $H^{p}\left(\Pi_{+}\right)$is a Banach space when $p \geq 1$, while for $p \in(0,1)$ it is a Fréchet space with the translation invariant metric $d(f, g)=\|f-g\|_{H^{p}\left(\Pi_{+}\right)}^{p}$, $f, g \in H^{p}\left(\Pi_{+}\right)$.

The Hardy space $H^{p}(\mathbb{D}), p>0$, consists of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{H^{p}(\mathbb{D})}^{p}=\sup _{0<r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}<\infty
$$

Some information on Hardy's spaces can be found in [4] and [5].
Let $\mu(z)$ be a positive continuous function on X (weight) and $n \in \mathbb{N}_{0}$ be fixed. The n-th weighted-type space on X, denoted by $\mathcal{W}_{\mu}^{(n)}(X)$ consists of all $f \in H(X)$ such that

$$
b_{\mathcal{W}_{\mu}^{(n)}(X)}(f):=\sup _{z \in X} \mu(z)\left|f^{(n)}(z)\right|<\infty .
$$

For $n=0$ the space is called the weighted-type space and denoted by $H_{\mu}^{\infty}(X)$, for $n=1$ it is called the Bloch-type space and denoted by $\mathcal{B}_{\mu}(X)$, and for $n=2$ it is called the Zygmund-type space and denoted by $\mathcal{Z}_{\mu}(X)$.

For the special case when $X=\Pi_{+}, \mu(z)=\operatorname{Im} z$ and $n=0$ is obtained the growth space $\mathcal{A}_{\infty}\left(\Pi_{+}\right)=\mathcal{A}_{\infty}$, for $n=1$ the Bloch space $\mathcal{B}_{\infty}\left(\Pi_{+}\right)=\mathcal{B}_{\infty}$, and for $n=2$ the Zygmund space $\mathcal{Z}\left(\Pi_{+}\right)=\mathcal{Z}$, which was introduced in [28]. For Bloch-type spaces on the unit disk, polydisk or the unit ball, see, e.g., $[2,12,22,27,31,35,37]$ and the references therein.

The quantity

$$
b_{\mathcal{Z}_{\mu}(X)}:=\sup _{z \in X} \mu(z)\left|f^{\prime \prime}(z)\right|
$$

is a seminorm on the Zygmund-type space $\mathcal{Z}_{\mu}(X)$ or a norm on $\mathcal{Z}_{\mu}(X) / \mathbb{P}_{1}$, where \mathbb{P}_{1} is the set of all linear polynomials. A natural norm on the Zygmund-type space can be introduced as follows

$$
\|f\|_{\mathcal{Z}_{\mu}(X)}=|f(a)|+\left|f^{\prime}(a)\right|+b_{\mathcal{Z}_{\mu}(X)}(f),
$$

where $a \in X$. With this norm the Zygmund-type space becomes a Banach space.
Note that for $X=\Pi_{+}$and $\mu(z)=y$ is obtained the space $\mathcal{Z}\left(\Pi_{+}\right)$on which the following norm can be introduced

$$
\|f\|_{\mathcal{Z}\left(\Pi_{+}\right)}:=|f(i)|+\left|f^{\prime}(i)\right|+\sup _{z \in \Pi_{+}} \operatorname{Im} z\left|f^{\prime \prime}(z)\right| .
$$

For $X=\mathbb{D}$ and $\mu(z)=1-|z|^{2}$ is obtained the classical Zygmund space on the unit disk, on which a norm is introduced as follows

$$
\|f\|_{\mathcal{Z}(\mathbb{D})}:=|f(0)|+\left|f^{\prime}(0)\right|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z)\right| .
$$

For some information on the Zygmund space on the unit disk and some operators on it, see, for example, [1], [7], [10], [11], [14]. For the Zygmund space on the unit ball and some operators on it, see, e.g., [15], [16], [30], [37] and [38].

The following results, regarding the cases $n=0,1,2$ were proved in [20] and [28].
Theorem A. Assume $p \geq 1$ and φ is a nonconstant holomorphic self-map of Π_{+}. Then the following statements true hold.
(a) The operator $C_{\varphi}: H^{p}\left(\Pi_{+}\right) \rightarrow \mathcal{A}_{\infty}\left(\Pi_{+}\right)$is bounded if and only if

$$
\sup _{z \in \Pi_{+}} \frac{\operatorname{Im} z}{(\operatorname{Im} \varphi(z))^{\frac{1}{p}}}<\infty .
$$

(b) The operator $C_{\varphi}: H^{p}\left(\Pi_{+}\right) \rightarrow \mathcal{B}_{\infty}\left(\Pi_{+}\right)$is bounded if and only if

$$
\sup _{z \in \Pi_{+}} \operatorname{Im} z \frac{\left|\varphi^{\prime}(z)\right|}{(\operatorname{Im} \varphi(z))^{1+\frac{1}{p}}}<\infty .
$$

(c) The operator $C_{\varphi}: H^{p}\left(\Pi_{+}\right) \rightarrow \mathcal{Z}\left(\Pi_{+}\right)$is bounded if and only if

$$
\sup _{z \in \Pi_{+}} \operatorname{Im} z \frac{\left|\varphi^{\prime}(z)\right|^{2}}{(\operatorname{Im} \varphi(z))^{2+\frac{1}{p}}}<\infty \quad \text { and } \quad \sup _{z \in \Pi_{+}} \operatorname{Im} z \frac{\left|\varphi^{\prime \prime}(z)\right|}{(\operatorname{Im} \varphi(z))^{1+\frac{1}{p}}}<\infty
$$

A natural problem is to extend Theorem A for the case $p \in(0,1)$ and with a general weight μ, as well as to obtain the corresponding results in the setting of the unit disc. Here we give some answers to these questions by characterizing the boundedness of the operator $C_{\varphi}: H^{p}(X) \rightarrow \mathcal{Z}(X)$, where $p>0$ and $X=\Pi_{+}$or $X=\mathbb{D}$. Let X and Y be topological vector spaces whose topologies are given by translation-invariant metrics d_{X} and d_{Y}, respectively, and $T: X \rightarrow Y$ be a linear operator. It is said that T is metrically bounded if there is a $K>0$ such that $d_{Y}(T f, 0) \leq K d_{X}(f, 0)$ for all $f \in X$. When X and Y are Banach spaces, the metrically boundedness coincides with the usual definition of bounded operators between Banach spaces. If we say that an operator is bounded it means that it is metrically bounded.

COMPOSITION OPERATORS

Somewhat older results on composition and weighted composition operators can be found, e.g., in [3], while some recent results can be found, e.g., in [1, 2, 6, 8, $9,13,14,17,18,19,20,21,23,24,25,26,28,29,32,33,34,36,39$] (see also the related references therein).

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation $a \preceq b$ means that there is a positive constant C such that $a \leq C b$. Moreover, if both $a \preceq b$ and $b \preceq a$ hold, then one says that $a \asymp b$.

2. Auxiliary results

This section gives several auxiliary results which are used in the proofs of the main results of the paper.

Lemma 1. Assume that $p>0, n \in \mathbb{N}_{0}$ and $w \in \Pi_{+}$. Then the function

$$
\begin{equation*}
f_{w, n}(z)=\frac{(\operatorname{Im} w)^{n+\frac{1}{p}}}{(z-\bar{w})^{n+\frac{2}{p}}} \tag{1}
\end{equation*}
$$

belongs to $H^{p}\left(\Pi_{+}\right)$. Moreover $\sup _{w \in \Pi_{+}}\left\|f_{w, n}\right\|_{H^{p}} \leq \pi^{1 / p}$.
Proof. Let $z=x+i y$ and $w=u+i v$. Then, we have

$$
\begin{aligned}
\left\|f_{w, n}\right\|_{H^{p}}^{p} & =\sup _{y>0} \int_{-\infty}^{\infty}\left|f_{w, n}(x+i y)\right|^{p} d x \\
& =(\operatorname{Im} w)^{n p+1} \sup _{y>0} \int_{-\infty}^{\infty} \frac{d x}{|z-\bar{w}|^{n p}|z-\bar{w}|^{2}} \\
& \leq v^{n p+1} \sup _{y>0} \int_{-\infty}^{\infty} \frac{d x}{\left((y+v)^{2}\right)^{\frac{n p}{2}}\left((x-u)^{2}+(y+v)^{2}\right)} \\
& \leq v^{n p+1} \sup _{y>0} \frac{1}{(y+v)^{n p+1}} \int_{-\infty}^{\infty} \frac{y+v}{(x-u)^{2}+(y+v)^{2}} d x \\
& =\sup _{y>0} \frac{v^{n p+1}}{(y+v)^{n p+1}} \int_{-\infty}^{\infty} \frac{d t}{t^{2}+1}=\pi
\end{aligned}
$$

where we have used the change of variables $x=u+t(y+v)$.
Lemma 2. Assume that $p>0, n \in \mathbb{N}_{0}$ and $w \in \mathbb{D}$. Then the function

$$
\begin{equation*}
g_{w, n}(z)=\frac{\left(1-|w|^{2}\right)^{n+\frac{1}{p}}}{(1-\bar{w} z)^{n+\frac{2}{p}}} \tag{2}
\end{equation*}
$$

belongs to $H^{p}(\mathbb{D})$. Moreover $\sup _{w \in \mathbb{D}}\left\|g_{w, n}\right\|_{H^{p}}<\infty$.
Proof. By [4, p. 65], we have

$$
\left\|g_{w, n}\right\|_{H^{p}}^{p}=\sup _{0<r<1} \int_{0}^{2 \pi} \frac{\left(1-|w|^{2}\right)^{n p+1}}{\left|1-\bar{w} r e^{i \theta}\right|^{n p+2}} \frac{d \theta}{2 \pi} \leq C \sup _{0<r<1} \frac{\left(1-|w|^{2}\right)^{n p+1}}{(1-|w| r)^{n p+1}}=C
$$

as claimed.
The following lemma is certainly folklore. We will present a proof here for the completeness and for the benefit of the reader.

STEVO STEVIĆ

Lemma 3. Assume that $p>0, n \in \mathbb{N}_{0}$ and $w \in \Pi_{+}$. Then there is a positive constant C independent of f such that

$$
\begin{equation*}
\left|f^{(n)}(z)\right| \leq C \frac{\|f\|_{H^{p}\left(\Pi_{+}\right)}}{y^{n+\frac{1}{p}}} \tag{3}
\end{equation*}
$$

Proof. Let $z=x+i y \in \mathbb{C}$ be fixed. By the subharmonicity of the function $|f|^{p}$, $p>0$, we have that

$$
\begin{align*}
|f(z)|^{p} & \leq \frac{4}{\pi y^{2}} \int_{D(z, y / 2)}|f(w)|^{p} d m(w) \\
& \leq \frac{4}{\pi y^{2}} \int_{y / 2}^{3 y / 2} \int_{x-y / 2}^{x+y / 2}|f(\zeta+i \eta)|^{p} d \zeta d \eta \\
& \leq \frac{4}{\pi y}\|f\|_{H^{p}\left(\Pi_{+}\right)}^{p} \tag{4}
\end{align*}
$$

where $D(z, y / 2)=\{z \in \mathbb{C}| | z-w \mid<y / 2\}$.
From (4) it follows that

$$
\begin{equation*}
\sup _{|u-z|<y / 4}|f(u)| \leq \frac{C}{y^{1 / p}}\|f\|_{H^{p}\left(\Pi_{+}\right)} \tag{5}
\end{equation*}
$$

On the other hand, by the Cauchy's inequality we have that

$$
\begin{equation*}
\left|f^{(n)}(z)\right| \leq \frac{C}{y^{n}} \sup _{|u-z|<y / 4}|f(u)|, \tag{6}
\end{equation*}
$$

for some C independent of f. From (5) and (6) inequality (3) follows.
For the case of the unit disc, we have the following estimate (see, e.g., [5]).
Lemma 4. Assume that $p>0, n \in \mathbb{N}_{0}$ and $w \in \mathbb{D}$. Then there is a positive constant C independent of f such that

$$
\begin{equation*}
\left|f^{(n)}(z)\right| \leq C \frac{\|f\|_{H^{p}(\mathbb{D})}}{(1-|z|)^{n+\frac{1}{p}}} \tag{7}
\end{equation*}
$$

3. Main Results

In this section we formulate and prove our main results.
Theorem 1. Assume $p>0$ and φ is a nonconstant holomorphic self-map of \mathbb{D}. Then $C_{\varphi}: H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})$ is bounded if and only if

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}}<\infty \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime \prime}(z)\right|}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}}<\infty . \tag{9}
\end{equation*}
$$

Moreover, if the operator $C_{\varphi}: H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D}) / \mathbb{P}_{1}$ is bounded, then

$$
\begin{equation*}
\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D}) / \mathbb{P}_{1}} \asymp \sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}}+\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime \prime}(z)\right|}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}} \tag{10}
\end{equation*}
$$

Proof. First assume that the operator $C_{\varphi}: H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})$ is bounded. Using the test function $f(z) \equiv z \in H^{p}(\mathbb{D})$ (note that $\|z\|_{H^{p}(\mathbb{D})}=1$), we obtain

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \mu(z)\left|\varphi^{\prime \prime}(z)\right|=\left\|C_{\varphi}(z)\right\|_{\mathcal{Z}_{\mu}(\mathbb{D})} \leq\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})}<\infty \tag{11}
\end{equation*}
$$

By using the test function $f(z) \equiv z^{2} \in H^{p}(\mathbb{D})$ (note that $\left\|z^{2}\right\|_{H^{p}(\mathbb{D})}=1$), we get

$$
\begin{equation*}
2 \sup _{z \in \mathbb{D}} \mu(z)\left|\varphi(z) \varphi^{\prime \prime}(z)+\left(\varphi^{\prime}(z)\right)^{2}\right|=\left\|C_{\varphi}\left(z^{2}\right)\right\|_{\mathcal{Z}_{\mu}(\mathbb{D})} \leq\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})}<\infty . \tag{12}
\end{equation*}
$$

From (11), (12) and the fact that $\|\varphi\|_{\infty} \leq 1$, it follows that

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \mu(z)\left|\varphi^{\prime}(z)\right|^{2} \leq \frac{3}{2}\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})}<\infty \tag{13}
\end{equation*}
$$

For $w \in \mathbb{D}$, set

$$
f_{w}(z)=\frac{\left(1-|w|^{2}\right)^{2+\frac{1}{p}}}{(1-\bar{w} z)^{2+\frac{2}{p}}}
$$

By Lemma 2 (case $n=2$) we know that $f_{w} \in H^{p}(\mathbb{D})$ for every $w \in \mathbb{D}$. Moreover, we have that

$$
\begin{equation*}
\sup _{w \in \mathbb{D}}\left\|f_{w}\right\|_{H^{p}(\mathbb{D})} \leq C \tag{14}
\end{equation*}
$$

From (14) and since the operator $C_{\varphi}: H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})$ is bounded, for every $w \in \mathbb{D}$, we obtain

$$
\begin{align*}
\sup _{z \in \mathbb{D}} \mu(z)\left|f_{w}^{\prime \prime}(\varphi(z))\left(\varphi^{\prime}(z)\right)^{2}+f_{w}^{\prime}(\varphi(z)) \varphi^{\prime \prime}(z)\right| & =\left\|C_{\varphi}\left(f_{w}\right)\right\|_{\mathcal{Z}_{\mu}(\mathbb{D})} \\
& \leq C\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})} \tag{15}
\end{align*}
$$

We also have that

$$
\begin{equation*}
f_{w}^{\prime}(z)=C_{p, 1} \frac{\bar{w}\left(1-|w|^{2}\right)^{2+\frac{1}{p}}}{(1-\bar{w} z)^{3+\frac{2}{p}}} \quad \text { and } \quad f_{w}^{\prime \prime}(z)=C_{p, 2} \frac{\bar{w}^{2}\left(1-|w|^{2}\right)^{2+\frac{1}{p}}}{(1-\bar{w} z)^{4+\frac{2}{p}}} \tag{16}
\end{equation*}
$$

for some constants $C_{p, 1}$ and $C_{p, 2}$.
Replacing (16) in (15) and taking $w=\varphi(z)$ we obtain

$$
\mu(z)\left|C_{p, 2} \frac{\left(\varphi^{\prime}(z)\right)^{2}(\overline{\varphi(z)})^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}}+C_{p, 1} \frac{\varphi^{\prime \prime}(z) \overline{\varphi(z)}}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}}\right| \leq C\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})}
$$

and consequently

$$
\begin{equation*}
C_{p, 1} \frac{\mu(z)\left|\varphi^{\prime \prime}(z)\right||\varphi(z)|}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}} \leq C\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})}+C_{p, 2} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}|\varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}} \tag{17}
\end{equation*}
$$

Hence if we show that (8) holds then from the last inequality we get

$$
\begin{equation*}
\frac{1}{2} \sup _{|\varphi(z)|>1 / 2} \frac{\mu(z)\left|\varphi^{\prime \prime}(z)\right|}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}} \leq C\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})}+C_{p, 2} \sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}} \tag{18}
\end{equation*}
$$

From (11) we have that

$$
\begin{equation*}
\sup _{|\varphi(z)| \leq 1 / 2} \frac{\mu(z)\left|\varphi^{\prime \prime}(z)\right|}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}} \leq\left(\frac{4}{3}\right)^{1+\frac{1}{p}} \sup _{z \in \mathbb{D}} \mu(z)\left|\varphi^{\prime \prime}(z)\right| \leq C\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})} \tag{19}
\end{equation*}
$$

which along with (18) implies (9).

STEVO STEVIĆ

For $w \in \mathbb{D}$, set

$$
g_{w}(z)=\left(3+\frac{2}{p}\right) \frac{\left(1-|w|^{2}\right)^{2+\frac{1}{p}}}{(1-\bar{w} z)^{2+\frac{2}{p}}}-\left(2+\frac{2}{p}\right) \frac{\left(1-|w|^{2}\right)^{3+\frac{1}{p}}}{(1-\bar{w} z)^{3+\frac{2}{p}}}
$$

Then it is easy to see that

$$
g_{w}^{\prime}(w)=0 \quad \text { and } \quad g_{w}^{\prime \prime}(w)=\frac{C \bar{w}^{2}}{\left(1-|w|^{2}\right)^{2+\frac{1}{p}}}
$$

and by Lemma 2 (cases $n=2$ and $n=3$) it is easy to see that

$$
\sup _{w \in \mathbb{D}}\left\|g_{w}\right\|_{H^{p}}<\infty
$$

From this, since $C_{\varphi}: H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})$ is bounded and by taking $w=\varphi(z)$, it follows that

$$
\begin{equation*}
C \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}|\varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}} \leq\left\|C_{\varphi}\left(g_{w}\right)\right\|_{\mathcal{Z}_{\mu}(\mathbb{D})} \leq C\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})} \tag{20}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\frac{1}{4} \sup _{|\varphi(z)|>1 / 2} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}} \leq C\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})} \tag{21}
\end{equation*}
$$

From (13) it follows that

$$
\begin{equation*}
\sup _{|\varphi(z)| \leq 1 / 2} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}} \leq\left(\frac{4}{3}\right)^{2+\frac{1}{p}} \sup _{z \in \mathbb{D}} \mu(z)\left|\varphi^{\prime}(z)\right|^{2} \leq C\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})} . \tag{22}
\end{equation*}
$$

Inequalities (21) and (22) imply (8).
Moreover, from (18), (19), (21) and (22) it follows that

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}}+\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime \prime}(z)\right|}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}} \leq C\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})} . \tag{23}
\end{equation*}
$$

Now assume that conditions (8) and (9) hold. By Lemma 4, we have

$$
\begin{aligned}
& \left\|C_{\varphi} f\right\|_{\mathcal{Z}_{\mu}(\mathbb{D})}=\left|\left(C_{\varphi} f\right)(0)\right|+\left|\left(C_{\varphi} f\right)^{\prime}(0)\right|+\sup _{z \in \mathbb{D}} \mu(z)\left|\left(C_{\varphi} f\right)^{\prime \prime}(z)\right| \\
& \quad=|f(\varphi(0))|+\left|f^{\prime}(\varphi(0)) \| \varphi^{\prime}(0)\right|+\sup _{z \in \mathbb{D}} \mu(z)\left|f^{\prime \prime}(\varphi(z))\left(\varphi^{\prime}(z)\right)^{2}+f^{\prime}(\varphi(z)) \varphi^{\prime \prime}(z)\right| \\
& \quad \leq C\|f\|_{H^{p}(\mathbb{D})}+C\|f\|_{H^{p}(\mathbb{D})}\left(\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}}+\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime \prime}(z)\right|}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}}\right) .
\end{aligned}
$$

From this and by conditions (8) and (9), it follows that the operator C_{φ} : $H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D})$ is bounded. Moreover, if we consider the space $\mathcal{Z}_{\mu}(\mathbb{D}) / \mathbb{P}_{1}$, we have that

$$
\begin{equation*}
\left\|C_{\varphi}\right\|_{H^{p}(\mathbb{D}) \rightarrow \mathcal{Z}_{\mu}(\mathbb{D}) / \mathbb{P}_{1}} \leq C\left(\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2+\frac{1}{p}}}+\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime \prime}(z)\right|}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}}\right) \tag{24}
\end{equation*}
$$

From (23) and (24), we obtain asymptotic relation (10).
The following theorem can be proved similar to Theorem 1, and its proof is somewhat simpler, hence we omit it.

COMPOSITION OPERATORS

Theorem 2. Assume $p>0$ and φ is a nonconstant holomorphic self-map of \mathbb{D}. Then the following statements true hold.
(a) The operator $C_{\varphi}: H^{p}(\mathbb{D}) \rightarrow H_{\mu}^{\infty}(\mathbb{D})$ is bounded if and only if

$$
\sup _{z \in \mathbb{D}} \frac{\mu(z)}{\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{p}}}<\infty
$$

(b) The operator $C_{\varphi}: H^{p}(\mathbb{D}) \rightarrow \mathcal{B}_{\mu}(\mathbb{D})$ is bounded if and only if

$$
\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|}{\left(1-|\varphi(z)|^{2}\right)^{1+\frac{1}{p}}}<\infty
$$

The next result is an extension of Theorem 1 in [28]. It is proved similarly, and by using the test functions in Lemma 1. Hence, we also omit its proof.

Theorem 3. Assume $p>0$ and φ is a nonconstant holomorphic self-map of Π_{+}. Then the following statements true hold.
(a) The operator $C_{\varphi}: H^{p}\left(\Pi_{+}\right) \rightarrow H_{\mu}^{\infty}\left(\Pi_{+}\right)$is bounded if and only if

$$
\sup _{z \in \Pi_{+}} \frac{\mu(z)}{(\operatorname{Im} \varphi(z))^{\frac{1}{p}}}<\infty
$$

(b) The operator $C_{\varphi}: H^{p}\left(\Pi_{+}\right) \rightarrow \mathcal{B}_{\mu}\left(\Pi_{+}\right)$is bounded if and only if

$$
\sup _{z \in \Pi_{+}} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|}{(\operatorname{Im} \varphi(z))^{1+\frac{1}{p}}}<\infty
$$

(c) The operator $C_{\varphi}: H^{p}\left(\Pi_{+}\right) \rightarrow \mathcal{Z}_{\mu}\left(\Pi_{+}\right)$is bounded if and only if

$$
\sup _{z \in \Pi_{+}} \frac{\mu(z)\left|\varphi^{\prime}(z)\right|^{2}}{(\operatorname{Im} \varphi(z))^{2+\frac{1}{p}}}<\infty \quad \text { and } \quad \sup _{z \in \Pi_{+}} \frac{\mu(z)\left|\varphi^{\prime \prime}(z)\right|}{(\operatorname{Im} \varphi(z))^{1+\frac{1}{p}}}<\infty .
$$

References

[1] B. Choe, H. Koo and W. Smith, Composition operators on small spaces, Integral Equations Operator Theory, 56 (2006), 357-380.
[2] D. Clahane and S. Stević, Norm equivalence and composition operators between Bloch/Lipschitz spaces of the unit ball, J. Inequal. Appl. Vol. 2006, Article ID 61018, (2006), 11 pages.
[3] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
[4] P. Duren, Theory of H^{p} Spaces, Dover, 2000.
[5] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[6] D. Gu, Weighted composition operators from generalized weighted Bergman spaces to weighted-type spaces, J. Inequal. Appl. Vol. 2008, Article ID 619525, (2008), 14 pages
[7] S. Li and S. Stević, Volterra type operators on Zygmund space, J. Inequal. Appl. Vol. 2007, Article ID 32124, (2007), 10 pages.
[8] S. Li and S. Stević, Weighted composition operators from α-Bloch space to H^{∞} on the polydisk, Numer. Funct. Anal. Optimization 28 (7) (2007), 911-925.
[9] S. Li and S. Stević, Weighted composition operators from H^{∞} to the Bloch space on the polydisc, Abstr. Appl. Anal. Vol. 2007, Article ID 48478, (2007), 12 pages.
[10] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), 1282-1295.
[11] S. Li and S. Stević, Products of Volterra type operator and composition operator from H^{∞} and Bloch spaces to the Zygmund space, J. Math. Anal. Appl. 345 (2008), 40-52.
[12] S. Li and S. Stević, Some characterizations of the Besov space and the α-Bloch space, J. Math. Anal. Appl. 346 (2008), 262-273.

STEVO STEVIĆ

[13] S. Li and S. Stević, Weighted composition operators between H^{∞} and α-Bloch spaces in the unit ball, Taiwanese J. Math. 12 (2008), 1625-1639.
[14] S. Li and S. Stević, Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput. 206 (2) (2008), 825-831.
[15] S. Li and S. Stević, Cesàro type operators on some spaces of analytic functions on the unit ball, Appl. Math. Comput. 208 (2009), 378-388.
[16] S. Li and S. Stević, Integral-type operators from Bloch-type spaces to Zygmund-type spaces, preprint (2007).
[17] B. D. MacCluer and R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (4) (2003), 1437-1458.
[18] A. Montes-Rodriguez, Weighted composition operators on weighted Banach spaces of analytic functions. J. London Math. Soc. 61 (3) (2000), 872-884.
[19] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), 191-215.
[20] S. D. Sharma, A. K. Sharma and S. Ahmed, Composition operators between Hardy and Bloch-type spaces of the upper half-plane, Bull. Korean Math. Soc. 43 (3) (2007), 475-482.
[21] S. Stević, Composition operators between H^{∞} and the α-Bloch spaces on the polydisc, Z. Anal. Anwendungen 25 (4) (2006), 457-466.
[22] S. Stević, On α-Bloch spaces with Hadamard gaps, Abstr. Appl. Anal. Vol. 2007, Article ID 39176, (2007), 7 pages.
[23] S. Stević, Weighted composition operators between mixed norm spaces and H_{α}^{∞} spaces in the unit ball, J. Inequal. Appl. Vol. 2007, Article ID 28629, (2007), 9 pages.
[24] S. Stević, Essential norms of weighted composition operators from the α-Bloch space to a weighted-type space on the unit ball, Abstr. Appl. Anal. Vol. 2008, Article ID 279691, (2008), 11 pages.
[25] S. Stević, Norms of some operators from Bergman spaces to weighted and Bloch-type space, Util. Math. 76 (2008), 59-64.
[26] S. Stević, Norm of weighted composition operators from Bloch space to H_{μ}^{∞} on the unit ball, Ars. Combin. 88 (2008), 125-127.
[27] S. Stević, Bloch-type functions with Hadamard gaps, Appl. Math. Comput. 208 (2009), 416422.
[28] S. Stević, Composition operators from the Hardy space to the Zygmund-type space on the upper half-plane, Abstr. Appl. Anal. Vol. 2009, Article ID 161528, (2009), 7 pages.
[29] S. Stević, Weighted composition operators from mixed-norm spaces into weighted Bloch spaces, J. Comput. Anal. Appl. 11 (1) (2009), 70-81.
[30] S. Stević, On an integral operator from the Zygmund space to the Bloch-type space on the unit ball, Glasg. J. Math. 51 (2009), 275-287.
[31] R. M. Timoney, Bloch functions in several complex variables I, Bull. London Math. Soc. 12 (1980), 241-267.
[32] S. I. Ueki, Composition operators on the Privalov spaces of the unit ball of \mathbb{C}^{n}, J. Korean Math. Soc. 42 (1) (2005), 111-127.
[33] S. I. Ueki and L. Luo, Compact weighted composition operators and multiplication operators between Hardy spaces, Abstr. Appl. Anal. Vol. 2008, Article ID 196498, (2008), 11 pages.
[34] E. Wolf, Weighted composition operators between weighted Bergman spaces and weighted Bloch type spaces, J. Comput. Anal. Appl. 11 (2) (2009), 317-321.
[35] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28 (1980), 31-36.
[36] W. Yang, Weighted composition operators from Bloch-type spaces to weighted-type spaces, Ars. Combin. 93 (2009) (to appear).
[37] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Text in Mathematics 226, Springer, New York, 2005.
[38] X. Zhu, Extended Cesáro operator from H^{∞} to Zygmund type spaces in the unit ball, J. Comput. Anal. Appl. 11 (2) (2009), 356-363
[39] X. Zhu, Weighted composition operators from $F(p, q, s)$ spaces to H_{μ}^{∞} spaces, Abstr. Appl. Anal. Vol. 2009, Article ID 290978, (2009), 12 pages.

Stevo Stević, Mathematical Institute of the Serbian Academy of Sciences, Knez
Mihailova 36/III, 11000 Beograd, Serbia
E-mail address: sstevic@ptt.rs

ON CARLESON MEASURES AND $F(p, q, s)$ SPACE ON THE UNIT BALL

STEVO STEVIĆ

Abstract

We characterize Carleson-type measures on the unit ball of \mathbb{C}^{n} in terms of α-Bloch and $F(p, q, s)$ functions.

1. Introduction

Let $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$ be points in the complex vector space \mathbb{C}^{n}. By $\langle z, \omega\rangle=\sum_{k=1}^{n} z_{k} \bar{w}_{k}$ we denote the complex inner product of z and w, and $|z|=\sqrt{\langle z, z\rangle}$. Let \mathbb{D} denote the open unit disc in the complex plane \mathbb{C}, \mathbb{B} the open unit ball in $\mathbb{C}^{n}, d V$ the normalized Lebesgue measure on \mathbb{B} (i.e. $V(\mathbb{B})=1$), $d \sigma$ the normalized surface measure on the boundary $\partial \mathbb{B}=S$ of \mathbb{B}, and $H(\mathbb{B})$ the class of all functions analytic on \mathbb{B}. By $\delta_{i, j}, i, j \in \mathbb{N}_{0}$ we denote the function equal to one when $i=j$ and zero if $i \neq j$. For $a \in \mathbb{B}$, let $\varphi_{a}(z)$ be the biholomorphic involutive automorphisms of \mathbb{B} taking 0 to a (see, e.g., [14]).

For an $f \in H(\mathbb{B})$, the radial derivative $\Re f$ of f is defined by

$$
\Re f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z)
$$

If $f(z)=\sum_{k=0}^{\infty} P_{k}(z)$ is the homogeneous polynomial expansion of function f then it is easy to see that $\Re f(z)=\sum_{k=0}^{\infty} k P_{k}(z)([14])$.

Let $\alpha>0$. The α-Bloch space $\mathcal{B}^{\alpha}=\mathcal{B}^{\alpha}(\mathbb{B})$ is the space of all $f \in H(\mathbb{B})$ such that

$$
b_{\alpha}(f)=\sup _{z \in \mathbb{B}}\left(1-|z|^{2}\right)^{\alpha}|\Re f(z)|<\infty
$$

It is known that \mathcal{B}^{α} is a normed space under the norm $\|f\|_{\mathcal{B}^{\alpha}}=|f(0)|+b_{\alpha}(f)$.
Let $\mathcal{B}_{0}^{\alpha}=\mathcal{B}_{0}^{\alpha}(\mathbb{B})$ denote the subspace of \mathcal{B}^{α} consisting of those $f \in \mathcal{B}^{\alpha}$ for which

$$
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\alpha}|\Re f(z)|=0
$$

This space is called the little α-Bloch space. For $\alpha=1$ the α-Bloch space and the little α-Bloch space become the Bloch space \mathcal{B} and the little Bloch space \mathcal{B}_{0}. Some information on Bloch-type spaces on the unit ball can be found, for example, in $[4,7,8,15,21]$.

For $p \in(0, \infty),-n-1<q<\infty, s \geq 0$, and μ a positive measure on \mathbb{B} the space $F(p, q, s, \mu)=F(p, q, s, \mu)(\mathbb{B})$ is defined as follows

$$
\|f\|_{F(p, q, s, \mu)}^{p}=|f(0)|^{p}+\sup _{a \in \mathbb{B}} \int_{\mathbb{B}}|\Re f(z)|^{p}\left(1-|z|^{2}\right)^{q}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{s} d \mu(z)<\infty
$$

[^15]
STEVO STEVIĆ

For $d \mu(z)=d V(z)$ we obtain the space $F(p, q, s)$ (see e.g. [9, 22]).
For any $\zeta \in S$ and $r>0$ let

$$
Q_{r}(\zeta)=\{z \in \mathbb{B}:|1-\langle z, \zeta\rangle|<r\},
$$

be the n-dimensional analogues of Carleson squares in \mathbb{D}.
In [20], among others, was proved the following result.

Theorem A. Suppose $n+\alpha+1>0$ and μ is a positive Borel measure on \mathbb{B}. Then the following conditions are equivalent.
(a) There exists a constant $C>0$ such that

$$
\mu\left(Q_{r}(\zeta)\right) \leq C r^{n+1+\alpha}
$$

for all $\zeta \in S$ and all $r>0$.
(b) For some $s>0$ there exists a constant $C>0$ such that

$$
\int_{\mathbb{B}} \frac{\left(1-|z|^{2}\right)^{s}}{|1-\langle z, w\rangle|^{n+1+\alpha+s}} d \mu(w) \leq C
$$

for all $z \in \mathbb{B}$.
Based on Theorem A we introduce the following definition.
Definition 1. Assume that μ is a positive measure on \mathbb{B}, and $a \in(0, \infty)$. We say that μ is a bounded a-Carleson measure if there exists a constant $C>0$ such that

$$
\mu\left(Q_{r}(\zeta)\right) \leq C r^{a}
$$

for all $\zeta \in S$ and all $r>0$.
Here we characterize a-Carleson measures on the unit ball \mathbb{B} in terms of α-Bloch and $F(p, q, s)$ functions, extending some the one-dimensional results in [13].

In this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation $a \preceq b$ means that there is a positive constant C such that $a \leq C b$. If both $a \preceq b$ and $b \preceq a$ hold, then one says that $a \asymp b$.

2. Auxiliary results

In order to prove the main results of this paper, we need some auxiliary results which are incorporated in the lemmas which follow. First lemma is folklore.

Lemma 1. Assume $f \in H(\mathbb{B}), \alpha \in(0, \infty)$ and $m \in \mathbb{N}$, or $\alpha \in(1, \infty)$ and $m=0$. Then $f \in \mathcal{B}^{\alpha}$ if and only if

$$
\begin{equation*}
\sup _{z \in \mathbb{B}}\left|\Re^{m} f(z)\right|\left(1-|z|^{2}\right)^{\alpha+m-1}<\infty . \tag{1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\sup _{z \in \mathbb{B}}|\Re f(z)|\left(1-|z|^{2}\right)^{\alpha} \asymp|f(0)| \delta_{m, 0}+\sup _{z \in \mathbb{B}}\left|\Re^{m} f(z)\right|\left(1-|z|^{2}\right)^{\alpha+m-1} \tag{2}
\end{equation*}
$$

ON CARLESON MEASURES

Lemma 2. ([23]) Let $p \in(0, \infty)$. If $\left(n_{k}\right)_{k \in \mathbb{N}}$ is an increasing sequence of positive integers satisfying $n_{k+1} / n_{k} \geq \lambda>1$ for all $k \in \mathbb{N}$, then there is a positive constant A depending only on p and λ such that

$$
\frac{1}{A}\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}\right)^{1 / 2} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} a_{k} e^{i n_{k} \theta}\right|^{p} d \theta\right)^{1 / p} \leq A\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}\right)^{1 / 2}
$$

for any sequence of numbers $\left(a_{k}\right)_{k \in \mathbb{N}}$.
Lemma 3. ([13]) Assume that $\beta \in(0, \infty), \lambda \in(1, \infty)$ and $e^{-\beta / \lambda} \leq r_{0}<1$. Then there is a positive constant C, depending only on λ, β and r_{0}, such that

$$
\sum_{k=1}^{\infty} \lambda^{k \lambda \beta} r^{\lambda^{k+1}} \geq \frac{C}{\left(1-r^{2}\right)^{\lambda \beta}}
$$

for all $r_{0} \leq r<1$.
An analytic function on \mathbb{B} with the homogeneous expansion $f(z)=\sum_{k=1}^{\infty} P_{n_{k}}(z)$ is said to have Hadamard gaps if $n_{k+1} / n_{k} \geq \lambda>1$ for all $k \in \mathbb{N}$. The next result is a natural generalization of a one-dimensional result by Yamashita from [19] (see, e.g. [17]). For related results see also $[2,3,10,12,16,18,19])$.

Theorem B. Assume that $\alpha>0$ and $f(z)=\sum_{k=1}^{\infty} P_{n_{k}}(z)$ is an analytic function on \mathbb{B} with Hadamard gaps. Then the following statements hold true
(a) $f \in \mathcal{B}^{\alpha}$ if and only if $\lim \sup _{k \rightarrow \infty}\left\|P_{n_{k}}\right\|_{\infty} n_{k}^{1-\alpha}<\infty$.
(b) $f \in \mathcal{B}_{0}^{\alpha}$ if and only if $\lim _{k \rightarrow \infty}\left\|P_{n_{k}}\right\|_{\infty} n_{k}^{1-\alpha}=0$.

The following Ryll-Wojtaszczyk-type lemma was proved in [1, Theorem 4].
Lemma 4. There are $\tau \in(0,1)$ and $k_{0} \in \mathbb{N}$, depending only on n, and homogeneous polynomials $\left(P_{2^{k}}^{(l)}(z)\right)_{k \in \mathbb{N}}, l \in\left\{1, \ldots, k_{0}\right\}$, such that

$$
\begin{equation*}
\max _{1 \leq l \leq k_{0}} \max _{\zeta \in S}\left|P_{2^{k}}^{(l)}(\zeta)\right| \leq 1 \quad \text { and } \quad \max _{1 \leq l \leq k_{0}} \min _{\zeta \in S}\left|P_{2^{k}}^{(l)}(\zeta)\right| \geq \tau \tag{3}
\end{equation*}
$$

Assume that $f \in H(\mathbb{B})$. Let $f_{\zeta}(w)=f(\zeta w), \zeta \in S$, where ζ is fixed and $w \in \mathbb{D}$, be a slice function. By some calculation we see that

$$
\begin{equation*}
f_{\zeta}^{\prime}(w)=\zeta_{1} \frac{\partial f}{\partial z_{1}}(w \zeta)+\cdots+\zeta_{n} \frac{\partial f}{\partial z_{n}}(w \zeta)=\frac{1}{w} \Re f(w \zeta) . \tag{4}
\end{equation*}
$$

Hence $\Re^{m} f(w \zeta)=w\left(w\left(\ldots\left(w\left(f_{\zeta}^{\prime}(w)\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}\right.$.
On the other hand, if $f(z)=\sum_{k=1}^{\infty} P_{n_{k}}(z)$, we also have that

$$
f_{\zeta}^{\prime}(w)=\sum_{k=1}^{\infty} n_{k} P_{n_{k}}(\zeta) w^{n_{k}-1}
$$

so that

$$
w f_{\zeta}^{\prime}(w)=\sum_{k=1}^{\infty} n_{k} P_{n_{k}}(\zeta) w^{n_{k}}=\sum_{k=1}^{\infty} n_{k} P_{n_{k}}(w \zeta)
$$

and consequently

$$
\begin{equation*}
\Re^{m} f(w \zeta)=w\left(w\left(\ldots\left(w\left(f_{\zeta}^{\prime}(w)\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}=\sum_{k=1}^{\infty} n_{k}^{m} P_{n_{k}}(\zeta) w^{n_{k}}\right. \tag{5}
\end{equation*}
$$

STEVO STEVIĆ

3. Main Results

In this section we prove the main results of this paper.

Theorem 1. Assume that μ is a positive measure on \mathbb{B} and $p \in(0, \infty)$. If $\alpha \in$ $(0, \infty)$ and $m \in \mathbb{N}$ or $\alpha \in(1, \infty)$ and $m=0$, then

$$
\begin{equation*}
\int_{\mathbb{B}} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{\alpha p}}<\infty \tag{6}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\int_{\mathbb{B}}\left|\Re^{m} f(z)\right|^{p}\left(1-|z|^{2}\right)^{p(m-1)} d \mu(z) \leq C\|f\|_{\mathcal{B}^{\alpha}}^{p}, \tag{7}
\end{equation*}
$$

for every $f \in \mathcal{B}^{\alpha}$ (or every $f \in \mathcal{B}_{0}^{\alpha}$), where C is a positive constant independent of function f.

Proof. Assume that (6) holds. Let

$$
I_{m}=\int_{\mathbb{B}}\left|\Re^{m} f(z)\right|^{p}\left(1-|z|^{2}\right)^{p(m-1)} d \mu(z)
$$

From (2), we have that

$$
I_{m} \leq C\|f\|_{\mathcal{B}^{\alpha}}^{p} \int_{\mathbb{B}}\left(1-|z|^{2}\right)^{p(m-1)-p(\alpha+m-1)} d \mu(z)=C\|f\|_{\mathcal{B}^{\alpha}}^{p} \int_{\mathbb{B}} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{\alpha p}},
$$

that is, (7) holds.
Now assume that (7) holds. Let $z=r \zeta=|z| \zeta, \zeta \in S$, and

$$
\begin{equation*}
g_{m}^{(l)}(z)=\sum_{k=1}^{\infty} 2^{k(\alpha-1)} \rho_{m}^{2^{k}} P_{2^{k}}^{(l)}(z)=\sum_{k=1}^{\infty} 2^{k(\alpha-1)} \rho_{m}^{2^{k}} r^{2^{k}} P_{2^{k}}^{(l)}(\zeta) \tag{8}
\end{equation*}
$$

for $l=1, \ldots, k_{0}$, and $m \in \mathbb{N}$, where $\left(\rho_{m}\right)_{m \in \mathbb{N}}$ is a positive sequence increasingly converging to one and $\left(P_{2^{k}}^{(l)}(z)\right)_{k \in \mathbb{N}}, l \in\left\{1, \ldots, k_{0}\right\}$, are from Lemma 4. Then by Theorem B (b) and (3), we have $g_{m}^{(l)} \in \mathcal{B}_{0}^{\alpha}$ for each $m \in \mathbb{N}$ and $l \in\left\{1, \ldots, k_{0}\right\}$.

On the other hand, by (5), we have that for each $m \in \mathbb{N}$ and $l \in\left\{1, \ldots, k_{0}\right\}$

$$
\begin{equation*}
\Re^{m} g_{m}^{(l)}(r \zeta)=\sum_{k=1}^{\infty} 2^{k(\alpha-1+m)} \rho_{m}^{2^{k}} r^{2^{k}} P_{2^{k}}^{(l)}(\zeta) \tag{9}
\end{equation*}
$$

Replacing the function f in (7) by the functions

$$
\begin{equation*}
g_{m}^{l, \theta}(z)=g_{m}^{(l)}\left(e^{i \theta} z\right), \quad l=1, \ldots, k_{0}, \quad m \in \mathbb{N}, \quad \theta \in[0,2 \pi] \tag{10}
\end{equation*}
$$

summing such obtained inequalities in l from 1 to k_{0}, then integrating it in θ from 0 to 2π, noticing that $M_{l, 1}:=\sup _{\theta \in[0,2 \pi], m \in \mathbb{N}}\left\|g_{m}^{l, \theta}\right\|_{\mathcal{B}^{\alpha}}<\infty$, for each $l \in\left\{1, \ldots, k_{0}\right\}$, applying Fubini's theorem, Lemma 2 and Lemma 4, and an elementary inequality, for $d \mu_{p}(z)=\left(1-|z|^{2}\right)^{p(m-1)} d \mu(z)$, we obtain

$$
\begin{align*}
C \sum_{l=1}^{k_{0}} M_{l, 1}^{p} & \geq \sum_{l=1}^{k_{0}} \int_{\mathbb{B}}\left(\int_{0}^{2 \pi}\left|\Re^{m} g_{m}^{l, \theta}\left(|z| \zeta e^{i \theta}\right)\right|^{p} d \theta\right) d \mu_{p}(z) \\
& \geq \sum_{l=1}^{k_{0}} \int_{\mathbb{B}}\left(\int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} 2^{k(\alpha-1+m)} \rho_{m}^{2^{k}}\left(|z| e^{i \theta}\right)^{2^{k}} P_{2^{k}}^{(l)}(\zeta)\right|^{p} d \theta\right) d \mu_{p}(z) \\
& \geq C \sum_{l=1}^{k_{0}} \int_{\mathbb{B}}\left(\sum_{k=1}^{\infty} 2^{2 k(\alpha-1+m)} \rho_{m}^{2^{k+1}}|z|^{2^{k+1}}\left|P_{2^{k}}^{(l)}(\zeta)\right|^{2}\right)^{p / 2} d \mu_{p}(z) \\
& \geq C \int_{\mathbb{B}}\left(\sum_{k=1}^{\infty} \sum_{l=1}^{k_{0}} 2^{2 k(\alpha-1+m)} \rho_{m}^{2^{k+1}}|z|^{2^{k+1}}\left|P_{2^{k}}^{(l)}(\zeta)\right|^{2}\right)^{p / 2} d \mu_{p}(z) \\
& \geq C \int_{\mathbb{B}}\left(\sum_{k=1}^{\infty} 2^{2 k(\alpha-1+m)} \rho_{m}^{2^{k+1}}|z|^{2^{k+1}} \max _{1 \leq l \leq k_{0}} \min _{\zeta \in S}\left|P_{2^{k}}^{(l)}(\zeta)\right|^{2}\right)^{p / 2} d \mu_{p}(z) \\
& \geq C \tau^{p} \int_{\mathbb{B}}\left(\sum_{k=1}^{\infty} 2^{2 k(\alpha-1+m)} \rho_{m}^{2^{k+1}}|z|^{2^{k+1}}\right)^{p / 2} d \mu_{p}(z) \tag{11}
\end{align*}
$$

By Lemma 3, we have that for $|z| \in\left[r_{0}, 1\right)$ and for some $r_{0} \in(0,1)$

$$
\begin{equation*}
\sum_{k=1}^{\infty} 2^{2 k(\alpha-1+m)} \rho_{m}^{2^{k+1}}|z|^{2^{k+1}} \geq \frac{C}{\left(1-\rho_{m}^{2}|z|^{2}\right)^{2(\alpha-1+m)}} \tag{12}
\end{equation*}
$$

From (11) and (12), we have that

$$
\infty>\sum_{l=1}^{k_{0}} M_{l, 1}^{p} \geq C \int_{\mathbb{B} \backslash B\left(0, r_{0}\right)} \frac{d \mu(z)}{\left(1-\rho_{m}^{2}|z|^{2}\right)^{\alpha p}}
$$

from which along with Fatou's lemma condition (6) easily follows.

Now we give a necessary condition for a Carleson measure on the Bloch space.
Theorem 2. Assume that

$$
\begin{equation*}
\sqrt[p]{\int_{\mathbb{B}}|f(z)|^{p} d \mu(z)} \leq C_{1}\|f\|_{\mathcal{B}} \tag{13}
\end{equation*}
$$

for every $f \in \mathcal{B}^{1}$. Then

$$
\begin{equation*}
\int_{\mathbb{B}}\left(\ln \frac{1}{1-|z|}\right)^{p / 2} d \mu(z)<\infty \tag{14}
\end{equation*}
$$

Proof. Let τ, k_{0} and $\left(P_{2^{k}}^{(l)}(z)\right)_{k \in \mathbb{N}}, l \in\left\{1, \ldots, k_{0}\right\}$, be as in Lemma 4 and

$$
h_{l}(z)=\sum_{n=0}^{\infty} P_{2^{k}}^{(l)}(z), \quad l=1, \ldots, k_{0}
$$

Replacing the functions $h_{l, \theta}(z)=h_{l}\left(e^{i \theta} z\right), l=1, \ldots, k_{0}$, into (13), summing such obtained inequalities in l from 1 to k_{0}, then integrating it in θ from 0 to 2π, noticing

STEVO STEVIĆ

that $M_{l, 2}:=\sup _{\theta \in[0,2 \pi]}\left\|h_{l, \theta}\right\|_{\mathcal{B}}<\infty$, using Fubini's theorem Lemma 2 and Lemma 4 , as in the proof of Theorem 1 we get

$$
\begin{align*}
C \sum_{l=1}^{k_{0}} M_{l, 2}^{p} & \geq \sum_{l=1}^{k_{0}} \int_{\mathbb{B}} \int_{0}^{2 \pi}\left|\sum_{k=0}^{\infty}\left(|z| e^{i \theta}\right)^{2^{n}} P_{2^{k}}^{(l)}(\zeta)\right|^{p} d \theta d \mu(z) \\
& \geq C \tau^{p} \int_{\mathbb{B}}\left(\sum_{n=0}^{\infty}|z|^{2^{n+1}}\right)^{p / 2} d \mu(z) \\
& \geq C \tau^{p} \int_{\mathbb{B} \backslash B\left(0, r_{0}\right)}\left(\ln \frac{1}{1-|z|}\right)^{p / 2} d \mu(z), \tag{15}
\end{align*}
$$

since we have that

$$
\begin{aligned}
\ln \frac{1}{1-|z|} & =\sum_{n=1}^{\infty} \frac{|z|^{n}}{n}=\sum_{k=1}^{\infty} \sum_{l=2^{k-1}}^{2^{k}-1} \frac{|z|^{l}}{l} \leq \sum_{k=1}^{\infty}\left(\sum_{l=2^{k-1}}^{2^{k}-1} \frac{1}{l}\right)|z|^{2^{k-1}} \\
& \leq \sum_{k=1}^{\infty}|z|^{k-1}=|z|+\sum_{k=0}^{\infty}|z|^{k+1} \leq C \sum_{k=0}^{\infty}|z|^{2^{k+1}}
\end{aligned}
$$

for $|z|>1 / 2$. From (15), inequality (14) easily follows.

Remark 1. One-dimensional case of Theorem 2 was probably proved for the first time by Limperis in his thesis [11, Theorem 3.1 i)].

Remark 2. Regarding an inverse of Theorem 2, in [6] was proved that if $p>0$ and $f \in \mathcal{B}(\mathbb{D})$ then there is a constant depending only of p such that

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta \leq C\|f\|_{\mathcal{B}}^{p}\left(\ln \frac{e}{1-r}\right)^{p / 2} \tag{16}
\end{equation*}
$$

By using the functions $f_{\zeta}(w)=f(w \zeta), w \in \mathbb{D}, \zeta \in S$, and Proposition 1.4.7 in [14], from (16) we get that there is a constant depending only of p such that

$$
\begin{equation*}
\int_{S}|f(r \zeta)|^{p} d \sigma(\zeta) \leq C\|f\|_{\mathcal{B}}^{p}\left(\ln \frac{e}{1-r}\right)^{p / 2} \tag{17}
\end{equation*}
$$

for every $f \in \mathcal{B}(\mathbb{B})$. Inequality (17) seems folklore. It appears as Problem 3.19 in [21], but nor K. Zhu or the present author have the exact reference for inequality (17). From Theorem 2, inequality (17) and by using polar coordinates we immediately obtain the following corollary, similar to the corresponding one-dimensional result (see [11, p. 18]). Hence we omit the details.

Corollary 1. Assume $p>0$ and μ is a radially symmetric measure on \mathbb{B}. Then condition (13) holds for every $f \in \mathcal{B}(\mathbb{B})$, if and only if inequality (14) holds.

Theorem 3. Assume that μ is a positive measure on \mathbb{B} and $p, \alpha \in(0, \infty)$ and $m \in \mathbb{N}$. Then the following conditions are equivalent
(a) μ is a bounded αp-Carleson measure.
(b) $\Re^{(m-1)}: \mathcal{B}^{\alpha} \rightarrow F(p, p(m-1), \alpha p, \mu)$ is bounded.
(c) $\Re^{(m-1)}: \mathcal{B}_{0}^{\alpha} \rightarrow F(p, p(m-1), \alpha p, \mu)$ is bounded.

ON CARLESON MEASURES

Proof. (a) \Rightarrow (b) By applying Lemma 1, we have that

$$
\begin{align*}
\|f\|_{F(p, p(m-1), \alpha p, \mu)}^{p} & \leq C\|f\|_{\mathcal{B}^{\alpha}}^{p} \int_{\mathbb{B}} \frac{\left(1-|z|^{2}\right)^{p(m-1)}}{\left(1-|z|^{2}\right)^{p(\alpha+m-1)}}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{\alpha p} d \mu(z) \\
& =C\|f\|_{\mathcal{B}^{\alpha}}^{p} \int_{\mathbb{B}} \frac{\left(1-|a|^{2}\right)^{\alpha p}}{|1-\langle z, a\rangle|^{\alpha \alpha p}} d \mu(z) \tag{18}
\end{align*}
$$

From (18) and Theorem A, the boundedness of the operator $\Re^{(m-1)}: \mathcal{B}^{\alpha} \rightarrow$ $F(p, p(m-1), \alpha p, \mu)$ follows.
$(b) \Rightarrow(c)$ This implication is obvious.
$(c) \Rightarrow(a)$ By using the functions $g_{m}^{l, \theta}$, defined in (10) which belong to \mathcal{B}_{0}^{α}, similar to Theorem 1 is obtained

$$
\begin{equation*}
\int_{\mathbb{B}} \frac{\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{\alpha p}}{\left(1-\rho_{m}^{2}|z|^{2}\right)^{\alpha p}} d \mu(z) \leq C \sum_{l=1}^{k_{0}} M_{l, 1}^{p}, \quad m \in \mathbb{N} \tag{19}
\end{equation*}
$$

From (19), by the monotone convergence theorem and Theorem A, the implication follows, finishing the proof of the theorem.

Added in proofs. After this paper was accepted for publication E. Doubtsov informed me that some related results can be found in his preprint [5]. Among others he also obtained Theorem 2 and Corollary 1, but his motivation stemmed from a paper from 2008 which had rediscovered Limperis' results. I would also like to express my thanks to him for clarifying me a detail in Lemma 4.

References

[1] A. B. Aleksandrov, Proper holomorphic mappings from the ball to the polydisk, Dokl. Acad. Nauk 286 (1) (1986), 11-15 (in Russian).
[2] K. Avetisyan, Hardy Bloch-type spaces and lacunary series on the polydisk, Glasgow J. Math. 49 (2007), 345-356.
[3] J. S. Choa, Some properties of analytic functions on the unit ball with Hadamard gaps, Complex Variables 29 (1996), 277-285.
[4] D. Clahane and S. Stević, Norm equivalence and composition operators between Bloch/Lipschitz spaces of the unit ball, J. Inequal. Appl. Vol. 2006, Article ID 61018, (2006), 11 pages.
[5] E. Doubtsov, Carleson-Sobolev measures for weighted Bloch spaces, (preprint) 2009.
[6] J. G. Clunie and T. H. MacGregor, Radial growth of the derivative of univalent functions, Comment. Math. Helv. 59 (3) (1984), 362-375.
[7] S. Li, Derivative free characterizations of Bloch spaces, J. Comput. Anal. Appl. 10 (2) (2008), 253-258.
[8] S. Li and S. Stević, Riemann-Stieltjes type integral operators on the unit ball in \mathbb{C}^{n}, Complex Variables Elliptic Equations 52 (6) (2007), 495-517.
[9] S. Li and S. Stević, Compactness of Riemann-Stieltjes operators between $F(p, q, s)$ and α-Bloch spaces, Publ. Math. Debrecen 72 (1-2) (2008), 111-128.
[10] S. Li and S. Stević, Weighted-Hardy functions with Hadamard gaps on the unit ball, Appl. Math. Comput. 212 (2009), 229-233.
[11] T. G. Limperis, Embedding theorems for the Bloch space, PhD Thesis, University of Arkansas, 1998.
[12] J. Miao, A property of analytic functions with Hadamard gaps, Bull. Austral. Math. Soc. 45 (1992), 105-112.
[13] F. Pérez-González and J. Rättyä, Forelli-Rudin estimates, Carleson measures and $F(p, q, s)$ functions, J. Math. Anal. Appl. 315 (2006), 394-414.

STEVO STEVIĆ

[14] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[15] S. Stević, On an integral operator on the unit ball in \mathbb{C}^{n}, J. Inequal. Appl. Vol. 2005, (1) (2005), 81-88.
[16] S. Stević, A generalization of a result of Choa on analytic functions with Hadamard gaps, J. Korean Math. Soc. 43 (3) (2006), 579-591.
[17] S. Stević, On Bloch-type functions with Hadamard gaps, Abstr. Appl. Anal. Vol. 2007, Article ID 39176, (2007), 8 pages.
[18] S. Stević, Bloch-type functions with Hadamard gaps, Appl. Math. Comput. 208 (2009), 416-422.
[19] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28 (1980), 31-36.
[20] R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of \mathbb{C}^{n}, (preprint) 2006.
[21] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.
[22] X. Zhu, Weighted composition operators from $F(p, q, s)$ spaces to H_{μ}^{∞} spaces, Abstr. Appl. Anal. Vol. 2009, Article ID 290978, (2009), 14 pages.
[23] A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 1959.
Stevo Stević, Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia

E-mail address: sstevic@ptt.rs

Solution to a Singular Integro-Differential Equation

J. N. Pandey* and Fayez Seifeddine
*School of Mathematics and Statistics, Carleton University Ottawa, Ontario K1S 5B6, Canada
email: jpandey@math.carleton.ca fseif62@hotmail.com

Abstract

In this paper we find a method of solving a singular integro-differential equation of the type $$
\begin{equation*} \frac{d y}{d t}+a(t) H y=f(t) \tag{1} \end{equation*}
$$ in the space of semi-almost periodic distributions where $a(t)$ and $f(t)$ are almost periodic functions on the real line composed of trigonometric polynomials with finitely many terms and the operator H the operator of Hilbert transform. Solution to (1) when $a(t), f(t)$ are any a.p. function remains an open problem.

AMS Subject Classification [2000]: Primary: 47G30, 26A30; Secondary: 46F12

Keywords: Almost periodic functions and distributions, Hilbert transform of almost periodic functions and distributions, singular integral equations

Definitions and Preliminaries

The space of almost periodic functions and distributions. Let L be the space of functions consisting of trigonometric polynomials of the type $\sum_{k} A_{k} e^{i \lambda_{k} t}$ consisting of finitely many terms, λ_{k} 's are all real numbers. Let M be the set of all continuous functions defined on \mathbb{R} which are the uniform limit of a sequence of trigonometric polynomials then the space of functions $L \cup M$ is the space of almost periodic functions where an almost periodic function on the real line is defined as follows: We say that a continuous function f defined on \mathbb{R} is an almost periodic function if, for an $\varepsilon>0$, there exists a positive real number $\ell=\ell(\varepsilon)$ such that in every interval of length ℓ there exists at least one $\tau>0$ for which

$$
|f(t+\tau)-f(t)|<\varepsilon \forall t \in(-\infty, \infty)
$$

It was proved by H . Bohr that the space $L \cup M$, which is also denoted by B, is the space of almost periodic functions and any almost periodic function defined on \mathbb{R} is an element of $L \cup M$. So an almost periodic function defined on \mathbb{R} is either a trigonometric polynomial with finitely many terms in it or a uniformly continuous function on the whole real line as a uniform limit of trigonometric polynomials on the whole real line. Further details about a.p. functions can be looked into [1].

The linear space (system) L is metrized as follows: If:

$$
f(t)=\sum_{r=1}^{m} A_{r} e^{i \lambda_{r} t}, \quad g(t)=\sum_{s=1}^{h} B_{s} e^{i \mu_{s} t}
$$

we define the scalar product of trigonometric polynomials f and g by

$$
\begin{align*}
\langle f, g\rangle & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f(t) \overline{g(t)} d t \\
& =\lim _{T \rightarrow \infty} \sum_{r=1}^{m} \sum_{s=1}^{n} A_{r} \bar{B}_{s} \frac{1}{2 T} \int_{-T}^{T} e^{i t\left(\lambda_{r}-\mu_{s}\right)} d t \\
& =\sum_{r=1}^{m} \sum_{s=1}^{n} \delta\left(\lambda_{r} \mu_{s}\right) A_{r} \bar{B}_{s} \tag{2}\\
\|f\|^{2} & =\sum_{r=1}^{m}\left|A_{r}\right|^{2} \tag{3}
\end{align*}
$$

The norm defined by (3) is actually a norm as can be easily shown. Let B^{2} be a space obtained by completing the space L by the norm defined by (3). Then the space B^{2} is not a separable space and the space B^{2} contains the space B. Let $f(t)$ and $g(t)$ be two a.p. functions belonging to the span of the orthogonal set $\left\{e^{\lambda_{m} t i}\right\}_{m=1}^{\infty}$. It can now be easily shown that if a.p.

$$
f(t)=\sum_{m=1}^{\infty} a_{m} e^{\lambda_{m} t i}, \quad g(t)=\sum_{m=1}^{\infty} b_{m} e^{\lambda_{m} t i}
$$

then $f(t)=g(t)$ if and only if $a_{m}=b_{m} \forall m=1,2,3, \ldots$
It is this property that we will make use of in solving the system (1). It is a very difficult problem to solve the system

$$
\frac{d y}{d t}+a(t) H y=f(t)
$$

in its most general form stated when $a(t)$ and $f(t)$ are any almost periodic functions. The case when $a(t)$ and $f(t)$ are constant functions has been discussed in [4]. We will therefore consider the cases when $a(t)$ and $f(t)$ are non-constant a.p. functions. We will take some special cases of $a(t)$ and $f(t)$ and generate the solutions which may give some clue to solving the general case.

We define, as in [4], the space $B_{a p}^{a c}$ as the space of infinitely differentiable almost periodic functions defined on the real line in the sense of H . Bohr. An element $\phi(t)$ of $B_{a p}^{a c}$ has the form

$$
\phi(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i \lambda_{n} t}
$$

such that $\sum_{n=-\infty}^{\infty} a_{n} \lambda_{n}^{k}$ is absolutely convergent for each $k=0,1,2, \ldots$ Therefore, $\phi^{[k]}(t)=$ $\sum_{n=-\infty}^{\infty} a_{n}\left(i \lambda_{n}\right)^{k} e^{i \lambda_{n} t}$ and the series representing $\phi^{[k]}(t)$ is not only an a.p. function but is also absolutely and uniformly convergent on \mathbb{R}. It is for this reason that the space consisting of functions like $\phi^{(k)}(t)$ is denoted by $B_{a p}^{a c}$, the lower suffix $a p$ represents almost periodic and the upper suffix $a c$ stands for absolutely convergent.

Let us now denote the space $B_{a p}^{a c}$ by Φ and let Φ_{k} stand for the space of almost periodic functions obtained by differentiating k times each element of Φ. Thus Φ_{0} will stand for the space Φ or $B_{a p}^{a c}$. Now one can observe that $\Phi=\Phi_{0} \supset \Phi_{1} \supset \Phi_{2} \supset \ldots$

The space Φ is equipped with the topology generated by the sequence of seminorms $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$, where

$$
\left.\gamma_{k}(\phi)=\sqrt{\lim _{N \rightarrow \infty} \frac{1}{2 N}(P) \int_{-N}^{N}\left|\phi^{[k]}(t)\right|^{2} d t} \quad \text { (see } \quad[7], \text { p. } 8\right)
$$

A continuous linear functional over Φ is called a semi-almost periodic distribution. A simple function defined on the real line is said to belong to the space Φ^{\prime} if it can be identified as a continuous linear functional over the space Φ. It has been proved in [4] that the space of almost periodic distribution as defined by Laurent Schwartz in [6] is contained in the space Φ^{\prime} of semi-almost periodic distributions. Each of the spaces Φ_{i} is an incomplete inner product space with inner product defined by

$$
(\theta, \phi)=\lim _{N \rightarrow \infty} \frac{1}{2 N} \int_{-N}^{N} \theta(t) \overline{\phi(t)} d t \quad \forall \theta, \phi \in \Phi_{i}
$$

Let us denote the completion of the space Φ_{i} with respect to the norm $\|\theta\|$ by $\tilde{\Phi}_{i}$ where

$$
\|\theta\|=\sqrt{\left.\lim _{N \rightarrow \infty} \frac{1}{2 n} \int_{-N}^{N} \right\rvert\,\left(\left.\theta(t)\right|^{2} d t\right.} \forall \theta \in \Phi_{i} .
$$

It was shown in [4] that a continuous linear functional over the space Φ is a finite linear combination of finite order generalised derivative (distributional derivatives) of elements of $\tilde{\Phi}_{0}, \tilde{\Phi}_{1}, \tilde{\Phi}_{2} \ldots$ This means that if $f \in \Phi^{\prime}$ then

$$
f=\sum_{i=0}^{m}(-1)^{i} g_{i}^{(i)}, \quad g_{i} \in \tilde{\Phi}_{i}
$$

i.e.

$$
\langle f, \phi\rangle=\left\langle\sum_{i=0}^{m}(-1)^{i} g_{i}^{(i)}, \phi\right\rangle \forall \phi \in \Phi
$$

The Hilbert transform of a function f defined on \mathbb{R} is defined by

$$
(H f)(x)=\frac{1}{\pi}(P) \int_{-\infty}^{\infty} \frac{f(t)}{x-t} d t
$$

provided the integral exists. It is a well-known fact that if $f \in L^{p}(-\infty, \infty) p>1$, then $(H f)(x)$ exists a.e. and $\in L^{p}(-\infty, \infty)$ and that $\|H f\|_{p} \leq c_{p}\|f\|_{p}, c_{p}$ is a constant >0, depending upon p and not upon f. It is proved in [7] that

$$
H^{2} f=-f \quad \text { a.e. }
$$

The Hilbert transform $H f$ of a generalized function $f \in\left(D_{L^{p}}\right)^{\prime}, p>1$ is defined by

$$
\langle H f, \phi\rangle=\langle f,-H \phi\rangle \forall \phi \in\left(D_{L^{p}}\right) .
$$

Here $H f$ is an element of $\left(D_{L^{p}}\right)^{\prime}$. From this we get the inversion formula

$$
H^{2} f=-f \quad \text { if } f \in\left(\mathcal{D}_{L^{b}}\right)^{\prime}
$$

and

$$
H^{2} f=-f+c \quad \text { if } f \in \Phi^{\prime}
$$

One can see that the Hilbert transform of a constant a.p. distribution is zero.
Motivation for the Hilbert transform of a periodic function and distributions comes from a result in [9] and [4]. The differentiation of $f \in \Phi^{\prime}$ is defined in the usual way, i.e. $\langle D f, \phi\rangle=\langle f,-D \phi\rangle \forall \phi \in$ Φ. Another important result that we have is

$$
\frac{d}{d t}(H f)=H f^{\prime} \forall f \in \Phi^{\prime}
$$

We now proceed to solve the singular intro-differential equation

$$
\begin{equation*}
\frac{d y}{d t}+a(t) H y=f(t) \tag{4}
\end{equation*}
$$

in the space of semi-almost periodic distributions when $a(t)$ and $f(t)$ are a.p. functions. So far we have not been able to find the solution to the general case of (4) for any a.p. functions $a(t)$ and $f(t)$ and therefore it remains an open problem all by itself. It is also an open problem to describe a physical situation wherein this differential equation appears. When $a(t)$ is a constant we solved such problems in [2] and [4] by differentiating both sides of the above equation with respect to t and then eliminating H from the new resulting singular integro-differential equation and the above singular integro-differential equation. But in the situation when $a(t)$ is not a constant by eliminating H we come across an identity such as $0=0$. So the method of eliminating H does not work in this case. We therefore take some special cases and solve them, thereby we generate a technique of solving the general case.

We now present the solutions to some special cases of the integro-differential equation given by (4). We are taking a case when $a(t)$ is a constant but $f(t)$ is not. In this example we will recall some techniques used in [4].

Example 1: Solve:

$$
\begin{equation*}
\frac{d y}{d t}+k H y=\sin (\lambda t) \tag{5}
\end{equation*}
$$

where k is a constant; in the space of a.p. distributions. We first solve the associated homogeneous differential equation

$$
\begin{equation*}
\frac{d y}{d t}+k H y=0 . \tag{6}
\end{equation*}
$$

Operating both sides of (5) by H we get

$$
\begin{aligned}
& H \frac{d y}{d t}+k H^{2} y=0 \\
& \frac{d}{d t}(H y)+k(-y+c)=0, \quad c \text { is an arbitrary constant } \\
& \frac{d}{d t}\left(-\frac{1}{k}\left(\frac{d y}{d t}\right)\right)-k y+k c=0 \\
& \frac{d^{2} y}{d t^{2}}+k^{2} y=k^{2} c
\end{aligned}
$$

Therefore, using standard techniques of solving linear d.e. we get

$$
\begin{equation*}
y=A \cos k t+B \sin k t+c \tag{7}
\end{equation*}
$$

It is easily verified that (7) satisfies (6).
It appears that we have three arbitrary constants; but we can reduce the solution to two arbitrary constants as the system (6) is a homogeneous one. If (7) is the solution to (6) then

$$
y=\frac{1}{C}[A \cos k t+B \sin k t]+1
$$

is also a solution. Thus the general solution to the associated homogeneous system (6) is

$$
\begin{equation*}
y=a \cos k t+b \sin k t+1 \tag{8}
\end{equation*}
$$

$$
a=\frac{A}{c}, \quad b=\frac{B}{c} .
$$

We now proceed to find a particular solution to (5). The system (5) can be written in the form

$$
\begin{equation*}
\frac{d y}{d t}+k H y=\frac{e^{t i \lambda}-e^{-t i \lambda}}{2} . \tag{9}
\end{equation*}
$$

Therefore, we can guess a form of the p.s. as follows

$$
\begin{equation*}
y=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} e^{i \lambda n t}+b_{n} e^{-i n \lambda t}\right) \tag{10}
\end{equation*}
$$

Eliminating y from (9) and (10) we get,

$$
\sum_{n=1}^{\infty} a_{n} i n \lambda e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n} i n \lambda e^{-i \lambda n t}+k\left[\sum_{n=1}^{\infty} a_{n}(-i) e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n}(-i)(-1) e^{-i n \lambda t}\right]=\frac{e^{t \lambda i}-e^{-t \lambda i}}{2 i}
$$

Equating the coefficients of the like powers of $e^{\lambda t i}$ and $e^{-\lambda t i}$ we get

$$
\begin{aligned}
& a_{1} i \cdot 1 \lambda-k a_{1} i=\frac{1}{2 i} \\
& k b_{1} i-b_{1} 1 \cdot i \lambda=-\frac{1}{2 i} \\
& a_{1}=\frac{1}{2(\lambda-k) i^{2}}=-\frac{1}{2(\lambda-k)} \\
& b_{1}=-\frac{1}{2 i^{2}(k-\lambda)}=-\frac{1}{2(\lambda-k)} .
\end{aligned}
$$

It is assumed that $\lambda \neq k$. For $n>1$ we have

$$
\begin{aligned}
& a_{n} i n \lambda-k i a_{n}=0 \\
& a_{n}(n \lambda-k)=0, \quad n=2,3,4, \ldots \\
& b_{n} k=b_{n} n \lambda \\
& b_{n}(n \lambda-k)=0 \quad n=2,3,4, \ldots
\end{aligned}
$$

Assuming that for no integer $n \geq 2$ we have $n \lambda=k$ then

$$
a_{n}=0, \quad b_{n}=0 \quad \forall n>1 .
$$

Therefore, a particular solution of the system (9) is

$$
y=-\frac{1}{2(\lambda-k)} e^{i \lambda t}-\frac{1}{2(\lambda-k)} e^{-i \lambda t}+a_{0}=a_{0}-\frac{1}{\lambda-k} \cdot \cos \lambda t
$$

Therefore, the general solution to (9) is

$$
y=a \cos k t+b \sin k t-\frac{\cos \lambda t}{\lambda-k}+a_{0}+1
$$

or

$$
y=a \cos k t+b \sin k t-\frac{\sin \lambda t}{\lambda-k}+c, \quad c=a_{0}+1
$$

a, b, c are all arbitrary constants and $\lambda \neq k$.
If for some $n=n_{0}, n \lambda-k=0$ i.e. $n_{0} \lambda-k=0$ then $a_{n_{0}}$ and $b_{n_{0}}$ are arbitrary constants and a_{n}, b_{n} are all zero for $n=2,3,4, \ldots, n_{0}-1, n_{0}+1, \ldots$ then a particular solution is

$$
y=\frac{e^{i \lambda n_{0} t}}{2(\lambda-k) i}-\frac{1}{2 i(\lambda-k)} e^{-i \lambda n_{0} t}+a_{0}-\frac{\cos \lambda t}{\lambda-k}=\frac{\sin \left(\lambda n_{0} t\right)}{\lambda-k}+a_{0}-\frac{\cos \lambda t}{\lambda-k} .
$$

so the general solution to (9) is

$$
y=\frac{\sin \left(\lambda n_{0} t\right)}{\lambda-k}-\frac{\cos (\lambda t)}{\lambda-k}+a \cos k t+b \sin k t+c
$$

where a, b, c are arbitrary constants.
Lastly we consider the case $\lambda=k$. In this case the differential equation (10) takes the form

$$
\begin{equation*}
\frac{d y}{d t}+\lambda H y=\sin \lambda t . \tag{11}
\end{equation*}
$$

The general solution to the associated homogeneous differential equation (11) is

$$
y=A \cos (\lambda t)+B \sin \lambda t+C
$$

where A, B, C are arbitrary constants.
We now proceed to find a particular solution to the system (11).
Let us take a particular solution to be of the form

$$
\begin{equation*}
y=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n} e^{-i \lambda n t} \tag{12}
\end{equation*}
$$

Eliminating y from (12) and (11) we get

$$
\sum_{n=1}^{\infty} a_{n} i \lambda n e^{i \lambda n t}-\sum_{n=1}^{\infty} b_{n} i \lambda n e^{-i \lambda n t}+\lambda\left[\sum_{n=1}^{\infty} a_{n}(-i) e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n}(i) e^{-i \lambda n t}\right]=\frac{e^{\lambda t i}-e^{-\lambda t i}}{2 i} .
$$

We arrive at a contradiction $0=\frac{1}{2}$ by equating the coefficients of $e^{\lambda t i}$ and $e^{-\lambda t i}$.
Therefore there does not exist a solution to (11) in the span of $1, e^{ \pm \lambda t i}, e^{ \pm \lambda t i}, e^{ \pm 3 \lambda t i}, \ldots$ Assume that $\sin \lambda t$ belongs to the span of $1, e^{ \pm \mu_{1}, t i}, e^{ \pm \mu_{2} t i} \ldots$ and none of $\mu_{i}=\lambda$ then a solution to (11) exists in the span of $1, e^{ \pm \mu_{1}, t i}, e^{ \pm \mu_{2} t i}, e^{ \pm \mu_{3} t i}, \ldots$ and this solution is given by

$$
y=A \cos \lambda t+B \sin \lambda t+C+\sum_{n=-\infty}^{\infty} \frac{-a_{n} i}{\mu_{n}-\lambda \operatorname{sgn}\left(\mu_{n}\right)} e^{\mu_{n} t i} \quad[4, p .207]
$$

It is assumed that

$$
\sin \lambda t=\sum_{n=-\infty}^{\infty} a_{n} e^{\mu_{n} t i}
$$

and none of $\mu_{n}=\lambda$. We have to choose a basis so that none of $\mu_{n}=\lambda$.
Solutions to such S.I.D.E. generally have two arbitrary constants in the space of a.p. functions. But in the space of semi almost periodic distributions we have three arbitrary constants. This is because our inversion formula for Hilbert transform in this case is

$$
H^{2} f=-f+c .
$$

So far our method has been very traditional and simple but the method of eliminating H does not work when $a(t)$ in (9) is not a constant function. So we will make a slight deviation in our technique to solve (9) in this case. Our technique will be demonstrated by the following example.
Example 2. Solve the following singular integro-differential equation in the space of semi-almost periodic distributions

$$
\begin{equation*}
\frac{d y}{d t}+e^{i \lambda t} H y=e^{i \lambda t}, \quad \lambda>0 \tag{13}
\end{equation*}
$$

We first solve the associated homogeneous integro-differential equation

$$
\begin{equation*}
\frac{d y}{d t}+e^{i \lambda t} H y=0 \tag{14}
\end{equation*}
$$

We propose the solution to this singular integro-differential equation to be of the form

$$
\begin{equation*}
y=\sum_{n=1}^{\infty} a_{n} e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n} e^{-i \lambda n t}+a_{0} \tag{15}
\end{equation*}
$$

a_{0}, a_{n} and b_{n} are all constants to be determined.
Eliminating y from (14) and (15) we get

$$
\sum_{n=1}^{\infty}\left[a_{n} \lambda n e^{i \lambda n t}-a_{n} e^{i \lambda(n+1) t}\right]+\sum_{n=1}^{\infty}\left[b_{n} e^{-i \lambda(n-1) t}-b_{n} \lambda n e^{-i \lambda n t}\right]=0
$$

Now equating the coefficients of the like powers of $e^{\lambda t i}$ we get

$$
\begin{aligned}
& a_{1}=0, \quad b_{1}=0 \\
& a_{n+1} \lambda(n+1)-a_{n}=0, \quad n=1,2,3, \ldots \\
& b_{n+1}-b_{n} \lambda n=0, \quad n=1,2,3, \ldots
\end{aligned}
$$

Combining these results we get

$$
\begin{aligned}
& a_{n}=0, \quad b_{n}=0 \quad \forall n=1,2,3, \ldots \\
& a_{0} \quad \text { is an arbitrary constant. }
\end{aligned}
$$

So the solution to (13) in the space of semi-almost periodic distribution is $y=a_{0}$.
We now find a particular solution to (12). Let us take such a solution to be of the form

$$
\begin{equation*}
y=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n} e^{-i \lambda n t} \tag{16}
\end{equation*}
$$

a_{0}, a_{i} and b_{i} are constants to be determined. Eliminating y from (12) and (14) we get

$$
\sum_{n=1}^{\infty}\left[a_{n} \lambda n e^{i \lambda n t}-a_{n} e^{i \lambda(n+1) t}\right]+\sum_{n=1}^{\infty}\left[b_{n} e^{-i \lambda(n-1) t}-b_{n} \lambda n e^{-i \lambda n t}\right]=-i e^{i \lambda t}
$$

Coefficient of $e^{-i \lambda 0 t}: \quad b_{1}=0$
Coefficient of $e^{i \lambda 1 t}: \quad a_{1} \lambda 1=-i \quad$ so $\quad a_{1}=\frac{-i}{\lambda}$

$$
\begin{array}{lll}
\text { Coefficient of } e^{i \lambda(n+1) t}: & n=1,2,3 \ldots & a_{n+1} \lambda(n+1)-a_{n}=0, \quad n=1,2,3, \ldots \\
\text { Coefficient of } e^{-i \lambda(n) t i}: & n=1,2,3 \ldots & b_{n+1}-b_{n} \lambda n=0, \quad n=1,2,3, \ldots
\end{array}
$$

Using these recurrence relations we get

$$
\begin{aligned}
& b_{1}, b_{3}, b_{n}, \ldots \quad \text { zero } \quad \text { i.e. } b_{1}=0 \forall i=1,2,3, \ldots \\
& b_{2}=b_{1} \lambda 1=0, \quad b_{3}=b_{2} \lambda 2=b_{1} \lambda^{2} 2!=0 \\
& b_{4}=b_{3} \lambda 3=b_{1} \lambda^{3} 3!=0 \quad \text { and so on }
\end{aligned}
$$

so

$$
b_{n}=\lambda^{n-1}(n-1)!b_{1}=0, \quad n=2,3,4, \ldots
$$

This relation is also true for $n=1$.

$$
\begin{array}{ll}
& a_{n+1}=\frac{a_{n}}{\lambda(n+1)} \\
& a_{2}=\frac{a_{1}}{\lambda 2}, \quad a_{3}=\frac{a_{2}}{\lambda 3}=\frac{a_{1}}{\lambda^{2} 3!}=\frac{-i}{\lambda^{3} 3!} \\
\text { so } \quad & a_{n}=\frac{-i}{\lambda^{n} n!}, \quad n=1,2,3, \ldots
\end{array}
$$

Therefore the solution to the system is

$$
y=a_{0}-\sum_{n=1}^{\infty} \frac{i}{\lambda^{n} n!} e^{i \lambda n t}, \quad a_{0} \text { is an arbitrary constant. }
$$

Example 3. Solve

$$
\begin{equation*}
\frac{d y}{d t}+\sin \lambda t H y=\cos \lambda t \tag{17}
\end{equation*}
$$

in the space of semi-almost periodic distributions. We first solve the associated homogeneous differential equation

$$
\frac{d y}{d t}+\sin \lambda t H y=0
$$

We can write this S.A.P.D.E. in the form

$$
\begin{equation*}
\frac{d y}{d t}+\frac{e^{\lambda t i}-e^{-\lambda t i}}{2 i} H y=0 . \tag{18}
\end{equation*}
$$

Take

$$
\begin{equation*}
y=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n} e^{-i \lambda n t} \tag{19}
\end{equation*}
$$

Eliminating y from (18) and (19) we get

$$
\sum_{n=1}^{\infty} a_{n} i \lambda n e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n}(-i \lambda n) e^{-i \lambda n t}+\frac{e^{\lambda t i}-e^{-\lambda t i}}{2 i}\left[\sum_{n=1}^{\infty} a_{n}(-i) e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n} i e^{-i \lambda n t}\right]=0
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n} i \lambda n e^{i \lambda n t}-\sum_{n=1}^{\infty} \frac{a_{n}}{2} e^{i \lambda(n+1) t}+\sum_{n=1}^{\infty} \frac{a_{n}}{2} e^{i \lambda(n-1) t} \\
& +\sum_{n=1}^{\infty} b_{n}(-i \lambda n) e^{-i \lambda(n) t}+\sum_{n=1}^{\infty} \frac{b_{n}}{2} e^{-i \lambda(n-1) t}-\sum_{n=1}^{\infty} \frac{b_{n}}{2} e^{-i \lambda(n+1) t}=0
\end{aligned}
$$

Equating the coefficients of the like powers of $e^{\lambda t i}$ we get

$$
\text { Coefficient of } e^{\lambda t i 0}: \quad \frac{a_{1}}{2}+\frac{b_{1}}{2}=0 \quad \text { so } \quad b_{1}=-a_{1} .
$$

Coefficient of $e^{\lambda t i}: \quad a_{1} i \lambda+\frac{a_{2}}{2}=0 \quad a_{2}=-2 a_{1} \lambda i$.
Coefficient of $e^{-\lambda t i}: \quad \frac{b_{2}}{2}-i b_{1} \lambda=0 \quad b_{2}=2 i b_{1} \lambda=-2 i a_{1} \lambda$.
Coefficient of $e^{\lambda n t i}: \quad a_{n} i \lambda n+\frac{a_{n+1}}{2}-\frac{a_{n-1}}{2}=0 \quad a_{n+1}=a_{n-1}-2 i \lambda n a_{n}$.
Coefficient of $e^{-\lambda n t i}: \quad-b_{n} i \lambda n+\frac{b_{n+1}}{2}-\frac{b_{n-1}}{2}=0 \quad b_{n+1}=b_{n-1}+2 b_{n} i n \lambda$.

$$
\begin{aligned}
a_{3} & =a_{1}-2 i \lambda 2 a_{2}=a_{1}-2 i \lambda 2\left(-2 a_{1} \lambda i\right)=a_{1}+\left[8 \lambda^{2} i^{2}\right] a_{1}=a_{1}\left(1-8 \lambda^{2}\right)=a_{1}\left(1-2^{2} \lambda^{2} 2!\right) \\
b_{3} & =b_{1}+2 b_{2} i 2 \lambda=b_{1}-2\left(2 i a_{1} \lambda\right) i 2 \lambda=b_{1}+8 \lambda^{2}=a_{1}\left[-1+2^{2} 2!\lambda^{2}\right] \\
b_{4} & =b_{2}+2 b_{3} i 3 \lambda=3 i 2 \lambda\left[-1+2^{2} 2!\lambda^{2}\right] a_{1}-2 a_{1} \lambda i=i \lambda a_{1}\left[\left(-3!+\lambda^{2} 2^{3} 3!\right)\right]-2 a_{1} \lambda \\
a_{4} & =a_{2}-2 i \lambda 3 a_{1}\left[-1+2^{2} \lambda^{2} 2!\right]=-2 a_{1} \lambda i-2 i \lambda 3 a_{1}\left[1+2^{2} \lambda^{2} 2!\right]
\end{aligned}
$$

and so on. Therefore, the solution to the associated homogeneous S.I.D.E. (18) is

$$
\begin{aligned}
y= & a_{0}+a_{1} e^{\lambda t i}-2 a_{1} \lambda i e^{2 \lambda t i}+a_{1}\left(1-2^{2} \lambda^{2} 2!\right) e^{3 \lambda t i}+a_{1}\left[-2 \lambda-2.3 i \lambda-2^{3} \lambda^{3} 3!i\right] e^{4 \lambda t i}+\cdots \\
& +\left(-a_{1}\right) e^{-\lambda t i}-2 i a_{1} \lambda e^{-2 \lambda t i}+a_{1}\left(1-2^{2} 2!\lambda^{2}\right) e^{-3 \lambda t i}+a_{1}\left[-2 \lambda-2.3 \lambda i-2^{3} \lambda^{3} 3!i\right] e^{-4 \lambda t i}+\cdots \\
= & f(t) \quad \text { (say) }
\end{aligned}
$$

We now proceed to find a particular solution to (17) of the form

$$
\begin{equation*}
y=\sum_{n=1}^{\infty} a_{n} e^{i \lambda n t}+\sum_{n=1}^{\infty} b_{n} e^{-i \lambda n t} \tag{20}
\end{equation*}
$$

Eliminating y from (20) and (17) we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[a_{n} i \lambda n e^{i \lambda n t}-\frac{a_{n}}{2} e^{i \lambda(n+1) t}+\frac{a_{n}}{2} e^{i \lambda(n-1) t}\right] \\
& \quad+\sum_{n=1}^{\infty}\left[\frac{b_{n}}{2} e^{-i \lambda(n-1) t}-b_{n}(-i \lambda n) e^{-i \lambda n t}-\sum_{n=1}^{\infty} \frac{b_{n}}{2} e^{-i \lambda(n+1)}\right]=\frac{e^{\lambda t i}+e^{-\lambda t i}}{2}
\end{aligned}
$$

So equating the coefficients of like powers of $e^{\lambda t i}$ we get
Coefficient of $e^{\lambda t i o}: \quad \frac{a_{1}}{2}+\frac{b_{1}}{2}=0$
Coefficient of $e^{\lambda t i}: \quad a_{1} i \lambda+\frac{a_{2}}{2}=\frac{1}{2} \quad a_{2}=1-2 a_{1} i \lambda$

$$
\begin{aligned}
& \text { Coefficient of } e^{-\lambda t i}: \quad \frac{b_{2}}{2}-i b_{1} \lambda=\frac{1}{2}, \quad b_{2}=1+2 b_{1} \lambda i=1-2 a_{1} \lambda i \\
& \text { Coefficient of } e^{\lambda n t i}: \quad n \geq 2 \quad a_{n} i \lambda n-\frac{a_{n-1}}{2}+\frac{a_{n+1}}{2}=0, \quad a_{n+1}=a_{n-1}-2 a_{n} i \lambda n \\
& \text { Coefficient of } e^{-n \lambda t i}: \quad-i b_{n} n \lambda-\frac{b_{n-1}}{2}+\frac{b_{n+1}}{2}=0, \quad b_{n+1}=b_{n-1}+2 i b_{n} n \lambda \\
& \qquad \begin{aligned}
n=2, \quad a_{3}= & a_{1}-2 a_{2} i \lambda 2=a_{1}-4 a_{2} i \lambda=a_{1}-4 i \lambda\left[1-2 a_{1} i \lambda\right] \\
\quad b_{3}= & b_{1}+2 i 2 b_{2} \lambda=b_{1}+4 i b_{2} \lambda=b_{1}+4 i \lambda\left(1-2 a_{1} i \lambda\right) \quad \text { and so on. }
\end{aligned}
\end{aligned}
$$

Therefore a particular solution to (17) is

$$
y=a_{0}+a_{1} e^{\lambda t i}+\left(1-2 a_{1} i \lambda\right) e^{2 \lambda t i}+\cdots+a_{1} e^{-\lambda t i}+\left(1-2 a_{1} i \lambda\right) e^{-2 \lambda t i}+\cdots=g(t)
$$

Here a_{0} and a_{1} are arbitrary constants.
Therefore, the general solution to the system (18) is

$$
y=f(t)+g(t)
$$

We can see that the solution to the system involves three arbitrary constants.
Example 4: Solve the integro-differential equation

$$
\begin{equation*}
\frac{d y}{d t}+\left(e^{2 t i}+e^{3 t i}\right) H y=e^{t i}+2 e^{2 t i} \tag{21}
\end{equation*}
$$

in the space of semi-almost periodic distributions.
We have discussed such problems in (5) when the coefficient of $H y$ in (21) has only one exponential term. We are discussing this problem with two exponential terms in the coefficient of Hy. A more general case of $a(t)$ can be discussed similarly. Our space in this case is closed with respect to multiplication by $c^{2 t i}$ and $e^{3 t i}$. The space has to be closed with respect to the operator H and the operator $\frac{d}{d t}$ of differentiation. The space spanned by $1, e^{t i}, e^{2 t i} e^{3 t i}, \cdots$ will satisfy all our conditions. There are other spaces such as the space spanned by $1, e^{t i}, e^{2 t i} e^{3 t i}, \cdots, e^{-t i}, e^{-2 t i} e^{-3 t i}, \cdots$ which also satisfy these conditions. We will find out first solutions to (21) in the span of $1, e^{t i}, e^{2 t i}, \cdots$. In our definition of span we are also taking infinite linear combinations, i.e. our elements of the span are trigonometric polynomials with infinitely many terms which represent either a.b. functions, a.b. distributions or semi-almost periodic distributions. We first find solutions of the associated homogeneous integro-differential equation

$$
\begin{equation*}
\frac{d y}{d t}+\left(e^{2 t i}+e^{3 t i}\right) H y=0 \tag{22}
\end{equation*}
$$

in the span of $1, e^{t i}, e^{2 t i} e^{3 t i}, \cdots$. In the basis of the span, terms such as $e^{-t i}, e^{-2 t i} e^{-3 t i}, \cdots$ are not included so we take a solution of (21) of the form

$$
\begin{equation*}
y=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{i n t} \tag{23}
\end{equation*}
$$

So from (23) and (22) we get

$$
\begin{aligned}
& \sum_{i=1}^{\infty} a_{n} i n e^{i n t}+\left(e^{2 t i}+e^{3 t i}\right) \sum_{n=1}^{\infty} a_{n}(-i) e^{i n t}=0 \\
& \sum_{n=1}^{\infty} a_{n} n e^{i n t}-\sum_{n=1}^{\infty} a_{n} e^{i(n+2) t i}-\sum_{n=1}^{\infty} a_{n} e^{i(n+3) t}=0 \\
& \sum_{n=1}^{\infty} n a_{n} e^{i n t}-\sum_{n=3}^{\infty} a_{n-2} e^{i n t}-\sum_{n=4}^{\infty} a_{n-3} e^{i n t}=0 \\
& 1 a, e^{i 1 t}+2 a_{2} e^{i 2 t}+3 a_{3} e^{i 3 t}-a_{1} e^{i 3 t}-\left[\sum_{n=4}^{\infty}\left(a_{n-3}+a_{n-2}-n a_{n}\right)\right]^{i m t}=0
\end{aligned}
$$

Equating coefficients of the like powers of $e^{t i}$ we get

$$
\begin{aligned}
& \text { Coefficient of } e^{t i}: 1 a_{1}=0 \quad \text { so } a_{1}=0 \\
& \text { Coefficient of } e^{2 t i}: 2 a_{2}=0 \quad \text { so } a_{2}=0 \\
& \text { Coefficient of } e^{3 t i}: 3 a_{3}-a_{1}=0 \quad \text { so } a_{3}=0 \\
& \text { Coefficient of } e^{i n t}: \quad n \geq 4 \quad a_{n-3}+a_{n-2}-n a_{n}=0 \\
& \\
& a_{n}=\frac{a_{n-2}+a_{n-3}}{n} \\
& \\
& a_{4}=\frac{a_{2}+a_{1}}{4}=0 .
\end{aligned}
$$

Thus $a_{n}=0 \forall n=1,2,3,4 \cdots$. Therefore the only solution to (22) is $y=a_{0}, a_{0}$ is an arbitrary constant. Now we proceed to find a solution to (22).

Taking the solution of the form

$$
y=a_{0}+\sum_{n=1}^{\infty} a_{n} t^{n t i}
$$

and substituting it in (22) we get

$$
1 a, e^{i t}+2 a_{2} e^{2 i t}+\left(3 a_{3}-a_{1}\right) e^{3 i t}+\sum_{n=4}^{\infty}\left(a_{n-2}+a_{n-3}-n a_{n}\right) e^{i n t}=e^{t i}+2 e^{2 t i}
$$

So equating coefficients of the like powers of $e^{t i}$ we get

$$
\begin{aligned}
& a_{1}=1, \quad a_{2}=1, \quad a_{3}=\frac{1}{3} \quad \text { and } \\
& a_{n}=\frac{a_{n-2}+a_{n-3}}{n}, \quad n \geq 4 \\
& a_{4}=\frac{a_{2}+a_{1}}{4}=\frac{1}{2} \\
& a_{5}=\frac{a_{3}+a_{2}}{5}=\frac{1+\frac{1}{3}}{5}=\frac{4}{3.5}=\frac{4}{15} \\
& a_{6}=\frac{a_{4}+a_{3}}{6}=\frac{\left(\frac{1}{3}+\frac{1}{2}\right)}{6}=\frac{5}{36} \\
& a_{7}=\frac{a_{4}+a_{5}}{7}=\frac{\frac{1}{2}+\frac{4}{15}}{7}=\frac{23}{210} .
\end{aligned}
$$

and so on. Thus our solution is

$$
y=a_{0}+e^{t i}+e^{2 t i}+\frac{1}{3} e^{3 t i}+\frac{1}{2} e^{4 t i}+\cdots
$$

Here a_{0} is an arbitrary constant.
The series solution we obtained is absolutely convergent. We have only one arbitrary constant. Normally in such problems we have two arbitrary constants. If we select the larger space of almost periodic functions or distributions we will get another arbitrary constant in our solutions. To do so we may find solution in the span of

$$
1, e^{ \pm t i}, e^{ \pm 2 t i}, e^{ \pm 3 t i}, e^{ \pm 4 t i}, \cdots
$$

and we will have to get our solution of the form

$$
y=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{n t i}+\sum_{n=1}^{\infty} b_{n} e^{-n t i}
$$

However calculation in this case will be very complex.
Now substituting for y in (22) we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} n a_{n} e^{n t i}-\sum_{n=1}^{\infty} n b_{n} e^{-n t i}+\left(e^{2 t i}+e^{3 t i}\right)\left[\sum_{n=1}^{\infty}-a_{n} e^{n t i}+\sum_{n=1}^{\infty} b_{n} e^{-n t i}\right]=0 \\
b_{1} e^{t i}+b_{2}+b_{1} e^{2 t i}+b_{2} e^{t i}+\sum_{n=1}^{\infty}\left[n a_{n} e^{n t i}-a_{n} e^{(n+2) t i}-a_{n} e^{(n+3) t i}\right] \\
b_{3}+b_{3} e^{-t i}+\left[\sum_{n=4}^{\infty} b_{n} e^{-(n-2) t i}+\sum_{n=4}^{\infty} b_{n} e^{-(n-3) t i}-\sum_{n=1}^{\infty} n b_{n} e^{-n t i}\right]=0
\end{aligned}
$$

Equating coefficients of like powers of $e^{t i}$ we get

$$
\begin{array}{lc}
b_{n+2}+b_{n+3}-n b_{n}=0, & n \geq 1 \\
n a_{n}-a_{n-2}-a_{n-3}=0, & n \geq 4 \\
b_{n+3}=\left(n b_{n}-b_{n+2}\right), & n \geq 1 \\
a_{1}+b_{1}+b_{2}=0 \\
b_{2}+b_{3}=0 \\
2 a_{2}+b_{1}=0
\end{array}
$$

$$
\begin{aligned}
& b_{2}=-\left(a_{1}+b_{1}\right) \\
& b_{3}=\left(a_{1}+b_{1}\right) \\
& b_{4}=1 b_{1}-b_{3}=-a_{1} \\
& b_{5}=2 b_{2}-b_{4}=-2\left(a_{1}+b_{1}\right)+a_{1}=-2 b_{1}-a_{1}=-\left(a_{1}+2 b_{1}\right) \\
& b_{6}=3 b_{3}-b_{5}=a_{1}+2 b_{1}+3\left(a_{1}+b_{1}\right)=4 a_{1}+5 b_{1} \\
& b_{7}=4 b_{4}-b_{6}=-4 a_{1}-4 a_{1}-5 b_{1}=-8 a_{1}-5 b_{1}
\end{aligned}
$$

and so on.

$$
a_{n}=\frac{a_{n-2}+a_{n-3}}{n}, \quad n \geq 4
$$

Also,

$$
\begin{aligned}
& a_{2}=-\frac{b_{1}}{2}, \quad 3 a_{3}-a_{1}=0, \quad a_{3}=\frac{a_{1}}{3} \\
& a_{4}=\frac{a_{2}+a_{1}}{4}=\frac{-\frac{b_{1}}{2}+a_{1}}{4}=\frac{2 a_{1}-b_{1}}{8} \\
& a_{5}=\left(\frac{2 a_{1}-3 b_{1}}{30}\right) \quad \text { and so on. }
\end{aligned}
$$

We now get three arbitrary constants a_{1}, b_{1} and a_{0}, in solution to the homogeneous part of S.I.D.E. equation, i.e. of (22).

$$
\begin{aligned}
y & =a_{0}+a_{1} e^{t i}+a_{2} e^{2 t i}+a_{3} e^{3 t i}+\cdots+b_{1} e^{-t i}+b_{2} e^{-2 t i}+b_{3} e^{-3 t i} \\
y & =a_{0}+a_{1} e^{t i}-\frac{b_{1}}{2} e^{2 t i}+\frac{a_{1}}{3} e^{3 t i}+\cdots+b_{1} e^{-t i}-\left(a_{1}+b_{1}\right) e^{-2 t i}+\left(a_{1}+b_{1}\right) e^{-3 t i}+\cdots
\end{aligned}
$$

Coefficients a_{0}, a_{1} and b_{1} give three linearly independent solutions. Sometimes it happens that only one of the solutions obtained is convergent and the other is not. In this case the divergent series is either an asymptotic expansion of a solution or it is an almost periodic distribution or a semi-almost periodic distribution.

Solve:

$$
\begin{equation*}
\frac{d y}{d t}+\left(e^{t i}+e^{\frac{t}{2} i}+e^{\frac{t}{3} i}\right) H y=0 \tag{24}
\end{equation*}
$$

This S.I.D.E. can be written in the form

$$
\begin{equation*}
\frac{d y}{d t}+\left(e^{\frac{6 t}{6} i}+e^{\frac{3 t}{6} i}+e^{\frac{2 t}{6} i}\right) H y=0 \tag{25}
\end{equation*}
$$

So the space in which we are looking for a solution has to be closed with respect to the following operations
(i) The operator H
(ii) The addition operation
(iii) The operator $\frac{d}{d t}$ of differentiation
(iv) Multiplication by $e^{\frac{1}{6} t i}$.

So we have a solution of the form

$$
\begin{equation*}
y=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{\frac{n t i}{6}} \tag{26}
\end{equation*}
$$

Using (25) and (26) we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{a_{n} n i}{6} e^{\frac{n t i}{6}}-i\left(e^{\frac{6 t i}{6}}+e^{\frac{3 t i}{6}}+e^{\frac{2 t i i}{6}}\right) \sum_{n=1}^{\infty} a_{n} e^{\frac{n t i}{6}}=0 \\
& \sum_{n=1}^{\infty} \frac{a_{n} n}{6} e^{\frac{n t i}{6}}-\left(e^{\frac{6 t i}{\sigma}}+e^{\frac{3 t i}{6}}+e^{\frac{2 t i}{6}}\right) \sum_{n=1}^{\infty} a_{n} e^{\frac{n t i}{6}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \quad \sum_{n=1}^{\infty} \frac{n a_{n}}{6} e^{\frac{n+i}{6}}-\sum_{n=1}^{\infty} a_{n}\left[e^{\frac{(n+6) t i}{6}}+e^{\frac{(n+3) t i}{6}}+e^{\frac{(n+2) t i}{6}}\right]=0 \\
& \sum_{n=1}^{\infty} \frac{n a_{n}}{6} e^{\frac{n t i}{6}}-\sum_{n=7}^{\infty}\left(a_{n-6}+a_{n-3}+a_{n-2}\right) e^{\frac{n t i}{6}} \\
& \quad-a_{1} e^{\frac{3 t i}{6}}-a_{2} e^{\frac{4 t i}{6}}-a_{3} e^{\frac{5 t i i}{6}}-a_{4} e^{\frac{6 t i}{6}}-a_{1} e^{\frac{4 t i}{6}}-a_{2} e^{\frac{5 t i}{6}}-a_{3} e^{\frac{6 t i}{6}}=0 .
\end{aligned}
$$

Equating the coefficients of the like powers of $e^{\frac{t i}{\epsilon^{\circ}}}$ we get

$$
\begin{aligned}
& \frac{a_{1} 1}{6}= 0, \quad \frac{a_{2} 2}{6}=0, \quad \frac{a_{3} 3}{6}=a_{1} \quad \text { so } a_{1}=a_{2}=a_{3}=0 \\
& \frac{a_{4} 4}{6}= a_{2}+a_{1}=0 \quad \text { so } a_{4}=0 \\
& \frac{a_{5} 5}{6}= a_{2}+a_{3}=0 \quad \text { so } a_{5}=0 \\
& \frac{a_{6} 6}{6}= a_{3}+a_{4}=0 \quad \text { so } a_{6}=0 \\
& a_{n-6}+a_{n-3}+a_{n-2}=\frac{a_{n} n}{6} \quad n=7,8,9,10, \ldots \\
& a_{n}=\frac{6}{n}\left(a_{n-2}+a_{n-3}+a_{n-6}\right) \\
& a_{7}=\frac{6}{7}\left(a_{5}+a_{4}+a_{1}\right)=0 \quad \text { and so on. } \\
& a_{n}=0 \quad \forall n=1,2,3, \ldots
\end{aligned}
$$

Thus we have $y=a_{0}$, where a_{0} is an arbitrary constant. In fact this is the only solution in the space chosen.

Solve:

$$
\frac{d y}{d t}+\left(e^{t i}+e^{\frac{t i}{2}}+e^{\frac{t i}{3}}\right) H y=-e^{\frac{3 t i}{6}}-2 e^{\frac{4 t i}{6}}+\frac{1}{6} e^{\frac{t i}{6}} .
$$

Take

$$
y=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{\frac{n t i}{6}} .
$$

as in the previous example.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n a_{n}}{6} e^{\frac{n t i}{6}}-\sum_{n=7}^{\infty}\left(a_{n-6}+a_{n-3}+a_{n-2}\right) e^{\frac{n t i}{6}} \\
& \quad-a_{1} e^{\frac{3 t i}{6}}-a_{2} e^{\frac{4 t i}{6}}-a_{3} e^{\frac{5 t i}{6}}-a_{4} e^{\frac{6 t i}{6}}-a_{1} e^{\frac{4 t i}{6}}-a_{2} e^{\frac{5 t i}{6}}-a_{3} e^{\frac{6 t i}{6}}=-e^{\frac{3 t i}{6}}-2 e^{\frac{4 t i}{6}}+\frac{1}{6} e^{\frac{t i}{6}} \\
& \quad \frac{1 a_{1}}{6} e^{\frac{4 t i}{6}}+\frac{2 a_{2}}{6} e^{\frac{2 t i}{6}}+\left(\frac{3 a_{3}}{6}-1\right) e^{\frac{3 t i}{6}}+\left(\frac{4 a_{4}}{6}-a_{1}-a_{2}\right) e^{\frac{4 t i}{6}}+\left(\frac{5 a_{5}}{6}-a_{2}-a_{3}\right) e^{\frac{5 t i i}{6}} \\
& \quad+\left(\frac{6 a_{6}}{6}-a_{4}-a_{3}\right) e^{\frac{6 t i}{6}}-\sum_{n=7}^{\infty}\left(a_{n-6}+a_{n-3}+a_{n-2}\right) e^{\frac{n t i}{6}}=-e^{\frac{3 t i}{6}}-2 e^{\frac{4 t i}{6}}+\frac{1}{6} e^{\frac{t i}{6}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=1, \quad \frac{2 a_{2}}{6}=0 \quad \text { so } a_{2}=0 \\
& \frac{3 a_{3}}{6}-a_{1}=-1, \quad \frac{3 a_{3}}{6}=0 \quad \text { so } a_{3}=0 \\
& \frac{4 a_{4}}{6}-a_{2}-a_{1}=-2, \quad \frac{4 a_{4}}{6}=-1 \quad \text { so } a_{4}=-\frac{6}{4} \\
& \frac{5 a_{5}}{6}-a_{2}-a_{3}=0, \quad \text { so } a_{5}=0 \\
& \frac{6 a_{6}}{6}-a_{4}-a_{3}=0, \quad \text { so } a_{6}=a_{4}=-\frac{6}{4} \\
& a_{n}=\frac{6}{n}\left(a_{n-2}+a_{n-3}+a_{n-6}\right) \\
& a_{7}=\frac{6}{7}\left(a_{5}+a_{4}+a_{1}\right)=-\frac{3}{7} \\
& a_{8}=\frac{6}{8}\left(a_{6}+a_{5}+a_{2}\right)=\frac{6}{8}\left(-\frac{6}{4}+0+0\right)=-\frac{9}{8}
\end{aligned}
$$

and so on...
Therefore,

$$
\begin{equation*}
y=a_{0}+1 e^{\frac{t i}{6}}-\frac{6}{4} e^{\frac{4 t i}{6}}-\frac{6}{4} e^{\frac{6 t i}{6}}-\frac{3}{7} e^{\frac{7 t i}{6}}-\frac{9}{8} e^{\frac{8 t i}{6}}+\cdots \tag{27}
\end{equation*}
$$

Solution to the singular integro differential equation

$$
\begin{equation*}
\frac{d y}{d t}+\left(a e^{\lambda t i}+b e^{\mu t i}\right) H y=0 \tag{28}
\end{equation*}
$$

will be of the form

$$
\begin{equation*}
y=\sum_{q=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} a_{p q} e^{(m \lambda+n \mu) t i} \tag{29}
\end{equation*}
$$

Eliminating y from (28) and (29) and equating the coefficients of the like powers of the exponential terms the values of the coefficients $a_{p q}$ can be calculated. This solution can be used to solve

$$
\begin{equation*}
\frac{d y}{d t}+\left(a e^{\lambda t i}+b e^{\mu t i}\right) H y=f(t) \tag{30}
\end{equation*}
$$

where $f(t)$ is an a.p. function (with two exponential terms) for simplicity.
For the sake of definiteness, let us take $f(t)=e^{c t i}+e^{d t i}$ where c, d are real numbers. We can find a particular solution to the system (30) by eliminating y from (29) and (30) and then equating the coefficients of the like powers of the exponential terms.

Let this solution be

$$
y=g(t)
$$

and assume that the solution to the system (28) is

$$
y=h(t)
$$

then the general solution to the system (30) is

$$
y=f(t)+h(t)
$$

This solution is in the space of semi-almost periodic space of distributions. The details of calculation is being left to the readers.

Discussions

Solutions that we obtain to the system (1) in the form of a trigonometric series do not always converge. In the case when it does not converge it may either be an almost periodic distribution or a semi-almost periodic distribution. We have found solutions to the system (1) only in very special cases of coefficient $a(t)$ and $b(t)$. The general case needs special consideration and we will look into that eventually. Laurent Schwartz has proved in [6] that a distribution is an almost periodic distribution if and only if it can be expressed as the finite linear combination of the finite order distributional derivative of almost periodic functions. According to this theorem the series $\sum_{n=1}^{\infty} n^{2} e^{n t i}$ though a divergent series is an a.p. distribution as it can be expressed in the form

$$
\frac{d^{4}}{d t^{4}}\left[\sum_{n=1}^{\infty} \frac{-1}{n^{2}} e^{n t i}\right]
$$

The series under the differentiation sign is an almost periodic function. The differentiation is being done in distributional sense.

References

[1] Akhiezer, N.I. and Glazman, I.M., Theory of linear operators in Hilbert space, Vol. I, Frederick Ungar Publishing Company New York, 1961.
[2] Pandey, J.N., The Hilbert transform of periodic distributions, Journal of Integral Transforms and Special Functions, Vol. 5, (1997), No. 2, pp. 117-142.
[3] Pandey, J.N., The Hilbert transform of Schwartz Distributions and Applications, John Wiley and Sons, Inc., January (1996).
[4] J.N. Pandey, The Hilbert transform of almost periodic functions and distributions, Journal of Computational Analysis and Applications, Vol. 6, (2004), No. 3, pp. 199-210.
[5] J.N. Pandey and F. Seifeddine, Solution to some singular integro-differential equations II. Advanced studies in contemporary mathematics 13(2006), No. 1, pp. 101-113.
[6] Schwartz, Laurent, Théorie des distributions, Herman, Paris, 1966.
[7] Titchmarsh, E.C., The Theory of Functions, Oxford University Press, 1939.
[8] Zemanian, A.H., Generalized Integral Transformation, Interscience Publishers, a division of John Wiley and Sons Inc., 1968
[9] Zygmund, A., Trigonometric Series, Vol. 1, Cambridge University Press, Cambridge, 1979.

Acknowledgement

Authors express their gratitude to Professors M. Moore and Angelo Mingarelli of the School of Mathematics and Statistics, Carleton University, Ottawa for going through the manuscript and giving valuable suggestions.

A New Hybrid Model for Intraday Spot Foreign Exchange Trading Accounting for Heavy Tails and Volatility Clustering

Anna Serbinenko*
Svetlozar T. Rachev**
*Chair of Statistics, Econometrics and Mathematical Finance, School of Economics and Business Engineering, University of Karlsruhe and KIT. Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980, D-76128, Karlsruhe, Germany. E-mails: anna@serbinenko.info and anna.serbinenko@statistik.uni-karlsruhe.de.
${ }^{* *}$ Chair of Statistics, Econometrics and Mathematical Finance, School of Economics and Business Engineering, University of Karlsruhe and KIT, and Department of Statistics and Applied Probability, University of California, Santa Barbara, and Chief-Scientist, FinAnalytica INC. Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980, D-76128, Karlsruhe, Germany. E-mail: rachev@statistik.uni-karlsruhe.de.*

July 9, 2009

Abstract

Intraday Spot Foreign Exchange market is extremely volatile and cannot be explained by macro fundamentals. Models of market microstructure have a better forecasting quality, while still cannot fully explain the exchange rates fluctuations, especially over short term and on high frequency data. In this paper, we construct a new model for explaining forex market movements on minute data. This model involves price data on two different time frames, one macro fundamental variable and accounts for volatility clustering through a GARCH approach. Alpha-stable distributions appropriately describe the behavior of residuals. The model is constructed in two variants - for market makers observing the orders flow and for traders who only have the information about the price. In both cases, the new model outperforms other previously studied models.

Keywords: Foreign Exchange Market, Intraday Trading, Heavy Tails, Volatility Clustering, Market Microstructure

[^16]
Introduction

Foreign exchange market is different from other financial markets in many respects and specific models are developed to describes its behavior. By definition, there are no insiders or particularly informed traders on forex. The exchange rate movements are theoretically defined by a relative state of two countries' economies, but macro based model still largely fail to explain short term price movements on forex. Model of market microstructure generally do slightly better, while still have low forecasting quality on high frequency data.

The present research develops a new hybrid model based on market microstructure, but also involving a macro fundamental as an explanatory variable. The model uses price data on two different time frames to account for both recent changes and longer term trends. The model uses GARCH approach to mind volatility clustering, and alpha-stable distributions explain the heavytailed behavior of residuals. The model is constructed in two versions, one for market makers having information about the order flow, another is for traders only observing price movements. Both models outperform previously studied macro, micro and hybrid models.

The remainder of the paper is organized as follows. The section 1 gives an overview of models for market microstructure. Section 2 describes previous attempts to construct a hybrid model. Section 3 presents and tests the new proposed model. Section 4 concludes.

1 Models of the Spot Foreign Exchange Market Microstructure

Micro-based models attempt to describe the behavior of the market, discover laws of its functioning, short-term reactions. As this analysis is based on early signs and leading indications, it is closer to technical analysis on one side and is more used for short term trades. It is for instance not uncommon to have a long term bullish trend on the market, confirmed by fundamental analysis of macroeconomic variables, while many investors and traders take advantage of short term downturns on the market, forecasted based on technical analysis and short term market movements. As a consequence, this type of analysis is the most used for intraday trading.

1.1 Orders Flow Model

Evans and Lyons [6] concentrate on the orders flow. They assume that it contains information on relevant fundamentals for two reasons:

- Traders who aim making profit on the foreign exchange market initiate trades when they believe they have information they can take advantage of, and
- Market participants who cover their other activity through forex market operations, all together, represent the current state and direction of economy.

Note that it is crucial to take into account the signed orders flow, rather than unsigned. Imagine a trader approaching a market maker to sell 10 lots of EUR vs. USD. Another trader comes in the same time with a request to buy 20 lots of EUR vs. USD. The unsigned order flow merely indicates that the volume of transactions reached 30 lots. The signed order flow however, will be $-10+20$, which gives +10 as an outcome, and provides the valuable information to the market maker that the market expects a rise of the price.

The relevant expectation (that of the market maker):

$$
\begin{equation*}
s_{t}=(1-b) \sum_{i=0}^{\infty} b^{i} E_{t}^{m} f_{t+i} \tag{1}
\end{equation*}
$$

where E_{t}^{m} is the expectation conditioned on market makers' information at the start of period t - this difference is crucial, as micro-based models attempt to explain the process of incorporation of available information into prices. In practice, the one estimates the model consisting in two independently estimated equations:

$$
\begin{equation*}
\triangle s_{t+1}=b+a x_{t}^{A G G}+e_{t+1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\triangle s_{t+1}=b+\sum_{j=1}^{6} a_{j} x_{j, t}^{D I S}+e_{t+1} \tag{3}
\end{equation*}
$$

where

- $x_{t}^{A G G}$ is aggregated order flow from six last periods of time,
- $x_{j, t}^{D I S}$ is the order flow from segment j.

The first equation estimates the forecasting power of the aggregated flow, then the second detects the input of each of the disaggregated flow individually.

Evans and Lyons [6] compare the true, ex-ante forecasting performance of a micro-based model against both a standard macro model and a random walk. The forecasting is examines for a short term period, one day to one month. Over 3 years of testing, it is shown that the micro-based model consistently outperform both random walk and the macromodel. This does not imply that past macro analysis has overlooked key fundamentals: finding consistent with exchange rate being driven by standard fundamentals.

An important reserve to be put on this models is whether the actual demand of the market is adequately reflected by the order flow. It is not uncommon to have a situation when there is an actual demand, but there is no transaction
generated due to eventual limits on credit lines, trading hours or technical limitations or issues.

One should also analyze of any type of transactions are equally informative and important for the price formation. The aggregated order flow may come from many small traders each of which has its own source of information and beliefs about the market. This same net position can be generated by one transaction of an institutional client or a small bank - his source of information may be more reliable on one side, but if it is erroneous, it will generate a more important distortion on price than that serving retail clients.

Also, an important question to ask, whenever market makers know the identity of their clients, is whether orders flow generated by corporations, financial institutional and banks are more susceptible to influence the market makers perception of the market and thus the price formation.

The last remark is related to the type of orders received by the market makers. There are two types of orders: market order with immediate execution and pending orders - revocable or irrevocable, with or without expiration date, with a prespecified non market price at which the order is placed if the market hits the target price before the order expired. While it is that the first type of orders should be taken into account, the answer is less obvious for the pending orders. Should they be taken into account at all? On one side they do reflect the traders' expectation regarding future prices and even provide more details in the form of a target price. On the other hand, especially if pending orders can be revoked without financial penalty, these belief's of traders are not backed by real money and may simply reflect an attempt of an arbitrage strategy trying to catch the price "just in case". If the answer on the first question is still positive and pending orders should be taken into account, an important timing question arises - at which moment these positions have an actual influence on the market? Does it happen in the moment when the position is placed and the information about it is already available to the market maker? Or this order should rather be incorporated in the order flow in the moment of its activation when a trader commits real money into the operation? The answer on this second question has more influence if pending orders are allowed to stay active for longer time periods, eventually several days or even longer.

1.2 Evidence of Orders Flow Model on the Modern Foreign Exchange Market

To test the model described in the previous section, we take data from the foreign exchange market for the period from 1st March 2009 till 31st May 2009. The data reflects the volume of trades going through the dealing desk of a market maker. For each day of trades, there following data is analyzed:

1. Total number of lots of each currency pair bought by traders through the company,
2. Total number of lots of each currency pair sold by traders through the company,
3. Average price (quote) of the currency pair for each trading day, calculated as $\frac{\text { Open }+ \text { High }+ \text { Low }+ \text { Close }}{4}$.

The analysis was done for seventy available currency pairs. The trades are taken from a sample with trading hours weekly from Sunday 23.00 till Friday 23.00. For the daily data, Sunday evening data was merged with Monday data, this providing 25 hours of trading information for Mondays and 23 hours of trading for Fridays.

Figure 1 shows the plots of daily exchange rate variations vs. scaled order flow of a market maker.

Several currency pairs were omitted in the experiment due to lack of regular data. We assume that the current order flow t is already known to the market maker. We also suspect the volatility clustering, i.e. current change in price depends on previous changes in price. We thus estimate the improved model 4 for the remaining currency pairs.

$$
\begin{equation*}
\triangle s_{t+1}=b+\sum_{j=0}^{6} a_{j} x_{j, t}^{D I S}+\sum_{j=0}^{6} c_{j} \triangle s_{t-j}+e_{t+1} \tag{4}
\end{equation*}
$$

The estimation process was iterative, whenever a coefficient was not significative, the corresponding variable was eliminated. The R^{2} for the estimated models are given in the table 1 for each currency pair.

As can be observed, the orders flow model have decent explanatory power of price changes of actively traded currency pairs. It will be thus admitted as basic model for further exploration. Its step-by-step analysis is presented below.

Comparison with random walk. We want to know if the suggested model is any better than a simple random walk. We estimate the equation 5 .

$$
\begin{equation*}
\triangle s_{t}=a_{0}+e_{t} \tag{5}
\end{equation*}
$$

where $e_{t} \sim N(\mu, \sigma)$. The results of this calculation are have shown R^{2} at zero for all the currency pairs without exception. In other words, the suggested orders flow model outperforms the random walk approximation, in average by 15.9% taking into account the currency pairs for which an appropriate orders flow model was found.

In-sample and out-of-sample data. Orders flow model estimated for the period 1st March 2009 till 31st May 2009 is now applied to out of sample daily data from 1st June 2009 till 15th June 2009. R^{2} for in-sample and out-of-sample data are compared in the table 2.

As can be observed, for those cases where the model could explain the out-of-sample variations, the R^{2} was well comparable for the in-sample data.

High-frequency data. As our primary purpose is to build a model for intraday trading, higher frequency data is to be analyzed. The same procedure as described above, is now applied to hourly and minute-by-minute data over the same three month period of time. For the hourly data, last 6 periods are taken into account in the model. The number of past periods is increased to 30 for the minute-by-minute data. For each model, variables with non significant

Figure 1: Daily exchange rate variations vs. orders flow.

Table 1: R^{2} of the Orders Flow model estimated on daily data.

Currency pair	$R^{2}, \%$	Currency pair	$R^{2}, \%$
AUDCAD	20.24	EURZAR	33.87
AUDCHF	45.55	GBPAUD	35.84
AUDJPY	25.69	GBPCAD	25.89
AUDNZD	35.84	GBPCHF	43.89
AUDUSD	24.69	GBPJPY	38.24
CADCHF	29.24	GBPNZD	36.63
CADJPY	34.64	GBPUSD	45.56
CHFJPY	25.15	NOKJPY	46.96
CHFSGD	43.62	NZDCAD	29.79
EURAUD	15.95	NZDCHF	37.22
EURCAD	19.66	NZDJPY	23.39
EURCHF	45.21	NZDUSD	28.63
EURGBP	35.31	USDCAD	31.23
EURJPY	29.22	USDCHF	32.95
EURNZD	25.44	USDJPY	29.48
EURSGD	36.88	USDTRY	40.17
EURTRY	27.48	USDZAR	64.26
EURUSD	43.53		

Table 2: R^{2} of the Orders Flow model for in-sample and out-of-sample data.

Currency pair	In-sample	Out-of- sample	Currency pair	In-sample	Out-of- sample
AUDCAD	20.24	32.59	EURZAR	33.87	12.13
AUDCHF	45.55	0	GBPAUD	35.84	0
AUDJPY	25.69	14.60	GBPCAD	25.89	0
AUDNZD	35.84	0	GBPCHF	43.89	34.64
AUDUSD	24.69	4.66	GBPJPY	38.24	41.32
CADCHF	29.24	0	GBPNZD	36.63	0
CADJPY	34.64	0	GBPUSD	45.56	41.93
CHFJPY	25.15	0	NOKJPY	46.96	0
CHFSGD	43.62	0	NZDCAD	29.79	3.21
EURAUD	15.95	9.18	NZDCHF	37.22	11.81
EURCAD	19.66	0	NZDJPY	23.39	0
EURCHF	45.21	0	NZDUSD	28.63	0
EURGBP	35.31	44.60	USDCAD	31.23	0
EURJPY	29.22	16.90	USDCHF	32.95	39.28
EURNZD	25.44	16.61	USDJPY	29.48	0
EURSGD	36.88	0	USDTRY	40.17	2.40
EURTRY	27.48	0	USDZAR	64.26	0
EURUSD	43.53	1.34			

Table 3: R^{2} of the Orders Flow model for daily, hourly and minute-by-minute data.

Currency pair	Daily data	Hourly data	Minute data	Currency pair	Daily data	Hourly data	Minute data
AUDCAD	20.24	18.49	10.41	EURZAR	33.87	4.09	-
AUDCHF	45.55	21.91	11.56	GBPAUD	35.84	19.18	15.37
AUDJPY	25.69	20.79	19.06	GBPCAD	25.89	18.49	14.60
AUDNZD	35.84	18.27	7.21	GBPCHF	43.89	27.63	16.84
AUDUSD	24.69	20.83	15.18	GBPJPY	38.24	20.90	22.35
CADCHF	29.24	21.82	9.82	GBPNZD	36.63	22.33	-
CADJPY	34.64	22.34	16.9	GBPUSD	45.56	21.36	19.31
CHFJPY	25.15	22.71	15.88	NOKJPY	46.96	9.60	-
CHFSGD	43.62	19.89	9.96	NZDCAD	29.79	19.75	6.16
EURAUD	15.95	21.09	15.07	NZDCHF	37.22	22.08	7.57
EURCAD	19.66	19.94	12.10	NZDJPY	23.39	22.24	14.57
EURCHF	45.21	26.80	8.71	NZDUSD	28.63	22.46	9.64
EURGBP	35.31	24.80	12.93	USDCAD	31.23	22.77	11.26
EURJPY	29.22	22.49	21.38	USDCHF	32.95	43.59	10.47
EURNZD	25.44	22.54	11.18	USDJPY	29.48	22.44	11.42
EURSGD	36.88	4.98	14.29	USDTRY	40.17	19.76	-
EURTRY	27.48	24.27	-	USDZAR	64.26	4.22	1.79
EURUSD	43.53	15.24	14.40				

coefficients are iteratively removed. The calculated R^{2} are shown in the table 3.

The results obtained at this step are indeed interesting. As can be observed, the coefficient of determination steadily declines as the frequency of the data increases.

Analyzing the residuals. For each equation, we now calculate the series of residuals and approximate the distribution of these series

- first by normal distribution,
- then by alpha-stable distribution.

Several residual patterns and their estimated distributions are presented on the figures 2.

To evaluate quantitatively, which distribution is more appropriate to describe the data, we will use the Integral of difference [12].

$$
\begin{equation*}
I=\frac{1}{2} \int_{-\infty}^{\infty}\left|f_{X, e}(x)-f_{X, t h}(x)\right| d x \tag{6}
\end{equation*}
$$

where

Figure 2: Empirical distribution functions (input) and their approximations with normal and alpha-stable distributions.

- $f_{X, e}$ is the empirical frequency,
- $f_{X, t h}$ is the estimated, theoretical, probability distribution function.

This integral is always $0 \leq I \leq 1$ and can be interpreted as a part of the residuals' behavior, unexplained by the suggested distribution. In our particular case, we calculate

$$
\begin{align*}
I_{n} & =\frac{1}{2} \int_{-\infty}^{\infty}\left|f_{X, e}(x)-f_{X, \text { normal }}(x)\right| d x \tag{7}\\
I_{\alpha} & =\frac{1}{2} \int_{-\infty}^{\infty}\left|f_{X, e}(x)-f_{X, \alpha-\text { stable }}(x)\right| d x \tag{8}
\end{align*}
$$

The table 4 shows the values the integrals 7 and 8 , for each currency pair, as well as the residuals distribution selected on the basis of this calculation.

As can be observed, for all series with no exceptions, the α-stable distribution described the behavior of residuals more appropriately than the respective normal distribution.

Institutional vs. retail traders. To test whether institutional investors are better informed than individual traders, or, better to say, if their expectations are taken into account more seriously by market makers, we re-estimate the model 2 separately for the following groups of traders:

- Big traders: balance on the trading account exceeding 1000000 USD or equivalent in another currency,
- Medium traders: trading balance between 200000 and 999999 USD or equivalent,
- Retail traders: trading balance below 199999 USD.

The R^{2} for each group of clients calculated on the minute data is presented in the table 5.

Observing the results, we conclude that the predicting power of the order flow does not change depending on the financial size of traders generating the this order flow.

Instant execution and pending orders. Finally, in all the previous analysis pending orders were not taken into account at all until they become an active order, e.g. until the trader commits real money into a position, following his estimations of the market evolution. However, pending orders themselves give additional information to the market makers about the price changes the trades expect.

We re-estimate the model on the minute data and two variant of order flow calculation:

- Initially used order flow of instant execution transactions,
- Alternative order flow of both instant execution and pending orders transactions.

Table 4: Comparison of normal and α-stable residuals distribution estimation using the Integral of difference, for minute data.

Currency pair	Integral of difference		Better res. distr.
	0.0814	0.0448	
AUDCHF	0.0952	0.0555	α-stable
AUDJPY	0.1108	0.0776	α-stable
AUDNZD	0.0874	0.0473	α-stable
AUDUSD	0.1063	0.0545	α-stable
CADCHF	0.1193	0.0519	α-stable
CADJPY	0.1222	0.0783	α-stable
CHFJPY	0.1169	0.0756	α-stable
CHFSGD	0.1206	0.0484	α-stable
EURAUD	0.1033	0.0413	α-stable
EURCAD	0.1096	0.0462	α-stable
EURCHF	0.1947	0.0468	α-stable
EURGBP	0.1399	0.0426	α-stable
EURJPY	0.1304	0.0855	α-stable
EURNZD	0.1286	0.0504	α-stable
EURSGD	0.1075	0.0472	α-stable
EURTRY	-	-	-
EURUSD	0.1481	0.0540	α-stable
EURZAR	-	-	-
GBPAUD	0.0881	0.0564	α-stable
GBPCAD	0.0986	0.0508	α-stable
GBPCHF	0.1342	0.0426	α-stable
GBPJPY	0.1367	0.0937	α-stable
GBPNZD	-	-	-
GBPUSD	0.1483	0.0626	α-stable
NOKJPY	-	-	-
NZDCAD	0.1888	0.0554	α-stable
NZDCHF	0.1338	0.0488	α-stable
NZDJPY	0.1252	0.0803	α-stable
NZDUSD	0.1476	0.0768	α-stable
USDCAD	0.1904	0.0857	α-stable
USDCHF	0.1716	0.0603	α-stable
USDJPY	0.1665	0.0740	α-stable
USDTRY	-	-	-
USDZAR	0.4074	0.2974	α-stable

Table 5: $R^{2}(\%)$ estimated for big, medium and retail clients, on the minute-by-minute data. "-" means transactions data is not available.

Currency pair	Big	Medium	Retail	Currency pair	Big	Medium	Retail
AUDCAD	10.35	10.36	10.42	EURZAR	-	-	-
AUDCHF	11.55	11.55	11.56	GBPAUD	15.39	15.40	15.38
AUDJPY	19.05	19.03	19.06	GBPCAD	14.53	14.57	14.60
AUDNZD	7.24	7.19	7.21	GBPCHF	16.79	16.86	16.83
AUDUSD	15.20	15.20	15.19	GBPJPY	22.35	22.34	22.36
CADCHF	9.83	9.81	9.82	GBPNZD	-	-	-
CADJPY	16.90	16.90	16.90	GBPUSD	19.27	19.29	19.31
CHFJPY	15.89	15.89	16.89	NOKJPY	-	-	-
CHFSGD	-	9.93	9.95	NZDCAD	6.10	6.14	6.16
EURAUD	-	15.05	15.09	NZDCHF	7.51	-	7.57
EURCAD	12.10	12.07	12.10	NZDJPY	14.56	14.58	14.57
EURCHF	8.72	8.71	8.69	NZDUSD	9.63	9.71	9.62
EURGBP	12.92	12.90	12.93	USDCAD	11.26	11.29	11.26
EURJPY	21.34	21.34	12.38	USDCHF	10.56	10.45	10.46
EURNZD	11.18	11.17	11.18	USDJPY	11.48	11.43	11.42
EURSGD	-	-	14.29	USDTRY	-	-	-
EURTRY	-	-	-	USDZAR	-	1.81	1.79
EURUSD	14.17	15.09	14.40				

Using the alternative order flow, we assume that the market makers base their price estimation taking into account the pending orders. Thus the pending orders are considered when they are placed and become known to the market maker, instead of the moment real money are committed into the trading operation.

The results of the estimation using the alternative order flow gave exactly the same coefficients and coefficients of determination as the initial model using the order flow for instant execution positions only.

1.3 Other Models for Forex Market and Special Cases

After having discussed both macro and micro approach to modeling the exchange rates dynamics, it is important to note that these two model types are not incompatible. In is typically assumed for macro approach that all the relevant information is publicly known and is reflected in current market prices. If any of these assumptions is relaxed, the order flow does explain a part of the exchange rates variations.

On the other hand, the micro approach does not claim the macro fundamentals do not define exchange rates. It rather says the order flow is more dynamic and forecasts those fluctuations better. The flow of orders merely reflects the belief of market participants materialized in form of their real money put into play.

A core distinction between the two approaches is the role of trades in price determination.

Fundamentals have little to no importance for intraday trading, and that the exchange rates are too much more volatile than any fundamental. As a remedy to that situation, a hybrid model, taking into account both short term and long term variations, was proposed by [8]. The model has the following form:

$$
\begin{equation*}
\delta P_{t}=f(i, m, z)+g(X, I, Z)+\varepsilon_{t} \tag{9}
\end{equation*}
$$

where

- $f(i, m, z)$ is the macro component of the model,
- $g(X, I, Z)$ is the micro component of the model,
- i - nominal interest rates,
- m - money supply,
- z - other macro determinants,
- X - order flow,
- I - dealer's net positions,
- Z - other micro determinants.

1.4 Portfolio Shifts Model

Macro models are typically estimated on a monthly frequency data and have the form

$$
\begin{equation*}
\triangle p_{t}=f(\triangle i, \triangle m, \ldots)+\varepsilon_{t} \tag{10}
\end{equation*}
$$

where

- $\triangle p_{t}$ is the change in the log nominal exchange rate of the month,
- $\triangle i$ is the change in domestic and foreign interest rates i,
- Δm is the change of money supply over the month,
- ε_{t} is the residual.

In this model, there is no place for the order flow in determining the price, any of its effects would be absorbed by the residual ε_{t}.

Micro approach generally leads to the following form of the model

$$
\begin{equation*}
\triangle p_{t}=g(\triangle x, \triangle I, \ldots)+\nu_{t} \tag{11}
\end{equation*}
$$

where

- $\triangle p_{t}$ is the rate change over two transactions,
- $\triangle x$ is the change in order flow,
- $\triangle I$ change in the net dealer position,
- ν_{t} is the residual.

Lyons and Evans [5] propose a new model which combines both macro and micro approach:

$$
\begin{equation*}
\triangle p_{t}=f(\triangle i, \ldots)+g(\triangle x, \ldots)+\eta_{t} \tag{12}
\end{equation*}
$$

The main difficulty in using this model is that the macro part of it is usually estimated based on monthly data, while the micro-part is often determined on high-frequent values - daily, hourly or even tick-by-tick. A fair and meaningful trade-off can be using daily data for both macro and micro variables, getting more frequent data for the first and aggregating the latter.

The two processes assumed in the portfolio shifts models are the following:

- As a portfolio shift occurs, it is not publicly known. It is manifested in orders on the forex market, the initial volume of which goes through market makers and then are completed by inter-dealer operations. The market learns about the shift by observing these operations.
- The shift is important enough to move the market price.

If the demand is perfectly elastic, then currencies are perfect substitutes and the Portfolio Shifts model approaches the Portfolio Balance model. But in the opposite case the portfolio shifts model is different. It has a constant asset supply and defines demand components - driven by public and non-public information. The later is reflected by portfolio shifts.

Lyons and Evans [5] estimate the Portfolio Shifts model in the following form:

$$
\begin{equation*}
\triangle P_{t}=r_{t}+\lambda \triangle x_{t} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta P_{t}=\beta_{1} \triangle\left(i_{t}-t_{t}^{*}\right)+\beta_{2} \triangle x_{t}+\eta_{t} \tag{14}
\end{equation*}
$$

where

- $\triangle P_{t}$ is the change of the price between periods $t-1$ and t,
- r_{t} is the public information increment,
- λ is a positive constant,
- $\triangle x_{t}$ is the order flow,
- i_{t} is nominal dollar interest rate,
- i_{t}^{*} is nominal non dollar interest rate,
- β_{1}, β_{2} are parameters,
- η_{t} is the residual.

Tests show that this model produces better than random-walk results for both in-sample and out-of-sample data, the forecasting being more precise over shorter period of time (39 days) rather than for a longer period of 89 days.

1.5 Evidence of the Portfolio Shifts Model

To test if the Portfolio Shifts Models is applicable to the Foreign Exchange, we estimate the following equation

$$
\begin{equation*}
\triangle s_{t+1}=b+\sum_{j=0}^{6} a_{j} \sum_{i=0}^{6} x_{j+i, t}^{D I S}+\sum_{j=0}^{6} c_{j} \triangle s_{t-j}+d r_{t}+e_{t+1} \tag{15}
\end{equation*}
$$

Overnight LIBOR rates announced daily, taken from www.dowjonesclose.com/liborrates.html, state of 29th June 2009, are taken for the values of the public information r_{t}. The iterative estimation was done in the same way as in the previous chapter. The table 6 allows for comparison of the R^{2} between Orders Flow model and Portfolio Shifts model.

It can be observed that the addition of the macro economic variable does consistently improve the quality of modeling.

Table 6: Orders Flow model and Portfolio Shifts model estimated on daily data

Currency pair	R^{2} Port- folio Shifts, $\%$	$R^{2} \quad$ Or- ders Flow, $\%$	Currency pair	R^{2} Port- folio Shifts, \%	R^{2} Or- ders Flow, $\%$
AUDCAD	22.23	20.24	EURZAR	34.00	33.87
AUDCHF	46.17	45.55	GBPAUD	35.84	35.84
AUDJPY	26.31	25.69	GBPCAD	27.13	25.89
AUDNZD	42.67	35.84	GBPCHF	43.89	43.89
AUDUSD	25.04	24.69	GBPJPY	39.37	38.24
CADCHF	29.25	29.24	GBPNZD	39.51	36.63
CADJPY	35.05	34.64	GBPUSD	46.38	45.56
CHFJPY	25.15	25.15	NOKJPY	46.69	46.96
CHFSGD	43.79	43.62	NZDCAD	31.87	29.79
EURAUD	16.07	15.95	NZDCHF	49.10	37.22
EURCAD	19.85	19.66	NZDJPY	28.17	23.39
EURCHF	49.55	45.21	NZDUSD	31.58	28.63
EURGBP	35.44	35.31	USDCAD	31.44	31.23
EURJPY	30.43	29.22	USDCHF	33.04	32.95
EURNZD	31.84	25.44	USDJPY	29.73	29.48
EURSGD	36.90	36.88	USDTRY	42.71	40.17
EURTRY	27.95	27.48	USDZAR	75.08	64.26
EURUSD	43.73	43.53			

1.6 Hybrid Models

Any of the presented models are not necessarily and strictly used in the presented form only. They can contribute to one another. For example, Medeiros [1] suggested a hybrid model by including to the basic Evans-Lyons model [5] additional variables representing a country-risk premium. Tests performed on the Brazilian foreign exchange market showed data, showed that the model had a good R^{2}, which was further improved by a GARCH estimation.

2 New Model for Forex Intraday Trading

As a conclusion of the performed study, a new model is to be presented. It takes into account every test performed all over the study as a building block towards an improved model for high frequency foreign exchange modeling.

2.1 Framework

Below is the summary of main the findings made and a description of the framework for the new model.

1. Market participants. While taking into account the activity of all market participants, the target "users" of the developed model are active traders aiming speculative profit on the foreign exchange market, as well as brokerage companies and market makers.
2. Trading Mechanisms. It is assumed that no regulatory restrictions apply to trading. Transactions are done electronically by traders via brokerage companies and market makers. The electronic transmission of information is assumed to be immediate. No additional delay is present in case of trading via an intermediary broker.
3. Trade Instructions. Traders use immediate execution and pending orders on any available currency pair. Price for immediate execution has to be specified, i.e. there are no requests on "best possible" price.
4. Market Efficiency. The market is not efficient in strong and semi-strong form. Interest rate parity does not hold at all times. Carry trades are not consistently profitable. Market showed to be efficient in a weak form on minute data.
5. Liquidity. No major market crashes are happening. Major and small news announcements are coming regularly. The market liquidity is high and does not change depending if regional equity trading sessions is being active or not. The market liquidity does not change around the news announcements.
6. Volatility and Risk Premia. Volatility is appropriately measured by the Expected Tail Loss, as well as by the R-ratio. It changes over time.

Traders are risk averse. No evidence of hot potato trading was found. Volatility was found to be increased during the first and the last 30 minutes of either regional equity trading session. Foreign Exchange Market does not display fractal properties. Trading short term on higher frequency information is generally more risk than trading over long term.
7. Trading Costs. Trading costs are not negligible and are supposed to be incorporated in the spread. No other fee are applied.
8. Technical Analysis. As the market is shown to be efficient in a weak form, the technical analysis cannot provide consistently accurate prediction.
9. Fundamental Analysis and Trading Psychology. Fundamental analysis is susceptible to provide correct predictions. Certain industries are susceptible to move the currency exchange rates. Market prices are influenced by human behavior, in particular the overreactions.
10. Applicability of Equity Market Models to the Foreign Exchange Market. Equity models are generally not applicable to forex market as is, but can provide ideas and econometric tools.
11. Macro Based Models. Models based on macro fundamentals alone fail to explain the forex intraday market movements. The simple intuition behind is that macro fundamentals do not generally change during the day, while prices are moving permanently.
12. Models for Forex Market Microstructure. Models for market microstructure, in particular the model of orders flow, most appropriately explain the market behavior, comparing to other studied models:

- Introduction of previous values of price changes (adding an $A R(n)$ part) improves the coefficient of determination.
- Model is appropriate for the out-of-sample forecast.
- Predicting power of the order flow does not change depending on the financial size of traders generating this order flow.
- α-stable distribution is appropriate to model the behavior of residuals.
- Ceteris paribus, the quality of the model decreases as the data frequency increases.
- Addition of macro fundamentals to build a hybrid model improves the forecasting ability of a model.

2.2 New model

Taking into account the considerations above, we start the construction of the new model based on the basic order flow model. In order to account for volatility clustering, i.e. when periods of high volatility are usually followed by other periods of high volatility, GARCH approach is to be used.

Next, we have seen that the addition of a macro fundamental improves the quality of the model. We include the overnight interest rate, as it both reflects the a macro characteristic of the economy and a part of the trading costs.

The data chosen for modeling should usually match the trading time horizon. However, as it was shown, the forecasting power of a model decreases as the data frequency increases. We thus decide to include a lower frequency data into equation. From the market standpoint, this decision is confirmed by the practice, when traders usually require that data on several time frames agree on the expected direction of the market, before they engage in a trading transaction.

Technically, we observed that series showed heavy tails. To account for this data specification, we admit the residuals follow an α-stable distribution ([9], [10], [11]).

Finally, for the best fit, instead of a simple linear regression, we a looking for a more complex relationship in a spline form ([?], [?]).

$$
\begin{equation*}
\Delta P_{t+1}=\alpha_{0}+\sum_{j=0}^{k} \alpha_{1 j} \triangle P_{t-j}+\sum_{j=0}^{l} \alpha_{2 j} \triangle P_{t-j}^{l}+\sum_{j=0}^{m} \alpha_{3 j} r_{t}+\alpha_{4} i+\varepsilon_{t} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{t}^{2}=\beta_{0}+\sum_{j=1}^{p} \beta_{1 j} \varepsilon_{t-j}^{2}+\sum_{j=1}^{q} \beta_{2 j} \sigma_{t-j}^{2} \tag{17}
\end{equation*}
$$

where

- $\triangle P_{t}$ price change in the moment t,
- $\triangle P_{t}^{l}$ price change in the moment t, on a lower frequency time frame,
- r_{t} order flow,
- i interest rates,
- α_{i} - parameters.

The distribution of residuals, i.e. the unexplained part of the price changes, can be approximated by an α-stable distribution. Due to extremely high market liquidity, the model will also stay valid for news announcements periods.

The purpose of the research is not only to develop a model, but also to make this model usable for everyday live trading. The order flow used in the model above is not known to most traders on the market such as speculators or hedged
in interest arbitrageurs. However the order flow is positively correlated with the market liquidity, which can on its turn be reflected by the number of price ticks arriving in each particular moment of time. The model suggested for this group of market participants is the following:

$$
\begin{equation*}
\triangle P_{t+1}=\alpha_{0}+\sum_{j=0}^{k} \alpha_{1 j} \triangle P_{t-j}+\sum_{j=0}^{l} \alpha_{2 j} \triangle P_{t-j}^{l}+\sum_{j=0}^{m} \alpha_{3 j} v_{t}+\alpha_{4} i+\varepsilon_{t} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{t}^{2}=\beta_{0}+\sum_{j=1}^{p} \beta_{1 j} \varepsilon_{t-j}^{2}+\sum_{j=1}^{q} \beta_{2 j} \sigma_{t-j}^{2} \tag{19}
\end{equation*}
$$

where v_{t} is the number of price ticks in the period t

2.3 Evidence of the New Model

The new model is being estimated in three steps:

1. Apply the Multivariate Adaptive Regression Splines (MARS) to the first equation of the model.
2. Estimate the residuals using $\operatorname{GARCH}(p, q)$.
3. Estimate the parameters of α-stable distribution of residual errors using McCulloch or any other method.

The "market makers' model" is estimated on the minute data over the last three months from 1st March 2009 till 31st May 2009. As a lower frequency time frame, hourly data is selected. To demonstrate that the model keeps the R^{2} on the same level also for the out-of-sample data, tick-by-tick data between 1st and 15th of June 2009 is used. Same estimations are repeated for the "traders' model" with the same results in terms of quality of modeling.

There are three very positive results out of testing this model:

- The model for market makers having the private information about the order flow is as good as the model for traders observing the price volatility.
- This model outperforms all the previously tested models on the minute data.
- The out-of-sample performance of the model is as good as its in-sample performace.

One more observation about the model worth being mentioned here. As the equation was estimated, the MARS regression provides the analysis of impact of each independent variable on the dependent variable. Several typical charts describing this impact are presented on the figure 3.

Mo-plot

Figure 3: Influence of independent variables on the dependent variable in the new model for intraday trading.

Table 7: R^{2} of the estimated new "market makers" models, in-sample and out-of-sample data, in $\%$.

Currency pair	R^{2}, in-sample	R^{2}, out- of-sample	Currency pair	R^{2}, in-sample	R^{2}, out- of-sample
AUDCAD	10.96	13.04	EURZAR	-	-
AUDCHF	13.48	16.97	GBPAUD	15.37	17.20
AUDJPY	20.08	20.52	GBPCAD	13.98	16.71
AUDNZD	7.59	7.81	GBPCHF	18.64	19.02
AUDUSD	16.53	17.80	GBPJPY	23.35	22.18
CADCHF	12.67	15.67	GBPNZD	-	-
CADJPY	18.28	20.59	GBPUSD	21.17	19.81
CHFJPY	17.29	18.34	NOKJPY	-	-
CHFSGD	9.48	11.97	NZDCAD	18.18	1.78
EURAUD	16.11	16.04	NZDCHF	10.39	8.69
EURCAD	14.20	15.36	NZDJPY	15.58	17.18
EURCHF	13.37	15.56	NZDUSD	10.14	11.98
EURGBP	14.83	15.32	USDCAD	14.15	18.81
EURJPY	22.48	21.95	USDCHF	15.88	22.19
EURNZD	12.10	14.23	USDJPY	15.79	8.66
EURSGD	13.70	15.82	USDTRY	-	-
EURTRY	-	-	USDZAR	64.26	
EURUSD	18.89	23.70			

As can be observed, the previous changes in price have the influence on the current change in price most of time only in their second part. In other words, increases in previous changes in price have more impact on the present change in price, than the decreases of them. This relationship has not been explored in details so far, but it is definitely another interesting research topic.

3 Concluding remarks

Step-by-step exploring and testing different aspects of the spot foreign exchange market, this research proposed a new model describing exchange rates, intended for intraday trading.

Two variants of this model were developed: one for market makers observing the order flow, one for traders who do not have this information. Both variants of the model have the same modeling quality, which is as good in-sample as out-of-sample. The R^{2} of this model is higher than the R^{2} of any other model tested here on the minute data.

Finally, some open questions provide room and ideas for further researched. In particular, the predicting power of the model can be further improved. Also, the observed asymetric influence in positive and negative changes in previous observed price innovations is to be explored further.

References

[1] De Medeiros O.R (2005), "Order Flow and Exchange Rate dynamics in Brazil", Finance 0503019, EconWPA, available at SSRN: http://ssrn.com/abstract $=638641$.
[2] Evans L., Kenc T. (2001), "Foreign Exchange Risk Premia in a Stochastic Small Open Economy Model", EFMA 2001 Lugano Meetings, available at SSRN: http://ssrn.com/abstract=264767.
[3] Evans M., Lyons R.(1999), "Order flow and exchange-rate dynamics", Journal of Political Economy.
[4] Evans M.D.D., Lyons R.K. (2001), "Order Flow and Exchange Rate Dynamics", 5th Annual Brookings-Wharton Papers on Financial Services Conference, January 2001.
[5] Evans M.D.D., Lyons R. (2002), "Time varying liquidity in foreign exchange", Journal of Monetary Economics 49, 1025-1051.
[6] Evans M.D.D., Lyons R.K. (2003), "Are Different-Currency Assets Imperfect Substitutes?", CESifo Working Paper No.978, Category 6: Monetary Policy and International Finance, July 2003.
[7] Lyons R.K. (2002), "The Future of the Foreign Exchange Market", 5th Annual Brookings-Wharton Papers on Financial Services Conference, January 2002.
[8] Lyons R.K. (2001), "Foreign Exchange: Macro Puzzles, Micro Tools", December 2001.
[9] Rachev, S., Martin D., Racheva-Iotova B. and Stoyanov S. (2006), "Stable ETL optimal portfolios and extreme risk management, forthcoming in Decisions in Banking and Finance", Springer/Physika, 2007.
[10] Rachev, S., Menn C., Fabozzi F. (2005), "Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio selection, and Option Pricing", John Wiley, Finance, 2005.
[11] Rachev S.T., Stoyanov S., Fabozzi F.J. (2007), "Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization: The Ideal Risk, Uncertainty, and Performance Measures", Wiley, July 2007.
[12] Serbinenko A., Emmeneger J.-F. (2007), "Returns of Eastern European financial markets: alpha-stable distributions, measures of risk", in "PAMM", Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Wiley, Zürich, 2007.

FIXED POINT RESULTS FOR MAPPINGS SATISFYING A GENERAL CONTRACTIVE CONDITION OF OPERATOR TYPE IN DISLOCATED FUZZY QUASI-METRIC SPACES

CIHANGIR ALACA

Abstract

In this paper, we define the notion of dislocated fuzzy quasi-metric spaces with the help of Hitzler and Seda [18] in the sense of Kramosil and Michalek [19] and also George and Veeramani [14]. Further, we give some fixed point results for coincidentally bi-commuting mappings satisfying a general contractive condition of operator type in dislocated fuzzy quasi-metric spaces.

1. Introduction

Zadeh's introduction [29] of the notion of fuzzy sets laid down the foundation of fuzzy mathematics. Many authors have introduced the fundamental concepts of fuzzy metric space and its fixed point theorems in different ways $[1,4,10,11,12$, $14,15,16,19,21,22,25,26]$. Furthermore, many authors obtained different fixed point results for mappings satisfying a general contractive condition of operator type and integral type in metric spaces $[2,3,5,6,8,9,23,24,28]$.

Recently, the following definition of dislocated metric space and it's fundamental properties was given by Hitzler and Seda [18].

Definition 1. Let X be a set and let $\varrho: X \times X \rightarrow \mathbb{R}_{0}^{+}$be a function, called a distance function. Consider the following conditions:
(D-i) For all $x \in X, \varrho(x, x)=0$, (D-ii) For all $x, y \in X$, if $\varrho(x, y)=0$, then $x=y$, (D-iii) For all $x, y \in X, \varrho(x, y)=\varrho(y, x)$, (D-iv) For all $x, y, z \in X$, $\varrho(x, y) \leq \varrho(x, z)+\varrho(z, y),($ D-v $)$ For all $x, y, z \in X, \varrho(x, y) \leq \max \{\varrho(x, z), \varrho(z, y)\}$. If ϱ satisfies conditions (D-i) to (D-iv), then it is called a metric. If it satisfies conditions (D-i), (D-iii) and (D-iv), it is called a pseudo-metric. If it satisfies (Dii), (D-iii) and (D-iv), we will call it a dislocated metric (or simply d-metric). If a (pseudo-, d-) metric satisfies the strong triangle inequality ($\mathrm{D}-\mathrm{iv}{ }^{\prime}$), then it is called a (pseudo-, d-) ultrametric.

The study of partial metric spaces and generalized ultrametric spaces have applications in theoretical computer science had beeen studied by Matthews [20]. Hitzler and Seda [18] introduced the concept of dislocated metric space as a generalization of metrics where self-distances need not be zero. They also proved a generalized version of Banach contraction mapping principle which was applied to obtain fixed point semantics for logic programs. Zeyada et al. [30] gave fixed point theorems for

[^17]a multivalued function in complete dislocated metric spaces and complete partial metric space. Later afterwards, George and Khan [13] introduced the concept of dislocated fuzzy metric space and studied the fuzzy topology associated with it.

In the present paper, we define the notion of dislocated fuzzy quasi-metric spaces with the help of Hitzler and Seda [18] in the sense of Kramosil and Michalek [19] and also George and Veeramani [14]. Further, we give some fixed point results for coincidentally bi-commuting mappings satisfying a general contractive condition of operator type in dislocated fuzzy quasi-metric spaces.

2. On dislocated fuzzy quasi-metric spaces

Definition $2([27])$. A binary operation $\star:[0,1] \times[0,1] \rightarrow[0,1]$ is continuous t norm if $([0,1], \star)$ is a topological monoid with unit 1 such that $a \star b \leq c \star d$ whenever $a \leq c$ and $b \leq d$, and $a, b, c, d \in[0,1]$.

Now, we define the notion of dislocated fuzzy quasi-metric spaces in the sense of Kramosil and Michalek [19].

Definition 3. A 3-tuple (X, M, \star) is said to be a dislocated fuzzy quasi-metric spaces in the sense of Kramosil and Michalek (in shortly $D_{K M}$-FqM-spaces) if X is an arbitrary set, \star is a continuous t-norm and M is a fuzzy set on $X^{2} \times[0, \infty)$ satisfying the following conditions: For all $x, y, z \in X$ and $s, t \in[0, \infty)$,
(D-FqM-1) $M(x, y, 0)=0$,
(D-FqM-2) $M(x, y, t)=M(y, x, t)=1$, then $x=y$,
(D-FqM-3) $M(x, y, t) \star M(y, z, s) \leq M(x, z, t+s)$,
(D-FqM-4) $M(x, y,):.[0, \infty) \rightarrow[0,1]$ is left continuous,
(D-FqM-5) $\lim _{t \rightarrow \infty} M(x, y, t)=1$.
Remark 1. If we add the condition $M(x, y, t)=M(y, x, t)$ to Definition 3, then we obtain the definition of $D_{K M}-F M$-spaces given by George and Khan [13].

Now, we define the notion of dislocated fuzzy quasi-metric spaces in the sense of George and Veeramani [14].
Definition 4. A 3-tuple (X, M, \star) is said to be a D-FqM-spaces in the sense of George and Veeramani (in shortly $D_{G V}$-FqM-spaces) if X is an arbitrary set, \star is a continuous t-norm and M is a fuzzy set in $X^{2} \times(0, \infty)$ satisfying the following conditions: For all $x, y, z \in X$ and $s, t \in(0, \infty)$,
(D-FqM-1) $M(x, y, t)>0$,
(D-FqM-2) $M(x, y, t)=M(y, x, t)=1$, then $x=y$,
(D-FqM-3) $M(x, y, t) \star M(y, z, s) \leq M(x, z, t+s)$,
(D-FqM-4) $M(x, y,):.(0, \infty) \rightarrow(0,1]$ is continuous.
Remark 2. Given a D-FqM-space (X, M, \star) we define the open ball $B_{M}(x, r, t)$, for $x \in X, 0<r<1$, and $t>0$, as the set $B_{M}(x, r, t)=\{y \in X: M(x, y, t)>1-r\}$. Obviously, $x \in B_{M}(x, r, t)$. For each $x \in X, 0<r_{1}<r_{2}<1$ and $0<t_{1}<t_{2}<1$, we have $B_{M}\left(x, r_{1}, t_{1}\right) \subset B_{M}\left(x, r_{2}, t_{2}\right)$. Consequently, we may define a topology τ_{M} on X as
$\tau_{M}=\left\{A \subseteq X:\right.$ for each $x \in A$ there are $r \in(0,1), t>0$, with $\left.B_{M}(x, r, t) \subseteq A\right\}$.
Moreover, for each $x \in X$ the collection of open balls $\left\{B_{M}\left(x, \frac{1}{n}, \frac{1}{n}\right): n=2,3, ..\right\}$, is a local base at x with respect to τ_{M}. The topology τ_{M} is called the topology generated
by D-FqM-space (X, M, \star). It is clear that each open ball $B_{M}(x, r, t)$ is an open set for the topology τ_{M}.
Remark 3. If (M, \star) is $D_{G V}-F q M$ on X, then $\left(M^{-1}, \star\right)$ is also a $D_{G V}-F q M$ on X, where M^{-1} is the fuzzy set $X^{2} \times(0, \infty)$ defined by $M^{-1}(x, y, t)=M(y, x, t)$. Moreover, if we denote by M^{\ddagger} the fuzzy set in $X^{2} \times(0, \infty)$ given by $M^{\ddagger}(x, y, t)=$ $\min \left\{M(x, y, t), M^{-1}(x, y, t)\right\}$, then $\left(M^{\ddagger}, \star\right)$ is a $D_{G V}-F q M$ on X. We can give similar this case for $D_{K M}-F q M$-spaces.

Example 1. Let (X, d) be a dislocated (quasi-)metric space, let \star be any continuous t-norm and let M_{d} be the function defined on $X^{2} \times(0, \infty)$ by $M_{d}=\frac{t}{t+d(x, y)}$. Then $\left(X, M_{d}, \star\right)$ is a $D_{G V}-F q M$-space called standard $D_{G V}-F q M$ and $\left(M_{d}, \star\right)$ is the D $F q M$ induced by d. Furthermore, it is easy to check that $\left(M_{d}\right)^{-1}=M_{d^{-1}}$ and $\left(M_{d}\right)^{\ddagger}=M_{d^{s}}$, and the topology τ_{d}, generates by d, coincides with the topology $\tau_{M_{d}}$ generated by the induced $D_{G V}-F q M(M, \star)$.

As in Grabiec [15], the following definition can be given.
Definition 5. Let (X, M, \star) be a $D_{K M}-F q M$-space. A sequence $\left\{x_{n}\right\}$ in X is said to be (i) a bi-convergent to a point $x \in X$ (denoted by $\lim _{n \rightarrow \infty} x_{n}=x$) if $\lim _{n \rightarrow \infty} M^{\ddagger}\left(x_{n}, x, t\right)=1$, for all $t>0$, (ii) a bi-Cauchy sequence if $\lim _{n \rightarrow \infty} M^{\ddagger}\left(x_{n+p}, x_{n}, t\right)=$ 1, for all $t>0, p>0$, (iii) a bi-complete $D_{K M}-F q M$-space in which every biCauchy sequence converges to a point in it.

As in George and Veeramani [14], the following definition can be given.
Definition 6. (i) A sequence $\left\{x_{n}\right\}$ in a $D_{G V}-F q M$-space (X, M, \star) bi-converges to $x \in X$ iff, for any $\varepsilon \in(0,1), t>0$, there exists $n_{0} \in \mathbb{N}$ such that $M^{\ddagger}\left(x_{n}, x, t\right)>$ $1-\varepsilon$ for all $n \geq n_{0}$. (ii) A sequence $\left\{x_{n}\right\}$ in a $D_{G V}$-FqM-space (X, M, \star) is a bi-Cauchy sequence iff for each $\varepsilon \in(0,1), t>0$ there exists $n_{0} \in \mathbb{N}$ such that $M^{\ddagger}\left(x_{n}, x_{m}, t\right)>1-\varepsilon$ for all $n, m \geq n_{0}$. (iii) $A D_{G V}$-FqM-space (X, M, \star) in which every bi-Cauchy sequence in X is called bi-complete $D_{G V}$-FqM-space.

Definition 7. Let (X, M, \star) be a D-FqM-space, f and g be self maps of X. f and g are said to be bi-commute at $x \in X$, iff $M^{\ddagger}(f g x, g f x, t)=1$ for all $t \in[0, \infty)$. If f and g bi-commute at all $x \in X$, then we say that f and g are bi-commuting on X.

Definition 8. Mappings f and g are said to be coincidentally bi-commuting iff they bi-commute at all the coincidence points of f and g.

Remark 4. There exists mappings f and g which bi-commutes at some coincidence points but do not bi-commute at all coincidence points of f and g.

3. Fixed point results for dislocated fuzzy quasi-metric spaces

Now in this section, we prove a fuzzy version of Banach contraction mapping principle for coincidentally bi-commuting mappings satisfying a general contractive condition of operator type in dislocated fuzzy quasi-metric spaces.

Similar results for the following concept of $O(\varphi ;$.$) and its similar examples was$ given by Altun and Turkoglu [7].

Let $\Phi([0, \infty))$ be class of all function $\varphi:[0, \infty) \rightarrow[0, \infty]$ and let Ξ be class of all operators

$$
O(\bullet ; .): \Phi([0, \infty)) \rightarrow \Phi([0, \infty)), \varphi \rightarrow O(\varphi ; .)
$$

satisfying the following conditions:
(i) $O(\varphi ; t)>0$ for $t>0$ and $O(\varphi ; 0)=0$,
(ii) $O(\varphi ; t) \leq O(\varphi ; s)$ for $t \leq s$,
(iii) $\lim _{n \rightarrow \infty} O\left(\varphi ; t_{n}\right)=O\left(\varphi ; \lim _{n \rightarrow \infty} t_{n}\right)$,
(iv) $\stackrel{n \rightarrow \infty}{O}(\varphi ; \max \{t, s\})=\underset{n \rightarrow \infty}{\max \{O}(\varphi ; t), O(\varphi ; s)\}$ for some $\varphi \in \Phi([0,1))$.

Example 2. If $\varphi:[0, \infty) \rightarrow[0, \infty]$ is a Lebesque integrable mapping which is finite integral on each compact subset of $[0, \infty)$, non-negative and such that for each $t>0$, $\int_{0}^{t} \varphi(s) d s>0$, then the operator defined by

$$
O(\varphi ; t)=\int_{0}^{t} \varphi(s) d s
$$

satisfies the conditions (i)-(iv).
Example 3. If $\varphi:[0, \infty) \rightarrow[0, \infty)$ non-decreasing, continuous function such that $\varphi(0)=0$ and $\varphi(t)>0$ for $t>0$, then the operator defined by

$$
O(\varphi ; t)=\frac{\varphi(t)}{1+\varphi(t)}
$$

satisfies the conditions (i)-(iv).
Example 4. If $\varphi:[0, \infty) \rightarrow[0, \infty)$ non-decreasing, continuous function such that $\varphi(0)=0$ and $\varphi(t)>0$ for $t>0$, then the operator defined by

$$
O(\varphi ; t)=\frac{\varphi(t)}{1+\ln (1+\varphi(t))}
$$

satisfies the conditions (i)-(iv).
Theorem 1. Let $\left(X, M^{\ddagger}, \star\right)$ be a D-FqM-space and let $f, g: X \rightarrow X$ be mappings that satisfy the following conditions:
(4.2) one of $f(X)$ or $g(X)$ is bi-complete,

$$
O\left(\varphi ; 1-M^{\ddagger}(f x, f y, t)\right) \leq \alpha O\left(\varphi ; 1-M^{\ddagger}(g x, g y, t)\right)
$$

where $O(\bullet ;.) \in \Xi$. Then f and g have a coincidence point. Further if f and g bi-commute at some coincidence point, then f and g have a unique common fixed point.

Proof. Let $x_{0} \in X$. Since $f(X) \subset g(X)$, choose $x_{1} \in X$ such that $y_{1}=f x_{0}=g x_{1}$. By induction we can form the sequence $\left\{y_{n}\right\}$ such that $y_{n+1}=f x_{n}=g x_{n+1}, n=0$, $1,2, \ldots$ and $y_{0}=g x_{0}$. For $0<\alpha<1$ and $t \in[0, \infty)$ we have

$$
\begin{aligned}
O\left(\varphi ; 1-M^{\ddagger}\left(y_{1}, y_{2}, t\right)\right) & =O\left(\varphi ; 1-M^{\ddagger}\left(f x_{0}, f x_{1}, t\right)\right) \\
& \leq \alpha O\left(\varphi ; 1-M^{\ddagger}\left(g x_{0}, g x_{1}, t\right)\right) \\
& =O\left(\varphi ; 1-M^{\ddagger}\left(y_{0}, y_{1}, t\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
O\left(\varphi ; 1-M^{\ddagger}\left(y_{2}, y_{3}, t\right)\right) & =O\left(\varphi ; 1-M^{\ddagger}\left(f x_{1}, f x_{2}, t\right)\right) \\
& \leq \alpha O\left(\varphi ; 1-M^{\ddagger}\left(g x_{1}, g x_{2}, t\right)\right) \\
& =O\left(\varphi ; 1-M^{\ddagger}\left(y_{1}, y_{2}, t\right)\right) .
\end{aligned}
$$

Thus we have

$$
O\left(\varphi ; 1-M^{\ddagger}\left(y_{2}, y_{3}, t\right)\right) \leq \alpha^{2} O\left(\varphi ; 1-M^{\ddagger}\left(y_{0}, y_{1}, t\right)\right) .
$$

Proceeding this way and from (4.3), we have

$$
\begin{equation*}
O\left(\varphi ; 1-M^{\ddagger}\left(y_{n}, y_{n+1}, t\right)\right) \leq \alpha^{n} O\left(\varphi ; 1-M^{\ddagger}\left(y_{0}, y_{1}, t\right)\right) \tag{4.4}
\end{equation*}
$$

Taking the limit of (4.4), as $n \rightarrow \infty$, gives

$$
\lim _{n \rightarrow \infty} O\left(\varphi ; 1-M^{\ddagger}\left(y_{n}, y_{n+1}, t\right)\right)=0
$$

which, from (i), implies that

$$
\lim _{n \rightarrow \infty}\left(1-M^{\ddagger}\left(y_{n}, y_{n+1}, t\right)\right)=0 .
$$

That is, we have $\lim _{n \rightarrow \infty} M^{\ddagger}\left(y_{n}, y_{n+1}, t\right)=1$. Now we show that $\left\{y_{n}\right\}$ is a bi-Cauchy sequence. Suppose that it is not. Then there exists an $\varepsilon>0$ and subsequences $\{m(v)\}$ and $\{n(v)\}$ such that $m(v)<n(v)<m(v+1)$ with

$$
\begin{equation*}
1-M^{\ddagger}\left(y_{m(v)}, y_{n(v)}, t_{1}+t_{2}\right) \geq \varepsilon, \quad 1-M^{\ddagger}\left(y_{m(v)}, y_{n(v)-1}, t_{1}+t_{2}\right)<\varepsilon \tag{4.5}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} M^{\ddagger}\left(y_{n}, y_{n+1}, t\right)=1$, we have

$$
\lim _{v \rightarrow \infty} M^{\ddagger}\left(y_{n(v)-1}, y_{n(v)}, t\right)=\lim _{v \rightarrow \infty} M^{\ddagger}\left(y_{m(v)-1}, y_{m(v)}, t\right)=1 .
$$

Using (D-FqM-3), we have

$$
\begin{aligned}
M^{\ddagger}\left(y_{m(v)-1}, y_{n(v)-1}, t_{1}+t_{2}\right) & \geq M^{\ddagger}\left(y_{m(v)-1}, y_{m(v)}, t_{1}\right) \star M^{\ddagger}\left(y_{m(v)}, y_{n(v)-1}, t_{2}\right) \\
& >M^{\ddagger}\left(y_{m(v)-1}, y_{m(v)}, t_{1}\right) \star 1-\varepsilon
\end{aligned}
$$

or $1-M^{\ddagger}\left(y_{m(v)-1}, y_{n(v)-1}, t_{1}+t_{2}\right)<\varepsilon$ as $v \rightarrow \infty$. Therefore, from (4.3), we get

$$
\begin{aligned}
& \alpha O\left(\varphi ; 1-M^{\ddagger}\left(y_{m(v)-1}, y_{n(v)-1}, t_{1}+t_{2}\right)\right) \\
\geq & O\left(\varphi ; 1-M^{\ddagger}\left(y_{m(v)}, y_{n(v)}, t_{1}+t_{2}\right)\right) \\
\geq & O(\varphi ; \varepsilon)
\end{aligned}
$$

which implies $\alpha O(\varphi ; \varepsilon) \geq O(\varphi ; \varepsilon)$ as $v \rightarrow \infty$ a contradiction, since $0<\alpha<1$ and $\varepsilon>0$. Therefore, $\left\{y_{n}\right\}$ is a bi-Cauchy sequence in X. From (4.2), since $g(X)$ is bi-complete. Then there exists $u \in g(X)$ such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n+1}=u=$ $\lim _{n \rightarrow \infty} y_{n+1}$. Since $u \in g(X)$ therefore, there exists a point $p \in X$ such that $g p=u$. Now we show that $f p=g p=u$. If possible $f p \neq g p$, by inequality (4.3), we have

$$
O\left(\varphi ; 1-M^{\ddagger}(f p, g p, t)\right)=\alpha O\left(\varphi ; 1-M^{\ddagger}\left(f p, f x_{n}, t\right)\right)
$$

for each $x, y \in X, 0 \leq \alpha<1$. Letting $n \rightarrow \infty$, we have

$$
\begin{aligned}
O\left(\varphi ; 1-M^{\ddagger}(f p, g p, t)\right) & =O\left(\varphi ; 1-\lim _{n \rightarrow \infty} M^{\ddagger}\left(f p, f x_{n}, t\right)\right) \\
& \leq \alpha O\left(\varphi ; 1-\lim _{n \rightarrow \infty} M^{\ddagger}\left(g p, g x_{n}, t\right)\right) \\
& =\alpha O\left(\varphi ; 1-\lim _{n \rightarrow \infty} M^{\ddagger}\left(u, g x_{n}, t\right)\right)
\end{aligned}
$$

Proceeding this way from (4.1) and (4.3), we have

$$
\begin{equation*}
O\left(\varphi ; 1-M^{\ddagger}(f p, g p, t)\right) \leq \alpha^{n} O\left(\varphi ; 1-\lim _{n \rightarrow \infty} M^{\ddagger}\left(u, g x_{n}, t\right)\right) \tag{4.6}
\end{equation*}
$$

CIHANGIR ALACA

Taking the limit of (4.6), as $n \rightarrow \infty$, gives

$$
\lim _{n \rightarrow \infty} O\left(\varphi ; 1-M^{\ddagger}(f p, g p, t)\right)=0
$$

which, from (i), implies that

$$
\lim _{n \rightarrow \infty}\left(1-M^{\ddagger}(f p, g p, t)\right)=0 .
$$

That is, we have $\lim _{n \rightarrow \infty} M^{\ddagger}(f p, g p, t)=1$. Therefore from (D-FqM-2), we have $f p=$ $g p$ i.e. f and g bi-commute at some coincidence point say z, i.e. $M^{\ddagger}(f g z, g f z, t)=1$ $\forall t>0 \Rightarrow f g z=g f z$ by (D-FqM-2). Let $f z=g z=k$. Then we get

$$
\begin{aligned}
O\left(\varphi ; 1-M^{\ddagger}(f k, k, t)\right) \leq & O\left(\varphi ; 1-M^{\ddagger}(f k, f z, t)\right) \\
\leq & O\left(\varphi ; 1-M^{\ddagger}(g k, g z, t)\right)=O\left(\varphi ; 1-M^{\ddagger}(g f z, f z, t)\right) \\
= & O\left(\varphi ; 1-M^{\ddagger}(f g z, f z, t)\right) \leq \alpha O\left(\varphi ; 1-M^{\ddagger}(g k, g z, t)\right) \\
& \cdots \\
\leq & \alpha^{n} O\left(\varphi ; 1-M^{\ddagger}(g k, g z, t)\right) .
\end{aligned}
$$

Then we get

$$
\begin{equation*}
O\left(\varphi ; 1-M^{\ddagger}(f k, k, t)\right) \leq \alpha^{n} O\left(\varphi ; 1-M^{\ddagger}(g k, g z, t)\right) \tag{4.7}
\end{equation*}
$$

Taking the limit of (4.7), as $n \rightarrow \infty$, gives

$$
\lim _{n \rightarrow \infty} O\left(\varphi ; 1-M^{\ddagger}(f k, k, t)\right)=0
$$

which, from (i), implies that

$$
\lim _{n \rightarrow \infty}\left(1-M^{\ddagger}(f k, k, t)\right)=0 .
$$

That is, we have $\lim _{n \rightarrow \infty} M^{\ddagger}(f k, k, t)=1$. Therefore from (D-FqM-2), we have $f k=k$. Similarly we can show that $g k=k$. That is k is a common fixed point of f and g. A similarly proof follows if $f(X)$ is bi-complete.

Uniqueness: Suppose w is another common fixed point of f and g. Then we have

$$
\begin{aligned}
O\left(\varphi ; 1-M^{\ddagger}(k, w, t)\right)= & O\left(\varphi ; 1-M^{\ddagger}(f k, f w, t)\right) \\
\leq & \alpha O\left(\varphi ; 1-M^{\ddagger}(g k, g w, t)\right) \\
\leq & \alpha O\left(\varphi ; 1-M^{\ddagger}(k, w, t)\right) \\
= & \alpha O\left(\varphi ; 1-M^{\ddagger}(f k, f w, t)\right) \\
\leq & \alpha^{2} O\left(\varphi ; 1-M^{\ddagger}(g k, g w, t)\right) \\
= & \alpha^{2} O\left(\varphi ; 1-M^{\ddagger}(k, w, t)\right) \\
& \cdots \\
\leq & \alpha^{n} O\left(\varphi ; 1-M^{\ddagger}(k, w, t)\right) .
\end{aligned}
$$

Then we get

$$
\begin{equation*}
O\left(\varphi ; 1-M^{\ddagger}(k, w, t)\right) \leq \alpha^{n} O\left(\varphi ; 1-M^{\ddagger}(k, w, t)\right) . \tag{4.8}
\end{equation*}
$$

Taking the limit of (4.8), as $n \rightarrow \infty$, gives

$$
\lim _{n \rightarrow \infty} O\left(\varphi ; 1-M^{\ddagger}(k, w, t)\right)=0
$$

DISLOCATED FUZZY QUASI-METRIC SPACES

which, from (i), implies that

$$
\lim _{n \rightarrow \infty}\left(1-M^{\ddagger}(k, w, t)\right)=0 .
$$

That is, we have $\lim _{n \rightarrow \infty} M^{\ddagger}(k, w, t)=1$. Therefore from (D-FqM-2), we have $k=w$. Hence the common fixed point is unique.

In Theorem 1 , if we take $g=I_{X}$, the identity mapping on X, then we have the following.

Theorem 2. Let $\left(X, M^{\ddagger}, \star\right)$ be a D-FqM-space and let $f: X \rightarrow X$ be mappings that satisfy the following conditions:
(i) $f(X)$ is bi-complete,
(ii) For each $x, y \in X, 0 \leq \alpha<1, t \in[0, \infty)$

$$
O\left(\varphi ; 1-M^{\ddagger}(f x, f y, t)\right) \leq \alpha O\left(\varphi ; 1-M^{\ddagger}(x, y, t)\right)
$$

where $O(\bullet ;.) \in \Xi$. Then f has a unique fixed point.
Remark 5. It is clear that Theorem 1 is a generalization of Theorem 3.1 in [13].
Remark 6. We can have new result, if we combine Theorem 1 and some examples for $O(f ;$.$) .$

Remark 7. If we combine Example 2 and Theorem 1, then we obtain a new generalized fuzzy version of Banach contraction mapping principle satisfying a general contractive condition of operator type or integral type in D-FqM-spaces.

Conclusion. The notion of dislocated metric is useful in the context of electronic engineering (see [17]). In this work we prove a common fixed point for coincidentally bi-commuting mappings satisfying a general contractive condition of operator type in D-FqM-spaces. A few applications of dislocated metrics and in particular of the generalized Banach conraction mapping principle, are known in Theoretical Computer Science, it is at this stage unclear, with investigating whether or not other applications can be found and where else in Fuzzy Mathematics these spaces appear. The scientists who went to study in this area can investigate the results of the fixed point theory for another types of contraction mappings.

Acknowledgement. The author would like to thank Prof. M. S. Khan who informed the author about his study [13].

References

[1] H. Adibi, Y. J. Cho, D. O‘Regan and R. Saadati, Common fixed point theorems in L-fuzzy metric spaces, Appl. Math. Comput. 182, 820-828 (2006).
[2] C. Alaca, A related fixed point theorem on two metric spaces satisfying a general contractive condition of integral type, J. Comput. Anal. Appl. 11, 263-270 (2009).
[3] C. Alaca, A common fixed point theorem for a family of selfmappings satisfying a general contractive condition of operator type, Albanian J. Math. 3, 13-17 (2009).
[4] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons \mathcal{E} Fractals 29(5), 1073-1078 (2006).
[5] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl. 322, 796-802 (2006).
[6] A. Aliouche, Common fixed point theorems for hybrid mappings satisfying generalized contractive conditions, J. Nonlinear Sci. Appl., 2, 136-143 (2009).

CIHANGIR ALACA

[7] I. Altun and D. Turkoglu, A fixed point theorem for mappings satisfying a general contractive condition of operator type, J. Comput. Anal. Appl. 9, 9-14 (2007).
[8] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Internat. J. Math. 8 Math. Sci. 29, 531-536 (2002).
[9] Lj. B. Ćirić, Fixed point theory - Conraction mapping principle, FEM Press, Beograd, 2003.
[10] Z. K. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86, 74-95 (1982).
[11] H. Efe, C. Alaca and C. Yildiz, Fuzzy multi-metric spaces, J. Comput. Anal. Appl. 10, 367-375 (2008).
[12] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69, 205-230 (1979).
[13] R. George and M. S. Khan, Dislocated fuzzy metric spaces and associated fuzzy topologies, Proceedings of the 8th Joint Conference on Information Sciences, July 21-26, Salt Lake city, Utah, USA, (2005) 20-24.
[14] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64, 395-399 (1994).
[15] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27, 385-389 (1998).
[16] V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topol. 5, 129-136 (2004).
[17] P. Hitzler, Generalized metrics topology in logic programming semantics, PhD. dissertation, National University of Ireland, University College Cork, 2001.
[18] P. Hitzler and A. K. Seda, Dislocated topologies, J. Electr. Engin. 51, 3-7 (2000).
[19] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11, 326-334 (1975).
[20] S. G. Matthews, Metric Domains for completeness, Ph.D. Thesis, Dept. Comput. Sci., University of Warwick, UK, 1986.
[21] D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144, 431-439 (2004).
[22] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons \& Fractals 22, 1039-1046 (2004).
[23] H. K. Pathak, R. Tiwari and M. S. Khan, A common fixed point theorem satisfing integral type implicit relations, Appl. Math. E-Notes 7, 222-228 (2007).
[24] B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Internat. J. Math. Math. Sci. 63, 4007-4013 (2003).
[25] S. Romaguera, A. Sapena, P. Tirado, The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words, Topology and its Applications 154, 2196-2203 (2007).
[26] S. Romaguera and P. Tirado, Contraction maps on Ifqm-spaces with application to recurrence equations of quicksort, Electronic Notes in Theoretical Computer Science 225, 269-279 (2009).
[27] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10, 314-334 (1960).
[28] P. Vijayaraju, B. E. Rhoades and R. Mohanraj, A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Internat. J. Math. Math. Sci. 15, 2359-2364 (2005).
[29] L. A. Zadeh, Fuzzy sets, Inform. and Control 8, 338-353 (1965).
[30] F. M. Zeyada, M. R. Moubarak and A. H. Soliman, A generalization of generalized Banach fixed-point theorem in a weak left small slf-distance space, Miskolc Mathematical Notes $\mathbf{8}$, 99-105 (2007).
(Cihangir Alaca), Department of Mathematics, Faculty of Science and Arts, Sinop University, 57000 Sinop, Turkey

E-mail address: cihangiralaca@yahoo.com.tr.

A note on a certain subclass of analytic functions defined by multiplier transformation

Alina Alb Lupaş
Department of Mathematics and Computer Science
University of Oradea
str. Universitatii nr. 1, 410087 Oradea, Romania
dalb@uoradea.ro

Abstract

In the present paper we define a new operator, by means of convolution product between Ruscheweyh operator and the multiplier transformation $I(m, \lambda, l)$. For functions f belonging to the class A we define the differential operator $I R_{\lambda, l}^{m}: A \rightarrow A, I R_{\lambda, l}^{m} f(z):=\left(I(m, \lambda, l) * R^{m}\right) f(z)$ where $A_{n}=\{f \in \mathcal{H}(U): f(z)=$ $\left.z+a_{n+1} z^{n+1}+\ldots, z \in U\right\}$ is the class of normalized analytic functions with $A_{1}=A$. We study certain differential subordinations regarding the operator $I R_{\lambda, l}^{m}$.

Keywords: differential subordination, convex function, best dominant, differential operator, convolution product.
2000 Mathematical Subject Classification: 30C45, 30A20, 34A40.

1 Introduction

Denote by U the unit disc of the complex plane, $U=\{z \in \mathbb{C}:|z|<1\}$ and $\mathcal{H}(U)$ the space of holomorphic functions in U.

Let

$$
A(p, n)=\left\{f \in \mathcal{H}(U): f(z)=z^{p}+\sum_{j=p+n}^{\infty} a_{j} z^{j}, \quad z \in U\right\}
$$

with $A(1, n)=A_{n}$ and $A(1,1)=A_{1}=A$, where $p, n \in \mathbb{N}$.
Denote by

$$
K=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>0, z \in U\right\}
$$

the class of normalized convex functions in U.
If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with $w(0)=0,|w(z)|<1$, for all $z \in U$ such that $f(z)=g(w(z))$ for all $z \in U$. If g is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subseteq g(U)$.

Let $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ and h an univalent function in U. If p is analytic in U and satisfies the (second-order) differential subordination

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \prec h(z), \quad \text { for } \quad z \in U \tag{1}
\end{equation*}
$$

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, or more simply a dominant, if $p \prec q$ for all p satisfying (1).

A dominant \widetilde{q} that satisfies $\widetilde{q} \prec q$ for all dominants q of (1) is said to be the best dominant of (1). The best dominant is unique up to a rotation of U.

Definition 1 [4] For $f \in A(p, n), p, n \in \mathbb{N}, m \in \mathbb{N} \cup\{0\}, \lambda, l \geq 0$, the operator $I_{p}(m, \lambda, l) f(z)$ is defined by the following infinite series

$$
I_{p}(m, \lambda, l) f(z):=z^{p}+\sum_{j=p+n}^{\infty}\left(\frac{p+\lambda(j-1)+l}{p+l}\right)^{m} a_{j} z^{j} .
$$

Remark 1 It follows from the above definition that

$$
\begin{gathered}
I_{p}(0, \lambda, l) f(z)=f(z), \\
(p+l) I_{p}(m+1, \lambda, l) f(z)=[p(1-\lambda)+l] I_{p}(m, \lambda, l) f(z)+\lambda z\left(I_{p}(m, \lambda, l) f(z)\right)^{\prime}, \quad \text { for } z \in U .
\end{gathered}
$$

Remark 2 If $p=1, n=1$, we have $A(1,1)=A_{1}=A, I_{1}(m, \lambda, l) f(z)=I(m, \lambda, l)$ and

$$
(l+1) I(m+1, \lambda, l) f(z)=[l+1-\lambda] I(m, \lambda, l) f(z)+\lambda z(I(m, \lambda, l) f(z))^{\prime}, \quad \text { for } z \in U .
$$

Remark 3 If $f \in A, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, then $I(m, \lambda, l) f(z)=z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} a_{j} z^{j}$, for $z \in U$.
Remark 4 For $l=0, \lambda \geq 0$, the operator $D_{\lambda}^{m}=I(m, \lambda, 0)$ was introduced and studied by Al-Oboudi, which reduced to the Sălăgean differential operator $S^{m}=I(m, 1,0)$ for $\lambda=1$.

Definition 2 (Ruscheweyh [6]) For $f \in A, m \in \mathbb{N}$ the operator R^{m} is defined by $R^{m}: A \rightarrow A$,

$$
\begin{aligned}
R^{0} f(z)= & f(z) \\
R^{1} f(z)= & z f^{\prime}(z) \\
& \cdots \\
(m+1) R^{m+1} f(z)= & z\left(R^{m} f(z)\right)^{\prime}+m R^{m} f(z), \quad \text { for } z \in U .
\end{aligned}
$$

Remark 5 If $f \in A, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, then $R^{m} f(z)=z+\sum_{j=2}^{\infty} C_{m+j-1}^{m} a_{j} z^{j}$, for $z \in U$.
Lemma 3 (Miller and Mocanu [5]) Let g be a convex function in U and let

$$
h(z)=g(z)+n \alpha z g^{\prime}(z), \quad \text { for } \quad z \in U,
$$

where $\alpha>0$ and n is a positive integer.
If

$$
p(z)=g(0)+p_{n} z^{n}+p_{n+1} z^{n+1}+\ldots, \quad \text { for } z \in U
$$

is holomorphic in U and

$$
p(z)+\alpha z p^{\prime}(z) \prec h(z), \quad \text { for } z \in U
$$

then

$$
p(z) \prec g(z)
$$

and this result is sharp.

2 Main Results

Definition 4 Let $m, \lambda, l \in \mathbb{N}$. Denote by $I R_{\lambda, l}^{m}$ the operator given by the Hadamard product (the convolution product) of the operator $I(m, \lambda, l)$ and the Ruscheweyh operator $R^{m}, I R_{\lambda, l}^{m}: A \rightarrow A$,

$$
I R_{\lambda, l}^{m} f(z)=\left(I(m, \lambda, l) * R^{m}\right) f(z) .
$$

Remark 6 If $f \in A, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, then $I R_{\lambda, l}^{m} f(z)=z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} a_{j}^{2} z^{j}$, for $z \in U$.

Remark 7 For $l=0, \lambda \geq 0$, we obtain the Hadamard product $D R_{\lambda}^{n}$ [2] of the generalized Sălăgean operator D_{λ}^{n} and Ruscheweyh operator R^{n}.

For $l=0$ and $\lambda=1$, we obtain the Hadamard product $S R^{n}$ [1] of the Sălăgean operator S^{n} and Ruscheweyh operator R^{n}.

Theorem 5 Let g be a convex function such that $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. If $m, \lambda, l \in \mathbb{N}, f \in A$ and the differential subordination

$$
\begin{gather*}
\frac{1}{z}\left(\frac{m+1}{\lambda} I R_{\lambda, l}^{m+1} f(z)-\frac{m-2}{\lambda} I R_{\lambda, l}^{m} f(z)\right)+\frac{\lambda(m-1)-(l+1)}{\lambda(l+1)}\left(I R_{\lambda, l}^{m} f(z)\right)^{\prime}+ \\
\left(1-\frac{m-1}{l+1}-\frac{2}{\lambda}\right)-\frac{2(l+1)(m-1)-2 \lambda m}{\lambda(l+1)} \int_{0}^{z} \frac{I R_{\lambda, l}^{m} f(t)-t}{t^{2}} d t \prec h(z), \text { for } z \in U \tag{2}
\end{gather*}
$$

holds, then

$$
\left(\operatorname{IR}_{\lambda, l}^{m} f(z)\right)^{\prime} \prec g(z), \quad \text { for } z \in U
$$

and this result is sharp.
Proof. With notation $p(z)=\left(I R_{\lambda, l}^{m} f(z)\right)^{\prime}=1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} j a_{j}^{2} z^{j-1}$ and $p(0)=1$, we obtain for $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$,

$$
\begin{aligned}
& p(z)+z p^{\prime}(z)=1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} j a_{j}^{2} z^{j-1}+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} j(j-1) a_{j}^{2} z^{j-1}= \\
& 1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} j^{2} a_{j}^{2} z^{j-1}= \\
& \frac{1}{z}\left(z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m+1} C_{m+j}^{m+1} \frac{m+1}{\lambda} a_{j}^{2} z^{j}-\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} \frac{\lambda(m-1)-(l+1)}{\lambda(l+1)} j a_{j}^{2} z^{j}-\right. \\
& \left.\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} \frac{m-2}{\lambda} a_{j}^{2} z^{j}-\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} \frac{1}{j-1} \frac{2(l+1)(m-1)-2 \lambda m}{\lambda(l+1)} a_{j}^{2} z^{j}\right)= \\
& \frac{1}{z}\left[\frac{m+1}{\lambda}\left(z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m+1} C_{m+j}^{m+1} a_{j}^{2} z^{j}\right)-\frac{m-2}{\lambda}\left(z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} a_{j}^{2} z^{j}\right)\right]+ \\
& \left(1-\frac{m+1}{\lambda}-\frac{m-2}{\lambda}\right)+\left(1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} a_{j}^{2} j z^{j-1}\right) \frac{\lambda(m-1)-(l+1)}{\lambda(l+1)}- \\
& \frac{\lambda(m-1)-(l+1)}{\lambda(l+1)}-\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} \frac{1}{j-1} \frac{2(l+1)(m-1)-2 \lambda m}{\lambda(l+1)} a_{j}^{2} z^{j-1}= \\
& \frac{1}{z}\left(\frac{m+1}{\lambda} I R_{\lambda, l}^{m+1} f(z)-\frac{m-}{\lambda} I R_{\lambda, l}^{m} f(z)\right)+\frac{\lambda(m-1)-(l+1)}{\lambda(l+1)}\left(I R_{\lambda, l}^{m} f(z)\right)^{\prime}+ \\
& \frac{\lambda l-\lambda m+2 \lambda-2 l-2}{\lambda(l+1)}-\frac{2(l+1)(m-1)-2 \lambda m}{\lambda(l+1)} \sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} \frac{1}{j-1} a_{j}^{2} z^{j-1}= \\
& \frac{1}{z}\left(\frac{m+1}{\lambda} I R_{\lambda, l}^{m+1} f(z)-\frac{m-2}{\lambda} I R_{\lambda, l}^{m} f(z)\right)+\frac{\lambda(m-1)-(l+1)}{\lambda(l+1)}\left(I R_{\lambda, l}^{m} f(z)\right)^{\prime}+\left(1-\frac{m-1}{l+1}-\frac{2}{\lambda}\right)- \\
& \frac{2(l+1)(m-1)-2 \lambda m}{\lambda(l+1)} \int_{0}^{z} \frac{I R_{\lambda, l}^{m} f(t)-t}{t^{2}} d t .
\end{aligned}
$$

We have $p(z)+z p^{\prime}(z) \prec h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. By using Lemma 3 we obtain $p(z) \prec g(z)$, for $z \in U$, i.e. $\left(I R_{\lambda, l}^{m} f(z)\right)^{\prime} \prec g(z)$, for $z \in U$ and this result is sharp.

Corollary 6 ([2]) Let g be a convex function such that $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. If $\lambda \geq 0, n \in \mathbb{N}, f \in A$ and the differential subordination

$$
\begin{equation*}
\frac{n+1}{\lambda z} D R_{\lambda}^{n+1} f(z)-\frac{n(1-\lambda)}{\lambda z} D R_{\lambda}^{n} f(z)-\left(n-1+\frac{1}{\lambda}\right)\left(D R_{\lambda}^{n} f(z)\right)^{\prime} \prec h(z), \text { for } z \in U \tag{3}
\end{equation*}
$$

holds, then

$$
\left(D R_{\lambda}^{n} f(z)\right)^{\prime} \prec g(z), \quad \text { for } z \in U
$$

and this result is sharp.

Corollary $\mathbf{7}$ ([1]) Let g be a convex function such that $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. If $n \in \mathbb{N}, f \in A$ and the differential subordination

$$
\begin{equation*}
\frac{1}{z} S R^{n+1} f(z)+\frac{n}{n+1} z\left(S R^{n} f(z)\right)^{\prime \prime} \prec h(z), \quad \text { for } z \in U \tag{4}
\end{equation*}
$$

holds, then

$$
\left(S R^{n} f(z)\right)^{\prime} \prec g(z), \quad \text { for } z \in U
$$

and this result is sharp.
Theorem 8 Let g be a convex function, $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. If $m, \lambda, l \in \mathbb{N}, f \in A$ and verifies the differential subordination

$$
\begin{equation*}
\left(I R_{\lambda, l}^{m} f(z)\right)^{\prime} \prec h(z), \quad \text { for } z \in U, \tag{5}
\end{equation*}
$$

then

$$
\frac{I R_{\lambda, l}^{m} f(z)}{z} \prec g(z), \text { for } z \in U
$$

and this result is sharp.
Proof. For $f \in A, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$ we have $I R_{\lambda, l}^{m} f(z)=z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} a_{j}^{2} z^{j}$, for $z \in U$.

Consider $p(z)=\frac{I R_{\lambda, l}^{m} f(z)}{z}=\frac{z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} a_{j}^{2} z^{j}}{z}=1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} a_{j}^{2} z^{j-1}$.
We have $p(z)+z p^{\prime}(z)=\left(I R_{\lambda, l}^{m} f(z)\right)^{\prime}$, for $z \in U$.
Then $\left(I R_{\lambda, l}^{m} f(z)\right)^{\prime} \prec h(z)$, for $z \in U$ becomes $p(z)+z p^{\prime}(z) \prec h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. By using Lemma 3 we obtain $p(z) \prec g(z)$, for $z \in U$, i.e. $\frac{I R_{\lambda, l}^{m} z(z)}{z} \prec g(z)$, for $z \in U$.
Corollary 9 ([2]) Let g be a convex function, $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. If $n \in \mathbb{N}, f \in A$ and verifies the differential subordination

$$
\begin{equation*}
\left(D R_{\lambda}^{n} f(z)\right)^{\prime} \prec h(z), \quad \text { for } z \in U, \tag{6}
\end{equation*}
$$

then

$$
\frac{D R_{\lambda}^{n} f(z)}{z} \prec g(z), \text { for } z \in U
$$

and this result is sharp.
Corollary 10 ([1]) Let g be a convex function, $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. If $n \in \mathbb{N}, f \in A$ and verifies the differential subordination

$$
\begin{equation*}
\left(S R^{n} f(z)\right)^{\prime} \prec h(z), \quad \text { for } z \in U, \tag{7}
\end{equation*}
$$

then

$$
\frac{S R^{n} f(z)}{z} \prec g(z), \text { for } z \in U
$$

and this result is sharp.
Theorem 11 Let g be a convex function such that $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. If $m, \lambda, l \in \mathbb{N}, f \in A$ and verifies the differential subordination

$$
\begin{equation*}
\left(\frac{z I R_{\lambda, l}^{m+1} f(z)}{I R_{\lambda, l}^{m} f(z)}\right)^{\prime} \prec h(z), \quad \text { for } z \in U, \tag{8}
\end{equation*}
$$

then

$$
\frac{I R_{\lambda, l}^{m+1} f(z)}{I R_{\lambda, l}^{m} f(z)} \prec g(z), \text { for } z \in U
$$

and this result is sharp.

Proof. For $f \in A, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$ we have $I R_{\lambda, l}^{m} f(z)=z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} a_{j}^{2} z^{j}$, for $z \in U$.

Consider $p(z)=\frac{I R_{\lambda, l}^{m+1} f(z)}{I R_{\lambda, l}^{m} f(z)}=\frac{z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m+1} C_{m+j}^{m+1} a_{j}^{2} z^{j}}{z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} a_{j}^{2} z^{j}}=\frac{1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m+1} C_{m+j}^{m+1} a_{j}^{2} z^{j-1}}{1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} C_{m+j-1}^{m} a_{j}^{2} z^{j-1}}$.
We have $p^{\prime}(z)=\frac{\left(I R_{\lambda, l}^{m+1} f(z)\right)^{\prime}}{I R_{\lambda, l}^{m} f(z)}-p(z) \cdot \frac{\left(I R_{\lambda, l}^{m} f(z)\right)^{\prime}}{I R_{\lambda, l}^{m} f(z)}$.
Then $p(z)+z p^{\prime}(z)=\left(\frac{z I R_{\lambda, l}^{m+1} f(z)}{I R_{\lambda, l}^{m} f(z)}\right)^{\prime}$.
Relation (8) becomes $p(z)+z p^{\prime}(z) \prec h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$ and by using Lemma 3 we obtain $p(z) \prec g(z)$, for $z \in U$, i.e. $\frac{I R_{\lambda, l}^{m+1} f(z)}{I R_{\lambda, l}^{m} f(z)} \prec g(z)$, for $z \in U$.
Corollary 12 ([2]) Let g be a convex function such that $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. If $n \in \mathbb{N}, f \in A$ and verifies the differential subordination

$$
\begin{equation*}
\left(\frac{z D R_{\lambda}^{n+1} f(z)}{D R_{\lambda}^{n} f(z)}\right)^{\prime} \prec h(z), \quad \text { for } z \in U \tag{9}
\end{equation*}
$$

then

$$
\frac{D R_{\lambda}^{n+1} f(z)}{D R_{\lambda}^{n} f(z)} \prec g(z), \text { for } z \in U
$$

and this result is sharp.
Corollary 13 ([1]) Let g be a convex function such that $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$. If $n \in \mathbb{N}, f \in A$ and verifies the differential subordination

$$
\begin{equation*}
\left(\frac{z S R^{n+1} f(z)}{S R^{n} f(z)}\right)^{\prime} \prec h(z), \quad \text { for } \quad z \in U \tag{10}
\end{equation*}
$$

then

$$
\frac{S R^{n+1} f(z)}{S R^{n} f(z)} \prec g(z), \text { for } z \in U
$$

and this result is sharp.

References

[1] A. Alb Lupaş, Certain differential subordinations using Sălăgean and Ruscheweyh operators, Mathematica (Cluj), Proceedings of International Conference on Complex Analysis and Related Topics, The 11th Romanian-Finnish Seminar, Alba Iulia, 2008 (to appear).
[2] A. Alb Lupaş, Certain differential subordinations using a generalized Sălăgean operator and Ruscheweyh operator, submitted.
[3] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Ind. J. Math. Math. Sci., 2004, no.25-28, 1429-1436.
[4] A. Cătaş, On certain class of p-valent functions defined by new multiplier transformations, Adriana Catas, Proceedings Book of the International Symposium on Geometric Function Theory and Applications, August 20-24, 2007, TC Istanbul Kultur University, Turkey, 241-250.
[5] S.S. Miller, P.T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
[6] St. Ruscheweyh, New criteria for univalent functions, Proc. Amet. Math. Soc., 49(1975), 109-115.
[7] G. St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

Instructions to Contributors Journal of Computational Analysis and Applications.

A quartely international publication of Eudoxus Press, LLC.

Editor in Chief: George Anastassiou
Department of Mathematical Sciences, University of Memphis Memphis, TN 38152-3240, U.S.A.

AUTHORS MUST COMPLY EXACTLY WITH THE FOLLOWING RULES OR THEIR ARTICLE CANNOT BE CONSIDERED.

1. Manuscripts,hard copies in triplicate and in English,should be submitted to the Editor-in-Chief, mailed un-registered, to:

Prof.George A. Anastassiou
Department of Mathematical Sciences
The University of Memphis
Memphis,TN 38152-3240, USA.

Authors must e-mail a PDF copy of the submission to ganastss@memphis.edu.

Authors may want to recommend an associate editor the most related to the submission to possibly handle it.

Also authors may want to submit a list of six possible referees, to be used in case we cannot find related referees by ourselves.
2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX,or AMS-LaTEX and according to EUDOXUS PRESS, LLC. LATEX STYLE FILE. (Click HERE to save a copy of the style file.)They should be carefully prepared in all respects. Submitted copies should be brightly printed (not dot-matrix), double spaced, in ten point type size, on one side high quality paper $8(1 / 2) \times 11$ inch. Manuscripts should have generous margins on all sides and should not exceed 24 pages.
3. Submission is a representation that the manuscript has not been published previously in this or any other similar form and is not currently under consideration for publication elsewhere. A statement
transferring from the authors(or their employers,if they hold the copyright) to Eudoxus Press, LLC, will be required before the manuscript can be accepted for publication.The Editor-in-Chief will supply the necessary forms for this transfer.Such a written transfer of copyright, which previously was assumed to be implicit in the act of submitting a manuscript,is necessary under the U.S.Copyright Law in order for the publisher to carry through the dissemination of research results and reviews as widely and effective as possible.
4. The paper starts with the title of the article, author's name(s) (no titles or degrees), author's affiliation(s) and e-mail addresses. The affiliation should comprise the department, institution (usually university or company), city, state (and/or nation) and mail code.

The following items, 5 and 6, should be on page no. 1 of the paper.
5. An abstract is to be provided, preferably no longer than 150 words.
6. A list of 5 key words is to be provided directly below the abstract. Key words should express the precise content of the manuscript, as they are used for indexing purposes.

The main body of the paper should begin on page no. 1, if possible.
7. All sections should be numbered with Arabic numerals (such as: 1. INTRODUCTION) .
Subsections should be identified with section and subsection numbers (such as 6.1. Second-Value Subheading).
If applicable, an independent single-number system (one for each category) should be used to label all theorems, lemmas, propositions, corrolaries, definitions, remarks, examples, etc. The label (such as Lemma 7) should be typed with paragraph indentation, followed by a period and the lemma itself.
8. Mathematical notation must be typeset. Equations should be numbered consecutively with Arabic numerals in parentheses placed flush right,and should be thusly referred to in the text [such as Eqs.(2) and (5)]. The running title must be placed at the top of even numbered pages and the first author's name, et al., must be placed at the top of the odd numbed pages.
9. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in one consecutive series of Arabic numerals. The captions for illustrations should be typed double space. All illustrations, charts, tables, etc., must be embedded in the body of the manuscript in proper, final, print position. In particular, manuscript, source, and PDF file
version must be at camera ready stage for publication or they cannot be considered.

Tables are to be numbered (with Roman numerals) and referred to by number in the text. Center the title above the table, and type explanatory footnotes (indicated by superscript lowercase letters) below the table.
10. List references alphabetically at the end of the paper and number them consecutively. Each must be cited in the text by the appropriate Arabic numeral in square brackets on the baseline.

References should include (in the following order): initials of first and middle name, last name of author(s)
title of article,
name of publication, volume number, inclusive pages, and year of publication.

Authors should follow these examples:

Journal Article

1. H.H.Gonska,Degree of simultaneous approximation of bivariate functions by Gordon operators, (journal name in italics) J. Approx. Theory, 62,170-191(1990).

Book

2. G.G.Lorentz, (title of book in italics) Bernstein Polynomials (2nd ed.), Chelsea,New York, 1986.

Contribution to a Book

3. M.K.Khan, Approximation properties of beta operators, in(title of book in italics) Progress in Approximation Theory (P.Nevai and A.Pinkus,eds.), Academic Press, New York,1991,pp.483-495.
4. All acknowledgements (including those for a grant and financial support) should occur in one paragraph that directly precedes the References section.
5. Footnotes should be avoided. When their use is absolutely necessary, footnotes should be numbered consecutively using Arabic numerals and should be typed at the bottom of the page to which they refer. Place a line above the footnote, so that it is set off from the text. Use the appropriate superscript numeral for citation in the text.
6. After each revision is made please again submit three hard copies of the revised manuscript, including in the final one. And after a
manuscript has been accepted for publication and with all revisions incorporated, manuscripts, including the TEX/LaTex source file and the PDF file, are to be submitted to the Editor's Office on a personalcomputer disk, 3.5 inch size. Label the disk with clearly written identifying information and properly ship, such as:

Your name, title of article, kind of computer used, kind of software and version number, disk format and files names of article, as well as abbreviated journal name.

Package the disk in a disk mailer or protective cardboard. Make sure contents of disks are identical with the ones of final hard copies submitted!

Note: The Editor's Office cannot accept the disk without the accompanying matching hard copies of manuscript. No e-mail final submissions are allowed! The disk submission must be used.
14. Effective 1 Nov. 2009 for current journal page charges, contact the Editor in Chief. Upon acceptance of the paper an invoice will be sent to the contact author. The fee payment will be due one month from the invoice date. The article will proceed to publication only after the fee is paid. The charges are to be sent, by money order or certified check, in US dollars, payable to Eudoxus Press, LLC, to the address shown on the homepage of this site.

No galleys will be sent and the contact author will receive one(1) complementary electronic copy of the journal issue in which the article appears.
15. This journal will consider for publication only papers that contain proofs for their listed results.

TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.1-B, 2010

Sums of products of q-Euler numbers, Taekyun Kim, 185
On the existence of periodic solutions to nonlinear third order ordinary differential equations with delay, Cemil Tunç, 191
Inverse limits on [0,1] using sequence of N-type maps, Xianjiu Huang, Chuanxi Zhu, Xi Wen, 202
Weighted composition operators between u-Bloch type spaces on the polydisc of Cn , XiaominTang, Zhangjian Hu,207
Compactness of composition operator in the Lipschitz space of the polydisc, Zhong-Shan Fang, Ze-Hua Zhou, 222
Interpolation functions of the q -Genocchi and the q -Euler polynomials of higher order, Young- Hee Kim, Kyung-Won Hwang, Taekyun Kim, 228
The improved preconditioned AOR method for irreducible L-matrices, Yu-Qin Bai, Ting-Zhu Huang, 239
Some results in fuzzy compact linear operators, Hakan Efe, Cemil Yildiz, 251.
A Note on Shape Preserving Weighted Uniform Approximation, George A. Anastassiou, Sorin G. Gal, Michael I. Ganzburg, 263
Stable mixture model with dependent states for financial return series exhibiting short historiesand periods of strong passivity, Audrius Kabasinskas, Svetlozar T. Rachev, LeonidasSakalauskas, Wei Sun, Igoris Belovas,268
Unique Continuation on the Gradient for Second Order Elliptic Equations with Lower Order Terms, M. N. Nkashama, 293
Composition operators from the Hardy space to Zygmund-type spaces on the upper half-plane and the unit disc, Stevo Stevic, 305
On Carleson measures and $\mathrm{F}(\mathrm{p}, \mathrm{q}, \mathrm{s})$ space on the unit ball, Stevo Stevic, 313
Solution to a Singular Integro-Differential Equation, J. N. Pandey, Fayez Seifeddine, 321
A New Hybrid Model for Intraday Spot Foreign Exchange Trading Accounting for Heavy Tails and Volatility Clustering, Anna Serbinenko, Svetlozar T. Rachev, 337

TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.1-B, 2010, continues

Fixed point results for mappings satisfying a general contractive condition of operator type in dislocated fuzzy quasi-metric spaces, Cihangir Alaca,.. 361

A note on a certain subclass of analytic functions defined by multiplier transformation, Alina Alb
Lupas,.. 369

Journal of

Computational

Analysis and

Applications

Journal of Computational Analysis and Applications ISSNno.'s:1521-1398 PRINT,1572-9206 ONLINE SCOPE OF THE JOURNAL A quarterly international publication of Eudoxus Press, LLC Editor in Chief: George Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240, U.S.A ganastss@memphis.edu http://www.msci.memphis.edu/~ganastss/jocaaa
The main purpose of "J.Computational Analysis and Applications" is to publish high quality research articles from all subareas of Computational Mathematical Analysis and its many potential applications and connections to other areas of Mathematical Sciences. Any paper whose approach and proofs are computational,using methods from Mathematical Analysis in the broadest sense is suitable and welcome for consideration in our journal, except from Applied Numerical Analysis articles.Also plain word articles without formulas and proofs are excluded. The list of possibly connected mathematical areas with this publication includes, but is not restricted to: Applied Analysis, Applied Functional Analysis, Approximation Theory, Asymptotic Analysis, Difference Equations, Differential Equations, Partial Differential Equations, Fourier Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities, Integral Equations, Measure Theory, Moment Theory, Neural Networks, Numerical Functional Analysis, Potential Theory, Probability Theory, Real and Complex Analysis, Signal Analysis, Special Functions, Splines, Stochastic Analysis, Stochastic Processes, Summability, Tomography, Wavelets, any combination of the above, e.t.c.
"J.Computational Analysis and Applications" is a peer-reviewed Journal. See at the end instructions for preparation and submission of articles to JoCAAA.

Webmaster:Ray Clapsadle

Journal of Computational Analysis and Applications(JoCAAA) is published by EUDOXUS PRESS,LLC,1424 Beaver Trail
Drive,Cordova,TN38016,USA, anastassioug@yahoo.com
http//:www.eudoxuspress.com.Annual Subscription Prices:For USA and Canada,Institutional:Print \$470,Electronic \$300,Print and Electronic $\$ 500$.Individual:Print $\$ 150$,Electronic $\$ 100$, Print \&Electronic \$200.For any other part of the world add $\$ 50$ more to the above prices for Print.No credit card payments.
Copyright©2010 by Eudoxus Press,LLCAll rights reserved.JoCAAA is printed in USA.
JoCAAA is reviewed and abstracted by AMS Mathematical Reviews,MATHSCI, and Zentralblaat MATH.
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in any form and by any means without the written permission of the publisher.It is only allowed to educators to Xerox articles for educational purposes. The publisher assumes no responsibility for the content of published papers

Editorial Board
 Associate Editors

1) George A. Anastassiou	20) Hrushikesh N.Mhaskar
Department of Mathematical Sciences	Department Of Mathematics
The University of Memphis	California State University
Memphis, TN 38152,U.S.A	Los Angeles, CA 90032
Tel.901-678-3144	626-914-7002
e-mail: ganastss@memphis.edu	e-mail: hmhaska@calstatela.edu
Approximation Theory, Real Analysis,	Orthogonal Polynomials
Wavelets, Neural	Approximation Theory, Splines,
Networks, Probability,	Wavelets, Neural Networks
Inequalities.	
	21) M.Zuhair Nashed
2) J. Marshall Ash	Department Of Mathematics
Department of Mathematics	University of Central Florida
De Paul University	PO Box 161364
2219 North Kenmore Ave.	Orlando, FL 32816-1364
Chicago, IL 60614-3504	e-mail: znashed@mail.ucf.edu
773-325-4216	Inverse and Ill-Posed problems,
e-mail: mash@math.depaul.edu	Numerical Functional Analysis,
Real and Harmonic Analysis	Integral Equations,Optimization, Signal Analysis
3) Mark J.Balas	
Department Head and Professor	22) Mubenga N.Nkashama
Electrical and Computer Engineering	Department OF Mathematics
Dept.	University of Alabama at
College of Engineering	Birmingham
University of Wyoming	Birmingham, AL 35294-1170
1000 E. University Ave.	205-934-2154
Laramie, WY 82071	e-mail: nkashama@math.uab.edu
307-766-5599	Ordinary Differential Equations,
e-mail: mbalas@uwyo.edu	Partial Differential Equations
Control Theory, Nonlinear Systems,	
Neural Networks, Ordinary and	23) Charles E.M.Pearce
Partial Differential Equations,	Applied Mathematics Department
Functional Analysis and Operator	University of Adelaide
Theory	Adelaide 5005, Australia
	e-mail:
4) Drumi D.Bainov	cpearce@maths.adelaide.edu. au
Department of Mathematics	Stochastic Processes, Probability
Medical University of Sofia	Theory, Harmonic Analysis,
P.O.Box 45,1504 Sofia, Bulgaria	Measure Theory,
e-mail:	Special Functions, Inequalities
dbainov@mbox.pharmfac.acad.bg	
e-mail:drumibainov@yahoo.com	24) Josip E. Pecaric
Differential Equations/Inequalities	Faculty of Textile Technology University of Zagreb
5) Carlo Bardaro	Pierottijeva 6,10000
Dipartimento di Matematica e	Zagreb, Croatia
Informatica	e-mail: pecaric@hazu.hr
Universita di Perugia	Inequalities, Convexity
Via Vanvitelli 1	

```
06123 Perugia, ITALY
TEL+390755853822
+390755855034
FAX+390755855024
E-mail bardaro@unipg.it
Web site:
http://www.unipg.it/~bardaro/
Functional Analysis and
Approximation
Theory,Signal Analysis, Measure
Theory,
Real Analysis.
6) Jerry L.Bona
Department of Mathematics
The University of Illinois at
Chicago
851 S. Morgan St. CS 249
Chicago, IL 60601
e-mail:bona@math.uic.edu
Partial Differential Equations,
Fluid Dynamics
7) Luis A.Caffarelli
    Department of Mathematics
    The University of Texas at Austin
    Austin,Texas 78712-1082
    512-471-3160
    e-mail: caffarel@math.utexas.edu
    Partial Differential Equations
8) George Cybenko
    Thayer School of Engineering
    Dartmouth College
    8000 Cummings Hall,
    Hanover,NH 03755-8000
    603-646-3843 (x 3546
    Secr.)
    e-mail:
    george.cybenko@dartmouth.edu
    Approximation Theory and Neural
    Networks
9) Ding-Xuan Zhou
    Department Of Mathematics
    City University of Hong Kong
    83 Tat Chee Avenue
    Kowloon,Hong Kong
    852-2788 9708,Fax:852-2788 8561
    e-mail: mazhou@math.cityu.edu.hk
    Approximation Theory,
    Spline functions, Wavelets
10) Sever S.Dragomir
    School of Computer Science and
    Mathematics, Victoria University,
```

25) Svetlozar T.Rachev Department of Statistics and Applied Probability University of California at Santa Barbara,
Santa Barbara, CA 93106-3110
805-893-4869
e-mail: rachev@pstat.ucsb.edu
and Chair of Econometrics,
Statistics and Mathematical
Finance
School of Economics and
Business Engineering
University of Karlsruhe
Kollegium am Schloss, Bau
II,20.12, R210
Postfach 6980, D-76128,
Karlsruhe, GERMANY.
Tel +49-721-608-7535,
+49-721-608-2042(s)

Fax +49-721-608-3811
Zari. Rachev@wiwi.uni-karlsruhe.de Probability,Stochastic Processes and
Statistics,Financial Mathematics, Mathematical Economics.
26) Alexander G. Ramm Mathematics Department
Kansas State University Manhattan, KS 66506-2602 e-mail: ramm@math.ksu.edu Inverse and Ill-posed Problems, Scattering
Theory, Operator Theory, Theoretical Numerical Analysis, Wave Propagation, Signal Processing and Tomography

27) Ervin Y.Rodin

Department of Systems Science and Applied Mathematics Washington University, Campus Box 1040
One Brookings Dr., St.Louis, MO
63130-4899
314-935-6007
e-mail: rodin@rodin.wustl.edu
Systems Theory, Semantic
Control,
Partial Differential Equations, Calculus of
Variations,Optimization and

```
PO Box 14428,
Melbourne City,
MC 8001,AUSTRALIA
Tel. +61 3 9688 4437
Fax +61 3 9688 4050
sever@csm.vu.edu.au
Inequalities,Functional Analysis,
Numerical Analysis, Approximations,
Information Theory, Stochastics.
11) Saber N.Elaydi
    Department Of Mathematics
    Trinity University
    715 Stadium Dr.
    San Antonio,TX 78212-7200
    210-736-8246
    e-mail: selaydi@trinity.edu
    Ordinary Differential Equations,
    Difference Equations
12) Augustine O.Esogbue
    School of Industrial and Systems
    Engineering
    Georgia Institute of Technology
    Atlanta,GA 30332
    404-894-2323
    e-mail:
    augustine.esogbue@isye.gatech.edu
    Control Theory,Fuzzy sets,
    Mathematical Programming,
    Dynamic Programming,Optimization
```

13) Christodoulos A.Floudas
Department of Chemical Engineering
Princeton University
Princeton, NJ 08544-5263
609-258-4595 (x4619
assistant)
e-mail: floudas@titan.princeton.edu
OptimizationTheory\&Applications,
Global Optimization
14) J.A.Goldstein
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
901-678-3130
e-mail: jgoldste@memphis.edu
Partial Differential Equations,
Semigroups of Operators
15) H.H.Gonska
Department of Mathematics
University of Duisburg
Duisburg, D-47048

Artificial Intelligence, Operations Research, Math. Programming
28) T. E. Simos

Department of Computer
Science and Technology
Faculty of Sciences and Technology
University of Peloponnese
GR-221 00 Tripolis, Greece
Postal Address:
26 Menelaou St.
Anfithea - Paleon Faliron
GR-175 64 Athens, Greece
tsimos@mail.ariadne-t.gr
Numerical Analysis
29) I. P. Stavroulakis

Department of Mathematics
University of Ioannina 451-10 Ioannina, Greece ipstav@uoi.gr
Differential Equations
Phone +3 0651098283
30) Manfred Tasche

Department of Mathematics
University of Rostock
D-18051 Rostock, Germany
manfred.tasche@mathematik.uni-
rostock.de
Numerical Fourier
Analysis, Fourier Analysis,
Harmonic Analysis,Signal
Analysis,
Spectral
Methods, Wavelets, Splines,
Approximation Theory
31) Gilbert G.Walter

Department Of Mathematical
Sciences
University of Wisconsin-
Milwaukee, Box 413,
Milwaukee, WI 53201-0413
414-229-5077
e-mail: ggw@csd.uwm.edu
Distribution
Functions, Generalised Functions, Wavelets

32) Halbert White

Department of Economics
University of California at San
Diego

Germany

011-49-203-379-3542
e-mail:
gonska@mathematik.uni-duisburg.de Approximation Theory,
Computer Aided Geometric Design
16) Weimin Han

Department of Mathematics
University of Iowa
Iowa City, IA 52242-1419
319-335-0770
e-mail: whan@math.uiowa.edu
Numerical analysis, Finite element method,
Numerical PDE, Variational
inequalities,
Computational mechanics
17) Christian Houdre

School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332
404-894-4398
e-mail: houdre@math.gatech.edu
Probability, Mathematical
Statistics, Wavelets
18) V. Lakshmikantham

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901
e-mail: lakshmik@fit.edu
Ordinary and Partial Differential
Equations,
Hybrid Systems, Nonlinear Analysis

```
19) Burkhard Lenze
    Fachbereich Informatik
    Fachhochschule Dortmund
    University of Applied Sciences
    Postfach 105018
    D-44047 Dortmund, Germany
    e-mail: lenze@fh-dortmund.de
    Real Networks,
    Fourier Analysis,Approximation
    Theory
```

36) Ahmed I. Zayed

Department Of Mathematical Sciences
DePaul University
2320 N. Kenmore Ave.
Chicago, IL 60614-3250
773-325-7808
e-mail: azayed@condor.depaul.edu

La Jolla, CA 92093-0508
619-534-3502
e-mail: hwhite@econ.ucsd.edu
Econometric Theory,Approximation
Theory,
Neural Networks
33) Xin-long zhou

Fachbereich
Mathematik, Fachgebiet Informatik
Gerhard-Mercator-Universitat
Duisburg
Lotharstr.65, D-47048
Duisburg, Germany
e-mail:
Xzhou@mathematik.uni-duisburg.de
Fourier Analysis, Computer-Aided Geometric Design,
Computational Complexity,
Multivariate Approximation Theory, Approximation and Interpolation Theory
34) Xiang Ming Yu

Department of Mathematical Sciences
Southwest Missouri State University
Springfield, MO 65804-0094
417-836-5931
e-mail: xmy944f@missouristate.edu
Classical Approximation
Theory, Wavelets
35) Lotfi A. Zadeh

Professor in the Graduate School and
Director,
Computer Initiative, Soft Computing (BISC)
Computer Science Division
University of California at Berkeley
Berkeley, CA 94720
Office: 510-642-4959
Sec: 510-642-8271
Home: 510-526-2569
FAX: 510-642-1712
e-mail: zadeh@cs.berkeley.edu
Fuzzyness, Artificial Intelligence, Natural language processing, Fuzzy logic

Shannon sampling theory, Harmonic analysis
and wavelets, Special functions and orthogonal
polynomials, Integral transforms.

A special comprehensive class of analytic functions defined by multiplier transformation

Alina Alb Lupaş
Department of Mathematics and Computer Science University of Oradea
str. Universitatii nr. 1, 410087 Oradea, Romania
dalb@uoradea.ro

Abstract

For functions belonging to the class $S_{m}(\delta, \alpha), \delta \in[0,1), \alpha \geq 0$ and $m \in \mathbb{N}$, of normalized analytic functions in the open unit disc U, which are investigated in this paper, the author derives several interesting differential subordination results. These subordinations are established by means of a special case of the multiplier transformations $I_{p}(m, \lambda, l) f(z)$ namely

$$
I_{p}(m, \lambda, l) f(z):=z^{p}+\sum_{j=p+n}^{\infty}\left(\frac{p+\lambda(j-1)+l}{p+l}\right)^{m} a_{j} z^{j},
$$

where $p, n \in \mathbb{N}, m \in \mathbb{N} \cup\{0\}, \lambda, l \geq 0$ and $f \in A(p, n)$,

$$
A(p, n)=\left\{f \in \mathcal{H}(U): f(z)=z^{p}+\sum_{j=p+n}^{\infty} a_{j} z^{j}, \quad z \in U\right\}
$$

A number of interesting consequences of some of these subordination results are discussed. Relevant connections of some of the new results obtained in this paper with those in earlier works are also provided.

Keywords: differential subordination, convex function, best dominant, differential operator.
2000 Mathematical Subject Classification: 30C45, 30A20, 34A40.

1 Introduction

Denote by U the unit disc of the complex plane, $U=\{z \in \mathbb{C}:|z|<1\}$ and $\mathcal{H}(U)$ the space of holomorphic functions in U.

Let

$$
A(p, n)=\left\{f \in \mathcal{H}(U): f(z)=z^{p}+\sum_{j=p+n}^{\infty} a_{j} z^{j}, \quad z \in U\right\}
$$

with $A(1, n)=A_{n}, A(1,1)=A_{1}=A$ and

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}(U): f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots, z \in U\right\}
$$

where $p, n \in \mathbb{N}, a \in \mathbb{C}$.
Denote by

$$
K=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>0, z \in U\right\}
$$

the class of normalized convex functions in U.
If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with $w(0)=0,|w(z)|<1$, for all $z \in U$ such that $f(z)=g(w(z))$ for all $z \in U$. If g is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subseteq g(U)$.

Let $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ and h an univalent function in U. If p is analytic in U and satisfies the (second-order) differential subordination

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \prec h(z), \quad \text { for } \quad z \in U, \tag{1}
\end{equation*}
$$

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, or more simply a dominant, if $p \prec q$ for all p satisfying (1).

A dominant \widetilde{q} that satisfies $\widetilde{q} \prec q$ for all dominants q of (1) is said to be the best dominant of (1). The best dominant is unique up to a rotation of U.
Definition 1.1. [4] For $f \in A(p, n), p, n \in \mathbb{N}, m \in \mathbb{N} \cup\{0\}, \lambda, l \geq 0$, the operator $I_{p}(m, \lambda, l) f(z)$ is defined by the following infinite series

$$
I_{p}(m, \lambda, l) f(z):=z^{p}+\sum_{j=p+n}^{\infty}\left(\frac{p+\lambda(j-1)+l}{p+l}\right)^{m} a_{j} z^{j} .
$$

Remark 1.2. It follows from the above definition that

$$
\begin{gathered}
I_{p}(0, \lambda, l) f(z)=f(z), \\
(p+l) I_{p}(m+1, \lambda, l) f(z)=[p(1-\lambda)+l] I_{p}(m, \lambda, l) f(z)+\lambda z\left(I_{p}(m, \lambda, l) f(z)\right)^{\prime},
\end{gathered}
$$

for $z \in U$.
Remark 1.3. If $p=1, n=1$, we have $A(1,1)=A_{1}=A, I_{1}(m, \lambda, l) f(z)=I(m, \lambda, l)$ and

$$
(l+1) I(m+1, \lambda, l) f(z)=[l+1-\lambda] I(m, \lambda, l) f(z)+\lambda z(I(m, \lambda, l) f(z))^{\prime}
$$

for $z \in U$.
Remark 1.4. If $f \in A, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, then

$$
I(m, \lambda, l) f(z)=z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} a_{j} z^{j},
$$

for $z \in U$.
Remark 1.5. For $l=0, \lambda \geq 0$, the operator $D_{\lambda}^{m}=I(m, \lambda, 0)$ was introduced and studied by Al-Oboudi, which reduced to the Sălăgean differential operator $S^{m}=I(m, 1,0)$ for $\lambda=1$.
Lemma 1.6. (Hallenbeck and Ruscheweyh [5, Th. 3.1.6, p. 71]) Let h be a convex function with $h(0)=a$, and let $\gamma \in C^{*}$ be a complex number with Re $\gamma \geq 0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{1}{\gamma} z p^{\prime}(z) \prec h(z), \quad \text { for } z \in U,
$$

then

$$
p(z) \prec g(z) \prec h(z), \quad \text { for } z \in U,
$$

where

$$
g(z)=\frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z} h(t) t^{\gamma / n-1} d t, \quad \text { for } z \in U .
$$

Lemma 1.7. (Miller and Mocanu [6]) Let g be a convex function in U and let

$$
h(z)=g(z)+n \alpha z g^{\prime}(z), \quad \text { for } \quad z \in U,
$$

where $\alpha>0$ and n is a positive integer.
If

$$
p(z)=g(0)+p_{n} z^{n}+p_{n+1} z^{n+1}+\ldots, \quad \text { for } z \in U
$$

is holomorphic in U and

$$
p(z)+\alpha z p^{\prime}(z) \prec h(z), \quad \text { for } z \in U,
$$

then

$$
p(z) \prec g(z)
$$

and this result is sharp.

2 Main results

Definition 2.1. Let $\delta \in[0,1), \alpha \geq 0$ and $m \in \mathbb{N}$. A function $f \in A$ is said to be in the class $S_{m}(\delta, \alpha)$ if it satisfies the inequality

$$
\begin{equation*}
\operatorname{Re}(I(m, \lambda, l) f(z))^{\prime}>\delta, \quad \text { for } \quad z \in U \tag{2}
\end{equation*}
$$

Theorem 2.2. The set $S_{m}(\delta, \alpha)$ is convex.
Proof. Let the functions

$$
f_{j}(z)=z+\sum_{j=2}^{\infty} a_{j k} z^{j}, \quad \text { for } \quad k=1,2, \quad z \in U
$$

be in the class $S_{m}(\delta, \alpha)$. It is sufficient to show that the function

$$
h(z)=\eta_{1} f_{1}(z)+\eta_{2} f_{2}(z)
$$

is in the class $S_{m}(\delta, \alpha)$, with η_{1} and η_{2} nonnegative such that $\eta_{1}+\eta_{2}=1$.
Since

$$
h(z)=z+\sum_{j=2}^{\infty}\left(\eta_{1} a_{j 1}+\eta_{2} a_{j 2}\right) z^{j}, \quad \text { for } \quad z \in U
$$

then

$$
\begin{equation*}
I(m, \lambda, l) h(z)=z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m}\left(\eta_{1} a_{j 1}+\eta_{2} a_{j 2}\right) z^{j}, \text { for } z \in U \tag{3}
\end{equation*}
$$

Differentiating (3) we obtain

$$
(I(m, \lambda, l) h(z))^{\prime}=1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m}\left(\eta_{1} a_{j 1}+\eta_{2} a_{j 2}\right) j z^{j-1}, \quad \text { for } z \in U
$$

Hence

$$
\begin{align*}
\operatorname{Re}(I(m, \lambda, l) h(z))^{\prime}= & 1+\operatorname{Re}\left(\eta_{1} \sum_{j=2}^{\infty} j\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} a_{j 1} z^{j-1}\right) \tag{4}\\
& +\operatorname{Re}\left(\eta_{2} \sum_{j=2}^{\infty} j\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} a_{j 2} z^{j-1}\right) .
\end{align*}
$$

Taking into account that $f_{1}, f_{2} \in S_{m}(\delta, \alpha)$ we deduce

$$
\begin{equation*}
\operatorname{Re}\left(\eta_{k} \sum_{j=2}^{\infty} j\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} a_{j k} z^{j-1}\right)>\eta_{k}(\delta-1), \quad \text { for } \quad k=1,2 \tag{5}
\end{equation*}
$$

Using (5) we get from (4)

$$
\operatorname{Re}(I(m, \lambda, l) h(z))^{\prime}>1+\eta_{1}(\delta-1)+\eta_{2}(\delta-1), \quad \text { for } \quad z \in U
$$

that is

$$
\operatorname{Re}(I(m, \lambda, l) h(z))^{\prime}>\delta, \quad \text { for } \quad z \in U
$$

which is equivalent that $S_{m}(\delta, \alpha)$ is convex.
Theorem 2.3. Let g be a convex function in U and let

$$
\begin{equation*}
h(z)=g(z)+\frac{1}{c+2} z g^{\prime}(z), \quad \text { where } z \in U, c>0 \tag{6}
\end{equation*}
$$

If $f \in S_{m}(\delta, \alpha)$ and $F(z)=I_{c}(f)(z)$, where

$$
\begin{equation*}
F(z)=I_{c}(f)(z)=\frac{c+2}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t, \quad \text { for } \quad z \in U \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
(I(m, \lambda, l) f(z))^{\prime} \prec h(z), \text { for } z \in U \tag{8}
\end{equation*}
$$

implies

$$
(I(m, \lambda, l) F(z))^{\prime} \prec g(z), \quad \text { for } \quad z \in U
$$

and this result is sharp.
Proof. We deduce from (7)

$$
\begin{equation*}
z^{c+1} F(z)=(c+2) \int_{0}^{z} t^{c} f(t) d t \tag{9}
\end{equation*}
$$

Differentiating (9), with respect to z, we obtain

$$
\begin{equation*}
(c+1) F(z)+z F^{\prime}(z)=(c+2) f(z) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
(c+1) I(m, \lambda, l) F(z)+z(I(m, \lambda, l) F(z))^{\prime}=(c+2) I(m, \lambda, l) f(z), \quad \text { for } \quad z \in U \tag{11}
\end{equation*}
$$

Differentiating (11) we have

$$
\begin{equation*}
(I(m, \lambda, l) F(z))^{\prime}+\frac{1}{c+2} z(I(m, \lambda, l) F(z))^{\prime \prime}=(I(m, \lambda, l) f(z))^{\prime}, \quad \text { for } \quad z \in U \tag{12}
\end{equation*}
$$

Using (12), the differential subordination (8) becomes

$$
\begin{equation*}
(I(m, \lambda, l) F(z))^{\prime}+\frac{1}{c+2} z(I(m, \lambda, l) F(z))^{\prime \prime} \prec g(z)+\frac{1}{c+2} z g^{\prime}(z) \tag{13}
\end{equation*}
$$

If we denote

$$
\begin{equation*}
p(z)=(I(m, \lambda, l) F(z))^{\prime} \tag{14}
\end{equation*}
$$

then $p \in \mathcal{H}[1,1]$.
Replacing (14) in (13) we obtain

$$
p(z)+\frac{1}{c+2} z p^{\prime}(z) \prec g(z)+\frac{1}{c+2} z g^{\prime}(z), \quad \text { for } \quad z \in U .
$$

Using Lemma 1.7 we have

$$
p(z) \prec g(z),
$$

that is

$$
(I(m, \lambda, l) F(z))^{\prime} \prec g(z), \quad \text { for } z \in U
$$

and g is the best dominant.
Example 2.4. If $f \in S_{1}\left(1, \frac{1}{2}\right)$ then

$$
f^{\prime}(z)+z f^{\prime \prime}(z) \prec \frac{3-2 z}{3(1-z)^{2}},
$$

implies

$$
F^{\prime}(z)+z F^{\prime \prime}(z) \prec \frac{1}{1-z}
$$

where $F(z)=\frac{3}{z^{2}} \int_{0}^{z} t f(t) d t$.

Theorem 2.5. Let

$$
\begin{equation*}
h(z)=\frac{1+(2 \delta-1) z}{1+z} \tag{15}
\end{equation*}
$$

with $\delta \in[0,1)$ and $c>0$.
If $\alpha \geq 0, m \in \mathbb{N}$ and I_{c} is given by (7) then

$$
\begin{equation*}
I_{c}\left[S_{m}(\delta, \alpha)\right] \subset S_{m}\left(\delta^{*}, \alpha\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta^{*}=2 \delta-1+(c+2)(2-2 \delta) \beta(c) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta(x)=\int_{0}^{1} \frac{t^{x+1}}{t+1} d t \tag{18}
\end{equation*}
$$

Proof. If we consider the function h given in (15) then h is convex and using the same steps as in the proof of Theorem 2.3 we get from the hypothesis of Theorem 2.5 that

$$
p(z)+\frac{1}{c+2} z p^{\prime}(z) \prec h(z)
$$

where $p(z)$ is defined in (14).
Using Lemma 1.6 we deduce that

$$
p(z) \prec g(z) \prec h(z)
$$

that is

$$
(I(m, \lambda, l) F(z))^{\prime} \prec g(z) \prec h(z)
$$

where

$$
\begin{aligned}
g(z)= & \frac{c+2}{z^{c+2}} \int_{0}^{z} t^{c+1} \frac{1+(2 \delta-1) t}{1+t} d t= \\
& 2 \delta-1+\frac{(c+2)(2-2 \delta)}{z^{c+2}} \int_{0}^{z} \frac{t^{c+1}}{t+1} d t
\end{aligned}
$$

Since g is convex and $g(U)$ is symmetric with respect to the real axis, we deduce

$$
\begin{align*}
\operatorname{Re}(I(m, \lambda, l) F(z))^{\prime} \geq & \min _{|z|=1} \operatorname{Re} g(z)=\operatorname{Re} g(1)=\delta^{*}= \tag{19}\\
& 2 \delta-1+(c+2)(2-2 \delta) \beta(c)
\end{align*}
$$

where β is given in (18).
From (19) we deduce inclusion (16).
Theorem 2.6. Let g be a convex function, $g(0)=1$ and let h be the function

$$
h(z)=g(z)+z g^{\prime}(z), \quad \text { for } \quad z \in U
$$

If $\alpha \geq 0, m \in \mathbb{N}, f \in A$ and verifies the differential subordination

$$
\begin{equation*}
(I(m, \lambda, l) f(z))^{\prime} \prec h(z), \quad \text { for } \quad z \in U \tag{20}
\end{equation*}
$$

then

$$
\frac{I(m, \lambda, l) f(z)}{z} \prec g(z), \quad \text { for } \quad z \in U
$$

and this result is sharp.

Proof. Consider

$$
\begin{aligned}
p(z) & =\frac{I(m, \lambda, l) f(z)}{z}=\frac{z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} a_{j} z^{j}}{z} \\
& =1+p_{1} z+p_{2} z^{2}+\ldots, \text { for } z \in U .
\end{aligned}
$$

We deduce that $p \in \mathcal{H}[1,1]$.
Let

$$
I(m, \lambda, l) f(z)=z p(z), \quad \text { for } \quad z \in U
$$

Differentiating we obtain

$$
(I(m, \lambda, l) f(z))^{\prime}=p(z)+z p^{\prime}(z), \quad \text { for } \quad z \in U
$$

Then (20) becomes

$$
p(z)+z p^{\prime}(z) \prec h(z)=g(z)+z g^{\prime}(z), \quad \text { for } \quad z \in U
$$

By using Lemma 1.7, we have

$$
p(z) \prec g(z), \quad \text { for } \quad z \in U,
$$

i.e.

$$
\frac{I(m, \lambda, l) f(z)}{z} \prec g(z), \quad \text { for } \quad z \in U \text {. }
$$

Theorem 2.7. Let h be an holomorphic function which verifies the inequality $\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>-\frac{1}{2}$, for $z \in U$ and $h(0)=1$. If $\alpha \geq 0, m \in \mathbb{N}, f \in A$ and verifies the differential subordination

$$
\begin{equation*}
(I(m, \lambda, l) f(z))^{\prime} \prec h(z), \quad \text { for } \quad z \in U \tag{21}
\end{equation*}
$$

then

$$
\frac{I(m, \lambda, l) f(z)}{z} \prec q(z), \quad \text { for } \quad z \in U
$$

where

$$
q(z)=\frac{1}{z} \int_{0}^{z} h(t) d t
$$

The function q is convex and it is the best dominant.
Proof. Let

$$
\begin{aligned}
p(z) & =\frac{I(m, \lambda, l) f(z)}{z}=\frac{z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} a_{j} z^{j}}{z} \\
& =1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} a_{j} z^{j-1}=1+z+\sum_{j=2}^{\infty} p_{j} z^{j-1}
\end{aligned}
$$

where $z \in U, p \in \mathcal{H}[1,1]$.
Differentiating, we obtain

$$
(I(m, \lambda, l) f(z))^{\prime}=p(z)+z p^{\prime}(z), \quad \text { for } \quad z \in U
$$

and (21) becomes

$$
p(z)+z p^{\prime}(z) \prec h(z), \quad \text { for } \quad z \in U .
$$

Using Lemma 1.6, we have

$$
p(z) \prec q(z)=\frac{1}{z} \int_{0}^{z} h(t) d t, \quad \text { for } \quad z \in U,
$$

i.e.

$$
\frac{I(m, \lambda, l) f(z)}{z} \prec q(z)=\frac{1}{z} \int_{0}^{z} h(t) d t, \quad \text { for } \quad z \in U
$$

and q is the best dominant.
Theorem 2.8. Let g be a convex function such that $g(0)=1$ and let h be the function $h(z)=g(z)+z g^{\prime}(z)$, for $z \in U$.

If $\alpha \geq 0, m \in \mathbb{N}, f \in A$ and the differential subordination

$$
\begin{equation*}
\left(\frac{z I(m+1, \lambda, l) f(z)}{I(m, \lambda, l) f(z)}\right)^{\prime} \prec h(z), \quad \text { for } z \in U \tag{22}
\end{equation*}
$$

holds, then

$$
\frac{I(m+1, \lambda, l) f(z)}{I(m, \lambda, l) f(z)} \prec g(z), \quad \text { for } \quad z \in U
$$

and this result is sharp.
Proof. Consider

$$
p(z)=\frac{I(m+1, \lambda, l) f(z)}{I(m, \lambda, l) f(z)}=\frac{z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m+1} a_{j} z^{j}}{z+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} a_{j} z^{j}}
$$

We have $p^{\prime}(z)=\frac{(I(m+1, \lambda, l) f(z))^{\prime}}{I(m, \lambda, l) f(z)}-p(z) \cdot \frac{(I(m, \lambda, l) f(z))^{\prime}}{I(m, \lambda, l) f(z)}$ and we obtain
$p(z)+z \cdot p^{\prime}(z)=\left(\frac{z I(m+1, \lambda, l) f(z)}{I(m, \lambda, l) f(z)}\right)^{\prime}$.
Relation (22) becomes

$$
p(z)+z p^{\prime}(z) \prec h(z)=g(z)+z g^{\prime}(z), \quad \text { for } \quad z \in U
$$

By using Lemma 1.7, we have

$$
p(z) \prec g(z), \quad \text { for } \quad z \in U,
$$

i.e.

$$
\frac{I(m+1, \lambda, l) f(z)}{I(m, \lambda, l) f(z)} \prec g(z), \quad \text { for } \quad z \in U \text {. }
$$

Theorem 2.9. Let g be a convex function such that $g(0)=1$ and let h be the function

$$
h(z)=g(z)+z g^{\prime}(z), \quad \text { for } \quad z \in U
$$

If $\alpha \geq 0, m \in \mathbb{N}, f \in A$ and the differential subordination

$$
\begin{equation*}
\frac{l+1}{\lambda} I(m+1, \lambda, l) f(z)+\left(2-\frac{l+1}{\lambda}\right) I(m, \lambda, l) f(z) \prec h(z), \quad \text { for } \quad z \in U \tag{23}
\end{equation*}
$$

holds, then

$$
[I(m, \lambda, l) f(z)]^{\prime} \prec g(z), \quad \text { for } \quad z \in U .
$$

This result is sharp.

Proof. Let

$$
\begin{gather*}
p(z)=(I(m, \lambda, l) f(z))^{\prime} \tag{24}\\
=1+\sum_{j=2}^{\infty}\left(\frac{1+\lambda(j-1)+l}{l+1}\right)^{m} j a_{j} z^{j-1}=1+p_{1} z+p_{2} z^{2}+\ldots .
\end{gather*}
$$

We deduce that $p \in \mathcal{H}[1,1]$.
We obtain $p(z)+z \cdot p^{\prime}(z)=I(m, \lambda, l) f(z)+z(I(m, \lambda, l) f(z))^{\prime}=$ $I(m, \lambda, l) f(z)+\frac{(l+1) I(m+1, \lambda, l) f(z)-(l+1-\lambda) I(m, \lambda, l) f(z)}{\lambda}=$
$\frac{l+1}{\lambda} I(m+1, \lambda, l) f(z)+\left(2-\frac{l+1}{\lambda}\right) I(m, \lambda, l) f(z)$
Using the notation in (24), the differential subordination becomes

$$
p(z)+z p^{\prime}(z) \prec h(z)=g(z)+z g^{\prime}(z) .
$$

By using Lemma 1.7, we have

$$
p(z) \prec g(z), \quad \text { for } z \in U,
$$

i.e.

$$
(I(m, \lambda, l) f(z))^{\prime} \prec g(z), \quad \text { for } z \in U
$$

and this result is sharp.
Example 2.10. If $n=1, \alpha=1, f \in A$, we deduce that

$$
f^{\prime}(z)+3 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z) \prec g(z)+z g^{\prime}(z),
$$

which yields that

$$
f^{\prime}(z)+z f^{\prime \prime}(z) \prec g(z), \quad \text { for } z \in U \text {. }
$$

Theorem 2.11. Let

$$
h(z)=\frac{1+(2 \beta-1) z}{1+z},
$$

a convex function in $U, 0 \leq \beta<1$.
If $\alpha \geq 0, m \in \mathbb{N}, f \in A$ and verifies the differential subordination

$$
\begin{equation*}
\frac{l+1}{\lambda} I(m+1, \lambda, l) f(z)+\left(2-\frac{l+1}{\lambda}\right) I(m, \lambda, l) f(z) \prec h(z), \quad \text { for } z \in U, \tag{25}
\end{equation*}
$$

then

$$
[I(m, \lambda, l) f(z)]^{\prime} \prec q(z), \quad \text { for } \quad z \in U,
$$

where q is given by

$$
q(z)=2 \beta-1+2(1-\beta) \frac{\ln (1+z)}{z}, \quad \text { for } z \in U \text {. }
$$

The function q is convex and it is the best dominant.
Proof. Following the same steps as in the proof of Theorem 2.9 and considering $p(z)=(I(m, \lambda, l) f(z))^{\prime}$, the differential subordination (25) becomes

$$
p(z)+z p^{\prime}(z) \prec h(z)=\frac{1+(2 \beta-1) z}{1+z}, \text { for } z \in U \text {. }
$$

By using Lemma 1.6 for $\gamma=1$ and $n=1$, we have $p(z) \prec q(z)$, i.e.,

$$
\begin{aligned}
(I(m, \lambda, l) f(z))^{\prime} & \prec q(z)=\frac{1}{z} \int_{0}^{z} h(t) d t=\frac{1}{z} \int_{0}^{z} \frac{1+(2 \beta-1) t}{1+t} d t \\
& =\frac{1}{z} \int_{0}^{z}\left(2 \beta-1+\frac{2(1-\beta)}{1+t}\right) d t=2 \beta-1+2(1-\beta) \frac{1}{z} \ln (z+1),
\end{aligned}
$$

for $z \in U$.

Theorem 2.12. Let h be an holomorphic function which verifies the inequality
$\operatorname{Re}\left[1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right]>-\frac{1}{2}$, for $z \in U$ and $h(0)=1$.
If $\alpha \geq 0, m \in \mathbb{N}, f \in A$ and satisfies the differential subordination

$$
\begin{equation*}
\frac{l+1}{\lambda} I(m+1, \lambda, l) f(z)+\left(2-\frac{l+1}{\lambda}\right) I(m, \lambda, l) f(z) \prec h(z), \quad \text { for } z \in U \tag{26}
\end{equation*}
$$

then

$$
[I(m, \lambda, l) f(z)]^{\prime} \prec q(z), \quad \text { for } z \in U
$$

where q is given by

$$
q(z)=\frac{1}{z} \int_{0}^{z} h(t) d t
$$

The function q is convex and it is the best dominant.
Proof. Using the properties of operator $I(m, \lambda, l)$ and considering $p(z)=(I(m, \lambda, l) f(z))^{\prime}$, we obtain

$$
p(z)+z p^{\prime}(z)=\frac{l+1}{\lambda} I(m+1, \lambda, l) f(z)+\left(2-\frac{l+1}{\lambda}\right) I(m, \lambda, l) f(z), \quad \text { for } \quad z \in U .
$$

Then (26) becomes

$$
p(z)+z p^{\prime}(z) \prec h(z), \quad \text { for } \quad z \in U
$$

Since $p \in \mathcal{H}[1,1]$, using Lemma 1.6, we deduce

$$
p(z) \prec q(z), \quad \text { for } \quad z \in U,
$$

where

$$
q(z)=\frac{1}{z} \int_{0}^{z} h(t) d t, \quad \text { for } \quad z \in U
$$

i.e.

$$
(I(m, \lambda, l) f(z))^{\prime} \prec q(z)=\frac{1}{z} \int_{0}^{z} h(t) d t, \quad \text { for } \quad z \in U
$$

and q is the best dominant.

References

[1] A. Alb Lupas, Some differential subordinations using Sălăgean and Ruscheweyh operators, Proceedings of International Conference on Fundamental Sciences, ICFS 2007, Oradea, 58-61.
[2] A. Alb Lupas, On special differential subordinations using Sălăgean and Ruscheweyh operators, Mathematical Inequalities and Applications, (to appear).
[3] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Ind. J. Math. Math. Sci., 2004, no.25-28, 1429-1436.
[4] A. Cătaş, On certain class of p-valent functions defined by new multiplier transformations, Adriana Catas, Proceedings Book of the International Symposium on Geometric Function Theory and Applications, August 20-24, 2007, TC Istanbul Kultur University, Turkey, 241-250.
[5] D.J. Hallenbeck, St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52(1975), 191-195.
[6] S.S. Miller, P.T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
[7] G. St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind

George A. Anastassiou ${ }^{1}$, Lucian Coroianu ${ }^{2}$ and Sorin G. Gal ${ }^{3}$
${ }^{1}$ Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152, U.S.A.
E-mail : ganastss@memphis.edu
and
${ }^{2,3}$ Department of Mathematics and Computer Science, The University of Oradea, Universitatii 1, 410087, Oradea, Romania
E-mail: lcoroianu@uoradea.ro and galso@uoradea.ro

Abstract

The aim of this note is that by using the so-called max-product method, to associate to the Cardaliaguet-Euvrard linear operator, a nonlinear neural network operator for which a Jackson-type approximation order is obtained. In some classes of functions, the order of approximation is essentially better than the order of approximation of the linear operator.

AMS 2000 Mathematics Subject Classification:41A35, 41A25, 92B20.
Keywords: neural networks, nonlinear Cardaliaguet-Euvrard operator, degree of approximation.

1 Introduction

Based on the Open Problem 5.5.4, pp. 324-326 in Gal [7], in a series of recent papers submitted for publication we have introduced and studied the socalled max-product operators attached to the Bernstein polynomials and to other linear Bernstein-type operators, like those of Favard-Szász-Mirakjan operators (truncated and nontruncated case), Baskakov operators (truncated and nontruncated case), Meyer-König and Zeller operators and Bleimann-ButzerHahn operators.

This idea applied, for example, to the linear Bernstein operators $B_{n}(f)(x)=$ $\sum_{k=0}^{n} p_{n, k}(x) f(k / n)$, where $p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$, works as follows. Writ-
ing in the equivalent form $B_{n}(f)(x)=\frac{\sum_{k=0}^{n} p_{n, k}(x) f(k / n)}{\sum_{k=0}^{n} p_{n, k}(x)}$ and then replacing the sum operator Σ by the maximum operator \bigvee, one obtains the nonlinear Bernstein operator of max-product kind

$$
B_{n}^{(M)}(f)(x)=\frac{\bigvee_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^{n} p_{n, k}(x)}
$$

where the notation $\bigvee_{k=0}^{n} p_{n, k}(x)$ means $\max \left\{p_{n, k}(x) ; k \in\{0, \ldots, n\}\right\}$ and similarly for the numerator.

For this max-product operator nice approximation and shape preserving properties were found in e.g. Bede, Coroianu \& Gal [5].

For example, it is proved that for some classes of functions (like those of concave functions), the order of approximation given by the max-product Bernstein operators, are essentially better than the approximation order of their linear counterparts.

The aim of the present paper is to use the same idea to the neural networks of Cardaliaguet-Euvrard-type introduced and studied in e.g. Cardaliaguet \& Euvrard [6], Anastassiou [1]-[3], Zhang, Cao, \& Xu [8] (see also the references cited there). We will obtain that in the class of Lipschitz functions with positive values, the new obtained nonlinear neural network operator has essentially better approximation property than its linear counterpart.

Thus, by following Cardaliaguet \& Euvrard [6], for $b: \mathbb{R} \rightarrow \mathbb{R}_{+}$a centered bell-shaped function (that is, nondecreasing on $(-\infty, 0]$, nonincreasing on $[0,+\infty)$), with compact support $[-T, T], T>0$ (that is $b(x)>0$ for all $x \in(-T, T))$ and therefore such that $I=\int_{-T}^{T} b(x) d x>0$, the CardaliaguetEuvrard neural network is defined by

$$
C_{n, \alpha}(f)(x)=\sum_{k=-n^{2}}^{n^{2}} \frac{f(k / n)}{I \cdot n^{1-\alpha}} \cdot b\left(n^{1-\alpha}\left(x-\frac{k}{n}\right)\right)
$$

where $0<\alpha<1, n \in \mathbb{N}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and bounded or uniformly continuous on \mathbb{R}

Denoting by $C B(\mathbb{R})$ the space of all real-valued continuous and bounded functions on \mathbb{R} and $C B_{+}(\mathbb{R})=\{f: \mathbb{R} \rightarrow[0, \infty) ; f \in C B(\mathbb{R})\}$, applying the max-product method as in the above case of Bernstein polynomials, the corresponding max-product Cardaliaguet-Euvrard network operator will be formally given by

$$
C_{n, \alpha}^{(M)}(f)(x)=\frac{\bigvee_{k=-n^{2}}^{n^{2}} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right] f\left(\frac{k}{n}\right)}{\bigvee_{k=-n^{2}}^{n^{2}} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]}, x \in \mathbb{R}, f \in C B_{+}(\mathbb{R})
$$

Remark. For any $x \in \mathbb{R}$, denoting $J_{T, n}(x)=\left\{k \in \mathbb{Z} ;-n^{2} \leq k \leq n^{2}, n^{1-\alpha}(x-\right.$ $k / n) \in(-T, T)\}$, then we can write as a well defined operator

$$
\begin{equation*}
C_{n, \alpha}^{(M)}(f)(x)=\frac{\bigvee_{k \in J_{T, n}(x)} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right] f\left(\frac{k}{n}\right)}{\bigvee_{k \in J_{T, n}(x)} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]}, x \in \mathbb{R}, n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}, \tag{1}
\end{equation*}
$$

where $J_{T, n}(x) \neq \emptyset$, for all $x \in \mathbb{R}$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$. Indeed, we have

$$
\bigvee_{k \in J_{T, n}(x)} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]>0, \text { for all } x \in \mathbb{R} \text { and } n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}
$$

because by e.g. Anastassiou [1], relationships (2)-(4), pp. 238-239, if $n \geq T+|x|$ then $-n^{2} \leq n x-T n^{\alpha} \leq n x+T n^{\alpha} \leq n^{2}$, while $n^{1-\alpha}|x-k / n|<T$ is equivalent to $n x-T n^{\alpha}<k<n x+T n^{\alpha}$. This implies that if $\left(n x+T n^{\alpha}\right)-\left(n x-T n^{\alpha}\right)=$ $2 T n^{\alpha}>2$ and $n \geq T+|x|$, then $J_{T, n}(x) \neq \emptyset$, which proves our assertion.

The plan of the paper goes as follows : in Section 2 we present some auxiliary results, in Section 3 we obtain the main approximation result, while in Section 4 we compare the approximation result in Section 3 with that for the corresponding linear neural Cardaliaguet-Euvrard network operator.

2 Auxiliary Results

Remark. From the consideration in the last Remark of Section 1, it is clear that $C_{n, \alpha}^{(M)}(f)(x)$ is a well-defined function for all $x \in \mathbb{R}$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$ and it is continuous on \mathbb{R} if b is continuous on \mathbb{R}.

In addition, $C_{n, \alpha}^{(M)}\left(e_{0}\right)(x)=1$, where $e_{0}(x)=1$, for all $x \in \mathbb{R}$ and $n>$ $\max \left\{T+|x|, T^{-1 / \alpha}\right\}$.

In what follows we will see that for $f \in C B_{+}(\mathbb{R})$, the $C_{n, \alpha}^{(M)}$ operator fulfils similar properties with those of the $B_{n}^{(M)}(f)$ operator in Bede \& Gal [4].

Lemma 2.1. Let $b(x)$ be a centered bell-shaped function, continuous and with compact support $[-T, T], T>0,0<\alpha<1$ and $C_{n, \alpha}^{(M)}$ be defined as in Section 1.
(i) If $|f(x)| \leq c$ for all $x \in \mathbb{R}$ then $\left|C_{n, \alpha}^{(M)}(f)(x)\right| \leq c$, for all $x \in \mathbb{R}$ and $n>\left\{T+|x|, T^{-1 / \alpha}\right\}$ and $C_{n, \alpha}^{(M)}(f)(x)$ is continuous at any point $x \in \mathbb{R}$, for all $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$;
(ii) If $f, g \in C B_{+}(\mathbb{R})$ satisfy $f(x) \leq g(x)$ for all $x \in \mathbb{R}$, then $C_{n, \alpha}^{(M)}(f)(x) \leq$ $C_{n, \alpha}^{(M)}(g)(x)$ for all $x \in \mathbb{R}$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$;
(iii) $C_{n, \alpha}^{(M)}(f+g)(x) \leq C_{n, \alpha}^{(M)}(f)(x)+C_{n, \alpha}^{(M)}(g)(x)$ for all $f, g \in C B_{+}(\mathbb{R})$, $x \in \mathbb{R}$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$;
(iv) For all $f, g \in C B_{+}(\mathbb{R}), x \in \mathbb{R}$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$, we have

$$
\left|C_{n, \alpha}^{(M)}(f)(x)-C_{n, \alpha}^{(M)}(g)(x)\right| \leq C_{n, \alpha}^{(M)}(|f-g|)(x)
$$

(v) $C_{n, \alpha}^{(M)}$ is positive homogenous, that is $C_{n, \alpha}^{(M)}(\lambda f)(x)=\lambda C_{n, \alpha}^{(M)}(f)(x)$ for all $\lambda \geq 0, x \in \mathbb{R}, n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$ and $f \in C B_{+}(\mathbb{R})$.

Proof. (i) Immediate by the formula of definition for $C_{n, \alpha}^{(M)}$ in (1).
(ii) Let $f, g \in C B_{+}(\mathbb{R})$ be with $f \leq g$ and fix $x \in \mathbb{R}, n>\max \{T+$ $\left.|x|, T^{-1 / \alpha}\right\}$. Since $J_{T, n}(x)$ is independent of f and g, by (1) we immediately get the conclusion.
(iii) By (1) and by the sublinearity of \bigvee, it is immediate.
(iv) Let $f, g \in C B_{+}(\mathbb{R})$. We have $f=f-g+g \leq|f-g|+g$, which by (i) - (iii) successively implies $C_{n, \alpha}^{(M)}(f)(x) \leq C_{n, \alpha}^{(M)}(|f-g|)(x)+C_{n, \alpha}^{(M)}(g)(x)$, that is $C_{n, \alpha}^{(M)}(f)(x)-C_{n, \alpha}^{(M)}(g)(x) \leq C_{n, \alpha}^{(M)}(|f-g|)(x)$, for all $x \in \mathbb{R}$ and $n>$ $\max \left\{T+|x|, T^{-1 / \alpha}\right\}$.

Writing now $g=g-f+f \leq|f-g|+f$ and applying the above reasonings, it follows $C_{n, \alpha}^{(M)}(g)(x)-C_{n, \alpha}^{(M)}(f)(x) \leq C_{n, \alpha}^{(M)}(|f-g|)(x)$, which combined with the above inequality gives $\left|C_{n, \alpha}^{(M)}(f)(x)-C_{n, \alpha}^{(M)}(g)(x)\right| \leq C_{n, \alpha}^{(M)}(|f-g|)(x)$, for all $x \in \mathbb{R}$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$.
(v) By (1) it is immediate.

Remark. By (1) it is easy to see that instead of (ii), $C_{n, \alpha}^{(M)}$ satisfies the stronger condition

$$
C_{n, \alpha}(f \vee g)(x)=C_{n, \alpha}(f)(x) \vee C_{n, \alpha}(g)(x),
$$

for all $f, g \in C B_{+}(\mathbb{R}), x \in \mathbb{R}, n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$.
Corollary 2.2. For all $f \in C B_{+}(\mathbb{R}), 0<\alpha<1, b(x)$ as in the statement of Lemma 2.1, $x \in \mathbb{R}$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$, we have

$$
\left|f(x)-C_{n, \alpha}^{(M)}(f)(x)\right| \leq\left[\frac{1}{\delta} C_{n, \alpha}^{(M)}\left(\Phi_{x}\right)(x)+1\right] \omega_{1}(f ; \delta)_{\mathbb{R}}
$$

where $\delta>0, \Phi_{x}(u)=|x-u|$ for all $x, u \in \mathbb{R}$, and $\omega_{1}(f ; \delta)_{\mathbb{R}}=\max \{\mid f(x)-$ $f(y)|; x, y \in \mathbb{R},|x-y| \leq \delta\}$.

Proof. Indeed, denoting $e_{0}(x)=1$, from the identity valid for all $x \in \mathbb{R}$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$,

$$
C_{n, \alpha}^{(M)}(f)(x)-f(x)=\left[C_{n, \alpha}^{(M)}(f)(x)-f(x) \cdot C_{n, \alpha}^{(M)}\left(e_{0}\right)(x)\right]+f(x)\left[C_{n, \alpha}^{(M)}\left(e_{0}\right)(x)-1\right],
$$

by Lemma 2.1 it easily follows

$$
\begin{gathered}
\left|f(x)-C_{n, \alpha}^{(M)}(f)(x)\right| \leq \\
\left|C_{n, \alpha}^{(M)}(f(x))(x)-C_{n, \alpha}^{(M)}(f(u))(x)\right|+|f(x)| \cdot\left|C_{n, \alpha}^{(M)}\left(e_{0}\right)(x)-1\right| \leq \\
C_{n, \alpha}^{(M)}(|f(u)-f(x)|)(x)+|f(x)| \cdot\left|C_{n, \alpha}^{(M)}\left(e_{0}\right)(x)-1\right|
\end{gathered}
$$

Now, since for all $u, x \in \mathbb{R}$ we have

$$
|f(u)-f(x)| \leq \omega_{1}(f ;|u-x|)_{\mathbb{R}} \leq\left[\frac{1}{\delta}|u-x|+1\right] \omega_{1}(f ; \delta)_{\mathbb{R}}
$$

replacing above and taking into account that $C_{n, \alpha}^{(M)}\left(e_{0}\right)=1$, we immediately obtain the estimate in the statement.

Remark. Therefore, to get an approximation property for $C_{n, \alpha}^{(M)}$, it is enough to obtain a good estimate for

$$
E_{n, \alpha}(x)=C_{n, \alpha}^{(M)}\left(\Phi_{x}\right)(x)=\frac{\bigvee_{k \in J_{T, n}(x)} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]|x-k / n|}{\bigvee_{k \in J_{T, n}(x)} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]}
$$

for all $x \in \mathbb{R}$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$.

3 Approximation Results

In this section we obtain an approximation result for the operator $C_{n, \alpha}^{(M)}(f)$. For this purpose, first of all we need to calculate the denominators of $C_{n, \alpha}^{(M)}(f)(x)$ and of $E_{n, \alpha}(x)$, that is we will exactly calculate the expression

$$
\bigvee_{k \in J_{T, n}(x)} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]=\bigvee_{k=-n^{2}}^{n^{2}} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]
$$

In this sense, we present the following.
Lemma 3.1. Let $b(x)$ be a centered bell-shaped function, continuous and with compact support $[-T, T], T>0$ and $0<\alpha<1$.

Then for any $j \in \mathbb{Z}$ with $-n^{2} \leq j \leq n^{2}$, all $x \in[j / n,(j+1) / n]$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$, we have

$$
\begin{gathered}
\bigvee_{k=-n^{2}}^{n^{2}} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]= \\
\max \left\{b\left[n^{1-\alpha}\left(x-\frac{j}{n}\right)\right], b\left[n^{1-\alpha}\left(x-\frac{j+1}{n}\right)\right]\right\}>0
\end{gathered}
$$

Proof. Let $j \in \mathbb{Z}$ with $-n^{2} \leq j \leq n^{2}, x \in[j / n,(j+1) / n]$ and $n>$ $\max \left\{T+|x|, T^{-1 / \alpha}\right\}$. We can write

$$
\begin{gathered}
\bigvee_{k=-n^{2}}^{n^{2}} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]= \\
\max \left\{\bigvee_{k=-n^{2}}^{j} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right], \bigvee_{k=j+1}^{n^{2}} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]\right\}
\end{gathered}
$$

We observe that for $k \in\left\{-n^{2}, \ldots, j\right\}$ we have $n^{1-\alpha}(x-k / n) \geq n^{1-\alpha}(x-j / n) \geq 0$ and since b is nonincreasing on $[0,+\infty$), it easily follows that

$$
\bigvee_{k=-n^{2}}^{j} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]=b\left[n^{1-\alpha}\left(x-\frac{j}{n}\right)\right] .
$$

Similarly, observing that for $k \in\left\{j+1, \ldots, n^{2}\right\}$ we have $n^{1-\alpha}(x-k / n) \leq$ $n^{1-\alpha}(x-(j+1) / n) \leq 0$, since $b(x)$ is nondecreasing on $(-\infty, 0]$, it easily follows that

$$
\bigvee_{k=j+1}^{n^{2}} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]=b\left[n^{1-\alpha}\left(x-\frac{j+1}{n}\right)\right]
$$

It remains to prove that for $x \in[j / n,(j+1) / n]$ and $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$ we have $j, j+1 \in J_{T, n}(x)$. Indeed, since $x \in[j / n,(j+1) / n]$ is equivalent to $j \leq n x \leq j+1$, we evidently get $j<n x+T n^{\alpha} \leq n^{2}$, for all $n \geq T+|x|$ and $j+1 \leq n x+1<n x+T n^{\alpha} \leq n^{2}$, for all $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$. Also, because $-n^{2} \leq n x-T n^{\alpha} \leq j+1-T n^{\alpha}<j<j+1$, for all $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$, we get that $j, j+1 \in J_{T, n}(x)$ for all $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$, which proves the lemma.

Remark. The formula in the statement of Lema 3.1 is valid for all $x \in$ $[-n,+n]$ only. Indeed, since in Lemma 3.1 we suppose that $n>|x|+T$, it follows that we cannot have the complementary possibilities for $x, x \in(n,+\infty)$ or $x \in(-\infty,-n)$, because in both cases this would imply the contradiction $|x|>n>|x|+T$.

Theorem 3.2. Let $b(x)$ be a centered bell-shaped function, continuous and with compact support $[-T, T], T>0$ and $0<\alpha<1$. In addition, suppose that the following requirements are fulfilled:
(i) There exist $0<m_{1} \leq M_{1}<\infty$ such that $m_{1}(T-x) \leq b(x) \leq$ $M_{1}(T-x)$ for all $x \in[0, T]$;
(ii) There exist $0<m_{2} \leq M_{2}<\infty$ such that $m_{2}(x+T) \leq b(x) \leq$ $M_{2}(x+T)$ for all $x \in[-T, 0]$.

Then for all $f \in C B_{+}(R), x \in \mathbb{R}$ and for all $n \in \mathbb{N}$ satisfying $n>\max \{T+$ $\left.|x|,(2 / T)^{1 / \alpha}\right\}$, we have the estimate

$$
\left|f(x)-C_{n, \alpha}^{(M)}(f)(x)\right| \leq c \omega_{1}\left(f ; n^{\alpha-1}\right)_{\mathbb{R}}
$$

where

$$
c=2\left(\max \left\{\frac{T M_{2}}{2 m_{2}}, \frac{T M_{1}}{2 m_{1}}\right\}+1\right) .
$$

Proof. Let $x \in \mathbb{R}$ and let $j \in \mathbb{Z}$ with $-n^{2} \leq j \leq n^{2}-1$ such that $x \in[j / n,(j+1) / n]$. Also, let $k_{x} \in J_{T, n}(x)$ be such that

$$
\bigvee_{k \in J_{T, n}(x)} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]\left|x-\frac{k}{n}\right|=b\left[n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left|x-\frac{k_{x}}{n}\right| .
$$

It follows that

$$
E_{n, \alpha}(x)=\frac{b\left[n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left|x-\frac{k_{x}}{n}\right|}{\bigvee_{k \in J_{T, n}(x)} b\left[n^{1-\alpha}\left(x-\frac{k}{n}\right)\right]}
$$

Tacking into account Lemma 3.1 we immediately obtain

$$
E_{n, \alpha}(x)=\min \left\{\frac{b\left[n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left|x-\frac{k_{x}}{n}\right|}{b\left[n^{1-\alpha}\left(x-\frac{j}{n}\right)\right]}, \frac{b\left[n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left|x-\frac{k_{x}}{n}\right|}{b\left[n^{1-\alpha}\left(x-\frac{j+1}{n}\right)\right]}\right\},
$$

for all $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$.
In order to prove the estimate in the theorem we distinguish the following two cases: 1) $k_{x}>j$ and 2) $k_{x} \leq j$.

Case 1) Taking into account condition (ii), since $k_{x} \in J_{T, n}(x)$ and $j+1 \in$ $J_{T, n}(x)$, by $x-k_{x} / n \leq 0$ and $x-(j+1) / n \leq 0$, we immediately get

$$
\begin{aligned}
E_{n, \alpha}(x) & \leq \frac{b\left[n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(\frac{k_{x}}{n}-x\right)}{b\left[n^{1-\alpha}\left(x-\frac{j+1}{n}\right)\right]} \leq \frac{M_{2}}{m_{2}} \cdot \frac{\left[T+n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(\frac{k_{x}}{n}-x\right)}{T+n^{1-\alpha}\left(x-\frac{j+1}{n}\right)} \\
& \leq \frac{M_{2}}{m_{2}} \cdot \frac{\left[T+n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(\frac{k_{x}}{n}-x\right)}{T+n^{1-\alpha}\left(\frac{-1}{n}\right)} \\
& =\frac{M_{2}}{m_{2}} \cdot \frac{n^{\alpha}\left[T+n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(\frac{k_{x}}{n}-x\right)}{T n^{\alpha}-1} .
\end{aligned}
$$

Since $\left[T+n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(\frac{k_{x}}{n}-x\right)=-n^{1-\alpha}\left(\frac{k_{x}}{n}-x-\frac{T}{2 n^{1-\alpha}}\right)^{2}+\frac{T^{2}}{4 n^{1-\alpha}} \leq \frac{T^{2}}{4 n^{1-\alpha}}$, it easily follows that

$$
E_{n, \alpha}(x) \leq \frac{M_{2}}{4 m_{2}} \cdot \frac{T^{2} n^{2 \alpha-1}}{T n^{\alpha}-1}=\frac{M_{2}}{4 m_{2}} \cdot \frac{T^{2} n^{\alpha}}{T n^{\alpha}-1} \cdot n^{\alpha-1}
$$

Supposing, in addition, that $n>(2 / T)^{1 / \alpha}$ (where clearly $\left.(2 / T)^{1 / \alpha}>T^{-1 / \alpha}\right)$, it follows that

$$
\frac{n^{\alpha}}{T n^{\alpha}-1}=\frac{1}{T}\left(1+\frac{1 / T}{n^{\alpha}-1 / T}\right) \leq \frac{1}{T}\left(1+\frac{1 / T}{2 / T-1 / T}\right)=\frac{2}{T},
$$

which implies

$$
E_{n, \alpha}(x) \leq \frac{T M_{2}}{2 m_{2}} \cdot n^{\alpha-1}
$$

for all $n>\max \left\{T+|x|,(2 / T)^{1 / \alpha}\right\}$.
Case 2) Taking into account condition (i), since $k_{x} \in J_{T, n}(x)$ and $j \in$ $J_{T, n}(x)$, by $x-k_{x} / n \geq 0$ and $x-j / n \geq 0$, we immediately get

$$
\begin{aligned}
E_{n, \alpha}(x) & \leq \frac{b\left[n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(x-\frac{k_{x}}{n}\right)}{b\left[n^{1-\alpha}\left(x-\frac{j}{n}\right)\right]} \leq \frac{M_{1}}{m_{1}} \cdot \frac{\left[T-n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(x-\frac{k_{x}}{n}\right)}{T-n^{1-\alpha}\left(x-\frac{j}{n}\right)} \\
& \leq \frac{M_{1}}{m_{1}} \cdot \frac{\left[T-n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(x-\frac{k_{x}}{n}\right)}{T-n^{1-\alpha}\left(\frac{1}{n}\right)} \\
& =\frac{M_{1}}{m_{1}} \cdot \frac{n^{\alpha}\left[T-n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(x-\frac{k_{x}}{n}\right)}{T n^{\alpha}-1} .
\end{aligned}
$$

Since $\left[T-n^{1-\alpha}\left(x-\frac{k_{x}}{n}\right)\right]\left(x-\frac{k_{x}}{n}\right)=-n^{1-\alpha}\left(x-\frac{k_{x}}{n}-\frac{T}{2 n^{1-\alpha}}\right)^{2}+\frac{T^{2}}{4 n^{1-\alpha}} \leq \frac{T^{2}}{4 n^{1-\alpha}}$, reasoning exactly as in the Case 1), we obtain

$$
E_{n, \alpha}(x) \leq \frac{T M_{1}}{2 m_{1}} \cdot n^{\alpha-1}
$$

for all $n>\max \left\{T+|x|,(2 / T)^{1 / \alpha}\right\}$.
Now, applying Corollary 2.2 for $\delta=\max \left\{\frac{T M_{2}}{2 m_{2}} \cdot n^{1-\alpha}, \frac{T M_{1}}{2 m_{1}} \cdot n^{1-\alpha}\right\}$ and from the property $\omega_{1}(f, \lambda \delta)_{\mathbb{R}} \leq(\lambda+1) \omega_{1}(f, \delta)_{\mathbb{R}}$, we obtain the desired conclusion.

Corollary 3.3. Let $b(x)$ be a centered bell-shaped function, continuous and with compact support $[-T, T], T>0$ and $0<\alpha<1$. If $0<\lim _{x \nearrow T} \frac{b(x)}{T-x}<\infty$ and $0<\lim _{x \searrow-T} \frac{b(x)}{T+x}<\infty$ then for all $f \in C B_{+}(R), x \in \mathbb{R}$ and for all all $n \in \mathbb{N}$ satisfying $n>\max \left\{T+|x|,(2 / T)^{1 / \alpha}\right\}$ there exists $c \in R_{+}$independent of n and f such that

$$
\left|f(x)-C_{n, \alpha}^{(M)}(f)(x)\right| \leq c \omega_{1}\left(f ; n^{\alpha-1}\right)_{\mathbb{R}}
$$

Proof. Let us consider the function $g:[0, T] \rightarrow \mathbb{R}, g(x)=\frac{b(x)}{T-x}$ if $x \in$ $[0, T)$ and $g(T)=\lim _{x \nearrow T} \frac{b(x)}{T-x}$. From our assumptions we get that g is continuous and strictly positive. By the Weierstrass' theorem it follows that g attains its minimum and maximum. Hence there exist $0<m_{1} \leq M_{1}<\infty$ such that $m_{1} \leq$ $g(x) \leq M_{1}$ for all $x \in[0, T]$. It follows that $m_{1}(T-x) \leq b(x) \leq M_{1}(T-x)$ for all $x \in[0, T)$. Since $b(T)=0$ we easily get that $m_{1}(T-x) \leq b(x) \leq M_{1}(T-x)$ for all $x \in[0, T]$.

Now, let us consider the function $h:[-T, 0], h(x)=\frac{b(x)}{T+x}$ if $x \in(-T, 0]$ and $h(-T)=\lim _{x \searrow-T} \frac{b(x)}{T+x}$ Again, it is easy to prove that there exist $0<m_{2} \leq M_{2}<$ ∞ such that $m_{2}(x+T) \leq b(x) \leq M_{2}(x+T)$ for all $x \in[-T, 0]$.

From the above considerations, applying Theorem 3.2 we easily obtain the desired conclusion.

In what follows, we will give some examples of bell-shaped functions for which we can apply Theorem 3.2.

Example 1. Let us consider $b: \mathbb{R} \rightarrow[0, \infty), b(x)=1+x$ if $x \in[-1,0]$, $b(x)=1-x$ if $x \in[0,1], b(x)=0$ elsewhere. Using the same notations as in Theorem 3.2 we have $T=1$ and $m_{1}=M_{1}=m_{2}=M_{2}=1$. By Theorem 3.2, it follows that for all $f \in C B_{+}(R), x \in \mathbb{R}$ and for all $n \in \mathbb{N}$ satisfying $n>\max \left\{T+|x|,(2 / T)^{1 / \alpha}\right\}$, we have the estimate

$$
\left|f(x)-C_{n, \alpha}^{(M)}(f)(x)\right| \leq 3 \omega_{1}\left(f ; n^{\alpha-1}\right)_{\mathbb{R}}
$$

Example 2. Let us consider $b: \mathbb{R} \rightarrow[0, \infty), b(x)=1-x^{2}$ if $x \in[-1,1]$, $b(x)=0$ elsewhere. We have $T=1, m_{1}=m_{2}=1, M_{1}=M_{2}=2$. By Theorem 3.2, it follows that for all $f \in C B_{+}(R), x \in \mathbb{R}$ and for all $n \in \mathbb{N}$ satisfying $n>\max \left\{T+|x|,(2 / T)^{1 / \alpha}\right\}$, we have the estimate

$$
\left|f(x)-C_{n, \alpha}^{(M)}(f)(x)\right| \leq 4 \omega_{1}\left(f ; n^{\alpha-1}\right)_{\mathbb{R}}
$$

Example 3. Let us consider $b: \mathbb{R} \rightarrow[0, \infty), b(x)=\cos x$ if $x \in[-\pi / 2, \pi / 2]$, $b(x)=0$ elsewhere. Since for $t \in[0, \pi / 2]$ we have $2 t / \pi \leq \sin t \leq t$ it follows that $(2 / \pi)(\pi / 2-x) \leq \sin (\pi / 2-x)=\cos x \leq \pi / 2-x$ for all $x \in[0, \pi / 2]$ and $(2 / \pi)(\pi / 2+x) \leq \sin (\pi / 2+x)=\cos x \leq \pi / 2+x$ for all $x \in[-\pi / 2,0]$. From the
above inequalities it follows that $T=\pi / 2, m_{1}=m_{2}=2 / \pi$ and $M_{1}=M_{2}=1$. Applying Theorem 3.2, we obtain

$$
\left|f(x)-C_{n, \alpha}^{(M)}(f)(x)\right| \leq 7 \omega_{1}\left(f ; n^{\alpha-1}\right)_{\mathbb{R}}
$$

Remark. In what follows we will prove that in general, if the bell-shaped function b satisfies the hypothesis of Theorem 3.2, then the order of approximation of the expression $E_{n, \alpha}(x)$ in Theorem 3.2. cannot be improved. Firstly, let us notice that from the conclusion of Theorem 3.2 it suffices to prove that we cannot improve the order of approximation of the expression $E_{n, \alpha}(x)$ for the case when $b(x)=T+x$ if $x \in[-T, 0], b(x)=T-x$ if $x \in[0, T], b(x)=0$ elsewhere. Without any loss of generality we may assume that $T=1$. For $n \in \mathbb{N}$, $n>(2 / T)^{1 / \alpha}$, take $x_{n}=1 / 2 n$. It is easy to check that for all $n \geq 2$, we have $n>\max \left\{T+\left|x_{n}\right|,(2 / T)^{1 / \alpha}\right\}$. Since $x_{n} \in(0,1 / n)$, by Lemma 3.1, it follows that $\bigvee_{k=-n^{2}}^{k=n^{2}} b\left[n^{1-\alpha}\left(x_{n}-\frac{k}{n}\right)\right]=\max \left\{b\left(n^{1-\alpha} x_{n}\right), b\left[n^{1-\alpha}\left(x_{n}-\frac{1}{n}\right)\right]\right\}$. Through simple calculus we get

$$
\bigvee_{k=-n^{2}}^{n^{2}} b\left[n^{1-\alpha}\left(x_{n}-\frac{k}{n}\right)\right]=\frac{2 n^{\alpha}-1}{2 n^{\alpha}}
$$

This, immediately implies

$$
E_{n, \alpha}\left(x_{n}\right)=\frac{\bigvee_{k=-n^{2}}^{k=n^{2}} b\left[n^{1-\alpha}\left(x_{n}-\frac{k}{n}\right)\right]\left|x_{n}-\frac{k}{n}\right|}{\left(2 n^{\alpha}-1\right) / 2 n^{\alpha}}
$$

From the above equality it follows that for all $k \in \mathbb{Z},-n^{2} \leq k \leq n^{2}$, we have

$$
\begin{equation*}
E_{n, \alpha}\left(x_{n}\right) \geq \frac{b\left[n^{1-\alpha}\left(x_{n}-\frac{k}{n}\right)\right]\left|x_{n}-\frac{k}{n}\right|}{\left(2 n^{\alpha}-1\right) / 2 n^{\alpha}} \tag{2}
\end{equation*}
$$

Let us take $k_{n}=\left[\frac{5 n^{\alpha}+3}{6}\right]-1$. It is easy to check that $-n^{2} \leq k_{n} \leq n^{2}$. Also, for n sufficiently large we have $x_{n} \leq k_{n} / n$. Then,
$b\left[n^{1-\alpha}\left(x_{n}-\frac{k_{n}}{n}\right)\right]\left|x_{n}-\frac{k_{n}}{n}\right|$
$=\left[1+n^{1-\alpha}\left(\frac{1}{2 n}-\frac{k_{n}}{n}\right)\right]\left(\frac{k_{n}}{n}-x_{n}\right)=-n^{1-\alpha}\left(\frac{k_{n}}{n}-\frac{1}{2 n}-\frac{1}{2 n^{1-\alpha}}\right)^{2}+\frac{1}{4 n^{1-\alpha}}$
$=-n^{1-\alpha}\left(\frac{2 k_{n}-1}{2 n}-\frac{1}{2 n^{1-\alpha}}\right)^{2}+\frac{1}{4 n^{1-\alpha}}$.
Since

$$
\begin{aligned}
& \frac{2 k_{n}-1}{2 n}-\frac{1}{2 n^{1-\alpha}} \\
& =\frac{2\left(\left[\frac{5 n^{\alpha}+3}{6}\right]-1\right)-1}{2 n}-\frac{1}{2 n^{1-\alpha}} \geq \frac{2\left(\frac{5 n^{\alpha}+3}{6}-2\right)-1}{2 n}-\frac{1}{2 n^{1-\alpha}}=\frac{1}{3 n^{1-\alpha}}-\frac{2}{n}
\end{aligned}
$$

it follows that for $n \geq 6^{1 / \alpha}$ we have $\frac{2 k_{n}-1}{2 n}-\frac{1}{2 n^{1-\alpha}} \geq 0$. Therefore, for $n \geq 6^{1 / \alpha}$ we have

$$
\begin{aligned}
& -n^{1-\alpha}\left(\frac{2 k_{n}-1}{2 n}-\frac{1}{2 n^{1-\alpha}}\right)^{2}+\frac{1}{4 n^{1-\alpha}} \\
& =-n^{1-\alpha}\left(\frac{2\left(\left[\frac{5 n^{\alpha}+3}{6}\right]-1\right)-1}{2 n}-\frac{1}{2 n^{1-\alpha}}\right)^{2}+\frac{1}{4 n^{1-\alpha}} \\
& \geq-n^{1-\alpha}\left(\frac{2 \cdot \frac{5 n^{\alpha}+3}{6}-1}{2 n}-\frac{1}{2 n^{1-\alpha}}\right)^{2}+\frac{1}{4 n^{1-\alpha}}=\frac{5}{36} \cdot n^{\alpha-1} .
\end{aligned}
$$

Taking into account relation (2) and the above inequality, we get

$$
\begin{aligned}
E_{n, \alpha}\left(x_{n}\right) & \geq \frac{b\left[n^{1-\alpha}\left(x_{n}-\frac{k_{n}}{n}\right)\right]\left|x_{n}-\frac{k_{n}}{n}\right|}{\left(2 n^{\alpha}-1\right) / 2 n^{\alpha}}=\frac{-n^{1-\alpha}\left(\frac{2 k_{n}-1}{2 n}-\frac{1}{2 n^{1-\alpha}}\right)^{2}+\frac{1}{4 n^{1-\alpha}}}{\left(2 n^{\alpha}-1\right) / 2 n^{\alpha}} \\
& \geq \frac{\frac{5}{36} \cdot n^{\alpha-1}}{\left(2 n^{\alpha}-1\right) / 2 n^{\alpha}}=\frac{5 n^{\alpha}}{18\left(2 n^{\alpha}-1\right)} \cdot n^{\alpha-1} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{5 n^{\alpha}}{18\left(2 n^{\alpha}-1\right)}=\frac{5}{36}$, it follows that for n sufficiently large we get

$$
E_{n, \alpha}\left(x_{n}\right) \geq \frac{1}{8} \cdot n^{\alpha-1}
$$

which implies the desired conclusion.

4 Conclusion

The linear Cardaliaguet-Euvrard operators $C_{n, \alpha}(f)(x)$ were introduced in Cardaliaguet \& Euvrard [6], were it is proved the convergence on compacta to the approximated function. The results were of qualitative type. The first quantitative type estimates in the approximation by $C_{n, \alpha}(f)(x)$ was obtained in Anastassiou [1]-[3] and then improved in Zhang, Cao, \& Xu [8], where at the page 1164 the following type of quantitative estimate is obtained :

$$
\left|C_{n, \alpha}(f)(x)-f(x)\right| \leq \frac{C_{1}}{n^{\alpha}}+C_{2} \omega_{1}\left(f ; n^{\alpha-1}\right)_{\mathbb{R}}
$$

for all $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$, where $C_{1}, C_{2}>0$ are constants independent on n but depending on b and f.

If we suppose now that f is a Lipschitz function on \mathbb{R}, that is there exists $L>0$ such that $|f(x)-f(y)| \leq L|x-y|$, for all $x, y \in \mathbb{R}$, from the above estimate we get the following order of approximation by the linear Cardaliaguet-Euvrard operator :
$\left|C_{n, \alpha}(f)(x)-f(x)\right|=\mathcal{O}\left(\frac{1}{n^{\alpha}}\right)+\mathcal{O}\left(\frac{1}{n^{1-\alpha}}\right)$, for all $n>\max \left\{T+|x|, T^{-1 / \alpha}\right\}$.

On the other hand, for $f \in C B_{+}(\mathbb{R})$ a Lipschitz function, in the case of max-product Cardaliaguet-Euvrard operator, by Theorem 3.2 we get the order of approximation

$$
\left|C_{n, \alpha}^{(M)}(f)(x)-f(x)\right|=\mathcal{O}\left(\frac{1}{n^{1-\alpha}}\right), \text { for all } n>\max \left\{T+|x|,(2 / T)^{1 / \alpha}\right\}
$$

It is clear that for $\frac{1}{2} \leq \alpha<1$, we get the same order of approximation $\mathcal{O}\left(\frac{1}{n^{1-\alpha}}\right)$ for both operators $C_{n, \alpha}(f)(x)$ and $C_{n, \alpha}^{(M)}(f)(x)$, while for $0<\alpha<\frac{1}{2}$, the approximation order obtained by the max-product operator $C_{n, \alpha}^{(M)}(f)(x)$ is essentially better than that obtained by the linear operator $C_{n, \alpha}(f)(x)$.

This shows the advantage we can have by using the max-product CardaliaguetEuvrard operator introduced by this paper.

References

[1] Anastassiou, G. A., Rate of convergence of some neural networks operators in the univariate case, J. Math. Anal. Appl., 212(1997), 237-262.
[2] Anastassiou, G. A., Weak convergence of Cardaliaguet-Euvrard neural network operators studied asymptotically, Result. Math., 34(1998), No. 3-4, 214-223.
[3] Anastassiou, G. A., Rate of convergence of some multivariate neural networksoperators to the unit, Comput. Math. Appl., 40(2000), No. 1, 1-19.
[4] Bede, B. and Gal, S. G., Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind, Journal of Concrete and Applicable Mathematics, 2010, in press.
[5] Bede, B., Coroianu, L. and Gal, S. G., Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern. J. Math. Math. Sci., vol. 2009, Article ID 590589, 26 pages, doi:10.1155/2009/590589.
[6] Cardaliaguet, P. and Euvrard, G., Approximation of a function and its derivative with a neural network, Neural Networks, 5(1992), 207-220.
[7] Gal, S. G., Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-Berlin, 2008.
[8] Zhang, Y. Q., Cao, F. L. and Xu, Z. B., Approximation by neural network operators of Cardaliaguet-Euvrard type (Chinese ; English summary), Acta Math. Sinica (Chinese series), 51(2008), No. 6, 1161-1174.

On joint distributions of order statistics arising from random vectors

M. Güngör ${ }^{1}$ and A . Turan ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Firat, 23119 Elazig, Turkey
${ }^{2}$ Department of Statistics, University of Firat, 23119 Elazig, Turkey

Abstract

In this study, the joint distributions of order statistics arising from innid random vectors are expressed. Then, some theorems connecting distributions of order statistics of innid random vectors to that of order statistics of iid random vectors are given.

Keywords. Order statistics, permanent, jo int distribution, iid random variable, innid random variable.
MSC2000. 62G30, 62E15.

1. Introduction

Arnold et al.[1] considered several identities and recurrence relations in terms of distribution function $(d f)$ of single and several order statistics of independent and identically distributed(iid) random variables.

Balakrishnan[2] considered recent developments on order statistics arising from independent and not necessarily identically distributed(innid) random variables based primarily on the theory of permanents.

Balasubramanian and $\operatorname{Beg}[3]$ defined linear identities for distribution functions of order statistics from an iid sample.

Balasubramanian et al.[4] established identities satisfied by distributions of order statistics from non-independent non-identical variables through operator methods based on difference and differential operators.

Bapat and $\operatorname{Beg}[5]$ expressed the joint $d f$ of order statistics of innid random variables in terms of the $d f$ of the random variables using permanents.

Beg[6] obtained several recurrence relations and identities for product moments of order statistics of innid random variables using permanents.

Cao and West[7] obtained recurrence relationships among the distribution functions of order statistics arising from innid random variables.

Childs and Balakrishnan[8] obtained, using multinomial arguments, the probability density function $(p d f)$ of $X_{r: n+1}(l \leq r \leq n+l)$ if another independent random variable with $d f$ F_{i} and $p d f f_{i}(i=1,2, \ldots, n)$ is added to the original n variables $X_{1}, X_{2}, \ldots, X_{n}$.

Corley[9] defined a multivariate generalization of classical order statistics for random samples from a continuous multivariate distribution.

David[10] considered the fundamental distribution theory of order statistics.
Gan and Bain[11] obtained the joint probability function $(p f)$ of any k order statistics and also conditional distributions of discrete order statistics from a general discrete parent by "tieruns".

Goldie and Maller[12] derived expressions for generalized joint densities of order statistics of innid random variables in terms of Radon-Nikodym derivatives with respect to product measures based on $d f$.

Guilbaud[13] expressed probability of the functions of innid random vectors as a linear combination of probabilities of the functions of iid random vectors and thus also for order statistics of random variables.

Khatri[14] examined the $p f$ and $d f$ of a single order statistics, the joint $p f$ and $d f$ of any two order statistics and joint $d f$ of any three order statistics of iid random variables from a discrete parent.

Reiss[15] considered the joint $p d f$, marginal $p d f$ and $d f$ of any k order statistics of iid random variables under a continuous $d f$ and discontinuous $d f$. He also considered $p d f$ of bivariate order statistics by marginal ordering of bivariate iid random vectors with a continuous $d f$ by means of multinomial probabilities of appropriate "cell frequency vectors", defining multivariate order statistics by marginal ordering of iid random vectors with a continuous $d f$.

Vaughan and Venables[16] denoted the joint $p d f$ and marginal $p d f$ of order statistics of innid random variables by means of permanents.

From now on, the subscripts and superscripts are defined in the first place in which they are used and these definitions will be valid unless they are redefined.

If $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$ are defined as column vectors, then the matrix obtained by taking m_{1} copies a_{1}, m_{2} copies a_{2}, \ldots can be denoted as

$$
\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \ldots \\
m_{1} & m_{2}
\end{array}\right]
$$

and perA denotes the permanent of a square matrix A , which is defined as similar to determinants except that all terms in the expansion have a positive sign.

Consider $\mathrm{x}=\left(x^{(1)}, x^{(2)}, \ldots, x^{(b)}\right)$ and $\mathrm{y}=\left(y^{(1)}, y^{(2)}, \ldots, y^{(b)}\right)$, then it can be written as $\mathrm{x} \leq \mathrm{y}$ if $x^{(v)} \leq y^{(v)}(v=1,2, \ldots, b)$ and $\mathrm{x}+\mathrm{y}=\left(x^{(1)}+y^{(1)}, x^{(2)}+y^{(2)}, \ldots, x^{(b)}+y^{(b)}\right)$.

Let $\xi_{i}=\left(\xi_{i}^{(1)}, \xi_{i}^{(2)}, \ldots, \xi_{i}^{(b)}\right)(i=1,2, \ldots, n)$ be innid continuous random vectors which components of ξ_{i} are independent. The expression

$$
\begin{equation*}
X_{r: n}^{(v)}=Z_{r: n}\left(\xi_{1}^{(v)}, \xi_{2}^{(v)}, \ldots, \xi_{n}^{(v)}\right) \tag{1.1}
\end{equation*}
$$

is stated as the r th order statistic of the v th components of $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$.
From (1.1), the ordered values of the v th components of $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ are expressed as
$X_{1: n}^{(v)} \leq X_{2: n}^{(v)} \leq \ldots \leq X_{n: n}^{(v)}$.
From (1.2), we can write
$\mathrm{X}_{r: n}=\left(X_{r: n}^{(1)}, X_{r: n}^{(2)}, \ldots, X_{r: n}^{(b)}\right)(1 \leq r \leq n)$.
Also, $\mathrm{x}_{w}=\left(x_{w}^{(1)}, x_{w}^{(2)}, \ldots, x_{w}^{(b)}\right), x_{w}^{(v)} \in R(w=1,2, \ldots, d ; d=1,2, \ldots, n)$.
Let F_{i} and f_{i} be $d f$ and $p d f$ of $\xi_{i}^{(v)}$, respectively. Moreover, $X_{1: n}^{(v), s}, X_{2: n}^{(v), s}, \ldots, X_{n: n}^{(v), s}$ are order statistics of $i i d$ random variables with $d f F^{s}$ and $p d f f^{s}$, respectively, defined by $F^{s}=\frac{1}{n_{s}} \sum_{i \in s} F_{i}$
and

$$
\begin{equation*}
f^{s}=\frac{1}{n_{s}} \sum_{i \in s} f_{i} . \tag{1.4}
\end{equation*}
$$

Here, s is a non-empty subset of the integers $\{1,2, \ldots, n\}$ with $n_{s} \geq 1$ elements. $\mathrm{A}[s /$.$) is the$ matrix obtained from A by taking rows whose indices are in s.

In this study, the $d f$ and $p d f$ of $\mathrm{X}_{r_{i}: n}, \mathrm{X}_{r_{2} ; n}, \ldots, \mathrm{X}_{r_{d}: n}\left(l \leq r_{1}<r_{2}<\ldots<r_{d} \leq n\right)$ will be given. Let $\mathrm{X}^{(v)}=\left(X_{r_{1} n}^{(v)}, X_{r_{2}: n}^{(v)}, \ldots, X_{r_{d}: n}^{(v)}\right)$ and $\mathrm{x}^{(v)}=\left(x_{1}^{(v)}, x_{2}^{(v)}, \ldots, x_{d}^{(v)}\right)$. For notational convenience we write $\sum \sum, \sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n, \ldots m_{3}, m_{2}}, \sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots m_{3}, m_{2}}$ and $\sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots \ldots r_{1}-r_{2}-1}$ instead of $\sum_{\kappa=1}^{n}(-1)^{n-\kappa} \frac{\kappa^{n}}{n!} \sum_{n_{s}=\kappa}, \sum_{m_{d}=r_{d}}^{n} \ldots \sum_{m_{2}=r_{2}}^{m_{3}} \sum_{m_{1}=r_{1}}^{m_{2}}$, $\sum_{t_{d}=m_{d}}^{n} \ldots \sum_{t_{2}=m_{2}}^{m_{3}} \sum_{t_{1}=m_{1}}^{m_{2}}$ and $\sum_{t_{d}=r_{d}}^{n} \ldots \sum_{t_{2}=r_{2}}^{r_{1}} \sum_{t_{1}=r_{1}}^{r_{2}-1}$ in the expressions below, respectively.

2. Theorems for distribution function

In this section, the theorems related to $d f$ of $\mathrm{X}_{r_{i}: n}, \mathrm{X}_{r_{2}: n}, \ldots, \mathrm{X}_{r_{d}: n}$ are given. The theorems connect the $d f$ of order statistics of innid random vectors to that of order statistics of iid random vectors using (1.3).

Theorem 2.1.

$$
\begin{align*}
& F_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)= \prod_{v=1}^{b}\left\{\sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n, \ldots m_{3}, m_{2}} C \sum_{t_{d}, \ldots, t_{2}, r_{1}}^{n, \ldots, m_{3}, m_{2}}(-1)^{\sum_{w=1}^{d}\left(m_{w+1}-t_{w}\right)} \prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}-m_{w}}\right. \\
& \cdot \sum_{n_{s}=n-t_{d}+m_{d}}\left(t_{d}-m_{d}\right)!\operatorname{per}\left[\begin{array}{lll}
\mathrm{F}\left(x_{1}^{(v)}\right) & \underset{m_{2}-t_{1}+m_{1}}{(v)} & \left.\left.\underset{m_{3}-m_{1}-t_{2}+t_{1}}{\mathrm{~F}\left(x_{2}^{(v)}\right) \ldots} \underset{n-m_{d-1}-t_{d}+t_{d-1}}{\mathrm{~F}(v)}\right][s / .)\right\}, \mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{d},
\end{array}\right. \tag{2.1}
\end{align*}
$$

where $\mathrm{F}\left(x_{w}^{(\nu)}\right)=\left(F_{1}\left(x_{w}^{(\nu)}\right), F_{2}\left(x_{w}^{(\nu)}\right), \ldots, F_{n}\left(x_{w}^{(\nu)}\right)\right)^{\prime}$ is column vector, $C=\left[\prod_{w=1}^{d+1}\left(m_{w}-m_{w-1}\right)!\right]^{-1}, m_{0}=0$, $m_{d+1}=n$ and $t_{0}=m_{1}$.

Proof. It can be written

$$
\begin{equation*}
F_{r_{1}, r_{2}, \ldots r_{d} \cdot n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)=P\left\{\mathrm{X}_{r_{1 ; n}} \leq \mathrm{x}_{1}, \mathrm{X}_{r_{2} \cdot n} \leq \mathrm{x}_{2}, \ldots, \mathrm{X}_{r_{d} ; n} \leq \mathrm{x}_{d}\right\} \tag{2.2}
\end{equation*}
$$

(2.2) can be expressed as

$$
\begin{align*}
F_{r_{1}, r_{2}, \ldots, r_{d} \cdot n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right) & =P\left\{\mathrm{X}^{(1)} \leq \mathrm{x}^{(1)}, \mathrm{X}^{(2)} \leq \mathrm{x}^{(2)}, \ldots, \mathrm{X}^{(b)} \leq \mathrm{x}^{(b)}\right\} \\
& =\prod_{v=1}^{b} P\left\{\mathrm{X}^{(v)} \leq \mathrm{x}^{(v)}\right\} \\
& =\prod_{v=1}^{b} P\left\{X_{r_{i}: n}^{(v)} \leq x_{1}^{(v)}, X_{r_{2} ; n}^{(v)} \leq x_{2}^{(v)}, \ldots, X_{r_{d} \cdot n}^{(v)} \leq x_{d}^{(v)}\right\} \\
& =\prod_{v=1}^{b} \sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n, \ldots m_{3}, m_{2}} \operatorname{Cer} \mathrm{~A}, \tag{2.3}
\end{align*}
$$

where $\mathrm{A}=\left[\underset{m_{1}}{\left(\mathrm{~F}\left(x_{1}^{(\nu)}\right)\right.} \mathrm{F}\left(x_{2}^{(\nu)}\right)-\mathrm{F}\left(x_{1}^{(v)}\right) \ldots 1-\underset{n-m_{1}}{\mathrm{~F}\left(x_{d}^{(v)}\right)}\right]$ is matrix,
$\mathrm{F}\left(x_{w}^{(\nu)}\right)-\mathrm{F}\left(x_{w-1}^{(v)}\right)=\left(F_{1}\left(x_{w}^{(v)}\right)-F_{1}\left(x_{w-1}^{(v)}\right), F_{2}\left(x_{w}^{(v)}\right)-F_{2}\left(x_{w-1}^{(v)}\right), \ldots, F_{n}\left(x_{w}^{(v)}\right)-F_{n}\left(x_{w-1}^{(v)}\right)\right)^{\prime}(\mathrm{w}=1,2, \ldots, d+1)$,
$F_{i}\left(x_{0}^{(\nu)}\right)=0$ and $F_{i}\left(x_{d+1}^{(\nu)}\right)=1$. Using properties of permanent, we can write

$$
\begin{aligned}
& \operatorname{per} \mathrm{A}=\operatorname{per}\left[\underset{m_{1}}{\left(x_{1}^{(v)}\right)} \underset{m_{1}}{\mathrm{~F}\left(x_{2}^{(v)}\right)} \underset{m_{2}-m_{1}}{ } \mathrm{~F}\left(x_{1}^{(v)}\right) \mathrm{F}\left(x_{3}^{(v)}\right)-\mathrm{F}\left(x_{2}^{(v)}\right) \ldots \mathrm{F}\left(x_{d}^{(v)}\right)-\mathrm{F}\left(x_{d-1}^{(v)}\right) 1-\mathrm{F}\left(x_{d}^{(v)}\right)\right] \\
& =\sum_{t_{d}=0}^{n-m_{d}}(-1)^{n-m_{d}-t_{d}}\binom{n-m_{d}}{t_{d}} \cdots \sum_{t_{2}=0}^{m_{3}-m_{2}}(-1)^{m_{3}-m_{2}-t_{2}}\binom{m_{3}-m_{2}}{t_{2}}_{t_{1}=0}^{m_{2}-m_{1}}(-1)^{m_{2}-m_{1}-t_{1}}\binom{m_{2}-m_{1}}{t_{1}}
\end{aligned}
$$

$$
\begin{align*}
& \cdot \operatorname{per}\left[\underset{m_{2}-t_{1}}{(\mathrm{~F}(v)}\right) \underset{m_{3}-m_{2}-t_{2}+t_{1}}{\mathrm{~F}}\left(x_{t_{d}}^{(v)}\right) \quad \ldots \quad \underset{n-m_{d}-t_{d}+t_{d-1}}{1} \\
& =\sum_{t_{d}=0}^{n-m_{d}} \cdots \sum_{t_{2}=0}^{m_{3}-m_{2}} \sum_{t_{1}=0}^{m_{2}-m_{1}}(-1)^{n-m_{1}-\sum_{w=1}^{d} t_{w}} \prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}}_{n_{s}=n-t_{d}} t_{d}!\operatorname{per}\left[\begin{array}{l}
\mathrm{F}\left(x_{1}^{(v)}\right) \\
m_{2}-t_{1}
\end{array} \underset{m_{3}-m_{2}-t_{2}+t_{1}}{\mathrm{~F}\left(x_{2}^{(v)}\right)} \ldots \underset{n-m_{d}-t_{d}+t_{d-1}}{\left.\mathrm{~F}\left(x_{d}^{(v)}\right)\right][s / .)}\right. \\
& =\sum_{t_{d}=m_{d}}^{n} \ldots \sum_{t_{2}=m_{2}}^{m_{3}} \sum_{t_{1}=m_{1}}^{m_{2}}(-1)^{\sum_{n=1}^{d}\left(m_{w+1}-t_{w}\right)} \prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}-m_{w}} \sum_{n_{s}=n+m_{d}-t_{d}}\left(t_{d}-m_{d}\right)! \\
& \cdot \operatorname{per}\left[\begin{array}{llll}
m_{2}\left(t_{1}+m_{1}\right. \\
\mathrm{F} & \left.x_{1}^{(v)}\right) & \underset{m_{3}-m_{1}-t_{2}+t_{1}}{\mathrm{~F}}\left(x_{2}^{(\nu)}\right) & \ldots \\
n-m_{d-1}-t_{d}+t_{d-1}
\end{array} \mathrm{~F}\left(x_{d}^{(v)}\right)\right][s / .), \tag{2.4}
\end{align*}
$$

where $1=(1,1, \ldots, 1)^{\prime}$.
Using (2.4) in (2.3), (2.1) is obtained.

Theorem 2.2.

$$
\begin{align*}
F_{r_{1}, r_{2}, \ldots, r_{d} ; n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)= & \prod_{v=1}^{b}\left\{\sum \sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n, \ldots, m_{3}, m_{2}} n!C\left[F^{s}\left(x_{1}^{(v)}\right)\right]^{m_{1}}\right. \\
& \left.\cdot \prod_{w=2}^{d+1} \sum_{t=m_{w-1}}^{m_{w}}(-1)^{m_{w}-t}\binom{m_{w}-m_{w-1}}{t-m_{w-1}}\left[F^{s}\left(x_{w}^{(v)}\right)\right]^{t-m_{w-1}}\left[F^{s}\left(x_{w-1}^{(v)}\right)\right]^{m_{w}-t}\right\}, \tag{2.5}
\end{align*}
$$

where $F^{s}\left(x_{d+1}^{(\nu)}\right)=1$.

Proof. From (2.3), we can write

$$
\begin{equation*}
F_{r_{1}, r_{2}, \ldots r_{d} \cdot n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)=\prod_{v=1}^{b} \sum \sum P\left\{X_{r_{1} ; h}^{(v), s} \leq x_{1}^{(v)}, X_{r_{2} ; h}^{(v), s} \leq x_{2}^{(v)}, \ldots, X_{r_{d} ; n}^{(v), s} \leq x_{d}^{(v)}\right\} \tag{2.6}
\end{equation*}
$$

(2.6) is expressed as

$$
\begin{align*}
F_{r_{1}, r_{2}, \ldots r_{d} \cdot n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right) & =\prod_{v=1}^{b}\left\{\sum \sum_{m_{d}, \ldots, w_{2}, m_{1}}^{n, \ldots m_{1}, m_{2}} n!C \prod_{w=1}^{d+1}\left[F^{s}\left(x_{w}^{(v)}\right)-F^{s}\left(x_{w-1}^{(v)}\right)\right]^{m_{w}-m_{w-1}}\right\} \\
& =\prod_{v=1}^{b}\left\{\sum \sum \sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n, \ldots, m_{3}, m_{2}} n!C\left[F^{s}\left(x_{1}^{(v)}\right)\right]^{m_{1}} \prod_{w=2}^{d+1}\left[F^{s}\left(x_{w}^{(v)}\right)-F^{s}\left(x_{w-1}^{(v)}\right)\right]^{m_{w}-m_{w-1}}\right\}, \tag{2.7}
\end{align*}
$$

where $F^{s}\left(x_{0}^{(v)}\right)=0$.
Using binomial expansion in (2.7), (2.5) is obtained.

Theorem 2.3.

$$
\begin{align*}
F_{r n}(x) & =\sum_{m=r}^{n} \frac{1}{m!(n-m)!} \sum_{t=m}^{n}(-1)^{n-t}\binom{n-m}{t-m} \sum_{n_{s}=n-t+m}(t-m)!\operatorname{per}[\underset{\substack{n-t+m}}{ }(x)][s / .) \\
& =\sum \sum \sum_{m=r}^{n}\binom{n}{m} \sum_{t=m}^{n}(-1)^{n-t}\binom{n-m}{t-m}\left[F^{s}(x)\right]^{n-t+m} . \tag{2.8}
\end{align*}
$$

Proof. In (2.1) and (2.5), if $b=1, d=1,(2.8)$ is obtained.

Theorem 2.4.

$$
\begin{align*}
F_{1: n}(x) & =1-\frac{1}{n!} \sum_{t=0}^{n}(-1)^{n-t}\binom{n}{t} \sum_{n_{s}=n-t} t!\operatorname{per}[\underset{\substack{(x) \\
n-t}}{ }][s / .) \\
& =\sum \sum\left\{1-\sum_{t=0}^{n}(-1)^{n-t}\binom{n}{t}\left[F^{s}(x)\right]^{n-t}\right\} . \tag{2.9}
\end{align*}
$$

Proof. In (2.8), if $r=1$, (2.9) is obtained.

Theorem 2.5.

$$
\begin{align*}
F_{n: n}(x) & =\frac{1}{n!} \operatorname{per}[\mathrm{F}(x)] \\
& =\sum \sum\left[F^{s}(x)\right]^{n} \tag{2.10}
\end{align*}
$$

Proof. In (2.8), if $r=n,(2.10)$ is obtained.

3. Theorems for probability density function

In this section, the theorems related to $p d f$ of $\mathrm{X}_{r_{i}: n}, \mathrm{X}_{r_{2}: n}, \ldots, \mathrm{X}_{r_{r_{d}} \cdot n}$ are given. The theorems connect the pdf of order statistics of innid random vectors to that of order statistics of iid random vectors using (1.3) and (1.4).

Theorem 3.1.

$$
\begin{align*}
& f_{r_{1}, r_{2}, \ldots, r_{d} \cdot n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)=\prod_{v=1}^{b}\left\{D \sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots r_{3}-1, r_{2}-1}(-1)^{-d+\sum_{w=1}^{d}\left(r_{w+1}-t_{w}\right)} \prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}-r_{w}}\right. \tag{3.1}
\end{align*}
$$

where $\mathrm{f}\left(x_{w}^{(\nu)}\right)=\left(f_{1}\left(x_{w}^{(\nu)}\right), f_{2}\left(x_{w}^{(\nu)}\right), \ldots, f_{n}\left(x_{w}^{(\nu)}\right)\right)^{\prime}, \quad D=\left[\prod_{w=1}^{d+1}\left(r_{w}-r_{w-1}-1\right)!\right]^{-1}, r_{0}=0, r_{d+1}=n+1$, and $t_{0}=r_{1}-1$.

Proof. Consider the event

$$
\left\{\mathrm{x}_{1}<\mathrm{X}_{r_{i}: n} \leq \mathrm{x}_{1}+\delta \mathrm{x}_{1}, \mathrm{x}_{2}<\mathrm{X}_{r_{2}: n} \leq \mathrm{x}_{2}+\delta \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}<\mathrm{X}_{r_{d}: n} \leq \mathrm{x}_{d}+\delta \mathrm{x}_{d}\right\} .
$$

It can be written

$$
\begin{align*}
& P\left\{\mathrm{x}_{1}<\mathrm{X}_{r_{1}: n} \leq \mathrm{x}_{1}+\delta \mathrm{x}_{1}, \mathrm{x}_{2}<\mathrm{X}_{r_{2}: n} \leq \mathrm{x}_{2}+\delta \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}<\mathrm{X}_{r_{d}: n} \leq \mathrm{x}_{d}+\delta \mathrm{x}_{d}\right\} \\
& =P\left\{\mathrm{x}^{(1)}<\mathrm{X}^{(1)} \leq \mathrm{x}^{(1)}+\delta \mathrm{x}^{(1)}, \mathrm{x}^{(2)}<\mathrm{X}^{(2)} \leq \mathrm{x}^{(2)}+\delta \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(\mathrm{b})}<\mathrm{X}^{(\mathrm{b})} \leq \mathrm{x}^{(\mathrm{b})}+\delta \mathrm{X}^{(\mathrm{b})}\right\} \\
& =\prod_{v=1}^{b} P\left\{\mathrm{x}^{(v)}<\mathrm{X}^{(v)} \leq \mathrm{x}^{(v)}+\delta \mathrm{x}^{(v)}\right\} \\
& =\prod_{v=1}^{b} P\left\{x_{1}^{(v)}<X_{\mathrm{r}_{1}: n}^{(v)} \leq x_{1}^{(v)}+\delta x_{1}^{(v)}, x_{2}^{(v)}<X_{\mathrm{r}_{2}: n}^{(v)} \leq x_{2}^{(v)}+\delta x_{2}^{(v)}, \ldots, x_{\mathrm{d}}^{(\mathrm{v})}<X_{\mathrm{r}_{\mathrm{d}}: n}^{(\mathrm{v})} \leq x_{\mathrm{d}}^{(v)}+\delta x_{\mathrm{d}}^{(\mathrm{v})}\right\}, \tag{3.2}
\end{align*}
$$

where $\delta \mathrm{x}_{w}=\left(\delta x_{w}^{(1)}, \delta x_{w}^{(2)}, \ldots, \delta x_{w}^{(b)}\right)$ and $\delta \mathrm{x}^{(v)}=\left(\delta x_{1}^{(v)}, \delta x_{2}^{(\nu)}, \ldots, \delta x_{d}^{(\nu)}\right)$.
Dividing (3.2) by $\prod_{v=1}^{b} \prod_{w=1}^{d} \delta x_{w}^{(v)}$ and then letting $\delta x_{1}^{(\nu)}, \delta x_{2}^{(\nu)}, \ldots, \delta x_{d}^{(\nu)}$ tend to zero, we obtain $f_{r_{1}, r_{2}, \ldots r_{d} ; n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)=\prod_{v=1}^{b} \operatorname{Dper} \mathrm{~B}$,

Using properties of permanent, we can write

$$
\begin{aligned}
& =\sum_{t_{d}=0}^{n-r_{d}}(-1)^{n-r_{d}-t_{d}}\binom{n-r_{d}}{t_{d}} \cdots \sum_{t_{2}=0}^{r_{3}-r_{2}-1}(-1)^{r_{3}-r_{2}-1-t_{2}}\binom{r_{3}-r_{2}-1}{t_{2}} \sum_{t_{1}=0}^{r_{2}-r_{1}-1}(-1)^{r_{2}-r_{1}-1-t_{1}}\binom{r_{2}-r_{1}-1}{t_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{t_{d}=0}^{n-r_{d}} \cdots \sum_{t_{2}=0}^{r_{3}-r_{2}-1} \sum_{t_{1}=0}^{r_{2}-r_{1}-1}(-1)^{n+1-r_{1}-d-\sum_{w=1}^{d} t_{w}} \prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}} \\
& \cdot \sum_{n_{s}=n-t_{d}} t_{d}!\operatorname{per}\left[\underset{r_{2}-2-t_{1}}{\mathrm{~F}\left(x_{1}^{(v)}\right)} \underset{r_{3}-r_{2}-1-t_{2}+t_{1}}{\mathrm{~F}\left(x_{2}^{(v)}\right)} \ldots \underset{n-r_{d}-t_{d}+t_{d-1}}{\mathrm{~F}}(\underset{1}{(v)}) ~ \underset{1}{\mathrm{f}}\left(x_{1}^{(v)}\right) \underset{1}{\mathrm{f}}(\underset{1}{(v)}) \ldots \mathrm{f}\left(x_{d}^{(v)}\right)\right][s / .)
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{t_{d}=r_{d}}^{n} \ldots \sum_{t_{2}=r_{2} t_{1}=r_{1}}^{r_{r-1}}(-1)^{\left.-d+\sum_{w=1}^{d} r_{w+1}-t_{w}\right)} \prod_{w=1}^{d-1}\binom{r_{w+1}-r_{w}-1}{t_{w}-r_{w}} \tag{3.4}
\end{align*}
$$

Using (3.4) in (3.3), (3.1) is obtained.

Theorem 3.2.

$$
\begin{align*}
f_{r_{1}, r_{2}, \ldots r_{d} \cdot n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)= & \prod_{v=1}^{b}\left\{\sum \sum n!D\left[F^{s}\left(x_{1}^{(\nu)}\right)\right]^{r^{i-1}}\right. \\
\cdot & \left.\prod_{w=2}^{d+1} \sum_{t=r_{w-1}}^{r_{w}-1}(-1)^{r_{w}-1-t}\binom{r_{w}-r_{w-1}-1}{t-r_{w-1}}\left[F^{s}\left(x_{w-1}^{(v)}\right)\right]^{r_{w}-1-t}\left[F^{s}\left(x_{w}^{(v)}\right)\right]^{t-r_{w-1}} \prod_{w=1}^{d} f^{s}\left(x_{w}^{(v)}\right)\right\} . \tag{3.5}
\end{align*}
$$

Proof. (3.2) can be expressed as

$$
\begin{equation*}
\prod_{\nu=1}^{b} \sum \sum P\left\{x_{1}^{(\nu)}<X_{\mathrm{r}_{1} ; h}^{(v), s} \leq x_{1}^{(v)}+\delta x_{1}^{(v)}, x_{2}^{(v)}<X_{\mathrm{r}_{2} ; h}^{(v), s} \leq x_{2}^{(\nu)}+\delta x_{2}^{(v)}, \ldots, x_{\mathrm{d}}^{(\nu)}<X_{\mathrm{r}_{\mathrm{d}} ; h}^{(v), s} \leq x_{\mathrm{d}}^{(\nu)}+\delta x_{\mathrm{d}}^{(\nu)}\right\} . \tag{3.6}
\end{equation*}
$$

Dividing (3.6) by $\prod_{v=1}^{b} \prod_{w=1}^{d} \delta x_{w}^{(v)}$ and then letting $\delta x_{1}^{(v)}, \delta x_{2}^{(\nu)}, \ldots, \delta x_{d}^{(v)}$ tend to zero, we obtain

$$
\begin{align*}
& f_{r_{1}, r_{2}, \ldots r_{d} ; n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d}\right)=\prod_{v=1}^{b}\left\{\sum \sum n!D \prod_{w=1}^{d+1}\left[F^{s}\left(x_{w}^{(v)}\right)-F^{s}\left(x_{w-1}^{(v)}\right)\right]^{r_{w}-r_{w-1}-1} \prod_{w=1}^{d} f^{s}\left(x_{w}^{(v)}\right)\right\} \\
& =\prod_{v=1}^{b}\left\{\sum \sum n!D\left[F^{s}\left(x_{1}^{(v)}\right)\right]^{r_{1}-1} \prod_{w=2}^{d+1}\left[F^{s}\left(x_{w}^{(v)}\right)-F^{s}\left(x_{w-1}^{(v)}\right)\right]^{r_{w}-r_{w-1}-1} \prod_{w=1}^{d} f^{s}\left(x_{w}^{(v)}\right)\right\} . \tag{3.7}
\end{align*}
$$

Using binomial expansion in (3.7), (3.5) is obtained.

Theorem 3.3.

$$
\begin{align*}
& f_{r: n}(x)=\frac{1}{(r-1)!(n-r)!} \sum_{t=r}^{n}(-1)^{n-t}\binom{n-r}{t-r}_{n_{s}=n+r-t}(t-r)!\operatorname{per}[\underset{n+r-1-t}{\mathrm{~F}(x)} \underset{1}{\mathrm{f}}(x)][s / .) \\
& =\sum \sum r\binom{n}{r} \sum_{t=r}^{n}(-1)^{n-t}\binom{n-r}{t-r}\left[F^{s}(x)\right]^{n+r-1-t} f^{s}(x) . \tag{3.8}
\end{align*}
$$

Proof. In (3.1) and (3.5), if $b=1, d=1,(3.8)$ is obtained.

Theorem 3.4.

$$
\begin{align*}
f_{1: n}(x) & =\frac{1}{(n-1)!} \sum_{t=1}^{n}(-1)^{n-t}\binom{n-1}{t-1} \sum_{n_{s}=n+1-t}(t-1)!\underset{n}{\operatorname{pet}} \underset{\substack{\mathrm{~F} \\
n-t}}{\mathrm{f}(x)][s / .)} \\
& =\sum \sum n \sum_{t=1}^{n}(-1)^{n-t}\binom{n-1}{t-1}\left[F^{s}(x)\right]^{n-t} f^{s}(x) . \tag{3.9}
\end{align*}
$$

Proof. In (3.8), if $r=1$, (3.9) is obtained.

Theorem 3.5.

$$
\begin{align*}
f_{n: n}(x) & =\frac{1}{(n-1)!} \operatorname{per}[\underset{n-1}{ } \mathrm{~F}(x) \underset{1}{\mathrm{f}(x)]} \\
& =\sum \sum n\left[F^{s}(x)\right]^{n-1} f^{s}(x) \tag{3.10}
\end{align*}
$$

Proof. In (3.8), if $r=n$, (3.10) is obtained.

Theorem 3.6.

$$
\begin{align*}
& \left.f_{1, n n}\left(x_{1}, x_{2}\right)=\frac{1}{(n-2)!} \sum_{t=1}^{n-1}(-1)^{n-1-t}\binom{n-2}{t-1} \underset{\substack{n-1-t}}{\operatorname{per}\left[\mathrm{~F}\left(x_{1}\right) \mathrm{F}\left(x_{2}\right)\right.} \begin{array}{c}
\mathrm{f}\left(x_{1}\right) \\
1
\end{array} \quad \mathrm{f}\left(x_{2}\right)\right] \\
& =\sum \sum n(n-1) \sum_{t=1}^{n-1}(-1)^{n-1-t}\binom{n-2}{t-1}\left[F^{s}\left(x_{1}\right)\right]^{n-1-t}\left[F^{s}\left(x_{2}\right)\right]^{t-1} f^{s}\left(x_{1}\right) f^{s}\left(x_{2}\right), \quad x_{1}<x_{2} . \tag{3.11}
\end{align*}
$$

Proof. In (3.1) and (3.5), if $b=1, d=2$ and $r_{1}=1, r_{2}=n,(3.11)$ is obtained.

Theorem 3.7.

$$
\begin{align*}
f_{1,2, \ldots k ; n}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right)= & \prod_{v=1}^{b}\left\{\frac{1}{(n-k)!} \sum_{t=k}^{n}(-1)^{n-t}\binom{n-k}{t-k} \sum_{n_{s}=n-t+k}(t-k)!\right. \\
& \quad . \operatorname{per}\left[\begin{array}{c}
\left.\left.\mathrm{F}\left(x_{k}^{(v)}\right) \mathrm{f}\left(x_{1}^{(v)}\right) \mathrm{I}\left(x_{2}^{(v)}\right) \ldots \mathrm{f}\left(x_{k}^{(v)}\right)\right][s / .)\right\} \\
1
\end{array}\right. \\
= & \prod_{v=1}^{b}\left\{\sum \sum \frac{n!}{(n-k)!} \sum_{t=k}^{n}(-1)^{n-t}\binom{n-k}{t-k}\left[F^{s}\left(x_{k}^{(v)}\right)\right]^{n-t} \prod_{w=1}^{k} f^{s}\left(x_{w}^{(v)}\right)\right\} \tag{3.12}
\end{align*}
$$

Proof. In (3.1) and (3.5), if $d=k$ and $r_{1}=1, r_{2}=2, \ldots, r_{k}=k,(3.12)$ is obtained.

References

[1] Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N., 1992, A first course in order statistics, John Wiley and Sons Inc., New York.
[2] Balakrishnan, N., 2007, Permanents, order statistics, outliers and robustness, Rev. Mat. Complut.,20(1), 7-107.
[3] Balasubramanian, K. and Beg, M. I., 2003, On special linear identities for order statistics, Statistics, 37(4), 335-339.
[4] Balasubramanian, K., Balakrishnan, N. and Malik, H.J., 1994, Identities for order statistics from nonindependent non- identical variables, Sankhyā, Ser. B, 56(1), 67-75.
[5] Bapat, R. B. and Beg, M. I., 1989, Order statistics for nonidentically distributed variables and permanents, Sankhyā, Ser. A, 51(1), 79-93.
[6] Beg, M. I., 1991, Recurrence relations and identities for product moments of order statistics corresponding to non-identically distributed variables, Sankhyā, Ser. A, 53(3), 365-374.
[7] Cao, G. and West, M., 1997, Computing distributions of order statistics, Commun. Statist.- Theor. Meth., 26(3), 755-764.
[8] Childs, A. and Balakrishnan, N., 2006, Relations for order statistics from non-identical logistic random variables and assessment of the effect of multiple outliers on bias of linear estimators, J. Statist. Plann. Inference, 136(7), 2227-2253.
[9] Corley, H. W., 1984, Multivariate order statistics, Commun. Statist.- Theor. Meth., 13(10), 1299-1304.
[10] David, H.A., 1981, Order statistics, John Wiley and Sons Inc., New York.
[11] Gan, G. and Bain, L.J., 1995, Distribution of order statistics for discrete parents with applications to censored sampling, J. Statist. Plann. Inference, 44(1), 37-46.
[12] Goldie, C. M. and Maller, R. A., 1997, Generalized densities of order statistics, Statistica Neerlandica, 53(22), 222-246.
[13] Guilbaud, O., 1982, Functions of non-i.i.d. random vectors expressed as functions of i.i.d. random vectors, Scand. J. Statist., 9(4), 229-233.
[14] Khatri, C.G., 1962, Distributions of order statistics for discrete case, Annals of the Ins. of Stat. Math., 14(1), 167-171.
[15] Reiss, R.-D., 1989, Approximate distributions of order statistics, Springer-Verlag, New York.
[16] Vaughan, R.J. and Venables, W.N., 1972, Permanent expressions for order statistics densities, J. Roy. Statist. Soc., Ser. B, 34(2), 308-310.

A new result on absolute summability factors

HÜSEYİN BOR
Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey
E-mail:bor@erciyes.edu.tr, hbor33@gmail.com

Abstract

In the present paper, a known result of Mazhar [5] on $\left|\bar{N}, p_{n}\right|_{k}$ summability has been generalized for $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability factors. Some new results have also been obtained.

1 Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) . \tag{1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{2}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$.The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \sigma_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 . \tag{4}
\end{equation*}
$$

In the special case $p_{n}=1$ for all values of $\mathrm{n},\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ (see [4]) summability. Let $\left(\theta_{n}\right)$ be any sequence of positive constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, if (see [6])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{5}
\end{equation*}
$$

If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also, if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability.Furthermore, if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ (see [2]) summability.
2. Known result. Mazhar [5] has proved the following theorem .

Theorem A. If

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n}}\left|s_{n} \lambda_{n}\right|^{k}<\infty, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|s_{n}\right|\left|\Delta \lambda_{n}\right|<\infty \tag{7}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
3. Main result. The aim of this paper is to generalize Theorem A for $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability. Now we shall prove the following theorem.
Theorem. Let $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. If the conditions of Theorem A are satisfied with the condition (6) replaced by:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|s_{n} \lambda_{n}\right|^{k}<\infty, \tag{8}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$. If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then we get Theorem A. In this case condition (8) reduces to condition (6) and the condition $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ which is a non-increasing sequence is automatically satisfied.
4. Proof of the Theorem. Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. Then, by definition, we have

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=1}^{v} a_{r} \lambda_{r} . \tag{9}
\end{equation*}
$$

Then, using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1} & =-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} s_{v} \lambda_{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v}+\frac{p_{n}}{P_{n}} s_{n} \lambda_{n} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}, \quad \text { say }
\end{aligned}
$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3 \tag{10}
\end{equation*}
$$

Firstly, by using Hölder's inequality, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k} & =\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} s_{v} \lambda_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\left|s_{v} \lambda_{v}\right|^{k} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v}\left|s_{v} \lambda_{v}\right|^{k}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} p_{v}\left|s_{v} \lambda_{v}\right|^{k}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|s_{v} \lambda_{v}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

in view of (8). Also , we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k} & =\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|s_{v} \| \Delta \lambda_{v}\right| \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|s_{v} \| \Delta \lambda_{v}\right|\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} P_{v}\left|s_{v} \| \Delta \lambda_{v}\right|\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left|s_{v} \| \Delta \lambda_{v}\right|\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1)\left(\frac{\theta_{1} p_{1}}{P_{1}}\right)^{k-1} \sum_{v=1}^{m}\left|s_{v} \| \Delta \lambda_{v}\right|
\end{aligned}
$$

$$
=O(1) \sum_{v=1}^{m}\left|s_{v} \| \Delta \lambda_{v}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty
$$

in view of (7). Finally, we have that

$$
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k}=\sum_{n=1}^{m} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|s_{n} \lambda_{n}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
$$

in view of (8). Therefore we get that

$$
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2,3
$$

This completes the proof of the Theorem. If we take $p_{n}=1$ for all values of n and $\theta_{n}=n$, then we get a result for $|C, 1|_{k}$ summability factors. Also, if we take $p_{n}=1$ for all values of n, then we have a new result for $\left|C, 1, \theta_{n}\right|_{k}$ summability factors. Furthermore, if we take $\theta_{n}=n$, then we have another new result for $\left|R, p_{n}\right|_{k}$ summability factors.

References

[1] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc., 98 (1986), 81-84.
[2] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009-1012.
[3] H. Bor, A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, Rend. Math. Appl. (7) , 12 (1992), 937-942.
[4] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[5] S. M. Mazhar, An aspect of local property of $\left|\bar{N}, p_{n}\right|_{k}$ summability of Fourier series, Int. J. Appl. Math., 9 (2002), 141-152.
[6] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115 (1992) , 313-317.

STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES IN TOPOLOGICAL GROUPS

H. ÇAKALLI AND E. SAVAŞ

Abstract

The idea of statistical convergence of double sequences was first introduced by Mursaleen and Edeley [12]) while the idea of statistical convergence of single sequences was first studied by Fast [7] and the rapid developments were started after the papers of Salat [14] and Fridy [8]. Nowadays it has become one of the most active area of research in the field of summability. In this paper, we give an extension of statistical convergence of double sequences to topological groups and give theorems in this general setting.

1. Introduction

Looking through historically to statistical convergence of single sequences, we recall that the concept of statistical convergence of sequences was first introduced by Fast [7] as an extension of the usual concept of sequential limits and also independently by Buck [1]. Schoenberg [15] gave some basic properties of statistical convergence and also studied the concept as a summability method. Over the years statistical convergence has been examined in trigonometric series in [16], studied by J.Connor [3], J.S.Connor [4], Salat [14], and Fridy [8]. Most of the existing works on statistical convergence have been restricted to real or complex sequences except the works of Kolk, Maddox and Çakall. This notion was used by Kolk in [9] to extend statistical convergence to normed spaces and Maddox [11] extended to locally convex Hausdorff topological linear spaces giving a representation of statistical convergence in terms of strong summability by using a modulus function, introduced in [10]; and also in [5] and [6], Çakallı extended this notation to topological Hausdorff groups.

Recall that for a subset M of \mathbf{N} the asymptotic density of M, denoted by $\delta(M)$, is given by

$$
\delta(M)=\lim _{n \rightarrow \infty} \frac{1}{n}|\{k \leq n: k \in M\}|
$$

if this limit exists, where $|\{k \leq n: k \in M\}|$ denotes the cardinality of the set $\{k \leq n: k \in M\}$. A sequence $\mathbf{x}=\left(x_{n}\right)$ is statistically convergent to ℓ if

$$
\delta\left(\left\{n:\left|x_{n}-\ell\right| \geq \epsilon\right\}\right)=0
$$

for every $\epsilon>0$. In this case ℓ is called the statistical limit of \mathbf{x}.
A sequence $\left(x_{k}\right)$ of points in a topological group X, is called statistically convergent to an element ℓ of X if $\delta\left(M_{U}\right)=0$ where $M_{U}=\left\{k: x_{k}-\ell \notin U\right\}$ for every

[^18]neighborhood U of 0 , i.e.
$$
\delta\left(M_{U}\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{k \leq n: x_{k}-\ell \notin U\right\}\right|=0
$$
for every neighbourhood U of 0 and a sequence $\left(x_{k}\right)$ of points in a topological group X, is called statistically Cauchy if for every neighbourhood U of 0 there exists a number $N=N(\epsilon)$ such that
$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{k \leq n: x_{k}-x_{N} \notin U\right\}\right|=0
$$

The concept of statistical convergence of double sequences was first introduced by Mursaleen and Edeley [12] who have given main definition for double sequences $\mathbf{x}=$ $\left(x_{j k}\right)$ and proved some related results supporting by some interesting examples. By the convergence of a double sequence we mean the convergence in Pringsheims sense [13]. A double sequence $\mathbf{x}=\left(x_{j k}\right)_{j, k=0}^{\infty}$ is said to be convergent in the Pringsheims sense if for every $\epsilon>0$ there exists $N \in \mathbf{N}$ such that $\left|x_{j k}-L\right|<\epsilon$ whenever $j, k \geq N$. L is called the Pringsheim limit of \mathbf{x}. A double sequence $\mathbf{x}=\left(x_{j k}\right)$ is said to be Cauchy sequence if for every $\epsilon>0$ there exists $N \in \mathbf{N}$ such that $\left|x_{p q}-x_{j k}\right|<\epsilon$ for all $p \geq j \geq N$ and $q \geq k \geq N$.

In a topological group X, the above definitions become as in the following: a double sequence $\mathbf{x}=\left(x_{j k}\right)_{j, k=0}^{\infty}$ of points in X is said to be convergent to a point ℓ in X in the Pringsheims sense if for every neighbourhood U of 0 there exists $N \in \mathbf{N}$ such that $x_{j k}-\ell \in U$ whenever $j, k \geq N . \ell$ is called the Pringsheim limit of \mathbf{x}. A double sequence $\mathbf{x}=\left(x_{j k}\right)$ of points in X is said to be a Cauchy sequence if for every neighbourhood U of 0 there exists $N \in \mathbf{N}$ such that $x_{p q}-x_{j k} \in U$ for all $p \geq j \geq N$ and $q \geq k \geq N$.

The purpose of this paper is to study statistical convergence of double sequences in topological groups and to give some important theorems.

2. Definitions and Notation

By X, we will denote an abelian topological Hausdorff group, written additively, which satisfies the first axiom of countability. For a subset A of $X, s(A)$ will denote the set of all sequences $\left(x_{n}\right)$ such that x_{n} is in A for $n=1,2, \ldots ; c(X)$ will denote the set of all convergent sequences.

In [6], a sequence $\left(x_{n}\right)$ in X is called to be statistically convergent to an element ℓ of X if for each neighbourhood U of 0 ,

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{k \leq n: x_{k}-\ell \notin U\right\}\right|=0
$$

and is called statistically Cauchy in X if for each neighbourhood U of 0 there exists a positive integer $n_{0}(U)$, depending on the nighbourhood U, such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{k \leq n: x_{k}-x_{n_{0}(U)} \notin U\right\}\right|=0
$$

where the vertical bars indicate the number of elements in the enclosed set. The set of all statistically convergent sequences in X is denoted by $\operatorname{st}(X)$ and the set of all statistically Cauchy sequences in X is denoted by $\operatorname{stC}(X)$. It is known that $\operatorname{stC}(X)=s t(X)$ when X is complete. By the convergence of a double sequence in a topological group X we mean the convergence in Pringsheims sense. A double sequence $\mathbf{x}=\left(x_{j k}\right)_{j, k=0}^{\infty}$ is said to be convergent in the Pringsheims sense if for every neighbourhood U of 0 there exists $N \in \mathbf{N}$ such that $x_{j k}-\ell \in U$ whenever
$j, k \geq N$. ℓ is called the Pringsheim limit of \mathbf{x}. A double sequence $\mathbf{x}=\left(x_{j k}\right)_{j, k=0}^{\infty}$ is said to be a Cauchy sequence if for every neighbourhood U of 0 there exists $N \in \mathbf{N}$ such that $x_{p q}-x_{j k} \in U$ whenever $p \geq j \geq N$ and $q \geq k \geq N$.

3. Statistical convergence

Let $K \subset N x N$ be a two-dimensional set of positive integers and let $K(n, m)$ be the numbers of (i, j) in K such that $i \leq n$ and $j \leq m$. Then the two-dimensional analogue of natural density can be defined as follows. The lower asymptotic density of a set $K \subset N x N$ is defined as

$$
\underline{\delta_{2}}(K)=\liminf _{n, m} \frac{K(n, m)}{n m}
$$

In case the sequence $\left(\frac{K(n, m)}{n m}\right)$ has a limit in Pringsheims sense then we say that K has a double natural density and is defined as

$$
\delta_{2}(K)=\lim _{n, m} \frac{K(n, m)}{n m}
$$

For example, let $K=\left\{\left(i^{2}, j^{2}\right): i, j \in \mathbf{N}\right\}$. Then

$$
\delta_{2}(K)=\lim _{n, m} \frac{K(n, m)}{n m} \leq \lim _{n, m} \frac{\sqrt{n} \sqrt{m}}{n m}=0
$$

i.e., the set K has double natural density zero, while the set $\{(i, 2 j): i, j \in \mathbf{N}\}$ has double natural density $1 / 2$. Note that, if we set $n=m$, we have a twodimensional natural density considered by Christopher [2]. Mursaleen and Edely called a real double sequence $\mathbf{x}=\left(x_{j k}\right)$ statistically convergent to the number ℓ if for each $\epsilon>0$, the set $\left\{(j, k), j \leq n\right.$ and $\left.k \leq m:\left|x_{j k}-\ell\right| \geq \epsilon\right\}$ has double natural density zero. In this case we write $s t_{2}-\lim _{j, k} x_{j k}=\ell$ and we denote the set of all statistically convergent double sequences by $s t_{2}$. Now we give definition of statistical convergence of double sequences $\mathbf{x}=\left(x_{j k}\right)_{j, k=0}^{\infty}$ of points in a topological group in the following.

In a topological group, double sequence $\mathbf{x}=\left(x_{j k}\right)$ is called statistically convergent to a point ℓ of X if for each neighbourhoud U of 0 the set

$$
\left\{(j, k), j \leq n ; \text { and } ; k \leq m: x_{j k}-\ell \notin U\right\}
$$

has double natural density zero. In this case we write $s t_{2}(X)-l i m_{j, k} x_{j k}=\ell$ and we denote the set of all statistically convergent double sequences by $s t_{2}(X)$.

If \mathbf{x} is a convergent double sequence of points in X, then it is also statistically convergent to the same point. Since there are only a finite number of bounded (unbounded) rows and/or columns,

$$
K(n, m) \leq s_{1} n+s_{2} m
$$

where s_{1} and s_{2} are finite numbers, which we can conclude that \mathbf{x} is statistically convergent.

A statistically convergent double sequence has a unique limit, i.e. if \mathbf{x} is statistically convergent to elements ℓ_{1} and ℓ_{2} of X, then $\ell_{1}=\ell_{2}$.

If \mathbf{x} is statistically convergent, then \mathbf{x} need not be convergent. For example, let $\mathbf{x}=\left(x_{j k}\right)$ be defined as $x_{j k}=j k z$, if j and k are squares; z, otherwise where z
is a fixed non-zero element of X. It is easy to see that $s t_{2}-\lim x_{j k}=z$, since the cardinality of the set $\left\{(j, k): x_{j k}-z \notin U\right\}$ satisfies the inequality

$$
\left|\left\{(j, k): x_{j k}-z \notin U\right\}\right| \leq \sqrt{j} \sqrt{k}
$$

for every neighborhood U of 0 . But \mathbf{x} is not convergent.
For a subset A of $X, s_{2}(A)$ will denote the set of all double sequences $\left(x_{n m}\right)$ of points in $A ; c_{2}(X)$ will denote the set of all convergent double sequence of points in X.
Theorem 1. A double sequence $\mathbf{x}=\left(x_{j k}\right)$ of points in X is statistically convergent to ℓ if and only if there exists a subset $K \subset \mathbf{N} x \mathbf{N}$ such that $\delta_{2}(K)=1$ and $\lim _{n, k \rightarrow \infty} x_{j k}=\ell$ where limit is being taken over the set K, i.e., $(j, k) \in K$.

Proof. Let \mathbf{x} be statistically convergent to ℓ, and $\left(U_{r}\right)$ be a base of nested closed neighbourhoods of 0 . Write

$$
\begin{gathered}
K_{r}=\left\{(j, k) \in \mathbf{N} x \mathbf{N}: x_{j k}-\ell \notin U_{r}\right\} \\
M_{r}=\left\{(j, k) \in \mathbf{N} x \mathbf{N}: x_{j k}-\ell \in U_{r}\right\} \quad(r=1,2,, \ldots)
\end{gathered}
$$

Then $\delta_{2}\left(K_{r}\right)=0$ and

$$
\text { (1) } M_{1} \supset M_{2} \ldots \supset M_{i} \supset M_{i+1} \supset \ldots
$$

and

$$
\begin{equation*}
\delta_{2}\left(M_{r}\right)=1, \quad r=1,2, \ldots \tag{2}
\end{equation*}
$$

Now we will show that for $(j, k) \in M_{r},\left(x_{j k}\right)$ is convergent to ℓ. Suppose that $\left(x_{j k}\right)$ is not convergent to ℓ so that there is a neighbourhood U of 0 such that

$$
x_{j k}-\ell \notin U
$$

for infinitely many terms. Let $U_{r} \subset U(r=1,2, \ldots)$ and $M_{U}=\left\{(j, k): x_{j k}-\ell \in U\right\}$. Then

$$
\delta_{2}\left(M_{U}\right)=0
$$

and by (1), $M_{r} \subset M_{U}$. Hence $\delta_{2}\left(M_{r}\right)=0$ which is a contradiction to (2). Thus $\left(x_{j k}\right)$ is convergent to ℓ.

Conversely, suppose that there exists a subset $K=\{(j, k)\} \subseteq \mathbf{N} x \mathbf{N}$ such that $\delta_{2}(K)=1$ and $\lim _{j, k} x_{j k}=\ell$, i.e. there exists an $n_{o} \in \mathbf{N}$ such that for each neighbourhood U of 0 ,

$$
x_{j k}-\ell \in U \text { for every } j, k \geq n_{o}
$$

Now

$$
K_{U}=\left\{(j, k): x_{j k}-\ell \notin U\right\} \subseteq \mathbf{N} x \mathbf{N} \backslash\left\{\left(j_{n_{o}+1}, k_{n_{o}+1}\right),\left(j_{n_{o}+2}, k_{n_{o}+2}\right), \ldots\right\}
$$

Hence

$$
\delta_{2}\left(K_{U}\right) \leq 1-1=0
$$

It follows that \mathbf{x} is statistically convergent to ℓ.
Corollary 2. If a double sequence $\left(x_{j k}\right)$ is statistically convergent to a point ℓ, then there exists a sequence $\left(y_{j k}\right)$ such that $\lim _{j, k} y_{j k}=\ell$ and $\delta_{2}\left\{(j, k): x_{j k}=y_{j k}\right\}=1$, i.e., $x_{j k}=y_{j k}$ for almost all j, k.

4. Statisticallly Cauchy double sequences in topological groups

In a topological group, double sequence $\mathbf{x}=\left(x_{j k}\right)$ is called statistically Cauchy if for each neighbourhoud U of 0 there exists $N=N(U)$ and $M=M(U)$ such that for all $j, p \geq N, k, p \geq M$ the set $\left\{(j, k) j \leq n, k \leq m: x_{j k}-x_{p q} \notin U\right\}$ has double natural density zero. In this case we denote the set of all statistically Cauchy double sequences by $s t_{2} C(X)$.
Theorem 3. Let X be complete. A double sequence $\mathbf{x}=\left(x_{j k}\right)$ of points in a X is statistically convergent if and only if \mathbf{x} is statistically Cauchy.

Proof. Take any statistically convergent double sequence $\mathbf{x}=\left(x_{j k}\right)$ with statistical limit ℓ. Let U be any neighbourhood of 0 . Then we may choose a symmetric neighbourhood W of 0 such that

$$
W+W \subset U
$$

Then for this neighbourhood W of 0 , the set

$$
\left\{(j, k): j \leq n, k \leq m \text { and } x_{j k}-\ell \in W\right\}
$$

has double natural density 0 . For each nighbourhood U of 0 , the set $\left\{(j, k) j \leq n, k \leq m: x_{j k}-\ell \notin U\right\}$ has double natural density zero. Then we may choose numbers M and N such that $x_{N M}-\ell \notin U$. Now write

$$
\begin{gathered}
A_{U}=\left\{(j, k) j \leq n, k \leq m: x_{j k}-x_{N M} \notin U\right\} \\
B_{W}=\left\{(j, k) j \leq n, k \leq m: x_{j k}-\ell \notin W\right\} \\
C_{W}=\left\{(j, k) j=N \leq n, k=M \leq m: x_{N M}-\ell \notin W\right\} .
\end{gathered}
$$

Then $A_{U} \subset B_{W} \bigcup C_{W}$ and hence $\delta_{2}\left(A_{U}\right) \leq \delta_{2}\left(B_{W}\right)+\delta_{2}\left(C_{W}\right)=0$. Therefore we get that \mathbf{x} is statistically Cauchy.

To prove the converse suppose that there is a statistically Cauchy sequence \mathbf{x} which is not statistically convergent. Then we may find natural numbers N and M such that the set A_{U} has double natural density zero. It follows from this that the set

$$
E_{U}=\left\{(j, k) j \leq n, k \leq m: x_{j k}-x_{N M} \in U\right\}
$$

has double natural density 1 . We may choose a neighborhood W of 0 such that $W+W \subset U$. Now take any fixed non-zero element ℓ of X. Write $x_{j k}-x_{N M}=$ $x_{j k}-\ell+\ell-x_{N M}$. It follows from this equality that $x_{j k}-x_{N M} \in U$ if $x_{j k}-\ell \in W$. Since x is not statistically convergent to ℓ, the set B_{W} has double natural density 1., i.e., the set $\left\{(j, k) j \leq n, k \leq m: x_{j k}-\ell \notin W\right\}$ has double natural density 0 . Hence the set $\left\{(j, k) j \leq n, k \leq m: x_{j k}-x_{N M} \in U\right\}$ has double natural density 0 , i.e. the set A_{U} has double natural density 1 which is a contradiction. Hence this completes the proof.

Finally from theorems 1 and 3 we can state the following theorem and the proof is easy and omitted.
Theorem 4. If X is complete, then the following conditions are equivalent:
(a) \mathbf{x} is statistically convergent to ℓ;
(b) \mathbf{x} is statistically Cauchy;
(c) there exists a subsequence \mathbf{y} of \mathbf{x} such that $\lim _{j, k} y_{j k}=\ell$.

References

[1] R.C. Buck, Generalized asymptotic density, Amer. J. Math. 75 (1953) 335-346.
[2] J. Christopher, The asymptotic density of some k-dimensional sets, Amer. Math. Monthly 63 (1956) 399-401.
[3] J.Connor, A topological and functional analytic approach to statistical convergence, Applied Numer. Harmon. Anal., Birkhauser, Boston, MA, 1999, 403-413. MR 2004e:26004
[4] J.S. Connor, R-type summability methods, Cauchy criteria, p-sets, and statistical convergence, Proc.Amer.Math.Soc. 115, 1992, 319-327. MR 92i:40005
[5] H.Çakall, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26 (2),(1995), 113-119. MR 95m:40016
[6] -, On Statistical Convergence in topological groups, Pure and Appl. Math. Sci. 43, No.1-2, 1996, 27-31. MR 99b:40006
[7] H.Fast, Sur la convergence statistique, Colloq. Math. 2, 1951, 241-244. MR 14:29c
[8] J.A.Fridy, On statistical convergence, Analysis, 5, 1985, 301-313. MR 87b:40001
[9] E.Kolk, The statistical convergence in Banach spaces, Tartu Ül. Toime. 928, 1991, 41-52. MR 93c:40003
[10] I.J.Maddox, Sequence spaces defined by a modulus, Math. Cambridge Phil. Soc. 100, 1986, 161-166. MR 87h:46024
[11] I.J.Maddox, Statistical convergence in locally convex spaces, Math. Cambr. Phil. Soc. 104,1988, 141-145. MR 89k:40012
[12] Mursaleen and Osama H.H.Edely, Statistical convergence of double sequences, Journal of Mathematical Anal.Appl. 288, (2003), 223-231.
[13] A. Pringsheim, Zur Ttheorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900) 289-321.
[14] T.Salat, On statistically convergent sequences, Math.Slovaca 30, 1980, 139-150.
[15] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361-375.
[16] A.Zygmund, Trigonometric series, 2nd ed., vol.II, Cambridge Univ. Press.London and New York, 1979. MR 58:29731

Hüseyİn Çakalli, Department of Mathematics, Faculty of science and letters, Maltepe University, Marmara Eğİtİm Köyü, TR 34857, Maltepe, İstanbul-Türkİye Phone: $(+90216) 6261050$ Ext:1960, FAX: $(+90216) 6261113$

Ekrem Savaş, Department of Mathematics, Faculty of science and letters, Tİcaret University, Üsküdar, İstanbul-TÜrkİye

E-mail address: hcakalli@maltepe.edu.tr

Approximately left derivations: An alternative fixed point approach

A. Ebadian and S. Shams
Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran
e-mail: ebadian.ali@gmail.com, sa40shams@yahoo.com

Abstract

Using fixed point methods, we investigate the generalized Hyers-Ulam-Rassias stability of left derivations and left Jordan derivations on Banach algebras associated with the following generalized Cauchy-Jensen type functional equation $$
\mu f\left(\frac{x+y}{2}+z\right)+\mu f\left(\frac{x-y}{2}+z\right)=f(\mu x)+2 f(\mu z) \quad(\mu \in \mathbb{T})
$$

1. Introduction

The stability of functional equations was first introduced by S. M. Ulam [21] in 1940. More precisely, he proposed the following problem: Given a group G_{1}, a metric group $\left(G_{2}, d\right)$ and a positive number ϵ, does there exist a $\delta>0$ such that if a function $f: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(f(x y), f(x) f(y))<\delta$ for all $x, y \in G 1$, then there exists a homomorphism $T: G_{1} \rightarrow G_{2}$ such that $d(f(x), T(x))<\epsilon$ for all $x \in G_{1}$? As mentioned above, when this problem has a solution, we say that the homomorphisms from G_{1} to G_{2} are stable. In 1941, D. H. Hyers [10] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G_{1} and G_{2} are Banach spaces. In 1978, Th. M. Rassias [18] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences.

This phenomenon of stability that was introduced by Th. M. Rassias [18] is called the Hyers-Ulam-Rassias stability. According to Th. M. Rassias theorem:
Theorem 1.1. Let $f: E \longrightarrow E^{\prime}$ be a mapping from a norm vector space E into a Banach space E^{\prime} subject to the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then there exists a unique additive mapping $T: E \longrightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E$. If $p<0$ then inequality (1.3) holds for all $x, y \neq 0$, and (1.4) for $x \neq 0$. Also, if the function $t \mapsto f(t x)$ from \mathbb{R} into E^{\prime} is continuous for each fixed $x \in E$, then T is linear.

During the last decades several stability problems of functional equations have been investigated by many mathematicians. A large list of references concerning the stability of functional equations can be found in $[7,11,14,19]$.
Approximate derivations was first investigated by K.-W. Jun and D.-W. Park [13]. Recently,

[^19]the stability of derivations have been investigated by some authors; see [1, 12, 13, 15] and references therein.

On the other hand Cădariu and Radu applied the fixed point method to the investigation of the functional equations. (see also [4, 5, 6, 16, 17, 20]).

Let A be an algebra and let X be a Banach left A-module. Note that a linear map $D: A \rightarrow X$ is called a left derivation (left Jordan derivation) if

$$
D(a b)=a D(b)+b D(a) \quad\left(D\left(a^{2}\right)=2 a D(a)\right)
$$

for all $a, b \in A$. In this paper, we will adopt the fixed point alternative of Cădariu and Radu to prove the generalized Hyers-Ulam-Rassias stability of left derivations and Jordan left derivations on Banach algebras associated with the following generalized Cauchy-Jensen type functional equation

$$
\mu f\left(\frac{x+y}{2}+z\right)+\mu f\left(\frac{x-y}{2}+z\right)=f(\mu x)+2 f(\mu z)(\mu \in \mathbb{T}) .
$$

Throughout this paper assume that A is a Banach algebra and X is a left Banach A-module.

2. Left derivations

Before proceeding to the main results, we will state the following theorem.
Theorem 2.1. (The alternative of fixed point [3]). Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive mapping $T: \Omega \rightarrow \Omega$ with Lipschitz constant L. Then for each given $x \in \Omega$, either $d\left(T^{m} x, T^{m+1} x\right)=\infty$ for all $m \geq 0$, or other exists a natural number m_{0} such that

$$
d\left(T^{m} x, T^{m+1} x\right)<\infty \text { for all } m \geq m_{0} ;
$$

the sequence $\left\{T^{m} x\right\}$ is convergent to a fixed point y^{*} of T;
y^{*} is the unique fixed point of T in the set $\Lambda=\left\{y \in \Omega: d\left(T^{m_{0}} x, y\right)<\infty\right\}$;
$d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in \Lambda$.
By a following similar way as in [16], we obtain the next theorem.
Theorem 2.2. Let $f: A \rightarrow X$ be a mapping for which there exists a function $\phi: A^{5} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\left\|\mu f\left(\frac{x+y}{2}+z\right)+\mu f\left(\frac{x-y}{2}+z\right)-f(\mu x)-2 f(\mu z)+f(a b)-a f(b)-b f(a)\right\| \leq \phi(x, y, z, a, b), \tag{2.1}
\end{equation*}
$$

for all $\mu \in \mathbb{T}$ and all $x, y, z, a, b \in A$. If there exists an $L<1$ such that $\phi(x, y, z, a, b) \leq$ $2 L \phi\left(\frac{x}{2}, \frac{y}{2}, \frac{y}{2}, \frac{a}{2}, \frac{b}{2}\right)$ for all $x, y, z, a, b \in A$, then there exists a unique left derivation $D: A \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-D(x)\| \leq \frac{L}{1-L} \phi(x, 0,0,0,0) \tag{2.2}
\end{equation*}
$$

for all $x \in A$.

Approximately left derivations...

Proof. It follows from $\phi(x, y, z, a, b) \leq 2 L \phi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}, \frac{a}{2}, \frac{b}{2}\right)$ that

$$
\begin{equation*}
\lim _{j} 2^{-j} \phi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} a, 2^{j} b\right)=0 \tag{2.3}
\end{equation*}
$$

for all $x, y, z, a, b \in A$.
Put $\mu=1, y=z=a=b=0$ in (2.1) to obtain

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \phi(x, 0,0,0,0) \tag{2.4}
\end{equation*}
$$

for all $x \in A$. Hence,

$$
\begin{equation*}
\left\|\frac{1}{2} f(2 x)-f(x)\right\| \leq \frac{1}{2} \phi(2 x, 0,0,0,0) \leq L \phi(x, 0,0,0,0) \tag{2.5}
\end{equation*}
$$

for all $x \in A$.
Consider the set $X:=\{g \mid g: A \rightarrow B\}$ and introduce the generalized metric on X :

$$
d(h, g):=\inf \left\{C \in \mathbb{R}^{+}:\|g(x)-h(x)\| \leq C \phi(x, 0,0,0,0) \forall x \in A\right\}
$$

It is easy to show that (X, d) is complete. Now we define the linear mapping $J: X \rightarrow X$ by

$$
J(h)(x)=\frac{1}{2} h(2 x)
$$

for all $x \in A$. By Theorem 3.1 of [3],

$$
d(J(g), J(h)) \leq L d(g, h)
$$

for all $g, h \in X$.
It follows from (2.5) that

$$
d(f, J(f)) \leq L
$$

By Theorem 2.1, J has a unique fixed point in the set $X_{1}:=\{h \in X: d(f, h)<\infty\}$. Let D be the fixed point of $J . D$ is the unique mapping with

$$
D(2 x)=2 D(x)
$$

for all $x \in A$ satisfying there exists $C \in(0, \infty)$ such that

$$
\|D(x)-f(x)\| \leq C \phi(x, 0,0,0,0)
$$

for all $x \in A$. On the other hand we have $\lim _{n} d\left(J^{n}(f), D\right)=0$. It follows that

$$
\begin{equation*}
\lim _{n} \frac{1}{2^{n}} f\left(2^{n} x\right)=D(x) \tag{2.6}
\end{equation*}
$$

for all $x \in A$. It follows from $d(f, D) \leq \frac{1}{1-L} d(f, J(f))$, that

$$
d(f, D) \leq \frac{L}{1-L}
$$

This implies the inequality (2.2). It follows from (2.1), (2.3) and (2.6) that

$$
\begin{aligned}
& \left\|D\left(\frac{x+y}{2}+z\right)+D\left(\frac{x-y}{2}+z\right)-D(x)-2 D(z)\right\| \\
& \quad=\lim _{n} \frac{1}{2^{n}}\left\|f\left(2^{n-1}(x+y)+2^{n} z\right)+f\left(2^{n-1}(x-y)+2^{n} z\right)-f\left(2^{n} x\right)-2 f\left(2^{n} z\right)\right\| \\
& \quad \leq \lim _{n} \frac{1}{2^{n}} \phi\left(2^{n} x, 2^{n} y, 2^{n} z, 0,0\right) \\
& \quad=0
\end{aligned}
$$

for all $x, y \in A$. So

$$
D\left(\frac{x+y}{2}+z\right)+D\left(\frac{x-y}{2}+z\right)=D(x)+2 D(z)
$$

A. Ebadian and S. Shams

for all $x, y, z \in A$. By Lemma 2.1 of [2], the mapping $D: A \rightarrow A$ is Cauchy additive. By putting $y=x, z=a=0$ in (2.1), we have

$$
\left\|\mu f\left(\frac{2 x}{2}\right)-f(\mu x)\right\| \leq \phi(x, x, 0,0,0)
$$

for all $x \in A$. It follows that
$\|D(2 \mu x)-2 \mu D(x)\|=\lim _{m} \frac{1}{2^{m}}\left\|f\left(2 \mu 2^{m} x\right)-2 \mu f\left(2^{m} x\right)\right\| \leq \lim _{m} \frac{1}{2^{m}} \phi\left(2^{m} x, 2^{m} x, 0,0,0\right)=0$ for all $\mu \in \mathbb{T}$, and all $x \in A$. One can show that the mapping $D: A \rightarrow X$ is \mathbb{C}-linear. By putting $x=y=z=0$ in (2.1) it follows that

$$
\begin{aligned}
& \|D(a b)-a D(b)-b D(a)\| \\
& \quad=\lim _{n} \| \frac{1}{4^{n}} f\left(\left(4^{n} a b\right)-\frac{1}{2^{n}} a f\left(2^{n} b\right)-\frac{1}{2^{n}} b f\left(2^{n} a\right) \|\right. \\
& \quad \leq \lim _{n} \frac{1}{4^{n}} \phi\left(0,0,0,2^{n} a, 2^{n} b\right) \leq \lim _{n} \frac{1}{2^{n}} \phi\left(0,0,0,2^{n} a, 2^{n} b\right) \\
& \quad=0
\end{aligned}
$$

for all $a \in A$. This means that $D: A \rightarrow X$ is a left derivation satisfying (2.2), as desired.
We prove the following Hyers-Ulam-Rassias stability problem for left derivations on Banach algebras.

Corollary 2.3. Let $p \in(0,1), \theta \in[0, \infty)$ be real numbers. Suppose $f: A \rightarrow X$ satisfies

$$
\begin{aligned}
\| \mu f\left(\frac{x+y}{2}+z\right)+ & \mu f\left(\frac{x-y}{2}+z\right)-f(\mu x)-2 f(\mu z)+f(a b)-a f(b)-b f(a) \| \\
\leq & \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|a\|^{p}+\|b\|^{p}\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}$ and all $x, y, a, b \in A$. Then there exists a unique left derivation $D: A \rightarrow X$ such that

$$
\|f(x)-D(x)\| \leq \frac{2^{p} \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in A$.
Proof. It follows from Theorem 2.2, by putting $\phi(x, y, a, b):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|a\|^{p}+\right.$ $\left.\|b\|^{p}\right)$ all $x, y, z, a, b \in A$ and $L=2^{p-1}$.

Theorem 2.4. Let $f: A \rightarrow X$ be an odd mapping for which there exists a function $\phi: A^{5} \rightarrow$ $[0, \infty)$ such that
$\left\|\mu f\left(\frac{x+y}{2}+z\right)+\mu f\left(\frac{x-y}{2}+z\right)-f(\mu x)-2 f(\mu z)+f(a b)-a f(b)-b f(a)\right\| \leq \phi(x, y, z, a, b)$,
for all $\mu \in \mathbb{T}$ and all $x, y, z, a, b \in A$. If there exists an $L<1$ such that $\phi(x, 3 x, z, a, b) \leq$ $2 L \phi\left(\frac{x}{2}, \frac{3 x}{2}, \frac{z}{2}, \frac{a}{2}, \frac{b}{2}\right)$ for all $x, y, a, b \in A$, then there exists a unique left derivation $D: A \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-D(x)\| \leq \frac{1}{2-2 L} \phi(x, 3 x, 0,0,0) \tag{2.8}
\end{equation*}
$$

for all $x \in A$.

Approximately left derivations...

Proof. Putting $\mu=1, y=3 x, z=a=b=0$ in (2.7), it follows by oddness of f that

$$
\|f(2 x)-2 f(x)\| \leq \phi(x, 3 x, 0,0,0)
$$

for all $x \in A$. Hence,

$$
\begin{equation*}
\left\|\frac{1}{2} f(2 x)-f(x)\right\| \leq \frac{1}{2} \phi(x, 3 x, 0,0,0) \leq L \phi(x, 3 x, 0,0,0) \tag{2.9}
\end{equation*}
$$

for all $x \in A$.
Consider the set $X:=\{g \mid g: A \rightarrow B\}$ and introduce the generalized metric on X :

$$
d(h, g):=\inf \left\{C \in \mathbb{R}^{+}:\|g(x)-h(x)\| \leq C \phi(x, 0,0,0,0) \forall x \in A\right\}
$$

It is easy to show that (X, d) is complete. Now we define the linear mapping $J: X \rightarrow X$ by

$$
J(h)(x)=\frac{1}{2} h(2 x)
$$

for all $x \in A$. By Theorem 3.1 of [3],

$$
d(J(g), J(h)) \leq L d(g, h)
$$

for all $g, h \in X$.
It follows from (2.12) that

$$
d(f, J(f)) \leq L
$$

By Theorem 2.1, J has a unique fixed point in the set $X_{1}:=\{h \in X: d(f, h)<\infty\}$. Let D be the fixed point of $J . D$ is the unique mapping with

$$
D(2 x)=2 D(x)
$$

for all $x \in A$ satisfying there exists $C \in(0, \infty)$ such that

$$
\|D(x)-f(x)\| \leq C \phi(x, 3 x, 0,0,0)
$$

for all $x \in A$. On the other hand we have $\lim _{n} d\left(J^{n}(f), D\right)=0$. It follows that

$$
\lim _{n} \frac{1}{2^{n}} f\left(2^{n} x\right)=D(x)
$$

for all $x \in A$. It follows from $d(f, D) \leq \frac{1}{1-L} d(f, J(f))$, which implies that

$$
d(f, D) \leq \frac{1}{2-2 L}
$$

This implies the inequality (2.8). The rest of proof is similar to the proof of Theorem 2.2.
Corollary 2.5. Let $0<r<\frac{1}{2}, \theta \in[0, \infty)$ be real numbers. Suppose $f: A \rightarrow X$ satisfies

$$
\begin{gathered}
\left\|\mu f\left(\frac{x+y}{2}+z\right)+\mu f\left(\frac{x-y}{2}+z\right)-f(\mu x)-2 f(\mu z)+f(a b)-a f(b)-b f(a)\right\| \\
\leq \theta\left(\|x\|^{r}\|y\|^{r}+\|z\|^{r}+\|a\|^{2 r}+\|b\|^{2 r}\right)
\end{gathered}
$$

for all $\mu \in \mathbb{T}$ and all $x, y, z, a, b \in A$. Then there exists a unique n-Jordan derivation D : $A \rightarrow X$ such that

$$
\|f(x)-D(x)\| \leq \frac{3^{r} \theta}{2-2^{r}}\|x\|^{2 r}
$$

for all $x \in A$.
Proof. It follows from Theorem 2.3, by putting $\phi(x, y, z, a, b):=\theta\left(\|x\|^{r}\|y\|^{r}+\|z\|^{r}+\|a\|^{2 r}+\right.$ $\left.\|b\|^{2 r}\right)$ all $x, y, z, a, b \in A$ and $L=2^{2 r-1}$.

A. Ebadian and S. Shams

3. Jordan Left derivations

In this section we establish the stability of Jordan left derivations.
Theorem 3.1. Let $f: A \rightarrow X$ be a mapping for which there exists a function $\phi: A^{4} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\left\|\mu f\left(\frac{x+y}{2}+z\right)+\mu f\left(\frac{x-y}{2}+z\right)-f(\mu x)-2 f(\mu z)+f\left(a^{2}\right)-2 a f(a)\right\| \leq \phi(x, y, z, a), \tag{3.1}
\end{equation*}
$$

for all $\mu \in \mathbb{T}$ and all $x, y, z, a \in A$. If there exists an $L<1$ such that $\phi(x, y, z, a) \leq$ $2 L \phi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}, \frac{a}{2}\right)$ for all $x, y, z, a \in A$, then there exists a unique left derivation $D: A \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-D(x)\| \leq \frac{L}{1-L} \phi(x, 0,0) \tag{3.2}
\end{equation*}
$$

for all $x \in A$.
Proof. By hypothesis, we can show that

$$
\begin{equation*}
\lim _{j} 2^{-j} \phi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} a\right)=0 \tag{3.3}
\end{equation*}
$$

for all $x, y, z, a \in A$.
Put $\mu=1, z=y=a=0$ in (3.1) to obtain

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \phi(x, 0,0,0) \tag{3.4}
\end{equation*}
$$

for all $x \in A$. Hence,

$$
\begin{equation*}
\left\|\frac{1}{2} f(2 x)-f(x)\right\| \leq \frac{1}{2} \phi(2 x, 0,0,0) \leq L \phi(x, 0,0,0) \tag{3.5}
\end{equation*}
$$

for all $x \in A$
Consider the set $X:=\{g \mid g: A \rightarrow B\}$ and introduce the generalized metric on X :

$$
d(h, g):=\inf \left\{C \in \mathbb{R}^{+}:\|g(x)-h(x)\| \leq C \phi(x, 0,0,0) \forall x \in A\right\} .
$$

It is easy to show that (X, d) is complete. Now we define the linear mapping $J: X \rightarrow X$ by

$$
J(h)(x)=\frac{1}{2} h(2 x)
$$

for all $x \in A$. By Theorem 3.1 of [3],

$$
d(J(g), J(h)) \leq L d(g, h)
$$

for all $g, h \in X$.
It follows from (3.5) that

$$
d(f, J(f)) \leq L
$$

By Theorem 2.1, J has a unique fixed point in the set $X_{1}:=\{h \in X: d(f, h)<\infty\}$. Let D be the fixed point of J.

By a same reasoning as proof of Theorem 2.2, one can show that the mapping $D: A \rightarrow X$ is \mathbb{C}-linear which satisfies (3.2). By putting $x=y=z=0$ in (3.1) it follows that

$$
\begin{aligned}
& \left\|D\left(a^{2}\right)-2 a D(a)\right\| \\
& \quad=\lim _{n} \| \frac{1}{4^{n}} f\left(\left(4^{n} a^{2}\right)-\frac{1}{2^{n-1}} a f\left(2^{n} a\right) \| \leq\right. \\
& \lim _{n} \frac{1}{4^{n}} \phi\left(0,0,2^{n} a\right) \leq \lim _{n} \frac{1}{2^{n}} \phi\left(0,0,2^{n} a\right) \\
& \quad=0
\end{aligned}
$$

Approximately left derivations...
for all $a \in A$. This means that $D: A \rightarrow X$ is a Jordan left derivation satisfying (3.2), as desired.

We prove the following Hyers-Ulam-Rassias stability problem for left derivations on Banach algebras.
Corollary 3.2. Let $p \in(0,1), \theta \in[0, \infty)$ be real numbers. Suppose $f: A \rightarrow X$ satisfies
$\left\|\mu f\left(\frac{x+y}{2}+z\right)+\mu f\left(\frac{x-y}{2}+z\right)-f(\mu x)-2 f(\mu z)+f\left(a^{2}\right)-2 a f(a)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|a\|^{p}\right)$, for all $\mu \in \mathbb{T}$ and all $x, y, z, a \in A$. Then there exists a unique left derivation $D: A \rightarrow X$ such that

$$
\|f(x)-D(x)\| \leq \frac{2^{p} \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in A$.
Proof. It follows from Theorem 3.1, by putting $\phi(x, y, z, a):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|a\|^{p}\right)$ all $x, y, a \in A$ and $L=2^{p-1}$.

Theorem 3.3. Let $f: A \rightarrow X$ be an odd mapping for which there exists a function $\phi: A^{3} \rightarrow$ $[0, \infty)$ such that

$$
\begin{equation*}
\left\|\mu f\left(\frac{x+y}{2}+z\right)+\mu f\left(\frac{x-y}{2}+z\right)-f(\mu x)-2 f(\mu z)+f\left(a^{2}\right)-2 a f(a)\right\| \leq \phi(x, y, z, a) \tag{3.6}
\end{equation*}
$$

for all $\mu \in \mathbb{T}$ and all $x, y, z, a \in A$. If there exists an $L<1$ such that $\phi(x, 3 x, z, a) \leq$ $2 L \phi\left(\frac{x}{2}, \frac{3 x}{2}, \frac{z}{2}, \frac{a}{2}\right)$ for all $x, y, z, a \in A$, then there exists a unique left derivation $D: A \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-D(x)\| \leq \frac{1}{2-2 L} \phi(x, 3 x, 0,0) \tag{3.7}
\end{equation*}
$$

for all $x \in A$.
Proof. Putting $\mu=1, y=3 x, z=a=0$ in (3.6), it follows by oddness of f that

$$
\|f(2 x)-2 f(x)\| \leq \phi(x, 3 x, 0,0)
$$

for all $x \in A$. Hence,

$$
\begin{equation*}
\left\|\frac{1}{2} f(2 x)-f(x)\right\| \leq \frac{1}{2} \phi(x, 3 x, 0,0) \leq L \phi(x, 3 x, 0,0) \tag{3.8}
\end{equation*}
$$

for all $x \in A$.
Consider the set $X:=\{g \mid g: A \rightarrow B\}$ and introduce the generalized metric on X:

$$
d(h, g):=\inf \left\{C \in \mathbb{R}^{+}:\|g(x)-h(x)\| \leq C \phi(x, 0,0,0) \forall x \in A\right\}
$$

It is easy to show that (X, d) is complete. Now we define the linear mapping $J: X \rightarrow X$ by

$$
J(h)(x)=\frac{1}{2} h(2 x)
$$

for all $x \in A$. By Theorem 3.1 of [3],

$$
d(J(g), J(h)) \leq L d(g, h)
$$

for all $g, h \in X$.
It follows from (3.8) that

$$
d(f, J(f)) \leq L
$$

A. Ebadian and S. Shams

By Theorem 2.1, J has a unique fixed point in the set $X_{1}:=\{h \in X: d(f, h)<\infty\}$. Let D be the fixed point of $J . D$ is the unique mapping with

$$
D(2 x)=2 D(x)
$$

for all $x \in A$ satisfying there exists $C \in(0, \infty)$ such that

$$
\|D(x)-f(x)\| \leq C \phi(x, 3 x, 0,0)
$$

for all $x \in A$. On the other hand we have $\lim _{n} d\left(J^{n}(f), D\right)=0$. It follows that

$$
\lim _{n} \frac{1}{2^{n}} f\left(2^{n} x\right)=D(x)
$$

for all $x \in A$. It follows from $d(f, D) \leq \frac{1}{1-L} d(f, J(f))$, which implies that

$$
d(f, D) \leq \frac{1}{2-2 L}
$$

This implies the inequality (3.7). The rest of proof is similar to the proof of Theorem 3.1.
Corollary 3.4. Let $0<r<\frac{1}{2}, \theta \in[0, \infty)$ be real numbers. Suppose $f: A \rightarrow X$ satisfies
$\left\|\mu f\left(\frac{x+y}{2}+z\right)+\mu f\left(\frac{x-y}{2}+z\right)-f(\mu x)-2 f(\mu z)+f\left(a^{2}\right)-2 a f(a)\right\| \leq \theta\left(\|x\|^{r}\|y\|^{r}+\|z\|^{r}+\|a\|^{2 r}\right)$, for all $\mu \in \mathbb{T}$ and all $x, y, z, a \in A$. Then there exists a unique Jordan left derivation D : $A \rightarrow X$ such that

$$
\|f(x)-D(x)\| \leq \frac{3^{r} \theta}{2-2^{r}}\|x\|^{2 r}
$$

for all $x \in A$.
Proof. It follows from Theorem 2.3, by putting $\phi(x, y, z, a):=\theta\left(\|x\|^{r}\|y\|^{r}+\|z\|^{r}+\|a\|^{2 r}\right)$ all $x, y, a \in A$ and $L=2^{2 r-1}$.

References

[1] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), no. 1, 167-173.
[2] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Mathematica Sinica, vol. 22, no. 6, pp. 1789-1796, 2006.
[3] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte 346 (2004), 43-52.
[4] L. Cădariu, V. Radu, The fixed points method for the stability of some functional equations, Carpathian Journal of Mathematics 23 (2007), 63-72.
[5] L. Cădariu, V. Radu, Fixed points and the stability of quadratic functional equations, Analele Universitatii de Vest din Timisoara 41 (2003), 25-48.
[6] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4 (2003), Art. ID 4.
[7] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[8] M. Eshaghi Gordji, On approximate n-ring homomorphisms and n-ring derivations, To appear in NFAA.
[9] M. Eshaghi Gordji, S. Kaboli Gharetapeh, T. Karimi, M. Aghaei, Approximately nJordan derivations on Banach Algebras, To appear.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[11] D. H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.

Approximately left derivations...
[12] K.-W. Jun and H.-M. Kim, Approximate derivations mapping into the radicals of Banach algebras, (English summary) Taiwanese J. Math. 11 (2007), no. 1, 277-288.
[13] K.-W. Jun and D.-W. Park, Almost derivations on the Banach algebra $C^{n}[0,1]$, Bull. Korean Math. Soc. 33 (1996), no. 3, 359-366.
[14] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[15] C. Park, Linear derivations on Banach algebras, Nonlinear Funct. Anal. Appl. 9 (2004), no. 3, 359-368.
[16] C. Park and J. M. Rassias, Stability of the Jensen-type functional equation in C^{*}-algebras: a fixed point approach, Abstract and Applied Analysis Vol. 2009, Article ID 360432, 17 pages.
[17] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300
[19] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130.
[20] I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).
[21] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed. Wiley, New York, 1940.

ON THE CATEGORY OF INTUITIONISTIC FUZZY METRIC SPACES

HAKAN EFE, SERKAN GÜMÜş, AND CEMIL YILDIZ

Abstract

The aim of this paper to give the category of intuitionistic fuzzy metric spaces with the objects are complete intuitionistic fuzzy metric spaces defined in the sense of Alaca et.al. Furthermore, the existence of solution for domain equation in these intutionistic fuzzy settings by defining a categorical contraction mapping in the sense of Alaca et.al. is investigated.

1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [17] in 1965, many authors have introduced the fuzzy metric spaces in different ways [4,5,7,8]. Grabiec [5] extends two fixed point theorems of Banach and Edelstein to contractive mappings of complete and compact fuzzy metric spaces, respectively.

In [2,3], Alessi et.al, have studied on solution of metric domain equation in the categories of complete metric spaces. In their papers, a new method for solving domain equations in categories of metric spaces is studied. Rafi [12] introduced the category of fuzzy metric spaces with the objects are complete fuzzy metric spaces defined in the sense of Kramosil and Michalek [8]. As an application, he investigate the existence of solution for domain equation in these fuzzy settings by defining a categorical contraction mapping in the sense of Grabiec [5]. Recently, Rafi [13] studied on probabilistic nonexpansive mappings between probabilistic metric spaces and proved a fixed point theorem in category of probabilistic metric spaces.

Park [11] using the idea of intuitionistic fuzzy sets, defined the notion of intuitionistic fuzzy (briefly, $I F$) metric spaces with the help of continuous t-norm and continuous t-conorm as a generalization of fuzzy metric space due to George and Veeramani [4]. Alaca et. al. [1] using the idea of $I F$-sets, defined the notion of $I F$-metric space as Park [11] with the help of continuous t-norms and continuous t conorms as a generalization of fuzzy metric space due to Kramosil and Michalek [8]. Further, they introduced the notion of Cauchy sequences in an $I F$-metric spaces and proved the well-known fixed point theorems of Banach and Edelstein extended to $I F$-metric spaces with the help of Grabiec [5]. Many authors studied on fixed point theorems in $I F$-metric spaces $[6,10,15]$.

In this paper, we give the category of $I F$-metric spaces with the objects are complete $I F$-metric spaces and morphisms are $(\varepsilon-\delta)$ - $I F$-adjoint pairs defined in the sense of Alaca et.al [1]. Furthermore, we investigate the existence of solution for domain equation in these $I F$ settings by defining a categorical contraction mapping in the sense of Alaca et.al [1].

[^20]
2. Preliminaries and Some Results

Definition 1 ([16]). A category C consist of
(i) A class of objects
(ii) For every ordered pair of objects X and Y, a set $\operatorname{hom}(X, Y)$ of morphisms with domain X and range Y; if $f \in \operatorname{hom}(X, Y)$, we write $f: X \longrightarrow Y$ or $X \xrightarrow{f} Y$.
(iii) For every ordered triple of objects X, Y and Z, a function associating to a pair of morphisims $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ their composite,

$$
g f=g \circ f: X \longrightarrow Z
$$

these satisfy the following two axioms:
Associativity: If $f: X \longrightarrow Y, g: Y \longrightarrow Z$ and $h: Z \longrightarrow W$, then

$$
h \circ(g \circ f):(h \circ g) \circ f: X \longrightarrow W
$$

Identity: For every object Y there is a morphisim $i d_{Y}: Y \longrightarrow Y$ such that if $f: X \longrightarrow Y$, then $i d_{Y} \circ f=f$, and if $h: Y \longrightarrow Z$ and $h \circ i d_{Y}=h$.

For example; the category of topological spaces and continuous maps or category of groups and homomorphisims.
Definition 2 ([16]). Let C and D be categories. A covariant functor (or contravariant functor) T from C to D consist of an oject function which assings to every object X of C an object $T(X)$ of D and a morphisim function which assings to every morphism $f: X \longrightarrow Y$ of C a morphism $T(f): T(X) \longrightarrow T(Y)$ [or $T(f): T(Y) \longrightarrow T(X)$] of D such that,
(i) $T\left(1_{X}\right)=1_{T(X)}$,
(ii) $T(g \circ f)=T(g) \circ T(f)[$ or $T(g \circ f)=T(f) \circ T(g)]$

For example; there is a covariant functor from the category of topological spaces and continuous maps to the category of sets and functions which assings to every topological space its underlying set.

Definition 3 ([14]). A binary operation $*:[0,1] \times[0,1] \longrightarrow[0,1]$ is a continuous t-norm if it satisfies the following conditions: (i) * is associative and commutative; (ii) $*$ is continuous; (iii) $a * 1=a$ for all $a \in[0,1]$; (iv) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$; for each $a, b, c, d \in[0,1]$.
Definition $4([14])$. A binary operation $\diamond:[0,1] \times[0,1] \longrightarrow[0,1]$ is a continuous t conorm if it satisfies the following conditions: (i) \diamond is associative and commutative; (ii) \diamond is continuous; (iii) $a \diamond 0=a$ for all $a \in[0,1]$; (iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$; for each $a, b, c, d \in[0,1]$.

Definition $5([1])$. A 5-tuple $(X, M, N, *, \diamond)$ is said to be an IF-metric space if X is an arbitrary set,* is a continuous t-norm, \diamond is a continuous t-conorm and M, N are fuzzy sets on $X^{2} \times[0, \infty)$ satisfying the following conditions: for all $x, y, z \in X$, $s, t>0$
(i) $M(x, y, t)+N(x, y, t) \leq 1$,
(ii) $M(x, y, 0)=0$,
(iii) $M(x, y, t)=1$ for all $t>0$ if and only if $x=y$,
(iv) $M(x, y, t)=M(y, x, t)$,
(v) $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$ for all $x, y, z \in X, s, t>0$
(vi) $M(x, y, \cdot):[0, \infty) \longrightarrow[0,1]$ is left continuous,

INTUITIONISTIC FUZZY METRIC SPACES

(vii) $\lim _{t \longrightarrow \infty} M(x, y, t)=1$ for all x, y in X
(viii) $N(x, y, 0)=1$,
(ix) $N(x, y, t)=0$ for all $t>0$ if and only if $x=y$,
(x) $N(x, y, t)=N(y, x, t)$,
(xi) $N(x, y, t) \diamond N(y, z, s) \geq N(x, z, t+s)$ for all $x, y, z \in X, s, t>0$,
(xii) $M(x, y, \cdot):[0, \infty) \longrightarrow[0,1]$ is right continuous,
(xiii) $\lim _{t \rightarrow \infty} N(x, y, t)=0$ for all x, y in X.

Then (\vec{M}, N) is called an IF-metric on X. The functions $M(x, y, t)$ and $N(x, y, t)$ denote the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.

Remark 1. Every fuzzy metric space $(X, M, *)$ is an IF-metric space of the form $(X, M, 1-M, *, \diamond)$ such that t-norm $*$ and t-conorm \diamond are associated [9], i.e. $x \diamond y=1-((1-x) *(1-y))$ for any $x, y \in X$.

Remark 2. In IF-metric space $X, M(x, y, \cdot)$ is non-decreasing and $N(x, y, \cdot)$ is non-increasing for all $x, y \in X$.

Definition 6 ([1]). Let $(X, M, N, *, \diamond)$ be a IF-metric space. Then
(a) a sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy sequence if for each $t>0$ and $p>0$,

$$
\lim _{n \longrightarrow \infty} M\left(x_{n+p}, x_{n}, t\right)=1 \text { and } \lim _{n \longrightarrow \infty} N\left(x_{n+p}, x_{n}, t\right)=0
$$

(b) a sequence $\left\{x_{n}\right\}$ in X is converging to x in X if for each $t>0$,

$$
\lim _{n \longrightarrow \infty} M\left(x_{n}, x, t\right)=1 \text { and } \lim _{n \longrightarrow \infty} N\left(x_{n}, x, t\right)=0
$$

(Since $*$ and \diamond are continuous, the limit is uniquely determined from (v) and (xi).)

A $I F$-metric space is said to be complete if and only if every Cauchy sequence is convergent.

Now, we define the basic notion of $(\varepsilon-\delta)$-IF-adjoint and $(\varepsilon-\delta)$-IF-isometry.
Definition 7. Let $\left(X, M_{1}, N_{1}, *, \diamond\right)$ and $\left(Y, M_{2}, N_{2}, *, \diamond\right)$ be IF-metric spaces under the same t-norm $*$ and t-conorm \diamond. A mapping $f: X \longrightarrow Y$ is called IF-nonexpansive if for all $x, x^{\prime} \in X$ and $t>0$ the following conditions hold:

$$
M_{2}\left(f x, f x^{\prime}, t\right) \geq M_{1}\left(x, x^{\prime}, t\right) \text { and } N_{2}\left(f x, f x^{\prime}, t\right) \leq N_{1}\left(x, x^{\prime}, t\right)
$$

Lemma 1. Let $F^{X Y}=\{f: X \longrightarrow Y \mid f$ is IF-non-expansive $\}$

$$
\mathcal{M}_{X Y}(f, g, t)=\inf _{x \in X} M_{2}(f x, g x, t) \text { and } \mathcal{N}_{X Y}(f, g, t)=\sup _{x \in X} N_{2}(f x, g x, t)
$$

for every $f, g \in F^{X Y}$. Then, $\left(F^{X Y}, \mathcal{M}_{X Y}, \mathcal{N}_{X Y}, *, \diamond\right)$ is an IF-metric space if and only if $\left(Y, M_{2}, N_{2}, *, \diamond\right)$ is an IF-metric space.

Definition 8. Let $\left(X, M_{1}, N_{1}, *, \diamond\right)$ and $\left(Y, M_{2}, N_{2}, *, \diamond\right)$ be IF-metric spaces.
(i) A mapping $f \in F^{X Y}$ is called IF-mapping if there exists a $k \in(0,1)$ such that for all $x, x^{\prime} \in X$ and for all $t>0$,

$$
M_{2}\left(f x, f x^{\prime}, k t\right) \geq M_{1}\left(x, x^{\prime}, t\right) \text { and } N_{2}\left(f x, f x^{\prime}, k t\right) \leq N_{1}\left(x, x^{\prime}, t\right)
$$

k is called the contractive constant of f.

HAKAN EFE, SERKAN GÜMÜŞ, AND CEMIL YILDIZ

(ii) A mapping $f \in F^{X Y}$ is called IF-isometric embedding if for all $x, x^{\prime} \in X$ and for all $t>0$,

$$
M_{2}\left(f x, f x^{\prime}, t\right)=M_{1}\left(x, x^{\prime}, t\right) \text { and } N_{2}\left(f x, f x^{\prime}, t\right)=N_{1}\left(x, x^{\prime}, t\right)
$$

If f is bijection then it is an IF-isometry.
Definition 9. For $r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime}, \varepsilon, \delta \in[0,1]$ where $\varepsilon+\delta \leq 1$, let

$$
\begin{aligned}
& r_{1} \approx \varepsilon r_{2} \Longleftrightarrow r_{1} * r_{2} \geq \varepsilon \text { and } \\
& r_{1}^{\prime} \approx \delta r_{2}^{\prime} \Longleftrightarrow r_{1}^{\prime} \diamond r_{2}^{\prime} \leq \delta .
\end{aligned}
$$

Definition 10. Let $\left(X, M_{1}, N_{1}, *, \diamond\right)$ and $\left(Y, M_{2}, N_{2}, *, \diamond\right)$ be IF-metric spaces. Two IF-non-expansive mappings $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ are said to be $(\varepsilon-\delta)$-IF-adjoint if for all $x \in X, y \in Y, t>0$,

$$
M_{2}(f x, y, t) \approx_{\varepsilon} M_{1}(x, g y, t) \text { and } N_{2}(f x, y, t) \approx_{\delta} N_{1}(x, g y, t)
$$

If f and g are $(1,0)-I F$-adjoint, then $\langle f, g\rangle$ is called a proper IF-adjoint pair.
Definition 11. Let $\left(X, M_{1}, N_{1}, *, \diamond\right)$ and $\left(Y, M_{2}, N_{2}, *, \diamond\right)$ be IF-metric spaces. Two IF-non-expansive mappings $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$,

$$
\begin{aligned}
\Im(f, g, t) & =\min \left\{\mathcal{M}_{X X}\left(i d_{x}, g \circ f, t\right), \mathcal{M}_{Y Y}\left(f \circ g, i d_{Y}, t\right)\right\} \text { and } \\
\aleph(f, g, t) & =\max \left\{\mathcal{N}_{X X}\left(i d_{x}, g \circ f, t\right), \mathcal{N}_{Y Y}\left(f \circ g, i d_{Y}, t\right)\right\}
\end{aligned}
$$

Definition 12. Let $\left(X, M_{1}, N_{1}, *, \diamond\right)$ and $\left(Y, M_{2}, N_{2}, *, \diamond\right)$ be IF-metric spaces. A pair of non-expansive mappings $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ with $\Im(f, g, t) \approx_{\varepsilon} 1$ and $\aleph(f, g, t) \approx_{\delta} 0$ is called an $(\varepsilon-\delta)$-IF-isometry where $\varepsilon, \delta \in[0,1]$ and $\varepsilon+\delta \leq 1$.

Note that by definition, any pair $\langle f, g\rangle$ of $I F$-non-expansive mappings is an $(\varepsilon-\delta)-I F$-isometry, for $\varepsilon=\Im(f, g, t)$ and $\delta=\aleph(f, g, t)$.

The above definition can be justified by observation that (1,0)-IF-isometries satisfy $i d_{X}=g \circ f$ and $f \circ g=i d_{Y}$ for all $t>0$ (from definition 5) and consequently f (and also g) is an isometry.

Under some strict condition on the t-norm and t-conorm, we have the following equivalence of mappings.
Theorem 1. Let $\left(X, M_{1}, N_{1}, *, \diamond\right)$ and $\left(Y, M_{2}, N_{2}, *, \diamond\right)$ be IF-metric spaces under the same t-norm $*$ and t-conorm \diamond such that $a * b=\min \{a, b\}$ and $a \diamond b=\max \{a, b\}$ and let $\varepsilon, \delta \in[0,1]$ where $\varepsilon+\delta \leq 1$. For all non-expansive mappings $f: X \longrightarrow Y$ and $g: Y \longrightarrow X .\langle f, g\rangle$ is an $(\varepsilon-\delta)$-IF-adjoint if and only if $\langle f, g\rangle$ is an $(\varepsilon-\delta)$ -IF-isometry.
Proof. Let f and g are $(\varepsilon-\delta)-I F$-adjoint. Then for any $x \in X$,

$$
\begin{aligned}
M_{1}(x, g \circ f(x), t) & \approx{ }_{\varepsilon} M_{2}(f(x), f(x), t)=1 \text { and } \\
N_{1}(x, g \circ f(x), t) & \approx{ }_{\delta} N_{2}(f(x), f(x), t)=0 .
\end{aligned}
$$

Thus, $\mathcal{M}_{X X}\left(i d_{x}, g \circ f, t\right) \approx_{\varepsilon} 1$ and $\mathcal{N}_{X X}\left(i d_{x}, g \circ f, t\right) \approx_{\delta} 0$. Similarly, for any $y \in Y$,

$$
\begin{aligned}
M_{2}(f \circ g(y), y, t) & \approx{ }_{\varepsilon} M_{1}(g(y), g(y), t)=1 \text { and } \\
N_{2}(f \circ g(y), y, t) & \approx{ }_{\delta} N_{1}(g(y), g(y), t)=0
\end{aligned}
$$

which mean $\mathcal{M}_{Y Y}\left(f \circ g, i d_{Y}, t\right) \approx_{\varepsilon} 1$ and $\mathcal{N}_{Y Y}\left(f \circ g, i d_{Y}, t\right) \approx_{\delta} 0$. Hence, $\Im(f, g, t) \approx_{\varepsilon} 1$ and $\aleph(f, g, t) \approx_{\delta} 0$. We conclude that $\langle f, g\rangle$ is an $(\varepsilon-\delta)$-IF-isometry.

INTUITIONISTIC FUZZY METRIC SPACES

Conversely, suppose that $\Im(f, g, t) \approx_{\varepsilon} 1$ and $\aleph(f, g, t) \approx_{\delta} 0$. For all $x \in X, y \in Y$, and $k>1$, we have

$$
\begin{aligned}
M_{1}(x, g(y), t) & \geq M_{1}(x, g \circ f(x),(1-k) t) * M_{1}(g \circ f(x), g(y), k t) \\
& \geq \varepsilon * M_{1}(g \circ f(x), g(y), k t) \\
& \geq \min \left\{\varepsilon, M_{1}(g \circ f(x), g(y), k t)\right\} \\
& \geq \min \left\{\varepsilon, M_{2}(f(x), y, k t)\right\} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
M_{2}(f(x), y, t) & \geq M_{2}(f(x), f \circ g(x), k t) * M_{2}(f \circ g(y), y,(1-k) t) \\
& \geq M_{2}(f(x), f \circ g(y), k t) * \varepsilon \\
& \geq \min \left\{M_{1}(x, g(y), k t), \varepsilon\right\} .
\end{aligned}
$$

Hence,

$$
\min \left\{\begin{array}{l}
M_{1}(x, g(y), t), \\
M_{2}(f(x), y, t)
\end{array}\right\} \geq \min \left\{\varepsilon, M_{1}(x, g(y), k t), M_{2}(f(x), y, k t)\right\} \geq \varepsilon
$$

i.e., $M_{1}(x, g(y), t) * M_{2}(f(x), y, t) \geq \varepsilon$, which implies

$$
\begin{equation*}
M_{2}(f \circ g(y), y, t) \approx_{\varepsilon} M_{1}(g(y), g(y), t) \tag{2.1}
\end{equation*}
$$

On the other hand for all $x \in X, y \in Y$, and $k>1$, we have

$$
\begin{aligned}
N_{1}(x, g(y), t) & \leq N_{1}(x, g \circ f(x),(1-k) t) \diamond N_{1}(g \circ f(x), g(y), k t) \\
& \leq \delta \diamond N_{1}(g \circ f(x), g(y), k t) \\
& \leq \max \left\{\delta, N_{1}(g \circ f(x), g(y), k t)\right\} \\
& \leq \max \left\{\delta, N_{2}(f(x), y, k t)\right\} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
N_{2}(f(x), y, t) & \leq N_{2}(f(x), f \circ g(x), k t) \diamond M_{2}(f \circ g(y), y,(1-k) t) \\
& \leq N_{2}(f(x), f \circ g(y), k t) \diamond \delta \\
& \leq \max \left\{N_{1}(x, g(y), k t), \delta\right\} .
\end{aligned}
$$

Hence,

$$
\max \left\{\begin{array}{l}
N_{1}(x, g(y), t), \\
N_{2}(f(x), y, t)
\end{array}\right\} \leq \max \left\{\delta, N_{1}(x, g(y), k t), N_{2}(f(x), y, k t)\right\} \leq \delta
$$

i.e., $N_{1}(x, g(y), t) \diamond N_{2}(f(x), y, t) \leq \delta$, which implies

$$
\begin{equation*}
N_{2}(f \circ g(y), y, t) \approx_{\delta} N_{1}(g(y), g(y), t) \tag{2.2}
\end{equation*}
$$

Therefore from 2.1 and $2.2\langle f, g\rangle$ is an $(\varepsilon-\delta)$-IF-adjoint.

3. The Category of $I F$-Metric Spaces

Definition 13. Let IFMS \approx denote the category of IF-metric spaces that has nonempty complete IF-metric spaces as objects and $(\varepsilon-\delta)$-IF-adjoint pairs as morphisms. The composition of a pair of morphisms

$$
\begin{aligned}
& h_{1}=\left\langle f_{1}, g_{1}\right\rangle:\left(X, M_{1}, N_{1}, *, \diamond\right) \longrightarrow\left(Y, M_{2}, N_{2}, *, \diamond\right) \text { and } \\
& h_{2}=\left\langle f_{2}, g_{2}\right\rangle:\left(Y, M_{2}, N_{2}, *, \diamond\right) \longrightarrow\left(Z, M_{3}, N_{3}, *, \diamond\right)
\end{aligned}
$$

is defined as

$$
h_{2} \circ h_{1}=\left\langle f_{2} \circ f_{1}, g_{1} \circ g_{2}\right\rangle:\left(X, M_{1}, N_{1}, *, \diamond\right) \longrightarrow\left(Z, M_{3}, N_{3}, *, \diamond\right) .
$$

Definition 14. Let IFMS \approx be a category.
(i) An IF-tower in IFMS \approx is a sequence $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$ of objects and morphisms such that for all $n \in \mathbb{N}$,

$$
h_{n}:\left(X_{n}, M_{n}, N_{n}, *, \diamond\right) \longrightarrow\left(X_{n+1}, M_{n+1}, N_{n+1}, *, \diamond\right) .
$$

(ii) A tower $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$ in IFMS \approx, with $h_{n}=\left\langle f_{n}, g_{n}\right\rangle$, is called a Cauchy if for

$$
\lim _{n \longrightarrow \infty} \Im\left(h_{n, n+p}, t\right)=1 \text { and } \lim _{n \longrightarrow \infty} \aleph\left(h_{n, n+p}, t\right)=0
$$

for each $n \in \mathbb{N}$ and $p, t>0$, where $h_{n, n+p}=h_{n+p-1} \circ h_{n+p-2} \circ \cdots \circ h_{n}$.
Definition 15. Let $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$ be a Cauchy tower in IFMS ${ }^{\approx}$, where $h_{n}=\left\langle f_{n}, g_{n}\right\rangle$. The direct limit of $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$ is a fuzzy cone $\left(\left(X_{n}, M_{n}, N_{n}, *, \diamond\right),\left\{\gamma_{n}\right\}_{n}\right)$, where $\gamma_{n}=\left(\alpha_{n}, \beta_{n}\right)$, which is defined as follows:
(i) The IF-metric space $(X, M, N, *, \diamond)$ is given by

$$
X=\left\{\left\{x_{n}\right\}_{n}: \forall n \in \mathbb{N}, x_{n} \in X_{n} \text { and } x_{n}=g_{n}\left(x_{n+1}\right)\right\}
$$

and

$$
\begin{aligned}
M\left(\left\{x_{n}\right\}_{n},\left\{x_{n}^{\prime}\right\}_{n}, t\right) & =\inf _{n \in \mathbb{N}} M_{n}\left(x_{n}, x_{n}^{\prime}, t\right) \text { and } \\
N\left(\left\{x_{n}\right\}_{n},\left\{x_{n}^{\prime}\right\}_{n}, t\right) & =\sup _{n \in \mathbb{N}} N_{n}\left(x_{n}, x_{n}^{\prime}, t\right)
\end{aligned}
$$

(ii) Morphisms $\gamma_{n}=\left(\alpha_{n}, \beta_{n}\right): X_{n} \longrightarrow X$ are defined as follows:

- $\alpha_{n}: X_{n} \longrightarrow X$ where $\alpha_{n}\left(x_{n}\right)=\left\{x_{k}\right\}_{k}$ with $x_{k}=\lim _{r \longrightarrow \infty} g_{k r} \circ f_{n r}(x)$
- $\beta_{n}: X \longrightarrow X_{n}$ where $\beta_{n}\left(\left\{x_{k}\right\}_{k}\right)=x_{n}$.

The notion of initial object of a category can be defined as follows:
Definition 16. An initial object of a category IFMS \approx is an object ($\left.\vartheta, M_{\vartheta}, N_{\vartheta}, *, \diamond\right)$ in IFMS \approx such that for every object $(X, M, N, *, \diamond)$ in IFMS \approx, there exists a unique morphism $\tau:\left(\vartheta, M_{\vartheta}, N_{\vartheta}, *, \diamond\right) \longrightarrow(X, M, N, *, \diamond)$.

Lemma 2. If $\lim _{n \longrightarrow \infty} \Im\left(\gamma_{n}, t\right)=1$ and $\lim _{n \longrightarrow \infty} \aleph\left(\gamma_{n}, t\right)=0$, then $\left((X, M, N, *, \diamond),\left\{\gamma_{n}\right\}_{n}\right)$ with $\gamma_{n}=\left(\alpha_{n}, \beta_{n}\right)$ will be the initial cone of the Cauchy tower $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$.

Proof. Let $\left(\left(X^{\prime}, M^{\prime}, N^{\prime}, *, \diamond\right),\left\{\gamma_{n}^{\prime}\right\}_{n}\right)$ with $\gamma_{n}^{\prime}=\left(\alpha_{n}^{\prime}, \beta_{n}^{\prime}\right)$ be another cone for $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$. We show that there exists a unique morphism $\tau:(X, M, N, *, \diamond) \longrightarrow\left(X^{\prime}, M^{\prime}, N^{\prime}, *, \diamond\right)$ such that for all $n \in \mathbb{N}, \gamma_{n}^{\prime}=\tau \circ \delta_{n}$. Note that $\left\{\alpha_{n}^{\prime} \circ \beta_{n}\right\}$ and $\left\{\alpha_{n} \circ \beta_{n}^{\prime}\right\}$ are Cauchy sequence, since $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$ is a Cauchy sequence. Furthermore, the objects of IFMS \approx are complete, so we can define $\lim _{n \longrightarrow \infty}\left(\alpha_{n}^{\prime} \circ \beta_{n}\right)=i$ and $\lim _{n \longrightarrow \infty}\left(\alpha_{n} \circ \beta_{n}^{\prime}\right)=j$. Obviously, this defines a morphism $\stackrel{n \longrightarrow \infty}{\tau=}(i, j):(X, M, N, *, \diamond) \longrightarrow\left(X^{\prime}, M^{\prime}, N^{\prime}, *, \diamond\right)$. It follows from the facts that $\lim _{n \longrightarrow \infty} \Im\left(\delta_{n}, t\right)=1$ and $\lim _{n \longrightarrow \infty} \aleph\left(\gamma_{n}, t\right)=0$ that $\gamma_{n}^{\prime}=\tau \circ \delta_{n}, \tau$ is the unique morphism with this property. This proves that $\left((X, M, N, *, \diamond),\left\{\gamma_{n}\right\}_{n}\right)$ is the initial cone of the tower $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$.

As a consequence of the above lemma, we have
Corollary 1. The direct limit of a Cauchy tower is an initial cone for that tower.

INTUITIONISTIC FUZZY METRIC SPACES

Remark 3. We note that if $\left(\left(X^{\prime}, M^{\prime}, N^{\prime}, *, \diamond\right),\left\{\gamma_{n}^{\prime}\right\}_{n}\right)$ with $\gamma_{n}^{\prime}=\left(\alpha_{n}^{\prime}, \beta_{n}^{\prime}\right)$ be another initial cone for the Cauchy tower $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$, then by the above corollary, we have $(X, M, N, *, \diamond) \simeq\left(X^{\prime}, M^{\prime}, N^{\prime}, *, \diamond\right)$. Thus, we have

$$
\begin{aligned}
\lim _{n \longrightarrow \infty} \Im\left(\gamma_{n}, t\right) & =\lim _{n \longrightarrow \infty} \Im\left(\gamma_{n}^{\prime}, t\right)=1 \text { and } \\
\lim _{n \longrightarrow \infty} \aleph\left(\gamma_{n}, t\right) & =\lim _{n \longrightarrow \infty} \aleph\left(\gamma_{n}^{\prime}, t\right)=0 .
\end{aligned}
$$

Lemma 3. (Initiality Lemma) Let $\left\{\left(X_{n}, M_{n}, N_{n}, *, \diamond\right), h_{n}\right\}_{n}$ be an IF-Cauchy tower in IFMS \approx and let $\left((X, M, N, *, \diamond),\left\{\gamma_{n}\right\}_{n}\right)$, with $\gamma_{n}=\left(\alpha_{n}, \beta_{n}\right)$ be a cone. Then $\left((X, M, N, *, \diamond),\left\{\gamma_{n}\right\}_{n}\right)$ is an initial cone if and only if $\lim _{n \longrightarrow \infty} \Im\left(\gamma_{n}, t\right)=1$ and $\lim _{n \longrightarrow \infty} \aleph\left(\gamma_{n}, t\right)=0$.
Proof. It follows by Lemma 2 and the Remark 3.

4. An Application to Fixed Point Theory

In this section, we give a fixed point theorem in category of complete $I F$-metric spaces. Before we prove the fixed point theorem in the category $I F M S \approx$, we state the following IF-Banach contraction theorem due to Alaca, [1].

Theorem 2 ([1]). (IF-Banach contraction theorem). Let $(X, M, N, *, \diamond)$ be a complete IF-metric space and $T: X \longrightarrow X$ be a mapping satisfying

$$
M(T x, T y, k t) \geq M(x, y, t) \text { and } N(T x, T y, k t) \leq N(x, y, t)
$$

for all x, y in $X, 0<k<1$. Then T has a unique fixed point.
In category $I F M S \approx$, we have the following definition.
Definition 17. A functor $T: I F M S \approx \longrightarrow I F M S \approx$ is called $C A T^{\approx}$-contraction, if there exists a $k \in(0,1)$ such that for each morphism $\tau:\left(X_{1}, M_{1}, N_{1}, *, \diamond\right) \longrightarrow$ $\left(X_{2}, M_{2}, N_{2}, *, \diamond\right)$,

$$
\Im(T \tau, k t) \geq \Im(\tau, t) \text { and } \aleph(T \tau, k t) \leq \aleph(\tau, t)
$$

where $T \tau=(T f, T g)$ for $\tau=(f, g)$.
By the Initiality Lemma, a $C A T^{\approx}$-contraction functor preserves Cauchy tower and the initial cones, in a similar way as $I F$-contracting functions preserves Cauchy sequence and their limits.

We prove the following theorem which shows the existence of fixed points for contracting functors on the category $I F M S \approx$.

Theorem 3. $L e t T: I F M S \approx \longrightarrow I F M S \approx$ be a $C A T \approx$-contraction functor. Then, T has a fixed point, i.e., there exists a complete IF-metric space ($X, M, N, *, \diamond$) such that $(X, M, N, *, \diamond) \simeq(T X, M, N, *, \diamond)$.

Proof. Let $\left(X_{0}, M_{0}, N_{0}, *, \diamond\right)$ be a complete $I F$-metric space in $I F M S \approx$ and let f_{0} : $X_{0} \longrightarrow \xi X_{0}$ be any morphism. Consider the $I F$-tower $\left\{\left(T^{n} X_{0}, M_{0}, N_{0}, *, \diamond\right), T^{n} f_{0}\right\}_{n}$. Since T is a $C A T^{\approx}$-contraction functor, it is a Cauchy tower in IFMS \approx. Thus, it has a direct limit, $\left((X, M, N, *, \diamond),\left\{\gamma_{n}\right\}_{n}\right)$, which is an initial cone for the tower. Hence, we conclude that $(X, M, N, *, \diamond) \simeq(T X, M, N, *, \diamond)$.

As given in the Remark 3.9 of [2], the contractiveness is not a necessary condition in order that a functor has fixed points. As an example, the identity functor is not contracting.

HAKAN EFE, SERKAN GÜMÜŞ, AND CEMIL YILDIZ

References

[1] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons \& Fractals 29 (2006), 1073 - 1078.
[2] F. Alessi, P. Baldan and G. Belle, A fixed point theorem in a category of compact metric spaces, Theoretical Computer Science, 146(1995)311-320.
[3] F. Alessi, P. Baldan, G. Belle and J.J.M.M. Rutten, Solution of funtorial and Non-functorial metric domain equations, Theoretical Computer Science, 152 (1995), 324-335.
[4] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395 - 399.
[5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389.
[6] S. N. Ješić, Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric spaces, Chaos, Solitons \&Fractals, 41 (2009), 292 - 301.
[7] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), $225-229$.
[8] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), $326-334$.
[9] R. Lowen, Fuzzy Set Theory, Kluwer Academic Pub., Dordrecht 1996.
[10] A. Mohamad, Fixed-point theorems in intuitionistic fuzzy metric spaces, Chaos, Solitons \mathcal{E} Fractals, 34 (2007), 1689 - 1695.
[11] J.H. Park, Intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals, 22 (2004), 1039 1046.
[12] M. Rafi, Category of fuzzy metric spaces and an application, International Journal of Computational and Applied Mathematics, 2 (2007), 267-275.
[13] M. Rafi, Category of fuzzy metric spaces and a fixed point theorem, Int. Journal of Math. Analysis, 2 (2008), $401-409$.
[14] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), $314-334$.
[15] S. Sharma, Bhavana Deshpande, Common fixed point theorems for finite number of mappings without continuity and compatibility on $I F$-metric spaces, Chaos, Solitons \mathcal{E} Fractals, 40 (2009), 2242 - 2256.
[16] E. Spainer, Algebraic Topology, Springer Verlag, New York, 1966.
[17] L.A. Zadeh, Fuzy sets, Inform and Control, 8 (1965), 338 - 353.
(Hakan Efe), Department of Mathematics, Faculty of Science and Arts, Gazi UniverSity, Teknikokullar, 06500 Ankara, Turkey

E-mail address: hakanefe@gazi.edu.tr, hakanefe1972@yahoo.com.tr
(Serkan Gümüş), Turkish Military Academy, Çankaya, 06580, Ankara, Turkey
E-mail address: serkangumus06@yahoo.com
(Cemil Yıldız), Department of Mathematics, Faculty of Science and Arts, Gazi University, Teknikokullar, 06500 Ankara, Turkey

E-mail address: cyildiz@gazi.edu.tr

A note on the oscillation of second order differential equations with damping

Ercan Tunç
Faculty of Arts and Sciences, Department of Mathematics
Gaziosmanpaṣa University,
60240, Tokat - TURKEY.
ercantunc72@yahoo.com

Abstract

We present some new oscillation criteria for the second order nonlinear differential equation with damping of the form

$$
\left(r(t) \psi(x(t)) K\left(x^{\prime}(t)\right)\right)^{\prime}+p(t) K\left(x^{\prime}(t)\right)+q(t) x=0 .
$$

Our results generalize and extend some known oscillation criteria in the literature.

Key words : Oscillatory, second order differential equations.
AMS (MOS) Subject Classification: 34A30, 34C10.

1 Introduction

We shall be concerned here with the oscillatory properties for the second order nonlinear differential equation with damping term

$$
\begin{equation*}
\left(r(t) \psi(x(t)) K\left(x^{\prime}(t)\right)\right)^{\prime}+p(t) K\left(x^{\prime}(t)\right)+q(t) x=0, \quad t \geq t_{0}>0, \tag{1.1}
\end{equation*}
$$

where $r:\left[t_{0}, \infty\right) \rightarrow(0, \infty), p, q:\left[t_{0}, \infty\right) \rightarrow R=(-\infty, \infty), K: R \rightarrow R$ and $\psi: R \rightarrow R^{+}=$ $(0, \infty)$ are continuous functions. Throughout this paper we shall also assume that
(i) $0<c \leq \psi(x) \leq c_{1}$ for all $x \in R$;
(ii) $\gamma>0$ and $K^{2}(y) \leq \gamma y K(y)$ for all $y \neq 0$, where c, c_{1} and γ are constants.

The oscillatory character is considered in the usual sense, i.e., a solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros, otherwise it is said to be nonoscillatory. Equation (1.1) is called oscillatory if all its solutions are oscillatory.

The oscillation problem of solutions for various classes of second order differential equations have been widely discussed in the literature (see, for example, [1-15] and the references quoted therein). There is a great number of papers dealing with particular cases of equation (1.1) such as the linear equations

$$
\begin{gather*}
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0, \quad t \geq t_{0}>0, \tag{1.2}\\
x^{\prime \prime}+q(t) x=0, \quad t \geq t_{0}>0 \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(r(t) x^{\prime}\right)^{\prime}+q(t) x=0, \quad t \geq t_{0}>0 \tag{1.4}
\end{equation*}
$$

Actually, equation (1.2) can be reduced via suitable Sturm-Liouville transformation to the undamped equation. Here an additional assumption is added on $p(t)$, namely $p(t)$ assumed to be continuously differentiable. By Sturm-Liouville transformation

$$
\begin{equation*}
y(t)=x(t) \exp \left(\frac{1}{2} \int_{t_{0}}^{t} p(s) d s\right) \tag{1.5}
\end{equation*}
$$

reduces equation (1.2) to

$$
\begin{equation*}
y^{\prime \prime}+\left(q(t)-\frac{p^{2}(t)}{4}-\frac{p^{\prime}(t)}{2}\right) y=0, \quad t \geq t_{0}>0 \tag{1.6}
\end{equation*}
$$

which is in the form (1.3). Although (1.2) can be put in the form (1.3), there are advantages in obtaining direct oscillation theorems for (1.2). Oscillation criteria of (1.2)-(1.4) have been extensively studied by many authors. Many of these criteria involve the integral of the coefficients. Downstairs is a list of some well known oscillation criteria for equation (1.3) that exist in the literature

$$
\begin{equation*}
\lim _{t \rightarrow \infty} Q(t)=\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} q(s) d s \tag{1.7}
\end{equation*}
$$

(Fite-Winter-Leighton [4,5,7]);

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} Q(s) d s=\infty \tag{1.8}
\end{equation*}
$$

(Wintner [5]);

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{t^{a}} \int_{t_{0}}^{t}(t-s)^{a-1} Q(s) d s=\infty, \quad \text { for some } a>1 \tag{1.9}
\end{equation*}
$$

(Kamenev [6]).
Even though (1.5) is an oscillation-preserving transformation under the additional that $p(t)$ is differentiable or at least $p(t)$ is absolutely continuous so that $p^{\prime}(t)$ is defined. But this superfluous condition was not assumed in Sobol's paper (see [12]). By using polar coordinates transformation, he proved that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} G(t)=\lim _{t \rightarrow \infty}\left[Q(t)-\frac{p(t)}{2}-\frac{1}{4} \int_{t_{0}}^{t} p^{2}(s) d s\right]=\infty \tag{1.10}
\end{equation*}
$$

was sufficient for equation (1.2) to be oscillatory. Wong [3] noticed this point and gave several oscillation criteria for equation (1.2), which generalized the results due to Wintner and Kamenev.

More recently, Zheng and Liu [1] established oscillation criteria for equation (1.2) and the main results are as follows.

They assume that $g(t) \in C^{2}\left(\left[t_{0}, \infty\right) ;(0, \infty)\right)$ is a given functions, $f(t)=-\frac{g^{\prime}(t)}{2 g(t)}$ and

$$
\Phi(t)=-\frac{1}{2} g(t) p(t)+\int_{t_{0}}^{t} g(s)\left[q(s)-f(s) p(s)+f^{2}(s)-f^{\prime}(s)-\frac{p^{2}(s)}{4}\right] d s .
$$

Theorem A. Suppose that

$$
\begin{equation*}
\int^{\infty} g^{-1}(s) d s=\infty \tag{1.11}
\end{equation*}
$$

holds. Then equation (1.2) is oscillatory provided

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \Phi(t)=\infty . \tag{1.12}
\end{equation*}
$$

Theorem B. Suppose that

$$
\begin{equation*}
\int_{t_{0}}^{\infty}\left(\int_{t_{0}}^{t} g(\tau) d \tau\right)^{-1} d s=\infty \tag{1.13}
\end{equation*}
$$

holds. Then equation (1.2) is oscillatory provided

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} \Phi(s) d s=\infty \tag{1.14}
\end{equation*}
$$

Theorem C. Suppose that there exists a constant $a>1$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{t^{a}} \int_{t_{0}}^{t}\left[(t-s)^{a-1} \Phi(s)-\frac{a}{4} g(s)(t-s)^{a-2}\right] d s=\infty . \tag{1.15}
\end{equation*}
$$

Then equation (1.2) is oscillatory.
In this article, by using generalized Riccati transformation, we establish some oscillation criteria for equation (1.1) without any restriction on the $\operatorname{sign} p(t)$ and $q(t)$. Our results extend the oscillation criteria in [1].

2 Main Results

In order to prove our theorems, we assume that $g(t) \in C^{1}\left(\left[t_{0}, \infty\right) ;(0, \infty)\right)$ is a given function and

$$
\Gamma(t)=\int_{t_{0}}^{t}\left[q(s) g(s)-\frac{\left(\gamma g(s) p(s)-\gamma g^{\prime}(s) r(s) \psi(x(s))\right)^{2}}{4 \gamma g(s) r(s) \psi(x(s))}\right] d s-\frac{\gamma g(t) p(t)-\gamma g^{\prime}(t) r(t) \psi(x(t))}{2}
$$

Our results are as follows:
Theorem 2.1. In addition to the basic assumptions imposed on the functions r, p, q, g, ψ and K, suppose the following assumptions are valid:
(i)

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{d s}{g(s) r(s)}=\infty \tag{2.1}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \Gamma(t)=\infty \tag{2.2}
\end{equation*}
$$

Then equation (1.1) is oscillatory
Proof. Let $x(t)$ be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that $x(t)>0$ for $t \geq t_{0}$. Furthermore, we put

$$
w(t)=g(t) \frac{r(t) \psi(x(t)) K\left(x^{\prime}(t)\right)}{x(t)}, \quad t \geq t_{0},
$$

and using (ii), then it follows (1.1) that

$$
w^{\prime}(t)+\frac{1}{\gamma g(t) r(t) \psi(x(t))}\left[w^{2}(t)+\left(\gamma g(t) p(t)-\gamma g^{\prime}(t) r(t) \psi(x(t)) w\right]+q(t) g(t) \leq 0\right.
$$

By completing the square we have

$$
\begin{align*}
& w^{\prime}(t)+\frac{1}{\gamma g(t) r(t) \psi(x(t))}\left[\left(w(t)+\frac{\gamma g(t) p(t)-\gamma g^{\prime}(t) r(t) \psi(x(t))}{2}\right)^{2}-\frac{\left(\gamma g(t) p(t)-\gamma g^{\prime}(t) r(t) \psi(x(t))^{2}\right.}{4}\right] \tag{2.3}\\
& +q(t) g(t) \leq 0
\end{align*}
$$

Define $u(t)=w(t)+\frac{\gamma g(t) p(t)-\gamma g^{\prime}(t) r(t) \psi(x(t))}{2}$, rewrite (2.3), and integrate from t_{0} to $t \geq t_{0}$, we obtain

$$
\begin{equation*}
u(t)+\int_{t_{0}}^{t} \frac{u^{2}(s)}{\gamma g(s) r(s) \psi(x(s))} d s+\Gamma(t) \leq w\left(t_{0}\right) \tag{2.4}
\end{equation*}
$$

From (2.2), we can choose t_{1} sufficiently large so that

$$
\begin{equation*}
u(t)+\int_{t_{0}}^{t} \frac{u^{2}(s)}{\gamma g(s) r(s) \psi(x(s))} d s \leq 0, \quad t \geq t_{1} \tag{2.5}
\end{equation*}
$$

Set $V(t)=\int_{t_{0}}^{t} \frac{u^{2}(s)}{\gamma g(s) r(s) \psi(x(s))} d s$. By (2.5), We get

$$
\begin{align*}
& V^{2}(t)=\left(\int_{t_{0}}^{t} \frac{u^{2}(s)}{\gamma g(s) r(s) \psi(x(s))} d s\right)^{2} \leq u^{2}(t)=\gamma g(t) r(t) \psi(x(t)) V^{\prime}(t) \tag{2.6}\\
& \leq \gamma c_{1} g(t) r(t) V^{\prime}(t), \text { for } t \geq t_{1}
\end{align*}
$$

Dividing (2.6) through by $V^{2}(t)$ and integrating from t_{1} to t, we find

$$
\begin{equation*}
\int_{t_{1}}^{t} \frac{d s}{g(s) r(s)} \leq \frac{\gamma c_{1}}{V\left(t_{1}\right)}-\frac{\gamma c_{1}}{V(t)} \tag{2.7}
\end{equation*}
$$

due to $V(t)>0$, we have

$$
\begin{equation*}
\int_{t_{1}}^{t} \frac{d s}{g(s) r(s)} \leq \frac{\gamma c_{1}}{V\left(t_{1}\right)} \tag{2.8}
\end{equation*}
$$

which gives a desired contradiction with (2.1) as $t \rightarrow \infty$. This completes the proof.
Theorem 2.2. In addition to the basic assumptions imposed on the functions r, p, q, g, ψ and K, suppose the following assumptions are valid:
(i)

$$
\begin{equation*}
\int_{t_{0}}^{\infty}\left(\int_{t_{0}}^{s} g(\tau) r(\tau) d \tau\right)^{-1} d s=\infty \tag{2.9}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} \Gamma(s) d s=\infty \tag{2.10}
\end{equation*}
$$

Then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that $x(t)>0$ for $t \geq t_{0}$. Follows the proof of theorem 2.1, we obtain (2.4). Afterwards, Integrate (2.4) from t_{0} to t and divide through by t to obtain

$$
\begin{equation*}
\frac{1}{t} \int_{t_{0}}^{t} u(s) d s+\frac{1}{t} \int_{t_{0}}^{t} V(s) d s+\frac{1}{t} \int_{t_{0}}^{t} \Gamma(s) d s \leq w\left(t_{0}\right) . \tag{2.11}
\end{equation*}
$$

From (2.9), we can choose t_{1} sufficiently large so that $t \geq t_{1}$

$$
\begin{equation*}
\int_{t_{0}}^{t} u(s) d s+\int_{t_{0}}^{t} V(s) d s \leq 0 \tag{2.12}
\end{equation*}
$$

Let $A(t)=\int_{t_{0}}^{t} V(s) d s$. Using Hölder inequality, we find

$$
\begin{align*}
& A^{2}(t) \leq\left(\int_{t_{0}}^{t} u(s) d s\right)^{2}=\left(\begin{array}{l}
t \\
\int_{t_{0}}^{t} \\
\\
\end{array} \leq\left(\int_{t_{0}}^{t} \gamma g(s) r(s) r(s) \psi(x(s))\right.\right. \\
&\sqrt{\gamma g(s) r(s) \psi(x(s))} d s)^{2} \tag{2.13}\\
&=V(t)\left(\int_{t_{0}}^{t} \gamma g(s) r(s) \psi(x(s)) d s\right)=A^{\prime}(t)\left(\int_{t_{0}}^{t} \frac{u^{2}(s)}{\gamma g(s) r(s) \psi(x(s))} d s\right) \\
& \leq \gamma c_{1} A^{\prime}(t)\left(\int_{t_{0}}^{t} g(s) r(s) r(s) \psi(x(s)) d s\right)
\end{align*}
$$

Dividing (2.13) through by $A^{2}(t)$ and integrating from t_{1} to t, we obtain

$$
\begin{equation*}
\int_{t_{1}}^{t}\left(\int_{t_{0}}^{s} g(\tau) r(\tau) d \tau\right)^{-1} d s \leq \frac{\gamma c_{1}}{A\left(t_{1}\right)}-\frac{\gamma c_{1}}{A(t)} \leq \frac{\gamma c_{1}}{A\left(t_{1}\right)} \tag{2.14}
\end{equation*}
$$

But (2.14) incompatible with (2.9) as $t \rightarrow \infty$. Hence the Theorem.
Theorem 2.3. Assume that there exists a constant $a>1$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{t^{a}} \int_{t_{0}}^{t}\left[(t-s)^{a-1} \Gamma(s)-\frac{a}{4} \gamma g(s) r(s) \psi(x(s))(t-s)^{a-2}\right] d s=\infty \tag{2.15}
\end{equation*}
$$

Then equation (1.1) is oscillatory.
Proof. As in the proof of Theorem 2.1, (2.4) holds. Multiplying (2.4) through by $(t-s)^{a-1}$, integrating t_{0} to t and dividing through by t^{a}, we obtain

$$
\begin{align*}
& \frac{1}{t^{a}}\left\{\int_{t_{0}}^{t}(t-s)^{a-1} u(s)+\int_{t_{0}}^{t}(t-s)^{a-1} \int_{t_{0}}^{s} \frac{u^{2}(\tau)}{\gamma g(\tau) r(\tau) \psi(x(\tau))} d \tau d s+\int_{t_{0}}^{t}(t-s)^{a-1} \Gamma(s) d s\right\} \tag{2.16}\\
& \leq a^{-1} w\left(t_{0}\right)
\end{align*}
$$

Denote $R(s)=\int_{t_{0}}^{s} \frac{u^{2}(\tau)}{\gamma g(\tau) r(\tau) \psi(x(\tau))} d \tau$. Integrating the second integral in (2.16) by parts, we obtain

$$
\begin{equation*}
\int_{t_{0}}^{t}(t-s)^{a-1} R(s) d s=\frac{1}{a} \int_{t_{0}}^{t}(t-s)^{a} \frac{u^{2}(s)}{\gamma g(s) r(s) \psi(x(s))} d s \tag{2.17}
\end{equation*}
$$

Puting (2.17) into (2.16) and completing squares in $u(s)$, we acquire

$$
\begin{aligned}
& \frac{1}{a t^{a}} \int_{t_{0}}^{t}\left[\frac{(t-s)^{a / 2} u(s)}{\sqrt{\gamma g(s) r(s) \psi(x(s))}}+\frac{a \sqrt{\gamma g(s) r(s) \psi(x(s))}(t-s)^{(a-2) / 2}}{2}\right]^{2} d s \\
& +\frac{1}{t^{a}} \int_{t_{0}}^{t}\left[(t-s)^{a-1} \Gamma(s)-\frac{a}{4} \gamma g(s) r(s) \psi(x(s))(t-s)^{a-2}\right] d s \\
& \leq a^{-1} w\left(t_{0}\right)
\end{aligned}
$$

Therefore, we have

$$
\frac{1}{t^{a}} \int_{t_{0}}^{t}\left[(t-s)^{a-1} \Gamma(s)-\frac{a}{4} \gamma g(s) r(s) \psi(x(s))(t-s)^{a-2}\right] d s \leq a^{-1} w\left(t_{0}\right)
$$

Taking the upper limit as $t \rightarrow \infty$, we obtain a contradiction with (2.15). This completes the proof of Theorem 2.3.

Corollary 2.1. If there exists a constant $a>1$ such that

$$
\limsup _{t \rightarrow \infty} \frac{1}{t^{a}} \int_{t_{0}}^{t} \gamma g(s) r(s) \psi(x(s))(t-s)^{a-2} d s<\infty
$$

and

$$
\limsup _{t \rightarrow \infty} \frac{1}{t^{a}} \int_{t_{0}}^{t}(t-s)^{a-1} \Gamma(s) d s=\infty
$$

then equation (1.1) is oscillatory.

Remarks.

1. Let $r(t)=1, \psi(x(t))=1$ and $K\left(x^{\prime}(t)\right)=x^{\prime}(t)$ in equation (1.1). Then our equation (1.1) reduces to equation (1.2) which is same as in [1]. In spite of the condition $g(t) \in C^{2}\left(\left[t_{0}, \infty\right) ;(0, \infty)\right)$ is given in Theorems A, B and C, our results depend on $g(t) \in$ $C^{1}\left(\left[t_{0}, \infty\right) ;(0, \infty)\right)$ in Theorems 2.1, 2.2 and 2.3.
2. Theorems 2.1, 2.2 and 2.3 generalize and extend Theorems A, B and C to the nonlinear differential equation (1.1).
3. Let $\psi(x(t))=1, K\left(x^{\prime}(t)\right)=x^{\prime}(t)$ and $q(t) x=q(t) f(x)$. Then the equation (1.1) reduces to

$$
\left(r(t) x^{\prime}\right)^{\prime}+p(t) x^{\prime}+q(t) f(x)=0
$$

which considered in [9]. In this situation, the conditions of Theorem 2.1 and Theorem 2.2 are compatible with Theorem 2.1 and Theorem 2.5 of [9], respectively. But, our Theorem 2.3 is not mentioned in [9].

References

[1] Z. Zheng and J. Liu, Generalized Riccati transformation and oscillation for linear differential equations with damping, Ann. Differential equations, 21 (2005), no.1, 93-98.
[2] H.K. Abdullah, A note on the oscillation of second order differential equations, Czechoslovak Math. J., 54 (129)(2004), no.4, 949-954.
[3] J.S.W. Wong, On a theorem of Sobol, Bull. Institute Math. Academic Sinica, 27(1999), 253-264.
[4] W.B. Fite, Concerning the zeros of the solutions of certain differential equations, Tran. Amer. Math. Soc., 19 (1918), 341-352.
[5] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math., 7(1949), 115-117.
[6] I.V. Kamenev, Integral criterion for oscillation of linear differential equations of second order, Math. Zemetki, 23(1978), 249-251 (in Russian).
[7] W.Leighton, The detection of the oscillation of solutions of a second order nonlinear differential equations, Duke. Math.J., 17(1950), 57-62.
[8] H.J. Li, Oscillation criteria of linear differential equations, J. Math.Anal. Appl., 194(1995), 217-234.
[9] D. Çakmak, Oscillation for second order nonlinear differential equations with damping, Dynamic Systems and Applications, 17 (2008), 139-148.
[10] W. Liu and H.J. Li., oscillation criteria for second order linear differential equations with damping, J. Appl. Math., 2(1996), 105-118.
[11] M.K. Kwong and a. Zettl, Integral inequalities and second order linear oscillation, J. Diff.Eqs., 46(1982), 16-33.
[12] I.M. Sobol, Investion with the aid of polar coordinates of the asymptotic behavior of solutions of a linear differential of the second order, Math. sb., 28(1951), 707-714 (in Russian).
[13] Z. Zheng, Oscillation criteria for nonlinear second order differential equations with damping, Acta Math. Hungar, 110 (3) (2006), 241-252.
[14] Y.Yu, Leighton type oscillation criterion and Sturm type comparison theorem, Math. Nacr., 153(1991), 485-496.
[15] S.R. Grace and B.S. Lalli, Oscillation theorems for nonlinear second order differential equations with a damping, Comment. Math. Univ. Carolinae, 30, 4(1989), 691-697.

Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces

M. Eshaghi Gordji, M. Bavand Savadkouhi and M. Bidkham
Department of Mathematics, Semnan University,
P. O. Box 35195-363, Semnan, Iran
e-mail: madjid.eshaghi@gmail.com, bavand.m@gmail.com,m.bidkham@semnan.ac.ir

Abstract

In this paper, we establish generalized Hyres-Ulam-Rassias stability of the mixed type additive and quadratic functional equation

$$
f(3 x+y)+f(3 x-y)=f(x+y)+f(x-y)+2 f(3 x)-2 f(x)
$$

in non-Archimedean spaces.

1. Introduction

In 1897, Hensel [14] has introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications [19, 28].

A non-Archimedean field is a field K equipped with a function (valuation) $|$.$| from K$ into $[0, \infty)$ such that $|r|=0$ if and only if $r=0,|r s|=|r||s|$, and $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in K$. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in N$. An example of a non-Archimedean valuation is the mapping $|$.$| taking everything but 0$ into 1 and $|0|=0$. This valuation is called trivial.
Definition 1.1. Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation $|$.$| . A function \|\|:. X \rightarrow \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:
$\left(N A_{1}\right)\|x\|=0$ if and only if $x=0$;
$\left(N A_{2}\right)\|r x\|=|r|\|x\|$ for all $r \in K$ and $x \in X$;
$\left(N A_{3}\right)\|x+y\| \leq \max \{\|x\|,\|y\|\}$ for all $x, y \in X$ (the strong triangle inequality).
Then $(X,\|\|$.$) is called a non-Archimedean space.$
Remark 1.2. Thanks to the inequality

$$
\left\|x_{m}-x_{l}\right\| \leq \max \left\{\left\|x_{\jmath+1}-x_{\jmath}\right\|: l \leq \jmath \leq m-1\right\} \quad(m>l)
$$

a sequence $\left\{x_{m}\right\}$ is Cauchy if and only if $\left\{x_{m+1}-x_{m}\right\}$ converges to zero in a non-Archimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: "for $x, y>0$, there exists $n \in \mathbb{N}$ such that $x<n y$."

[^21]Example 1.3. Let p be a prime number. For any nonzero rational number $x=\frac{a}{b} p^{n_{x}}$ such that a and b are integers not divisible by p, define the p-adic absolute value $|x|_{p}:=p^{-n_{x}}$. Then $|$.$| is a non-Archimedean norm on \mathbb{Q}$. The completion of \mathbb{Q} with respect to $|$.$| is$ denoted by \mathbb{Q}_{p} which is called the p-adic number field.

Note that if $p>3$, then $\left|2^{n}\right|=1$ in for each integer n.
The stability problem of functional equations originated from a question of Ulam[27] in 1940, concerning the stability of group homomorphisms. Let $\left(G_{1},.\right)$ be a group and let $\left(G_{2}, *, d\right)$ be a metric group with the metric $d(.,$.$) . Given \epsilon>0$, dose there exist a $\delta>0$, such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x . y), h(x) * h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$? In the other words, Under what condition dose there exists a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, D. H. Hyers[16] gave a first affirmative answer to the question of Ulam for Banach spaces. Let $f: E \rightarrow E^{\prime}$ be a mapping between Banach spaces such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in E$, and for some $\delta>0$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \delta
$$

for all $x \in E$. Moreover if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E$, then T is linear. In 1978, Th. M. Rassias[23] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded. In 1991, Z. Gajda[11] answered the question for the case $p>1$, which was rased by Rassias. This new concept is known as Hyers-Ulam-Rassias stability of functional equations (see $[1,2,5],[12,15,17]$ and [24]). The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

is related to symmetric bi-additive function. It is natural that this equation is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is said to be a quadratic function. It is well known that a function f between real vector spaces is quadratic if and only if there exits a unique symmetric bi-additive function B such that $f(x)=B(x, x)$ for all x (see $[1,18]$). The bi-additive function B is given by

$$
\begin{equation*}
B(x, y)=\frac{1}{4}(f(x+y)-f(x-y)) \tag{1.2}
\end{equation*}
$$

Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.1) was proved by Skof for functions $f: A \rightarrow B$, where A is normed space and B Banach space (see [26, 6, 7, 13]). Borelli and Forti [4] generalized the stability result of quadratic functional equations as follows (cf. [21, 22]): Let G be an Abelian group, and X a Banach space. Assume that a mapping $f: G \rightarrow X$ satisfies the functional inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \varphi(x, y)
$$

for all $x, y \in G$, and $\varphi: G \times G \rightarrow[0, \infty)$ is a function such that

$$
\Phi(x, y):=\sum_{i=0}^{\infty} \frac{1}{4^{i+1}} \varphi\left(2^{i} x, 2^{i} y\right)<\infty
$$

for all $x, y \in G$. Then there exists a unique quadratic mapping $Q: G \rightarrow X$ with the property

$$
\|f(x)-Q(x)\| \leq \Phi(x, x)
$$

Stability of a mixed type additive and quadratic functional ...
for all $x \in G$.

Arriola and Beyer [3] investigated stability of approximate additive mappings $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$. They showed that if $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$ is a continuous mapping for which there exists a fixed ϵ :

$$
|f(x+y)-f(x)-f(y)| \leq \epsilon
$$

for all $x, y \in Q_{p}$, then there exists a unique additive mapping $T: \mathbb{Q}_{p} \rightarrow \mathbb{R}$ such that

$$
|f(x)-T(x)| \leq \epsilon
$$

for all $x \in \mathbb{Q}_{p}$. Additionally in 2007, Moslehian and Rassias [20] proved the generalized HyersUlam stability of the Cauchy functional equation and the quadratic functional equation in non-Archimedean normed spaces (see also [8]).

In this paper, we establish the stability of the additive-quadratic functional equation

$$
\begin{equation*}
f(3 x+y)+f(3 x-y)=f(x+y)+f(x-y)+2 f(3 x)-2 f(x) \tag{1.3}
\end{equation*}
$$

in non-Archimedean space. The function $f(x)=x+x^{2}$ satisfies the functional equation (1.3), which explains why it is called additive-quadratic functional equation. For more detailed definitions of mixed type functional equations, we can refer to [9] and [10].

2. Main Results

Throughout this section, we assume that G is an additive group and X is a complete nonArchimedean space. Now before taking up the main subject, for a given function $f: G \rightarrow X$, we define the difference operator

$$
D f(x, y)=f(3 x+y)+f(3 x-y)-f(x+y)-f(x-y)-2 f(3 x)+2 f(x)
$$

for all $x, y \in G$. we consider the following function inequality:

$$
\|D f(x, y)\| \leq \varphi(x, y)
$$

for an upper bound $\varphi: G \times G \rightarrow[0, \infty)$.
Theorem 2.1. Let $\varphi: G \times G \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|2|^{n}}=0 \tag{2.1}
\end{equation*}
$$

$\lim _{n \rightarrow \infty} \frac{1}{\left|2^{n}\right|} \max \left\{\max \left\{\varphi\left(\frac{2^{n} x}{4}, \frac{2^{n} x}{4}\right), \varphi\left(\frac{2^{n} x}{4}, \frac{3.2^{n} x}{4}\right)\right\}, \max \left\{\varphi\left(\frac{2^{n} x}{4}, \frac{2^{n} x}{4}\right), \varphi\left(\frac{2^{n} x}{4}, \frac{5.2^{n} x}{4}\right)\right\}\right\}=0$
for all $x, y \in G$, and let for each $x \in G$ the limit

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { j } | } \operatorname { m a x } \left\{\max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{3.2^{j} x}{4}\right)\right\}\right.\right. \\
\left.\left., \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}\right)\right\}\right\}: 0 \leq j<n\right\} \tag{2.3}
\end{gather*}
$$

denoted by $\tilde{\varphi}_{A}(x)$, exists. Suppose that $f: G \rightarrow X$ is an odd function satisfying

$$
\begin{equation*}
\|D f(x, y)\| \leq \varphi(x, y) \tag{2.4}
\end{equation*}
$$

for all $x, y \in G$. Then there exists an additive function $A: G \rightarrow X$ such that

$$
\begin{equation*}
\|A(x)-f(x)\| \leq \frac{1}{|2|} \tilde{\varphi}_{A}(x) \tag{2.5}
\end{equation*}
$$

for all $x \in G$, if moreover

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{1}{\left|2^{j}\right|} \max \{ \right. & \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{3 \cdot 2^{j} x}{4}\right)\right\} \\
& \left.\left., \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{5 \cdot 2^{j} x}{4}\right)\right\}\right\}: i \leq j<n+i\right\}=0,
\end{aligned}
$$

then A is the unique additive function satisfying (2.5).
Proof. Setting $y=x$ in (2.4), we get

$$
\begin{equation*}
\|f(4 x)-2 f(3 x)+2 f(x)\| \leq \varphi(x, x) \tag{2.6}
\end{equation*}
$$

for all $x \in G$. If we let $y=3 x$ in (2.4), we get by the oddness of f,

$$
\begin{equation*}
\|f(6 x)-2 f(3 x)-f(4 x)+2 f(x)+f(2 x)\| \leq \varphi(x, 3 x) \tag{2.7}
\end{equation*}
$$

for all $x \in G$. It follows from (2.6) and (2.7) that

$$
\begin{equation*}
\|f(6 x)-2 f(4 x)+f(2 x)\| \leq \max \{\varphi(x, x), \varphi(x, 3 x)\} \tag{2.8}
\end{equation*}
$$

for all $x \in G$. Once again, by letting $y=5 x$ in (2.4), we get by the oddness of f,

$$
\begin{equation*}
\|f(8 x)-f(2 x)-f(6 x)+f(4 x)-2 f(3 x)+2 f(x)\| \leq \varphi(x, 5 x) \tag{2.9}
\end{equation*}
$$

for all $x \in G$. By (2.6) and (2.9), we get

$$
\begin{equation*}
\|f(8 x)-f(6 x)-f(2 x)\| \leq \max \{\varphi(x, x), \varphi(x, 5 x)\} \tag{2.10}
\end{equation*}
$$

for all $x \in G$. By (2.8) and (2.10), we obtain

$$
\begin{equation*}
\|f(8 x)-2 f(4 x)\| \leq \max \{\max \{\varphi(x, x), \varphi(x, 3 x)\}, \max \{\varphi(x, x), \varphi(x, 5 x)\}\} \tag{2.11}
\end{equation*}
$$

for all $x \in G$. If we replace x by $\frac{x}{4}$ in (2.11), and divide both sides of (2.11) by 2 , we get that

$$
\begin{equation*}
\left\|\frac{1}{2} f(2 x)-f(x)\right\| \leq \frac{1}{|2|} \max \left\{\max \left\{\varphi\left(\frac{x}{4}, \frac{x}{4}\right), \varphi\left(\frac{x}{4}, \frac{3 x}{4}\right)\right\}, \max \left\{\varphi\left(\frac{x}{4}, \frac{x}{4}\right), \varphi\left(\frac{x}{4}, \frac{5 x}{4}\right)\right\}\right\} \tag{2.12}
\end{equation*}
$$

for all $x \in G$. Replacing x by $2^{n-1} x$ in (2.12), we obtain

$$
\begin{align*}
\left\|\frac{1}{2^{n}} f\left(2^{n} x\right)-\frac{1}{2^{(n-1)}} f\left(2^{n-1} x\right)\right\| \leq \frac{1}{\left|2^{n}\right|} \max \{ & \max \left\{\varphi\left(\frac{2^{n-1} x}{4}, \frac{2^{n-1} x}{4}\right), \varphi\left(\frac{2^{n-1} x}{4}, \frac{3.2^{n-1} x}{4}\right)\right\} \\
& \left., \max \left\{\varphi\left(\frac{2^{n-1} x}{4}, \frac{2^{n-1} x}{4}\right), \varphi\left(\frac{2^{n-1} x}{4}, \frac{5 \cdot 2^{n-1} x}{4}\right)\right\}\right\} \tag{2.13}
\end{align*}
$$

for all $x \in G$. It follows from (2.2) and (2.13) that the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ is Cauchy. Since X is complete, we conclude that $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ is convergent. Set $A(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$.
By using induction one can show that

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-f(x)\right\| \leq \frac{1}{|2|} \max \left\{\frac{1}{\left|2^{i}\right|} \max \{ \right. & \max \left\{\varphi\left(\frac{2^{i} x}{4}, \frac{2^{i} x}{4}\right), \varphi\left(\frac{2^{i} x}{4}, \frac{3 \cdot 2^{i} x}{4}\right)\right\} \\
& \left.\left., \max \left\{\varphi\left(\frac{2^{i} x}{4}, \frac{2^{i} x}{4}\right), \varphi\left(\frac{2^{i} x}{4}, \frac{5.2^{i} x}{4}\right)\right\}\right\}: 0 \leq i<n\right\} \tag{2.14}
\end{align*}
$$

for all $n \in \mathbb{N}$ and all $x \in G$. By taking n to approach infinity in (2.14) and using (2.3) one obtains (2.5). By (2.1) and (2.4), we get

$$
\|D A(x, y)\|=\lim _{n \rightarrow \infty} \frac{1}{\left|2^{n}\right|}\left\|f\left(2^{n} x, 2^{n} y\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|2|^{n}}=0
$$

Stability of a mixed type additive and quadratic functional ...
for all $x, y \in G$. Therefore the function $A: G \rightarrow X$ satisfies (1.3). If A^{\prime} is another additive function satisfying (2.5), then

$$
\begin{aligned}
\left\|A(x)-A^{\prime}(x)\right\| & =\lim _{i \rightarrow \infty}|2|^{-i}\left\|A\left(2^{i} x\right)-A^{\prime}\left(2^{i} x\right)\right\| \\
& \leq \lim _{i \rightarrow \infty}|2|^{-i} \max \left\{\left\|A\left(2^{i} x\right)-f\left(2^{i} x\right)\right\|,\left\|f\left(2^{i} x\right)-A^{\prime}\left(2^{i} x\right)\right\|\right\} \\
& \leq \frac{1}{|2|} \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { j } | } \operatorname { m a x } \left\{\max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{3.2^{j} x}{4}\right)\right\}\right.\right. \\
& \left.\left., \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}\right)\right\}\right\}: i \leq j<n+i\right\} \\
& =0 .
\end{aligned}
$$

for all $x \in G$. Therefore $A=A^{\prime}$. This completes the proof of the uniqueness of A.
Theorem 2.2. Let $\varphi: G \times G \rightarrow[0, \infty)$ be a function such that

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{\mid 22^{2 n}}=0 \tag{2.15}\\
\lim _{n \rightarrow \infty} \frac{1}{\left|2^{2 n}\right|} \max \left\{\varphi\left(\frac{2^{n} x}{4}, \frac{2^{n} x}{4}\right), \max \left\{\varphi\left(\frac{2^{n} x}{4}, \frac{5 \cdot 2^{n} x}{4}\right), \varphi\left(\frac{2^{n} x}{4}, \frac{-3.2^{n} x}{4}\right)\right\}\right\}=0 \tag{2.16}
\end{gather*}
$$

for all $x, y \in G$ and let for each $x \in G$ the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{\frac{1}{\left|2^{2 j}\right|} \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{5 \cdot 2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{-3.2^{j} x}{4}\right)\right\}\right\}: 0 \leq j<n\right\} \tag{2.17}
\end{equation*}
$$

denoted by $\tilde{\varphi}_{Q}(x)$, exists. Suppose that $f: G \rightarrow X$ is an even function satisfying

$$
\begin{equation*}
\|D f(x, y)\| \leq \varphi(x, y) \tag{2.18}
\end{equation*}
$$

for all $x, y \in G$. Then there exists a quadratic function $Q: G \rightarrow X$ such that

$$
\begin{equation*}
\|Q(x)-f(x)\| \leq \frac{1}{|4|} \tilde{\varphi}_{Q}(x) \tag{2.19}
\end{equation*}
$$

for all $x \in G$, if moreover

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{1}{\left|2^{2 j}\right|}\right. & \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right)\right. \\
& \left.\left., \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{-3.2^{j} x}{4}\right)\right\}\right\}: i \leq j<n+i\right\}=0
\end{aligned}
$$

then Q is the unique quadratic function satisfying (2.19).
Proof. Replacing y by $x+y$ in (2.18) to get

$$
\begin{equation*}
\|f(4 x+y)+f(2 x-y)-f(2 x+y)-f(y)-2 f(3 x)+2 f(x)\| \leq \varphi(x, x+y) \tag{2.20}
\end{equation*}
$$

for all $x, y \in G$. If we Replace y by $-y$ in (2.20), we obtain

$$
\begin{equation*}
\|f(4 x-y)+f(2 x+y)-f(2 x-y)-f(y)-2 f(3 x)+2 f(x)\| \leq \varphi(x, x-y) \tag{2.21}
\end{equation*}
$$

for all $x, y \in G$. If we add (2.20) to (2.21), we have

$$
\begin{equation*}
\|f(4 x+y)+f(4 x-y)-2 f(y)-4 f(3 x)+4 f(x)\| \leq \max \{\varphi(x, x+y), \varphi(x, x-y)\} \tag{2.22}
\end{equation*}
$$

Letting $y=0$ in (2.22), we get the inequality

$$
\begin{equation*}
\|2 f(4 x)-4 f(3 x)+4 f(x)\| \leq \varphi(x, x) \tag{2.23}
\end{equation*}
$$

M. Eshaghi Gordji, M. Bavand Savadkouhi and M. Bidkham

for all $x \in G$. Once again By letting $y=4 x$ in (2.22), we get the inequality

$$
\begin{equation*}
\|f(8 x)-2 f(4 x)-4 f(3 x)+4 f(x)\| \leq \max \{\varphi(x, 5 x), \varphi(x,-3 x)\} \tag{2.24}
\end{equation*}
$$

for all $x \in G$. By (2.23) and (2.24), we get

$$
\begin{equation*}
\|f(8 x)-4 f(4 x)\| \leq \max \{\varphi(x, x), \max \{\varphi(x, 5 x), \varphi(x,-3 x)\}\} \tag{2.25}
\end{equation*}
$$

for all $x \in G$. If we replace x in (2.25) by $\frac{x}{4}$ and divide both sides of (2.25) by 4 , we lead to

$$
\begin{equation*}
\left\|\frac{1}{4} f(2 x)-f(x)\right\| \leq \frac{1}{|4|} \max \left\{\varphi\left(\frac{x}{4}, \frac{x}{4}\right), \max \left\{\varphi\left(\frac{x}{4}, \frac{5 x}{4}\right), \varphi\left(\frac{x}{4}, \frac{-3 x}{4}\right)\right\}\right\} \tag{2.26}
\end{equation*}
$$

for all $x \in G$. Replacing x by $2^{n-1} x$ in (2.26), we get

$$
\begin{align*}
\left\|\frac{1}{2^{2 n}} f\left(2^{n} x\right)-\frac{1}{2^{2(n-1)}} f\left(2^{n-1} x\right)\right\| \leq \frac{1}{\left|2^{2 n}\right|} & \max \left\{\varphi\left(\frac{2^{n-1} x}{4}, \frac{2^{n-1} x}{4}\right)\right. \\
& \left., \max \left\{\varphi\left(\frac{2^{n-1} x}{4}, \frac{5.2^{n-1} x}{4}\right), \varphi\left(\frac{2^{n-1} x}{4}, \frac{-3.2^{n-1} x}{4}\right)\right\}\right\} \tag{2.27}
\end{align*}
$$

for all $x \in G$. By (2.16) and (2.27), it follows that the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{2 n}}\right\}$ is Cauchy. Since X is complete, we conclude that $\left\{\frac{f\left(2^{n} x\right)}{2^{2 n}}\right\}$ is convergent. Set $Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{2 n}}$ for all $x \in X$.
Using induction one can show that

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{2^{2 n}}-f(x)\right\| \leq & \frac{1}{\left|2^{2}\right|} \max \left\{\frac { 1 } { | 2 ^ { 2 i } | } \operatorname { m a x } \left\{\varphi\left(\frac{2^{i} x}{4}, \frac{2^{i} x}{4}\right), \max \left\{\varphi\left(\frac{2^{i} x}{4}, \frac{5.2^{i} x}{4}\right)\right.\right.\right. \\
& \left.\left.\left., \varphi\left(\frac{2^{i} x}{4}, \frac{-3.2^{i} x}{4}\right)\right\}\right\}: 0 \leq i<n\right\} \tag{2.28}
\end{align*}
$$

for all $n \in \mathbb{N}$ and all $x \in G$. Letting $n \rightarrow \infty$ in (2.28) and using (2.17) one can obtain (2.19). By (2.15) and (2.18), we get

$$
\|D Q(x, y)\|=\lim _{n \rightarrow \infty} \frac{1}{\left|2^{2 n}\right|}\left\|f\left(2^{n} x, 2^{n} y\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|2|^{2 n}}=0
$$

for all $x, y \in G$. Therefore the function $Q: G \rightarrow X$ satisfies (1.3). To prove the uniqueness property of Q, let Q^{\prime} be another quadratic function satisfying (2.19), then

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\| & =\lim _{i \rightarrow \infty}|2|^{-2 i}\left\|Q\left(2^{i} x\right)-Q^{\prime}\left(2^{i} x\right)\right\| \\
& \leq \lim _{i \rightarrow \infty}|2|^{-2 i} \max \left\{\left\|Q\left(2^{i} x\right)-f\left(2^{i} x\right)\right\|,\left\|f\left(2^{i} x\right)-Q^{\prime}\left(2^{i} x\right)\right\|\right\} \\
& \leq \frac{1}{\left|2^{2}\right|} \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { 2 j } | } \operatorname { m a x } \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right)\right.\right. \\
& \left.\left., \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{5 \cdot 2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{-3.2^{j} x}{4}\right)\right\}\right\}: i \leq j<n+i\right\} .
\end{aligned}
$$

for all $x \in G$. It follows from hypothesis that $Q=Q^{\prime}$.
Theorem 2.3. Let $\varphi: G \times G \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|2|^{n}}=\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|2|^{2 n}}=0 \tag{2.29}
\end{equation*}
$$

for all $x, y \in G$ and let for each $x \in G$ the limit

$$
\lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { j } | } \operatorname { m a x } \left\{\max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{3.2^{j} x}{4}\right)\right\}\right.\right.
$$

Stability of a mixed type additive and quadratic functional ...

$$
\left.\left.\max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}\right)\right\}\right\}: 0 \leq j<n\right\}
$$

denoted by $\tilde{\varphi}_{A}(x)$, and

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{1}{\left|2^{2 j}\right|} \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{-3.2^{j} x}{4}\right)\right\}\right\}: 0 \leq j<n\right\}
$$

denoted by $\tilde{\varphi}_{Q}(x)$, exist. Suppose that $f: G \rightarrow X$ is a function satisfying

$$
\begin{equation*}
\|D f(x, y)\| \leq \varphi(x, y) \tag{2.30}
\end{equation*}
$$

for all $x, y \in G$. Then there exist an additive function $A: X \rightarrow Y$ and a quadratic function $Q: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-A(x)-Q(x)\| \leq \frac{1}{\left|2^{2}\right|} \max \left\{\max \left\{\tilde{\varphi}_{A}(x), \tilde{\varphi}_{A}(-x)\right\}, \frac{1}{|2|} \max \left\{\tilde{\varphi}_{Q}(x), \tilde{\varphi}_{Q}(-x)\right\}\right\} \tag{2.31}
\end{equation*}
$$

for all $x \in G$, if

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac { 1 } { | 2 ^ { j } | } \operatorname { m a x } \left\{\max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{3.2^{j} x}{4}\right)\right\}\right.\right. \\
&\left.\left., \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}\right)\right\}\right\}: i \leq j<n+i\right\}=0 \\
& \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{1}{\left|2^{2 j}\right|}\right. \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{2^{j} x}{4}\right)\right. \\
&\left.\left., \max \left\{\varphi\left(\frac{2^{j} x}{4}, \frac{5.2^{j} x}{4}\right), \varphi\left(\frac{2^{j} x}{4}, \frac{-3.2^{j} x}{4}\right)\right\}\right\}: i \leq j<n+i\right\}=0
\end{aligned}
$$

then A is the unique additive function and Q is the unique quadratic function satisfying (2.31).

Proof. Let $f_{o}(x)=\frac{1}{2}[f(x)-f(-x)]$ for all $x \in G$. Then $f_{o}(0)=0, f_{o}(-x)=-f_{o}(x)$, and

$$
\left\|D f_{o}(x, y)\right\| \leq \frac{1}{|2|} \max \{\varphi(x, y), \varphi(-x,-y)\}
$$

for all $x, y \in G$. From Theorem 2.1, it follows that there exists a unique additive function $A: G \rightarrow X$ satisfying

$$
\begin{equation*}
\left\|f_{o}(x)-A(x)\right\| \leq \frac{1}{\left|2^{2}\right|} \max \left\{\tilde{\varphi}_{A}(x), \tilde{\varphi}_{A}(-x)\right\} \tag{2.32}
\end{equation*}
$$

for all $x \in G$.
Let $f_{e}(x)=\frac{1}{2}[f(x)+f(-x)]$ for all $x \in G$. Then $f_{e}(0)=0, f_{e}(-x)=f_{e}(x)$, and

$$
\left\|D f_{e}(x, y)\right\| \leq \frac{1}{|2|} \max \{\varphi(x, y), \varphi(-x,-y)\}
$$

for all $x, y \in G$. From Theorem 2.2, it follows that there exists a unique quadratic function $Q: G \rightarrow X$ satisfying

$$
\begin{equation*}
\left\|f_{e}(x)-Q(x)\right\| \leq \frac{1}{\left|2^{3}\right|} \max \left\{\tilde{\varphi}_{Q}(x), \tilde{\varphi}_{Q}(-x)\right\} \tag{2.33}
\end{equation*}
$$

for all $x \in G$.
Hence, (3.31) follows from (3.32) and (3.33).

References

[1] J. Aczel and J. Dhombres, Functional equations in several variables, Cambridge Univ. Press, 1989.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64-66.
[3] L. M. Arriola, W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Analysis Exchange, 31 (2005/2006) 125-132.
[4] C. Borelli and G. L. Forti, On a general Hyers-Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995), 229-236.
[5] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951) 223-237.
[6] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984) 76-86.
[7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[8] M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math., DOI 10.1007/s10440-009-9512-7, 2009.
[9] M. Eshaghi Gordji, A. Ebadian and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abstract and Applied Analysis Volume 2008, Article ID 801904, 17 pages.
[10] M. Eshaghi Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis. (2009), article in press.
[11] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
[12] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[13] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen. 48 (1996) 217-235.
[14] K. Hensel, Uber eine neue Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6 (1897) 83-88.
[15] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhaĕr, Basel, 1998.
[16] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224.
[17] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory 72 (1993), 131-137.
[18] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), 368-372.
[19] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997.
[20] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in nonArchimedean spaces, Applicable Analysis and Discrete Mathematics. 1 (2007), 325-334.
[21] C. Park, Generalized quadratic mappings in several variables. Nonlinear Anal. TMA. 57 (2004), 713-722.
[22] C. Park, On the stability of the quadratic mapping in Banach modules. J. Math. Anal. Appl. 276 (2002), 135-144.

Stability of a mixed type additive and quadratic functional ...
[23] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[24] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl. 62 (2000), 23-130.
[25] K. Ravi and M. Arun Kumar, Hyers-Ulam-Rassias stability of a quartic functional equation, Int. J. Pure Appl. Math. 34 (2007), no. 2, 247-260.
[26] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[27] S. M. Ulam, Problems in modern mathematics, Chapter VI, science ed., Wiley, New York, 1940.
[28] A.C.M. van Rooij, Non-Archimedean functional analysis, in: Monographs and Textbooks in Pure and Applied Math., vol. 51, Marcel Dekker, New York, 1978.

Ternary Jordan *-derivations in C^{*}-ternary algebras

${ }^{1}$ M. Eshaghi Gordji, ${ }^{2}$ S. Kaboli Gharetapeh, ${ }^{3}$ E. Rashidi ${ }^{4}$ T. Karimi and ${ }^{5}$ M. Aghaei
${ }^{1,3}$ Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
${ }^{2,5}$ Department of Mathematics, Payame noor University, Mashhad Branch, Mashhad, Iran
${ }^{4}$ Department of Mathematics, Payame noor University, Fariman Branch, Fariman, Iran
E-mail: maj_ess@yahoo.com,simin.kaboli@gmail.com,ehsanerashidi@gmail.com, karimi_math@yahoo.com

Abstract

We say a functional equation (ξ) is stable if any function g satisfying the equation (ξ) approximately is near to true solution of (ξ). In this paper, we prove the Generalized Hyers-Ulam stability of ternary Jordan *-derivations in C^{*}-ternary algebras for the fol-

 lowing generalized Cauchy-Jensen additive mapping:$$
r f\left(\frac{s \sum_{j=1}^{p} x_{j}+t \sum_{j=1}^{d} x_{j}}{r}\right)=s \sum_{j=1}^{p} f\left(x_{j}\right)+t \sum_{j=1}^{d} f\left(x_{j}\right) .
$$

1. Introduction

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \longmapsto[x, y, z]$ of A^{3} into A, which is \mathbb{C}-linear in the outer variables, conjugate \mathbb{C}-linear in the middle variable, and associative in the sense that $[x, y,[z, u, v]]=[x,[u, z, y], v]=$ $[[x, y, z], u, v]$, and satisfies $\|[x, y, z]\| \leq\|x\| \cdot\|y\| \cdot\|z\|$ and $\|[x, x, x]\|=\|x\|^{3}$ (see $[1,3,5,11,22,24,25]$). If a C^{*}-ternary algebra $(A,[.,,]$,$) has an identity, i.e., an element e \in A$ such that $x=$ $[x, e, e]=[e, e, x]$ for all $x \in A$, then it is routine to verify that A, endowed with xoy $:=[x, e, y]$ and $x^{*}:=[e, x, e]$, is a unital C^{*}-algebra. Conversely, if (A, o) is a unital C^{*} - algebra, then $[x, y, z]:=x o y^{*}$ oz makes A into a $C^{*}-$ ternary algebra.

Let $(A,[])$ be a ${ }^{*}$-ternary algebra over a scalar field \mathbb{R} or \mathbb{C}. A linear mapping D : $(A,[]) \rightarrow(A,[])$ is called a ternary Jordan *-derivation, if

$$
D([x x x])=[D(x) x x]+[x D(x) x]+[x x D(x)], \quad D\left(x^{*}\right)=(D(x))^{*}
$$

for all $x \in A$.
We say a functional equation (ξ) is stable if any function g satisfying the equation (ξ) approximately is near to true solution of (ξ). We say that a functional equation is superstable if every approximately solution is an exact solution of it.

[^22]The stability of functional equations was first introduced by S. M. Ulam [23] in 1940. More precisely, he proposed the following problem: Given a group G_{1}, a metric group $\left(G_{2}, d\right)$ and a positive number ϵ, does there exist a $\delta>0$ such that if a function $f: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(f(x y), f(x) f(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $T: G_{1} \rightarrow G_{2}$ such that $d(f(x), T(x))<\epsilon$ for all $x \in G_{1}$. As mentioned above, when this problem has a solution, we say that the homomorphisms from G_{1} to G_{2} are stable. In 1941, D. H. Hyers [8] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G_{1} and G_{2} are Banach spaces. In 1950, T. Aoki [2] was the second author to treat this problem for additive mappings. In 1978, Th. M. Rassias [21] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences.

On the other hand J. M. Rassias proved the Hyers stability result by presenting another condition controlled by a product of different powers of norms. According to J. M. Rassias Theorem (see [18,19,20]):
Theorem 1.1. If it is assumed that there exist constants $\Theta \geq 0$ and $p_{1}, p_{2} \in \mathbb{R}$ such that $p=p_{1}+p_{2} \neq 1$, and $f: E \rightarrow E^{\prime}$ is a map from a norm space E into a Banach space E^{\prime} such that the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\|x\|^{p_{1}}\|y\|^{p_{2}}
$$

for all $x, y \in E$, then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \frac{\Theta}{2-2^{p}}\|x\|^{p},
$$

for all $x \in E$. If in addition for every $x \in E, f(t x)$ is continuous in real t for each fixed x, then T is linear.

During the last decades several stability problems for various functional equations have been investigated by many mathematicians; we refer the reader to the monographs [4, 6, 7, $9,10,13,14,16,17]$.

2. Stability

Let A be a C^{*}-ternary algebra. For a given mapping $f: A \longrightarrow A$, we define

$$
\Delta_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right):=r f\left(\frac{s \sum_{j=1}^{p} \mu x_{j}+t \sum_{j=1}^{d} \mu y_{j}}{r}\right)-s \sum_{j=1}^{p} \mu f\left(x_{j}\right)-t \sum_{j=1}^{d} \mu f\left(y_{j}\right)
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$, and let

$$
\Delta f(x, y)=f([x, x, x])-[f(x), x, x]-[x, f(x), x]-[x, x, f(x)]+f\left(y^{*}\right)-(f(y))^{*}
$$

for all $x, y \in A$.
One can easily show that a mapping $f: A \longrightarrow A$ satisfies

$$
\Delta_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$ if and only if

$$
f(\mu x+\lambda y)=\mu f(x)+\lambda f(y)
$$

for all $\mu, \lambda \in \mathbb{T}^{1}$ and all $x, y \in A$.
We will use the following lemma in the proof of our main theorem:
Lemma 2.1. [15] Let $f: A \longrightarrow A$ be an additive mapping such that $f(\mu x)=\mu f(x)$ for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. Then the mapping f is \mathbb{C}-linear.

Ternary Jordan *-derivations in C^{*}-ternary algebras

Theorem 2.2. Let r, θ be non-negative real numbers such that $r \in(-\infty, 1) \cup(3,+\infty)$, and let $f: A \longrightarrow A$ be a mapping such that

$$
\begin{equation*}
\left\|\Delta_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\| \leq \theta\left(\sum_{j=1}^{p}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{d}\left\|y_{j}\right\|^{r}\right) \tag{2.1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\|\Delta f(x, y)\| \leq 3 \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{2.2}
\end{equation*}
$$

for all $x \in A$. Then there exists a unique ternary Jordan ${ }^{*}-$ derivation $\delta: A \longrightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\| \leq \frac{2^{r}(p+d)}{\left|2(p+2 d)^{r}-(p+2 d) 2^{r}\right|} \theta\|x\|^{r} \tag{2.3}
\end{equation*}
$$

for all $x \in A$.
Proof. Letting $\mu=1$ and $x_{1}=\ldots=x_{p}=y_{1}, \ldots, y_{d}=x$ and $s=1, t=2$ in (2.1), we get

$$
\|f((p+2 d) x)-(p+2 d) f(x)\| \leq(p+d) \theta\|x\|^{r}
$$

for all $x \in A$. So

$$
\left\|f(x)-(p+2 d) f\left(\frac{x}{p+2 d}\right)\right\| \leq \frac{(p+d) \theta}{2^{r}(p+2 d)^{r}}\|x\|^{r}
$$

for all $x \in A$. Hence, one can show that

$$
\begin{align*}
\|(p+2 d)^{l} f\left(\frac{x}{(p+2 d)^{l}}\right. & -(p+2 d)^{m} f\left(\frac{x}{(p+2 d)^{m}}\left\|\leq \sum_{j=l}^{m-1}\right\|(p+2 d)^{j} f\left(\frac{x}{(p+2 d)^{j}}\right)\right. \\
& -(p+2 d)^{j+1} f\left(\frac{x}{(p+2 d)^{j+1}}\right)\left\|\leq \frac{\theta}{2^{r}} \sum_{j=l}^{m-1} \frac{(p+2 d)^{j}}{(p+2 d)^{r j}}\right\| x \|^{r} \tag{2.4}
\end{align*}
$$

for all non-negative integers m and l with $m>l$ and all $x \in A$. It follows from (2.4) that the sequence $\left\{(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since A is complete, the sequence $\left\{(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)\right\}$ converges. So one can define the mapping $\delta: A \longrightarrow A$ by

$$
\delta(x):=\lim _{n \longrightarrow \infty}(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)
$$

for all $x \in A$.
Moreover letting $l=0$ and passing the limit $m \longrightarrow \infty$ in (2.4), we get (2.3). It follows from (2.1) that

$$
\begin{aligned}
\| r \delta\left(\frac{(p+2 d) x}{r}\right) & -(p+2 d) \delta(x)\left\|\leq \lim _{n \longrightarrow \infty}(p+2 d)^{n}\right\| r f\left(\frac{x}{(p+2 d)^{n-1}}\right) \\
& -(p+2 d) f\left(\frac{x}{(p+2 d)^{n}}\right) \| \leq \lim _{n \longrightarrow \infty} \frac{(p+2 d)^{n}}{(p+2 d)^{n r}}\left(3 \theta\|x\|^{r}\right) \\
& =0
\end{aligned}
$$

for all $x \in A$. So

$$
r \delta\left(\frac{s \sum_{j=1}^{p} x_{j}+t \sum_{j=1}^{d} y_{j}}{r}\right)=s \sum_{j=1}^{p} \delta\left(x_{j}\right)+t \sum_{j=1}^{d} \delta\left(y_{j}\right)
$$

M. Eshaghi Gordji, S. Kaboli Gharetapeh, E. Rashidi, T. Karimi and M. Aghaei
for all $x \in A$. By Lemma 2.1, the mapping $\delta: A \longrightarrow A$ is Cauchy additive. By the same reasoning as in the proof of Theorem 2.1 of [15], the mapping $\delta: A \longrightarrow A$ is \mathbb{C}-linear. Setting $y=0$ in (2.2), then we have

$$
\begin{aligned}
& \|\delta([x, x, x])-[\delta(x), x, x]-[x, \delta(x), x]-[x, x, \delta(x)]\| \\
& =\lim _{n \longrightarrow \infty}(p+2 d)^{(p+d) n} \| f\left(\frac{[x, x, x]}{(p+2 d)^{(p+d) n}}\right)-\left[f\left(\frac{x}{(p+2 d)^{(p+d) n}}\right), \frac{x}{(p+2 d)^{n}}\right] \\
& -\left[\frac{x}{(p+2 d)^{n}}, f\left(\frac{x}{(p+2 d)^{n}}\right), \frac{x}{(p+2 d)^{n}}\right]-\left[\frac{x}{(p+2 d)^{n}}, \frac{x}{(p+2 d)^{n}}, f\left(\frac{x}{(p+2 d)^{n}}\right)\right] \| \\
& \leq \lim _{n \longrightarrow \infty} \frac{(p+2 d)^{(p+d) n}}{(p+2 d)^{n r}}\left(3 \theta\|x\|^{r}\right)=0
\end{aligned}
$$

for all $x \in A$. So

$$
\delta([x, x, x])=[\delta(x), x, x]+[x, \delta(x), x]+[x, x, \delta(x)]
$$

for all $x \in A$.
Put $x=0$ in (2.2), we lead to

$$
\begin{aligned}
& \left\|\delta\left(x^{*}\right)-(\delta(y))^{*}\right\| \\
& =\lim _{n \longrightarrow \infty}(p+2 d)^{(p+d) n}\left\|f\left(\frac{y^{*}}{(p+2 d)^{(p+d) n}}\right)-(p+2 d)^{(p+d) n}\left(f\left(\frac{y}{(p+2 d)^{(p+d) n}}\right)\right)^{*}\right\| \\
& \leq \lim _{n \longrightarrow \infty} \frac{(p+2 d)^{(p+d) n}}{(p+2 d)^{n r}}\left(3 \theta\|y\|^{r}\right)=0
\end{aligned}
$$

for all $y \in A$. This means that δ is ${ }^{*}$-preserving. Now, let $T: A \longrightarrow A$ be another Cauchy-Jensen additive mapping satisfying (2.2). Then we have

$$
\begin{aligned}
& \|\delta(x)-T(x)\|=(p+2 d)^{n}\left\|\delta\left(\frac{x}{(p+2 d)^{n}}\right)-T\left(\frac{x}{(p+2 d)^{n}}\right)\right\| \\
& \leq(p+2 d)^{n}\left(\left\|\delta\left(\frac{x}{(p+2 d)^{n}}\right)-f\left(\frac{x}{(p+2 d)^{n}}\right)\right\|+\left\|T\left(\frac{x}{(p+2 d)^{n}}\right)-f\left(x(p+2 d)^{n}\right)\right\|\right) \\
& \leq \frac{3(p+2 d)^{n} \theta}{\left(2^{r}-2\right)(p+2 d)^{n r}}\|x\|^{r}
\end{aligned}
$$

which tends to zero as $n \longrightarrow \infty$ for all $x \in A$. This proves the uniqueness property of δ. Thus the mapping $\delta: A \longrightarrow A$ is unique ternary Jordan * - derivation satisfying (2.3).

Theorem 2.3. Let r, θ be non-negative real numbers such that $r \in\left(-\infty, \frac{1}{p+d}\right) \cup(1,+\infty)$, and let $f: A \longrightarrow A$ be a mapping such that

$$
\begin{equation*}
\left\|\Delta_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\| \leq \theta \prod_{j=1}^{p}\left\|x_{j}\right\|^{r} \cdot \prod_{j=1}^{d}\left\|y_{j}\right\|^{r} \tag{2.5}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$, and

$$
\begin{equation*}
\|\Delta f(x, y)\| \leq \theta\|x\|^{3 r} \tag{2.6}
\end{equation*}
$$

for all $x \in A$. Then there exists a unique ternary Jordan ${ }^{*}-$ derivation $\delta: A \longrightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\| \leq \frac{2^{(p+d) r}}{\left|2(p+2 d)^{(p+d) r}-(p+2 d) 2^{(p+d) r}\right|} \theta\|x\|^{(p+d) r} \tag{2.7}
\end{equation*}
$$

$$
\text { Ternary Jordan }{ }^{*} \text {-derivations in } C^{*} \text {-ternary algebras }
$$

for all $x \in A$.
Proof. Letting $\mu=1$ and $x_{1}=\ldots=x_{p}=y_{1}, \ldots, y_{d}=x$ and $s=1, t=2$ in (2.5), we get

$$
\begin{equation*}
\|f((p+2 d) x)-(p+2 d) f(x)\| \leq(p+d) \theta\|x\|^{3 r} \tag{2.8}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-(p+2 d) f\left(\frac{x}{p+2 d}\right)\right\| \leq \frac{\theta}{(p+2 d)^{(p+d) r}}\|x\|^{(p+d) r}
$$

for all $x \in A$. Hence,

$$
\begin{align*}
\|(p+2 d)^{l} f\left(\frac{x}{(p+2 d)^{l}}\right. & -(p+2 d)^{m} f\left(\frac{x}{(p+2 d)^{m}} \|\right. \\
& \leq \sum_{j=l}^{m-1}\left\|(p+2 d)^{j} f\left(\frac{x}{(p+2 d)^{j}}\right)-(p+2 d)^{j+1} f\left(\frac{x}{(p+2 d)^{j+1}}\right)\right\| \\
& \leq \frac{\theta}{(p+2 d)^{(p+d) r}} \sum_{j=l}^{m-1} \frac{(p+2 d)^{j}}{(p+2 d)^{(p+d) r j}}\|x\|^{(p+d) r} \tag{2.9}
\end{align*}
$$

for all non-negative integers m and l with $m>l$ and all $x \in A$. It follows from (2.9) that the sequence $\left\{(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since A is complete, the sequence $\left\{(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)\right\}$ converges. So one can define the mapping $\delta: A \longrightarrow A$ by

$$
\delta(x):=\lim _{n \longrightarrow \infty}(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)
$$

for all $x \in A$.
Moreover letting $l=0$ and passing the limit $m \longrightarrow \infty$ in (2.9), it follows from (2.6) that δ is a ternary Jordan derivation. The rest of the proof is similar to the proof of Theorem 2.2.

Now, we investigate superstability of ternary Jordan homomorphisms in C^{*}-ternary algebras associated with the functional equation $\Delta_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0$.

Theorem 2.4. Let $t \in\{-1,1\}$, and let $\varphi: A^{(p+d)} \longrightarrow[0, \infty)$ and $\psi: A^{3} \longrightarrow[0, \infty)$ be mappings such that

$$
\begin{gather*}
\widetilde{\varphi}(x):=\sum_{n=0}^{\infty} \gamma^{-t n} \varphi\left(\gamma^{t n} x, \ldots, \gamma^{t n} x\right)<\infty \tag{2.10}\\
\lim _{n \longrightarrow \infty} \gamma^{-t n} \varphi\left(\gamma^{t n} x_{1}, \ldots, \gamma^{t n} x_{p}, \gamma^{t n} y_{1}, \ldots, \gamma^{t n} y_{d}\right)=0 \tag{2.11}\\
\lim _{n \longrightarrow \infty} \gamma^{-3 t n} \psi\left(\gamma^{t n} x, \gamma^{t n} x, \gamma^{t n} x\right)=0, \lim _{n \longrightarrow \infty} \gamma^{-2 t n} \psi\left(\gamma^{t n} x, \gamma^{t n} x, x\right)=0 \tag{2.12}
\end{gather*}
$$

for all $x, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$ where $\gamma=\frac{p+2 d}{2}$. Suppose that $f: A \longrightarrow A$ is a mapping satisfying

$$
\begin{gather*}
\left\|\Delta_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{A} \leq \varphi\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right) \tag{2.13}\\
\|\Delta f(x, y)\| \leq \psi(x, x, x) \tag{2.14}
\end{gather*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Then the mapping $f: A \longrightarrow A$ is a ternary Jordan *-derivation.
M. Eshaghi Gordji, S. Kaboli Gharetapeh, E. Rashidi, T. Karimi and M. Aghaei

Proof. By the same reasoning as the proof of Theorem 3.3 of [12], the sequence $\left\{\frac{1}{\gamma^{t n}} f\left(\gamma^{t n} x\right)\right\}$ is converges. Thus one can define the mapping $\delta: A \longrightarrow A$ by

$$
\delta(x):=\lim _{n \longrightarrow \infty} \frac{1}{\gamma^{t n}} f\left(\gamma^{t n} x\right)
$$

for all $x \in A$ moreover, $\delta(\lambda x+\mu y)=\lambda \delta(x)+\mu \delta(y)$ for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y \in A$. Therefore, by Lemma 2.1 the mapping $\delta: A \longrightarrow A$ is \mathbb{C}-linear.
It follows from (2.11) and (2.14) that

$$
\|\Delta \delta(x, x, x)\|=\lim _{n \longrightarrow \infty} \frac{1}{\gamma^{3 t n}}\left\|\Delta f\left(\gamma^{t n} x, \gamma^{t n} x, \gamma^{t n} x\right)\right\| \leq \lim _{n \longrightarrow \infty} \frac{1}{\gamma^{3 t n}} \psi\left(\gamma^{t n} x, \gamma^{t n} x, \gamma^{t n} x\right)=0
$$

for all $x \in A$. Hence

$$
\begin{equation*}
\delta([x, x, x])=[\delta(x), x, x]+[x, \delta(x), x]+[x, x, \delta(x)] \tag{2.15}
\end{equation*}
$$

for all $x \in A$. So the mapping $\delta: A \longrightarrow A$ is a C^{*}-ternary Jordan derivation. It follows from (2.12) and (2.14)

$$
\begin{aligned}
& \|\delta[x, x, x]-[\delta(x), x, x]-[x, \delta(x), x]-[x, x, f(x)]\| \\
& =\lim _{n \longrightarrow \infty} \frac{1}{\gamma^{2 t n}} \| f\left[\gamma^{t n} x, \gamma^{t n} x, x\right]-\left[f\left(\gamma^{t n} x\right), \gamma^{t n} x, x\right] \\
& -\left[\gamma^{t n} x, f\left(\gamma^{t n} x\right), x\right]-\left[\gamma^{t n} x, \gamma^{t n} x, f(x)\right] \| \\
& \leq \lim _{n \longrightarrow \infty} \frac{1}{\gamma^{2 t n}} \psi\left(\gamma^{t n} x, \gamma^{t n} x, x\right)=0
\end{aligned}
$$

for all $x \in A$. This means that

$$
\begin{equation*}
\delta[x, x, x]=[\delta(x), x, x]+[x, \delta(x), x]+[x, x, f(x)] \tag{2.16}
\end{equation*}
$$

for all $x \in A$. Hence we get from (2.15) and (2.16) that

$$
\begin{equation*}
[x, x, \delta(x)]=[x, x, f(x)] \tag{2.17}
\end{equation*}
$$

for all $x \in A$. Letting $x=f(x)-\delta(x)$ in (2.17), we get

$$
\|f(x)-\delta(x)\|^{3}=\|[f(x)-\delta(x), f(x)-\delta(x), f(x)-\delta(x)]\|=0
$$

for all $x \in A$. Hence $f(x)=\delta(x)$ for all $x \in A$. So the mapping $f: A \longrightarrow A$ is a C^{*}-ternary Jordan derivation, as desired.

Corollary 2.5. Let $r<1, s<2$ and θ be non-negative real numbers, and let $f: A \longrightarrow A$ be a mapping satisfying (2.1) and

$$
\begin{equation*}
\|\Delta f(x, y)\| \leq 3 \theta\|x\|^{s} \tag{2.18}
\end{equation*}
$$

for all $x \in A$. Then the mapping $f: A \longrightarrow A$ is a C^{*}-ternary Jordan derivation.
Proof. It follows from Theorem 2.4 by putting $t=1$,

$$
\varphi\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=\theta\left(\sum_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r}+\sum_{j=1}^{d}\left\|y_{j}\right\|^{r}\right)
$$

and

$$
\psi(x, x, x)=3 \theta\|x\|^{s}
$$

for all $x, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$.

$$
\text { Ternary Jordan }{ }^{*} \text {-derivations in } C^{*} \text {-ternary algebras }
$$

Corollary 2.6. Let r, s and θ be non-negative real numbers such that $s, r(p+d)<1$, and let $f: A \longrightarrow A$ be a mapping satisfying (2.5) and

$$
\begin{equation*}
\|\Delta f(x, y)\| \leq\|x\|^{3 s} \tag{2.19}
\end{equation*}
$$

for all $x \in A$. Then the mapping $f: A \longrightarrow A$ is a C^{*}-ternary Jordan derivation.
Proof. It follows from Theorem 2.4 by putting $t=1$,

$$
\varphi\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=\theta \prod_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r} \prod_{j=1}^{d}\left\|y_{j}\right\|^{r}
$$

and

$$
\psi(x, x, x)=\theta\|x\|^{3 s}
$$

for all $x, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$.
Similarly by putting $t=-1$ in Theorem 2.4 , we can prove the following corollary.
Corollary 2.7. Let r, s and θ be non-negative real numbers such that $s, r(p+d)>1$, and let $f: A \longrightarrow A$ be a mapping satisfying (2.5) and (2.19). Then the mapping $f: A \longrightarrow A$ is a C^{*}-ternary Jordan derivation.

References

[1] V. Abramov, R. Kerner and B. Le Roy, Hypersymmetry: a Z_{3} graded generalization of supersymmetry, J. Math. Phys. 38(1997), 1650-1669.
[2] T. Aoki, On the stability of the linear transformation in banach space, J. Math. Soc. Japan 2, (1950), 64-66.
[3] N. Bazunova, A. Borowiec and R. Kerner, Universal differential calculus on ternary algebras, Lett. Matt. Phys. 67 (2004), 195-206.
[4] P. Czerwik, Functional Equations and Inequalities in Several Variables, Word Scientific Publishing Company, New Jersey, Hong kong, Singapore and London, 2002.
[5] M. Bavand Savadkouhi, M. Eshaghi Gordji, N. Ghobadipour, J. M. Rassias, Approximate ternary Jordan derivation on Banach ternary algebra, To appear in Journal of Mathematical Phisics.
[6] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14(1991) 431-434.
[7] p. G avruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J.Math. Anal.Appl. 184(1994). 431-436.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941) 222-224.
[9] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional Equations in Several Variables, Birkhauser, Boston, Basel, Berlin, 1998.
[10] S. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal.Appl. 204 (1996), 221-226.
[11] R. Kerner, Ternary algebraic structures and their applications in physics, Univ. P. M. Curie preprint, Paris (2000), http://arxiv.org/list/math-ph/0011.
[12] A. Najati, C. Park and J. R. Lee, Homomorphisms and derivations in C^{*}-ternary algebras, Abstract and Applied Analysis Volume 2009, Article ID 612392, 16 pages.
[13] C. Park, Lie *-homomorphisms between Lie C^{*}-algebras and Lie *-derivations on Lie C^{*}-algebras, J. Math. Anal. Appl. 293 (2004), 419-434.
[14] C. Park, Homomorphisms between Lie $J C^{*}$-algebras and Cauchy-Rassias stability of Lie $J C^{*}$ - algebra derivations, J. Lie Theory 15 (2005), 393-414.
M. Eshaghi Gordji, S. Kaboli Gharetapeh, E. Rashidi, T. Karimi and M. Aghaei
[15] C. Park, Homomorphisms between Poisson $J C^{*}$ - algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.
[16] C. Park, Isomorphisms between C^{*}-ternary algebras, J. Math. Phys 47 Article ID 103512(2006).
[17] C. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between C^{*}-algebras, Bull. Belgian Math. Soc.-Simon Stevin 13 (2006), 619-631.
[18] J. M. Rassias, Solution of a problem of Ulam. J. Approx. Theory 57 (1989), no. 3, 268-273.
[19] J. M. Rassias, On approximation of approximately linear mappings by linear mappings. J.Funct. Anal. 46 (1982), no. 1, 126-130.
[20] J. M. Rassias, On approximation of approximately linear mappings by linear mappings. Bull. Sci. Math. (2) 108 (1984), no. 4, 445-446.
[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[22] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys. 160 (1994), no. 2, 295-315.
[23] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed., Wiley, New York, 1940.
[24] L. Vainerman and R. Kerner, On special classes of n-algebras, J. Math. Phys. 37 (1996), 2553-2565.
[25] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983) 117-143. MR0700979 (84h:46093)

On the Second Moment of Rational Bernstein Functions

Gancho T. Tachev
Dept. of Mathematics
University of Architecture, Civil Engineering and Geodesy BG-1426 Sofia, Bulgaria
E-mail: gtt_fte@uacg.acad.bg

Abstract

We study the dependance of the second moment of the rational Bernstein functions on the weight numbers. For the second degree rational Bernstein functions we prove that the minimal value of the second moment uniform on $[0,1]$ is attained when all weight numbers are equal. At the end we present a quantitative variant of Voronovskaja's Theorem.

Key words and phrases: Bernstein operator; Rational Bernstein functions; Moduli of continuity; Voronovskaja's Theorem.

AMS Subject Classification Number: 41A15, 41A25, 41A28, 41A36, 41A63, 65D07, 65D17

1 Introduction and main results

The NURBS ("non-uniform" rational B-splines) play an important role in Computer Aided Geometric Design (CAGD). The standart source on this method is is the book of Piegl and Tiller [4]. Special cases of NURBS curves are the famous Schoenberg spline curve and rational Bernstein-Bézier curves. Adapted to the context of approximation of functions the latter was generalized by H.Gonska in [1] as follows:

$$
\begin{equation*}
R_{n}(f ; x):=\frac{\sum_{k=0}^{n} \omega_{k} \cdot f\left(\frac{k}{n}\right) \cdot p_{n, k}(x)}{\sum_{k=0}^{n} \omega_{k} \cdot p_{n, k}(x)}, \tag{1.1}
\end{equation*}
$$

where $\omega_{k}>0,0 \leq k \leq n$ are the so-called weight numbers and

$$
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}
$$

are the basic Bernstein polynomials of degree n. Suppose that $\omega_{k}=\omega, 0 \leq$ $k \leq n$. Then

$$
R_{n}(f ; x):=B_{n}(f ; x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) \cdot p_{n, k}(x),
$$

i.e. the rational Bernstein function (1.1) reduces to the Bernstein polynomial of degree n. We consider $R_{n}(f ; x)$ as a linear positive operator (rational Bernstein operator), acting on the space of continuous functions $f \in C[0,1]$. Some properties of $R_{n}(f ; x)$ are:

- (i) $R_{n}(f ; x)$ is a positive linear operator reproducing constant functions.
- (ii) One has $R_{n}(f ; 0)=f(0)$ and $R_{n}(f ; 1)=f(1)$.
- (iii) The following representation of the first moment of $R_{n}(f ; x)$ was established in [1]-(see Proposition 3):

$$
\begin{equation*}
R_{n}(f ; x)-x=x(1-x) \cdot \frac{1}{N} \cdot \sum_{k=0}^{n-1}\left(\omega_{k+1}-\omega_{k}\right) p_{n-1, k}(x), \tag{1.2}
\end{equation*}
$$

where

$$
N=\sum_{k=0}^{n} \omega_{k} p_{n, k}(x)
$$

As far as we know the exact presentation of the second moment of $R_{n}(f ; x)$, namely $R_{n}\left((t-x)^{2} ; x\right)$ in a form, similar to (1.2) is still missing. From (1.2) it follows also that the operator $R_{n}(f ; x)$ reproduces linear functions if and only if all weight numbers ω_{k} are equal. With several examples it was shown in [1] that even when not all weights ω_{k} are equal, by an appropriate choice of the numbers ω_{k} pointwise convergence

$$
R_{n}(f ; x) \rightarrow f(x)
$$

and also uniform convergence

$$
\left\|R_{n}(f)-f\right\|_{C[0,1]} \rightarrow 0
$$

when $n \rightarrow \infty$ is possible.

From the viewpoint of quantitative approximation theory an essential role play the estimates of the first and of the second moments of the operator $R_{n}(f ; x)$:

$$
\begin{equation*}
R_{n}\left((t-x)^{2} ; x\right):=\frac{\sum_{k=0}^{n} \omega_{k}\left(\frac{k}{n}-x\right)^{2} p_{n, k}(x)}{\sum_{k=0}^{n} \omega_{k} \cdot p_{n, k}(x)} . \tag{1.3}
\end{equation*}
$$

It is known that Bernstein operator reproduces linear functions and that

$$
\begin{equation*}
B_{n}\left((t-x)^{2} ; x\right)=\frac{x(1-x)}{n} \tag{1.4}
\end{equation*}
$$

for all $n \in N$-the set of natural numbers and $x \in[0,1]$. Our first result concerns the second moment of $R_{2}(f ; x)$ when $n=2$ is:

Theorem 1. Let $n=2$ and $\omega_{k}>0, k=0,1,2$. Then for all $x \in[0,1]$

$$
\begin{equation*}
\min _{\omega_{k}, 0 \leq k \leq 2} R_{2}\left((t-x)^{2} ; x\right)=\frac{x(1-x)}{2} \tag{1.5}
\end{equation*}
$$

and min is attained exactly when $\omega_{0}=\omega_{1}=\omega_{2}$.
It is natural to suppose the following
Conjecture. Let $n>2$. Then for all $x \in(0,1)$ it holds

$$
\begin{equation*}
\min _{\omega_{k}, 0 \leq k \leq 2} R_{n}\left((t-x)^{2} ; x\right)<\frac{x(1-x)}{n} . \tag{1.6}
\end{equation*}
$$

As far as we know neither the proof of this Conjecture is available, nor the counterexample is proved, i.e. the \min in (1.6) is attained if and only if all weights ω_{k} are equal, which is the case $n=2$. If the Conjecture is not true, this means that the classical Bernstein operator is best possible among all rational Bernstein operators $R_{n}(f)$. Concerning the value of the second moment we consider the infinite sequence of positive weight numbers $\omega_{0}, \omega_{1}, \ldots, \omega_{n}, \ldots$ and the sequence of rational Bernstein operators $\left\{R_{n}(f)\right\}_{n=1}^{\infty}$. We define

$$
\begin{equation*}
\rho_{n, 1}:=\frac{\max _{k}\left|\omega_{k+1}-\omega_{k}\right|}{\min _{k} \omega_{k}}, \tag{1.7}
\end{equation*}
$$

where the max and min is taken for $0 \leq k \leq n$. Also let

$$
\begin{equation*}
\rho_{n, 2}:=\frac{\max _{k} \omega_{k}}{\min _{k} \omega_{k}} \tag{1.8}
\end{equation*}
$$

Our second result is :
Theorem 2. Let $f \in C^{2}[0,1]$,

$$
\rho_{n, 1} \leq \frac{1}{n^{\alpha}}, \alpha>1
$$

and $\rho_{n, 2} \leq A$ for all natural numbers n. Then the following uniform with respect to $x \in[0,1]$ convergence holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \cdot\left[R_{n}(f ; x)-f(x)-\frac{1}{2} R_{n}\left((t-x)^{2} ; x\right) \cdot f^{\prime \prime}(x)\right]=0 \tag{1.9}
\end{equation*}
$$

In Section 2 we prove Theorems 1 and 2. Some examples are included to show the impact of the choice of weights ω_{k} on the value of the second moment and on the rate of the uniform convergence in Theorem 2. This paper was motivated by the talk, given by prof. H.Gonska at the International Conference "Constructive Theory of Functions" in Varna, 2005.

2 Proofs and examples

Proof of Theorem 1. Let us suppose that it is possible to define positive numbers $\omega_{0}, \omega_{1}, \omega_{2}$ such that (1.6) is true for all $x \in[0,1]$. Without losing of generality let $\omega_{0}=1$. Simple calculations show that the left side of (1.6) is equal to $x(1-x) F\left(\omega_{1}, \omega_{2}, x\right)$ where

$$
F\left(\omega_{1}, \omega_{2}, x\right)=\frac{x(1-x)+2 \omega_{1}\left(\frac{1}{2}-x\right)^{2}+\omega_{2} x(1-x)}{(1-x)^{2}+2 \omega_{1} x(1-x)+\omega_{2} x^{2}}
$$

Hence

$$
F\left(\omega_{1}, \omega_{2}, x\right)<\frac{1}{2}
$$

should be fulfilled for all $x \in[0,1]$. Consequently

$$
\begin{aligned}
& x^{2}\left(-1+2 \omega_{1}-\omega_{2}\right)+x\left(1-2 \omega_{1}+\omega_{2}\right)+\frac{\omega_{1}}{2}< \\
& \quad<\frac{1}{2} \cdot\left[x^{2}\left(1-2 \omega_{1}+\omega_{2}\right)+x\left(-2+2 \omega_{1}\right)+1\right]
\end{aligned}
$$

The last is equivalent to

$$
\begin{equation*}
g(x):=3 x^{2}\left(1-2 \omega_{1}+\omega_{2}\right)+x\left(-4-2 \omega_{2}+6 \omega_{1}\right)+1-\omega_{1}>0 . \tag{2.1}
\end{equation*}
$$

When $x \rightarrow 0$ we get

$$
\begin{equation*}
g(0)=1-\omega_{1}>0 \tag{2.2}
\end{equation*}
$$

When $x \rightarrow 1$ we get

$$
\begin{equation*}
g(1)=-\omega_{1}+\omega_{2}>0 . \tag{2.3}
\end{equation*}
$$

Obviously the coefficient in front of x^{2} should be positive due to (2.2) and (2.3), while

$$
1-2 \omega_{1}+\omega_{2}=\omega_{2}-\omega_{1}+1-\omega_{1} .
$$

Next we calculate the discriminant of the quadratic inequality (2.1)

$$
\begin{gathered}
\Delta=\left(-2-\omega_{2}+3 \omega_{1}\right)^{2}-3\left(1-\omega_{1}\right)\left(1-2 \omega_{1}+\omega_{2}\right)= \\
=3 \omega_{1}^{2}+\omega_{2}^{2}-3 \omega_{1} \omega_{2}-3 \omega_{1}+\omega_{2}+1:=f\left(\omega_{1}, \omega_{2}\right)
\end{gathered}
$$

Our next step is to show that

$$
\begin{equation*}
\min _{\omega_{1}, \omega_{2}} f\left(\omega_{1}, \omega_{2}\right)=f(1,1)=0 \tag{2.4}
\end{equation*}
$$

We calculate

$$
\begin{aligned}
& \frac{\partial f}{\partial \omega_{1}}=6 \omega_{1}-3 \omega_{2}-3=0 . \\
& \frac{\partial f}{\partial \omega_{2}}=2 \omega_{2}-3 \omega_{1}+1=0 .
\end{aligned}
$$

The solution of the last system is $\omega_{1}=\omega_{2}=1$. Also

$$
\frac{\partial^{2} f}{\partial \omega_{1}^{2}}=6, \frac{\partial^{2} f}{\partial \omega_{2}^{2}}=2, \frac{\partial^{2} f}{\partial \omega_{1} \partial \omega_{2}}=-3 .
$$

We verify that

$$
\operatorname{det}\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial \omega_{1}^{2}} & \frac{\partial^{2} f}{\partial \omega_{1} \partial \omega_{2}} \\
\frac{\partial^{2} f}{\partial \omega_{1} \partial \omega_{2}} & \frac{\partial^{2} f}{\partial \omega_{2}^{2}}
\end{array}\right)>0 .
$$

The proof of (2.4) is completed. Let x_{1} and x_{2} be the zeros of $g(x)=0$. In order to have $g(x)>0$ for all $x \in[0,1]$ we have two possible cases:

$$
x_{1}<x_{2}<0,
$$

or

$$
1<x_{1}<x_{2} .
$$

In the first case we should have $\frac{x_{1}+x_{2}}{2}<0$. Hence

$$
-\frac{-4-2 \omega_{2}+6 \omega_{1}}{6\left(1-2 \omega_{1}+\omega_{2}\right)}<0,
$$

or equivalently

$$
4+2 \omega_{2}-6 \omega_{1}<0
$$

But the last inequality is a contradiction to (2.3) and (2.2). Similarly we proceed in the second case. Now we would have

$$
1<\frac{x_{1}+x_{2}}{2}=-\frac{-4-2 \omega_{2}+6 \omega_{1}}{6\left(1-2 \omega_{1}+\omega_{2}\right)} .
$$

Consequently

$$
\begin{gathered}
6\left(1-2 \omega_{1}+\omega_{2}\right)<4+2 \omega_{2}-6 \omega_{1} \\
6 \omega_{1}-4 \omega_{2}-2>0
\end{gathered}
$$

The last inequality again is a contradiction to (2.2) and (2.3).
Our supposition at the beginning of the proof is not valid. This completes the proof of Theorem 1 .

Example 1 Let $\omega_{k}=1-\frac{k}{n^{\alpha}}, k=0,1, \ldots, n$ and $\alpha>1, n>1$. To calculate the first moment of $R_{n}(f ; x)$ we apply (1.2) and obtain

$$
\begin{equation*}
R_{n}((t-x) ; x)=x(1-x) \frac{1}{N}\left(-\frac{1}{n^{\alpha}}\right), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
N=\sum_{k=0}^{n} \omega_{k} p_{n, k}(x)=1-\frac{x}{n^{\alpha-1}} . \tag{2.6}
\end{equation*}
$$

From Taylor formula it follows

$$
\begin{equation*}
t^{2}=x^{2}+(t-x) 2 x+(t-x)^{2} \tag{2.7}
\end{equation*}
$$

We apply the operator $R_{n}(f)$ to the both sides of (2.7) and (2.5) yields

$$
\begin{equation*}
R_{n}\left((t-x)^{2} ; x\right)=R_{n}\left(t^{2} ; x\right)-x^{2}+\frac{2 x \cdot x(1-x)}{1-\frac{x}{n^{\alpha-1}}} \cdot \frac{1}{n^{\alpha}} . \tag{2.8}
\end{equation*}
$$

To compute $R_{n}\left(t^{2} ; x\right)$ we proceed as follows:

$$
\begin{gather*}
R_{n}\left(t^{2} ; x\right)=\frac{\sum_{k=0}^{n}\left(1-\frac{k}{n^{\alpha}}\right)\left(\frac{k}{n}\right)^{2} \cdot p_{n, k}(x)}{1-\frac{x}{n^{\alpha-1}}}= \\
=\frac{x^{2}+\frac{x(1-x)}{n}-\frac{1}{n^{\alpha-1}} \cdot B_{n}\left(t^{3} ; x\right)}{1-\frac{x}{n^{\alpha-1}}} . \tag{2.9}
\end{gather*}
$$

It is known that for all $x \in[0,1]$

$$
B_{n}\left((t-x)^{3} ; x\right)=\frac{x(1-x)(1-2 x)}{n^{2}} .
$$

Therefore

$$
\begin{gathered}
B_{n}\left(t^{3} ; x\right)-3 B_{n}\left(t^{2} ; x\right) x+3 x^{3}-x^{3}=\frac{x(1-x)(1-2 x)}{n^{2}} . \\
B_{n}\left(t^{3} ; x\right)-3 x\left(x^{2}+\frac{x(1-x)}{n}\right)+2 x^{3}=\frac{x(1-x)(1-2 x)}{n^{2}} . \\
B_{n}\left(t^{3} ; x\right)=x^{3}+\frac{3 x^{2}(1-x)}{n}+\frac{x(1-x)(1-2 x)}{n^{2}} .
\end{gathered}
$$

From the last presentation, (2.8) and (2.9) we calculate

$$
\begin{gathered}
R_{n}\left((t-x)^{2} ; x\right)=\frac{1}{N} \cdot\left[x^{2}+\frac{x(1-x)}{n}-\frac{1}{n^{\alpha-1}} \cdot x^{3}-\frac{3 x^{2}(1-x)}{n^{\alpha}}-\right. \\
-\frac{x(1-x)(1-2 x)}{n^{\alpha+1}}-x^{2}+\frac{x^{3}}{n^{\alpha-1}}+\frac{2 x^{2}(1-x)}{n^{\alpha}}= \\
=\frac{1}{N} \cdot \frac{x(1-x)}{n} \cdot\left[1-\frac{x}{n^{\alpha-1}}-\frac{1-2 x}{n^{\alpha}}\right]
\end{gathered}
$$

with N, defined in (2.6). Hence

$$
\begin{equation*}
R_{n}\left((t-x)^{2} ; x\right)=\frac{x(1-x)}{n} \cdot\left[1+\frac{2 x-1}{n^{\alpha}-x n}\right] . \tag{2.10}
\end{equation*}
$$

From (2.10) we conclude that the statement in our Conjecture with this choice of the weights is true, but only for $x \in\left(0, \frac{1}{2}\right)$. In a similar way we consider the next example.

Example 2. Let $\omega_{k}=1+\frac{k}{n^{\alpha}}, k=0,1, \ldots, n$ and $\alpha>1, n>1$. Then

$$
R_{n}\left((t-x)^{2} ; x\right)<\frac{x(1-x)}{n},
$$

for $x \in\left(\frac{1}{2}, 1\right)$.
Example 3. Let $\omega_{k}=1+\frac{(-1)^{k}}{n^{\alpha}}, k=0,1, \ldots, n, \alpha>1$. Then

$$
\begin{gather*}
\rho_{n, 1}=\frac{2}{n^{\alpha}\left(1-\frac{1}{n^{\alpha}}\right)}=\frac{2}{n^{\alpha}-1} \approx 0, n \rightarrow \infty . \\
\rho_{n, 2}=\rho_{n, 1}+1 \approx 1 . \tag{2.11}
\end{gather*}
$$

Proof of Theorem2. We apply the following quantitative variant of Voronovskaja's Theorem for linear positive oeprators L, established very recently by H.Gonska in [3]-see Example 4.3 on p.108:

$$
\left|L(f ; x)-f(x)-L\left((t-x)^{2} ; x\right) \cdot f^{\prime}(x)-\frac{1}{2} L\left((t-x)^{2} ; x\right) \cdot f^{\prime \prime}(x)\right| \leq
$$

$$
\begin{equation*}
\leq \frac{1}{2} \cdot L\left((t-x)^{2} ; x\right) \cdot \tilde{\omega}\left(f^{\prime \prime} ; \frac{1}{3} \cdot \frac{L\left(|t-x|^{3} ; x\right)}{L\left((t-x)^{2} ; x\right)}\right), \tag{2.12}
\end{equation*}
$$

where $\tilde{\omega}(f ; \varepsilon)$ is the least concave majorant of the modulus of continuity of f and $\varepsilon>0$ is its argument. We replace L by R_{n} in (2.12) and observe that

$$
\begin{gather*}
\frac{R_{n}\left(|t-x|^{3} ; x\right)}{R_{n}\left((t-x)^{2} ; x\right)} \leq \rho_{n, 2} \cdot \frac{B_{n}\left(|t-x|^{3} ; x\right)}{B_{n}\left((t-x)^{2} ; x\right)} \leq \\
\quad \leq \rho_{n, 2} \cdot 3 \sqrt{\frac{1}{n^{2}}+\frac{x(1-x)}{n}} \tag{2.13}
\end{gather*}
$$

for all $x \in[0,1]$. In the last inequality we have applied Theorem 5.1 in [3]. We also have

$$
\begin{equation*}
R_{n}\left((t-x)^{2} ; x\right) \leq \rho_{n, 2} \cdot \frac{x(1-x)}{n} \tag{2.14}
\end{equation*}
$$

From (2.12) and assumptions made for $\rho_{n, 1}, \rho_{n, 2}$ we verify that

$$
\begin{gather*}
\left|R_{n}(f ; x)-f(x)-\frac{1}{2} R_{n}\left((t-x)^{2} ; x\right) \cdot f^{\prime \prime}(x)\right| \leq \\
\leq x(1-x) \frac{1}{n^{\alpha}} \cdot\left|f^{\prime}(x)\right|+\frac{1}{2} A \frac{x(1-x)}{n} \cdot \tilde{\omega}\left(f^{\prime \prime} ; A \sqrt{\frac{1}{n^{2}}+\frac{x(1-x)}{n}}\right) \tag{2.15}
\end{gather*}
$$

We multiply the both sides of (2.15) by n and complete the proof of Theorem 2.

Corollary 1. Under the conditions made in Theorem 2 the following upper bound for the error of approximation by the rational Bernstein operator $R_{n}(f)$ holds true for all $f \in C^{2}[0,1]$:

$$
\begin{equation*}
\left\|R_{n}(f)-f\right\|_{C[0,1]} \leq \frac{1}{4 n^{\alpha}} \cdot\left\|f^{\prime}\right\|_{C[0,1]}+\frac{A}{4 n} \cdot\left\|f^{\prime \prime}\right\|_{C[0,1]} \tag{2.16}
\end{equation*}
$$

Similar estimates to (2.16) are fulfilled with weights ω_{k}, described in Examples 1,2 and 3 . In all these examples the weight numbers satisfy the restrictions, formulated in Theorem 2.

At the end let us define two other variants of numbers ω_{k}, namely
Example 4.

$$
\begin{equation*}
\omega_{k}=\left[\frac{k}{n}\left(1-\frac{k}{n}\right)+\frac{\delta}{n}\right]^{\alpha}, 0 \leq k \leq n \tag{2.17}
\end{equation*}
$$

for $\alpha>0, \delta \geq 0$.

Example 5.

$$
\begin{equation*}
\omega_{k}=\left|\frac{k}{n}-\frac{1}{2}\right|^{\alpha}+\frac{\delta}{n}, 0 \leq k \leq n \tag{2.18}
\end{equation*}
$$

for $\alpha>0, \delta \geq 0$.Numerical experiments made for $\alpha=0.5,1,3,4$ and $n=$ $50, \delta=0,0.5,1$ show that close to the ends of $[0,1]$ we have (1.6) with ω_{k} from (2.18) and when x is near to $\frac{1}{2},(1.6)$ holds true with ω_{k} from (2.17). But neither (2.17) nor (2.18) are solutions of our Conjecture. So the statement of the Conjecture remains as an open problem-nonlinear optimization problem, according to the choice of weight numbers.

Acknowledgment. This work was done during my stay in JanuaryFebruary 2008 as DAAD fellow by prof. H.Gonska at the University of DuisburgEssen.

References

[1] Gonska,H., Piţul,P., Raşa,I. On Peano's form of the Taylor remainder, Voronovskaja's theorem and the commutator of positive linear operators. "Numerical Analysis and Approximation Theory", (Proceeding of the Int. Conf. 2006 in Cluj-Napoca), (2006),55-80.
[2] Gonska,H., Kacsó,D., Piţul,P. On rational B-spline functions . Constructive theory of functions - Varna 2005, Sofia: Marin Drinov Academic Publ. House, (2006),pp.145-147.
[3] Gonska,H. On the degree of approximation in Voronovskaja's Theorem. Studia Univ. "Babeş-bolyai", Mathematica, vol. LII, 3,(2007),103-115.
[4] Piegl,L. and Tiller,W. The NURBS book. Berlin: Springer (1995).

PROPERTIES OF PARAMETER-VARYING DYNAMIC LINEAR SYSTEMS WITH PARAMETRIZED PERTURBATIONS. APPLICATIONS TO DELAYED DYNAMICS

M. De la Sen, Institute for Research and Development of Processes
Department of Electricity and Electronics. Faculty of Science and Technology. Campus of Leioa (Bizkaia). Aptdo. 644 de Bilbao. 48080-Bilbao. SPAIN

Abstract

This paper deals with a unifying approach to the problems of computing the admissible sets of parametrical multi perturbations in appropriate bounded sets such that some fundamental properties of parameter-varying linear dynamic systems are maintained provided that the so-called (i.e. perturbation-free) nominal system possesses such properties. The sets of parametrical multi perturbations include any combinations of parametrical multi perturbations in the matrix of dynamics as well as in the control, output and input-output interconnection matrices which belong to some prescribed bounded domain in the complex space. The various properties which are investigated are controllability, observability, output controllability, stabilizability and detectability as well as the existence of minimal state-space realizations together with the associate existence or not of associate decoupling, transmission and invariant zeros. All the matrices of parameters including the nominal and the disturbed ones which parameterize the dynamic system may be real or complex. The obtained results are then applied to systems subject to a finite number of discrete internal delays and parametrical multi perturbations by comparing the state- space descriptions of such systems with the general descriptions previously investigated. In particular, the contributions of the delays to the spectral descriptions are assimilated to the contributions of a set of varying parameters in a domain for the general description.

Keywords: Parameter-varying systems, Controllability, Observability, Zeros, Multi- parametrical perturbations.

1. Introduction

The problem of robust stability of dynamic systems has received important attention in the last two decades, [1-3]. The related investigations require in general ad-hoc mathematical tools from Mathematical and Functional Analysis, [1-4]. Recently, the notion of stability radius has been used for related investigations, [57]. The stability radius of a linear dynamic system is a positive real number which defines the minimum size, in terms of norm, of a parametrical perturbation, belonging to an admissible class, such that the resulting system becomes unstable or critically stable provided that the nominal (i.e. perturbation-free) system is stable . Such a characterization has been used successfully in [5-7] to investigate the maximum size of both structured and unstructured multi parametrical (in general, complex) perturbations so that positive systems are maintained stable provided that its nominal part is stable. Further advantages of focusing the robust stability problem in that way are that the robust stability of wide classes of parameter-varying dynamic
systems, including some described by functional equations, may be studied in a unified way, [5-9]. The purpose of this paper is to study the fundamental properties of controllability, observability, stabilizability and detectability of parameter-varying linear systems, in a way inspired in the ideas developed in [5-7]. However, some variations are that the parameter-varying systems under (in general complex) parametrical multi perturbations are not necessarily positive and that spectral stability radii are not involved since the problem at hand is not that of robust stabilization. The main idea is to maintain the Popov-Belevitch-Hautus matrix functions [1] for the investigated properties being full rank for all multi perturbations provided that the matrix of the nominal system is also full rank. The multi perturbations are of a given structured class on a certain domain where the varying parameters belong to. The worst case of the admissible perturbations establishes the robustness degree of the property. The extension to unstructured perturbations is not discussed since it is direct, and even more simple, than that for structured ones. The study is addressed in a unified way for all the properties. In particular, it has direct interest in realization theory since the size of the disturbances which maintain a minimal state-space realization of the system may be characterized, provided that the nominal realization is minimal. To this end, the best of the two worst cases of losing either controllability or observability by the perturbed system of a nominally controllable and observable system ensures that the state-space realization is still minimal. A direct extension is that if the nominal system is stabilizable and detectable, the best of the two worst cases of losing some of both properties for some multi perturbation in the given class still guarantees that any eventual zero-pole cancellation in the transfer matrix is stable. The technical mechanism employed to investigate the various properties is the construction of square auxiliary matrix functions which are symmetrical positive definite (or Hermitian in the complex case). If their associate minimum singular value becomes zero, or equivalently, if their determinants become zero for some perturbation while their counterparts of the nominal system are positive then the investigated property is lost. One takes advantage that the functions characterizing the singular values and the determinant of a complex continuous matrix function are continuous functions on the definition domain of such a matrix function. The results are easily extendable to parameter-varying dynamic linear internal and external delays under multi perturbations. There is an important background on time-delay systems, [10-34] including models of neural networks including delays, [25-27]. Controllability, observability and stability are very basic properties of dynamic systems which make possible a wide range of applications in non-uniform sampling, classical and adaptive control, estimation etc. [30], [34], [37-29], [41-43]. Output controllability of the output vector is a property with a close sense to the standard controllability of the state vector, [44]. In particular, the study of stability of time-delay systems has received attention in [10-11], [15], [19-24], [30-34], the positivity and periodicity of the trajectory-solutions have being investigated in [13-14], [27-29], [32], [35-36] and the statetrajectory solutions under impulsive controls in [12-13], [15-17] including the case of singular systems, [13]. Sufficiency-type conditions for the robust characterization of those properties follows directly from the general study based on the fact that time-delay systems might be characterized as nD- systems [8-9], [21]. Refinements of the conditions either allowing to derive results dependent on the delay sizes or guaranteeing that the properties hold for some cases not included in the nD - system characterizations are also investigated.

This is addressed by further considering the spectral characterization of linear delay systems under quasipolynomials.

2. Notation

Subsets of the complex and real fields \boldsymbol{R} and \boldsymbol{C} are:

$$
\begin{aligned}
& \boldsymbol{R}_{+0}:=\{r \in \boldsymbol{R}: \operatorname{Re}(r) \geq 0\}, \boldsymbol{R}_{+}:=\{r \in \boldsymbol{R}: \operatorname{Re}(r)>0\}, \boldsymbol{R}_{-}:=\{r \in \boldsymbol{R}: \operatorname{Re}(r)<0\} \\
& \boldsymbol{C}_{+0}:=\{r \in \boldsymbol{C}: \operatorname{Re}(r) \geq 0\}, \boldsymbol{C}_{+}:=\{r \in \boldsymbol{C}: \operatorname{Re}(r)>0\}, \boldsymbol{C}_{-}:=\{r \in \boldsymbol{C}: \operatorname{Re}(r)<0\}
\end{aligned}
$$

which stand for nonnegative, positive and negative real numbers or complex numbers of nonnegative, positive and negative real abscissas, respectively. $\boldsymbol{C}_{1}:=\{z \in \boldsymbol{C}:|z|=1\}$ is the unit circumference in the complex plane.
$C^{(q)}\left(\boldsymbol{R}_{+0}, \boldsymbol{K}^{p}\right)$ and $P C^{(q)}\left(\boldsymbol{R}_{+0}, \boldsymbol{K}^{p}\right)$ with $K=\boldsymbol{C}$ or $K=\boldsymbol{R}$ denote, respectively, real or complex vector functions of class $q \geq 0$ and those of class $q-1$ (if $q \geq 1$) whose q-th derivative is continuously differentiable with piecewise continuous q-th derivative on the definition domain $\boldsymbol{R}_{+0} \cdot P C^{(0)}\left(\boldsymbol{R}_{+0}, \boldsymbol{K}^{p}\right)$ denotes the class of piecewise continuous p-vector functions with domain \boldsymbol{R}_{+0} and range \boldsymbol{K}^{p}.
I_{n} denotes the n-th identity matrix. The superscript ${ }^{\prime \prime *}$ " denotes the transpose conjugate of a complex matrix resulting in the usual transpose for real matrices (denoted with the superscript " T "), $\operatorname{det} M$ and $\sigma(M):=\left\{\lambda \in \boldsymbol{C}: \operatorname{det}\left(\lambda I_{n}-M\right)=0\right\}$ denote the determinant of the matrix M and its spectrum, respectively. Subsets of $\sigma(M)$ are $\sigma_{+}(M):=\{\lambda \in \sigma(M): \operatorname{Re} \lambda>0\}$, $\sigma_{+0}(M):=\{\lambda \in \sigma(M): \operatorname{Re} \lambda \geq 0\}, \sigma_{-}(M):=\{\lambda \in \sigma(M): \operatorname{Re} \lambda<0\}$ and $\sigma_{-0}(M):=\{\lambda \in \sigma(M): \operatorname{Re} \lambda \leq 0\}$. The spectral radius and spectral abscissa of M are denoted, respectively, by $\rho(M):=\{\max |\lambda|: \lambda \in \sigma(M)\}$ and $\mu(M):=\{\max \operatorname{Re} \lambda: \lambda \in \sigma(M)\}$. The singular values of M are the positive squares of the eigenvalues of any of the matrix products $M M^{*}$ and $M * M$ provided that they exist which are real and satisfy $\bar{\sigma}(M) \geq \underline{\sigma}(M) \geq 0$ where $\bar{\sigma}(M)$ and $\underline{\sigma}(M)$ are the maximum and minimum singular value of M, respectively. Note that at least one of the matrix products $M M^{*}$ and $M{ }^{*} M$ always exist. The spectral (or ℓ_{2}) vector norm and associated induced matrix norm are denoted by $\|\cdot\|_{2}$. The interior, boundary (frontier) and closure of a set K are denoted as $K^{0}, K^{F r}$, and $c \ell K$, respectively.
$\hat{f}(s):=\operatorname{Lap}(f(t)), f(t):=\operatorname{Lap}^{-1}(f(s))$ is a pair of Laplace transform and Laplace anti-transform provided that such an anti-transform exists.

The Kronecker (or direct) product of the matrices $A=\left(a_{i j}\right)$ and B is denoted by $A \otimes B=\left(a_{i j} B\right)$ and for such a matrix $\mathrm{A}, \operatorname{vec}(A)=\left(a_{1}^{*}, a_{2}^{*}, \cdots, a_{n}^{*}\right)^{*}$ with a_{i}^{*} being the i-th row of A, i.e. $A^{*}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. The boundary (or frontier) of a set Q is denoted as $Q^{F r}$.

The complex unit is $\boldsymbol{i}=\sqrt{-1}$.
3. The parameter-varying system and associate fundamental properties: controllability, observability, minimal realizability, stabilizability and detectability

The parameter-varying linear time-invariant dynamic system to be considered is
$\dot{x}(z, t)=\left(A\left(z^{(A)}\right)+\tilde{A}\left(z^{(A)}\right)\right) x(z, t)+\left(B\left(z^{(B)}\right)+\tilde{B}\left(z^{(B)}\right)\right) u(t)$
$y(z, t)=\left(C\left(z^{(C)}\right)+\tilde{C}\left(z^{(C)}\right)\right) x(z, t)+\left(D\left(z^{(D)}\right)+\tilde{D}\left(z^{(C)}\right)\right) u(t)$
$, \forall t \in \boldsymbol{R}_{+0}:=\boldsymbol{R}_{+} \cup\{0\}, \quad$ with $\quad \boldsymbol{R}_{+}:=\{s \in \boldsymbol{R}: r>0\}, \quad$ subject \quad to \quad initial conditions $x(z, 0)=x_{0}(z) \in C^{n}$, where $X \subset C^{n}, Y \subset C^{p}$ and $Y \subset C^{m}$ are, respectively, the state, output and input linear spaces, and $x \in C^{(1)}\left(\boldsymbol{C}^{q} \times \boldsymbol{R}_{+0}, X\right) \quad, \quad y \in C^{(0)}\left(\boldsymbol{C}^{q} \times \boldsymbol{R}_{+0}, Y\right) \quad$ and $u \in P C^{(0)}\left(\boldsymbol{C}^{q} \times \boldsymbol{R}_{+0}, U\right)$ are, the everywhere continuously time-differentiable n-vector state trajectory solution, the piecewise continuous p -vector output-trajectory solution, and the piecewise continuous m -vector control input, respectively, with $\mathrm{p} \leq \mathrm{m}<\mathrm{n}$ and $q:=q_{A}+q_{B}+q_{C}+q_{D^{+}}+4$, and
A: $\boldsymbol{C}^{q_{A}+1} \rightarrow \boldsymbol{C}^{n \times n}$,
$B: C^{q_{B}+1} \rightarrow C^{n \times m}$,
$C: \boldsymbol{C}^{q_{C}+1} \rightarrow \boldsymbol{C}^{p \times n}$ and
$D: \boldsymbol{C}^{q_{D}+1} \rightarrow \boldsymbol{C}^{p \times m} ; \quad$ and $\tilde{A}: \boldsymbol{C}^{q_{A}+1} \rightarrow \boldsymbol{C}^{n \times n}, \tilde{B}: \boldsymbol{C}^{q_{B}+1} \rightarrow \boldsymbol{C}^{n \times m}, \tilde{C}: \boldsymbol{C}^{q_{C}+1} \rightarrow \boldsymbol{C}^{p \times n}$ and $\tilde{D}: \boldsymbol{C}^{q_{D}+1} \rightarrow \boldsymbol{C}^{p \times m}$ are, respectively, the (so-called) nominal and perturbation (complex-valued) matrices of dynamics, control, output and input-output interconnections whose parameter-varying arguments are defined by the respective complex-valued $\left(q_{A}+1\right),\left(q_{B}+1\right),\left(q_{C}+1\right)$ and $\left(q_{D}+1\right)$ - tuples:

$$
z^{(A)}:=\left(1, z_{1}^{(A)}, z_{2}^{(A)}, \ldots, z_{q_{A}}^{(A)}\right) \in\{1\} \times \boldsymbol{C}^{q_{A}} \subset \boldsymbol{C}^{q_{A}+1}, z^{(B)}:=\left(1, z_{1}^{(B)}, z_{2}^{(B)}, \ldots, z_{q_{B}}^{(B)}\right) \in\{1\} \times \boldsymbol{C}^{q_{B}} \subset \boldsymbol{C}^{q_{B}+1}
$$

$$
\begin{equation*}
z^{(C)}:=\left(1, z_{1}^{(C)}, z_{2}^{(C)}, \ldots, z_{q_{C}}^{(C)}\right) \in\{1\} \times \boldsymbol{C}^{q_{C}} \subset \boldsymbol{C}^{q_{C}+1}, z^{(D)}:=\left(1, z_{1}^{(D)}, z_{2}^{(D)}, \ldots, z_{q_{D}}^{(D)}\right) \in\{1\} \times \boldsymbol{C}^{q_{D}} \subset \boldsymbol{C}^{q_{D}+1} \tag{3}
\end{equation*}
$$

The (so-called) nominal system is affine parameter-varying defined from (1)-(2) with
$A\left(z^{(A)}\right):=\sum_{i=0}^{q_{A}} z_{i}^{(A)} A_{i}, B\left(z^{(B)}\right):=\sum_{i=0}^{q_{B}} z_{i}^{(B)} B_{i}, C\left(z^{(C)}\right):=\sum_{i=0}^{q_{C}} z_{i}^{(C)} C_{i}, D\left(z^{(D)}\right):=\sum_{i=0}^{q_{D}} z_{i}^{(D)} D_{i}$
where $z{ }_{0}^{(A)}=Z_{0}^{(B)}=Z_{0}^{(C)}=Z_{0}^{(D)}=1, \tilde{A}\left(z^{(A)}\right)=0, \tilde{B}\left(z^{(B)}\right)=0, \tilde{C}\left(z^{(C)}\right)=0$ and $\tilde{D}\left(z^{(D)}\right)=0$, and $A_{i}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{n \times n}\left(i \in \bar{q}_{A}^{0}\right), B_{i}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{n \times m}\left(i \in \bar{q}_{B}^{0}\right), C_{i}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{p \times n}\left(i \in \bar{q}_{C}^{0}\right), D_{i}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{p \times m}\left(i \in \bar{q}_{D}^{0}\right)$
with $\bar{n}^{0}:=\bar{n} \cup\{0\}, \bar{n}:=\{1,2, \ldots, n\}$. The nominal system is the (unperturbed) reference one to then establish the known nominal bounded domain (i.e. a connected open set) $C_{\alpha 0} \subset \boldsymbol{C}^{q}$ where the nominal system fulfills the various investigated properties for all $z:=\left(z^{(A)}, z^{(B)}, Z^{(C)}, Z^{(D)}\right) \in C_{\alpha 0}$ and also the bounded domain $C_{\alpha} \subset C_{\alpha 0}$ where a class of systems (1)-(2), eventually submitted to perturbations, still maintain the particular property under investigation kept by the nominal one on $C_{\alpha 0}$. The class of systems (1)-(2), which include the nominal system as particular case, are defined via (3)-(6) for parametrical multi perturbations in a set $P:=P_{A} \times P_{B} \times P_{C} \times P_{D} \subset \boldsymbol{C}^{q_{A}+1} \times \boldsymbol{C}^{q_{B}+1} \times \boldsymbol{C}^{q_{C}+1} \times \boldsymbol{C}^{q_{D}+1} \equiv \boldsymbol{C}^{q}$ of the form:
$\tilde{A}\left(z^{(A)}\right):=\sum_{i=0}^{q_{A}} z_{i}^{(A)} \tilde{A}_{i}=\sum_{i=0}^{q_{A}} \sum_{j=1}^{n_{A}} z_{i}^{(A)} D_{i j}^{(A)} \Delta{ }_{i j}^{(A)} E^{(A)}, \tilde{B}\left(z^{(B)}\right):=\sum_{i=0}^{q_{B}} z_{i}^{(B)} \tilde{B}_{i}=\sum_{i=0}^{q_{B}} \sum_{j=1}^{n_{B}} z_{i}^{(B)} D_{i j}^{(B)} \Delta_{i j}^{(B)} E^{(B)}$
$\tilde{C}(z(C)):=\sum_{i=0}^{q_{C}} z_{i}^{(C)} \tilde{C}_{i}=\sum_{i=0}^{q_{C}} \sum_{j=1}^{n_{C}} z_{i}^{(C)} D_{i j}^{(C)} \Delta_{i j}^{(C)} E^{(C)}, \tilde{D}\left(z{ }^{(D)}\right):=\sum_{i=0}^{q_{D}} z_{i}^{(D)} \tilde{D}_{i}=\sum_{i=0}^{q_{D}} \sum_{j=1}^{n_{D}} z_{i}^{(D)} D_{i j}^{(D)} \Delta_{i j}^{(D)} E^{(D)}$
where $\quad \tilde{A}: \boldsymbol{C}^{q_{A}+1} \rightarrow P_{A} \subset \boldsymbol{C}^{n \times n}, \quad \tilde{B}: \boldsymbol{C}^{q_{B}+1} \rightarrow P_{B} \subset \boldsymbol{C}^{n \times m}, \quad \tilde{C}: \boldsymbol{C}^{q_{C}+1} \rightarrow P_{C} \subset \boldsymbol{C}^{p \times n}$ and $\tilde{D}: \boldsymbol{C}^{q_{D}+1} \rightarrow P_{D} \subset \boldsymbol{C}^{p \times m}$ with

are defined by $\quad \tilde{A}_{i}:=\sum_{j=1}^{n_{A}} D_{i j}^{(A)} \Delta_{i j}^{(A)} E^{(A)}\left(i \in \bar{q}_{A}^{0}\right), \quad \tilde{B}_{i}:=\sum_{j=1}^{n_{B}} D_{i j}^{(B)} \Delta_{i j}^{(B)} E^{(B)}\left(i \in \bar{q}_{B}^{0}\right)$,
$\tilde{C}_{i}:=\sum_{j=1}^{n_{C}} D_{i j}^{(C)} \Delta_{i j}^{(C)} E^{(C)}\left(i \in \bar{q}_{C}^{0}\right)$ and $\tilde{D}_{i}:=\sum_{j=1}^{n_{D}} D_{i j}^{(D)} \Delta_{i j}^{(D)} E^{(D)}\left(i \in \bar{q}_{A}^{0}\right)$, where
$D_{i j}^{(A)}: C \rightarrow C^{n \times \ell_{i j}^{(A)}},(i, j) \in \bar{q}_{A}^{0} \times \bar{n}_{A} ; \quad D_{i j}^{(B)}: C \rightarrow \boldsymbol{C}^{n \times \ell_{i j}^{(B)}},(i, j) \in \bar{q}_{B}^{0} \times \bar{n}_{B}$
$D{ }_{i j}^{(C)}: C \rightarrow \boldsymbol{C}^{p \times \ell(C)}, \forall(i, j) \in \bar{q}_{C}^{0} \times \bar{n}_{C} ; D_{i j}^{(D)}: C \rightarrow C C^{p \times \ell_{i j}^{(D)}}, \forall(i, j) \in \bar{q}_{D}^{0} \times \bar{n}_{D}$

$$
\begin{align*}
& \Delta_{i j}^{(A)}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{\ell_{i j}^{(A)} \times \ell^{(A)}}, \forall(i, j) \in \bar{q}_{A}^{0} \times \bar{n}_{A} ; \Delta_{i j}^{(B)}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{\ell_{i j}^{(B)} \times \ell^{(B)}}, \forall(i, j) \in \bar{q}_{B}^{0} \times \bar{n}_{B} \tag{9}\\
& \Delta_{i j}^{(C)}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{\ell_{i j}^{(C)} \times \ell(C)}, \forall(i, j) \in \bar{q}_{C}^{0} \times \bar{n}_{C} ; \Delta_{i j}^{(D)}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{\ell(D) \times \ell(D)}, \forall(i, j) \in \bar{q}_{D}^{0} \times \bar{n}_{D}
\end{align*}
$$

$$
\begin{equation*}
E^{(A)}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{\ell_{f}^{(A)} \times n} ; E^{(B)}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{\ell(B) \times m} ; E^{(C)}: \boldsymbol{C} \rightarrow \boldsymbol{C}^{\ell_{f}^{(C)} \times n} ; E^{(D)}: \boldsymbol{C} \rightarrow \boldsymbol{C}_{f}^{\ell_{f}^{(D)} \times m} \tag{10}
\end{equation*}
$$

The parametrical multi perturbations in the dynamic system (1)-(2) are defined by the matrices (7), subject to (8)-(11), dependent on the argument $z:=\left(Z^{(A)}, z^{(B)}, z^{(C)}, z^{(D)}\right)$ which takes values in some domain \boldsymbol{C}_{α} of \boldsymbol{C}^{q}. The matrices (11) are scaling matrices common to all the output components being independent of the various subscripts (i, j). The matrices in (9) are also scaling matrices of the state versus state components, state versus input component, output versus state component s and output versus input components. The matrices in (10) are specific parametrical perturbations which become weighted by the contribution of the corresponding component of z in \boldsymbol{C}_{α} through the global parametrical perturbations (7)(8). Note by direct inspection that if all the perturbation matrices in (10) are zero then, the dynamic system (1)-(2) becomes the nominal one. Note also that an extension of the parametrical perturbations consisting of considering the scaling matrices Eqs. 11 to be dependent on the indices (i, j) would not become more general than that given in view of the whole structure of the multi perturbations (7)-(8). The following matrices are defined for each system (1)-(2) (see [1-3], [8-9]):

Definitions

3.1 The spectral controllability matrix function is defined by:
$Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right):=\left(s I_{n}-A\left(Z^{(A)}\right)-\tilde{A}\left(Z^{(A)}\right) \vdots B\left(Z^{(B)}\right)+\tilde{B}\left(Z^{(B)}\right)\right)$
with that of the nominal system being $\mathrm{Z}_{\mathrm{C} 0}\left(\mathrm{~s}, \mathrm{z}^{(\mathrm{A})}, \mathrm{z}^{(\mathrm{B})}\right):=\left(\mathrm{sI} \mathrm{n}_{\mathrm{n}}-\mathrm{A}\left(\mathrm{z}^{(\mathrm{A})}\right) \vdots \mathrm{B}\left(\mathrm{z}^{(\mathrm{B})}\right)\right)$.
3.2 The spectral observability matrix function is defined by:
$Z_{O}\left(s, z^{(A)}, z^{(C)}\right):=\left(s I_{n}-A^{*}\left(z^{(A)}\right)-\tilde{A}^{*}\left(z^{(A)}\right) \vdots C^{*}\left(z^{(C)}\right)+\tilde{C}^{*}\left(z^{(C)}\right)\right)^{*}$
with that of the nominal system being $Z_{O 0}\left(s, Z^{(A)}, z^{(B)}\right):=\left(s I_{n}-A^{*}\left(Z^{(A)}\right) \vdots C^{*}\left(Z^{(C)}\right)\right)^{*}$.
3.3 The spectral output controllability matrix function is defined by:
$Z_{O C}(s, z):=\left(C\left(z^{(C)}\right)+\tilde{C}\left(z^{(C)}\right)\right)\left(s I_{n}-A\left(z^{(A)}\right)-\tilde{A}\left(z^{(A)}\right) \vdots B\left(z^{(B)}\right)+\tilde{B}\left(z^{(B)}\right)\right)+D\left(z^{(D)}\right)+\tilde{D}\left(z^{(D)}\right)$
with that of the nominal system being $Z_{O C O}\left(s, Z^{(A)}, Z^{(B)}\right):=\left(s I_{n}-A\left(Z^{(A)}\right) \vdots B\left(Z^{(B)}\right)\right)$.
3.4 The system matrix function is defined by :
$S(s, z):=\left(\begin{array}{ccc}s I_{n}-A\left(z^{(A)}\right)-\tilde{A}\left(z^{(A)}\right) & \vdots & -B\left(z^{(B)}\right)-\tilde{B}\left(z^{(B)}\right) \\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\ C\left(z^{(C)}\right)+\tilde{C}\left(z^{(C)}\right) & \vdots & D\left(z^{(D)}\right)+\tilde{D}\left(z^{(D)}\right)\end{array}\right)$
with that of the nominal system being $S_{0}(s, z):=\left(\begin{array}{ccc}s I_{n}-A\left(z^{(A)}\right) & \vdots & -B\left(z^{(B)}\right) \\ \ldots \ldots \ldots \ldots . . & \ldots \ldots \ldots . \\ C\left(z^{(C)}\right) & \vdots & D\left(z^{(D)}\right)\end{array}\right)$.
Note by direct inspection that these matrices depend on the nominal system and the parametrical perturbations as follows

$$
\begin{align*}
& Z_{C}\left(s, Z^{(A)}, z^{(B)}\right)=Z_{C 0}\left(s, z^{(A)}, z^{(B)}\right)+\left(-\tilde{A}\left(z^{(A)}\right): \tilde{B}\left(Z^{(B)}\right)\right) \tag{12}\\
& Z_{O}\left(s, Z^{(A)}, Z^{(C)}\right)=Z_{O O}\left(s, Z^{(A)}, z^{(C)}\right)+\left(-\tilde{A}^{*}\left(z^{(A)}\right) \vdots \tilde{C}^{*}\left(z^{(C)}\right)\right)^{*} \tag{13}\\
& Z_{O C}(s, z)=Z_{O C 0}(s, z)+C\left(z^{(C)}\right)\left(-\tilde{A}\left(z^{(A)}\right) \vdots \tilde{B}\left(z^{(B)}\right)\right)+\tilde{C}\left(z^{(C)}\right)\left(s I_{n}-A\left(z^{(A)}\right)-\tilde{A}\left(z^{(A)}\right) \vdots B\left(z^{(B)}\right)+\tilde{B}\left(z^{(B)}\right)\right)+\tilde{D}\left(z^{(D)}\right) \tag{14}
\end{align*}
$$

$S(s, z):=S_{0}(s, z)+\left(\begin{array}{ccc}s I_{n}-\tilde{A}(z(A)) & \vdots & -\tilde{B}\left(z^{(B)}\right) \\ \cdots \ldots \ldots \ldots \ldots \ldots \\ \tilde{C}(z(C)) & \vdots & \tilde{D}\left(z_{z}^{(D)}\right)\end{array}\right)$
Related to Definitions 3.1-3-4 are the following ones:

Definitions

3.5 $s_{0} \in \boldsymbol{C}$ is an input-decoupling zero of (1)-(2) for a given $\left(Z^{(A)}, Z^{(B)}\right) \in \boldsymbol{C}^{q_{A}+q_{B}+2}$ if $\operatorname{rank} Z_{C}\left(s_{0}, Z^{(A)}, Z^{(B)}\right)<n$.
3.6 $s_{0} \in \boldsymbol{C}$ is an output-decoupling zero of (1)-(2) for a given $\left(Z^{(A)}, Z(C)\right) \in \boldsymbol{C}^{q_{A}+q_{C}+2}$ if $\operatorname{rank} Z_{o}\left(s_{0}, Z^{(A)}, Z^{(C)}\right)<n$.
$3.7 s_{0} \in \boldsymbol{C} \quad$ is \quad an \quad input/output-decoupling zero of (1)-(2) for a given $\quad z \in \boldsymbol{C}^{q}$ if $\max \left(\operatorname{rank} Z_{C}\left(s_{0}, Z^{(A)}, Z^{(B)}\right), \operatorname{rank} Z_{O}\left(s_{0}, Z^{(A)}, Z^{(C)}\right)\right)<n$.
$3.8 s_{0} \in \boldsymbol{C}$ is an external input-decoupling zero of (1)-(2) for a given $z \in \boldsymbol{C}^{q}$ if rank $Z_{o C}\left(s_{0}, z\right)<p$.
$3.9 s_{0} \in \boldsymbol{C}$ is an invariant zero of (1)-(2) for a given $z \in \boldsymbol{C}^{q}$ if $\operatorname{rank} S\left(s_{0}, z\right)<n+\min (m, p)$.
$3.10 s_{0} \in \boldsymbol{C}$ is a transmission zero of (1)-(2) for a given $z \in \boldsymbol{C}^{q}$ if it is an invariant zero which is not an input-decoupling or output-decoupling zero; i.e. $\quad \operatorname{rank} S\left(s_{0}, z\right)<n+\min (m, p) \quad$ and $\operatorname{rank} Z_{C}\left(s_{0}, Z^{(A)}, Z^{(B)}\right)=\operatorname{rank} Z_{O}\left(s_{0}, Z^{(A)}, Z^{(C)}\right)=n$.

It is well-known that the system (1)-(2) is controllable (respectively, observable) for a certain $z \in \boldsymbol{C}^{q}$ if it has no input- decoupling zero (respectively, no output-decoupling zero). Invariant zeros which are not decoupling zeros are transmission zeros in the sense that if $s_{0} \in \boldsymbol{C}$ is a transmission zero for a certain $z \in \boldsymbol{C}^{q}$ then $y \equiv 0$ if $u(t)=K_{u} e^{s_{0} t}$ for any $K_{u} \in \boldsymbol{R}$ if $x_{0}=0$ (input-output transmission blocking property) and

$$
\hat{G}(s, z)=(C(z)+\tilde{C}(z))\left(s I_{n}-A\left(z^{(A)}\right)-\tilde{A}\left(z^{(A)}\right)\right)-1\left(B\left(z^{(B)}\right)+\widetilde{B}^{(B)}\right)+\left(D\left(z^{(D)}\right)+\tilde{D}\left(z^{(D)}\right)\right)
$$

is the transfer matrix of the system (1)-(2) defined as $\hat{G}(s, z):=\hat{y}(s, z) / \hat{u}(s, z)$ for $x_{0}=0$. Note that decoupling zeros are poles of the system transfer matrix. The transmission zeros are zeros of $\hat{G}(s, z)$ which are not poles of (1)-(2), i.e. which are not eigenvalues of $A(z)+\tilde{A}(z)$. Note also that if the system is controllable and observable all invariant zero, if any, is a transmission zero. Input/output decupling zeros are poles cancelled by zeros in the transfer function so that they are not transmission zeros. Finally, note that input/output-decoupling zeros are invariant zeros since
$\max \left(\operatorname{rank} Z_{C}\left(s_{0}, Z^{(A)}, Z^{(B)}\right), \operatorname{rank} Z_{O}\left(s_{0}, Z^{(A)}, Z^{(C)}\right)\right)<n \Rightarrow \operatorname{rank} S\left(s_{0}, Z\right)<n+\min (m, p)$

However, input-decoupling zeros (respectively, output-decoupling zeros) which are not output-decoupling zeros (respectively, input-decoupling zeros) are not invariant zeros since
$\operatorname{rank} Z_{C}\left(s_{0}, Z^{(A)}, Z^{(B)}\right)<n$ may imply $\operatorname{rank} S\left(s_{0}, z\right)=n+m$ for $p>m$
$\operatorname{rank} Z_{o}\left(s_{0}, Z^{(A)}, Z^{(C)}\right)<n$ may imply $\operatorname{rank} S\left(s_{0}, z\right)=n+p$ for $m>p$

The system (1)-(2) is said to be controllable if there is a control vector function on $[0, T]$ such that the state takes any prescribed finite value at any finite prescribed time T. It is said to be observable if any bounded initial can be computed from measures of the output vector on any finite time interval $[0, T]$. Those properties coincide in the linear-time-invariant case with the respective properties of spectral controllability/spectral observability which hold if and only if the spectral controllability/spectral observability matrix functions are full rank $\forall(s, z) \in \boldsymbol{C} \times C_{\alpha}$ and adopt very interesting particular forms for the the case of positive dynamic systems, [37]. Thus, spectral controllability/ observability properties will
be referred to in the following simply as controllability/observability. Definitions 3.5 to 3.10 combined with Popov- Belevitch- Hautus controllability and observability tests [1] lead to the subsequent result which considers bounded sets where the varying parameters belong to defined by $C_{\alpha}^{(A)} \subset\{1\} \times C^{q_{A}}$, $C_{\alpha}^{(B)} \subset\{1\} \times \boldsymbol{C}^{q_{B}} \quad, C_{\alpha}^{(C)} \subset\{1\} \times \boldsymbol{C}^{q_{C}}$ and $C_{\alpha}^{(D)} \subset\{1\} \times \boldsymbol{C}^{q_{D}}:$

Theorem 3.11. The following properties hold:
(i) The system (1)-(2) is controllable in a bounded domain $C=\alpha_{\alpha}^{(A, B)}:=C{ }_{\alpha}^{(A)} \times C_{\alpha}^{(B)} \subset C^{q_{A}+q_{B}+2}$, if and only if it has no input-decoupling zero in $C_{\alpha}^{(A, B)}$, and equivalently, if and only if

$$
\operatorname{rank} Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=n, \forall(s, Z(A), z(B)) \in \operatorname{Im}\left(s_{f}\right) \times C_{\alpha}^{(A, B)} \subset C^{q_{A}+q_{B}+3}
$$

where the discrete function s_{f} is defined as $s_{f}: C_{\alpha}^{(A)} \rightarrow \sigma\left(A(z(A))+\tilde{A}\left(z^{(A)}\right)\right)$.
(ii) The system (1)-(2) is observable in a bounded domain $C_{\alpha}^{(A, C)}:=C_{\alpha}^{(A)} \times C_{\alpha}^{(C)} \subset C^{q_{A}+q_{C}+2}$ if and only if it has no output-decoupling zero in $C_{\alpha}^{(A, C)}$, and equivalently, if and only if

$$
\operatorname{rank} Z_{O}\left(s, Z^{(A)}, Z^{(C)}\right)=n, \forall\left(s, Z^{(A)}, Z^{(C)}\right) \in \operatorname{Im}\left(s_{f}\right) \times C_{\alpha}^{(A, C)} \subset \boldsymbol{C}^{q_{A}+q_{C}+3}
$$

(iii) The system (1)-(2) is controllable and observable in a bounded domain $C{ }_{\alpha}^{(A, B, C)}:=C{ }_{\alpha}^{(A)} \times C{ }_{\alpha}^{(B)} \times C_{\alpha}^{(C)} \subset C^{q_{A}+q_{B}+q_{C}+3}$ if and only if it has no input-decoupling zero in $C_{\alpha}^{(A)} \times C_{\alpha}^{(B)}$ and no output-decoupling zero in $C_{\alpha}^{(A)} \times C_{\alpha}^{(C)}$, and equivalently, if and only if $\operatorname{rank} Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=\operatorname{rank} Z_{O}\left(s, Z^{(A)}, Z^{(C)}\right)=n$, $\forall\left(s, z{ }^{(A)}, Z^{(B)}, z(C)\right) \in \operatorname{Im}\left(s_{f}\right) \times C_{\alpha}^{(A, B, C)} \subset C^{q_{A}+q_{B}+q_{C}+3}$. As a result, The system (1)-(2) is controllable and observable in $C_{\alpha}^{(A, B, C)} \Leftrightarrow \neg \exists$ a system (1)- (2) with $\operatorname{dim}(x(t))<n$ for some $z \in C_{\alpha}$ and transfer matrix

$$
\left.\hat{G}(s, z)=(C(z)+\tilde{C}(z))\left(s I_{n}-A\left(z^{(A)}\right)-\tilde{A}\left(z^{(A)}\right)\right)\right)^{-1}\left(B\left(z^{(B)}\right)+\tilde{B}^{(B)}\right)+\left(D\left(z^{(D)}\right)+\tilde{D}\left(z^{(D)}\right)\right)
$$

(iv) The system (1)-(2) is output controllable in a bounded domain $C_{\alpha}:=C_{\alpha}^{(A)} \times C_{\alpha}^{(B)} \times C_{\alpha}^{(C)} \times C_{\alpha}^{(D)}$ if and only if it has no external input-decoupling zero in C_{α}, and equivalently, if and only if $\operatorname{rank} Z_{O C}\left(s, Z^{(A)}, Z^{(B)}, Z^{(C)}, z^{(D)}\right)=p, \forall\left(s, Z^{(A)}, Z^{(B)}, z^{(C)}, Z^{(D)}\right) \in \boldsymbol{C} \times C_{\alpha} \subset \boldsymbol{C}^{q_{A}+q_{B}+q_{C}+q_{D}+5}$.

If $\operatorname{rank}(C(z)+\tilde{C}(z))=p$ in $C{ }_{\alpha}^{(A)} \times C_{\alpha}^{(B)} \times C{ }_{\alpha}^{(C)}$ then the system (1)-(2) is output controllable if and only if $\operatorname{rank} Z_{O C}\left(s, Z^{(A)}, Z^{(B)}, Z^{(C)}\right)=p$
,$\forall\left(s, z^{(A)}, z^{(B)}, Z^{(C)}\right) \in \operatorname{Im}\left(s_{f}\right) \times C_{\alpha}^{(A)} \times C_{\alpha}^{(B)} \times C_{\alpha}^{(C)} \subset C^{q_{A}+q_{B}+q_{C}+3}$

Proof: (i) The continuous vector function $s_{f}: C_{\alpha}^{(A)} \rightarrow \sigma\left(A\left(z{ }^{(A)}\right)+\widetilde{A}\left(z^{(A)}\right)\right)$ exists on $C_{\alpha}^{(A)}$ since the eigenvalues of the square matrix function $A\left(z^{(A)}\right)+\tilde{A}\left(z^{(A)}\right)$ exist and are bounded continuous functions on the bounded domain $C_{\alpha}^{(A)}$. Define the graph of s_{f} on its definition domain as $G\left(s_{f}\right):=\left\{\left(\omega, s_{f}(\omega)\right): \omega \in C_{\alpha}^{(A)}\right\}$. Taking Laplace transforms in (1) gives the equivalent algebraic linear equation

$$
Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)\left(\hat{x}^{*}\left(s_{\left.s, Z^{(A)}, Z^{(B)}\right)} \vdots-\hat{u}^{*}\left(s, Z^{(A)}, Z^{(B)}\right)\right)^{*}=x_{0}\right.
$$

for any bounded initial conditions $X\left(0, Z^{(A)}, Z^{(B)}\right)=X_{0}$. Take a linear state-feedback control of Laplace transform $\hat{u}\left(s, Z^{(A)}, Z^{(B)}\right)=K\left(s, Z^{(A)}, Z^{(B)}\right) \hat{X}\left(s_{, Z}{ }^{(A)}, Z^{(B)}\right)$ for some $K: C \times C{ }_{\alpha}^{(A)} \times C_{\alpha}^{(B)} \subset \boldsymbol{C} \times \boldsymbol{C}^{q_{A} \times \boldsymbol{C}^{q_{B}} \rightarrow \operatorname{range}(K) \subset \boldsymbol{C}^{m \times n} \quad \text { is a matrix function of order } m \times n ~}$ Combining the above equations, one gets the linear algebraic system:

$$
\left.Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)\left(I_{n} \vdots-K^{*}\left(s, Z^{(A)}, Z^{(B)}\right)\right)\right)^{*} \hat{x}\left(s, Z^{(A)}, Z^{(B)}\right)=x\left(0, Z^{(A)}, Z^{(B)}\right)
$$

Since $\operatorname{rank} Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=n$ then the generic rank of the square n-matrix function $Z_{C}\left(s, Z(A), Z^{(B)}\right)\left(I_{n} \vdots-K^{*}\left(s_{, Z}(A), Z^{(B)}\right)\right)^{*}$, considered as a function of the feedback matrix $K\left(S, Z^{(A)}, Z^{(B)}\right)$, is n everywhere in $C \times C_{\alpha}^{(A, B)}$ so that the above algebraic linear system may be full rank at any point of the domain of $K\left(s, Z^{(A)}, Z^{(B)}\right)$ if its range is (pointwise) chosen appropriately. As a result,

$$
\begin{aligned}
& \left.\operatorname{rank}\left[Z_{C}\left(s, z^{(A)}, z^{(B)}\right)\left(I_{n} \vdots-K^{*}\left(s, z^{(A)}, z^{(B)}\right)\right)\right)^{*}\right]<n \\
& \Leftrightarrow \operatorname{det}\left(s I_{n}-A\left(Z^{(A)}\right)-\tilde{A}\left(Z^{(A)}\right)-\left(B\left(Z^{(B)}\right)+\tilde{B}\left(Z^{(B)}\right)\right) K\left(s, z^{(A)}, z^{(B)}\right)\right)=0
\end{aligned}
$$

at arbitrarily fixed complex points $s\left(z^{(A)}, z^{(B)}\right)$ in $C_{\alpha}^{(A, B)}$ since any $s \in \boldsymbol{C}$ may be chosen not to be an eigenvalue of the matrix
$A\left(z^{(A)}\right)+\tilde{A}\left(z^{(A)}\right)+\left(B\left(z^{(B)}\right)+\tilde{B}\left(z^{(B)}\right)\right) K\left(s_{, z}{ }^{(A)}, z^{(B)}\right)$
everywhere in $C_{\alpha}^{(A, B)}$. Since the eigenvalues are arbitrarily assignable by linear state- feedback the system (1)-(2) is controllable if $\operatorname{rank} Z_{C}(s, Z(A), Z(B))=n$ what proves sufficiency. To prove necessity, proceed by contradiction by assuming that $\operatorname{rank} Z_{C}(S, Z(A), Z(B))<n$. Then, there exists a vector $0 \neq q \in \boldsymbol{C}^{n}$ for each point in $C_{\alpha}^{(A, B)}$ such that :

$$
q^{*} Z_{C}(s, z(A), z(B))=0 \Leftrightarrow q^{*}\left(s I_{n}-A\left(z^{(A)}\right)-\tilde{A}\left(z^{(A)},\right)\right)=q^{*}\left(B\left(Z^{(B)}\right)+\tilde{B}(z(B))\right)=0
$$

i.e. q is a nonzero eigenvector of $A(z(A))+\tilde{A}(z(A))$, with associate eigenvalue λ_{q}, which is orthogonal to the matrix $B\left(Z^{(B)}\right)+\tilde{B}\left(Z^{(B)}\right)$. Direct calculation with (1)-(2) yields that a state trajectory solution satisfies $\quad \dot{x}\left(t, Z^{(A)}, Z^{(B)}\right)=\lambda_{q^{X}}\left(t_{\left., Z^{(A)}, Z^{(B)}\right) \quad \text { with } \quad \text { associate } \text { state } \text { trajectory solution }}\right.$ $x\left(t, Z(A), Z^{(B)}\right)=e^{\lambda_{q} t} q$ irrespective of the control, $\forall t \in \boldsymbol{R}_{+0}$. It is obvious that such a trajectory cannot reach any point $\bar{x}=x\left(T, Z(A), Z^{(B)}\right) \neq e^{\lambda_{q} T} q$ at any finite arbitrary time $T>0$. Thus, the system is not controllable in $C_{\alpha}^{(A, B)}$ which proves necessity. Thus, the system (1)-(2) is controllable for any $z \in C_{\alpha}^{(A, B)}$ if and only if

$$
\begin{aligned}
& \operatorname{rank} Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=n, \forall\left(s, Z^{(A)}, Z^{(B)}\right) \in C \times C_{\alpha}^{(A, B)} \\
& \Leftrightarrow \operatorname{rank} Z_{C}\left(s, z^{(A)}, Z^{(B)}\right)=n, \forall\left(s_{\left., Z^{(A)}, Z^{(B)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(B)}}^{\Leftrightarrow \operatorname{rank} Z_{C}\left(\omega, Z^{(A)}, Z^{(B)}\right)=n, \forall\left(s, Z^{(A)}, Z^{(B)}\right) \in \operatorname{Im}\left(s_{f}\right) \times C_{\alpha}^{(A, B)}}\right.
\end{aligned}
$$

since loss of rank in some point of $C \times C_{\alpha}^{(A, B)}$ is only possible for $s \in \sigma\left(A\left(Z^{(A)}\right)+\tilde{A}\left(Z^{(A)}\right)\right)$, which is $\operatorname{Im}\left(s_{f}\right)$, from Popov- Belevitch- Hautus rank controllability test. Equivalently, the system (1)-(2) is controllable if and only if it has no input-decoupling zero in $C_{\alpha}^{(A, B)}$ from Definition 3.5.
(ii) The proof is similar from the Popov-Belevitch-Hautus observability rank test $\operatorname{rank} Z_{O}\left(s, Z^{(A)}, Z^{(C)}\right)=n, \forall\left(s, Z^{(A)}, Z^{(C)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(C)}$, and , equivalently, $\forall\left(s, z^{(A)}, z(C)\right) \in \operatorname{Im}\left(s_{f}\right) \times C_{\alpha}^{(A, C)}$, since observability is a dual property to controllability through the replacements $A \rightarrow A^{*}, B \rightarrow C^{*}$.
(iii) The first part follows by combining the proofs of Properties (i)-(ii). The second part is now proven. Assume that there is at least a transmission zero $s_{0} \in \boldsymbol{C}$ and $S\left(s_{0}, z\right)\left(\hat{x}^{T}(s), u^{T}(s)\right)^{T}=0 \Rightarrow \operatorname{rank} S\left(s_{0}, z\right)<n$ for some $\left(\hat{x}\left(s_{0}, z\right), \hat{u}^{T}\left(s_{0}, z\right)\right)^{T} \neq(0,0)^{T} \in \boldsymbol{R}^{n+m}$ and some $z \in C{ }_{\alpha}$ since $s_{0} \in \boldsymbol{C}$ is neither an input-decoupling or and output decoupling zero of (1)-(2). Since $s_{0} \notin \sigma(A(z)+\tilde{A}(z))$ $\operatorname{det} S\left(s_{0}, z\right)=\operatorname{det}\left(\operatorname{diag}\left(s_{0} I_{n}-A\left(z^{(A)}\right)-\tilde{A}\left(z^{(A)}\right) \vdots I_{n}\right)\right)$

$$
\times \operatorname{det}\left(\begin{array}{ccc}
I_{n} & \vdots & \left.-\left(s_{0} I_{n}-A\left(z^{(A)}\right)-\tilde{A}\left(z^{(A)}\right)\right)\right)^{-1} B\left(z^{(B)}\right)+\tilde{B}\left(z^{(B)}\right) \\
\cdots & \cdots & \cdots \\
C\left(z^{(C)}\right)+\tilde{C}\left(z^{(C)}\right) & \vdots & D\left(z^{(D)}\right)+\tilde{D}\left(z^{(D)}\right)
\end{array}\right)=0
$$

$\Leftrightarrow C\left(z^{(C)}\right)+\tilde{C}\left(z^{(C)}\right) \operatorname{Adj}\left(s_{0} I_{n}-A\left(z^{(A)}\right)-\tilde{A}\left(z^{(A)}\right)\right) B\left(z^{(B)}\right)+\tilde{B}\left(z^{(B)}\right)+D\left(z^{(D)}\right)+\tilde{D}\left(z^{(D)}\right)=0$
$\Leftrightarrow \hat{y}\left(s_{0}, z\right) \equiv 0$ for some $\hat{u}\left(s_{0}, z\right) \neq 0 \in \boldsymbol{R}^{m}$ and some $z \in C_{\alpha}$ if $x_{0}=0$ and the system possesses the input-output transmission blocking property at the transmission zero $s=s_{0}$ for some $z \in C_{\alpha}^{(A, B, C)}$. Since $s_{0} \notin \sigma(A(z)+\tilde{A}(z)), \hat{G}(s, z)$ has no zero-pole cancellation at $s=s_{0}$ so that there is no system (1)-(2) with state dimension less than n which possess the input-output transmission blocking property for some $z \in C_{\alpha}^{(A, B, C)}$.
(iv) Its proof is similar to those of (i)-(ii) from the Popov- Belevitch- Hautus output controllability rank test, namely, $\operatorname{rank} Z_{O C}\left(s, Z^{(A)}, Z^{(B)}, Z^{(C)}, Z^{(D)}\right)=p, \forall s \in \boldsymbol{C} \times C_{\alpha}$.

Note that Theorem 3.11 also holds if C_{α} is a closed domain. In this case, $G\left(s_{f}\right)$ is closed since there is a finite number of eigenvalues of each matrix $A\left(z^{(A)}\right)+\tilde{A}\left(z^{(A)}\right)$ in $C_{\alpha}^{(A)}$. As a result, all pairs in the set $G\left(s_{f}\right)$ conform a closed set since $C_{\alpha}^{(A)}$ is closed. The subsequent results is a direct consequence of Theorem 3.11. It is of interest to formulate the various properties for the system (1)-(2) under parametrical multi perturbations belonging to a certain domain in an easy testable form provided that provided that they hold for the nominal system in an easy testable form. Note also that Theorem 3.11 is not directly applicable to time-varying parameters but to varying parameterizations within some appropriate domains.

Corollary 3.12. The following properties hold:
(i) The system (1)-(2) is controllable in $C_{\alpha}^{(A, B)}$ if and only if

$$
\operatorname{det} \hat{Z}_{C}\left(s, Z^{(A)}, Z^{(B)}\right)>0, \forall\left(s, Z^{(A)}, Z^{(B)}\right) \in \boldsymbol{C} \times C_{\alpha}^{(A, B)}
$$

$$
\Leftrightarrow \operatorname{Inf}\left(\underline{\sigma}\left(Z_{C}\left(s, z^{(A)}, z^{(B)}\right)\right):\left(s, z^{(A)}, z^{(B)}\right) \in \boldsymbol{C} \times C_{\alpha}^{(A, B)}\right)>0
$$

where $\hat{Z}_{C}\left(s, Z^{(A)}, Z^{(B)}\right):=Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right) Z_{C}^{*}\left(s, Z^{(A)}, Z^{(B)}\right)$ and, equivalently, if and only if

$$
\begin{aligned}
& \operatorname{det} \hat{Z}_{C}\left(s, z^{(B)}\right)>0, \forall\left(s, z^{(B)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(B)} \\
& \quad \Leftrightarrow \operatorname{Inf}\left(\underline{\sigma}\left(Z_{C}\left(s_{, z}^{(A)}, z^{(B)}\right)\right):\left(s, z^{(B)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(B)}\right)>0 .
\end{aligned}
$$

(ii) The system (1)-(2) is observable in C_{α} if and only if

$$
\begin{aligned}
& \operatorname{det} \hat{Z}_{O}\left(s, z^{(A)}, z^{(C)}\right)>0, \forall\left(s, z^{(A)}, z^{(C)}\right) \in \boldsymbol{C} \times C_{\alpha}^{(A, C)} \\
& \quad \Leftrightarrow \operatorname{Inf}\left(\underline{\sigma}^{\left.\left(Z_{O}\left(s, z^{(A)}, z^{(C)}\right)\right):\left(s, z^{(A)}, z^{(C)}\right) \in \boldsymbol{C} \times C_{\alpha}^{(A, C)}\right)>0}\right.
\end{aligned}
$$

where $\hat{Z}_{O}\left(s, Z^{(A)}, Z^{(C)}\right):=Z_{O}^{*}\left(s, Z^{(A)}, Z^{(C)}\right) Z_{O}\left(s, Z^{(A)}, Z^{(C)}\right)$ and, equivalently, if and only if

$$
\begin{aligned}
& \operatorname{det} \hat{Z}_{O}\left(s, z^{(A)}, z^{(C)}\right)>0, \forall\left(s, z^{(C)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(C)} \\
& \quad \Leftrightarrow \operatorname{Inf}\left(\underline{\sigma}^{\sigma}\left(Z_{O}\left(s, z^{(A)}, z^{(C)}\right)\right):\left(s, z^{(C)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(C)}\right)>0 .
\end{aligned}
$$

(iii)

The system (1)-(2) is controllable and observable in $C_{\alpha}^{(A, B, C)}$ if and only if

$$
\begin{aligned}
& \operatorname{det} \hat{Z}_{C}\left(s, Z^{(A)}, Z^{(B)}\right) \cdot \operatorname{det} \hat{Z}_{O}\left(s, Z^{(A)}, Z^{(C)}\right)>0 \Leftrightarrow \underline{\sigma}\left(Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)\right) \cdot \underline{\sigma}\left(Z_{O}\left(s, Z^{(A)}, Z^{(C)}\right)\right)>0 \\
& , \forall\left(s, z^{(B)}, Z^{(C)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(B, C)} \text {. }
\end{aligned}
$$

(iv) The system (1)-(2) is output controllable in C_{α} if and only if $Z_{O C}(s, z)$ has no zero singular value $\forall z \in C_{\alpha}$ and, equivalently, if and only if $\operatorname{det} \hat{Z}_{o C}(s, z)>0, \forall(s, z) \in \boldsymbol{C} \times C_{\alpha}$, where $\hat{Z}_{\text {OC }}(s, z):=Z_{\text {OC }}(s, z) Z_{\text {OC }}^{*}(s, z)$.

Proof: (i) Note that $\hat{Z}_{C}\left(s, Z^{(A)}, Z^{(B)}\right)$ is a (n+m)- square matrix which is normal by construction. Thus, its eigenvalues are nonnegative and real being the squares of the singular values of $Z_{C}\left(s, z{ }^{(A)}, Z^{(B)}\right)$. Consider again the function $s_{f}: C_{\alpha}^{(A)} \rightarrow \sigma(A(z(A))+\tilde{A}(z(A)))$ of Theorem 3.11. Thus, the system (1)-(2) is controllable from Theorem 3.11(i) if and only if

$$
\begin{aligned}
& \operatorname{rank} Z_{C}\left(s, Z^{(A)}, z^{(B)}\right)=n, \forall\left(s, Z^{(A)}, Z^{(B)}\right) \in C \times C_{\alpha}^{(A, B)} \\
& \quad \Leftrightarrow \operatorname{rank} Z_{C}\left(s, Z^{(B)}\right)=n, \forall\left(s, Z^{(B)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(B)} \\
& \Leftrightarrow \\
& \Leftrightarrow \operatorname{rank} \hat{Z}_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=n, \forall\left(s, Z^{(A)}, Z^{(B)}\right) \in C \times C_{\alpha}^{(A, B)} \\
& \Leftrightarrow \\
& \operatorname{det} \hat{Z}_{C}\left(s, Z^{(A)}, Z^{(B)}\right)>0, \forall\left(s, Z^{(A)}, Z^{(B)}\right) \in C \times C_{\alpha}^{(A, B)}
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \operatorname{rank} \hat{Z}_{C}\left(\omega, z^{(B)}\right)=n, \forall\left(\omega, z^{(B)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(B)} \\
& \Leftrightarrow \operatorname{det} \hat{Z}_{C}\left(\omega, z^{(B)}\right)>0, \forall\left(\omega, z^{(B)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(B)} \\
& \Leftrightarrow \underline{\sigma}\left(Z_{C}\left(s, z^{(A)}, z^{(B)}\right)\right)>0, \forall\left(s_{s, z}^{(A)}, z^{(B)}\right) \in C \times C_{\alpha}^{(A, B)} \\
& \Leftrightarrow \underline{\sigma}\left(Z_{C}\left(\omega, z^{(B)}\right)\right)>0, \forall\left(\omega, z^{(B)}\right) \in G\left(s_{f}\right) \times C_{\alpha}^{(B)}
\end{aligned}
$$

what proves Property (i). The proofs of (ii)-(iv) are similar from the parallel properties of Theorem 3.11 and are then omitted.

Remark 3.13. Since controllability is lost in C_{α} if and only if $Z_{C}\left(s, Z{ }^{(B)}\right)$ is rank defective for some $(s, z(B)) \in G\left(s_{f}\right) \times C_{\alpha}^{(B)}$ [Theorem 3.11 (i)], it turns out that controllability in C_{α} holds if and only if $\underline{\sigma}\left(Z_{C}(s, Z(B))\right)>0, \forall(s, Z(B)) \in G\left(s_{f}\right) \times C_{\alpha}^{(B)} \quad$ and, equivalently, if and only if $\operatorname{det} \hat{Z}_{C}\left(s, z^{(B)}\right)>0, \forall\left(s, z_{(B)}^{(B)} \in G\left(s_{f}\right) \times C_{\alpha}^{(B)}\right.$. As a result, the tests of Corollary 3.12 (i) have only to be performed for $s \in \sigma(A(z)+\widetilde{A}(z))$ for each $\left(z^{(A)}, z^{(B)}\right) \in C_{\alpha}^{(A, B)}$. Similar considerations apply to Corollary 3.12 [(ii)-(iv)].

Theorem 3.11 and Corollary 3.12 are directly extendable to stabilizability and detectability as follows. First, define $s_{f}^{+0}: \operatorname{Dom}\left(s_{f}^{+0}\right) \rightarrow \sigma(A(z(A))+\tilde{A}(z(A))) \cap C_{+0}$ of graph $G\left(s_{f}^{+0}\right):=\left\{\left(\omega, s_{f}^{+0}(\omega)\right): \omega \in \operatorname{Dom}\left(s_{f}^{+0}\right)\right\}$ where $C_{\alpha}^{(A)} \supset \operatorname{Dom}\left(s_{f}^{+0}\right):=\left\{\omega \in C_{\alpha}^{(A)}: s_{f}^{+0}(\omega) \in \boldsymbol{C}_{+0}\right\}$

Note that $G\left(s_{f}^{+0}\right) \subset G\left(s_{f}\right)$ since $\operatorname{Dom}\left(s_{f}^{+0}\right) \subset \operatorname{Dom}\left(s_{f}\right) \equiv C_{\alpha}^{(A)}$ and there is a natural projection function $p_{f}^{+0}: \operatorname{Dom}(p \underset{f}{0+}) \equiv \operatorname{Im}\left(s_{f}\right) \rightarrow \operatorname{Im}\left(s_{f}^{+0}\right) \subset \operatorname{Im}\left(s_{f}\right)$.

Corollary 3. 14.

(i) The system (1)-(2) is stabilizable in a bounded domain C_{α} if and only any of the following equivalent properties hold:
(i.1) All the input-decoupling zeros in $C{ }_{\alpha}^{(A, B)}$, if any, have negative real parts
(i.2) $\operatorname{rank} Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=n, \forall\left(s, Z_{(A)}^{(A)} Z^{(B)}\right) \in \operatorname{Im}\left(s_{f}^{+0}\right) \times C_{\alpha}^{(A, B)}$
(i.3) $\operatorname{rank} Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=n, \forall\left(s, Z^{(A)}, Z^{(B)}\right) \in C_{+0} \times C_{\alpha}^{(A, B)}$
(i.4) $\operatorname{det} \hat{Z}_{C}\left(s, Z^{(B)}\right)>0, \forall\left(s, z^{(B)}\right) \in G\left(s_{f}^{+0}\right) \times C_{\alpha}^{(B)}$
(i.5) $\underline{\sigma}\left(Z_{C}\left(G\left(s, z^{(B)}\right)\right)\right)>0, \forall\left(s, z^{(B)}\right) \in G\left(s_{f}^{+0}\right) \times C_{\alpha}^{(B)}$
(ii) The system (1)-(2) is detectable in C_{α} if and only any of the following equivalent properties hold:
(ii.1) All the output-decoupling zeros in $C{ }_{\alpha}^{(A, C)}$, if any, have negative real parts

(ii.3) $\operatorname{rank} Z_{O}\left(s, Z^{(A)}, Z^{(C)}\right)=n, \forall\left(s, Z^{(A)}, Z^{(C)}\right) \in \operatorname{Im}\left(s_{f}^{+0}\right) \times C_{\alpha}^{(A, C)}$.
(ii.4) $\operatorname{det} \hat{Z}_{o}\left(s, z^{(C)}\right)>0, \forall\left(s, Z^{(C)}\right) \in G\left(s_{f}^{+0}\right) \times C_{\alpha}^{(C)}$
(ii.5) $\underline{\sigma}\left(Z_{C}\left(G\left(s, z^{(C)}\right)\right)\right)>0, \forall\left(s, z^{(C)}\right) \in G\left(s_{f}^{+0}\right) \times C_{\alpha}^{(C)}$

Remarks 3.15. The system (1)-(2) is said to be stabilizable if there is no input-decoupling zero in \boldsymbol{C}_{0+}. If the system (1)-(2) is stabilizable then there exists some state-feedback control law $u: \boldsymbol{R}_{0+} \times X \rightarrow U$ such that the system (1)-(2) is globally asymptotically Lyapunov's stable under such a law. The system (1)-(2) is said to be detectable if there is no output-decoupling zero in \boldsymbol{C}_{+0}. From Theorem 3.12 and Corollaries 3.12 and 3.14, it turns out that if the system (1)-(2) is controllable (respectively, observable) in C_{α} then it is stabilizable (respectively, detectable) in C_{α}. Also, if the unforced system (1)-(2) is globally asymptotically stable in the Lyapunov's sense on C_{α} (i.e. the matrix $A\left(z^{(A)}\right)+\tilde{A}\left(z^{(A)}\right)$ has all its eigenvalues with negative real parts for all $Z{ }^{(A)} \in C_{\alpha}^{(A)}$ then it is also stabilizable (even if it is not controllable) and detectable (even if it is not observable) since the spectral controllability, respectively, observability matrices are jointly full rank on $\boldsymbol{C}_{+0} \times C_{\alpha}^{(A, B)}$, respectively, $\boldsymbol{C}_{+0} \times C_{\alpha}^{(A, B)}$.

Remarks 3.16. Note that the conditions implying the corresponding determinants or minimum singular values to be positive to guarantee each of the controllability, stabilizability, observability and detectability properties in Theorem 3.11 and Corollaries 3.13 and 3.14 is sufficient in a bounded domain. However, the boundedness of determinants and maximum singular values is also needed to guarantee each property in an unbounded
domain.

4. Maintenance of the properties from those of the nominal system

In this section, attention is paid to the normal matrix $\hat{Z}_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right) Z_{C}^{*}\left(s, Z{ }^{(A)}, Z^{(B)}\right)$ to obtain conditions for maintaining or loosing controllability under parametrical multi perturbations of a certain size provided that the nominal system is controllable. In the analysis, it is taken advantage of the fact that such a matrix is square and nonsingular if the system is controllable. Furthermore, if the matrix $\left(A\left(z^{(A)}\right)+\tilde{A}\left(z^{(A)}\right) \vdots B\left(z^{(B)}\right)+\tilde{B}\left(z^{(B)}\right)\right)$ is Hermitian, so that $\left(s I_{n^{-}}\left(A\left(Z^{(A)}\right)+\tilde{A}\left(z^{(A)}\right)\right) \vdots B\left(z^{(B)}\right)+\tilde{B}\left(z^{(B)}\right)\right)$ is also Hermitian, then the eventual loss of rank of $\hat{Z}_{C}\left(s, z^{(A)}, z^{(B)}\right)$ for some $\left(Z^{(A)}, Z^{(B)}\right)$ only occurs for $\mathbf{s} \in \mathbf{C}$ being some singular value of $Z_{C}\left(s, z^{(A)}, Z^{(B)}\right)$, i.e. for some eigenvalue of $A\left(z^{(A)}\right)+\tilde{A}\left(Z^{(A)}\right)$. In the general case, the loss of rank can occur also for eigenvalues of $\mathrm{A}^{*}\left(\mathrm{Z}^{(\mathrm{A})}\right)+\widetilde{\mathrm{A}}^{*}\left(\mathrm{Z}^{(\mathrm{A})}\right)$. A close discussion is directly applicable to stabilizability and direct extensions, by modifying accordingly the matrices, are also applicable to observability, detectability and output controllability. Using (12),

$$
\begin{align*}
& \hat{Z}_{C}\left(s, Z^{(A)}, z^{(B)}\right)=\hat{Z}_{C 0}\left(s, Z^{(A)}, Z^{(B)}\right) \\
& \times\left(I_{n}+\left(Z_{C O}\left(s, Z^{(A)}, z^{(B)}\right) Z_{C 0}^{*}\left(s, Z^{(A)}, z^{(B)}\right)\right)-1\left(\left(-\tilde{A}\left(Z^{(A)}\right) \vdots \tilde{B}\left(z^{(B)}\right)\right)\left(-\tilde{A}\left(Z^{(A)}\right) \vdots \tilde{B}\left(Z^{(B)}\right)\right)\right)^{*}\right. \\
& \left.\quad+Z_{C 0}\left(s, Z^{(A)}, Z^{(B)}\right)\left(-\tilde{A}\left(Z^{(A)}\right) \vdots \tilde{B}\left(Z^{(B)}\right)\right)^{*}+\left(-\tilde{A}\left(Z^{(A)}\right) \vdots \tilde{B}\left(Z^{(B)}\right)\right) Z_{C 0}^{*}\left(s, Z^{(A)}, Z^{(B)}\right)\right) \tag{16}
\end{align*}
$$

provided that $\hat{Z}_{C 0}\left(s, Z^{(A)}, Z^{(B)}\right):=Z_{C 0}\left(s, Z^{(A)}, Z^{(B)}\right) \cdot Z_{C 0}^{*}\left(s, Z^{(A)}, Z^{(B)}\right)$ is nonsingular, i.e. its minimum singular value is positive, that is, there is no zero-input decoupling zero of $Z_{C 0}\left(s, Z^{(A)}, Z^{(B)}\right)$. Expanding the first identity of (7), one gets:

$$
\begin{equation*}
\left(-\tilde{A}\left(z^{(A)}\right) \vdots \tilde{B}\left(z^{(B)}\right)\right)=\left(-z^{(A)} I_{n} \vdots z^{(B)} I_{n}\right) \Delta^{(A B)} \tag{17}
\end{equation*}
$$

with

$$
\begin{align*}
\Delta^{(A B)}:=\operatorname{diag}(& \sum_{j=1}^{n_{A}} \operatorname{diag}\left(D_{0 j}^{(A)} \vdots D_{1 j}^{(A)} \vdots \ldots \vdots D_{q_{A} j}^{(A)}\right)\left(\Delta_{0 j}^{(A) *} \vdots \Delta_{1 j}^{(A) *} \vdots \ldots \vdots \Delta_{q_{A} j}^{(A) *}\right)^{*} E^{(A)} \\
& \left.\vdots \sum_{j=1}^{n_{B}} \operatorname{diag}\left(D_{0 j}^{(B)} \vdots D_{1 j}^{(B)} \vdots \ldots \vdots D_{q_{B} j}^{(B)}\right)\left(\Delta_{0 j}^{(B) *} \vdots \Delta_{1 j}^{(B) *} \vdots \ldots \vdots \Delta_{q_{B} j}^{(B) *}\right)^{*} E^{(B)}\right) \tag{18}
\end{align*}
$$

Eq. 16 may be rewritten under (17)-(18) as

$$
\begin{aligned}
\hat{Z}_{C}\left(s, Z^{(A)}, z^{(B)}\right) & =\hat{Z}_{C 0}\left(s, Z^{(A)}, z^{(B)}\right)\left(I_{n}+\hat{Z}_{C 0}\left(s, Z^{(A)}, z^{(B)}\right)^{-1}\right. \\
& \times\left(Z_{C 0}\left(s, Z^{(A)}, z^{(B)}\right) \Delta^{(A B)^{*}}\left(-z^{(A)} I_{n} \vdots z^{(B)} I_{n}\right)^{*}+\Delta^{(A B)} Z_{C 0}^{*}\left(s, Z^{(A)}, Z^{(B)}\right)\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.+\left(-z^{(A)} I_{n} \vdots z^{(B)} I_{n}\right) \Delta^{(A B)} \Delta^{(A B)^{*}}\left(-z^{(A)} I_{n} \vdots z^{(B)} I_{n}\right)^{*}\right) \tag{19}
\end{equation*}
$$

A direct result follows:

Theorem 4.1. The following properties hold:
(i) Assume that the nominal system (1)-(2) is controllable in a bounded domain $C_{C 0} \subset \boldsymbol{C}^{q_{A}+q_{B}+2}$. Then, there exist parametrical multi perturbations $\left(-\tilde{A}\left(Z^{(A)}\right) \vdots \tilde{B}\left(Z^{(B)}\right)\right)$ satisfying (17)-(18), defined by maps $C_{C} \subset C_{C 0} \rightarrow P_{A} \times P_{B} \subset C^{n \times(n+m)}$ such that the perturbed systems (1)-(2) are also controllable, and equivalently they have no input-decoupling zeros in \boldsymbol{C}, within each given bounded domain $C_{C} \subset C_{C 0}$. All those multi perturbations are subject to a computable norm upper-bound depending on C_{C}.
(ii) Assume that there is some nonzero vector $v_{Q} \in \boldsymbol{C}^{n^{2}}$ which is some linear combination of the columns of the matrix
$Q\left(Z^{(A)}, Z^{(B)}\right):=\left(-\sum_{i=0}^{q_{A}} \sum_{j=1}^{n_{A}} z_{i}^{(A)} D_{i j}^{(A)} \otimes E^{(A)^{*}} \vdots \sum_{i=0}^{q_{B}} \sum_{j=1}^{n_{B}} z_{i}^{(B)} D_{i j}^{(B)} \otimes E^{(B)^{*}}\right)$
for some given $\mathrm{C}_{\mathrm{C}} \subset \mathrm{C}_{\mathrm{C} 0}$. Then, there is a parametrical multi perturbation within the class (7) which violates the norm upper-bound referred to in Property (i) such that the system is uncontrollable in C_{C}.
(iii) Assume that the nominal system (1)-(2) is controllable in $C_{C 0} \equiv \boldsymbol{C}^{q_{A}+q_{B}+2}$ and that the scaling matrices $E^{(A)}$ and $E^{(B)}$ are both full rank. Then, there exist parametrical multi perturbations $\left(-\tilde{A}\left(Z^{(A)}\right) \vdots \tilde{B}\left(Z^{(B)}\right)\right)$ satisfying (17)-(18), defined by maps $C^{q_{A}+q_{B}+2} \rightarrow P_{A} \times P_{B} \subset C{ }^{n \times(n+m)}$ such that the perturbed systems (1)-(2) is not controllable in $C^{q_{A}+q_{B}+2}$.
(iv) Properties (i) and (iii) also hold "mutatis-mutandis" for stabilizability with the modification that the perturbed system is stabilizable in Property (i) if and only if it has no input-decoupling zeros in \boldsymbol{C}_{+0}.
(v) Properties (i) -(iii) also hold for observability by replacing $\boldsymbol{C}^{q_{A}+q_{B}+2} \rightarrow \boldsymbol{C}^{q_{A}+q_{C}+2}$,
$Q\left(z^{(A)}, z^{(B)}\right) \rightarrow Q^{\prime}\left(z^{(A)}, z^{(B)}\right):=\left(-\sum_{i=0}^{q_{A}} \sum_{j=1}^{n_{A}} z_{i}^{(A){ }^{*}} D_{i j}^{(A) *} \otimes E^{(A)} \vdots \sum_{i=0}^{q_{C}} \sum_{j=1}^{n_{C}} z_{i}^{(C)} D_{i j}^{(C)}{ }^{*} \otimes E^{(B)}\right)$ $\left(-\tilde{A}\left(Z^{(A)}\right) \vdots \tilde{B}\left(Z^{(B)}\right)\right) \rightarrow\left(-\tilde{A}\left(Z^{(A)}\right)^{*} \vdots \tilde{C}\left(Z^{(C)}\right)^{*}\right)$ and the modification that the perturbed system is observable in Property (i) if and only if it has no output-decoupling zeros in \boldsymbol{C}. Properties (i) and (iii) also hold "mutatis-mutandis" for detectability with the changes $\boldsymbol{C}^{q_{A}+q_{B}+2} \rightarrow \boldsymbol{C}{ }^{q_{A}+q_{C}+2}$,
$Q\left(z^{(A)}, z^{(B)}\right) \rightarrow Q^{\prime}\left(z^{(A)}, z^{(B)}\right),\left(-\tilde{A}\left(z^{(A)}\right): \tilde{B}\left(z^{(B)}\right)\right) \rightarrow\left(-\tilde{A}\left(z^{(A)}\right)^{*}: \tilde{C}\left(z^{(C)}\right)^{*}\right)$ and $\boldsymbol{C} \rightarrow \boldsymbol{C}_{+0}$ in Property (i).

Proof: (i) Since the nominal system (1)-(2) is controllable in $C_{C 0}$,

$$
\begin{align*}
0 & <\varepsilon_{\mathrm{C} 0} \leq \sup \left(\left\|\hat{Z}_{\mathrm{C} 0}\left(\mathrm{~s}, \mathrm{z}^{(\mathrm{A})}, \mathrm{z}^{(\mathrm{B})}\right)\right\| \|_{2}: \mathrm{s} \in \sigma\left(\mathrm{~A}\left(\mathrm{z}^{(\mathrm{A})}\right)\right),\left(\mathrm{z}^{(\mathrm{A})}, \mathrm{z}^{(\mathrm{B})}\right) \in \mathrm{C}_{\mathrm{C} 0}\right) \\
& =\sup \left(\lambda_{\max }\left(\hat{Z}_{\mathrm{C} 0}\left(\mathrm{~s}, \mathrm{z}^{(\mathrm{A})}, \mathrm{z}^{(\mathrm{B})}\right)\right): \mathrm{s} \in \sigma\left(\mathrm{~A}\left(\mathrm{z}^{(\mathrm{A})}\right)\right),\left(\mathrm{z}^{(\mathrm{A})}, \mathrm{z}^{(\mathrm{B})}\right) \in \mathrm{C}_{\mathrm{C} 0}^{\mathrm{Fr}}\right) \leq \delta_{\mathrm{C} 0}<\infty \tag{2O}
\end{align*}
$$

where $\hat{Z}_{C O}\left(s, Z^{(A)}, Z^{(B)}\right):=Z_{C O}\left(s, Z^{(A)}, Z^{(B)}\right) Z_{C O}^{*}\left(s, Z^{(A)}, Z^{(B)}\right)$. Inequalities (20) hold since the maximum eigenvalue is bounded positive real and equalizes the ℓ_{2}-norm because $\hat{Z}_{C 0}\left(s, Z{ }^{(A)}, Z{ }^{(B)}\right)$ is (at least) positive semidefinite in $\mathrm{C}_{\mathrm{C} 0}$ and since the maximum eigenvalue, as being a continuous function on its definition domain $\mathrm{C}_{\mathrm{C} 0}$, reaches its maximum on the boundary of such a domain. Equation (20) implies that

$$
\begin{equation*}
0<\delta_{\mathrm{C} 0}^{-1} \leq \sup \left(\left\|\hat{\mathrm{Z}}_{\mathrm{C} 0}^{-1}\left(\mathrm{~s}, \mathrm{z}^{(\mathrm{A})}, \mathrm{z}^{(\mathrm{B})}\right)\right\|_{2}: \mathrm{s} \in \mathrm{~s} \in \sigma\left(\mathrm{~A}\left(\mathrm{z}^{(\mathrm{A})}\right)\right),\left(\mathrm{z}^{(\mathrm{A})}, \mathrm{z}^{(\mathrm{B})}\right) \in \mathrm{C}_{\mathrm{C} 0}^{\mathrm{Fr}}\right) \leq \varepsilon_{\mathrm{C} 0}^{-1}<\infty \tag{21}
\end{equation*}
$$

Since the nominal system (1)-(2) is controllable in $C_{C 0}$, so that $\hat{Z}_{C 0}\left(s, Z{ }^{(A)}, Z^{(B)}\right)$ is positive definite in $\boldsymbol{C} \times C_{C 0}$, then $\hat{Z}_{C}\left(s, z^{(A)}, z^{(B)}\right)$ is positive definite in $\boldsymbol{C} \times C_{C} \subset \boldsymbol{C} \times C_{C 0}$ from (19)-(21) with the domain C_{C} defined \quad such that $\quad 1>\varepsilon_{C 0}^{-1}\left(2 \delta_{C 0}+\delta\right) \delta \quad$ and $\sup \left(\left\|\left(-z^{(A)} I_{n}: z^{(B)} I_{n}\right) \Delta^{(A B)}\right\|_{2}:\left(z^{(A)}, z^{(B)}\right) \in C_{C}\right)<\delta$ for \quad each $\quad \mathrm{C}_{\mathrm{C}} \subset \mathrm{C}_{\mathrm{C} 0}$ from Banach's Perturbation Lemma, [40]. Thus, C_{C} exists defined by $\cup \operatorname{Dom}\left(\Delta^{(A B)}\right)$ of all the parametrical multi perturbations $\Delta^{(A B)} \in P_{\Delta A B} \cap C^{2 n \times(n+m)}$ with:

$$
\begin{gathered}
P_{\Delta A B}:=\left\{\Delta^{(A B)}: \operatorname{Dom}\left(\Delta^{(A B)}\right) \rightarrow C^{2 n \times(n+m)}: \sup \left(-z^{(A)} I_{n}: z^{(B)} I_{n}\right)\left\|\Delta^{(A B)}\right\|_{2}\right. \\
\left.\left(:\left(z^{(A)}, z^{(B)}\right) \in C_{C}\right)<\delta:=\sqrt{\delta_{C O}^{2}+\varepsilon_{C 0}}-\delta_{C 0}\right\}
\end{gathered}
$$

where $P_{\Delta A B}$ depends on C_{C} and is formed by all the parametrical perturbations $\Delta^{(A B)} \in P_{\triangle A B}$ which satisfy:

$$
\left.\bar{\sigma}\left(\Delta^{(A B)}\right):=\left\|\Delta^{(A B)}\right\|_{2}<\delta / \sqrt{\sup \left(\left\|z^{(A)}\right\|{ }_{2}^{2}+\left\|z^{(B)}\right\|_{2}^{2}:\left(z^{(A)} \vdots z^{(B)}\right) \in C_{c}\right.}\right)
$$

Thus, the system is controllable within prefixed bounded open domain $C_{C} \subset C_{C_{0}}$ for all parametrical multi perturbations in the set:
$P_{A} \times P_{B}:=\left\{\left(\tilde{A}\left(z^{(A)}\right) \vdots \tilde{B}\left(z^{(B)}\right)\right) \equiv\left(z^{(A)} I_{n} \vdots z^{(B)} I_{n}\right) \Delta^{(A B)}:\left(z^{(A)}, z^{(B)}\right) \in C_{C}, \Delta^{(A B)} \in P_{\Delta A B}\right\}$
(ii) Parametrical perturbations $\quad\left(\tilde{A}\left(z^{(A)}\right): \widetilde{B}\left(z^{(B)}\right)\right) \quad$ with the structure $\left(\sum_{j=1}^{n_{A}} D_{0 j}^{(A)} \Delta \underset{0 j}{(A)} E^{(A)} \vdots \sum_{j=1}^{n_{A}} D_{0 j}^{(B)} \Delta \underset{0 j}{(B)} E^{(B)}\right)$ lie in $P_{A} \times P_{B}$ from (7). Note that the linear algebraic equation $Q\left(Z^{(A)}, z^{(B)}\right) x_{Q}=v_{Q}$ has at least a solution for v_{Q} being of the given form and

$$
\mathrm{x}_{\mathrm{Q}}:=\left(\operatorname{vec}^{T}\left(D_{i j}^{(A)}:(i, j) \in \bar{q}_{A}^{0} \times \bar{n}_{A}\right), \operatorname{vec}^{T}\left(D_{i j}^{(A)}:(i, j) \in \bar{q}_{B}^{0} \times \bar{n}_{B}\right)\right)^{T}
$$

Direct calculations in (19) yield that $\operatorname{det} \hat{Z}_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=0$, since $\operatorname{rank} Z_{C}\left(s, Z^{(A)}, Z^{(B)}\right)=\operatorname{rank}\left(Z_{C O}\left(s, Z^{(A)}, Z^{(B)}\right)+\left(-\tilde{A}\left(Z^{(A)}\right) \vdots \tilde{B}\left(Z^{(B)}\right)\right)\right)<n \quad$ for \quad some $\left(s,\left(Z^{(A)}, Z^{(A)}\right)\right) \in \boldsymbol{C} \times C_{C}$ since there exists a nonzero v_{Q} such that $\left(Z_{C 0}\left(s, Z^{(A)}, Z^{(B)}\right) \otimes I_{n}+Q\left(Z^{(A)}, Z^{(B)}\right) \otimes \mathrm{X}_{\mathrm{Q}}^{*}\right) v_{Q}=0$
and the proof of Property (ii) is complete.
(iii) Since the nominal system is controllable, $0<\varepsilon_{1} \leq \operatorname{det} \hat{Z}_{C O}\left(s, Z^{(A)}, Z^{(B)}\right) \leq \varepsilon_{2}<\infty$ so that $0<\varepsilon_{2}^{-1} \leq \operatorname{det} \hat{Z}_{C O}\left(s, Z^{(A)}, Z^{(B)}\right) \leq \varepsilon_{1}^{-1}<\infty, \forall\left(s, Z^{(A)}, Z^{(B)}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{q_{A}+q_{B}+2}$. Then, from (19), it follows that:

1. There are infinitely many parametrical multi perturbations $\left(-\tilde{A}\left(z^{(A)}\right) \vdots \tilde{B}\left(Z^{(B)}\right)\right)$, defined by a map $d: C^{q_{A}+q_{B}+2} \rightarrow P_{A} \times P_{B} \subset C^{n \times(n+m)} \quad$ satisfying \quad (17)-(18) and fulfilling that $\operatorname{rank}\left(-Z^{(A)} I_{n} \vdots Z^{(B)} I_{n}\right) \Delta^{(A B)}=n$. Note that such parametrical perturbations always exist from (17)(18) since $E^{(A)}$ and $E^{(B)}$ are full rank.
2. There exist continuous functions $g_{1}: \boldsymbol{C}^{q_{A}+q_{B}+2} \times P_{A} \times P_{B} \rightarrow \boldsymbol{C}$ and $g_{2}: \boldsymbol{C}^{q_{A}+q_{B}+2} \times P_{A} \times P_{B} \rightarrow \boldsymbol{C}_{+0}$ from (19) satisfying:
$g_{i}\left(Z^{(A)}, Z^{(B)}, \Delta^{(A B)}\right)=O\left(\left\|\Delta^{(A B)}\right\|^{i}\right)$ for $\mathrm{i}=1,2 ; \forall\left(Z^{(A)}, Z^{(B)}\right) \in C^{q_{A}+q_{B}+2}$
$g_{2}\left(z^{(A)}, Z^{(B)} \Delta^{(A B)}\right)>0$ if $\left(z^{(A)}, Z^{(B)}\right) \neq 0$.
Then,
$\operatorname{det} \hat{Z}_{C}\left(s, Z{ }^{(A)}, Z^{(B)}\right) \geq \varepsilon_{2}^{-1}\left(1+\operatorname{trace}\left(\varepsilon_{3} \varepsilon_{1}^{-1}\right)+\left|o\left(\varepsilon_{3} \varepsilon_{1}^{-1}\right)\right|\right)$

$$
\times\left\|\left(z^{(A)}, z^{(B)}\right)\right\|\left(\left\|\left(z^{(A)}, z^{(B)}\right)\right\| g_{2}\left(z^{(A)}, z^{(B)}\right)-\mid g_{1}\left(z^{(A)}, z^{(B)}\right) \|\right) \rightarrow \infty
$$

for some $\varepsilon_{3} \in \boldsymbol{R}$ as $\boldsymbol{C}^{q_{A}+q_{B}+z{ }^{\prime}}\left(Z^{(A)}, Z^{(B)}\right) \rightarrow \infty$ (the infinity point in $\boldsymbol{C}^{q_{A}+q_{B}+2}$) and then the perturbed system (1)-(2) is not controllable (see Remark 3.16) what is a contradiction. The proof of Property (iii) is complete.
(iv)-(v) Their proofs are similar to those of properties (i)-(iii) with the given modifications and the replacements $\hat{Z}_{C O}\left(s, Z^{(A)}, Z^{(C)}\right) \rightarrow \hat{Z}_{O O}\left(s, Z^{(A)}, Z^{(C)}\right), \hat{Z}_{C}\left(s, Z^{(A)}, Z^{(C)}\right) \rightarrow \hat{Z}_{O}\left(s, Z^{(A)}, Z^{(C)}\right)$.

Remarks 4.2. The extension of Theorem 4.1 to output controllability is immediate by invoking Definition 3.3 and Theorem 3.11 (iv). Also, note that if the state-space realization of the nominal system (1)-(2) is minimal in a certain domain, then Theorem 4.1 provides testable conditions to guarantee that the realization is maintained minimal for a set of parametrical perturbations (17)-(18) in a certain domain included in the above one if controllability and observability hold jointly in such a domain.

Remarks 4.3. The various properties might also be investigated by the nominal system defined at some $z_{0}=\left(z_{0}^{(A)}, z_{0}^{(B)}, z_{0}^{(C)}, z_{0}^{(D)}\right) \in C^{q}$ where the corresponding property holds. For this purpose, the replacements below are used to apply Theorem 4.1:
$\tilde{A}\left(z^{(A)}\right) \rightarrow \widetilde{A}\left(z^{(A)}\right):=\tilde{A}\left(z^{(A)}\right)+A\left(z^{(A)}\right)-A\left(z_{0}^{(A)}\right), \tilde{B}\left(z^{(B)}\right) \rightarrow \widetilde{B}\left(z^{(B)}\right):=\tilde{B}\left(z^{(B)}\right)+B\left(z^{(B)}\right)-B\left(z_{0}^{(B)}\right)$ $\tilde{C}\left(z^{(C)}\right) \rightarrow \widetilde{C}\left(z^{(C)}\right):=\tilde{C}\left(z^{(C)}\right)+C\left(z^{(C)}\right)-C\left(z_{0}^{(C)}\right), \tilde{D}\left(z^{(D)}\right) \rightarrow \widetilde{D}\left(z^{(D)}\right):=\tilde{D}\left(z^{(D)}\right)+D\left(z^{(D)}\right)-D\left(z_{0}^{(D)}\right)$ by redefining the parametrical perturbations in certain domains of C^{q} containing z and z_{0} and $z=\left(z^{(A)}, z^{(B)}, z^{(C)}, z^{(D)}\right)$ as $\overline{\widetilde{A}}\left(z^{(A)}\right), \overline{\widetilde{B}}\left(z^{(B)}\right), \widetilde{\widetilde{C}}\left(z^{(C)}\right)$ and $\overline{\widetilde{D}}\left(z^{(D)}\right)$. Then, domains where the studied property is kept from the nominal system may be obtained in this way.

5. Application to time-delay systems with point internal and external delays

Now, consider the following extension of the dynamic system (1)-(2) including discrete (point) delays:

$$
\dot{x}(z, t)=\left(A\left(z^{(A)}\right)+\tilde{A}\left(z^{(A)}\right)\right) x(z, t)+\left(B\left(z^{(B)}\right)+\widetilde{B}\left(z^{(B)}\right)\right) u(t)
$$

$$
\begin{align*}
& +\sum_{j=1}^{\eta}\left(A_{j}\left(z^{(A d)}\right)+\tilde{A}_{j}\left(z^{(A d)}\right)\right) x\left(z, t-h_{j}\right)+\sum_{j=1}^{K}\left(B_{j}\left(z^{(B d)}\right)+\tilde{B}_{j}\left(z^{(B d)}\right)\right) u\left(z, t-h_{j}^{\prime}\right) \\
& y(z, t)=\left(C\left(z^{(C)}\right)+\tilde{C}\left(z^{(C)}\right)\right) x(z, t)+\left(D\left(z^{(D)}\right)+\tilde{D}\left(z^{(C)}\right)\right) u(t) \tag{23}
\end{align*}
$$

fully described by (1)-(2), subject to parametrical multi perturbations (17)-(18), η internal (i.e. in the state) pair-wise distinct point delays $h_{j} \in\left(0, \bar{h}_{j}\right) \subset \boldsymbol{R}_{+0}, \forall j \in \bar{\eta}$ and κ external (i.e. in the input) pairwise distinct point delays $h_{j}^{\prime} \in\left[0, \bar{h}_{j}^{\prime}\right) \subset \boldsymbol{R}_{+0}, \forall j \in \bar{\kappa}$. The intervals $\left[0, \bar{h}_{(.)}\right)$and $\left[0, \bar{h}_{(.)}^{\prime}\right)$ are the admissibility domains of the corresponding internal and external delays, respectively. The external delays could be considered to act on the output instead of on the input with no loss in generality. The initial conditions are defined by any bounded piecewise absolutely continuous vector function with eventual isolated discontinuities $\phi:[-\bar{h}, 0] \rightarrow \boldsymbol{C}^{n}$ where $\bar{h}:=\underset{1 \leq j \leq \eta}{\operatorname{Max}}\left(h_{j}\right)$. If $u \in P C^{(0)}\left(\boldsymbol{C}^{q_{\times}} \boldsymbol{R}_{+0}, U\right)$ then a unique solution exists on \boldsymbol{R}_{+}for each given $\phi:[-\bar{h}, 0] \rightarrow \boldsymbol{C}^{n}$, [8], [10], [12]. To set an appropriate framework related to that of the preceding sections, consider \hat{q} - tuples z and \hat{z}_{φ} in $C^{\hat{q}}$ with $\hat{q}:=q+q_{A d}+q_{B d}=q_{A}+q_{B}+q_{C}+q_{D}+4+q_{A d}+q_{B d}:$

where
$\hat{z}{ }_{\rho \varphi}^{(A d)}:=\left(z_{1}^{(A d)} \rho_{1_{\prec \varphi_{1}}, z_{1}^{(A d)}}^{\left(A \prec \varphi_{2}\right.}, \cdots, z_{1}^{(A d)} \rho_{\eta_{\prec \varphi_{\eta}}}, \cdots, z_{q_{A d}}^{(A d)} \rho_{1_{\prec \varphi_{1}}, z_{q_{A d}}^{(A d)} \rho_{2_{\prec \varphi}}}, \cdots, z_{q_{A d}}^{(A d)} \rho_{\eta_{\prec \varphi_{\eta}}}\right)$
$\hat{z}_{\rho^{\prime} \varphi^{\prime}}^{(B d)}:=\left(z_{1}^{(A d)} \rho_{1 \prec \varphi_{1}^{\prime}, z_{1}^{\prime}}^{(B d)} \rho_{2 \prec \varphi_{2}^{\prime}}^{\prime}, \cdots, z_{1}^{(B d)} \rho_{\kappa \prec \varphi_{\kappa}^{\prime}}^{\prime}, \cdots, z_{q_{B d}}^{(B d)} \rho_{1 \prec \varphi_{1}^{\prime}, z^{\prime}}^{(B d)}{\underset{q_{B d}}{(B d} \rho_{2}^{\prime}}_{\rho_{2 \varphi_{2}^{\prime}}^{\prime}}^{\prime}, \cdots, z_{q_{B d}}^{(B d)} \rho_{\kappa \prec \varphi_{\kappa}^{\prime}}^{\prime}\right)$
and \hat{q} - tuples being complex vector functions from $\boldsymbol{C} \times \boldsymbol{C}^{\hat{q}}$ to \boldsymbol{C} \hat{q}

$$
\begin{equation*}
\bar{z}_{\boldsymbol{h} \boldsymbol{h}^{\prime}}(s):=\left(z^{(A)}, z^{(B)}, z^{(C)}, z^{(D)}, \bar{z}_{\boldsymbol{h}}^{(A d)}(s), \bar{z}_{\boldsymbol{h}^{\prime}}^{(B d)}(s)\right) \tag{27}
\end{equation*}
$$

where $\boldsymbol{h}:=\left(h_{1}, h_{2}, \ldots, h_{\eta}\right)$ and $\boldsymbol{h}^{\prime}:=\left(h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{\kappa}^{\prime}\right)$ are tuples formed with the sets of internal and external delays, respectively, and

$$
\begin{equation*}
\bar{z}_{\boldsymbol{h}}^{(A d)}(s):=\left(z_{1}^{(A d)} e^{-h_{1} s}, z_{1}^{(A d)} e^{-h_{2} s}, \cdots, z_{1}^{(A d)} e^{-h_{\eta} s}, \cdots, z_{q_{A d}}^{(A d)} e^{-h_{1} s}, z_{q_{A d}}^{(A d)} e^{-h_{2} s}, \cdots, z_{q_{A d}}^{(A d)} e^{-h_{\eta} s}\right) \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\bar{z}_{h^{\prime}}^{(B d)}(s):=\left(z_{1}^{(A d)} e^{\left.-h_{1}^{\prime}{ }^{s}, z_{1}^{(B d)} e^{-h_{2}^{\prime} s}, \cdots, z_{1}^{(B d)} e^{-h_{\kappa}^{\prime} s}, \cdots, z_{q_{B d}}^{(B d)} e^{-h_{1}^{\prime} s}, z_{q_{B d}}^{(B d)} e^{-h_{2}^{\prime} s}, \cdots, z_{q_{B d}}^{(B d)} e^{-h_{\kappa}^{\prime} s}\right)}\right) \tag{29}
\end{equation*}
$$

$\forall \varphi_{j}, \varphi_{\ell}^{\prime} \in[0,2 \pi), \forall \rho_{j}, \rho_{\ell}^{\prime} \in \boldsymbol{R}_{+}, \quad(j \in \bar{\eta}, \ell \in \bar{\kappa}) \quad$ where $\quad \gamma_{\prec \theta}:=\gamma(\cos \theta+i \sin \theta) \quad$ is a circumference of radius γ centered at zero in the complex plane. The dynamic system (22)-(23) may be equivalently described through an algebraic linear system by taking Laplace transforms with zero initial conditions as follows:

$$
\begin{align*}
& \left(s I_{n}-A\left(z^{(A)}\right)+\tilde{A}(z(A))-\sum_{j=1}^{\eta}\left(A_{j}\left(z^{(A d)}\right)+\tilde{A}_{j}\left(z^{(A d)}\right)\right) e^{-h_{j} s}\right) \hat{x}(z, s) \\
& \quad-\left(B(z(B))+\tilde{B}\left(z^{(B)}\right)-\sum_{j=1}^{\kappa}\left(A_{j}\left(z^{(A d)}\right)+\tilde{A}_{j}(z(A d))\right) e^{-h_{j} s}\right) \hat{u}(s)=0 \tag{30}\\
& \hat{y}(z, s)=(C(z(C))+\tilde{C}(z(C))) \hat{x}(z, s)+\left(D\left(z^{(D)}\right)+\tilde{D}\left(z^{(C)}\right)\right) \hat{u}(s) \tag{31}
\end{align*}
$$

Note by direct inspection that there exist surjective mapping of the set of tuples (28) to the set of tuples (26) and from the set of tuples (29) to the set of tuples (27) by considering them as functions from \boldsymbol{C} to $\left[0, \bar{h}_{1}\right) \times \ldots \times\left[0, \bar{h}_{\eta}\right) \times \boldsymbol{R}^{2 \eta} \times \boldsymbol{R}_{+0} \times[0,2 \pi)$ and to $\left[0, \bar{h}_{1}\right) \times \ldots \times\left[0, \bar{h}_{\eta}\right) \times \boldsymbol{R}^{2 \kappa} \times \boldsymbol{R}_{+0} \times[0,2 \pi)$, respectively, by associating $s=\sigma+i \omega \rightarrow \rho_{k}=e^{-h_{k} \sigma}, \varphi_{k}=h_{k} \omega ; \quad \forall k \in \bar{\eta} \quad$ and $\quad s=\sigma+i \omega \rightarrow \rho_{k}=e^{-h_{k} \sigma^{\sigma}}, \varphi_{k}=h_{k}^{\prime} \omega ; \quad \forall k \in \bar{\kappa}$, respectively. However, those mappings are not one-to-one, in general, for all the admissible sets of delays, since the inverse maps:

$$
\left[0, \bar{h}_{1}\right) \times \ldots \times\left[0, \bar{h}_{\eta}\right) \times \boldsymbol{R}^{2 \eta} \times \boldsymbol{R}_{+0} \times[0,2 \pi) \subset \boldsymbol{R}^{\eta+2} \rightarrow \boldsymbol{C} \text { and }\left[0, \bar{h}_{1}^{\prime}\right) \times \cdots \times\left[0, \bar{h}_{\kappa}^{\prime}\right) \times \boldsymbol{R}^{2 \kappa} \times \boldsymbol{R}_{+0} \times[0,2 \pi) \subset \boldsymbol{R}^{\kappa+2} \rightarrow \boldsymbol{C}
$$

do not have the same definition domain as the respective ranges of the original mappings. The first inverse mapping only exists if and only if $\frac{\ln \rho_{k}}{h_{k}}$ are identical and real, $\forall k \in \bar{\eta}$ and also if $\frac{\varphi_{k}}{h_{k}}$ are identical, real and belong to $[0,2 \pi), \forall k \in \bar{\eta}$. The second inverse mapping only exists if and only if $\frac{\ln \rho_{k}^{\prime}}{h_{k}^{\prime}}=K \in \boldsymbol{R}$, $\frac{\varphi_{k}}{h_{k}^{\prime}}=K^{\prime} \in[0,2 \pi), \forall k \in \bar{\kappa}$. The simultaneous existence of both inverse mappings require the fulfillment of joint constraints:
$\frac{\ln \rho_{j}}{h_{j}}=\frac{\ln \rho_{k}^{\prime}}{h_{k}^{\prime}}=K \in \boldsymbol{R}, \frac{\varphi_{j}}{h_{j}}=\frac{\varphi_{k}^{\prime}}{h_{k}^{\prime}}=K^{\prime} \in[0,2 \pi) ; \forall j \in \bar{\eta}, \forall k \in \bar{\kappa}$

Remark 5.1. The properties of controllability, observability, stabilizability and detectability of the system (30)-(31) in a domain may be directly tested by extending directly Theorem 3.11, Corollaries 3.12 and 3.14 and Theorem 4.1 under the subsequent guidelines. It turns out that if the constraints (32) are not invoked, only sufficient conditions may be obtained by extending the results of the preceding sections for each tested property by considering the tuples (24)-(26) in the tests. If, in addition, the constraints (32), associated with (27)-(29), are required for given sets of internal and external delays then necessary and sufficient conditions may be obtained by extending such tests from the delay-free case. If the tests fail only for certain sets of $\hat{\mathrm{q}}$ tuples (24)-(26) in some given domain, which do not fulfill (32) for given sets of delays, then the system fulfills the tested property for that set of delays. The property is also lost for the sets of delays which do not fulfill the test for the tuples (24)-(26) which have a solution under the constraints (32). If the test does not fail for any tuple (24)-(26) in some domain then the system fulfills the tested property independent of the delays in such a domain. In summary, replace $q \rightarrow \hat{q}, Z^{(A)} \rightarrow\left(Z^{(A)}, \hat{Z}_{\rho \varphi}^{(A d)}\right), Z^{(B)} \rightarrow\left(Z^{(B)}, \hat{Z}_{\rho \rho \varphi}^{(B d)}\right)$ and extend Definitions 3.1-3.4 to the system (30)-(31) to then generalize the various results in Theorem 3.11, Corollaries 3.12 and 3.14 and Theorem 4.1 to the system (30) -(31) subject to delays. Then,

1. If any investigated property (namely, controllability, observability, stabilizability or detectability) holds for all z (defined in (24)) in a domain then the property holds within such a domain independent of the delays, i.e. for all sets of η internal delays and κ external delays ranging from zero to infinity.
2. Assume that two sets of internal and external delays are given and assume also that the investigated property holds for all z except at isolated points in a certain domain. Then, if some of the constraints (32) fails for the given sets of delays for all those all points in the domain then the system possesses the investigated property for the given sets of delays. If no sets of delays are specified, then the investigated property except holds for all delays in the admissibility domain except for those where some of the joint constraints (32) fails.
3. If the investigated property fails at some z only for sets of delays which fulfill (32) then the system maintains such a property for all delays in their admissibility domains except for those which fulfill (32).

The following technical result is useful for testing the controllability of the time-delay nominal system. The perturbed system is guaranteed to maintain controllability if the nominal one is controllable by incorporating extended sufficiency-type conditions from "ad -hoc" extended versions of Theorem 3.11, Corollaries 3.12 and 3.14 and Theorem 4.1 (see Remark 5.1). For the remaining properties of observability, stabilizability and detectability, the result is extendable "mutatis-mutandis" with the corresponding changes.

Theorem 5.2 Assume that $C_{\alpha 0}^{(A, B, d)}:=C{ }_{\alpha 0}^{(A)} \times C \underset{\alpha 0}{(B)} \times C_{\alpha 0}^{(A d)} \times C_{\alpha 0}^{(B d)} \subset C^{\hat{q}_{C}}$ is bounded where $\hat{q}_{C}:=q_{A}+q_{B}+q_{A d}+q_{B d}+2$. Then, the following properties hold:
(i) The nominal system with delays (22)-(23) is controllable independent of the delays on $C_{\alpha 0}^{(A, B, d)}$ if
$\operatorname{det}\left(\hat{Z}_{C 0}(\hat{\sigma}, z)\right) \geq \underline{\delta}>0, \forall(\hat{\sigma}, z) \in \boldsymbol{R}^{\eta+\kappa+1} \times[0,2 \pi)^{\eta+\kappa+1} \times C_{\alpha 0}^{(A, B)}$
where
$\hat{\sigma}:=\left(\sigma, \rho_{1}, \rho_{2}, \ldots, \rho_{\eta}, \rho_{1}^{\prime}, \rho_{2}^{\prime} \ldots, \rho_{\kappa}^{\prime}, \omega, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{\eta}, \varphi_{1}^{\prime}, \varphi_{2}^{\prime} \ldots, \varphi_{\kappa}^{\prime}\right) \in \boldsymbol{R}^{\eta+\kappa+1} \times[0,2 \pi)^{\eta+\kappa+1}$
which satisfies all the constraints $\sigma=-\frac{\ln \rho_{i}}{h_{i}}=-\frac{\ln \rho_{j}^{\prime}}{h_{j}^{\prime}}, \quad \omega=\frac{\arccos \varphi_{i}}{h_{i}}=\frac{\arccos \varphi_{j}^{\prime}}{h_{j}^{\prime}}$, $\forall(i, j) \in \bar{\eta} \times \bar{k} \quad$ for any two sets of distinct nonnegative real numbers $\left\{h_{1}, h_{2}, \ldots, h_{\eta}\right\}$, $\left\{h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{\kappa}^{\prime}\right\}$.
(ii) The nominal system with delays (22)-(23) is controllable on $C_{\alpha 0}^{(A, B, d)}$ for a set of η positive distinct internal delays $\left\{h_{1}, h_{2}, \ldots, h_{\eta}\right\}$ and a set of κ positive distinct external delays $\left\{h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{\kappa}^{\prime}\right\}$ provided that
$\operatorname{det}\left(\hat{Z}_{C 0}(\hat{\sigma}, z)\right) \geq \underline{\delta}>0, \forall(\hat{\sigma}, z) \in \boldsymbol{R}^{\eta+\kappa+1} \times[0,2 \pi)^{\eta+\kappa+1} \times C_{\alpha 0}^{(A, B, d)}$
where
$\hat{\sigma}:=\left(\sigma, \rho_{1}, \rho_{2}, \ldots, \rho_{\eta}, \rho_{1}^{\prime}, \rho_{2}^{\prime} \ldots, \rho_{\kappa}^{\prime}, \omega, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{\eta}, \varphi_{1}^{\prime}, \varphi_{2}^{\prime} \ldots, \varphi_{\kappa}^{\prime}\right) \in \boldsymbol{R}^{\eta+\kappa+1} \times[0,2 \pi)^{\eta+\kappa+1}$ satisfies $\sigma=-\frac{\ln \rho_{i}}{h_{i}}=-\frac{\ln \rho_{j}^{\prime}}{h_{j}^{\prime}}, \omega=\frac{\arccos \varphi_{i}}{h_{i}}=\frac{\arccos \varphi_{j}^{\prime}}{h_{j}^{\prime}}, \forall(i, j) \in \bar{\eta} \times \bar{k}$.
(iii) Finite covers of $C_{\alpha 0}^{(A, B, d)}$ can be constructed such that sufficient-type conditions of controllability of Properties (i)-(ii) of the nominal system (22)-(23) on $C_{\alpha 0}^{(A, B)}$ may be constructed involving a finite numbers of computations.

Proof: (i)-(ii). The proofs of (i)-(ii) follow directly from the structure of the delay system (22)-(23) and Remark 5.1
(iii) It is organized in a very technical way. Note that the matrix function $\hat{Z}_{C 0}\left(s, Z^{(A)}, Z^{(B)}\right)$ is Hermitian (and thus normal) by construction even if the various matrix functions defining the system (1)-(2) are not Hermitian. Assume that C_{R} is a bounded open or closed circle of finite radius R centred at the origin of \boldsymbol{C} and that R_{R}^{2} is a circle of the same radius centred at the origin of \boldsymbol{R}^{2} which is open if C_{R} and closed if C_{R} is closed. Then, there is a natural mapping from $C_{R} \times C_{\alpha 0}^{(A, B)}$ to $R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}$ associating each matrix $\hat{Z}_{C 0}\left(s, Z^{(A)}, Z^{(B)}\right)$ in $C \times C_{\alpha 0}^{(A, B, d)}$ to a matrix $\hat{Z}_{C O}\left(\sigma, \omega, Z^{(A)}, Z^{(B)}\right)$ in $R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}$ where $\sigma=\operatorname{Res}$ and $\omega=\operatorname{Im}(s)$. Both matrices have the same spectrum which consists of a set of
$v \leq(\mathrm{n}+\mathrm{m})$ real vector functions $\lambda_{i}: R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)} \rightarrow \boldsymbol{R}_{0+}(i \in \bar{v})$ of multiplicities $v_{i}(i \in \bar{v})$ which satisfy $\sum_{i=1}^{v} v_{i}=n+m$. The numbers $\lambda_{i}(i \in \bar{v}), v, v_{i}(i \in \bar{v})$ depend on each tuple in $C_{R} \times C_{\alpha 0}^{(A, B)}$, equivalently, on each tuple in $R_{R} \times C_{\alpha 0}^{(A, B, d)}$. If each element of the spectrum $\lambda_{i}(i \in \bar{v})$ of multiplicity $v_{i}(i \in \bar{v})$ is considered as v_{i} identical elements, then there is a bijective mapping from a continuous vector function $\lambda_{\boldsymbol{C}}: C_{R} \times C_{\alpha 0}^{(A, B, d)} \rightarrow \boldsymbol{R}_{+0}^{(n+m)}$ to another one $\lambda_{\boldsymbol{R}^{2}}: R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)} \rightarrow \boldsymbol{R}_{+0}^{(n+m)}$. Since the images are identical, it is not made distinction between $\lambda_{\boldsymbol{C}}$ and $\lambda_{\boldsymbol{R}^{2}}$ by using simply the notation λ for both vector functions in their definition domains. It is obvious that controllability of the nominal system (1)-(2) over $C_{\alpha 0}^{(A, B, d)}$ holds if and only if $\lambda: R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)} \rightarrow \boldsymbol{R}_{+}^{(n+m)}$. Now, if $C_{\alpha 0}^{(A, B, d)}$ is simply connected, closed and bounded, then can be covered by a finite cover from Heine-Borel covering theorem. First, assume that $C_{\alpha 0}^{(A, B, d)}$ is connected, closed and bounded and R_{R}^{2} is closed then a
 $C o \underset{\alpha 0}{(A, B, d)}$ is the union of finite covers for each of its L connected components $R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}(\ell \in \bar{L})$ with $L<\infty$ since $C_{\alpha 0}^{(A, B, d)}$ is bounded, Then, $C o \underset{\alpha 0}{(A, B, d)}=\bigcup_{\ell=1}^{L}\left(R_{R}^{2} \times C_{\alpha 0 \ell}^{(A, B, d)}\right)$. Subsequently, assume that $C_{\alpha 0}^{(A, B, d)}$ is not closed (for instance, open or semi-open) with identical remaining hypotheses as above. Then, there is an open bounded set $C o o \underset{\alpha 0}{(A, B, d)} \supset R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}=\bigcup_{\ell=1}^{L}\left(R_{R}^{2} \times C_{\alpha 0 \ell}^{(A, B, d)}\right)$. Thus, a denumerable cover exists for $\operatorname{Co} \underset{\alpha 0}{(A, B, d)}$ from Lindel ö ff covering theorem but it still exists a finite cover $C o \underset{\alpha 0}{(A, B, d)}$ of $R_{R}^{2} \times C_{\alpha 0}^{(A, B)}$ satisfying the set inclusion chain:

$$
\begin{aligned}
& C o \underset{\alpha 0}{(A, B, d)}=\bigcup_{\ell=1}^{L}\left(R_{R}^{2} \times C_{\alpha 0 \ell 0}^{(A, B, d)}\right) \supset c \ell \operatorname{Co}_{\alpha 0}^{(A, B, d)}=\bigcup_{\ell=1}^{L} c \ell\left(R_{R}^{2} \times C_{\alpha 0 \ell}^{(A, B, d)}\right) \\
& =\bigcup_{\ell=1}^{L} c \ell\left(R_{R}^{2} \times C_{\alpha 0 \ell}^{(A, B, d)} \times\right) \supset C o \underset{\alpha 0}{(A, B, d)} \supset \bigcup_{\ell=1}^{L}\left(R_{R}^{2} \times C_{\alpha 0 \ell}^{(A, B, d)}\right)=R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}
\end{aligned}
$$

 $C \underset{\alpha 0 \ell 0}{(A, B, d)} \supset C_{\alpha 0 \ell}^{(A, B, d)} \quad(\ell \in \bar{L})$ is a finite collection of open bounded sets. As a result, a finite cover Co $\underset{\alpha 0}{(A, B, d)}$ of $R{\underset{R}{2} \times C_{\alpha 0}^{(A, B)} \text { always exists if } C_{\alpha 0}^{(A, B, d)} \text { is bounded and connected. The finite cover : }}_{(A)}$ and
$\hat{H}\left(C_{\alpha 0}^{(A, B)}\right):=U_{i_{j} \in \bar{L}_{j}, j \in \overline{q_{A}+q_{B}}} \hat{H}_{i_{1}, \ldots, i_{q+2}}$
for some prefixed small real $\varepsilon_{0} \in \boldsymbol{R}_{+}$is a finite union of disjoint hyper-rectangles defined by

$$
\begin{aligned}
& \hat{H}_{i_{1}, \ldots, i_{q+2}}:=\left\{(\sigma, \omega, z) \in R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}:(\sigma, \omega) \in U_{(j, k) \in \bar{L} \sigma_{\sigma^{\times}}}^{\omega} H_{j k}(z)\right. \\
& \left.z=\left(z_{1}, z_{2}, \ldots, z_{q_{A}+q_{B}}\right),-R_{A B}+\sum_{\ell=1}^{i_{j}-1} \varepsilon_{\ell}<z_{j}<-R_{A B}+\sum_{\ell=1}^{i_{j}} \varepsilon_{\ell}+\varepsilon_{0}, \forall j \in \overline{q_{A}+q_{B}}\right\}
\end{aligned}
$$

$\forall i_{j} \in \bar{L}_{j}, \forall j \in \overline{q_{A}+q_{B}}$ where $R_{A B}$ is bounded positive large real number, where
$H_{j k}(z):=\left\{(\sigma, \omega, z) \in R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}\right.$
$\left.:-R_{R}+\sum_{\ell=1}^{j-1} \varepsilon_{\sigma \ell}<\sigma<-R_{R}+\sum_{\ell=1}^{j} \varepsilon_{\sigma \ell}+\varepsilon_{0},-R_{R}+\sum_{\ell=1}^{k-1} \varepsilon_{\omega \ell}<\omega<-R_{R}+\sum_{\ell=1}^{k} \varepsilon_{\omega \ell}+\varepsilon_{0}\right\}$
$\forall z \in C{ }_{\alpha 0}^{(A, B, d)}, \forall j \in \bar{L}_{\sigma}, \forall k \in \bar{L}_{\omega}$. Then, $\cup_{(j, k) \in \bar{L}}{ }_{\sigma^{\times} \bar{L}_{\omega}} H_{j k}(z)$ is a finite cover composed of open rectangles over a large open square in \boldsymbol{R}^{2} for each z in $C_{\alpha 0}^{(A, B, d)}$. It is quite obvious that, since any characteristic zeros of the nominal system (1)-(2) are at a finite distance from the origin if the characteristic equation has a principal term and the characteristic quasi-polynomial is monic in the Laplace argument s then the stability may be tested for any z over the union of $H_{j k}(z)$, for $j \in \bar{L}_{\sigma}<\infty$ and over $\hat{H}\left(C_{\alpha 0}^{(A, B, d)}\right)$ for any parameterization in $C_{\alpha 0}^{(A, B, d)}$. If the nominal system is controllable then the open rectangles $H_{j k}(z)$ for any $z=\left(z^{(A)}, z^{(B)}\right) \in C_{\alpha 0}^{(A, B, d)}$ are constructed as follows. Define:
$f_{0}\left(\sigma, \omega, Z^{(A)}, Z^{(B)}\right):=\operatorname{det}\left(\hat{Z}_{C O}\left(\sigma, \omega, Z^{(A)}, Z^{(B)}\right)\right)$
Since the above function is analytic everywhere in its definition domain then for given strictly increasing real sequences $\left\{\sigma_{i}\right\}_{0}^{\infty},\left\{\omega_{i}\right\}_{0}^{\infty},\left\{z_{j i}\right\}_{0}^{\infty}\left(j \in \overline{q_{A}+q_{B}}\right)$ and for any real numbers $\sigma \in\left(\sigma_{i}, \sigma_{i+1}\right)$, $\omega \in\left(\omega_{i}, \omega_{i+1}\right), z_{j} \in\left(z_{j i}, z_{j, i+1}\right), \forall j \in \overline{q_{A}+q_{B}}$ being the components of $z=\left(z^{(A)}, z^{(B)}\right)$:

$$
\begin{aligned}
& \left|f_{0}\left(\sigma, \omega, z^{(A)}, z^{(B)}\right)\right|_{i} \geq\left|f_{0}\left(\sigma_{i}, \omega_{i}, z^{(A i)}, z^{(B i)}\right)\right|-\left(\sigma-\sigma_{i}\right)\left|f_{0 \sigma}^{\prime}\left(\sigma_{i}, \omega_{i}, z^{(A)}, z^{(B)}\right)\right| \\
& -\left(\omega-\omega_{i}\right)\left|f_{0 \omega}^{\prime}\left(\sigma_{i}, \omega_{i}, z^{(A)}, z^{(B)}\right)\right|-\sum_{j=1}^{q A+A_{j}^{+}}\left(z_{j}-z_{j i}\right)\left|f_{0 z_{j}}^{\prime}\left(\sigma, \omega, z^{(A)}, z^{(B)}\right)\right| \geq \delta_{i}>0
\end{aligned}
$$

provided that the above strictly increasing sequences are chosen subject to $\left(\sigma_{i}, \omega_{i}, z_{1 i}, \ldots, z_{q_{A}+q_{B}, i}\right) \in R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}$
$\sigma_{i}<\sigma_{i+1}<\sigma_{i}+\varepsilon_{i}, \omega_{i}<\omega_{i+1}<\omega_{i}+\varepsilon_{i}, Z_{j i}<z_{j, i+1}<z_{j i}+\varepsilon_{i}, \forall j \in \overline{q_{A}+q_{B}}$
for any real ε_{i} fulfilling $0<\varepsilon_{i} \leq \frac{\delta_{i}}{\left(q_{A}+q_{B}+2\right) M_{i}}$, where
$M_{i}:=\max \left(\left|f_{0 \sigma}^{\prime}\left(\sigma, \omega, z^{(A)}, z^{(B)}\right)\right|,\left|f_{0 \omega}^{\prime}\left(\sigma_{i}, \omega_{i}, z^{(A)}, z^{(B)}\right)\right|,\left|f_{0 z_{j}}^{\prime}\left(\sigma, \omega, z^{(A)}, z^{(B)}\right)\right|, j \in \overline{q_{A}+q_{B}}\right)$
which is finite since $\quad R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}$ is bounded. Then $\hat{H}\left(C_{\alpha 0}^{(A, B, d)}\right):=\bigcup_{i_{j} \in \bar{L}_{j}, j \in \overline{q_{A}+q_{B}}} \hat{H}_{i_{1}, \ldots, i_{q+2}} \supseteq R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)} \quad$ is \quad a finite \quad cover of $R_{R}^{2} \times C_{\alpha 0}^{(A, B, d)}$ provided that $\hat{H}_{i_{1}, \ldots, i_{q+2}}$ are hyper-rectangles defined by $\sigma_{i}<\sigma_{i+1}<\sigma_{i}+\varepsilon_{i}, \omega_{i}<\omega_{i+1}<\omega_{i}+\varepsilon_{i}, Z_{j i}<Z_{j, i+1}<Z_{j i}+\varepsilon_{i}, \quad \forall j \in \overline{q_{A}+q_{B}}$ and that the real sequence $\left\{\delta_{i}\right\}_{0}^{\infty}$ is bounded and positive satisfying $\delta_{i} \geq \underline{\delta}$ for some real $\underline{\delta}>0$. As a result, the existence of such a finite cover implies the controllability of the nominal system (1)-(2). If the construction of the cover satisfying the condition $0<\varepsilon_{i} \leq \frac{\delta_{i}}{\left(q_{A}+q_{B}+2\right) M_{i}}$ with $\delta_{i} \geq \underline{\delta}>0$ is impossible then the nominal system is not controllable.

Remark 5.3. Theorem 5.2 combined with Remark 5.1 yields direct sufficiency type conditions for controllability of the system (22)-(23) on some bounded $C_{\alpha}^{(A, B, d)} \subset C_{\alpha 0}^{(A, B, d)}$ independent of or dependent on the delays when subject to parametrical multi-perturbations. Note that as alternative to tests on determinants, tests on the singular values of $Z_{C O}(\hat{\sigma}, z)$, or on the eigenvalues or matrix ranks of $\hat{Z}_{C O}(\hat{\sigma}, z)$, may be applied. Extensions involving input and output decoupling zeros are also direct but specific derivation is omitted by space reasons. On the other hand, the remaining properties may be investigated as well with simple modifications of Theorem 5.2. In particular,
(1) Stabilizability tests follow from Theorem 5.2 for $\sigma \in \boldsymbol{R}_{+0}$ only. Output controllability tests follow by replacing $Z_{C 0}(\hat{\sigma}, z)$ with $Z_{O C 0}(\hat{\sigma}, z)$ in Theorem 5.2.
(2) Observability tests on some bounded $\operatorname{set}_{C_{\alpha 0}^{(A, C, d)}}^{(0, l o w}$ by replacing $C_{\alpha 0}^{(A, B, d)}$ with $C_{\alpha 0}^{(A, C, d)}:=C \underset{\alpha 0}{(A)} \times C \underset{\alpha 0}{(C)} \times C_{\alpha 0}^{(A d)} \times C_{\alpha 0}^{(C d)}$ and then using $\hat{Z}_{O 0}(\hat{\sigma}, z)$ instead of $\hat{Z}_{C 0}(\hat{\sigma}, z)$ in Theorem 5.2.
(3) Detectability tests on some bounded $\operatorname{set} C_{\alpha 0}^{(A, C, d)}$ follow by replacing $C_{\alpha 0}^{(A, B, d)}$ with $C_{\alpha 0}^{(A, C, d)}$ and then using $\hat{Z}_{O 0}(\hat{\sigma}, z)$ instead of $\hat{Z}_{C 0}(\hat{\sigma}, z)$ in Theorem 5.2 for $\sigma \in \boldsymbol{R}_{+0}$ only.

Theorem 5.2 can also be applied for testing the controllability nominal delay-free system (1)-(2). However, in this simple case the conditions may be investigated by testing a finite number of (in general) complex eigenvalues of $\hat{Z}_{C 0}(\hat{\sigma}, z)$, or (real) singular values of $Z_{C 0}(\hat{\sigma}, z)$. In this case, the construction of a finite subcover is easier than that involved in Theorem 5.2 since the above number of eigenvalues/singular values is finite for each point in a bounded set $C_{\alpha 0}^{(A, B)}$ instead of a finite number o functions with infinitely many associated point eigenvalues.

ACKNOWLEDGMENTS

The author is very grateful to MCYT by its partial support of this work through Grant DPI2006-00714. He is grateful to the Basque Government by their respective partial support of this work via Project DPI 2006-00714, and Research Grants: Research Groups No. IT-269-07 and SAIOTEK 2006/ S-PED06UN10, S-PE-07UN04 and S-PE08UN15. He is also grateful to the referees by their useful comments.

REFERENCES

[1] U. Mackenroth, Robust Control Systems. Theory and Case Studies, Springer-Verlag, Berlin, 2003.
[2] B.A. Francis, A Course in H_{∞} Control Theory, Lecture Notes in Control and Information Sciences, No. 88, M. Thoma and A. Wyner Eds., Springer-Verlag, Berlin, 1987.
[3] J. Doyle, B.A. Francis and A.R. Tannenbaum, "Feedback Control Theory", Macmillan Publishing Company, Singapore, 1992.
[4] R.E. Edwards, Functional Analysis. Theory and Applications, No. 1790, Dover Publications Inc. 1995, N.Y, 1995.
[5] P.H.A. Ngoc and T. Naito, "Stability radius of linear parameter-varying systems and applications", Journal of Mathematical Analysis and Applications, Vol. 328, pp. 170-191, 2007.
[6] P.H.A. Ngoc, "Strong stability radii of positive linear time-delay systems", International Journal of Robust and Nonlinear Control, Vol. 15, pp. 459-472, 2005.
[7] P.H.A. Ngoc and N.K. Son, "Stability radii of positive linear functional differential equations under multi perturbations ", SIAM Journal of Control and Optimization, Vol. 43, pp. 2278-2295, 2005.
[8] S.I. Niculescu, " Delay Effects on Stability. A Robust Control Approach", Lecture Notes in Control and Information, series No. 269 (M. Thoma and M. Morari Eds.), Springer-Verlag, Berlin, 2001.
[9] K. Galkowski, " State-space realizations of linear 2-D systems with extensions to the general $n D(n>2)$ case", Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 263: 1, 2001.
[10] M. De la Sen and N.S. Luo , "On the uniform exponential stability of a wide class of linear time-delay systems", Journal of Mathematical Analysis and Applications, Vol. 289, No. 2, pp. 456-476, JAN 152004.
[11] M. De la Sen, "Stability of impulsive time-varying systems and compactness of the operators mapping the input space into the state and output spaces", Journal of Mathematical Analysis and Applications, Vol. 321, No. 2, pp. 621-650, SEP 152006.
[12] M. De la Sen, "On impulsive time-varying systems with unbounded time-varying point delays. Stability and compactness of the relevant operators mapping the input space into the state and output spaces", Rocky Mountain Journal of Mathematics, Vol. 37, No. 1, pp. 79-129, 2007.
[13] M. De la Sen, "On positivity of singular regular linear time-delay time-invariant systems subject to multiple internal and external incommensurate point delays", Applied Mathematics and Computation, Vol. 190, No. 1, pp. 382-401, JUL 12007.
[14] M De la Sen, "On K- positivity properties of time-invariant linear systems subject to discrete point lags", Positivity, Vol. 11, No. 2, pp. 319-340, MAY 2007.
[15] M. De la Sen and N. Luo, "A note on the stability of linear time-delay systems with impulsive inputs", IEEE Trans. Circuits and Systems Part 1. Fundamental Theory and Applications, Vol. 50, No. 1, pp. 149152, 2003.
[16] Y. Zhang and J.T. Sun, "Impulsive control of second-order differential equations with time delay", Dynamics of Continuous, Discrete and Impulsive Systems- Series A- Mathematical Analysis, Vol. 13, Nos. 34, pp. 445-452, JUN 2006.
[17]Y. Zhang and J.T. Sun, " Impulsive control of second-order differential equations with time delay", IEEE Transactions on Circuits and Systems II- Express Briefs, Vol. 52, No. 10, pp. 701-705 OCT 2005.
[18] K.K. Shyu, W.J. Liu and K.C. Hsu, "Design of large-scale time-delayed systems with dead- zone input via variable structure control", Automatica, Vol. 41, No. 7, pp. 1239-1246, JUL 2005.
[19] M. De la Sen, "About global asymptotic stability of dynamic systems with time lags and uncertainties within polytopes", Engineering Computations, Vol. 24, Nos. 5-6, pp. 564-571, 2007.
[20] M. De la Sen, "Robust stabilization of a class of polytopic linear time-varying continuous systems under time delays and saturating controls ", Applied Mathematics and Computation, Vol. 181, No.1, pp. 73-83, 2006.
[21] M. De la Sen and C.F. Alastruey, "Stability results for two classes of linear time-delay and hybrid systems", Engineering Computations, Vol. 21, Nos. 7-8 pp. 718-735, 2004.
[22] Q. Zhang, X.P. Wei and J. Xu, " On global exponential stability of delayed cellular neural networks with time-varying delays ", Applied Mathematics and Computation, Vol. 162, No. 2, pp. 679-686, 2005.
[23] L. Cai, X. Li, X. Song and J. Yu, " Permanence and stability of an age-structured prey-predator system with delays", Discrete Dynamics in Nature and Society, Vol. 2007, Article ID 54861, 15 pages, 2007, doi:10.1155/2007/54861.
[24] X. Liao and S, Guo, "Delay-dependent asymptotic stability of Cohen-Grossberg models with multiple time-varying delays", Discrete Dynamics in Nature and Society, Vol. 2007, Article ID 28960, 17 pages, 2007, doi:10.1155/2007/28960.
[25] S.B. Cui and S.H. Xu, "Analysis of mathematical models for the growth of tumors with time delays in cell proliferation", Journal of Mathematical Analysis and Applications, Vol. 336, No. 1, pp. 523-541, DEC 1 2007.
[26] M. U. Akhmet, "On the reduction principle for differential equations with piecewise constant argument of generalized type ", Journal of Mathematical Analysis and Applications, Vol. 336, No. 1, pp. 646-663, DEC 12007
[27] K. Wang and S.P. Lu, " The existence, uniqueness and global attractivity of periodic solution for a type of neutral functional differential systems with delays", Journal of Mathematical Analysis and Applications, Vol. 335, No. 2, pp. 808-818, NOV 152007.
[28] D.Y Bai and and Y.T. Xu, " Positive solutions and eigenvalue intervals of nonlocal boundary problems with delays", Journal of Mathematical Analysis and Applications, Vol. 334, No. 2, pp. 1152-1166, OCT 15 2007.
[29] J.Z. Wang, F.W. Meng and S.Y. Liu, " Integral average method for oscillations of second order partial differential equations with delays", Applied Mathematics and Computation, Vol. 187, No. 2, pp. 815-823, APR 152007.
[30] M. De la Sen, " Stability criteria for linear time-invariant systems with point delays based on onedimensional Routh-Hurwitz tests", Applied Mathematics and Computation, Vol. 187, No. 2, pp. 1199-1207, APR 152007.
[31] Y.G. Sun, L. Wang and G.M. Xie, "Delay-dependent robust stability and H-infinity control for uncertain discrete-time systems with mode-dependent time delays", Applied Mathematics and Computation, Vol. 187, No. 2, pp. 1228-1237, APR 152007.
[32] Y.K. Li, "Positive periodic solutions of discrete Lotka-Volterra competition systems with state dependent and distributed delays", Applied Mathematics and Computation, Vol. 190, No. 1, pp. 526-531, JUL 12007.
[33] X.Y. Lou and B.T. Cui, "Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays", Journal of Mathematical Analysis and Applications, Vol. 330, No.1, pp. 144-158, JUN 12007.
[34] J.W. Cao, S.M. Zhong and Y.Y. Hu, "Global stability analysis for a class of neural networks with varying delays and control input", Applied Mathematics and Computation, Vol. 189, No.2, pp. 1480-1490, JUN 152007.
[35] S. H. Saker, R.P. Agarwal and D. O'Reagan, "Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales", Applicable Analysis, Vol. 86, No. 1, pp. 1-17, 2007
[36] S. H. Saker, R.P. Agarwal and D. O'Reagan, "Oscillation of second-order damped dynamic equations on time scales", Journal of Mathematical Analysis and Applications, Vol. 330, No. 2, pp. 1317-1337, JUN 15 2007.
[37] M. De la Sen, "On the properties of reachability, observability, controllability and constructibility of discrete-time positive time-invariant linear systems with aperiodic choice of the sampling instants", Discrete Dynamics in Nature and Society, Vol. 2007, Article ID 84913, 23 pages, 2007, doi: 10.1155/2007/84913.
[38] W. Yu, "Multiple recurrent neural networks for stable adaptive control", Neurocomputing, Vol. 70, Nos. 1 -3, pp. 430-444, DEC 2006.
[39]W. Yu, "Stability analysis of visual servoing with sliding-mode estimation and neural compensation, International Journal of Control Automation and Systems, Vol. 4, No. 5, pp. 545-558, OCT 2006.
[40] J.M. Ortega, Numerical Analysis. A Second Course, Academic Press, New York, 1972.
[41] K. Liu and L. Chen, "On a periodic time-dependent model of population dynamics with stage structure and impulsive effects", Discrete Dynamics in Nature and Society, Vol. 2008, Article ID 389727, 15 pages, 2008, doi:10.1155/2008/389727.
[42] Y.H. Fan, L.L. Wang, " Permanence for a discrete model with feedback control and delay" ", Discrete Dynamics in Nature and Society, Vol. 2008, Article ID 945109, 8 pages, 2008, doi:10.1155/2008/945109.
[43] Y. Chen, W. Bi and Y. Wu, "Delay- dependent exponential stability for discrete - time BAM neural networks with time-varying delays", Discrete Dynamics in Nature and Society, Vol. 2008, Article ID 421614, 14 pages, 2008, doi:10.1155/2008/421614.
[44] M. De la Sen, "On the reachability and controllability of positive linear time-invariant dynamic systems with internal and external incommensurate point delays", Rocky Mountain Journal of Mathematics, in press.

The Smaller Root Principle for Finding Roots of a Complex Number Function

Louis Paquette
Département de Mathématiques et Informatique
Université du Québec à Trois-Rivières
C.P. 500, Trois-Rivières, Québec
Canada, G9A 5H7
Email: Louis.Paquette@uqtr.ca

June 5, 2009

Abstract

Using the second order Taylor expansion of a function $f(z)$ in complex space, a polynomial $\mathrm{p}(\mathrm{z})$ of degree 2 results. We demonstrate that the smallest root of $p(z)$ is a search direction that always decreases the modulus of $f(z)$. Using this property, a new algorithm is proposed. We prove that the algorithm either finds a root or the estimate goes at infinity, without creating any accumlation points. In the special case of a polynomial, the algorithm allways finds a root. Numerical examples are also given.

Keywords. Root finding, Global convergence, Complex Numbers, Second Order Taylor Approximation, Minimum Modulus Root

1 Introduction

In this paper, we consider functions $f(z)$ such that z and $f(z)$ are complex numbers and $f(z)$ has a Taylor expansion. For these functions we have the Minimum Modulus Theorem, which means that if an holomorphic functional $f(z)$ has no root inside a neighbourhood of z_{0}, then the minimum of $|f(z)|$ is attained on the boundary of that neighbourhood. This implies there is no "local minimum" of the modulus of $\mathrm{f}(\mathrm{z})$. Therefore, it makes sense to try to reduce $|f(z)|$ iteratively.

Let use a second order Taylor expansion as follows, where $\lambda \in(0,1], \operatorname{Re}(z)$ is the real part of z and h is a number determined later:

$$
\begin{align*}
& f(\lambda h+z)=f(z)+\lambda f^{\prime}(z) h+\frac{1}{2} \lambda^{2} f^{\prime \prime}(z) h^{2}+O\left(\lambda^{3}\right) \tag{1}\\
& \overline{f(\lambda h+z)}=\overline{f(z)}+\lambda \overline{f^{\prime}(z)} \bar{h}+\frac{1}{2} \lambda^{2} \overline{f^{\prime \prime}(z)} \bar{h}^{2}+O\left(\lambda^{3}\right) . \tag{2}\\
& |f(\lambda h+z)|^{2}=|f(z)|^{2}+2 \lambda \operatorname{Re}\left(\overline{f(z)} f^{\prime}(z) h\right)+ \\
& \lambda^{2}\left[\operatorname{Re}\left(\overline{f(z)} f^{\prime \prime}(z) h^{2}\right)+\left|f^{\prime}(z) h\right|^{2}\right]+O\left(\lambda^{3}\right) . \tag{3}
\end{align*}
$$

Let define the following polynomial:

$$
\begin{equation*}
p(z)=f(z)+f^{\prime}(z) h+\frac{1}{2} f^{\prime \prime}(z) h^{2} \tag{4}
\end{equation*}
$$

Assuming $f(z) \neq 0$ and $f^{\prime \prime}(z) \neq 0$, let h be the smaller root of the polynomial $\mathrm{p}(\mathrm{z})$. We will demonstrate that we can always find λ such that $|f(\lambda h+z)|^{2}<$ $|f(z)|^{2}$, using equation (3), even if $f^{\prime}(z)=0$. Using this principle, the paper proposes a new algorithm and it gives numerical examples and convergence analysis.

Let briefly examine the literature. For polynomials, there are several methods that are effective [15]. For more general functions, approaches are based on, for example: Newton related methods, Brent Method [10, 15], HomotopyContinuation methods [1], Partitionning methods [6, 15], Fixed point methods [2], Tensor methods [17]. [6] is a good review of methods. These methods have various requirements such as non nul first derivative, convexity, an initial estimate value that is sufficiently close to a root, approximation of the second order derivative. On the other hand, as a warning, McMullen [12, 13] has shown that there are no generally convergent purely iterative algorithms for solving polynomials of degrees 4 or greater, with rational mapping such as Newton method.

As far as we know, no methods use the smaller root principle or an approach related to the Minimum Modulus Theorem of complex analysis.

The paper is organized as follows: Section 2 presents the foundations of the algorithm, that is, the properties of the smaller root of a second order polynomial. Section 3 defines the proposed algorithm. Section 4 shows some numerical experiments. Section 5 gives results about convergence for the algorithm. Section 6 concludes.

2 The Key Smaller Root Property

First, a Lemma demonstrates the properties of the smaller root. Secondly, we explains how the Lemma is used to reduce $|f(z)|$ using equation (3). To simplify notations in the following Lemma and referring to equation (4), let denote $c=$ $f(z), b=f^{\prime}(z), a=f^{\prime \prime}(z), r_{1}=h$.

Lemma 2.1. (Smaller Root Properties)
Let $p(z)=a z^{2}+b z+c$ where a and c are not null. Let r_{1} be a root of $p(z)$ with smallest modulus, and r_{2} the other root. We have: if $b=0$ then $\operatorname{Re}\left(\bar{c} a r_{1}^{2}\right)<$ 0 . If $b \neq 0$ then $\operatorname{Re}\left(\bar{c} b r_{1}\right)<0$. Furthermore, if $|b|$ is sufficiently small then $\operatorname{Re}\left(\bar{c} \quad b r_{1}\right)<0$ and $\operatorname{Re}\left(\bar{c} a r_{1}^{2}\right)+\left|b r_{1}\right|^{2}<0$.

Proof. Case $b=0$:

$$
\begin{align*}
a r_{1}^{2} & =-c \tag{5}\\
\bar{c} a r_{1}^{2} & =-|c|^{2} \tag{6}\\
\operatorname{Re}\left(\bar{c} a r_{1}^{2}\right) & =-|c|^{2}<0 . \tag{7}
\end{align*}
$$

Case $b \neq 0$:
First we have...

$$
\begin{gather*}
r_{1}+r_{2}=-b / a \tag{8}\\
r_{1} r_{2}=c / a \tag{9}\\
r_{1} \neq 0, r_{2} \neq 0 \tag{10}\\
\bar{c} b r_{1}=-\overline{a r_{1} r_{2}} a\left(r_{1}+r_{2}\right) r_{1} \tag{11}\\
\bar{c} b r_{1}=-|a|^{2}\left|r_{1}\right|^{2}\left(r_{1} \bar{r}_{2}+\left|r_{2}\right|^{2}\right) \tag{12}
\end{gather*}
$$

$$
\begin{equation*}
\operatorname{Re}\left(\bar{c} b r_{1}\right)=-|a|^{2}\left|r_{1}\right|^{2}\left(\operatorname{Re}\left(r_{1} \bar{r}_{2}\right)+\left|r_{2}\right|^{2}\right) \tag{13}
\end{equation*}
$$

It remains to show that...

$$
\begin{equation*}
\operatorname{Re}\left(r_{1} \bar{r}_{2}\right)+\left|r_{2}\right|^{2}>0 \tag{14}
\end{equation*}
$$

Since r_{1} is the smaller root, we have...

$$
\begin{equation*}
\left|r_{2}\right|^{2} \geq\left|r_{1}\right|\left|r_{2}\right| \geq-\operatorname{Re}\left(r_{1} \bar{r}_{2}\right) \tag{15}
\end{equation*}
$$

Assume that we have an equality in the equation (15), that is ..

$$
\begin{equation*}
\left|r_{2}\right|^{2}=-\operatorname{Re}\left(r_{1} \bar{r}_{2}\right) \tag{16}
\end{equation*}
$$

Define ...

$$
\begin{align*}
& r_{1}=\left|r_{1}\right| e^{i \theta_{1}} \tag{17}\\
& r_{2}=\left|r_{2}\right| e^{i \theta_{2}} \tag{18}
\end{align*}
$$

Then, we have ...

$$
\begin{gather*}
r_{1} \bar{r}_{2}=\left|r_{1}\right|\left|r_{2}\right| e^{i\left(\theta_{1}-\theta_{2}\right)} \tag{19}\\
-\operatorname{Re}\left(r_{1} \bar{r}_{2}\right)=-\left|r_{1}\right|\left|r_{2}\right| \cos \left(\theta_{1}-\theta_{2}\right)=\left|r_{2}\right|^{2} \tag{20}\\
-\cos \left(\theta_{1}-\theta_{2}\right)=\frac{\left|r_{2}\right|}{\left|r_{1}\right|} \tag{21}
\end{gather*}
$$

This means $\left|r_{1}\right|=\left|r_{2}\right|, \theta_{1}=\theta_{2}+\pi$ and $r_{1}=-r_{2}$ or $r_{1}+r_{2}=0$, which contredicts equation (8) and the assumptions.

To resume, we cannot have equality in equation (15), which proves equation (14). From equation (14) and (13), we obtain the required result (if $b \neq 0$):

$$
\begin{equation*}
\bar{c} b r_{1}<0 \tag{22}
\end{equation*}
$$

The last part of the lemma follows from the fact that if b approaches 0 , then r_{1} approaches $\sqrt{-c / a}, \operatorname{Re}\left(\bar{c} a r_{1}^{2}\right)$ approaches $-|c|^{2}<0$ and $\left|b r_{1}\right|$ approaches 0 .

Note that equation (15) can only be true if we choose the smaller root. The following theorem applies Lemma 2.1 to equation (3) and shows how $|f(z)|$ is reduced.

Theorem 2.2. Assume that $f(z)$ is not null and also the second derivative is not null without consideration of the first derivative, then the smaller root of the second order Taylor approximation is a direction that can always reduce $|f(z)|$ using equation (3).

Proof. Let h be the smaller root of $\mathrm{p}(\mathrm{z})$ in equation (4). Using Lemma 1.2, with $c=f(z), b=f^{\prime}(z), a=\frac{1}{2} f^{\prime \prime}(z)$, we obtain the following. In the case $f^{\prime}(z) \neq 0$, the dominant term involving λ is negative as $\operatorname{Re}\left(\bar{f}(z) f^{\prime}(z) h\right)<0$. In the case $f^{\prime}(z)=0$, the dominant term is negative also as $\operatorname{Re}\left(\bar{f}(z) f^{\prime \prime}(z) h^{2}\right)<0$. Therefore, in both cases, $\exists \lambda \in(0,1]$ such that $|f(\lambda h+z)|^{2}<|f(z)|^{2}$.

3 The Smaller Root Algorithm

Let m be arbitrary small positive number (the floating point precision of the machine). This algorithm uses z_{k} to represent the current estimate of a root. The
algorithm assumes that $\left|f^{\prime \prime}\left(z_{k}\right)\right|>m$. Theorem 2.2 garanties that $\left|f\left(z_{k}\right)\right|$ can be reduced.

The Smaller Root Algorithm

1. Choose an arbitrary number $z_{0}, \mathrm{k}=0$
2. Define $p(z)$ using the current estimate z_{k} in equation (4) and compute the smaller root h_{k}
3. Do a line search on $\lambda \in(0,1]$ that minimizes $\left|f\left(z_{k}+\lambda h_{k}\right)\right|^{2}$. Denote λ_{k} the optimal value of λ. Set $z_{k+1}=z_{k}+\lambda_{k} h_{k}$.
4. Set k to $\mathrm{k}+1$. If $\left|f\left(z_{k}\right)\right|$ is sufficiently small, stop. Otherwise, goto 2 .

4 Numerical Experiments

The following paragraphs describes a few numerical experiments. The image in figure1 shows a convergence map for a complex polynomial with 7 roots. A point in the image is used as the initial value of z_{0}. The color of the point corresponds to the color of the root to which the algorithm converges (a randomly selected color). In Hubbard [8], it is shown that such polynomials has several initial conditions which fail to converge to a solution with the Newton method (convergence maps are fractal in nature). With our method, there is no such failures (convergence map are filled images).

The next example is the following equation where $\mathrm{p}(\mathrm{z})$ and $\mathrm{q}(\mathrm{z})$ are polynomial of degree 4:

$$
\begin{equation*}
f(z)=p(z)+\sin (q(z)) \tag{23}
\end{equation*}
$$

Figure 1: Convergence map for a typical polynomial: 7 roots

The values of the polynomials are (r: real part, i: imaginary part):

$$
\begin{align*}
& r p=\{0.1,0.2,0.3,0.4,0.5\} \tag{24}\\
& i p=\{0.5,0.4,0.3,0.2,0.1\} \tag{25}\\
& r q=\{0.3,0.2,0.1,0.5,0.4\} \tag{26}\\
& i q=\{0.4,0.5,0.1,0.2,0.3\} \tag{27}
\end{align*}
$$

The following table shows some results with different initial points.

Initial Point Iterations Error

$(0.1,0.1)$	12	0.0000008
$(1.3,-0.5)$	11	0.0000002

Note that we have used a simple binary search, in these experiments.

5 Convergence Analysis of the Algorithm

The proof of convergence of the proposed algorithm is based on continuity arguments and we prove that the algorithm cannot create an accumulation point which is not a root. This leads to convergence Corollaries.

Lemma 5.1. In the algorithm, we assume that $\left|f^{\prime \prime}(z)\right|>m>0, f(z)$ has a Taylor expansion and the line search in the algorithm is exact (see Brent method in [15]). Also, assume that the algorithm produces an accumulation point u_{*}. Then, z_{*} is a root of $f(z)$.

Proof. We proceed by contradiction. Assume z_{*} is not a root of $f(z)$, that is $f\left(z_{*}\right) \neq 0$.

Since u_{*} is an accumulation point, there is a subsequence of estimate u used in the algorithm that converges to u_{*}. This subsequence has necessarely another subsequence of estimates u for which the computation of the smaller root h in the algorithm uses the same sign. This subsequence is denoted as follows:

$$
\begin{equation*}
z_{j}, j=0, \ldots, \infty \tag{28}
\end{equation*}
$$

First observe that, since the sequence z_{j} use the same sign, the smaller roots h_{j} associated to z_{j} are obtained by a continuous expression with respect to u . This means there exists a number h_{*} such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} h_{j}=h_{*} \tag{29}
\end{equation*}
$$

Let define polynomials as follows:

$$
\begin{equation*}
p_{j}(z)=f\left(u_{j}\right)+f^{\prime}\left(u_{j}\right) h+f^{\prime \prime}\left(u_{j}\right) h^{2}, j=1, \ldots, \infty \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
p_{*}(z)=f\left(u_{*}\right)+f^{\prime}\left(u_{*}\right) h+f^{\prime \prime}\left(u_{*}\right) h^{2} \tag{31}
\end{equation*}
$$

Since the coefficients of $p_{j}(z)$ and of $p_{*}(z)$ are continuous function of u , we have that h_{j} is a smaller root of $p_{j}(z)$ and h_{*} is a smaller root of $p_{*}(z)$. This implies h_{*} can be used to reduce $\left|f\left(u_{*}\right)\right|$ with step 3 of the algorithm. That is, there exists $\lambda_{*} \in(0,1]$ and $w_{*}=z_{*}+\lambda_{*} h_{*}$ such that $\left|f\left(w_{*}\right)\right|<\left|f\left(z_{*}\right)\right|$.

Define d as follows: $d=\left|f\left(z_{*}\right)-\left|f\left(z_{*}+w_{*} h_{*}\right)\right|>0\right.$. Next, define the function $e(\alpha)$ as follows:

$$
\begin{equation*}
e(\alpha)=e(z, h, \lambda)=f(z+\lambda h), \text { where } \alpha \text { is the vector }(z, h, \lambda) \tag{32}
\end{equation*}
$$

The function $e(\alpha)$ is differentiable with respect to z, h and λ and therefore continuous with respect to z, h and λ or α.

Also define ω_{j} as follows, where j_{0} is the least positive integer such that $\omega_{*}-$ $\frac{1}{j_{0}} \in(0,1]:$

$$
\begin{equation*}
\omega_{j}=\omega_{*}-\frac{1}{j}, j=j_{0}, \ldots, \infty \tag{33}
\end{equation*}
$$

Note that ...

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \omega_{j}=\omega_{*} \tag{34}
\end{equation*}
$$

Now, define $\alpha_{j}, j=1, \ldots, \infty$ and β as follows:

$$
\begin{equation*}
\alpha_{j}=\left(z_{j}, h_{j}, \omega_{j}\right) \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\beta=\left(z_{*}, h_{*}, \omega_{*}\right) \tag{36}
\end{equation*}
$$

Since $e(\alpha)$ is continuous, we have:

$$
\begin{gather*}
\lim _{j \rightarrow \infty} \alpha_{j}=\beta \tag{37}\\
\lim _{j \rightarrow \infty} e\left(\alpha_{j}\right)=e(\beta) \tag{38}\\
\lim _{j \rightarrow \infty}\left|e\left(\alpha_{j}\right)\right|=|e(\beta)|=\left|f\left(z_{*}+w_{*} h_{*}\right)\right|<\left|f\left(z_{*}\right)\right| \tag{39}
\end{gather*}
$$

Therefore, $\exists N$ such that $\forall j>N$ we have:

$$
\begin{equation*}
\left|\left|e\left(\alpha_{j}\right)\right|-|e(\beta)|\right|<d / 2 \tag{40}
\end{equation*}
$$

That means ...

$$
\begin{array}{r}
\left|e\left(\alpha_{j}\right)\right|<|e(\beta)|+d / 2=\left|f\left(z_{*}+w_{*} h_{*}\right)\right|+\frac{\left|f\left(z_{*}\right)\right|-\left|f\left(z_{*}+w_{*} h_{*}\right)\right|}{2}= \\
\frac{\left|f\left(z_{*}\right)\right|+\left|f\left(z_{*}+w_{*} h_{*}\right)\right|}{2}<\left|f\left(z_{*}\right)\right| \tag{41}
\end{array}
$$

The last equation (41) is a contradiction for the following reason: first, we have $\left|f\left(z_{j}\right)\right|>\left|f\left(z_{j+1}\right)\right|>\left|f\left(z_{j+2}\right)\right|>\ldots>\left|f\left(z_{*}\right)\right|$ and we have found $\omega_{j} \in(0,1)$ for which $e\left(\alpha_{j}\right)=\left|f\left(z_{j}+\omega_{j} h_{j}\right)\right|<\left|f\left(z_{*}\right)\right|$, which contredicts the fact that the line search (on λ in the algorithm) finds the minimum of $\left|f\left(z_{j}+\lambda h_{j}\right)\right|$, that is the line search is disfunctional.

We conclude that if there is an accumulation point, then it must be a root.

Theorem 5.2. (Convergence of the Smaller Root Algorithm)
Assume $\left|f^{\prime \prime}\left(z_{k}\right)\right|>m$ in the algorithm. The algorithm converges to a root, or $\left|z_{k}\right|$ goes at infinity, allways decreasing $\left|f\left(z_{k}\right)\right|$ without creating an accumulation point.

Proof. If the algorithm creates an accumulation point, from Lemma 5.1 it must converge to a root. Otherwise, $\left|z_{k}\right|$ must go at infinity without creating an accumulation point. Theorem 2.2 demonstrates that $\left|f\left(z_{k}\right)\right|$ is allways decreased

Corollary 5.3. (The case of a polynomial) Assume $f(z)$ is a non constant polynomial and $\left|f^{\prime \prime}\left(z_{k}\right)\right|>m$ in the algorithm. Then, the algorithm allways finds a root.

Proof. As $|z|$ grows to infinity, $|f(z)|$ goes to infinity since the higher order term eventually dominates. Also, we have seen that for all k in the algorithm, we have $\left|f\left(z_{k}\right)\right|<\left|f\left(z_{0}\right)\right|$. This means $\left|z_{k}\right|$ cannot go at infinity (since $\left|f\left(z_{k}\right)\right|$ is bounded by $\left|f\left(z_{0}\right)\right|$). From Theorem 5.2, we conclude that it must converge to a solution.

6 Concluding remarks

With one equation, a new algorithm was presented for root finding of a function. This algorithm requires the second order derivative to be significantly non nul throughout the algorithm. Some numerical experiments where given together with convergence results: the algorithm always reduces the modulus of the function and, if it creates an accumulation point, then a solution is found. Note that the function e^{z} has no root which means that finding a root might be impossible. However, in the case of a polynomial, the algorithm always finds a root.

As it was presented, the algorithm requires the second order derivative to be non null, to simplify proofing. A more general algorithm would requires the first or second order derivative to be non null.

Obviously, there are many unanswered questions yet to be addressed: rate of convergence, handling of singularities, enumeration of roots when real roots are needed, etc. Most importantly, is this approach applicable to a system of equations?

7 Acknowledgement

We thank colleagues D. Rochon, A. Goupil, S. Tremblay

References

[1] S. Abbasbandy, Y. Tan, S.J. Liao, Newton-homotopy analysis method for nonlinear equations, Applied Mathematics and Computation 188 (2007), p. 1794-1800.
[2] R. L. Burden and J. D. Faires, Numerical Analysis, sixth edition, Brooks/Cole Publishing Company, 1997.
[3] J. Canny and D. Manocha, Algorithm for Implicitizing Rational Parametric Surfaces, Computer Aided Geometric Design 9, p. 25-50, (1992).
[4] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Springer, (2007).
[5] J.-Cl. Evard and F. Jafari, A Complex Rolle's Theorem, The American Mathematical Monthly, Vol. 99, no. 9 (Nov., 1992), pp. 858-861.
[6] Crina Grosan and Ajith Abraham, A New Approach for solving Nonlinear Equations Systems, IEEE Transactions on Systems, Man, and CyberneticsPart A: Systems and Humans, Vol. 38, no. 3, (2008).
[7] K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, (1961).
[8] John Hubbard et al, How to find all roots of complex polynomials by Newton's method, Inventiones Mathematicae, 146, 1-33 (2001).
[9] D. Li and M. Fukushima, A globally and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal., Vol. 37, No. 1, pp. 152-172.
[10] David Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, 1973, p. 330.
[11] Anthony Manning, How to be sure of finding a root of a complex polynomial using Newton's method, Bol. Soc. Braz. Mat., Vol 22, No. 2, p. 157-177.
[12] Curt McMullen, Families of rational maps and iterative root-finding algorithms, Ann. Math. (2) 125 (3) (1987), 467-493
[13] Curt McMullen, Braiding of the attractor and the failure of iterative algorithms, Invent. math. 91(2) (1988), 259-272
[14] L. Pennisi, Elements of Complex Variables, Holt, Rinehart anWinston ed., 1963.
[15] William H. Press et al., Numerical Recipes in C, Cambridge University Press, 1992.
[16] A. Samuelsson, A local mean value theorem for analytic functions, American Mathematical Monthly, Vol. 80, No. 1, p. 45.
[17] R. B. Schnabel and P. Frank, Tensor methods for nonlinear equations, SIAM J. Numer. Anal. 21 (1984), pp. 814-843.
[18] Bernd Sturmfels, Solving Systems of Polynomial Equations, Lectures Notes, Department of Mathematics, Berkeley, (2002).

An algorithmic technique for the investigation of the non-negativity (or positivity) of a homogeneous matrix pencil

Athanasios A. Pantelous ${ }^{1}$, Athanasios D. Karageorgos ${ }^{2}$ and Grigoris I. Kalogeropoulos ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, University of Liverpool, UK
${ }^{2}$ Department of Mathematics, University of Athens, Greece.
A.Pantelous@liverpool.ac.uk, \{athkar, gkaloger\}@math.uoa.gr

October 12, 2009

In the classical literature of matrix pencils theory, the dual pencils $s F-G$ and $F-\hat{s} G$ are identified by the homogeneous matrix pencil $s F-\hat{s} G$, where s, \hat{s} are indeterminates. In the present paper, we discuss and we provide a characterization of the nonnegativity (or positivity) of a given homogeneous pencil. An algorithmic approach for the analytic determination of all the nonnegative (or positive) homogeneous pencils into a relevant set of indeterminates s, \hat{s} is provided. This new approach can be easily transferred into a standard computational routine by using simple Matlab m-files. Some numerical examples are also concluded.
Keywords: Matrix Pencil Theory; Nonnegativity (Positivity); Algorithmic Approach
AMS (classification): 15A22; 65F30; 15A48

1 1. Introduction

Linear descriptor systems are very common in many practical situations in nature like, for instance, transmission problems, communications [4], population growth models (see for instance the famous Leslie model [12]) and other biological systems or economical and actuarial dynamic models, see for instance [1]-[5], [9]-[11], [14]-[16], [18] etc. Those systems may be continuous, discrete, distributed, and internal (i.e. in the state) or external (i.e. in the input or/and output).

Thus, the study of problems and structural properties of regular/singular and extended state space theory may be reduced to the study of linear descriptor differential (or difference) equations

$$
F \underline{\dot{x}}(t)=G \underline{x}(t) \text { and } F \underline{x}(t)=G \underline{\dot{x}}(t)
$$

$$
\begin{equation*}
\left(\text { or } F \underline{x}_{k+1}=G \underline{x}_{k} \text { and } F \underline{x}_{k}=G \underline{x}_{k+1}\right) \tag{1}
\end{equation*}
$$

where $\underline{x} \in \mathbb{R}^{n}$ is the state vector, and $F, G \in \mathbb{R}^{m \times n}$ (or $F, G \in \mathbb{R}^{n \times n}$) are real rectangular (or square with $\operatorname{det} F=0$) matrices. In those cases, the matrix pencil theory becomes a key tool. Furthermore, to entirely cover the needs, the matrix pencil theory has to be general enough with a geometric, a dynamic, a topological, an invariant and a computational dimension.

Now, let $(F, G) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n}$ and (s, \hat{s}) be a pair of indeterminates. The polynomial matrices $s F-G$ or $F-\hat{s} G(s, \hat{s} \in \mathbb{R})$ can be defined by the homogeneous matrix pencil

$$
\begin{equation*}
L(s, \hat{s}) \triangleq s F-\hat{s} G \tag{2}
\end{equation*}
$$

(or equivalently by a pair $(F,-G)$), since the existence of the important notion of duality, the so-called elementary divisor type duality or integrator-differentiator type duality, has already been demonstrated, see [7] and [8]. Thus,sF-G and $F-\hat{s} G$ are related by the special type of bilinear transformation: $s \rightarrow \frac{1}{\hat{s}}$ which clearly transforms the points $0, \infty, a \neq 0$ of the compactified real plain $(\mathbb{R} \cup\{\infty\})$ (or of the Riemann sphere) to the points $\infty, 0, \frac{1}{a}$, relatively.

This paper is devoted to the study of the nonnegativity (or positivity) property of the pencil (2), which is derived by the singular (or regular) linear descriptor systems subject to constant, in general, rectangular coefficient matrices. We would like to stress out that this work follows closely the thoughts of Uhlig for definite and semi-definite matrices in a real symmetric matrix pencil, see [17]. Thus, similar results to [18] are finally derived, using still elementary geometric framework. Although, in our case, we have to underline that relevant matrices $F, G \in \mathbb{R}^{m \times n}$ have not any particular algebraic structure.

The paper is organized as follows. A notation section is considered at the end of this introductory section. Section 2 is devoted to the main results of the paper. Thus, an extensive discussion of the nonnegativity (or positivity) of the homogenous matrix pencils of systems (1) is considered. The results are new with some interest, since we obtain a characterization when a homogeneous system is nonnegative (or positive). Finally, section 3 provides an algorithm and discusses several examples.

Definition 1 The homogeneous matrix pencil, see [6]

$$
L(s, \hat{s}) \in \mathcal{L}_{m, n}(s, \hat{s}) \triangleq\left\{s F-\hat{s} G: F, G \in \mathbb{R}^{m \times n} \text { and } s, \hat{s} \in \mathbb{R}\right\}
$$

with $F=\left[f_{i j}\right]_{\substack{i=1,2, \ldots, m \\ j=1,2, \ldots, n}} \in \mathbb{R}^{m \times n}, G=\left[g_{i j}\right]_{\substack{i=1,2, \ldots, m \\ j=1,2, \ldots, n}} \in \mathbb{R}^{m \times n}$ and $s, \hat{s} \in \mathbb{R}$ is called nonnegative (or positive) (n-pencil or p-pencil) if there exists

$$
\begin{gather*}
\Omega=\left\{(s, \hat{s}): s F-\hat{s} G \in \mathcal{L}_{m, n}(s, \hat{s})\right\} \subseteq \mathbb{R}^{2} \text { such as } \forall(s, \hat{s}) \in \Omega \\
L_{i j}(s, \hat{s})=f_{i j} s-g_{i j} \hat{s} \geq(>) 0 \tag{3}
\end{gather*}
$$

for every $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$.

Definition $2 \mathcal{L}_{m, n}(s, \hat{s}) \triangleq\left\{s F-\hat{s} G: F, G \in \mathbb{R}^{m \times n}\right.$ ands, $\left.\hat{s} \in \mathbb{R}\right\}$ is called nonnegative (or positive) set of homogeneous pencils if for every pair $(s, \hat{s}) \in \Omega$, $L(s, \hat{s}) \geq(>\mathbb{O})$, where \mathbb{O} is the zero matrix.

2 Main results

In this section, the main results concerning the investigation of the nonnegativity (or positivity) of homogeneous matrix pencils are presented and fully discussed. The next Remark is important; since four different systems of inequalities derive which provide us with a deeper understanding of nonnegativity (or positivity).

Firstly, we denote the element (i, j) as the $(i-1) n+j$-element of the new system of equations. Consequently,

$$
f_{i j} \triangleq f_{(i-1) n+j}
$$

thus $f_{11} \triangleq f_{1}, f_{12} \triangleq f_{2}, \ldots, f_{m n} \triangleq f_{(m-1) n+n}$. Similarly for the g. Thus, we obtain the system of inequalities

$$
\begin{equation*}
f_{r} s-g_{r} \hat{s} \geq 0, \text { for } r=1,2, \ldots,(m-1) n+n \tag{4}
\end{equation*}
$$

Remark 1 System 1 might be analyzed to the following (A) - (D) systems of inequalities:
A) $f_{r} s-g_{r} \hat{s} \geq(>) 0$ with $f_{r} \geq 0$ and $g_{r} \geq 0, r=1,2, \ldots, k$.
B) $f_{r} s-g_{r} \hat{s} \geq(>) 0$ with $f_{r} \geq 0$ and $g_{r} \leq 0, r=k+1, k+2, \ldots, \rho$.
C) $f_{r} s-g_{r} \hat{s} \geq(>) 0$ with $f_{r} \leq 0$ and $g_{r} \geq 0, r=\rho+1, \rho+2, \ldots, \tau$.
D) $f_{r} s-g_{r} \hat{s} \geq(>) 0$ with $f_{r} \leq 0$ and $g_{r} \leq 0, r=\tau+1, \tau+2, \ldots, m n$.

The Remark above is simple and rather straightforward when someone considers the notation. Moreover, without lost of generality, we can assume that the first k-equations follow (A), the second $\rho-k$-equations follow (B), the third $\tau-\rho$-equations follow (C) and the last $(m-1) n+n-\tau$-equations follow (D).

In addition, before we go further with the statement and the proof of Theorem 1, it should be stressed out that the case when g_{r} and f_{r} are simultaneously zero is not considered, since it fulfils our requirement of nonnegativity. Note that the following results are also true for positivity if the equality " $=$ " into our results is excluded.

Definition 3 Denote with Ω the set where the inequality $f_{r} s-g_{r} \hat{s} \geq 0$ holds.
Theorem 1 If we consider that the homogeneous matrix pencil, $s F-\hat{s} G$ is nonnegative, then the intersection $\Omega_{A} \cap \Omega_{B} \cap \Omega_{C} \cap \Omega_{D}=\emptyset$.

Figure 1: (A) system of inequalities holds. (B) system of inequalities holds.

Proof. For (A)-(D), consider the equality $f_{r} s-g_{r} \hat{s}=0$, then we obtain

$$
\hat{s}=\left\{\begin{array}{ll}
\frac{f_{r}}{g_{r}} s, & \text { if } g_{r} \neq 0 \\
0, & \text { if } f_{r}=0
\end{array} \text { and } s= \begin{cases}\frac{g_{r}}{f_{r}} \hat{s}, & \text { if } f_{r} \neq 0 \\
0, & \text { if } g_{r}=0\end{cases}\right.
$$

- For (A)

Denote that $a_{1}=\min _{r=1,2, \ldots, k}\left\{f_{r} / g_{r}\right\}$ and $a_{2}=\max _{r=1,2, \ldots, k}\left\{f_{r} / g_{r}\right\}$, where $f_{r}, g_{r} \geq 0$ for $r=1,2, \ldots, m n$. (Note that $a_{2}=+\infty$ and $\hat{s}=0$ for $g_{r}=0$.) Hence, the set , where the nonnegativity exists, is sketched in figure 1 (left part).

Thus, $\Omega_{A}=\left\{(s, \hat{s}):\right.$ if $s \geq 0$ then $\hat{s} \leq a_{1} s$ and if $s \leq 0$ then $\left.\hat{s} \leq a_{2} s\right\}$.

- For (B)

Denote that $\beta_{1}=\min _{r=k+1, k+2, \ldots, \rho}\left\{f_{r} / g_{r}\right\}$ and $\beta_{2}=\max _{r=k+1, k+2, \ldots, \rho}\left\{f_{r} / g_{r}\right\}$ where $f_{r} \geq 0$ and $g_{r} \leq 0$ for $r=1,2, \ldots, m n$. (Note that $\beta_{1}=-\infty$, and $\hat{s}=0$ when $g_{r}=0$.) Hence, the set Ω_{B}, where the nonnegativity exists, is sketched also in figure 1 (right part).

Thus, $\quad \Omega_{B}=\left\{(s, \hat{s}):\right.$ if $s \geq 0$ then $\hat{s} \geq \beta_{2} s$ and if $s \leq 0$ then $\left.\hat{s} \geq \beta_{1} s\right\}$.

- For (C)

Denote that $\gamma_{1}=\min _{r=\rho+1, \rho+2, \ldots, \tau}\left\{f_{r} / g_{r}\right\}$ and $\gamma_{2}=\max _{r=\rho+1, \rho+2, \ldots, \tau}\left\{f_{r} / g_{r}\right\}$ where $f_{r} \leq 0$ and $g_{r} \geq 0$ for $r=1,2, \ldots, m n$. (Note that $\gamma_{1}=-\infty$ and $\hat{s}=0$, when $g_{r}=0$.) Hence, the set Ω_{C} where the nonnegativity exists is sketched in figure 2 (left part).

Thus, $\Omega_{C}=\left\{(s, \hat{s}):\right.$ if $s \geq 0$ then $\hat{s} \leq \gamma_{1} s$ and if $s \leq 0$ then $\left.\hat{s} \leq \gamma_{2} s\right\}$.

- For (D)

Denote that $\delta_{1}=\min _{r=\tau+1, \tau+2, \ldots,(m-1) n+n}\left\{f_{r} / g_{r}\right\}$ and $\delta_{2}=\max _{r=\tau+1, \tau+2, \ldots,(m-1) n+n}\left\{f_{r} / g_{r}\right\}$, where $f_{r}, g_{r} \geq 0$ for $r=1,2, \ldots, m n$. (Note

Figure 2: (C) system of inequalities holds.

(D) system of inequalities holds.
that $\delta_{2}=+\infty$ and $\hat{s}=0$ when $g_{r}=0$.) Hence, the set Ω_{D}, where the nonnegativity exists, is sketched also in figure 2 (right part).

Thus, $\Omega_{D}=\left\{(s, \hat{s}):\right.$ if $s \geq 0$ then $\hat{s} \geq \delta_{2} s$ and ifs ≤ 0 then $\left.\hat{s} \geq \delta_{1} s\right\}$. Consequently, it is profound that $\Omega_{A} \cap \Omega_{B} \cap \Omega_{C} \cap \Omega_{D}=\emptyset$.

Corollary 1 If there exists a set Ω for indeterminates $s, \hat{s} \in \mathbb{R}$ where the homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive), then system (1) is not analyzed to (A) - (D) sub-systems of inequalities, simultaneously. Proof. It is a straightforward result of Theorem 1 and Definition 1.

On the other hand, we can consider the results of the following Corollary which describes all the cases of the existence of nonnegativity or positivity.

Corollary 2 There exists a set Ω for indeterminates $s, \hat{s} \in \mathbb{R}$ such as the homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive), when system (1) is analyzed to one of the following possible combinations of systems of inequalities.
(1) $A B C$, (2) $A B D$, (3) $A C D$, (4) $B C D$, (5) $A B$, (6) $A C$, (7) $A D$ (8) $B C$, (9) $B D$, (10) $C D$, (11) A, (12) B, (13) C and (14) D.

In the next lines, we examine each case separately.
$\diamond(\mathbf{1})$ System (1) is analyzed to $(\mathrm{A}),(\mathrm{B})$ and (C) simultaneously.
Thus, we consider that system (A) has k inequalities, system (B) has $\rho-k$ inequalities, and system (C) has $m n-\rho$ inequalities.
There exists solution if $\beta_{2}<\gamma_{1}$, see figure 3 (left part).
Then the solution is in the set

$$
\Omega_{A B C}=\left\{(s, \hat{s}): \text { if } s \geq 0 \text { and } \beta_{2} s \leq \hat{s} \leq \gamma_{1} s\right\} .
$$

Figure 3: ABC system of inequalities holds. ABD system of inequalities holds.

Figure 4: ACD system of inequalities holds. BCD system of inequalities holds.
$\diamond(2)$ System (1) is analyzed to (A), (B) and (D) simultaneously.
Thus, we consider that system (A) has k inequalities, system (B) has $\rho-k$ inequalities, and system (D) has $m n-\rho$ inequalities.
There exists solution if $\delta_{2}<\alpha_{1}$, see figure 3 (right part).
Then the solution is in the set

$$
\Omega_{A B D}=\left\{(s, \hat{s}): \text { if } s \geq 0 \text { and } \delta_{2} s \leq \hat{s} \leq \alpha_{1} s\right\}
$$

$\diamond(3)$ System (1) is analyzed to (A), (C) and (D) simultaneously.
Thus, we consider that system (A) has k inequalities, system (C) has $\tau-k$ inequalities, and system (D) has $m n-\tau$ inequalities. There exists solution if $\alpha_{2}<\delta_{1}$, see figure 4 (left part).

Then the solution is in the set

$$
\Omega_{A C D}=\left\{(s, \hat{s}): \text { if } s \geq 0 \text { and } \delta_{1} s \leq \hat{s} \leq \alpha_{2} s\right\}
$$

$\diamond(4)$ System (1) is analyzed to (B), (C) and (D) simultaneously.

Figure 5: AB system of inequalities holds. AC system of inequalities holds.

Thus, we consider that system (B) has ρ inequalities, system (C) has $\tau-\rho$ inequalities, and system (D) has $m n-\tau$ inequalities.
There exists solution if $\gamma_{2}<\beta_{1}$, see figure 4 (right part).
Then the solution is in the set

$$
\Omega_{B C D}=\left\{(s, \hat{s}): \text { if } s \leq 0 \text { and } \beta_{1} s \leq \hat{s} \leq \gamma_{2} s\right\} .
$$

$\diamond(5)$ System (1) is analyzed to (A) and (B) simultaneously.
Thus, we consider that system (A) has k inequalities, and system (B) has $m n-k$ inequalities. There exists solution, see figure 5 (left part).

Then the solution is in the set

$$
\Omega_{A B}=\left\{(s, \hat{s}): \text { if } s \geq 0 \text { and } \beta_{2} s \leq \hat{s} \leq a_{1} s\right\}
$$

$\diamond(\mathbf{6})$ System (1) is analyzed to (A) and (C) simultaneously.
Thus, we consider that system (A) has k inequalities, and system (C) has $m n-k$ inequalities.There exists solution, see figure 5 (right part).
Then the solution is in the set

$$
\Omega_{A C}=\left\{(s, \hat{s}): \text { if } \hat{s} \leq 0 \text { and } \frac{\hat{s}}{a_{2}} \leq s \leq \frac{\hat{s}}{\gamma_{1}}\right\}
$$

$\diamond(7)$ System (1) is analyzed to (A) and (D) simultaneously.
Thus, we consider that system (A) has k inequalities, and system (D) has $m n-k$ inequalities. There exists solution if $\delta_{2}<\alpha_{1}$, and the solution is in the set (see figure 3 right part)

$$
\Omega_{A D}=\left\{(s, \hat{s}): \text { if } s \geq 0 \text { and } \delta_{2} s \leq \hat{s} \leq \alpha_{1} s\right\} \equiv \Omega_{A B D}
$$

$\diamond(8)$ System (1) is analyzed to (B) and (C) simultaneously.
Thus, we consider that system (B) has ρ inequalities, and system (C) has $m n-\rho$

Figure 6: BD system of inequalities holds. CD system of inequalities holds.
inequalities. There exists solution if, and the solution is in the set (see figure 3 left part)

$$
\Omega_{B C}=\left\{(s, \hat{s}): \text { if } s \geq 0 \text { and } \beta_{2} s \leq \hat{s} \leq \gamma_{1} s\right\} \equiv \Omega_{A B C}
$$

$\diamond(9)$ System (1) is analyzed to (B) and (D) simultaneously.
Thus, we consider that system (B) has ρ inequalities, and system (D) has $m n-\rho$ inequalities. There exists solution, see figure 6 (left part).

Then the solution is in the set

$$
\Omega_{B D}=\left\{(s, \hat{s}): \text { if } \hat{s} \geq 0 \text { and } \frac{\hat{s}}{\beta_{1}} \leq s \leq \frac{\hat{s}}{\delta_{2}}\right\} .
$$

$\diamond(\mathbf{1 0})$ System (1) is analyzed to (C) and (D) simultaneously.
Thus, we consider that subsystem (C) has τ inequalities, and subsystem (D) has $m n-\tau$ inequalities. There exists solution, see figure 6 (right part). Then the solution is in the set

$$
\Omega_{C D}=\left\{(s, \hat{s}): i f s \leq 0 \operatorname{and} \delta_{1} s \leq \hat{s} \leq \gamma_{2} s\right\}
$$

Finally, for the other for cases, see $\Omega_{A}, \Omega_{B}, \Omega_{C}$ and Ω_{D}, respectively.

3 The algorithm for checking the nonnegativity of homogeneous matrix pencil

In this section, we summarize the results of section 2 into the following algorithm which is very useful in practice.

Algorithm

Step 1: Inputs: Give the singular system, i.e. matrices F, G.
Step 2: Considering the elements of matrices from step 1, we denote the number of systems of inequalities:

$$
\begin{aligned}
& A B C--\rightarrow \text { Go to Step 3, } A B D--\rightarrow \text { Go to Step 4, } \\
& A C D--\rightarrow \text { Go to Step 5, } B C D--\rightarrow \text { Go to Step 6, } \\
& A B--\rightarrow \text { Go to Step 7, } A C--\rightarrow \text { Go to Step 8, } \\
& A D--\rightarrow \text { Go to Step 9, } B C--\rightarrow \text { Go to Step 10, } \\
& B D--\rightarrow \text { Go to Step 11, } C D--\rightarrow \text { Go to Step 12, } \\
& A--\rightarrow \text { Go to Step 13, } B--\rightarrow \text { Go to Step 14, } \\
& C--\rightarrow \text { Go to Step 15, } D--\rightarrow \text { Go to Step 16. } \\
& A B C D--\rightarrow \text { Go to Step } 17
\end{aligned}
$$

Step 3: (ABC) If condition $\beta_{2} \leq \gamma_{1}$ is satisfied, then the homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every $(s, \hat{s}) \in \Omega_{A B C}$, else if go to step 18 .

Step 4: (ABD) If condition $\delta_{2} \leq \alpha_{1}$ is satisfied, then the homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every $(s, \hat{s}) \in \Omega_{A B D}$, else if go to step 18.

Step 5: (ACD) If condition $\alpha_{2} \leq \delta_{1}$ is satisfied, then the homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every $(s, \hat{s}) \in \Omega_{A C D}$, else go to step 18 .

Step 6: (BCD) If condition $\gamma_{2} \leq \beta_{1}$ is satisfied, then the homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every $(s, \hat{s}) \in \Omega_{B C D}$, else go to step 18 .

Step 7: (AB) The homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every ($s, \hat{s}) \in \Omega_{A B}$, else go to step 18 .

Step 8: (AC) The homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every ($s, \hat{s}) \in \Omega_{A C}$, else go to step 18 .

Step 9: (AD) If condition $\delta_{2} \leq \alpha_{1}$ is satisfied, then the homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every $(s, \hat{s}) \in \Omega_{A D}$, else go to step 18.

Step 10: (BC) If condition $\beta_{2} \leq \gamma_{1}$ is satisfied, then the homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every $(s, \hat{s}) \in \Omega_{B C}$, else go to step 18.

Step 11: (BD) The homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every (s, \hat{s}) $\in \Omega_{B D}$, else go to step 18 .

Step 12: (CD) The homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every $(s, \hat{s}) \in \Omega_{C D}$, else go to step 18 .

Step 13: (A) The homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every (s, \hat{s}) $\in \Omega_{A}$, else go to step 18 .

Step 14: (B) The homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every (s, \hat{s}) $\in \Omega_{B}$, else go to step 18 .

Step 15: (C) The homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every (s, \hat{s}) $\in \Omega_{C}$, else go to step 18 .

Step 16: (D) The homogeneous matrix pencil $s F-\hat{s} G$ is nonnegative (or positive) for every (s, \hat{s}) $\in \Omega_{D}$, else go to step 18 .

Step 17: (ABCD) The homogeneous matrix pencil $s F-\hat{s} G$ is not nonnegative (or positive) for every $(s, \hat{s}) \in \mathbb{R} \times \mathbb{R}$.

Step 18: The homogeneous matrix pencil $s F-\hat{s} G$ is not nonnegative (or positive) for every $(s, \hat{s}) \in \mathbb{R} \times \mathbb{R}$.

End Algorithm

In order to understand better the results of that paper, some numerical examples are considered.

Example 3.1 a) Consider the pencil (F, G), where

$$
F=\left[\begin{array}{ccc}
1 & -2 & 1 \\
1 & 1 & -1 \\
1 & -2 & 1
\end{array}\right] \text { and } G=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

It is profound that $\operatorname{det} F=0$, and the system of inequality ABC is derived. Considering the results of section 2 and Algorithm above, we should check out whether or not the condition $\beta_{2} \leq \gamma_{1}$ is true. Analytically,

$$
\beta_{2}=\max _{f_{r} \geq 0, g_{r} \leq 0}\left\{f_{r} / g_{r}\right\}=\max \left\{\frac{1}{-1}, \frac{1}{-1}\right\}=-1
$$

and

$$
\gamma_{1}=\min _{f_{r} \leq 0, g_{r} \geq 0}\left\{f_{r} / g_{r}\right\}=\min \left\{\frac{-1}{1}, \frac{-2}{1}, \frac{-2}{1}\right\}=-2
$$

Thus, since $\beta_{2}>\gamma_{1}$ the homogeneous matrix pencil $L(s, \hat{s})=s F-\hat{s} G$ can not contain a nonnegative (or positive) matrix.
b) Consider now a slightly different to previous pencil (F, G), where

$$
F=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right] \quad \text { and } \quad G=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

It is profound that also $\operatorname{det} F=0$, and the system of inequality ABC is derived. Considering the results of section 2 and Algorithm above, we obtain

$$
\beta_{2}=\max _{f_{r} \geq 0, g_{r} \leq 0}\left\{f_{r} / g_{r}\right\}=-1
$$

and

$$
\gamma_{1}=\min _{f_{r} \leq 0, g_{r} \geq 0}\left\{f_{r} / g_{r}\right\}=\min \left\{\frac{-1}{1}, \frac{-1}{1}, \frac{-1}{1}\right\}=-1
$$

Thus, the homogeneous matrix pencil $L(s, \hat{s})=s F-\hat{s} G$ can contain a nonnegative for every $s=-\hat{s}$, i.e.
$s(F+G)=s\left(\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]+\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1\end{array}\right]\right)=s\left[\begin{array}{lll}0 & 0 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 2\end{array}\right] \in L(s, \hat{s})$,
for $s>0$.
c) Now, we consider the pencil (F, G), where

$$
F=\left[\begin{array}{ccc}
3 & -1 & 1 \\
1 & 2 & -1 \\
3 & -1 & 1
\end{array}\right] \text { and } G=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

It is profound that $\operatorname{det} F=0$, and the system of inequality ABC is derived.
Considering the results of section 2 and Algorithm above, we obtain

$$
\beta_{2}=\max _{f_{r} \geq 0, g_{r} \leq 0}\left\{f_{r} / g_{r}\right\}=\max \left\{\frac{3}{-1}, \frac{2}{-1}\right\}=-2
$$

and

$$
\gamma_{1}=\min _{f_{r} \leq 0, g_{r} \geq 0}\left\{f_{r} / g_{r}\right\}=-1
$$

Thus, since the restriction above is true, the homogeneous matrix pencil $L(s, \hat{s})=$ $s F-\hat{s} G$ is contain a nonnegative pencil for every

$$
(s, \hat{s}) \in \Omega_{A B C}=\{(s, \hat{s}): \text { ifs } \geq 0 \text { and }-2 s \leq \hat{s} \leq-s\},
$$

i.e. for the pair $\left(s, \hat{s}=-\frac{3}{2} s\right)$, we have

$$
s\left(F+\frac{3}{2} G\right)=s\left(\left[\begin{array}{ccc}
3 & -1 & 1 \\
1 & 2 & -1 \\
3 & -1 & 1
\end{array}\right]+\frac{3}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right]\right)=\frac{1}{2} s\left[\begin{array}{ccc}
1 & 1 & 5 \\
5 & 1 & 1 \\
9 & 1 & 5
\end{array}\right] \in L(s, \hat{s}),
$$

for $s \geq 0$.
Moreover, it can be also positive if $s>0$ (which is trivial).
d) Finally, we consider the pencil (F, G), where

$$
F=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right] \text { and } G=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

It is profound that $\operatorname{det} F=0$, and the system of inequality ABCD is derived. Following the results of section 2 , the homogeneous matrix pencil can not contain non-negative matrix into a set of (s, \hat{s}).

4 Conclusions - Further Results

In this paper, we present an algorithm to characterize the nonnegativity (or positivity) of a given homogeneous pencil. Following the thoughts of Uhlig [17] and by using still an elementary geometric framework, we obtain the desired results. It should be pointed out that quite similar question whether a given pencil of real symmetric matrices contains a positive definite matrix was treated by many mathematicians, such as Hestenes and Mcshane (1935), Finsles (1937), Albert (1938), Reid (1938), Dines (1941), Calabi (1964), Taussky (1967), Hestenes (1968), Berman (1970), see [17] for more details. Although, we should stress out that our matrices have not any particular algebraic structure. This new algorithmic approach can be transferred into a standard computational routine by using Matlab m-files. This task is one of our future plans.

References

[1] S.L. Campbell, Singular systems of differential equations, Pitman, San Francisco, Vol. 1, 1980; Vol. 2, 1982.
[2] T.P. de Lima, Blending positive matrix pencils with economic models, Lecture Notes in Control and Information Sciences (Springer Berlin/Heidelberg) 294, 2004, 289-296.
[3] L. Dai, Singular control systems, Springer-Verlag, New York, 1989.
[4] L. Farina, S. Rinaldi, Positive linear systems. Theory and applications, Series on Pure and Applied Mathematics, John Wiley and Sons, New York, 2000.
[5] R.F. Gantmacher, The theory of matrices, vol. I and II, Chelsea, New York, U.S.A., 1959.
[6] G.I. Kalogeropoulos, Matrix pencils and linear systems, Ph.D Thesis, City University, London, 1985.
[7] N. Karcanias and G.E. Hayton, Generalized autonomous differential systems, algebraic duality and geometry theory, Proceedings of IFAC VIII, Triennial World Congress, Kyoto, Japan, 1981.
[8] N. Karcanias and G.E. Hayton, Generalized autonomous differential systems, al-gebraic duality and geometry theory, Research Report, The City University, Systems Science, DSS/N.K./G.E.H./212, 1982.
[9] D.A., Kendrick. On the Leontief dynamic inverse. Quarterly Journal of Economics 86, 1972, 693-696.
[10] R.G. Kreijger and H. Neudecker, Kendrick's forward integration method and the dynamic Leontief multisectoral model. Quarterly Journal of Economics 90, 1976, 505-507.
[11] W. Leontief, Input-Output Economics. 2nd ed., New York: Oxford University Press, 1986.
[12] P.H. Leslie, On the use of matrices in certain population mathematics, Biometrika 35, 1945, 183-212.
[13] D.A. Livesey, The singularity problem in the dynamic input-output model, International Journal of Systems Science 4, 1973, 437-440.
[14] D.G. Luenberger and A. Arbel, Singular dynamic Leontief systems, Econometrica 45, 1977, 991-995.
[15] G. Sierksma, Nonnegative matrices: The open Leontief model, Linear Algebra and its Applications 26, 1979, 175-201.
[16] M.S. Silva and T.P. de Lima, Looking for nonnegative solutions of a Leontief dynamic model, Linear Algebra and its Applications 364, 2003, 281-316.
[17] F. Uhlig, Definite and semi-definite matrices in a real symmetric matrix pencil, Pacific Journal of Mathematics, Vo. 49, No. 2, 1973, 561-568.
[18] A.A. Zimbidis, A.A. Pantelous, and G.I Kalogeropoulos, A generalized linear discrete time model for managing the solvency interaction and singularities arising from potential regulatory constraints imposed within a portfolio of different insurance products, Proceedings of ASTIN colloquium 2008, Manchester, U.K.

Oscillation of first-order impulsive difference equations with continuous arguments

B. Karpuz, Ö. Öcalan and S. Öztürk

Address. Department of Mathematics, Faculty of Sciences and Arts, ANS Campus, 03200, Afyonkarahisar, Turkey.

Abstract

In this paper, we present some integral criteria for the oscillation of solutions to the following impulsive delay difference equation involving continuous arguments: $$
\begin{cases}\Delta_{\rho} x(t)+\sum_{i \in \mathcal{I}} p_{i}(t) x\left(t-\tau_{i}\right)=0 & \text { for } t \in\left[t_{0}, \infty\right) \backslash\left\{\theta_{n}\right\}_{n \in \mathbb{N}} \\ \Delta x\left(\theta_{n}\right)+q_{n} x\left(\theta_{n}\right)=0 & \text { for } n \in \mathbb{N},\end{cases}
$$ where $t_{0} \in \mathbb{R}, \rho \in(0, \infty), \mathcal{I}$ is a bounded beginning segment of $\mathbb{N}, p_{i} \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$, $\tau_{i} \in[0, \infty)$ for all $i \in \mathcal{I},\left\{q_{n}\right\}_{n \in \mathbb{N}} \subset(-\infty, 1),\left\{\theta_{n}\right\}_{n \in \mathbb{N}} \subset\left[t_{0}, \infty\right)$ is the increasing unbounded sequence of impulse points, Δ_{ρ} is the forward difference operator with the step size ρ, and Δ is the jump of the solution at the specified impulse point.

1 Introduction

This paper is concerned with the oscillatory nature of solutions of the following difference equation with continuous arguments:

$$
\begin{cases}\Delta_{\rho} x(t)+\sum_{i \in \mathcal{I}} p_{i}(t) x\left(t-\tau_{i}\right)=0 & \text { for } t \in\left[t_{0}, \infty\right) \backslash\left\{\theta_{n}\right\}_{n \in \mathbb{N}} \tag{1}\\ \Delta x\left(\theta_{n}\right)+q_{n} x\left(\theta_{n}\right)=0 & \text { for } n \in \mathbb{N},\end{cases}
$$

where $t_{0} \in \mathbb{R}, \rho \in(0, \infty), \mathcal{I}$ is a bounded beginning segment of $\mathbb{N}, p_{i} \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$, $\tau_{i} \in[0, \infty)$ for all $i \in \mathcal{I},\left\{q_{n}\right\}_{n \in \mathbb{N}} \subset(-\infty, 1)$ and $\left\{\theta_{n}\right\}_{n \in \mathbb{N}} \subset\left(t_{0}, \infty\right)$ is the increasing unbounded sequence of impulse points. Here, $\Delta_{\rho} x(t):=x(t+\rho)-x(t)$ for $t \in\left[t_{0}, \infty\right)$ and $\Delta x\left(\theta_{n}\right):=$ $x\left(\theta_{n}^{+}\right)-x\left(\theta_{n}\right)$ for $n \in \mathbb{N}$, where $x\left(\theta_{n}^{+}\right)$denotes the right sided limit of x at the impulse point θ_{n} for some $n \in \mathbb{N}$, and the left sided limits are defined similarly. It's a well-known fact that all solutions of (1) are oscillatory in the absence of a subsequence $\left\{\theta_{n_{k}}\right\}_{k \in \mathbb{N}}$ such that $\left\{q_{n_{k}}\right\}_{k \in \mathbb{N}} \subset[1, \infty)$. In the sequel, for simplicity in the notation, we shall assume that the empty product is the unit.

E-Mails. bkarpuz@gmail.com (B. Karpuz), ozkan@aku.edu.tr (Ö. Öcalan) and ssahin@aku.edu.tr (S. Öztürk) URLs. http://www2.aku.edu.tr/~bkarpuz (B. Karpuz) and http://www2.aku.edu.tr/~ozkan (Ö. Öcalan)

In recent papers [8, 9 , Wei and Shen studied some oscillation and asymptotic properties of the impulsive difference equation

$$
\begin{cases}\Delta_{\rho} x(t)+p(t) x(t-\tau)=0 & \text { for } t \in\left[t_{0}, \infty\right) \backslash\left\{\theta_{n}\right\}_{n \in \mathbb{N}} \tag{2}\\ \Delta_{\rho} x\left(\theta_{n}\right)+q_{n} x\left(\theta_{n}\right)=0 & \text { for } n \in \mathbb{N},\end{cases}
$$

where t_{0}, ρ, p, τ (with $\tau / \rho \in \mathbb{N}$), $\left\{q_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\theta_{n}\right\}_{n \in \mathbb{N}}$ are as mentioned for (II). The method in those papers are analogues to those applied for the discrete case (for usual difference equations), this is why the authors consider use the operator Δ_{ρ} in their impulse condition. Different types of impulse conditions in (1) and (2) indicate that our method employed here will be completely different from the method in [8, (9] since our results will be more closer to those employed for differential equations.

We wish to quote the following result from [6, which will be used in the sequel to obtain comparison results with delay differential equations.

Theorem A ([6, Theorem 1]). Assume that $\rho \in(0, \infty), p_{i} \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$ and $\tau_{i} \in[0, \infty)$ for all $i \in \mathcal{I}$, where \mathcal{I} is a bounded beginning segment of \mathbb{N}. Then, every solution of the nonimpulsive delay difference equation

$$
\Delta_{\rho} x(t)+\sum_{i \in \mathcal{I}} p_{i}(t) x\left(t-\tau_{i}\right)=0 \quad \text { for } t \in\left[t_{0}, \infty\right)
$$

is oscillatory if every solution of the following delay differential equation

$$
x^{\prime}(t)+\frac{1}{\rho} \sum_{i \in \mathcal{I}} \min _{t-2 \rho \leq \zeta \leq t-\rho}\left\{p_{i}(\zeta)\right\} x\left(t-\tau_{i}\right)=0 \quad \text { for } t \in\left[t_{0}+2 \rho, \infty\right)
$$

is oscillatory.
Let $\tau_{\text {max }}:=\max \left\{\tau_{i}: i \in \mathcal{I}\right\}$. By a solution of (1), we mean a function $x:\left[t_{0}-\tau_{\max }, \infty\right) \rightarrow \mathbb{R}$ such that x is continuous on $\left(\theta_{n}, \theta_{n+1}\right)$ for all $n \in \mathbb{N}$ and satisfies (11), and that $x\left(\theta_{n}^{ \pm}\right)$exists as a finite constant with $x\left(\theta_{n}^{-}\right)=x\left(\theta_{n}\right)$ for all $n \in \mathbb{N}$. From now on, to make the definition of the solution consistent, we shall assume that $t \notin\left\{\theta_{n}\right\}_{n \in \mathbb{N}}$ implies $t+\rho \notin\left\{\theta_{n}\right\}_{n \in \mathbb{N}}$ and $t-\tau_{i} \notin\left\{\theta_{n}\right\}_{n \in \mathbb{N}}$ for all $i \in \mathcal{I}$. Together with the impulsive delay difference equation (1), it is customary to specify an initial condition of the form

$$
\begin{equation*}
x=\varphi \quad \text { on }\left[t_{0}-\tau_{\max }, t_{0}+\rho\right], \tag{3}
\end{equation*}
$$

where the initial function φ is a prescribed continuous real-valued function on the interval $\left[t_{0}-\right.$ $\left.\tau_{\text {max }}, t_{0}+\rho\right]$ satisfying the consistency condition

$$
\begin{equation*}
\Delta_{\rho} x\left(t_{0}\right)+\sum_{i \in \mathcal{I}} p_{i}\left(t_{0}\right) x\left(t_{0}-\tau_{i}\right)=0 . \tag{4}
\end{equation*}
$$

By the method of steps, one can easily conclude that (1) admits a unique solution x which satisfies the initial condition (3) and the consistency condition (4). For convenience, we denote this solution by $x=x\left(t, t_{0}, \varphi\right)$. As is customary, a solution x of (1) is called nonoscillatory if it is eventually of fixed sign, otherwise, it is called oscillatory.

2 Main results

From now on, for convenience in the results, we shall suppose that there exist positive constants α and β_{i} for $i \in \mathcal{I}$ such that $\prod_{t-\rho \leq \theta_{k}<t}\left(1-q_{k}\right) \equiv \alpha$ for all $t \in\left[t_{0}+\rho, \infty\right)$ and $\prod_{t-\tau_{i} \leq \theta_{k}<t}\left(1-q_{k}\right) \equiv \beta_{i}$ for all $t \in\left[t_{0}+\tau_{i}, \infty\right)$ and all $i \in \mathcal{I}$. Consider the following nonimpulsive delay difference equation:

$$
\begin{equation*}
\Delta_{\rho} x(t)+\sum_{i \in \mathcal{I}} \frac{\alpha^{\tau_{i} / \rho}}{\beta_{i}} p_{i}(t) x\left(t-\tau_{i}\right)=0 \quad \text { for } t \in\left[t_{0}, \infty\right) \tag{5}
\end{equation*}
$$

As is customary, a solution of the nonimpulsive equation (5) is a function $x \in C\left(\left[t_{0}-\tau, \infty\right), \mathbb{R}\right)$ satisfying (5) on $\left[t_{0}, \infty\right)$.

Theorem 1. If $y=y\left(t, t_{0}, \varphi\right)$ is a solution of (5), then $x=x\left(t, t_{0}, \varphi\right)$ defined by

$$
\begin{equation*}
x(t):=\frac{1}{\alpha^{t / \rho}}\left[\prod_{t_{0} \leq \theta_{k}<t}\left(1-q_{k}\right)\right] y(t) \quad \text { for } t \in\left[t_{0}, \infty\right) \tag{6}
\end{equation*}
$$

is a solution of (11).
Proof. Let $y=y\left(t, t_{0}, \varphi\right)$ be the solution of (5), we shall prove that x defined by (6) satisfies (11). It is obvious that x is continuous on each interval $\left(\theta_{n}, \theta_{n+1}\right)$ for all $n \in \mathbb{N}$. From (6), we get

$$
\begin{align*}
\Delta_{\rho} y(t) & =\frac{\alpha^{t / \rho+1}}{\prod_{t_{0} \leq \theta_{k}<t+\rho}\left(1-q_{k}\right)} x(t+\rho)-\frac{\alpha^{t / \rho}}{\prod_{t_{0} \leq \theta_{k}<t}\left(1-q_{k}\right)} x(t) \\
& =\frac{\alpha^{t / \rho}}{\prod_{t_{0} \leq \theta_{k}<t}\left(1-q_{k}\right)} \Delta_{\rho} x(t) \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
y\left(t-\tau_{i}\right) & =\frac{\alpha^{t / \rho}}{\alpha^{\tau_{i} / \rho} \prod_{t_{0} \leq \theta_{k}<t-\tau_{i}}\left(1-q_{k}\right)} x\left(t-\tau_{i}\right) \\
& =\frac{\beta_{i} \alpha^{t / \rho}}{\alpha^{\tau_{i} / \rho} \prod_{t_{0} \leq \theta_{k}<t}\left(1-q_{k}\right)} x\left(t-\tau_{i}\right) \tag{8}
\end{align*}
$$

for all $t \in\left[t_{0}, \infty\right)$ and all $i \in \mathcal{I}$. Substituting (77) and (8) into (5) and canceling the positive term $\alpha^{t / \rho} / \prod_{t_{0} \leq \theta_{k}<t}\left(1-q_{k}\right)$, we see that x defined by (6) solves the former equation in (11). On the other hand, for all $n \in \mathbb{N}$, we have

$$
x\left(\theta_{n}^{+}\right)=\lim _{t \rightarrow \theta_{n}^{+}}\left(\frac{1}{\alpha^{t / \rho}}\left[\prod_{t_{0} \leq \theta_{k}<t}\left(1-q_{k}\right)\right] y(t)\right)=\frac{1}{\alpha^{\theta_{n} / \rho}}\left[\prod_{t_{0} \leq \theta_{k} \leq \theta_{n}}\left(1-q_{k}\right)\right] y\left(\theta_{n}\right)=\left(1-q_{n}\right) x\left(\theta_{n}\right)
$$

which shows that x satisfies the latter equation in (1) too. The proof is therefore completed.
The following result can be regarded as the converse part of Theorem 1 .
Theorem 2. If $x=x\left(t, t_{0}, \varphi\right)$ is a solution of (11), then $y=y\left(t, t_{0}, \varphi\right)$ defined by

$$
\begin{equation*}
y(t)=\frac{\alpha^{t / \rho}}{\prod_{t_{0} \leq \theta_{k}<t}\left(1-q_{k}\right)} x(t) \quad \text { for } t \in\left[t_{0}, \infty\right) \tag{9}
\end{equation*}
$$

is a solution of (5).

Proof. Let $x=x\left(t, t_{0}, \varphi\right)$ be a solution of (11). Since y defined by (9) is continuous on the intervals $\left(\theta_{n}, \theta_{n+1}\right)$ with $y\left(\theta_{n}^{-}\right)=y\left(\theta_{n}\right)$ for all $n \in \mathbb{N}$, it follows that

$$
y\left(\theta_{n}^{+}\right)=\lim _{t \rightarrow \theta_{n}^{+}}\left(\frac{\alpha^{t / \rho}}{\prod_{t_{0} \leq \theta_{k}<t}\left(1-q_{k}\right)} x(t)\right)=\frac{\alpha^{\theta_{n} / \rho}}{\prod_{t_{0} \leq \theta_{k} \leq \theta_{n}}\left(1-q_{k}\right)} x\left(\theta_{n}^{+}\right)=y\left(\theta_{n}\right)
$$

for all $n \in \mathbb{N}$, which implies that x is continuous on $\left[t_{0}, \infty\right)$. It is not hard to see that y solves (5). This completes the proof.

Theorem 3. Every solution of (1) oscillates if and only if every solution of (5) oscillates.

Proof. The proof follows from Theorem 1 . Theorem 2 and the fact that $\left\{q_{n}\right\}_{n \in \mathbb{N}} \subset(-\infty, 1)$.

Using Theorem A and Theorem 3, we can give the following oscillation result.
Theorem 4. Every solution of (11) oscillates if every solution of the following delay differential equation

$$
x^{\prime}(t)+\sum_{i \in \mathcal{I}} \frac{\alpha^{\tau_{i} / \rho}}{\rho \beta_{i}} \min _{t-2 \rho \leq \zeta \leq t-\rho}\left\{p_{i}(\zeta)\right\} x\left(t-\tau_{i}\right)=0 \quad \text { for } t \in\left[t_{0}+2 \rho, \infty\right)
$$

oscillates.

As an immediate consequence of Theorem 4, we have the following corollary.
Corollary 1 (See [1, 2]). Assume that

$$
\liminf _{t \rightarrow \infty} \int_{t-\tau_{\min }}^{t} \sum_{i \in \mathcal{I}} \frac{\alpha^{\tau_{i} / \rho}}{\rho \beta_{i}} \min _{\eta-2 \rho \leq \zeta \leq \eta-\rho}\left\{p_{i}(\zeta)\right\} \mathrm{d} \eta \frac{1}{\mathrm{e}}
$$

or

$$
\limsup _{t \rightarrow \infty} \int_{t-\tau_{\min }}^{t} \sum_{i \in \mathcal{I}} \frac{\alpha^{\tau_{i} / \rho}}{\rho \beta_{i}} \min _{\eta-2 \rho \leq \zeta \leq \eta-\rho}\left\{p_{i}(\zeta)\right\} \mathrm{d} \eta 1,
$$

where $\tau_{\min }:=\min \left\{\tau_{i}: i \in \mathcal{I}\right\}$. Then, every solution of (1) oscillates.
We give the following example as a simple application of Theorem 4 .
Example 1. Let \mathcal{I} be a bounded beginning segment of $\mathbb{N}, \rho(0, \infty), q \in(-\infty, 1), p_{i} \in(0, \infty)$ and $\tau_{i} \in \mathbb{N}$ for all $i \in \mathcal{I}$, and consider the following autonomous difference equation equation

$$
\begin{cases}\Delta_{\rho} x(t)+\sum_{i \in \mathcal{I}} p_{i} x\left(t-\rho \tau_{i}\right)=0 & \text { for } t \in[0, \infty) \backslash \rho \mathbb{N} \tag{10}\\ \Delta x(n)+q x(n)=0 & \text { for } n \in \rho \mathbb{N}\end{cases}
$$

Due to Theorem 4, since $\alpha=(1-q)$ and $\beta_{i}=(1-q)^{\tau_{i}}$ for all $i \in \mathcal{I}$, the associated differential equation with (10) is

$$
\begin{equation*}
x^{\prime}(t)+\sum_{i \in \mathcal{I}} \frac{p_{i}}{\rho} x\left(t-\rho \tau_{i}\right)=0 \quad \text { for } t \in[2 \rho, \infty) \tag{11}
\end{equation*}
$$

From [1, Theorem 2.2.1], we learn that if

$$
\sum_{i \in \mathcal{I}} p_{i} \tau_{i} \frac{1}{\mathrm{e}},
$$

then every solution of (11) oscillates, which implies the same for (10).

References

[1] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991.
[2] G. Ladas, V. Laskhmikantham and J. S. Papadakis. Oscillations of higher-order retarded differential equations generated by the retarded argument. Delay and functional differential equations and their applications. Academic Press, New York, pp. 219-231, 1972.
[3] G. Ladas, L. Pakula and Z. Wang. Necessary and sufficient conditions for the oscillation of difference equations. Panamer. Math. J., vol. 2, no. 1, pp. 17-29, (1992).
[4] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov. Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989.
[5] X. Li and D. Zhu. Comparison theorems of oscillation and nonoscillation for neutral difference equations with continuous arguments. Commun. Pure Appl. Anal., vol. 2, no. 4, pp. 579-589, (2003).
[6] J. H. Shen. Cmparison theorems for the oscillation of difference equations with continuous arguments and applications. Chinese Sci. Bull., vol. 41, no. 18, pp. 1506-1510, (1996).
[7] J. Yan and A. Zhao. Oscillation and stability of linear impulsive delay differential equations. J. Math. Anal. Appl., vol. 227, no. 1, pp. 187-194, (1998).
[8] G. P. Wei and J. H. Shen. Oscillation of solutions of impulsive difference equations with continuous variable. Math. Appl. (Wuhan), vol. 18, no. 2, pp. 293-296, (2005).
[9] G. P. Wei and J. H. Shen. Persistence of nonoscillatory solutions for difference equations under impulsive perturbations. Acta Math. Sci. Ser. A Chin. Ed., vol. 26, no. 4, pp. 595-600, (2006).

Non-polynomial spline method of a non-linear system of second-order boundary value problems

Hikmet Caglar ${ }^{1}$, Nazan Caglar ${ }^{2}$, Canan Akkoyunlu ${ }^{1}$
${ }^{1}$ Istanbul Kultur University, Department of Mathematics - Computer, 34156 Atakoy Istanbul, Turkey e-mail: s.caglar@iku.edu.tr
${ }^{2}$ Istanbul Kultur University, Faculty of Economic and Administrative Science, 34156 Atakoy Istanbul, Turkey

Abstract

The non-polynomial spline method is proposed to solve a non-linear system of the second-order boundary value problems (BVPs). Some numerical results are given to demostrate the validity and applicability of the presented method. Results obtained by the method indicate the method is simple and effective.

Keywords: Second-order boundary value problems; non-polynomial spline method;non-linear system.

1. Introduction

We consider a non-linear system of second-order BVPs of the form $[1,2,3,5,6]$:

$$
\left.\begin{array}{c}
u^{\prime \prime}+a_{1}(x) u^{\prime}+a_{2}(x) u+a_{3}(x) v^{\prime}+a_{4}(x) v+H_{1}(x, u, v)=f_{1}(x), \\
v^{\prime \prime}+b_{1}(x) v^{\prime}+b_{2}(x) v+b_{3}(x) u^{\prime}+b_{4}(x) u+H_{2}(x, u, v)=f_{2}(x), \tag{1}
\end{array}\right\}
$$

with the following boundary conditions

$$
\begin{equation*}
u(0)=u(1)=0, v(0)=v(1)=0 \tag{2}
\end{equation*}
$$

where $0<x<1, H_{1}, H_{2}$ are nonlinear functions of u and $v, a_{i}(x), b_{i}(x), f_{1}(x)$, and $f_{2}(x)$, are given functions, and $a_{i}(x), b_{i}(x)$ are continuous, $i=1,2,3,4$.

The existence and approximations of the solutions to non-linear systems of second-order BVPs have investigated by many authors[1-6]. In [1] the
sinc-collocation method is presented for solving second-order systems. Their method consists of reducing the solution of Eq.(1) to a set of algebric equations by expanding $u(x)$ and $v(x)$ as sinc functions with unknown coefficients. New method is presented to solve Eq.(1) used in the form of series in the reproducing kernel space in [2]. The variation iteration method is applied for the solution with the assumption that the solutions are unique in [3]. He's homotopy perturbation method (HPM) is proposed for the solution of systems in [5]. A new modification of the homotopy analysis method (HAM) is presented for solving systems of second-order BVPs in [6].

The section of this paper are organized as follows: In the next section we describe the basic formulation of the spline function required for our subsequent development. In section 3 the method are used to analysis to solution of problem (1) and (2). In section 4 some numerical result, that are illustrated using MATLAB 6.5, are given to clarify the method. Section 5 ends this paper with a brief conclusion. Note that we have computed the numerical results by MATLAB 6.5.

2. Spline method

We divide the interval $[a, b]$ into n equal subintervals using the grid points

$$
x_{i}=a+i h, i=0,1,2, \ldots, n,
$$

with

$$
a=x_{0}, x_{n}=b, h=(b-a) / n
$$

where n is an arbitrary positive integer.

Let $u(x)$ be the exact solution and u_{i} be an approximation to $u\left(x_{i}\right)$ obtained by the non-polynomial cubic $S_{i}(x)$ passing through the points $\left(x_{i}, u_{i}\right)$ and $\left(x_{i+1}, u_{i+1}\right)$, we do not only require that $S_{i}(x)$ satisfies interpolatory conditions at x_{i} and x_{i+1}, but also the continuity of first derivative at the common nodes $\left(x_{i}, u_{i}\right)$ are fulfilled. We write $S_{i}(x)$ in the form:
$S_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i} \operatorname{sin\tau }\left(x-x_{i}\right)+d_{i} \cos \tau\left(x-x_{i}\right), i=0,1, \ldots, n-1$
where a_{i}, b_{i}, c_{i} and d_{i} are constants and τ is a free parameter.

A non-polynomial function $S(x)$ of class $C^{2}[a, b]$ interpolates $u(x)$ at the grid points $x_{i}, i=0,1,2, \ldots, n$, depends on a parameter τ, and reduces to ordinary cubic spline $S(x)$ in $[a, b]$ as $\tau \rightarrow 0$.

To derive expression for the coefficients of Eq. (3) in term of u_{i}, u_{i+1}, M_{i} and M_{i+1}, we first define:

$$
\begin{equation*}
S_{i}\left(x_{i}\right)=u_{i}, S_{i}\left(x_{i+1}\right)=u_{i+1}, S^{\prime \prime}\left(x_{i}\right)=M_{i}, S^{\prime \prime}\left(x_{i+1}\right)=M_{i+1} \tag{4}
\end{equation*}
$$

From algebraic manipulation, we get the following expression:

$$
\left.\begin{array}{l}
a_{i}=u_{i}+\frac{M i}{\tau^{2}}, \tag{5}\\
b_{i}=\frac{u_{i+1}-u_{i}}{h}+\frac{M_{i+1}-M_{i}}{\tau \theta}, \\
c_{i}=\frac{M_{i} \cos \theta-M_{i+1}}{\tau \theta}, \\
d_{i}=-\frac{T_{i}^{2}}{\tau^{2}},
\end{array}\right\}
$$

where $\theta=\tau \mathrm{h}$ and $i=0,1,2, \ldots, n-1$.
Using the continuity of the first derivative at $\left(x_{i}, u_{i}\right)$, that is $S_{i-1}^{\prime}\left(x_{i}\right)=$ $S_{i}^{\prime}\left(x_{i}\right)$ we obtain the following relations for $i=1, \ldots, n-1$.

$$
\begin{equation*}
\alpha M_{i+1}+2 \beta M_{i}+\alpha M_{i-1}=\left(1 / h^{2}\right)\left(u_{i+1}-2 u_{i}+u_{i-1}\right) \tag{6a}
\end{equation*}
$$

It is easy to see that $v(x)$ is written as in the same manner

$$
\begin{equation*}
\alpha N_{i+1}+2 \beta N_{i}+\alpha N_{i-1}=\left(1 / h^{2}\right)\left(v_{i+1}-2 v_{i}+v_{i-1}\right) \tag{6b}
\end{equation*}
$$

where $\alpha=\left(-1 / \theta^{2}+1 / \theta \sin \theta\right), \beta=\left(1 / \theta^{2}-\cos \theta / \theta \sin \theta\right)$ and $\theta=\tau h$.
The method is fourth-order convergent if $1-2 \alpha-2 \beta=0$ and $\alpha=1 / 12[4]$.

3. Analysis of the method

To illustrate the application of the Spline method developed in the previous section we consider the non-linear system of second-order BVP that is given in Eq. (1). At the grid point $\left(x_{i}, u_{i}\right)$, the proposed non-linear system of second-order BVP in Eq. (1) may be discretized by

$$
\left.\begin{array}{l}
u^{\prime \prime}+a_{1}\left(x_{i}\right) u^{\prime}+a_{2}\left(x_{i}\right) u+a_{3}\left(x_{i}\right) v^{\prime}+a_{4}\left(x_{i}\right) v+H_{1}(x, u, v)=f_{1}\left(x_{i}\right), \tag{7}\\
v^{\prime \prime}+b_{1}\left(x_{i}\right) v^{\prime}+b_{2}\left(x_{i}\right) v+b_{3}\left(x_{i}\right) u^{\prime}+b_{4}\left(x_{i}\right) u+H_{2}(x, u, v)=f_{2}\left(x_{i}\right)
\end{array}\right\}
$$

Substituting $M_{i}=u^{\prime \prime}$ and $N_{i}=v^{\prime \prime}$ in equation system (5):

$$
\left.\begin{array}{l}
M_{i}+a_{1}\left(x_{i}\right) u_{i}^{\prime}+a_{2}\left(x_{i}\right) u_{i}+a_{3}\left(x_{i}\right) v_{i}^{\prime}+a_{4}\left(x_{i}\right) v_{i}+H_{1}\left(x_{i}, u_{i}, v_{i}\right)=f_{1}\left(x_{i}\right), \tag{8}\\
N_{i}+b_{1}\left(x_{i}\right) v_{i}^{\prime}+b_{2}\left(x_{i}\right) v_{i}+b_{3}\left(x_{i}\right) u_{i}^{\prime}+b_{4}\left(x_{i}\right) u_{i}+H_{2}\left(x_{i}, u_{i}, v_{i}\right)=f_{2}\left(x_{i}\right)
\end{array}\right\}
$$

Solving Eq. (8) for M_{i} and N_{i}, we get

$$
\left.\begin{array}{l}
M_{i}=-a_{1}\left(x_{i}\right) u_{i}^{\prime}-a_{2}\left(x_{i}\right) u_{i}-a_{3}\left(x_{i}\right) v_{i}^{\prime}-a_{4}\left(x_{i}\right) v_{i}-H_{1}\left(x_{i}, u_{i}, v_{i}\right)+f_{1}\left(x_{i}\right) \\
N_{i}=-b_{1}\left(x_{i}\right) v_{i}^{\prime}-b_{2}\left(x_{i}\right) v_{i}-b_{3}\left(x_{i}\right) u_{i}^{\prime}-b_{4}\left(x_{i}\right) u_{i}-H_{2}\left(x_{i}, u_{i}, v_{i}\right)+f_{2}\left(x_{i}\right) \tag{9}
\end{array}\right\}
$$

The following approximations for the first-order derivative of u and v in Eq. (9) can be used

$$
\left.\begin{array}{l}
u_{i}^{\prime} \cong \frac{u_{i+1}-u_{i-1}}{2 h}, \tag{10}\\
u_{i+1}^{\prime} \cong \frac{3 u_{i+1}-4 u_{i}+u_{i-1}}{2 h} \\
u_{i-1}^{\prime} \cong \frac{-u_{i+1}+4 u_{i}-3 u_{i-1}}{2 h} \\
v_{i}^{\prime} \cong \frac{v_{i+1}-u_{i-1}}{2 h} \\
v_{i+1}^{\prime} \cong \frac{3 v_{i+1}-4 v_{i}+v_{i-1}}{2 h} \\
v_{i-1}^{\prime} \cong \frac{-v_{i+1}+4 v_{i}-3 v_{i-1}}{2 h} .
\end{array}\right\}
$$

So Eq. (9) becomes

$$
\left.\begin{array}{rl}
M_{i}= & -a_{1}\left(x_{i}\right) \frac{u_{i+1}-u_{i-1}}{2 h}-a_{2}\left(x_{i}\right) u_{i}-a_{3}\left(x_{i}\right) \frac{v_{i+1}-v_{i-1}}{2 h} \\
& -a_{4}\left(x_{i}\right) v_{i}-H_{1}\left(x_{i}, u_{i}, v_{i}\right)+f_{1}\left(x_{i}\right)
\end{array}\right\}
$$

and

$$
\left.\begin{array}{c}
N_{i}=-b_{1}\left(x_{i}\right) \frac{v_{i+1}-v_{i-1}}{2 h}-b_{2}\left(x_{i}\right) v_{i}-b_{3}\left(x_{i}\right) \frac{u_{i+1}-u_{i-1}}{2 h} \tag{12a}\\
-b_{4}\left(x_{i}\right) u_{i}-H_{2}\left(x_{i}, u_{i}, v_{i}\right)+f_{2}\left(x_{i}\right)
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
N_{i+1}= & -b_{1}\left(x_{i+1}\right) \frac{3 v_{i}+1-4 v_{i}+v_{i-1}}{2 h}-b_{2}\left(x_{i+1}\right) v_{i}-b_{3}\left(x_{i+1}\right) \frac{3 u_{i}+1-4 u_{i}+u_{i}-1}{2 h} \\
& -b_{4}\left(x_{i+1}\right) u_{i}-H_{2}\left(x_{i+1}, u_{i+1}, v_{i+1}\right)+f_{2}\left(x_{i+1}\right) \tag{12c}
\end{array}\right\}(
$$

Substituting Eqs. (11a-11c)-(12a-12c) in Eqs. (6a) and (6b) respectively, we find the following $2(n-1)$ linear algebraic equations in the $2(n+1)$ unknowns for $i=0,1, \ldots, n$.

$$
\begin{align*}
& {\left[\frac{\alpha a_{1}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta a_{1}\left(x_{i}\right)}{2 h}-\frac{3 \alpha a_{1}\left(x_{i+1}\right)}{2 h}-\alpha a_{2}\left(x_{i+1}\right)-\frac{1}{h^{2}}\right] u_{i+1}} \\
& +\left[\frac{4 \alpha a_{1}\left(x_{i-1}\right)}{2 h}-2 \beta a_{2}\left(x_{i}\right)+\frac{4 \alpha a_{1}\left(x_{i+1}\right)}{2 h}+\frac{2}{h^{2}}\right] u_{i} \\
& +\left[\frac{3 \alpha a_{1}\left(x_{i-1}\right)}{2 h}-\alpha a_{2}\left(x_{i-1}\right)+\frac{2 \beta a_{1}\left(x_{i}\right)}{2 h}-\frac{\alpha a_{1}\left(x_{i+1}\right)}{2 h}-\frac{1}{h^{2}}\right] u_{i-1} \\
& +\left[\frac{\alpha a_{3}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta a_{3}\left(x_{i}\right)}{2 h}-\frac{3 \alpha a_{3}\left(x_{i+1}\right)}{2 h}-\alpha a_{4}\left(x_{i+1}\right)\right] v_{i+1} \tag{13}\\
& +\left[\frac{-4 \alpha a_{3}\left(x_{i-1}\right)}{2 h}-2 \beta a_{4}\left(x_{i}\right)+\frac{4 \alpha a_{3}\left(x_{i+1}\right)}{2 h}\right] v_{i} \\
& +\left[\frac{3 \alpha a_{3}\left(x_{i-1}\right)}{2 h}-\alpha a_{4}\left(x_{i-1}\right)+\frac{2 \beta a_{3}\left(x_{i}\right)}{2 h}-\frac{\alpha a_{3}\left(x_{i+1}\right)}{2 h}\right] v_{i-1} \\
& -\alpha H_{1}\left(x_{i-1}, u_{i-1}, v_{i-1}\right)-2 \beta H_{1}\left(x_{i}, u_{i}, v_{i}\right)-\alpha H_{1}\left(x_{i+1}, u_{i+1}, v_{i+1}\right)= \\
& -\alpha f_{1}\left(x_{i-1}\right)-2 \beta f_{1}\left(x_{i}\right)-\alpha f_{1}\left(x_{i+1}\right)
\end{align*}
$$

and

$$
\begin{align*}
& {\left[\frac{\alpha b_{1}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta b_{1}\left(x_{i}\right)}{2 h}-\frac{3 \alpha b_{1}\left(x_{i+1}\right)}{2 h}-\alpha b_{2}\left(x_{i+1}\right)-\frac{1}{h^{2}}\right] v_{i+1}} \\
& +\left[\frac{4 \alpha b_{1}\left(x_{i-1}\right)}{2 h}-2 \beta b_{2}\left(x_{i}\right)+\frac{4 \alpha b_{1}\left(x_{i+1}\right)}{2 h}+\frac{2}{h^{2}}\right] v_{i} \\
& +\left[\frac{3 \alpha b_{1}\left(x_{i-1}\right)}{2 h}-\alpha b_{2}\left(x_{i-1}\right)+\frac{2 \beta b_{1}\left(x_{i}\right)}{2 h}-\frac{\alpha b_{1}\left(x_{i+1}\right)}{2 h}-\frac{1}{h^{2}}\right] v_{i-1} \\
& +\left[\frac{\alpha b_{3}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta b_{3}\left(x_{i}\right)}{2 h}-\frac{3 \alpha b_{3}\left(x_{i+1}\right)}{2 h}-\alpha b_{4}\left(x_{i+1}\right)\right] u_{i+1} \tag{14}\\
& +\left[\frac{-4 \alpha b_{3}\left(x_{i-1}\right)}{2 h}-2 \beta b_{4}\left(x_{i}\right)+\frac{4 \alpha b_{3}\left(x_{i+1}\right)}{2 h}\right] u_{i} \\
& +\left[\frac{3 \alpha b_{3}\left(x_{i-1}\right)}{2 h}-\alpha b_{4}\left(x_{i-1}\right)+\frac{2 \beta b_{3}\left(x_{i}\right)}{2 h}-\frac{\alpha b_{3}\left(x_{i+1}\right)}{2 h}\right] u_{i-1} \\
& -\alpha H_{2}\left(x_{i-1}, u_{i-1}, v_{i-1}\right)-2 \beta H_{2}\left(x_{i}, u_{i}, v_{i}\right)-\alpha H_{2}\left(x_{i+1}, u_{i+1}, v_{i+1}\right)= \\
& -\alpha f_{2}\left(x_{i-1}\right)-2 \beta f_{2}\left(x_{i}\right)-\alpha f_{2}\left(x_{i+1}\right)
\end{align*}
$$

We need four more equations. The four end conditions can be derivated as follows:

$$
\begin{equation*}
\left.\mathrm{u}_{0}=0, u_{n}=0, v_{0}=0, v_{n}=0\right\} \tag{15}
\end{equation*}
$$

This leads to the system

$$
\begin{align*}
& X_{1 i}=\frac{\alpha a_{1}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta a_{1}\left(x_{i}\right)}{2 h}-\frac{3 \alpha a_{1}\left(x_{i+1}\right)}{2 h}-\alpha a_{2}\left(x_{i+1}\right)-\frac{1}{h^{2}} \tag{16}\\
& Y_{1 i}=\frac{-4 \alpha a_{1}\left(x_{i-1}\right)}{2 h}-2 \beta a_{2}\left(x_{i}\right)+\frac{4 \alpha a_{1}\left(x_{i+1}\right)}{2 h}+\frac{2}{h^{2}} \tag{17}\\
& Z_{1 i}=\frac{3 \alpha a_{1}\left(x_{i-1}\right)}{2 h}-\alpha a_{2}\left(x_{i-1}\right)+\frac{2 \beta a_{1}\left(x_{i}\right)}{2 h}-\frac{\alpha a_{1}\left(x_{i+1}\right)}{2 h}-\frac{1}{h^{2}} \tag{18}\\
& X_{2 i}=\frac{\alpha a_{3}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta a_{3}\left(x_{i}\right)}{2 h}-\frac{3 \alpha a_{3}\left(x_{i+1}\right)}{2 h}-\alpha a_{4}\left(x_{i+1}\right) \tag{19}\\
& Y_{2 i}=\frac{-4 \alpha a_{3}\left(x_{i-1}\right)}{2 h}-2 \beta a_{4}\left(x_{i}\right)+\frac{4 \alpha a_{3}\left(x_{i+1}\right)}{2 h} \tag{20}\\
& Z_{2 i}=\frac{3 \alpha a_{3}\left(x_{i-1}\right)}{2 h}-\alpha a_{4}\left(x_{i-1}\right)+\frac{2 \beta a_{3}\left(x_{i}\right)}{2 h}-\frac{\alpha a_{3}\left(x_{i+1}\right)}{2 h} \tag{21}\\
& g_{i}=\frac{a_{1}\left(x_{i}\right)}{2 h}, \quad h_{i}=a_{2}\left(x_{i}\right), \quad k_{i}=\frac{a_{3}\left(x_{i}\right)}{2 h}, \quad l_{i}=a_{4}\left(x_{i}\right) \tag{22}\\
& X_{1 i}=\alpha g_{i-1}-2 \beta g_{i}-3 \alpha g_{i+1}-\alpha h_{i+1}-\frac{1}{h^{2}} \tag{23}\\
& Y_{1 i}=-4 \alpha g_{i-1}+4 \alpha g_{i+1}-2 \beta h_{i}+\frac{2}{h^{2}} \tag{24}\\
& Z_{1 i}=3 \alpha g_{i-1}+2 \beta g_{i}-\alpha g_{i+1}-\alpha h_{i-1}-\frac{1}{h^{2}} \tag{25}\\
& X_{2 i}=\alpha k_{i-1}-2 \beta k_{i}-3 \alpha k_{i+1}-\alpha l_{i+1} \tag{26}\\
& Y_{2 i}=-4 \alpha k_{i-1}+4 \alpha k_{i+1}-2 \beta l_{i} \tag{27}\\
& Z_{2 i}=3 \alpha k_{i-1}+2 \beta k_{i}-\alpha k_{i+1}-\alpha l_{i-1} \tag{28}\\
& X_{3 i}=\frac{\alpha b_{3}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta b_{3}\left(x_{i}\right)}{2 h}-\frac{3 \alpha b_{3}\left(x_{i+1}\right)}{2 h}-\alpha b_{4}\left(x_{i+1}\right) \tag{29}\\
& Y_{3 i}=\frac{-4 \alpha b_{3}\left(x_{i-1}\right)}{2 h}-2 \beta b_{4}\left(x_{i}\right)+\frac{4 \alpha b_{3}\left(x_{i+1}\right)}{2 h} \tag{30}\\
& Z_{3 i}=\frac{3 \alpha b_{3}\left(x_{i-1}\right)}{2 h}-\alpha b_{4}\left(x_{i-1}\right)+\frac{2 \beta b_{3}\left(x_{i}\right)}{2 h}-\frac{\alpha b_{3}\left(x_{i+1}\right)}{2 h} \tag{31}\\
& X_{4 i}=\frac{\alpha b_{1}\left(x_{i-1}\right)}{2 h}-\frac{2 \beta b_{1}\left(x_{i}\right)}{2 h}-\frac{3 \alpha b_{1}\left(x_{i+1}\right)}{2 h}-\alpha b_{2}\left(x_{i+1}\right)-\frac{1}{h^{2}} \tag{32}\\
& Y_{4 i}=\frac{-4 \alpha b_{1}\left(x_{i-1}\right)}{2 h}-2 \beta b_{2}\left(x_{i}\right)+\frac{4 \alpha b_{1}\left(x_{i+1}\right)}{2 h}+\frac{2}{h^{2}} \tag{33}\\
& Z_{4 i}=\frac{3 \alpha b_{1}\left(x_{i-1}\right)}{2 h}-\alpha b_{2}\left(x_{i-1}\right)+\frac{2 \beta b_{1}\left(x_{i}\right)}{2 h}-\frac{\alpha b_{1}\left(x_{i+1}\right)}{2 h}-\frac{1}{h^{2}} \tag{34}\\
& m_{i}=\frac{b_{1}\left(x_{i}\right)}{2 h}, \quad p_{i}=b_{2}\left(x_{i}\right), \quad r_{i}=\frac{b_{3}\left(x_{i}\right)}{2 h}, \quad s_{i}=b_{4}\left(x_{i}\right) \tag{35}
\end{align*}
$$

$$
\begin{align*}
X_{3 i} & =\alpha r_{i-1}-2 \beta r_{i}-3 \alpha r_{i+1}-\alpha s_{i+1} \tag{36}\\
Y_{3 i} & =-4 \alpha r_{i-1}+4 \alpha r_{i+1}-2 \beta s_{i} \tag{37}\\
Z_{3 i} & =3 \alpha r_{i-1}+2 \beta r_{i}-\alpha r_{i+1}-\alpha s_{i-1} \tag{38}\\
X_{4 i} & =\alpha m_{i-1}-2 \beta m_{i}-3 \alpha m_{i+1}-\alpha p_{i+1}-\frac{1}{h^{2}} \tag{39}\\
Y_{4 i} & =-4 \alpha m_{i-1}+4 \alpha m_{i+1}-2 \beta p_{i}+\frac{2}{h^{2}} \tag{40}\\
Z_{4 i} & =3 \alpha m_{i-1}+2 \beta m_{i}-\alpha m_{i+1}-\alpha p_{i-1}-\frac{1}{h^{2}} \tag{41}
\end{align*}
$$

The method is described in matrix form in the following way for Eqs. (16)-(41):

$$
A=\left[\begin{array}{ccc}
A_{1} & \mid & \mathrm{A}_{2} \tag{42}\\
- & - & - \\
\mathrm{A}_{3} & \mid & \mathrm{A}_{4}
\end{array}\right],
$$

$$
\mathrm{B}=\left[\begin{array}{c}
0 \tag{43}\\
-\alpha f_{1}\left(x_{0}\right)-2 \beta f_{1}\left(x_{1}\right)-\alpha f_{1}\left(x_{2}\right) \\
-\alpha f_{1}\left(x_{1}\right)-2 \beta f_{1}\left(x_{2}\right)-\alpha f_{1}\left(x_{3}\right) \\
\cdot \\
\cdot \\
\cdot \\
-\alpha f_{1}\left(x_{n-2}\right)-2 \beta f_{1}\left(x_{n-1}\right)-\alpha f_{1}\left(x_{n}\right) \\
0 \\
0 \\
-\alpha f_{2}\left(x_{0}\right)-2 \beta f_{2}\left(x_{1}\right)-\alpha f_{2}\left(x_{2}\right) \\
-\alpha f_{2}\left(x_{1}\right)-2 \beta f_{2}\left(x_{2}\right)-\alpha f_{2}\left(x_{3}\right) \\
\cdot \\
\cdot \\
\cdot \\
-\alpha f_{2}\left(x_{n-2}\right)-2 \beta f_{2}\left(x_{n-1}\right)-\alpha f_{2}\left(x_{n}\right) \\
0
\end{array}\right],
$$

$$
\begin{gather*}
H=\left[\begin{array}{c}
0 \\
-\alpha H_{1}\left(x_{0}, u_{0}, v_{0}\right)-2 \beta H_{1}\left(x_{1}, u_{1}, v_{1}\right)-\alpha H_{1}\left(x_{2}, u_{2}, v_{2}\right) \\
-\alpha H_{1}\left(x_{1}, u_{1}, v_{1}\right)-2 \beta H_{1}\left(x_{2}, u_{2}, v_{2}\right)-\alpha H_{1}\left(x_{3}, u_{3}, v_{3}\right) \\
\cdot \\
\cdot \\
\cdot \\
-\alpha H_{1}\left(x_{n-2}, u_{n-2}, v_{n-2}\right)-2 \beta H_{1}\left(x_{n-1}, u_{n-1}, v_{n-1}\right)-\alpha H_{1}\left(x_{n}, u_{n}, v_{n}\right) \\
0 \\
0 \\
-\alpha H_{2}\left(x_{0}, u_{0}, v_{0}\right)-2 \beta H_{2}\left(x_{1}, u_{1}, v_{1}\right)-\alpha H_{2}\left(x_{2}, u_{2}, v_{2}\right) \\
-\alpha H_{2}\left(x_{1}, u_{1}, v_{1}\right)-2 \beta H_{2}\left(x_{2}, u_{2}, v_{2}\right)-\alpha H_{2}\left(x_{3}, u_{3}, v_{3}\right) \\
\cdot \\
\cdot \\
\cdot \\
-\alpha H_{2}\left(x_{n-2}, u_{n-2}, v_{n-2}\right)-2 \beta H_{2}\left(x_{n-1}, u_{n-1}, v_{n-1}\right)-\alpha H_{2}\left(x_{n}, u_{n}, v_{n}\right) \\
0
\end{array}\right], \tag{44}\\
U=\left[u_{0}, u_{1}, \ldots, u_{n}, v_{0}, v_{1}, \ldots, v_{n}\right]^{\prime} . \tag{45}
\end{gather*}
$$

Here the four submatrices A_{1}, A_{2}, A_{3} and A_{4} are defined as

$$
\begin{align*}
& A_{1}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
X_{11} & Y_{11} & Z_{11} & 0 & \ldots & 0 & 0 \\
0 & X_{12} & Y_{12} & Z_{12} & 0 & \ldots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdots & 0 & 0 & X_{1(n-2)} & Y_{1(n-2)} & Z_{1(n-2)} \\
\cdot & \cdot & \cdot & \cdot & 0 & 0 & 1
\end{array}\right], \tag{46}\\
& A_{2}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
X_{21} & Y_{21} & Z_{21} & 0 & \cdots & 0 & 0 \\
0 & X_{22} & Y_{22} & Z_{22} & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdots & 0 & 0 & X_{2(n-2)} & Y_{2(n-2)} & Z_{2(n-2)} \\
\cdot & \cdot & \cdot & \cdot & 0 & 0 & 0
\end{array}\right], \tag{47}
\end{align*}
$$

$$
\begin{align*}
& A_{3}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
X_{31} & Y_{31} & Z_{31} & 0 & \ldots & 0 & 0 \\
0 & X_{32} & Y_{32} & Z_{32} & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdots & 0 & 0 & X_{3(n-2)} & Y_{3(n-2)} & Z_{3(n-2)} \\
\cdot & \cdot & \cdot & \cdot & 0 & 0 & 0
\end{array}\right], \tag{48}\\
& A_{4}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
X_{41} & Y_{41} & Z_{41} & 0 & \ldots & 0 & 0 \\
0 & X_{42} & Y_{42} & Z_{42} & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & . \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdots & 0 & 0 & X_{4(n-2)} & Y_{4(n-2)} & Z_{4(n-2)} \\
\cdot & \cdot & \cdot & . & 0 & 0 & 1
\end{array}\right] . \tag{49}
\end{align*}
$$

Finally the approximate solution is obtained by solving the nonlinear system using Levenberg-Marquardt optimization method [7] and Matlab 6.5.

$$
\begin{equation*}
A U+H=B . \tag{50}
\end{equation*}
$$

4. Numerical examples

In this section, to illustrate our methods we have solved two non-linear system of second-order BVP. All computations are done by using MATLAB 6.5 .

Example 1.

Consider the following equations

$$
\left.\begin{array}{l}
u^{\prime \prime}(x)-x v^{\prime}(x)+u(x)=f_{1}(x) \tag{51}\\
v^{\prime \prime}(x)+x u^{\prime}(x)+u(x) v(x)=f_{2}(x)
\end{array}\right\}
$$

subject to the boundary conditions

$$
\begin{equation*}
u(0)=u(1)=0, v(0)=v(1)=0, \tag{52}
\end{equation*}
$$

where $0<x<1, f_{1}(x)=x^{3}-2 x^{2}+6 x$ and $f_{2}(x)=x^{2}-x$.
The exact solutions of $u(x)$ and $v(x)$ are given as $x^{3}-x$ and $x^{2}-x$ respectively. The observed maximum absolute errors of $u(x)$ and $v(x)$ for $n=21$ (nodal points) are given in Table 1. The numerical results of $u(x)$ and $v(x)$ are also illustrated in Figures 1 and 2.

Example 2. We consider the following equations

$$
\left.\begin{array}{l}
u^{\prime \prime}(x)+x u(x)+x u^{2}(x)=f_{1}(x) \tag{53}\\
v^{\prime \prime}(x)+x u^{\prime}(x)+v(x)=f_{2}(x)
\end{array}\right\}
$$

subject to the boundary conditions

$$
\begin{equation*}
u(0)=u(1)=0, v(0)=v(1)=0 \tag{54}
\end{equation*}
$$

where $0<x<1, f_{1}(x)=-\pi^{2} \sin (\pi x)+x \sin (\pi x)^{2}+x^{4}-3 x^{3}+2 x^{2}$ and $f_{2}(x)=\pi x \cos (\pi x)+x^{3}-3 x^{2}+8 x-6$

The exact solutions of $u(x)$ and $v(x)$ are given as $\sin (\pi x)$ and $x^{3}-3 x^{2}+2 x$ respectively. The observed maximum absolute errors of $u(x)$ and $v(x)$ for different values of n are given in Table 2. As one clearly observes from Table 2 the magnitude of the errors using higher nodal points $(n=61)$ becomes smaller than the lower ones. The numerical results of $u(x)$ and $v(x)$ are also illustrated in Figures 3 and 4.

Table 1: The maximum absolute errors for $u(x)$ and $v(x)$ from example 1.

n	u of Abs.Error	v of Abs.Error
11	$1.956115354079246 \mathrm{e}-005$	$3.107643821670669 \mathrm{e}-004$
21	$4.851275161810165 \mathrm{e}-006$	$7.771611006257562 \mathrm{e}-005$
41	$1.210374921178925 \mathrm{e}-006$	$1.946985010448099 \mathrm{e}-005$
61	$5.380403360621955 \mathrm{e}-007$	$8.653049506895938 \mathrm{e}-006$
121	$1.345825387799593 \mathrm{e}-007$	$2.163365648760740 \mathrm{e}-006$
211	$4.394366903692770 \mathrm{e}-008$	$7.064318330030073 \mathrm{e}-007$

Table 2: The maximum absolute errors for $u(x)$ and $v(x)$ for different values of nodal point from example 2 .

n	u of Abs.Error	v of Abs.Error
11	$7.388978904299126 \mathrm{e}-005$	$6.124095382239458 \mathrm{e}-004$
21	$1.078529634501724 \mathrm{e}-005$	$1.593422934084987 \mathrm{e}-004$
41	$2.217826760020358 \mathrm{e}-006$	$4.012705321820853 \mathrm{e}-005$
61	$9.477969471483050 \mathrm{e}-007$	$1.787399659253230 \mathrm{e}-005$
121	$2.311524547327082 \mathrm{e}-007$	$4.471652837373386 \mathrm{e}-006$
211	$7.505851140621189 \mathrm{e}-008$	$1.460362707594864 \mathrm{e}-006$

5. Conclusions

In this paper, the non-polynomial spline method is developed for the approximate solution of nonlinear system of the second-order boundary value problems. The numerical results obtained by using the method described in this study give acceptable results. We have concluded that numerical results converge to the exact solution when h goes to zero.The results illustrated in Figs. 1, 2, 3 and 4 showed that when n was increased, the maximum absolute error decreased.Use of spline method has show that it is an applicable new method for solving nonlinear system of BVPs.

References

[1]Mehdi Dehghan, Abbas Saadatmandi, The numerical solution of a nonlinear system of second-order boundary value problems using the sinc-collocation method, Mathematical and Computer Modelling 46 (2007) 1434-1441.
[2] Fazhan Geng, Minggen Cui,Solving a nonlinear system of second order boundary value problems,Journal of Mathematical Analysis and Applications 327 (2007) 1167-1181
[3] Junfeng Lu, Variational iteration method for solving a nonlinear system of second-order boundary value problems, Computers and Mathematics with Applications 54 (2007) 11331138.
[4] J. Rashidinia, R. Mohammadi,Non-polynomial cubic spline methods for the solution of parabolic equations, International Journal of Computer Mathematics 85 (2008) 843-850
[5] Abbas Saadatmandi, Mehdi Dehghan, Ali Eftekhari, Application of Hes homotopy perturbation method for non-linear system of second-order boundary value problems, Nonlinear Analysis: Real World Applications 10 (2009) 1912-1922.
[6] A. Sami Bataineh, M.S.M. Noorani, I. Hashim, Modified homotopy analysis method for solving systems of second-order BVPs ,Communications in Nonlinear Science and Numerical Simulation 14 (2009) 430-442.
[7] Fletcher R. Practical methods of optimization. A Wiley-Interscience Publication; 1987.

Figure 1: Results for $u(x)$ in example $1(n=41)$. Solid line is the exact solution $u(x)=x^{3}-x$.

Figure 2: Results for $v(x)$ in example $1(n=41)$. Solid line is the exact solution $v(x)=x^{2}-x$.

Figure 3: Results for $u(x)$ in example $2(n=41)$. Solid line is the exact solution $u(x)=\sin (\pi x)$.

Figure 4: Results for $v(x)$ in example $2(n=41)$. Solid line is the exact solution $v(x)=x^{3}-3 x^{2}+2 x$.

Instructions to Contributors Journal of Computational Analysis and Applications.

A quartely international publication of Eudoxus Press, LLC.

Editor in Chief: George Anastassiou
Department of Mathematical Sciences, University of Memphis Memphis, TN 38152-3240, U.S.A.

AUTHORS MUST COMPLY EXACTLY WITH THE FOLLOWING RULES OR THEIR ARTICLE CANNOT BE CONSIDERED.

1. Manuscripts,hard copies in triplicate and in English,should be submitted to the Editor-in-Chief, mailed un-registered, to:

Prof.George A. Anastassiou
Department of Mathematical Sciences
The University of Memphis
Memphis,TN 38152-3240, USA.

Authors must e-mail a PDF copy of the submission to ganastss@memphis.edu.

Authors may want to recommend an associate editor the most related to the submission to possibly handle it.

Also authors may want to submit a list of six possible referees, to be used in case we cannot find related referees by ourselves.
2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX,or AMS-LaTEX and according to EUDOXUS PRESS, LLC. LATEX STYLE FILE. (Click HERE to save a copy of the style file.)They should be carefully prepared in all respects. Submitted copies should be brightly printed (not dot-matrix), double spaced, in ten point type size, on one side high quality paper $8(1 / 2) \times 11$ inch. Manuscripts should have generous margins on all sides and should not exceed 24 pages.
3. Submission is a representation that the manuscript has not been published previously in this or any other similar form and is not currently under consideration for publication elsewhere. A statement
transferring from the authors(or their employers,if they hold the copyright) to Eudoxus Press, LLC, will be required before the manuscript can be accepted for publication.The Editor-in-Chief will supply the necessary forms for this transfer.Such a written transfer of copyright, which previously was assumed to be implicit in the act of submitting a manuscript,is necessary under the U.S.Copyright Law in order for the publisher to carry through the dissemination of research results and reviews as widely and effective as possible.
4. The paper starts with the title of the article, author's name(s) (no titles or degrees), author's affiliation(s) and e-mail addresses. The affiliation should comprise the department, institution (usually university or company), city, state (and/or nation) and mail code.

The following items, 5 and 6, should be on page no. 1 of the paper.
5. An abstract is to be provided, preferably no longer than 150 words.
6. A list of 5 key words is to be provided directly below the abstract. Key words should express the precise content of the manuscript, as they are used for indexing purposes.

The main body of the paper should begin on page no. 1, if possible.
7. All sections should be numbered with Arabic numerals (such as: 1. INTRODUCTION) .
Subsections should be identified with section and subsection numbers (such as 6.1. Second-Value Subheading).
If applicable, an independent single-number system (one for each category) should be used to label all theorems, lemmas, propositions, corrolaries, definitions, remarks, examples, etc. The label (such as Lemma 7) should be typed with paragraph indentation, followed by a period and the lemma itself.
8. Mathematical notation must be typeset. Equations should be numbered consecutively with Arabic numerals in parentheses placed flush right, and should be thusly referred to in the text [such as Eqs.(2) and (5)]. The running title must be placed at the top of even numbered pages and the first author's name, et al., must be placed at the top of the odd numbed pages.
9. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in one consecutive series of Arabic numerals. The captions for illustrations should be typed double space. All illustrations, charts, tables, etc., must be embedded in the body of the manuscript in proper, final, print position. In particular, manuscript, source, and PDF file
version must be at camera ready stage for publication or they cannot be considered.

Tables are to be numbered (with Roman numerals) and referred to by number in the text. Center the title above the table, and type explanatory footnotes (indicated by superscript lowercase letters) below the table.
10. List references alphabetically at the end of the paper and number them consecutively. Each must be cited in the text by the appropriate Arabic numeral in square brackets on the baseline.

References should include (in the following order): initials of first and middle name, last name of author(s)
title of article,
name of publication, volume number, inclusive pages, and year of publication.

Authors should follow these examples:

Journal Article

1. H.H.Gonska,Degree of simultaneous approximation of bivariate functions by Gordon operators, (journal name in italics) J. Approx. Theory, 62,170-191(1990).

Book

2. G.G.Lorentz, (title of book in italics) Bernstein Polynomials (2nd ed.), Chelsea,New York, 1986.

Contribution to a Book

3. M.K.Khan, Approximation properties of beta operators, in(title of book in italics) Progress in Approximation Theory (P.Nevai and A.Pinkus,eds.), Academic Press, New York,1991,pp.483-495.
4. All acknowledgements (including those for a grant and financial support) should occur in one paragraph that directly precedes the References section.
5. Footnotes should be avoided. When their use is absolutely necessary, footnotes should be numbered consecutively using Arabic numerals and should be typed at the bottom of the page to which they refer. Place a line above the footnote, so that it is set off from the text. Use the appropriate superscript numeral for citation in the text.
6. After each revision is made please again submit three hard copies of the revised manuscript, including in the final one. And after a
manuscript has been accepted for publication and with all revisions incorporated, manuscripts, including the TEX/LaTex source file and the PDF file, are to be submitted to the Editor's Office on a personalcomputer disk, 3.5 inch size. Label the disk with clearly written identifying information and properly ship, such as:

Your name, title of article, kind of computer used, kind of software and version number, disk format and files names of article, as well as abbreviated journal name.

Package the disk in a disk mailer or protective cardboard. Make sure contents of disks are identical with the ones of final hard copies submitted!

Note: The Editor's Office cannot accept the disk without the accompanying matching hard copies of manuscript. No e-mail final submissions are allowed! The disk submission must be used.
14. Effective 1 Nov. 2009 for current journal page charges, contact the Editor in Chief. Upon acceptance of the paper an invoice will be sent to the contact author. The fee payment will be due one month from the invoice date. The article will proceed to publication only after the fee is paid. The charges are to be sent, by money order or certified check, in US dollars, payable to Eudoxus Press, LLC, to the address shown on the homepage of this site.

No galleys will be sent and the contact author will receive one(1) complementary electronic copy of the journal issue in which the article appears.
15. This journal will consider for publication only papers that contain proofs for their listed results.

TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.2, 2010

A special comprehensive class of analytic functions defined by multiplier transformation, Alina Alb Lupas, 387
Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind, George A. Anastassiou, Lucian Coroianu, Sorin G. Gal, 396
On joint distributions of order statistics arising from random vectors, M. Güngör, A. Turan, 407
A new result on absolute summability factors, Huseyin Bor, 417
Statistical convergence of double sequences in topological groups, H. Cakalli, E. Savas, 421
Approximately left derivations: An alternative fixed point approach, A. Ebadian, S. Shams, 427
On the category of intuitionistic fuzzy metric spaces, Hakan Efe, Serkan Gümüs, Cemil Yildiz 436
A note on the oscillation of second order differential equations with damping, Ercan Tunc 444
Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces, M. Eshaghi Gordji, M. Bavand Savadkouhi, M. Bidkham, 454
Ternary Jordan *-derivations in C*-ternary algebras, M. Eshaghi Gordji, S. Kaboli Gharetapeh, E. Rashidi, T. Karimi, M. Aghaei, 463
On the Second Moment of Rational Bernstein Functions, Gancho T. Tachev, 471
Properties of parameter-varying dynamic linear systems with parametrized perturbations. Applications to delayed dynamics, M. De la Sen, 480
The Smaller Root Principle for Finding Roots of a Complex Number Function, Louis Paquette,511An algorithmic technique for the investigation of the non-negativity (or positivity) of ahomogeneous matrix pencil, Athanasios A. Pantelous, Athanasios D. Karageorgos, Grigoris I.Kalogeropoulos526
Oscillation of first-order impulsive difference equations with continuous arguments, B. Karpuz, O. Ocalan, S. Ozturk, 539
Non-polynomial spline method of a non-linear system of second-order boundary value problems, Hikmet Caglar, Nazan Caglar, Canan Akkoyunlu, 544

Journal of

Computational

Analysis and

Applications

Journal of Computational Analysis and Applications ISSNno.'s:1521-1398 PRINT,1572-9206 ONLINE SCOPE OF THE JOURNAL A quarterly international publication of Eudoxus Press, LLC Editor in Chief: George Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240, U.S.A ganastss@memphis.edu http://www.msci.memphis.edu/~ganastss/jocaaa
The main purpose of "J.Computational Analysis and Applications" is to publish high quality research articles from all subareas of Computational Mathematical Analysis and its many potential applications and connections to other areas of Mathematical Sciences. Any paper whose approach and proofs are computational,using methods from Mathematical Analysis in the broadest sense is suitable and welcome for consideration in our journal, except from Applied Numerical Analysis articles.Also plain word articles without formulas and proofs are excluded. The list of possibly connected mathematical areas with this publication includes, but is not restricted to: Applied Analysis, Applied Functional Analysis, Approximation Theory, Asymptotic Analysis, Difference Equations, Differential Equations, Partial Differential Equations, Fourier Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities, Integral Equations, Measure Theory, Moment Theory, Neural Networks, Numerical Functional Analysis, Potential Theory, Probability Theory, Real and Complex Analysis, Signal Analysis, Special Functions, Splines, Stochastic Analysis, Stochastic Processes, Summability, Tomography, Wavelets, any combination of the above, e.t.c.
"J.Computational Analysis and Applications" is a peer-reviewed Journal. See at the end instructions for preparation and submission of articles to JoCAAA.

Webmaster:Ray Clapsadle

Journal of Computational Analysis and Applications(JoCAAA) is published by EUDOXUS PRESS,LLC,1424 Beaver Trail
Drive,Cordova,TN38016,USA, anastassioug@yahoo.com
http//:www.eudoxuspress.com.Annual Subscription Prices:For USA and Canada,Institutional:Print \$470,Electronic \$300,Print and Electronic $\$ 500$.Individual:Print $\$ 150$,Electronic $\$ 100$, Print \&Electronic \$200.For any other part of the world add $\$ 50$ more to the above prices for Print.No credit card payments.
Copyright©2010 by Eudoxus Press,LLCAll rights reserved.JoCAAA is printed in USA.
JoCAAA is reviewed and abstracted by AMS Mathematical Reviews,MATHSCI, and Zentralblaat MATH.
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in any form and by any means without the written permission of the publisher.It is only allowed to educators to Xerox articles for educational purposes. The publisher assumes no responsibility for the content of published papers

Editorial Board
 Associate Editors

1) George A. Anastassiou	20) Hrushikesh N.Mhaskar
Department of Mathematical Sciences	Department Of Mathematics
The University of Memphis	California State University
Memphis, TN 38152,U.S.A	Los Angeles, CA 90032
Tel.901-678-3144	626-914-7002
e-mail: ganastss@memphis.edu	e-mail: hmhaska@calstatela.edu
Approximation Theory, Real Analysis,	Orthogonal Polynomials
Wavelets, Neural	Approximation Theory, Splines,
Networks, Probability,	Wavelets, Neural Networks
Inequalities.	
	21) M.Zuhair Nashed
2) J. Marshall Ash	Department Of Mathematics
Department of Mathematics	University of Central Florida
De Paul University	PO Box 161364
2219 North Kenmore Ave.	Orlando, FL 32816-1364
Chicago, IL 60614-3504	e-mail: znashed@mail.ucf.edu
773-325-4216	Inverse and Ill-Posed problems,
e-mail: mash@math.depaul.edu	Numerical Functional Analysis,
Real and Harmonic Analysis	Integral Equations,Optimization, Signal Analysis
3) Mark J.Balas	
Department Head and Professor	22) Mubenga N.Nkashama
Electrical and Computer Engineering	Department OF Mathematics
Dept.	University of Alabama at
College of Engineering	Birmingham
University of Wyoming	Birmingham, AL 35294-1170
1000 E. University Ave.	205-934-2154
Laramie, WY 82071	e-mail: nkashama@math.uab.edu
307-766-5599	Ordinary Differential Equations,
e-mail: mbalas@uwyo.edu	Partial Differential Equations
Control Theory, Nonlinear Systems,	
Neural Networks, Ordinary and	23) Charles E.M.Pearce
Partial Differential Equations,	Applied Mathematics Department
Functional Analysis and Operator	University of Adelaide
Theory	Adelaide 5005, Australia
	e-mail:
4) Drumi D.Bainov	cpearce@maths.adelaide.edu. au
Department of Mathematics	Stochastic Processes, Probability
Medical University of Sofia	Theory, Harmonic Analysis,
P.O.Box 45,1504 Sofia, Bulgaria	Measure Theory,
e-mail:	Special Functions, Inequalities
dbainov@mbox.pharmfac.acad.bg	
e-mail:drumibainov@yahoo.com	24) Josip E. Pecaric
Differential Equations/Inequalities	Faculty of Textile Technology University of Zagreb
5) Carlo Bardaro	Pierottijeva 6,10000
Dipartimento di Matematica e	Zagreb, Croatia
Informatica	e-mail: pecaric@hazu.hr
Universita di Perugia	Inequalities, Convexity
Via Vanvitelli 1	

```
06123 Perugia, ITALY
TEL+390755853822
+390755855034
FAX+390755855024
E-mail bardaro@unipg.it
Web site:
http://www.unipg.it/~bardaro/
Functional Analysis and
Approximation
Theory,Signal Analysis, Measure
Theory,
Real Analysis.
6) Jerry L.Bona
Department of Mathematics
The University of Illinois at
Chicago
851 S. Morgan St. CS 249
Chicago, IL 60601
e-mail:bona@math.uic.edu
Partial Differential Equations,
Fluid Dynamics
7) Luis A.Caffarelli
    Department of Mathematics
    The University of Texas at Austin
    Austin,Texas 78712-1082
    512-471-3160
    e-mail: caffarel@math.utexas.edu
    Partial Differential Equations
8) George Cybenko
    Thayer School of Engineering
    Dartmouth College
    8000 Cummings Hall,
    Hanover,NH 03755-8000
    603-646-3843 (x 3546
    Secr.)
    e-mail:
    george.cybenko@dartmouth.edu
    Approximation Theory and Neural
    Networks
9) Ding-Xuan Zhou
    Department Of Mathematics
    City University of Hong Kong
    83 Tat Chee Avenue
    Kowloon,Hong Kong
    852-2788 9708,Fax:852-2788 8561
    e-mail: mazhou@math.cityu.edu.hk
    Approximation Theory,
    Spline functions, Wavelets
10) Sever S.Dragomir
    School of Computer Science and
    Mathematics, Victoria University,
```

25) Svetlozar T.Rachev Department of Statistics and Applied Probability University of California at Santa Barbara,
Santa Barbara, CA 93106-3110
805-893-4869
e-mail: rachev@pstat.ucsb.edu
and Chair of Econometrics,
Statistics and Mathematical
Finance
School of Economics and
Business Engineering
University of Karlsruhe
Kollegium am Schloss, Bau
II, 20.12, R210
Postfach 6980, D-76128,
Karlsruhe, GERMANY .
Tel +49-721-608-7535,
+49-721-608-2042(s)

Fax +49-721-608-3811
Zari. Rachev@wiwi.uni-karlsruhe.de Probability,Stochastic Processes and
Statistics,Financial Mathematics, Mathematical Economics.
26) Alexander G. Ramm Mathematics Department
Kansas State University Manhattan, KS 66506-2602 e-mail: ramm@math.ksu.edu Inverse and Ill-posed Problems, Scattering
Theory, Operator Theory, Theoretical Numerical Analysis, Wave Propagation, Signal Processing and Tomography

27) Ervin Y.Rodin

Department of Systems Science and Applied Mathematics Washington University, Campus Box 1040
One Brookings Dr., St.Louis, MO
63130-4899
314-935-6007
e-mail: rodin@rodin.wustl.edu
Systems Theory, Semantic
Control,
Partial Differential Equations, Calculus of
Variations, Optimization and

```
PO Box 14428,
Melbourne City,
MC 8001,AUSTRALIA
Tel. +61 3 9688 4437
Fax +61 3 9688 4050
sever@csm.vu.edu.au
Inequalities,Functional Analysis,
Numerical Analysis, Approximations,
Information Theory, Stochastics.
11) Saber N.Elaydi
    Department Of Mathematics
    Trinity University
    715 Stadium Dr.
    San Antonio,TX 78212-7200
    210-736-8246
    e-mail: selaydi@trinity.edu
    Ordinary Differential Equations,
    Difference Equations
12) Augustine O.Esogbue
    School of Industrial and Systems
    Engineering
    Georgia Institute of Technology
    Atlanta,GA 30332
    404-894-2323
    e-mail:
    augustine.esogbue@isye.gatech.edu
    Control Theory,Fuzzy sets,
    Mathematical Programming,
    Dynamic Programming,Optimization
```

13) Christodoulos A.Floudas
Department of Chemical Engineering
Princeton University
Princeton, NJ 08544-5263
609-258-4595 (x4619
assistant)
e-mail: floudas@titan.princeton.edu
OptimizationTheory\&Applications,
Global Optimization
14) J.A.Goldstein
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
901-678-3130
e-mail: jgoldste@memphis.edu
Partial Differential Equations,
Semigroups of Operators
15) H.H.Gonska
Department of Mathematics
University of Duisburg
Duisburg, D-47048

Artificial Intelligence, Operations Research, Math. Programming
28) T. E. Simos

Department of Computer
Science and Technology
Faculty of Sciences and Technology
University of Peloponnese
GR-221 00 Tripolis, Greece
Postal Address:
26 Menelaou St.
Anfithea - Paleon Faliron
GR-175 64 Athens, Greece
tsimos@mail.ariadne-t.gr
Numerical Analysis
29) I. P. Stavroulakis

Department of Mathematics
University of Ioannina 451-10 Ioannina, Greece ipstav@uoi.gr
Differential Equations
Phone +3 0651098283
30) Manfred Tasche

Department of Mathematics
University of Rostock
D-18051 Rostock, Germany
manfred.tasche@mathematik.uni-
rostock. de
Numerical Fourier
Analysis, Fourier Analysis,
Harmonic Analysis,Signal
Analysis,
Spectral
Methods, Wavelets, Splines,
Approximation Theory
31) Gilbert G.Walter

Department Of Mathematical
Sciences
University of Wisconsin-
Milwaukee, Box 413,
Milwaukee, WI 53201-0413
414-229-5077
e-mail: ggw@csd.uwm.edu
Distribution
Functions, Generalised Functions, Wavelets

32) Halbert White

Department of Economics
University of California at San
Diego

Germany

011-49-203-379-3542
e-mail:
gonska@mathematik.uni-duisburg.de Approximation Theory,
Computer Aided Geometric Design
16) Weimin Han

Department of Mathematics
University of Iowa
Iowa City, IA 52242-1419
319-335-0770
e-mail: whan@math.uiowa.edu
Numerical analysis, Finite element method,
Numerical PDE, Variational
inequalities,
Computational mechanics
17) Christian Houdre

School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332
404-894-4398
e-mail: houdre@math.gatech.edu
Probability, Mathematical
Statistics, Wavelets
18) V. Lakshmikantham

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901
e-mail: lakshmik@fit.edu
Ordinary and Partial Differential
Equations,
Hybrid Systems, Nonlinear Analysis

```
19) Burkhard Lenze
    Fachbereich Informatik
    Fachhochschule Dortmund
    University of Applied Sciences
    Postfach 105018
    D-44047 Dortmund, Germany
    e-mail: lenze@fh-dortmund.de
    Real Networks,
    Fourier Analysis,Approximation
    Theory
```

36) Ahmed I. Zayed

Department Of Mathematical Sciences
DePaul University
2320 N. Kenmore Ave.
Chicago, IL 60614-3250
773-325-7808
e-mail: azayed@condor.depaul.edu

La Jolla, CA 92093-0508
619-534-3502
e-mail: hwhite@econ.ucsd.edu
Econometric Theory,Approximation
Theory,
Neural Networks
33) Xin-long zhou

Fachbereich
Mathematik, Fachgebiet Informatik
Gerhard-Mercator-Universitat
Duisburg
Lotharstr.65, D-47048
Duisburg, Germany
e-mail:
Xzhou@mathematik.uni-duisburg.de
Fourier Analysis, Computer-Aided Geometric Design,
Computational Complexity,
Multivariate Approximation Theory, Approximation and Interpolation Theory
34) Xiang Ming Yu

Department of Mathematical Sciences
Southwest Missouri State University
Springfield, MO 65804-0094
417-836-5931
e-mail: xmy944f@missouristate.edu
Classical Approximation
Theory, Wavelets
35) Lotfi A. Zadeh

Professor in the Graduate School and
Director,
Computer Initiative, Soft Computing (BISC)
Computer Science Division
University of California at Berkeley
Berkeley, CA 94720
Office: 510-642-4959
Sec: 510-642-8271
Home: 510-526-2569
FAX: 510-642-1712
e-mail: zadeh@cs.berkeley.edu
Fuzzyness, Artificial Intelligence, Natural language processing, Fuzzy logic

Shannon sampling theory, Harmonic analysis
and wavelets, Special functions and orthogonal
polynomials, Integral transforms.

GENERALIZED HYERS-ULAM STABILITY OF MULTI-DIMENSIONAL QUADRATIC EQUATIONS ${ }^{\sharp}$

HARK-MAHN KIM*, EUNYOUNG SON**, AND JIAE SON***

Abstract. For any fixed $n \in \mathbb{N}$ with $n \geq 2$, we are going to investigate the general solution of the equation

$$
2 f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{i \neq j} f\left(x_{i}-x_{j}\right)=2 n \sum_{i=1}^{n} f\left(x_{i}\right)
$$

in the class of all functions between quasi- β-normed spaces, and then we are to prove the generalized Hyers-Ulam stability of the equation by using direct method.

1. Introduction

In 1940 and in 1964 S.M. Ulam [22] proposed the famous Ulam stability problem: "When is it true that by changing a little the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or approximately true?" For very general functional equations, the concept of stability for a functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Thus the stability question of functional equations is that how do the solutions of the inequality differ from those of the given functional equation? If the answer is affirmative, we would say that the equation is stable.

In 1941, the first result concerning the stability of functional equations was presented by D.H. Hyers [9]. He has answered the question of Ulam for the case where G_{1} and G_{2} are Banach spaces. In 1978, Th.M. Rassias [18] provided a generalization of Hyers' Theorem for approximately linear mappings by considering Cauchy difference to be unbounded. P. Gǎvruta [8] has generalized the Th.M. Rassias theorem by a general control function of the Cauchy difference.

Let E_{1} and E_{2} be vector spaces. A function $f: E_{1} \rightarrow E_{2}$ is called a quadratic function if and only if f is a solution function of the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) . \tag{1.1}
\end{equation*}
$$

It is well known that a function f between real vector spaces is quadratic if and only if there exists a unique symmetric biadditive function B such that $f(x)=$

[^23]$B(x, x)$ for all x, where the mapping B is given by $B(x, y)=\frac{1}{4}(f(x+y)-f(x-y))$. See $[1,11]$ for the details.

The Hyers-Ulam stability of the quadratic functional equation (1.1) was first proved by F. Skof [20] for functions $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. P.W. Cholewa [4] demonstrated that Skof's theorem is also valid if E_{1} is replaced by an abelian group. S. Czerwik [5] proved the Hyers-UlamRassias stability of quadratic functional equation (1.1).
Theorem 1.1. Let E_{1} and E_{2} be a real normed space and a real Banach space, respectively, and let $r \neq 2$ be a positive constant. If a function $f: E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \epsilon\left(\|x\|^{r}+\|y\|^{r}\right)
$$

for some $\epsilon>0$ and for all $x, y \in E_{1}$, then there exists a unique quadratic function $q: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-q(x)\| \leq \frac{2 \epsilon}{\left|4-2^{p}\right|}\|x\|^{r}
$$

for all $x \in E_{1}$.
Furthermore, according to the theorem of C. Borelli and G.L. Forti [3], we know the following generalization of stability theorem for quadratic functional equation.

Theorem 1.2. Let G be an abelian group and E a Banach space, let $f: G \rightarrow E$ be a mapping with $f(0)=0$ satisfying the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \varphi(x, y)
$$

for all $x, y \in G$. Assume that one of the series

$$
\Phi(x, y):=\left\{\begin{array}{l}
\sum_{k=0}^{\infty} \frac{1}{0^{2(k+1)}} \varphi\left(2^{k} x, 2^{k} y\right)<\infty \\
\sum_{k=0}^{\infty} 2^{2 k} \varphi\left(\frac{x}{2^{(k+1)}}, \frac{y}{2^{(k+1)}}\right)<\infty
\end{array},\right.
$$

then there exists a unique quadratic function $Q: G \rightarrow E$ such that

$$
\|f(x)-Q(x)\| \leq \Phi(x, x)
$$

for all $x \in G$.
During the last two decades a number of papers and research monographs have been published on various generalizations and applications of the generalized HyersUlam stability to a number of functional equations (see $[6,10,11,12,13]$).

Now, we consider some basic concepts concerning quasi- β-normed spaces and some preliminary results. We fix a real number β with $0<\beta \leq 1$ and let \mathbb{K} denote either \mathbb{R} or \mathbb{C}. Let X be a linear space over \mathbb{K}. A quasi- β-norm $\|\cdot\|$ is a real-valued function on X satisfying the following:
(1) $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0$.
(2) $\|\lambda x\|=|\lambda|^{\beta} \cdot\|x\|$ for all $\lambda \in \mathbb{K}$ and all $x \in X$.
(3) There is a constant $K \geq 1$ such that $\|x+y\| \leq K(\|x\|+\|y\|)$ for all $x, y \in X$.

MULTI-DIMENSIONAL QUADRATIC EQUATIONS

The pair $(X,\|\cdot\|)$ is called a quasi- β-normed space if $\|\cdot\|$ is a quasi- β-norm on X. The smallest possible K is called the modulus of concavity of $\|\cdot\|$. A quasi- β Banach space is a complete quasi- β-normed space. A quasi- β-norm $\|\cdot\|$ is called a (β, p)-norm $(0<p \leq 1)$ if

$$
\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}
$$

for all $x, y \in X$. In this case, a quasi- β-Banach space is called a (β, p)-Banach space. We can refer to $([2,19])$ for the concept of quasi-normed spaces and p Banach spaces. Given a p-norm, the formula $d(x, y):=\|x-y\|^{p}$ gives us a translation invariant metric on X. By the Aoki-Rolewicz theorem [19] (see also [2]), each quasinorm is equivalent to some p-norm. In [21], J. Tabor has investigated a version of the D.H. Hyers, Th.M. Rassias, Z. Gajda theorem (see [7, 18]) in quasi-Banach spaces. Recently, S. Lee and C. Park [14] have obtained stability results of isometric homomorphisms in quasi-Banach algebras and J. Rassias and H. Kim [17] have obtained stability results of general additive equations in quasi- β-normed spaces.

Concerning the stability of quadratic equation in quasi- β-normed spaces, we introduce a new quadratic functional equation

$$
\begin{equation*}
2 f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{i \neq j} f\left(x_{i}-x_{j}\right)=2 n \sum_{i=1}^{n} f\left(x_{i}\right), \tag{1.2}
\end{equation*}
$$

for any fixed $n \in \mathbb{N}$ with $n \geq 2$. In this paper, we are going to investigate the general solution of the equation (1.2) and then we are to prove the generalized Hyers-Ulam stability of the equation (1.2) for mappings from quasi- α-normed spaces to (β, p)Banach spaces by using direct method.

2. Generalized Hyers-Ulam Stability of Equation (1.2)

First, we present the general solution of equation (1.2) in the class of all functions between vector spaces.

Lemma 2.1. If vector spaces X and Y are common domain and range of the functions f in both the functional equations (1.1) and (1.2), then the functional equation (1.2) is equivalent to the functional equation (1.1).

Proof. Suppose that a function $f: X \rightarrow Y$ satisfies the equation (1.2) for all $x_{1}, \cdots, x_{n} \in X$. If we replace x_{1}, \cdots, x_{n} in (1.2) by 0 , then we have

$$
2 f(0)+n(n-1) f(0)=2 n^{2} f(0)
$$

Since $n \geq 2, f(0)=0$. Let $x_{1}=x$ and $x_{k}=0(k=2, \cdots, n)$. Then

$$
2 f(x)+(n-1) f(x)+(n-1) f(-x)=2 n f(x) .
$$

Thus $f(x)=f(-x)$ for all $x \in X$. Letting $x_{1}=x, x_{2}=y$ and $x_{k}=0$ for all $k=3, \cdots, n$, we have

$$
\begin{aligned}
2 f(x+y) & +f(x-y)+(n-2) f(x)+f(y-x)+(n-2) f(y) \\
& +f(-x)(n-2)+f(-y)(n-2)=2 n f(x)+2 n f(y)
\end{aligned}
$$

for all $x, y \in X$. By the evenness of f, we may conclude that

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y) .
$$

Thus f is quadratic. Conversely, if f is quadratic, then it is obvious that f satisfies the equation (1.2).

Throughout this paper, let X be a quasi- α-normed space and let Y be a (β, p) Banach space unless we give any specific reference. For notational convenience, given a mapping $f: X \rightarrow Y$, we define the difference operator $D f: X^{n} \rightarrow Y$ of the equation (1.2) by

$$
D f\left(x_{1}, \cdots, x_{n}\right):=2 f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{i \neq j} f\left(x_{i}-x_{j}\right)-2 n \sum_{i=1}^{n} f\left(x_{i}\right), \quad n \geq 2
$$

for all $x_{1}, \cdots, x_{n} \in X$, which is called the approximate remainder of the functional equation (1.2) and acts as a perturbation of the equation. Let $\varphi: X^{n} \rightarrow \mathbb{R}^{+}:=$ $[0, \infty)$ be a mapping satisfying one of the conditions

$$
\begin{align*}
& \quad \Phi_{1}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} \frac{1}{n^{2 j p \beta}} \varphi\left(n^{j} x_{1}, \cdots, n^{j} x_{n}\right)^{p}<\infty, \tag{a}\\
& \text { (b) } \quad \Phi_{2}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=1}^{\infty} n^{2 j p \beta} \varphi\left(\frac{x_{1}}{n^{j}}, \cdots, \frac{x_{n}}{n^{j}}\right)^{p}<\infty
\end{align*}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Now, we are ready to investigate the generalized Hyers-Ulam stability problem for the functional equation (1.2).
Theorem 2.2. Assume that a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \varphi\left(x_{1}, \cdots, x_{n}\right) \tag{2.1}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{n} \in X$ and φ satisfies the condition (a). Then there exists a unique quadratic function $Q: X \rightarrow Y$ satisfying

$$
\begin{equation*}
\left\|f(x)-\frac{n f(0)}{2(n+1)}-Q(x)\right\| \leq \frac{1}{2^{\beta} n^{2 \beta}} \sqrt[p]{\Phi_{1}(x, \cdots, x)} \tag{2.2}
\end{equation*}
$$

for all $x \in X$, where $\|f(0)\| \leq \frac{\varphi(0, \cdots, 0)}{(n-1)^{\beta}(n+2)^{\beta}}$. The function Q is given by

$$
Q(x)=\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{n^{2 k}}
$$

for all $x \in X$.
Proof. Letting x_{1}, \cdots, x_{n} by 0 in (2.1), we get $\|(n-1)(n+2) f(0)\| \leq \varphi(0, \cdots, 0)$, and so $\|f(0)\| \leq \frac{\varphi(0, \cdots, 0)}{(n-1)^{\beta}(n+2)^{\beta}}$. Replacing x_{k} by x for all $k=1, \cdots, n$ in (2.1), we obtain

$$
\begin{equation*}
\left\|2 f(n x)+n(n-1) f(0)-2 n^{2} f(x)\right\| \leq \varphi(x, \cdots, x) \tag{2.3}
\end{equation*}
$$

MULTI-DIMENSIONAL QUADRATIC EQUATIONS

for $x \in X$. Dividing (2.3) by $\frac{1}{2^{\beta} n^{2 \beta}}$, we get

$$
\begin{equation*}
\left\|\frac{1}{n^{2}} \bar{f}(n x)-\bar{f}(x)\right\| \leq \frac{1}{2^{\beta} n^{2 \beta}} \varphi(x, \cdots, x) \tag{2.4}
\end{equation*}
$$

for $x \in X$ where $\bar{f}(x)=f(x)-\frac{n}{2(n+1)} f(0)$ for $x \in X$. Thus using the formula (2.4) and triangle inequality we prove by induction that

$$
\begin{equation*}
\left\|\frac{1}{n^{2 k}} \bar{f}\left(n^{k} x\right)-\bar{f}(x)\right\|^{p} \leq \sum_{j=0}^{k-1} \frac{1}{2^{p \beta} n^{2(j+1) p \beta}} \varphi\left(n^{j} x, \cdots, n^{j} x\right)^{p} \tag{2.5}
\end{equation*}
$$

for $x \in X$ and for all $k \in \mathbb{N}$. Therefore we prove from the inequality (2.5) that for any integers m, k with $m>k \geq 0$

$$
\begin{align*}
& \left\|\frac{1}{n^{2 m}} \bar{f}\left(n^{m} x\right)-\frac{1}{n^{2 k}} \bar{f}\left(n^{k} x\right)\right\|^{p} \tag{2.6}\\
& \quad \leq \frac{1}{n^{2 k p \beta}} \sum_{j=0}^{m-k-1} \frac{1}{2^{p \beta} n^{2(j+1) p \beta}} \varphi\left(n^{j+k} x, \cdots, n^{j+k} x\right)^{p} \\
& \quad=\frac{1}{2^{p \beta} n^{2 p \beta}} \sum_{j=k}^{m-1} \frac{1}{2^{p \beta} n^{2 j p \beta}} \varphi\left(n^{j} x, \cdots, n^{j} x\right)^{p} .
\end{align*}
$$

Since the right hand side of (2.6) tends to zero as $k \rightarrow \infty$, the sequence $\left\{\frac{1}{n^{2 k}} \bar{f}\left(n^{k} x\right)\right\}$ is Cauchy for all $x \in X$ and thus converges by the completeness of Y. Define $Q: X \rightarrow Y$ by

$$
\begin{aligned}
Q(x) & =\lim _{k \rightarrow \infty} \frac{1}{n^{2 k}}\left(f\left(n^{k} x\right)-\frac{n}{2(n+1)} f(0)\right) \\
& =\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{n^{2 k}}, \quad x \in X .
\end{aligned}
$$

Then, letting $x_{i}:=n^{k} x_{i}$ for all $i=1, \cdots, n$ in (2.1), respectively, dividing both sides by $n^{2 k p \beta}$ and after then taking the limit as $k \rightarrow \infty$ in the resulting inequality, we have

$$
\begin{aligned}
\left\|D Q\left(x_{1}, \cdots, x_{n}\right)\right\|^{p} & =\lim _{k \rightarrow \infty}\left\|\frac{1}{n^{2 k}} D f\left(n^{k} x_{1}, \cdots, n^{k} x_{n}\right)\right\|^{p} \\
& \leq \lim _{k \rightarrow \infty} \frac{1}{n^{2 k p \beta}} \varphi\left(n^{k} x_{1}, \cdots, n^{k} x_{n}\right)^{p}=0
\end{aligned}
$$

which implies that

$$
2 Q\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{i \neq j} Q\left(x_{i}-x_{j}\right)-2 n \sum_{i=1}^{n} Q\left(x_{i}\right)=0
$$

and so the function Q is quadratic by Lemma 2.1. Taking the limit in (2.5) as $k \rightarrow \infty$, we obtain the approximation (2.2) of f by the quadratic mapping Q.

To prove the uniqueness of the quadratic function Q subject to (2.2), let us assume that there exists a quadratic function $Q^{\prime}: X \rightarrow Y$ which satisfies the inequality (2.2).

Obviously, we obtain that

$$
Q(x)=n^{-2 k} Q\left(n^{k} x\right), \quad Q^{\prime}(x)=n^{-2 k} Q^{\prime}\left(n^{k} x\right)
$$

for all $x \in X$. Hence it follows from (2.2) that

$$
\begin{aligned}
& \left\|Q(x)-Q^{\prime}(x)\right\|^{p} \\
& =\frac{1}{n^{2 k p \beta}}\left\|Q\left(n^{k} x\right)-Q^{\prime}\left(n^{k} x\right)\right\|^{p} \\
& \leq \frac{1}{n^{2 k p \beta}}\left[\left\|Q\left(n^{k} x\right)-f\left(n^{k} x\right)+\frac{n f(0)}{2(n+1)}\right\|^{p}+\left\|f\left(n^{k} x\right)-\frac{n f(0)}{2(n+1)}-Q^{\prime}\left(n^{k} x\right)\right\|^{p}\right] \\
& \leq \frac{1}{n^{2 k p \beta}} \frac{2}{2^{p \beta} n^{2 p \beta}} \sum_{j=0}^{\infty} \frac{1}{n^{2 j p \beta}} \varphi\left(n^{j+k} x, \cdots, n^{j+k} x\right)^{p} \\
& =\frac{2}{2^{p \beta} n^{2 p \beta}} \sum_{j=k}^{\infty} \frac{1}{n^{2 j p \beta}} \varphi\left(n^{j} x, \cdots, n^{j} x\right)^{p}
\end{aligned}
$$

for all $k \in \mathbb{N}$. Therefore letting $k \rightarrow \infty$, one has $Q(x)-Q^{\prime}(x)=0$ for all $x \in X$, completing the proof of uniqueness.

Theorem 2.3. Assume that a function $f: X \rightarrow Y$ satisfies

$$
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \varphi\left(x_{1}, \cdots, x_{n}\right)
$$

for all $x_{1}, \cdots, x_{n} \in X$ and φ satisfies the condition (b). Then there exists a unique quadratic function $Q: X \rightarrow Y$ satisfying

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{2^{\beta} n^{2 \beta}} \sqrt[p]{\Phi_{2}(x, \cdots, x)} \tag{2.7}
\end{equation*}
$$

for all $x \in X$. The function Q is given by

$$
Q(x)=\lim _{k \rightarrow \infty} n^{2 k} f\left(\frac{x}{n^{k}}\right)
$$

for all $x \in X$.
Proof. Since $\sum_{j=0}^{\infty} n^{2 j p \beta} \varphi(0, \cdots, 0)<\infty$ by assumption and so $\varphi(0, \cdots, 0)=0$, we get $f(0)=0$ in this case. Replacing x by $\frac{x}{n}$ in (2.3), we obtain

$$
\begin{equation*}
\left\|f(x)-n^{2} f\left(\frac{x}{n}\right)\right\| \leq \frac{1}{2^{\beta}} \varphi\left(\frac{x}{n}, \cdots, \frac{x}{n}\right) \tag{2.8}
\end{equation*}
$$

for $x \in X$.
An induction argument together with (2.8) implies that

$$
\begin{equation*}
\left\|f(x)-n^{2 k} f\left(\frac{x}{n^{k}}\right)\right\|^{p} \leq \frac{1}{2^{p \beta} n^{2 p \beta}} \sum_{j=1}^{k} n^{2 j p \beta} \varphi\left(\frac{x}{n^{j}}, \cdots, \frac{x}{n^{j}}\right)^{p} \tag{2.9}
\end{equation*}
$$

for $x \in X$ and for all $k \in \mathbb{N}$.

MULTI-DIMENSIONAL QUADRATIC EQUATIONS

Therefore we prove from inequality (2.9) that for any integers m, k with $m>k \geq 0$

$$
\begin{align*}
& \left\|n^{2 m} f\left(\frac{x}{n^{m}}\right)-n^{2 k} f\left(\frac{x}{n^{k}}\right)\right\|^{p} \tag{2.10}\\
& \quad=n^{2 k p \beta}\left\|n^{2(m-k)} f\left(\frac{x}{n^{m}}\right)-f\left(\frac{x}{n^{k}}\right)\right\|^{p} \\
& \quad \leq \frac{n^{2 k p \beta}}{2^{p \beta} n^{2 p \beta}} \sum_{j=1}^{m-k} n^{2 j p \beta} \varphi\left(\frac{x}{n^{j+k}}, \cdots, \frac{x}{n^{j+k}}\right)^{p} \\
& \quad=\frac{1}{2^{p \beta} n^{2 p \beta}} \sum_{j=k+1}^{m} n^{2 j p \beta} \varphi\left(\frac{x}{n^{j}}, \cdots, \frac{x}{n^{j}}\right)^{p}
\end{align*}
$$

for all $x \in X$. Since the right hand side of (2.10) tends to zero as $k \rightarrow \infty$, the sequence $\left\{n^{2 k} f\left(\frac{x}{n^{k}}\right)\right\}$ is Cauchy for all $x \in X$, and thus converges by the completeness of Y. Define $Q: X \rightarrow Y$ by

$$
Q(x)=\lim _{k \rightarrow \infty} n^{2 k} f\left(\frac{x}{n^{k}}\right)
$$

for all $x \in X$. Replacing x_{1}, \cdots, x_{n} in (2.1) by $\frac{x_{1}}{n^{k}}, \cdots, \frac{x_{n}}{n^{k}}$, respectively, and multiplying both sides by $n^{2 k p \beta}$ and after then taking the limit as $k \rightarrow \infty$ in the resulting inequality, we have

$$
\begin{aligned}
\left\|D Q\left(x_{1}, \cdots, x_{n}\right)\right\|^{p} & =\lim _{k \rightarrow \infty}\left\|n^{2 k} D f\left(\frac{x_{1}}{n^{k}}, \cdots, \frac{x_{n}}{n^{k}}\right)\right\|^{p} \\
& \leq \lim _{k \rightarrow \infty} n^{2 k p \beta} \varphi\left(\frac{x_{1}}{n^{k}}, \cdots, \frac{x_{n}}{n^{k}}\right)^{p}=0
\end{aligned}
$$

which implies that the function Q is quadratic by Lemma 2.1. Taking the limit in (2.9) as $k \rightarrow \infty$, we obtain the estimation (2.7) of f by the quadratic mapping Q.

To prove the uniqueness, let Q^{\prime} be another quadratic function satisfying (2.7). Then it is easy to see that the following identities $Q(x)=n^{2 k} Q\left(\frac{x}{n^{k}}\right)$ and $Q^{\prime}(x)=$ $n^{2 k} Q^{\prime}\left(\frac{x}{n^{k}}\right)$ hold for all $x \in X$. Thus we have

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\|^{p} & =n^{2 k p \beta}\left(\left\|Q\left(\frac{x}{n^{k}}\right)-f\left(\frac{x}{n^{k}}\right)\right\|^{p}+\left\|f\left(\frac{x}{n^{k}}\right)-Q^{\prime}\left(\frac{x}{n^{k}}\right)\right\|^{p}\right) \\
& \leq \frac{2 n^{2 k p \beta}}{2^{p \beta} n^{2 p \beta}} \sum_{j=1}^{\infty} n^{2 j p \beta} \varphi\left(\frac{x}{n^{j+k}}, \cdots, \frac{x}{n^{j+k}}\right)^{p} \\
& \leq \frac{1}{2^{p \beta} n^{2 p \beta}} \sum_{j=k+1}^{\infty} n^{2 j p \beta} \varphi\left(\frac{x}{n^{j}}, \cdots, \frac{x}{n^{j}}\right)^{p}
\end{aligned}
$$

for all $x \in X$ and all $k \in \mathbb{N}$. Therefore letting $k \rightarrow \infty$, one has $Q(x)-Q^{\prime}(x)=0$ for all $x \in X$.

As applications, we obtain the following corollaries concerning the stability of the equation (1.2).

Corollary 2.4. Let r be a real number with $n^{2 \beta} \neq n^{r \alpha}$ and let $H: \overbrace{\mathbb{R}^{+} \times \cdots \times \mathbb{R}^{+}}^{n \text {-times }} \rightarrow$ \mathbb{R}^{+}be a function such that $H\left(t x_{1}, \cdots, t x_{n}\right) \leq t^{r} H\left(x_{1}, \cdots, x_{n}\right)$ for all $t, x_{1}, \cdots, x_{n} \in$ \mathbb{R}^{+}. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq H\left(\left\|x_{1}\right\|, \cdots,\left\|x_{n}\right\|\right) \tag{2.11}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then there exists a unique quadratic function $Q: X \rightarrow Y$ which satisfies the inequality

$$
\left\|f(x)-\frac{n f(0)}{2(n+1)}-Q(x)\right\| \leq\left\{\begin{array}{lll}
\frac{H(1, \cdots, 1)\|x\|^{r}}{2^{\beta} \beta}, & \text { if } & n^{2 \beta}>n^{r \alpha} \\
\frac{H(1, \cdots, 1)\|x\|^{r}}{2^{\beta}(1, \cdots}, & \text { if } & n^{2 \beta}<n^{r \alpha}
\end{array}\right.
$$

for all $x \in X$. The function Q is given by

$$
Q(x)=\left\{\begin{array}{lll}
\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{n^{2 k}}, & \text { if } & n^{2 \beta}>n^{r \alpha} \\
\lim _{k \rightarrow \infty} n^{2 k} f\left(\frac{x}{n^{k}}\right), & \text { if } & n^{2 \beta}<n^{r \alpha}
\end{array}\right.
$$

for all $x \in X$, where $f(0)=0$ if $r>0$.
Proof. If $r>0$, we put x_{1}, \cdots, x_{n} by 0 in (2.11) and we get $f(0)=0$ according to $H(0, \cdots, 0)=0$. Letting $\varphi\left(x_{1}, \cdots, x_{n}\right):=H\left(\left\|x_{1}\right\|, \cdots,\left\|x_{n}\right\|\right)$ for all $x_{1}, \cdots, x_{n} \in X$ and then applying Theorem 2.2 and Theorem 2.3 we obtain easily the results.

In the following corollary, we have a stability result of the equation (1.2) in the sense of Th. M. Rassias [18].
Corollary 2.5. Let r, ϵ be real numbers such that $\epsilon \geq 0, n^{2 \beta} \neq n^{r \alpha}$. Assume that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \epsilon\left(\left\|x_{1}\right\|^{r}+\cdots+\left\|x_{n}\right\|^{r}\right) \tag{2.12}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{n} \in X$ and $X \backslash\{0\}$ if $r<0$. Then there exists a unique quadratic function $Q: X \rightarrow Y$ which satisfies the inequality

$$
\left\|f(x)-\frac{n f(0)}{2(n+1)}-Q(x)\right\| \leq\left\{\begin{array}{lll}
\frac{n \in\|x\|^{r}}{2^{\beta}}, \sqrt{n^{2 p \beta}-n^{r p \alpha}} & \text { if } & n^{2 \beta}>n^{r \alpha} \\
\frac{n \in\|x\|^{r}}{2^{\beta} \sqrt[n]{n^{r p \alpha}}-n^{2 p \beta}}, & \text { if } & n^{2 \beta}<n^{r \alpha}
\end{array}\right.
$$

for all $x \in X$ and $X \backslash\{0\}$ if $r<0$. The function Q is given by

$$
Q(x)=\left\{\begin{array}{lll}
\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{n^{2}}, & \text { if } & n^{2 \beta}>n^{r \alpha} \\
\lim _{k \rightarrow \infty} n^{2 k} f\left(\frac{x}{n^{k}}\right), & \text { if } & n^{2 \beta}<n^{r \alpha}
\end{array}\right.
$$

for all $x \in X$ and $X \backslash\{0\}$ if $r<0$, where $f(0)=0$ if $r>0$.
Proof. If $r>0$, we put x_{1}, \cdots, x_{n} by 0 in (2.12) and we get $f(0)=0$. Letting $\varphi\left(x_{1}, \cdots, x_{n}\right):=\epsilon\left(\left\|x_{1}\right\|^{r}+\cdots+\left\|x_{n}\right\|^{r}\right)$ for all $x_{1}, \cdots, x_{n} \in X$ and then applying Theorem 2.2 and Theorem 2.3 we obtain easily the results.

In the next corollary, we get a stability result of the equation (1.2) in the sense of J. M. Rassias $[15,16]$.

MULTI-DIMENSIONAL QUADRATIC EQUATIONS

Corollary 2.6. Let $\epsilon, r_{1}, \cdots, r_{n}$ be real numbers such that $\epsilon \geq 0, n^{2 \beta} \neq n^{r \alpha}$, where $r:=\sum_{i}^{n} r_{i}$. Suppose that a function $f: X \rightarrow Y$ satisfies

$$
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \epsilon\left\|x_{1}\right\|^{r_{1}}\left\|x_{2}\right\|^{r_{2}} \cdots\left\|x_{n}\right\|^{r_{n}}
$$

for all $x_{1}, \cdots, x_{n} \in X$ and $X \backslash\{0\}$ if $r_{1}, \cdots, r_{n}<0$. Then there exists a unique quadratic function $Q: X \rightarrow Y$ which satisfies the inequality

$$
\left\|f(x)-\frac{n f(0)}{2(n+1)}-Q(x)\right\| \leq\left\{\begin{array}{lll}
\frac{\epsilon\|x\|^{r}}{2^{\beta} \sqrt{n^{2 p \beta}}-n^{r p \alpha}}, & \text { if } & n^{2 \beta}>n^{r \alpha} \\
\frac{\epsilon\|x\|^{r}}{2^{\beta} \sqrt[3]{n^{r p \alpha}}-n^{2 p \beta}}, & \text { if } & n^{2 \beta}<n^{r \alpha}
\end{array}\right.
$$

for all $x \in X$ and $X \backslash\{0\}$ if $r_{1}, \cdots, r_{n}<0$, where $f(0)=0$ if $r_{1}, \cdots, r_{n}>0$.
Proof. We remark that $\varphi\left(x_{1}, \cdots, x_{n}\right):=\epsilon\left\|x_{1}\right\|^{r_{1}}\left\|x_{2}\right\|^{r_{2}} \cdots\left\|x_{n}\right\|^{r_{n}}$ satisfies the condition (a) or (b) for all $x_{1}, \cdots, x_{n} \in X$. By Theorem 2.2 and Theorem 2.3, we get the results.

As a result, we obtain the following Hyers-Ulam stability result of the equation (1.2).

Corollary 2.7. Assume that for some $\theta \geq 0$ a function $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \theta
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then there exists a unique quadratic function $Q: X \rightarrow Y$ which satisfies the inequality

$$
\left\|f(x)-\frac{n}{2(n+1)} f(0)-Q(x)\right\| \leq \frac{\theta}{2^{\beta} \sqrt[p]{n^{2 p \beta}-1}}
$$

for all $x \in X$.
Proof. If we put $\varphi\left(x_{1}, \cdots, x_{n}\right):=\theta$, then φ satisfies the condition (a) and so we get the desired result.

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
[2] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloq. Publ. 48, Amer. Math. Soc. Providence, 2000.
[3] C. Borelli and B. L. Forti, On a general Hyers-Ulm-stability result, Internat. J. Math. Math. Sci. 18 (1995), 229-236.
[4] P. W. Cholewa, Remarks on the stability of functional equations, Aequ. Math. 27 (1984), 76-86.
[5] S. Czerwik, On the stability of the mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[6] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[7] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
[8] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[10] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[11] D. H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44(1992), 125-153.
[12] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Fla, USA, 2001.
[13] H. Kim, On the stability and asymptotic behavior of generalized quadratic mappings, J. Comput. Anal. Appl. 10(3)(2008), 319-331.
[14] S. Lee and C. Park, Hyers-Ulam-Rassias stability of isometric homomorphisms in quasiBanach algebras, J. Comput. Anal. Appl. 10(1)(2008), 39-51.
[15] J.M. Rassisa, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (1992), 185-190.
[16] J.M. Rassias, On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28 (1994), 231-235.
[17] J. M. Rassias and H. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi- β-normed spaces, J. Math. Anal. Appl. 356 (2009), 302-309.
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[19] S. Rolewicz, Metric Linear Spaces, Reidel and Dordrecht, and PWN-Polish Sci. Publ. 1984.
[20] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[21] J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math. 83 (2004), 243-255.
[22] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

[^24]
A note on generalized absolute Cesàro summability

Hikmet Seyhan ÖZARSLAN
Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey
E-mail:seyhan@erciyes.edu.tr ; hseyhan38 @gmail.com

Abstract

In this paper, a general theorem concerning the $\varphi-|C, \alpha|_{k}$ summability factors of infinite series, has been proved.

1 Introduction

Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers and let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$. We denote by $t_{n}^{\alpha} n$-th Cesàro means of order α, with $\alpha>-1$, of the sequence ($n a_{n}$), i.e.,

$$
\begin{equation*}
t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=O\left(n^{\alpha}\right), \quad \alpha>-1, \quad A_{0}^{\alpha}=1 \quad \text { and } \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0 . \tag{2}
\end{equation*}
$$

2000 AMS Subject Classification: 40D15, 40F05, 40G05. Keywords and phrases: Summability factors, infinite series.

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$ and $\alpha>-1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

and it is said to be summable $\varphi-|C, \alpha|_{k}, k \geq 1$ and $\alpha>-1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

If we take $\alpha=1$, then $\varphi-|C, \alpha|_{k}$ summability reduces to $\varphi-|C, 1|_{k}$ summability.

Özarslan [2] has proved the following theorem for $\varphi-|C, 1|_{k}$ summability factors of infinite series.

Theorem $\mathbf{A}([2])$. Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers. If

$$
\begin{gather*}
\lambda_{m}=o(1) \quad \text { as } \quad m \rightarrow \infty \tag{5}\\
\sum_{n=1}^{m} n \log n\left|\Delta^{2} \lambda_{n}\right|=O(1) \tag{6}\\
\sum_{v=1}^{m} \frac{\varphi_{v}^{k-1}}{v^{k}}\left|t_{v}\right|^{k}=O(\log m) \quad \text { as } \quad m \rightarrow \infty \tag{7}\\
\sum_{n=v}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+1}}=O\left(\frac{\varphi_{v}^{k-1}}{v^{k}}\right) \tag{8}
\end{gather*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, 1|_{k}, k \geq 1$.
2. The main result. The aim of this paper is to generalize Theorem A for $\varphi-|C, \alpha|_{k}$ summability. We shall prove the following theorem.
Theorem. Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers and the conditions (5)-(6) of Theorem A are satisfied. If

$$
\begin{gather*}
\sum_{v=1}^{m} \frac{\varphi_{v}^{k-1}}{v^{k}}\left|t_{v}^{\alpha}\right|^{k}=O(\log m) \quad \text { as } \quad m \rightarrow \infty \tag{9}\\
\sum_{n=v}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha}}=O\left(\frac{\varphi_{v}^{k-1}}{v^{k+\alpha-1}}\right) \tag{10}
\end{gather*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha|_{k}, k \geq 1$ and $0<\alpha \leq 1$.
It should be noted that if we take $\alpha=1$ in this theorem, then we get Theorem A. In this case condition (9) reduces to condition (7) and condition (10) reduces to condition (8).

Proof of the Theorem. Let T_{n}^{α} be the n-th (C, α) means of the sequence $\left(n a_{n} \lambda_{n}\right)$, with $0<\alpha \leq 1$. Then by (1), we have

$$
\begin{equation*}
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \lambda_{v} \tag{11}
\end{equation*}
$$

Applying Abel's transformation, we get that

$$
\begin{aligned}
T_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \\
& =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} \Delta \lambda_{v} t_{v}^{\alpha}+\lambda_{n} t_{n}^{\alpha} \\
& =T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}, \quad \text { say. }
\end{aligned}
$$

Since

$$
\left|T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}\right|^{k} \leq 2^{k}\left(\left|T_{n, 1}^{\alpha}\right|^{k}+\left|T_{n, 2}^{\alpha}\right|^{k}\right),
$$

to complete the proof of the Theorem, by (4)it is enough to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, r}^{\alpha}\right|^{k}<\infty, \quad \text { for } \quad r=1,2 \tag{12}
\end{equation*}
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k ', where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, 1}^{\alpha}\right|^{k} & =\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} t_{v}^{\alpha} A_{v}^{\alpha}\right|^{k} \\
& =O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k}}\left\{\sum_{v=1}^{n-1} v^{\alpha}\left|\Delta \lambda_{v} \| t_{v}^{\alpha}\right|\right\}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k}}\left\{\sum_{v=1}^{n-1} v^{\alpha}\left|\Delta \lambda_{v}\right|\left|t_{v}^{\alpha}\right|^{k} \times\left\{\sum_{v=1}^{n-1} v^{\alpha}\left|\Delta \lambda_{v}\right|\right\}^{k-1}\right. \\
& =O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha}}\left\{\sum_{v=1}^{n} v^{\alpha}\left|\Delta \lambda_{v}\right|\left|t_{v}^{\alpha}\right|^{k}\right\} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha}\left|\Delta \lambda_{v}\right|\left|t_{v}^{\alpha}\right|^{k} \sum_{n=v}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha}} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{\varphi_{v}^{k-1}}{v^{k}}\left|t_{v}^{\alpha}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| \sum_{r=1}^{v} \frac{\varphi_{r}^{k-1}}{r^{k}}\left|t_{r}^{\alpha}\right|^{k}+m\left|\Delta \lambda_{m}\right| \sum_{r=1}^{m} \frac{\varphi_{r}^{k-1}}{r^{k}}\left|t_{r}^{\alpha}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| \log v+\sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| \log v+m\left|\Delta \lambda_{m}\right| \log m \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of hypotheses of the Theorem. Finally,

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, 2}^{\alpha}\right|^{k} & =\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\lambda_{n} t_{n}^{\alpha}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}^{\alpha}\right|^{k}\left|\sum_{v=n}^{\infty} \Delta \lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| \sum_{n=1}^{v} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}^{\alpha}\right|^{k} \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| \log v \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of hypotheses of the Theorem. Therefore we get that

$$
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, r}^{\alpha}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2 .
$$

This completes the proof of the Theorem.

References

[1] T.M.Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc., 7 (1957), 113-141.
[2] H.S.Özarslan, On absolute Cesàro summability factors of infinite series, Commun. Math. Anal., 3 (2007), 53-56.
[3] H.Seyhan, Ph.D. Thesis, Erciyes University, Kayseri, 1995.

SOME EXTENSIONS OF OPTIMAL HARDY'S INEQUALITY USING ESTIMATES OF P-LAPLACIAN

AURELIA FLOREA AND IONEL ROVENTA

Abstract. In this paper we establish some extensions of the Hardy's type inequalities using estimates of p-Laplacian. We use also Landau's inequalities.

1. Preliminaries

Recall here the classical Hardy inequality, which asserts that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\frac{1}{2|x|} \int_{-|x|}^{|x|} f(t) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{-\infty}^{\infty} f^{p}(x) d x, 1<p<\infty \tag{1.1}
\end{equation*}
$$

for each positive function f defined on $(-\infty, \infty)$.
N . Levinson in [8] proved:
Theorem 1. Let Λ be a nonnegative function, $f \in C^{2}(0, \infty)$. If Λ satisfies the condition

$$
\begin{equation*}
\Lambda(t) \Lambda^{\prime \prime}(t) \geq\left(1-\frac{1}{p}\right)\left(\Lambda^{\prime}(t)\right)^{2}, \quad p>1, t \in(0, \infty) \tag{1.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{0}^{\infty} \Lambda\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right) d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} \Lambda(f(x)) d x \tag{1.3}
\end{equation*}
$$

for $f \geq 0$ unless $\Lambda(f) \equiv 0$.
Example 1. Different choices of Λ may lead to interesting variants of the Hardy inequality. We present here three special cases.
(a) The function $\Lambda(t)=t^{p}, p>1$, satisfies (1.2). In this case, (1.3) is the classical Hardy inequality (1.1).
(b) The function $\Lambda(t)=t^{-q}$ with $q>0$, satisfies (1.2) for every $p>1$. Hence (1.3) has the form

$$
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{-q} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{-q}(x) d x
$$

that is, the classical Hardy inequality still works for negative exponents.
(c) The function $\Lambda(t)=e^{t^{a}}$ with $0<a \leq 1$, satisfies (1.2), and thus we have

$$
\begin{equation*}
\int_{0}^{\infty} \exp \left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{a} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} \exp \left(f^{a}(x)\right) d x \tag{1.4}
\end{equation*}
$$

[^25]For $a=1, f$ replaced by $\ln f$ and $p \rightarrow \infty$, the inequality (1.4) becomes the well-known Carleman-Knopp inequality

$$
\begin{equation*}
\int_{0}^{\infty} \exp \left(\frac{1}{x} \int_{0}^{x} \ln f(t) d t\right) d x \leq e \int_{0}^{\infty} f(x) d x \tag{1.5}
\end{equation*}
$$

(1.5) can be considered as the limiting case, for p tending to infinity, of the classical Hardy inequality for $f^{1 / p}$,

$$
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f^{1 / p}(t) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f(x) d x
$$

Indeed, the geometrical mean of f,

$$
\exp \left(\frac{1}{x} \int_{0}^{x} \ln f(t) d t\right)
$$

satisfies

$$
\lim _{p \rightarrow \infty}\left(\frac{1}{x} \int_{0}^{x} f^{1 / p}(t) d t\right)^{p}=\exp \left(\frac{1}{x} \int_{0}^{x} \ln f(t) d t\right)
$$

(see [5], p. 139).
Remark 1. We should easy infer that the function Λ from Theorem 1 is in fact convex. For some interesting estimates about such functions, see [9]. Moreover, a generalization of Nash equilibirium, an g-equilibrium has obtained in [10].

2. Main result

Our aim is to obtain a Hardy Littlewood type inequality, using some estimates of $p-$ Laplacian. As a consequence, we obtain a more general result than Theorem 1.

Consider the natural maximal domain for $p-$ Laplacian in the Banach space $L^{p}(0, \infty)$. This is
$D_{p}:=\left\{f:[0, \infty) \rightarrow \mathbb{C}\left|f,\left|f^{\prime}\right|^{p-2} f^{\prime} \in A C[0, \infty), f \in L^{p}(0, \infty), \Delta_{p} f \in L^{q}(0, \infty)\right\}, p>1\right.$,
where $\Delta_{p} u:=\operatorname{div}\left(|\nabla u(x)|^{p-2} \nabla u(x)\right)$ and $A C$ denotes the family of absolute continuous functions. In particular for $p=2, D_{2}$ is the standard maximal domain of $f^{\prime \prime}$ in the Hilbert space $L^{2}(0, \infty)$.

An interesting result for [1] take into account the following Hardy-Littlewoodtype inequality.
Theorem 2. For every $f \in D_{p}$, there exists a constant $K>0$ such that

$$
\left\|f^{\prime}\right\|_{p}^{p} \leq K\|f\|_{p}\left\|\Delta_{p} f\right\|_{q}, \text { where } \frac{1}{p}+\frac{1}{q}=1, p, q>1
$$

The inequality from Theorem 2 gives an estimate of the derivative f^{\prime} in $L^{p}(0, \infty)$. As in the case of Hardy-Littlewood inequality an essential first step in establishing the inequality is showing that f^{\prime} is indeed an element of this space. In the present case the required information is provided by the following lemma.
Lemma 1. Let $f \in D_{p}$. Then $f^{\prime} \in L_{p}(0, \infty)$; moreover, $\lim _{x \rightarrow \infty}\left(\left|f^{\prime}\right|^{p-2} f^{\prime} \bar{f}\right)(x)=$ 0 .

Proof. See [1].
It is easy to infer the next two additional lemmas. For more details, see [1].

SOME EXTENSIONS OF OPTIMAL HARDY'S INEQUALITY USING ESTIMATES OF P-LAPLACIAN
Lemma 2. Let $g:[0, \infty) \rightarrow \mathbb{C}$ be a locally absolutely continuous function and $k>1$. Then $|g|^{k}:[0, \infty) \rightarrow[0, \infty)$ is locally absolutely continuous, and $\left(|g|^{k}\right)^{\prime}=$ $k|g|^{k-2} \operatorname{Re}\left(\bar{g} g^{\prime}\right)$.

Lemma 3. Let $p>1, k>0$. If $a, b>0$ satisfy $a^{p} \leq k(a+b) b^{p-1}$, then $a \leq c b$, where $\frac{1}{c}$ is the unique zero of

$$
f(x):=k x^{p-1}(x+1)-1,(x>0) .
$$

Proof of Theorem 2.

Consider $f \in D_{p}$. By Lemma $1, f^{\prime} \in L^{p}(0, \infty)$ and $\lim _{x \rightarrow \infty}\left(\left|f^{\prime}\right|^{p-2} f^{\prime} f\right)(x)=0$. Hence using the integration by parts we infer

$$
\left\|f^{\prime}\right\|_{p}^{p}=-\left(\left|f^{\prime}\right|^{p-2} f^{\prime} \bar{f}\right)(0)-\int_{0}^{\infty}\left(\Delta_{p} f\right) \bar{f} \leq\left|f^{\prime}(0)\right|^{p-1}|f(0)|+\left\|\Delta_{p} f\right\|_{q}\|f\|_{p}
$$

Thus we need only to estimate the first term on the right-hand side in terms of the second. By Lemma 2, we have, for $x>0$,

$$
\begin{aligned}
& |f(0)|^{p}-|f(x)|^{p} \leq p \int_{0}^{x}|f|^{p-2} \operatorname{Re}\left(\bar{f} f^{\prime}\right) \leq p \int_{0}^{x}|f|^{p-1}\left|f^{\prime}\right| \\
& \quad \leq p\left(\int_{0}^{x}|f|^{(p-1) q}\right)^{1 / q}\left(\int_{0}^{x}\left|f^{\prime}\right|^{p}\right)^{1 / p} \leq p\|f\|_{p}^{p-1}\left\|f^{\prime}\right\|_{p}
\end{aligned}
$$

using Holder's inequality and $(p-1) q=p$. Considering that $\lim i n f_{x \rightarrow \infty}|f(x)|^{p}=0$, we conclude that

$$
|f(0)|^{p} \leq p\|f\|_{p}^{p-1}\left\|f^{\prime}\right\|_{p}
$$

Similarly, by Lemma 2,

$$
\begin{gathered}
\left|f^{\prime}(0)\right|^{p}-\left|f^{\prime}(x)\right|^{p}=\int_{0}^{x} \frac{d}{d x}\left(\|\left.\left. f^{\prime}\right|^{p-2} f^{\prime}\right|^{q}\right) \leq q \int_{0}^{x} \|\left.\left. f^{\prime}\right|^{p-2} f^{\prime}\right|^{q-2}\left|\operatorname{Re}\left(\left|f^{\prime}\right|^{p-2} \bar{f}^{\prime} \Delta_{p} f\right)\right| \\
q \int_{0}^{x}\left|f^{\prime}\right|^{(p-1)(q-2)+p-1}\left|\Delta_{p} f\right|=q \int_{0}^{x}\left|f^{\prime}\right|\left|\Delta_{p} f\right| \leq q\left\|f^{\prime}\right\|_{q}\left\|\Delta_{p} f\right\|_{q},
\end{gathered}
$$

and as $\lim i n f_{x \rightarrow \infty}\left|f^{\prime}(x)\right|^{p}=0$ we conclude that

$$
\left|f^{\prime}(0)\right|^{p} \leq q\left\|f^{\prime}\right\|_{p}\left\|\Delta_{p} f\right\|_{q} .
$$

Therefore

$$
\begin{gathered}
\left(\left|f^{\prime}(0)\right|^{p-1}|f(0)|\right)^{p} \leq p\|f\|_{p}^{p-1}\left\|f^{\prime}\right\|_{p} q^{p-1}\left\|f^{\prime}\right\|_{p}^{p-1}\left\|\Delta_{p} f\right\|_{q}^{p-1} \\
\leq p q^{p-1}\|f\|_{p}^{p-1}\left\|\Delta_{p} f\right\|_{q}^{p-1}\left(\left|f^{\prime}(0)\right|^{p-1}|f(0)|+\left\|\Delta_{p} f\right\|_{q}\|f\|_{p}\right) .
\end{gathered}
$$

Now apply Lemma 3 with $a=\left|f^{\prime}(0)\right|^{p-1}|f(0)|, b=\left\|\Delta_{p} f\right\|_{q}\|f\|_{p}$ and $k=p q^{p-1}$, to obtain the desired inequality with $K=c+1$.

The main result of this paper is in the following:
Theorem 3. Let $\Lambda \in D_{2}$ be a nonnegative real valued function. Then there exists some $p_{0}>1$ such that for all $p>p_{0}$ we have

$$
\begin{equation*}
\int_{0}^{\infty} \Lambda\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right) d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} \Lambda(f(x)) d x \tag{2.1}
\end{equation*}
$$

for $f \geq 0$ unless $\Lambda(f) \equiv 0$.

Proof. The result from Theorem 2, in the case $p=2$, asserts that $\int_{0}^{\infty}\left(f^{\prime}(t)\right)^{2} d t<$ ∞. In fact, we should infer that inequality 1.2 is satisfied for a suitable $p=K>0$. If not, we obtain a contradiction with Theorem 2 and with the fact that $f^{\prime} \in$ $L^{2}(0, \infty)$.

Choosing $p_{0}=\frac{K}{K-1}$, the function f satisfies the condition 1.2 for all $p \geq p_{0}$. In conclusion we should apply Theorem 1 and the proof is done.

3. Further Results

Let us denote, for $x \in \mathbb{R}^{N}$, by $B(x)$ the ball $\left\{y \in \mathbb{R}^{N}:|y| \leq|x|\right\}$ and by $|B(x)|$ its volume. In [2], it is shown that the N-dimensional Hardy operator, \mathcal{H}_{N} defined by

$$
\left(\mathcal{H}_{N} f\right)(x)=\frac{1}{|B(x)|} \int_{B(x)} f(y) d y, \quad x \in \mathbb{R}^{N}
$$

satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\left(\mathcal{H}_{N} f\right)(x)\right|^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{\mathbb{R}^{N}}|f(x)|^{p} d x, \quad 1<p<\infty \tag{3.1}
\end{equation*}
$$

the constant $\left(\frac{p}{p-1}\right)^{p}$ being again the best possible.
If we shall considered the bounded intervals, then the Hardy's inequality can be deduced from the following lemma (see [9]):

Lemma 4. Let $0<b<\infty$ and $-\infty \leq a<c \leq \infty$. If u is a positive convex function on (a, c), then

$$
\begin{equation*}
\int_{0}^{b} u\left(\frac{1}{x} \int_{0}^{x} h(t) d t\right) \frac{d x}{x} \leq \int_{0}^{b} u(h(x))\left(1-\frac{x}{b}\right) \frac{d x}{x} \tag{3.2}
\end{equation*}
$$

for all integrable and positive functions $h:(0, b) \rightarrow(a, c)$.
Corollary 1. For $u(x)=x^{p}$, the result of Lemma 1 can be put in the following form:

$$
\begin{equation*}
\int_{0}^{\alpha}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\alpha} f^{p}(x)\left(1-\left(\frac{x}{\alpha}\right)^{(p-1) / p}\right) d x \tag{3.3}
\end{equation*}
$$

where $\alpha=b^{p / p-1}$ and $f(x)=h\left(x^{1-1 / p}\right) x^{-1 / p}$. This yields an analogue of Hardy's inequality for functions $f \in L^{p}(0, \alpha)$, where $0<\alpha<\infty$, from which Hardy's inequality follows by letting $\alpha \rightarrow \infty$.

We prove now a generalization of Hardy's inequality considered on the bounded intervals:

Theorem 4. Let Λ be a nonnegative function, $f \in C^{2}(0, \infty)$. If Λ satisfies the condition

$$
\begin{equation*}
\Lambda(t) \Lambda^{\prime \prime}(t) \geq\left(1-\frac{1}{p}\right)\left(\Lambda^{\prime}(t)\right)^{2}, \quad p>1 t \in(0, \infty) \tag{3.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{0}^{\alpha} \Lambda\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right) d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\alpha} \Lambda(f(x))\left(1-\left(\frac{x}{\alpha}\right)^{(p-1) / p}\right) d x \tag{3.5}
\end{equation*}
$$

for $\alpha>0, f \geq 0$ unless $\Lambda(f) \equiv 0$.

SOME EXTENSIONS OF OPTIMAL HARDY'S INEQUALITY USING ESTIMATES OF P-LAPLACIAN
Proof. If we denote $\digamma(t)=(\Lambda(t))^{1 / p}$, then by (3.4) $\digamma^{\prime \prime}(t) \geq 0$ and thus $\digamma(t)$ is convex. By Jensen's inequality,

$$
\begin{equation*}
\digamma\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right) \leq \frac{1}{x} \int_{0}^{x} \digamma(f(t)) d t \tag{3.6}
\end{equation*}
$$

which yields

$$
\int_{0}^{\alpha} \digamma^{p}\left(\frac{1}{x} \int_{0}^{x}(f(t)) d t\right) d x \leq \int_{0}^{\alpha}\left(\frac{1}{x} \int_{0}^{x} \digamma(f(t)) d t\right)^{p} d x .
$$

By Hardy's inequality (3.3) applied to $\digamma(f(x))$ we have

$$
\begin{equation*}
\int_{0}^{\alpha}\left(\frac{1}{x} \int_{0}^{x} \digamma(f(t)) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\alpha}\left(\digamma^{p}(f(x))\right)\left(1-\left(\frac{x}{\alpha}\right)^{(p-1) / p}\right) d x \tag{3.7}
\end{equation*}
$$

Now, (3.5) follows from (3.6) and (3.7) inequalities since $\Lambda=\digamma^{p}$.
Remark 2. The following Landau inequality is well known:

$$
\begin{equation*}
\left\|\Lambda^{\prime}\right\|_{\infty} \leq 2 \sqrt{\|\Lambda\|_{\infty}\left\|\Lambda^{"}\right\|_{\infty}} \tag{3.8}
\end{equation*}
$$

where Λ is a real function twice differentiable on $I, m(I) \geq 2 \sqrt{\|\Lambda\|_{\infty} /\left\|\Lambda^{\prime}\right\|_{\infty}},\left(\|\Lambda\|_{\infty}=\right.$ $\sup _{x \in I}|\Lambda(x)|$ and $m(I)$ is the length of $\left.I\right)$. The constant 2 in the right-hand side of inequality (3.8) is the best possible.

Remark 3. If $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ is a twice differentiable function on \mathbb{R}, then (3.8) should be replaced by

$$
\left\|\Lambda^{\prime}\right\|_{\infty} \leq \sqrt{2\|\Lambda\|_{\infty}\left\|\Lambda^{\prime \prime}\right\|_{\infty}}
$$

Remark 4. Let $\Lambda:(0, \infty) \rightarrow \mathbb{R}$ be a twice differentiable nonnegative function such that

$$
\begin{equation*}
\Lambda(t) \Lambda^{\prime \prime}(t) \geq\left(1-\frac{1}{p}\right)\left(\Lambda^{\prime}(t)\right)^{2} \tag{3.9}
\end{equation*}
$$

for some $p>1$. Then

$$
\left\|\Lambda^{\prime}\right\|_{\infty} \leq \sqrt{\frac{p}{p-1}} \sqrt{\|\Lambda\|_{\infty}\left\|\Lambda^{\prime \prime}\right\|_{\infty}}
$$

and Landau's inequality shows that (3.9) holds true at least for $p \in(1,4 / 3]$.
The last remarks allow us to refer to the min-max inequalities, especially Ky Fan's type inequalities. For, interesting extensions of Ky-Fan inequalities, see [10] and [11].
Proposition 1. If $p \in(1,4 / 3]$, then for every function twice differentiable defined on $(0, \infty)$ with $\|\Lambda\|_{\infty},\left\|\Lambda^{\prime \prime}\right\|_{\infty}<\infty$, we have

$$
\int_{0}^{\infty} \Lambda\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right) d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} \Lambda(f(x)) d x
$$

for $f \geq 0$ unless $\Lambda(f) \equiv 0$.

Theorem 5. Let $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable nonnegative function, wich satisfies the condition (3.9) for some $p>1$. Then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \Lambda\left(\frac{1}{2|x|} \int_{-|x|}^{|x|} f(t) d t\right) d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{-\infty}^{\infty} \Lambda(f(x)) d x \tag{3.10}
\end{equation*}
$$

Proof. If we denote $\digamma(t)=(\Lambda(t))^{1 / p}$, then by $(3.4) \digamma^{\prime \prime}(t) \geq 0$ and hence $\digamma(t)$ is convex. Thus by Jensen's inequality

$$
\begin{equation*}
\digamma\left(\frac{1}{2|x|} \int_{-|x|}^{|x|} f(t) d t\right) \leq \frac{1}{2|x|} \int_{-|x|}^{|x|} \digamma(f(t)) d t \tag{3.11}
\end{equation*}
$$

and then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \digamma^{p}\left(\frac{1}{2|x|} \int_{-|x|}^{|x|} f(t) d t\right) d x \leq \int_{-\infty}^{\infty}\left(\frac{1}{2|x|} \int_{-|x|}^{|x|} \digamma(f(t)) d t\right)^{p} d x \tag{3.12}
\end{equation*}
$$

If we write the inequality (1.1) for $\digamma(f(x))$ we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\frac{1}{2|x|} \int_{-|x|}^{|x|} \digamma(f(t)) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{-\infty}^{\infty} \digamma^{p}(f(x)) d x \tag{3.13}
\end{equation*}
$$

Now, (3.10) follows from (3.12) and (3.13) inequalities since $\Lambda=\digamma^{p}$.
Proposition 2. If $p \in(1,2]$, then for every twice differentiable function Λ defined on \mathbb{R} with $\|\Lambda\|_{\infty},\left\|\Lambda^{\prime \prime}\right\|_{\infty}<\infty$, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} \Lambda\left(\frac{1}{2|x|} \int_{-|x|}^{|x|} f(t) d t\right) d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{-\infty}^{\infty} \Lambda(f(x)) d x \tag{3.14}
\end{equation*}
$$

for $f \geq 0$ defined on $(-\infty, \infty)$, unless $\Lambda(f) \equiv 0$.
Proof. We shall used Remark 3 and the theorem above.
Acknowledgement. This work has been supported by the National University Research Council through the research project 420/2008.

References

[1] A. Aumann, B. M. Brown and K. M. Schmidt, A hardy-Littlewood inequality for the pLaplacian, Bull. London Math. Soc. 40 (2008), 525-531.
[2] M. Christ and L. Grafakos, Best constant for two nonconvolution inequalities, Proc. Amer. Math. Soc. 123 (1995), 1687-1693.
[3] A. M. Fink, A best possible Hadamard Inequality, Math. Inequal. Appl. 1 (1998), 223-230.
[4] A. Florea and C. P. Niculescu, A Hermite-Hadamard inequality for convex-concave symmetric functions, Bull. Math. Soc. Sci. Math. Roumanie, 50 No 2., 2007, 149-156.
[5] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2:nd ed., Cambridge Univ. Press 1952 (first ed. 1934).
[6] S. Kaijser, L. Nikolova, L. E. Persson and A. Wedestig, Hardy-type inequalities via convexity, Math. Ineq. Appl. 8 (2005), 403-417.
[7] S. Kaijser, L. E. Persson and A. Öberg, On Carleman and Knopp's inequalities, J. Approx. Theeory 117 (2002), 140-151.
[8] N. Levinson, Generalization of inequalities of Hardy and Littlewood, Duke Math. J. 31 (1964), 389-394.
[9] C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics vol. 23, Springer-Verlag, New York, 2006.
[10] C. P. Niculescu, I. Rovenţa, Fan's inequality in the context of M_{p}-convexity. In vol.: Applied Analysis and Differential Equations, Proc. ICAADE 2006 (Ovidiu Carja and Ioan I. Vrabie editors), pp. 267-274, World Scientific, Singapore, 2007.
[11] C. P. Niculescu and I. Rovenţa, Fan's inequality in geodesic spaces, Appl. Math. Letters 22 (2009), 1529-1533.
[12] I. Rovenţa, Boundary asymptotic and uniqueness of solution for a problem with $\mathrm{p}(\mathrm{x})$ Laplacian, Journal of Inequalities and Applications, vol. 2008, Article ID 609047, 14 pages, 2008. doi:10.1155/2008/60904

Department of Philology, University of Craiova, Craiova 200585, Romania
E-mail address: aurelia_florea@yahoo.com
Department of Mathematics, University of Craiova, Craiova 200585, Romania
E-mail address: roventaionel@yahoo.com

GENERALIZED DERIVATIONS AND ITS STABILITY

SHEON-YOUNG KANG AND ICK-SOON CHANG

Abstract

In this article, we are going to examine the generalized Hyers-Ulam stability and the superstability of generalized derivations corresponding to the Jensen type functional equation.

1. Introduction

The concept of stability for a functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. The first study of stability problems had been formulated by S.M. Ulam [20] during a talk in 1940: Under what condition does there exists a homomorphism near an approximate homomorphism? In the following year 1941, D.H. Hyers [8] was answered affirmatively the question of Ulam for Banach spaces, which states that if $\varepsilon \geq 0$ and $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping with \mathcal{X} a normed space, \mathcal{Y} a Banach space such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \tag{1.1}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$, then there exists a unique additive mapping $L: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\|f(x)-L(x)\| \leq \varepsilon
$$

for all $x \in \mathcal{X}$. This stability phenomenon is called the Hyers-Ulam stability of the additive functional equation $f(x+y)=f(x)+f(y)$. A generalized version of the theorem of Hyers for approximately additive mappings was given by T. Aoki [1] and for approximately linear mappings was presented by Th.M. Rassias [15] in 1978 by considering the case when the inequality (1.1) is unbounded. Due to that fact, the additive functional equation is said to have the generalized Hyers-Ulam stability or the Hyers-Ulam-Rassias stability property. Since then, a great deal of work has been done by a number of authors and the problems concerned with the generalizations and the applications of the stability to a number of functional equations have been developed as well. The first result on the stability of the Jensen functional equation $2 f\left(\frac{x+y}{2}\right)=f(x)+f(y)$ was given by Z. Kominek [12].

A linear mapping d from an algebra \mathcal{A} into itself is called a generalized derivation if the functional equation $d(x y z)=d(x y) z-x d(y) z+x d(y z)$ is valid for all $x, y, z \in \mathcal{A}$. In addition, if \mathcal{A} has a unit element and y is a unit, then we will say that d is just an extended derivation. In fact, a generalized derivation on an algebra \mathcal{A} with unit is an extended derivation. A linear mapping T from a unital normed algebra \mathcal{A} into itself is

[^26]said to be spectrally bounded if there exists a constant $M \geq 0$ such that $r(T(x)) \leq M r(x)$ for all $x \in \mathcal{A}$, where $r($.$) stands for the spectral radius.$

The main aim of the present article is to take account of the stability problem for generalized derivations on Banach algebras corresponding to the following Jensen type functional equation

$$
f\left(\frac{x+y}{k}\right)=\frac{f(x)}{k}+\frac{f(y)}{k},
$$

where k is an integer greater than 1 . This functional equation is introduced in [2].

2. Main Results

Throughout this article, the element e of an algebra \mathcal{A} will denote a unit. We first establish the generalized Hyers-Ulam stability of additive generalized derivations.

Theorem 2.1. Let \mathcal{A} be a Banach algebra. Suppose that $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{A}^{5} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{\varphi\left(0,0, k^{n} z, w, u\right)}{k^{n}}=0, \tag{2.1}\\
& \sum_{j=1}^{\infty} \frac{1}{k^{j-1}} \varphi\left(k^{j} x, k^{j} y, k^{j} z, k^{j} w, k^{j} u\right)<\infty, \tag{2.2}\\
& \left\|f\left(\frac{x+y}{k}+z w u\right)-\frac{f(x)}{k}-\frac{f(y)}{k}-f(z w) u+z f(w) u-z f(w u)\right\| \tag{2.3}\\
& \leq \varphi(x, y, z, w, u)
\end{align*}
$$

for all $x, y, z, w, u \in \mathcal{A}$. Then there exists a unique additive generalized derivation $d: \mathcal{A} \rightarrow$ \mathcal{A} satisfying

$$
\begin{equation*}
\|f(x)-d(x)\| \leq \sum_{j=1}^{\infty} \frac{1}{k^{j-1}} \varphi\left(k^{j} x, 0,0,0,0\right) \tag{2.4}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Moreover,

$$
\begin{equation*}
x\{f(y)-d(y)\} z=0 \tag{2.5}
\end{equation*}
$$

for all $x, y, z \in \mathcal{A}$.
Proof. Substituting $z=w=u=0$ in (2.3), we get

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{k}\right)-\frac{f(x)}{k}-\frac{f(y)}{k}\right\| \leq \varphi(x, y, 0,0,0) \tag{2.6}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Let us take $y=0$ and replace x by $k x$ in the above relation. Then it follows that

$$
\begin{equation*}
\left\|f(x)-\frac{f(k x)}{k}\right\| \leq \varphi(k x, 0,0,0,0) \tag{2.7}
\end{equation*}
$$

for all $x \in \mathcal{A}$. An induction implies that

$$
\begin{equation*}
\left\|\frac{f\left(k^{n} x\right)}{k^{n}}-f(x)\right\| \leq \sum_{j=1}^{n} \frac{1}{k^{j-1}} \varphi\left(k^{j} x, 0,0,0,0\right) \tag{2.8}
\end{equation*}
$$

GENERALIZED DERIVATIONS AND ITS STABILITY

for all $x \in \mathcal{A}$. By virtue of (2.8), one can easily check that for all integers $n>m \geq 0$,

$$
\begin{aligned}
\left\|\frac{f\left(k^{n} x\right)}{k^{n}}-\frac{f\left(k^{m} x\right)}{k^{m}}\right\| & =\frac{1}{k^{m}}\left\|\frac{f\left(k^{n-m} \cdot k^{m} x\right)}{k^{n-m}}-f\left(k^{m} x\right)\right\| \\
& \leq \sum_{j=m+1}^{n} \frac{1}{k^{j-1}} \varphi\left(k^{j} x, 0,0,0,0\right)
\end{aligned}
$$

for all $x \in \mathcal{A}$. It follows that the sequence $\left\{f\left(k^{n} x\right) / k^{n}\right\}$ is a Cauchy and so it is convergent, since \mathcal{A} is complete. Let $d: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping defined by $d(x):=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{n}}$ for all $x \in \mathcal{A}$. Sending $n \rightarrow \infty$ in (2.8), we arrive at (2.5).

Now, we assert that d is additive. Replacing x and y by $k^{n} x$ and $k^{n} y$ in (2.6), respectively, and then dividing both sides by k^{n}, we have

$$
\left\|\frac{1}{k^{n}} f\left(\frac{k^{n} x+k^{n} y}{k}\right)-\frac{1}{k} \frac{f\left(k^{n} x\right)}{k^{n}}-\frac{1}{k} \frac{f\left(k^{n} y\right)}{k^{n}}\right\| \leq \frac{1}{k^{n}} \varphi\left(k^{n} x, k^{n} y, 0,0,0\right) .
$$

Taking the limit as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
d\left(\frac{x+y}{k}\right)=\frac{d(x)}{k}+\frac{d(y)}{k} . \tag{2.9}
\end{equation*}
$$

Letting $y=0$ in (2.9) yields $d(x / k)=d(x) / k$. Thus we get $d(x+y)=d(x)+d(y)$ for all $x, y \in \mathcal{A}$.

To verify the uniqueness of the additive mapping d subject to (2.4), assume that there exists another additive mapping $D: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the inequality (2.4). Since $D\left(k^{n} x\right)=k^{n} D(x)$ and $d\left(k^{n} x\right)=k^{n} d(x)$, we see that

$$
\begin{aligned}
\|D(x)-d(x)\| & =\frac{1}{k^{n}}\left\|D\left(k^{n} x\right)-d\left(k^{n} x\right)\right\| \\
& \leq \frac{1}{k^{n}}\left[\left\|D\left(k^{n} x\right)-f\left(k^{n} x\right)\right\|+\left\|f\left(k^{n} x\right)-d\left(k^{n} x\right)\right\|\right] \\
& \leq \sum_{j=n+1}^{\infty} \frac{2}{k^{j-1}} \varphi\left(k^{j} x, 0,0,0,0\right)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in \mathcal{A}$. So that $D=d$.
Next, we are in the position to prove that

$$
\begin{equation*}
d(z w u)=d(z w) u-z d(w) u+z d(w u) \tag{2.10}
\end{equation*}
$$

for all $z, w, u \in \mathcal{A}$. If we take $x=y=0$ in (2.3), we have

$$
\begin{equation*}
\|f(z w u)-f(z w) u+z f(w) u-z f(w u)\| \leq \varphi(0,0, z, w, u) \tag{2.11}
\end{equation*}
$$

for all $z, w, u \in \mathcal{A}$. If we replace z, w and u with $k^{n} z, k^{n} w$ and $k^{n} u$ in (2.11), respectively, and then divide both sides by $k^{3 n}$, we get

$$
\left\|\frac{f\left(k^{3 n} z w u\right)}{k^{3 n}}-\frac{f\left(k^{2 n} z w\right)}{k^{2 n}} u+z \frac{f\left(k^{n} w\right)}{k^{n}} u-z \frac{f\left(k^{2 n} w u\right)}{k^{2 n}}\right\| \leq \frac{1}{k^{3 n}} \varphi\left(0,0, k^{n} z, k^{n} w, k^{n} u\right) .
$$

Letting $n \rightarrow \infty$, we obtain the desired result (2.10).
We finally need to show that the formula (2.5) holds. Let $\Delta: \mathcal{A}^{3} \rightarrow \mathcal{A}$ be a mapping defined by

$$
\Delta(z, w, u)=f(z w u)-f(z w) u+z f(w) u-z f(w u)
$$

S.-Y. KANG AND I.-S. CHANG

for all $z, w, u \in \mathcal{A}$. Since f satisfies the inequality given in (2.11), we have by (2.1)

$$
\lim _{n \rightarrow \infty} \frac{\Delta\left(k^{n} z, w, u\right)}{k^{n}}=0
$$

for all $z, w, u \in \mathcal{A}$. We note that

$$
\begin{align*}
d(z w u) & =\lim _{n \rightarrow \infty} \frac{f\left(k^{n} z w u\right)}{k^{n}}=\lim _{n \rightarrow \infty} \frac{f\left(\left(k^{n} z\right) w u\right)}{k^{n}} \tag{2.12}\\
& =\lim _{n \rightarrow \infty} \frac{f\left(k^{n} z w\right) u-k^{n} z f(w) u+k^{n} z f(w u)+\Delta\left(k^{n} z, w, u\right)}{k^{n}} \\
& =\lim _{n \rightarrow \infty}\left\{\frac{f\left(k^{n} z w\right)}{k^{n}} u-z f(w) u+z f(w u)\right\}+\lim _{n \rightarrow \infty} \frac{\Delta\left(k^{n} z, w, u\right)}{k^{n}} \\
& =d(z w) u-z f(w) u+z f(w u)
\end{align*}
$$

for all $z, w, u \in \mathcal{A}$. Since d is additive, we can rewrite (2.12) as

$$
\begin{aligned}
& k^{n} d(z w) u-k^{n} z f(w) u+k^{n} z f(w u) \\
& =d\left(\left(k^{n} z\right) w u\right)=d\left(z\left(k^{n} w\right) u\right) \\
& =k^{n} d(z w) u-z f\left(k^{n} w\right) u+z f\left(k^{n} w u\right),
\end{aligned}
$$

which implies that

$$
-z f(w) u+z f(w u)=-z \frac{f\left(k^{n} w\right)}{k^{n}} u+z \frac{f\left(k^{n} w u\right)}{k^{n}} .
$$

Letting $n \rightarrow \infty$, we obtain

$$
-z f(w) u+z f(w u)=-z d(w) u+z d(w u)
$$

for all $z, w, u \in \mathcal{A}$. Replace u by $k^{n} u$ in the previous part and then divide both sides by k^{n} to find

$$
-z f(w) u+z \frac{f\left(k^{n} w u\right)}{k^{n}}=-z d(w) u+z d(w u) .
$$

Passing the limit as $n \rightarrow \infty$, we get (2.5). This completes the proof of the theorem.
Using the same method as in the proof of Theorem 2.1, we get the following.
Theorem 2.2. Let \mathcal{A} be a Banach algebra and let $\varphi: \mathcal{A}^{5} \rightarrow[0, \infty)$ be a function such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} k^{n} \varphi\left(0,0, \frac{z}{k^{n}}, w, u\right)=0, \tag{2.13}\\
& \sum_{j=1}^{\infty} k^{3 j} \varphi\left(\frac{x}{k^{j-1}}, \frac{y}{k^{j-1}}, \frac{z}{k^{j-1}}, \frac{w}{k^{j-1}}, \frac{u}{k^{j-1}}\right)<\infty \tag{2.14}
\end{align*}
$$

for all $x, y, z, w, u \in \mathcal{A}$. Assume that a mapping $f: \mathcal{A} \rightarrow \mathcal{A}$ with $f(0)=0$ satisfies (2.3). Then there exists a unique additive generalized derivation $d: \mathcal{A} \rightarrow \mathcal{A}$ satisfying

$$
\|f(x)-d(x)\| \leq \sum_{j=1}^{\infty} k^{j} \varphi\left(\frac{x}{k^{j-1}}, 0,0,0,0\right)
$$

for all $x \in \mathcal{A}$ and (2.5) holds.
From now on, we assume that \mathcal{A} is a unital Banach algebra. We also obtain the superstability of additive generalized derivations.

Corollary 2.3. Suppose that $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{A}^{5} \rightarrow[0, \infty)$ satisfying (2.1), (2.2) and (2.3). Then f is an additive generalized derivation.

Proof. Letting $x=z=e$ in (2.5) implies $f=d$, which completes the proof of the corollary.

Corollary 2.4. Suppose that $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{A}^{5} \rightarrow[0, \infty)$ satisfying (2.13), (2.14) and (2.3). Then f is an additive generalized derivation.

Proof. The proof is similar to the proof of the corollary 2.3.
By the same way as in the proof of Theorem 2.1 and Corollary 2.3, we lead to the following.

Corollary 2.5. Suppose that $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{A}^{4} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{\varphi\left(0,0, k^{n} z, w\right)}{k^{n}}=0 \tag{2.15}\\
& \sum_{j=1}^{\infty} \frac{1}{k^{j-1}} \varphi\left(k^{j} x, k^{j} y, k^{j} z, k^{j} w\right)<\infty \tag{2.16}\\
& \left\|f\left(\frac{x+y}{k}+z w\right)-\frac{f(x)}{k}-\frac{f(y)}{k}-f(z) w+z f(e) w-z f(w)\right\| \leq \varphi(x, y, z, w) \tag{2.17}
\end{align*}
$$

for all $x, y, z, w \in \mathcal{A}$. Then f is an additive extended derivation.
Employing the same fashion as in the proof of Theorem 2.1 and Corollary 2.4, we obtain the following.

Corollary 2.6. Let $\varphi: \mathcal{A}^{4} \rightarrow[0, \infty)$ be a function such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} k^{n} \varphi\left(0,0, \frac{z}{k^{n}}, w\right)=0 \tag{2.18}\\
& \sum_{j=1}^{\infty} k^{2 j} \varphi\left(\frac{x}{k^{j-1}}, \frac{y}{k^{j-1}}, \frac{z}{k^{j-1}}, \frac{w}{k^{j-1}}\right)<\infty \tag{2.19}
\end{align*}
$$

for all $x, y, z, w \in \mathcal{A}$. Assume that a mapping $f: \mathcal{A} \rightarrow \mathcal{A}$ with $f(0)=0$ satisfies (2.17). Then f is an additive extended derivation.

We now denote by $\mathbb{U}:=\{z \in \mathbb{C}:|z|=1\}$. The following theorem is a result for the superstability of functional equation stemming from spectrally bounded generalized derivations.

Theorem 2.7. Let $f: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping with $f(0)=0$ for which there exists a constant $M \geq 0$ such that $r(f(x)) \leq M r(x)$ for all $x \in \mathcal{A}$. Suppose that $\varphi: \mathcal{A}^{5} \rightarrow[0, \infty)$ is a function satisfying (2.1), (2.2) and the inequality

$$
\begin{align*}
& \left\|f\left(\frac{\alpha x+\beta y}{k}+z w u\right)-\alpha \frac{f(x)}{k}-\beta \frac{f(y)}{k}-f(z w) u+z f(w) u-z f(w u)\right\| \tag{2.20}\\
& \leq \varphi(x, y, z, w, u)
\end{align*}
$$

for all $x, y, z, w, u \in \mathcal{A}$ and all $\alpha, \beta \in \mathbb{U}$. Then $f=L_{f(e)}+\delta$, where $L_{f(e)}$ is a left multiplication by $f(e)$ and δ is a derivation. In this case, both $L_{f(e)}$ and δ are spectrally bounded.

Proof. We consider $\alpha=\beta=1 \in \mathbb{U}$ in (2.20) and then f satisfies the inequality (2.3). It follows from the corollary 2.3 that f is an additive generalized derivation, where $f(x):=$ $\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{n}}$ for all $x \in \mathcal{A}$.

Letting $z=w=u=0$ in (2.20), we have

$$
\begin{equation*}
\left\|f\left(\frac{\alpha x+\beta y}{k}\right)-\alpha \frac{f(x)}{k}-\beta \frac{f(y)}{k}\right\| \leq \varphi(x, y, 0,0,0) \tag{2.21}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$ and all $\alpha, \beta \in \mathbb{U}$. If we replace x and y with $k^{n} x$ and $k^{n} y$ in (2.21), respectively, and then divide both sides by k^{n}, we see that

$$
\left\|\frac{1}{k^{n}} f\left(\frac{\alpha k^{n} x+\beta k^{n} y}{k}\right)-\alpha \frac{1}{k} \frac{f\left(k^{n} x\right)}{k^{n}}-\beta \frac{1}{k} \frac{f\left(k^{n} y\right)}{k^{n}}\right\| \leq \frac{1}{k^{n}} \varphi\left(k^{n} x, k^{n} y, 0,0,0\right),
$$

which tends to zero as $n \rightarrow \infty$. So we get

$$
f\left(\frac{\alpha x+\beta y}{k}\right)=\alpha \frac{f(x)}{k}+\beta \frac{f(y)}{k}
$$

for all $x, y \in \mathcal{A}$ and all $\alpha, \beta \in \mathbb{U}$. From the additivity of f, we find that

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

for all $x, y \in \mathcal{A}$ and all $\alpha, \beta \in \mathbb{U}$. As we did in the proof of [10, Theorem 2.3] (or [11, Theorem 3.1]), we have that $f(\lambda x)=\lambda f(x)$ for all $x \in \mathcal{A}$. Also, it is obvious that $f(0 x)=0=0 f(x)$ for all $x \in \mathcal{A}$, that is, f is linear. Therefore f is a generalized derivation. So f is an extended derivation and a spectrally bounded generalized derivation.

We now define a mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ by $\delta(x):=f(x)-x f(e)$ for all $x \in \mathcal{A}$. So δ is linear. Note that

$$
\delta(x y)=f(x y)-x y f(e)=x(f(y)-y f(e))+(f(x)-x f(e)) y=x \delta(y)+\delta(x) y
$$

for all $x, y \in \mathcal{A}$. Thus δ is a derivation. In particular, setting $L_{f(e)}(x):=x f(e)$ for all $x \in \mathcal{A}$, we obtain $f=L_{f(e)}+\delta$. According to the Brešar and and M. Mathieu's result [7], both $L_{f(e)}$ and δ are spectrally bounded. The proof of the theorem is ended.

Now, we compare the following corollary with some results of [2].
Corollary 2.8. Let $f: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{A}^{4} \rightarrow[0, \infty)$ satisfying (2.15), (2.16) and the inequality

$$
\begin{aligned}
& \left\|f\left(\frac{\alpha x+\beta y}{k}+z w\right)-\alpha \frac{f(x)}{k}-\beta \frac{f(y)}{k}-f(z) w+z f(e) w-z f(w)\right\| \\
& \leq \varphi(x, y, z, w)
\end{aligned}
$$

for all $x, y, z, w \in \mathcal{A}$ and all $\alpha, \beta \in \mathbb{U}$. Then f is an extended derivation.
Proof. By the same reasoning described in the proof of Theorem 2.7, we find that f is an extended derivation. The proof of the corollary is complete.

Theorem 2.9. Let $f: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping with $f(0)=0$ for which there exists a constant $M \geq 0$ such that $r(f(x)) \leq M r(x)$ for all $x \in \mathcal{A}$. Suppose that $\varphi: \mathcal{A}^{5} \rightarrow[0, \infty)$ is a function satisfying (2.1), (2.2) and the inequality (2.20) for all $x, y, z, w, u \in \mathcal{A}$ and all $\alpha, \beta=1$, \mathbf{i}. If, in addition, $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed x in \mathcal{A}, then $f=L_{f(e)}+\delta$, where $L_{f(e)}$ is a left multiplication by $f(e)$ and δ is a derivation. In this case, both $L_{f(e)}$ and δ are spectrally bounded.

Proof. Let $\alpha=\beta=1$ in (2.1). Due to the corollary 2.3 , we see that f is an additive generalized derivation f, where $f(x):=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{n}}$ for all $x \in \mathcal{A}$. Employing the same method as in the proof of the main theorem of [15], we see that d is \mathbb{R}-linear.

Considering $\alpha=\mathbf{i}$ and $y=z=w=u=0$ in (2.20), we get

$$
\left\|f\left(\frac{\mathbf{i} x}{k}\right)-\mathbf{i} \frac{f(x)}{k}\right\| \leq \varphi(x, 0,0,0,0)
$$

for all $x \in \mathcal{A}$. Replacing x by $k^{n+1} x$ in the previous part and then dividing k^{n} on both sides, we have

$$
\left\|\frac{f\left(k^{n} \mathbf{i} x\right)}{k^{n}}-\mathbf{i} \frac{f\left(k^{n+1} x\right)}{k^{n+1}}\right\| \leq \frac{1}{k^{n}} \varphi\left(k^{n+1} x, 0,0,0,0\right)
$$

The right-hand side goes to zero as $n \rightarrow \infty$, so that

$$
f(\mathbf{i} x)=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} \mathbf{i} x\right)}{k^{n}}=\lim _{n \rightarrow \infty} \mathbf{i} \frac{f\left(k^{n+1} x\right)}{k^{n+1}}=\mathbf{i} f(x)
$$

for all $x \in \mathcal{A}$. Then for all $\lambda=a+\mathbf{i} b$ with $a, b \in \mathbb{R}$, one notes

$$
\begin{aligned}
f(\lambda x) & =f(a x+\mathbf{i} b x)=a f(x)+b f(\mathbf{i} x) \\
& =a f(x)+b \mathbf{i} f(x)=(a+b \mathbf{i}) f(x)=\lambda f(x)
\end{aligned}
$$

Thus f is linear.
The remaining part of the theorem is similar to the proof of Theorem 2.7.
Corollary 2.10. Let $f: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{A}^{4} \rightarrow[0, \infty)$ satisfying (2.15), (2.16) and the inequality (2.22) for all $x, y, z, w \in \mathcal{A}$ and all $\alpha, \beta=1$, \mathbf{i}. If, in addition, $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed x in \mathcal{A}, then f is an extended derivation.

Proof. The proof is similar to the proof of Theorem 2.9.
Remark. Even though, in Theorem 2.7 and Theorem 2.9, we replace (2.1) and (2.2) by (2.13) and (2.14), the conclusions of Theorem 2.7 and Theorem 2.9 are still true. On the other hand, in Corollary 2.8 and Corollary 2.10, if we replace (2.15) and (2.16) with (2.18) and (2.19), then the results of Corollary 2.8 and Corollary 2.10 also hold. Furthermore, we can remove the assumption $f(0)=0$ in the previous facts as just mentioned. Indeed, we note that

$$
\left\|\frac{(k-2 \mathbf{i})}{k} f(0)\right\| \leq \varphi(0,0,0,0,0),\left(\left\|\frac{(k-2 \mathbf{i})}{k} f(0)\right\| \leq \varphi(0,0,0,0), \text { respectively }\right)
$$

So, by the assumption of φ, we get $f(0)=0$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] M. Amyari, F. Rahbarnia and Gh. Sadeghi, Some results on stability of extended derivations, J. Math. Anal. Appl., 329 (2007), 753-758.
[3] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), 589-597.
[4] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (1) (2006), 167-173.
[5] F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, Heidelberg and Berlin, (1973).
[6] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16 (1949), 385-397.
[7] M. Brešar and M. Mathieu, Derivations mapping into the radical, III, J. Funct. Anal., 10 (1990), 7-16.
[8] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224.
[9] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[10] S.-Y. Kang and I.-S. Chang, Approximation of generalized left derivations, Abstr. Appl. Anal., 2008 (2008), Art. ID 915292, 8 pages.
[11] H.-M. Kim, S.-Y. Kang and I.-S. Chang, On Functional inequalities originating from module Jordan left derivations, J. Inequal. Appl, 2008 (2008), Art. ID 278505, 9 pages.
[12] Z. Kominek, A local stability of the Jensen functional equation, Demonstratio. Math., 22 (1989), 499-507.
[13] T. Miura, G. Hirasawa and S.-E. Takahasi, A pertubation of ring derivations on Banach algebras, J. Math. Anal. Appl., 319 (2006), 522-530.
[14] M.S Moslehian, Hyers-Ulam-Rassias stability of generalized derivations, Internat. J. Math. Math. Sci., 2006 (2006), 1-8, 93942.
[15] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[16] Th.M. Rassias(Ed.), Functional equations and inequalities, Kluwer Academic, Dordrecht, (2000).
[17] Th.M. Rassias, Stability of mapping of Hyers-Ulam type, Hadronic Press, Inc., (1994).
[18] J. Roh and I.-S. Chang, Functional inequalities associated with additive mappings, Abstr. Appl. Anal., 2008 (2008), Art. ID 136592, 11 pages.
[19] P. Šemrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integr. Equat. Oper. Theory 18 (1994), 118-122.
[20] S.M. Ulam, Problems in Modern Mathematics, Chap. VI, Science ed., Wiley, New York., (1960).
Sheon-Young Kang, Department of Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon 305-340, Republic of Korea

E-mail address: skang@nims.re.kr
*Ick-Soon Chang, Department of Mathematics, Mokwon University, Daejeon 302-729, Republic of Korea

E-mail address: ischang@mokwon.ac.kr

NEW SYSTEMS OF GENERALIZED MIXED VARIATIONAL INEQUALITIES WITH NONLINEAR MAPPINGS IN HILBERT SPACES

Jong Kyu Kim ${ }^{1}$
Department of Mathematics Education, Kyungnam University, Masan, Kyungnam, 631-701, Korea
e-mail: jongkyuk@kyungnam.ac.kr
Kyung Soo Kim ${ }^{2}$
Department of Mathematical and Statistical Sciences University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
e-mail: kskim@math.ualberta.ca

Abstract

In this paper, we introduce and study a new system of generalized mixed variational inequality problems with nonlinear mappings in Hilbert spaces. We prove the existence of the solutions and the convergence of iterative sequences generated by the algorithm for the system. The results presented in this paper are the generalization and improvement of recent results.

1. Introduction

It is known variational inequality theory and complementarity problem are very powerful tools of the current mathematical technology. In recent years, classical variational inequalities and complementarity problems have been extended and generalized to study a large variety of problems arising in mechanics, physics, optimization and control, nonlinear programming, economics and transportation equilibrium and engineering sciences, etc. Standard variational inequality theory was introduced by Stampacchia [12] in 1964. In 1988, Noor [10] introduced and studied some new class of general variational inequality. Also, in 1998, he [11] introduced and studied some new class of variational inequality. The solvability of the variational inequalities based on some sort of iterative algorithm much depends on the suitable choice of the mappings and the proper space setting, as has been the case in most of the computational analysis.

[^27]Recently, Chang et al. [2], Ding et al. [3], Kim-Kim [6], Kim-Kim ([7], [8]) and Verma ([13]-[17]) introduced some systems of nonlinear strongly monotone variational inequalities and studied the approximate solvability of there systems based on a system of projection methods.

The purpose of this paper is to consider, based on the resolvent method, the existence of solutions and approximation solvability of a class of new system of generalized nonlinear mixed variational inequalities with nonlinear mappings in Hilbert spaces. The results pretended in this paper generalize, improve and unify the corresponding results of Chang et al. [2], Ding et al. [3], Kim-Kim [6], Kim-Kim ([7], [8]), Noor ([10], [11]) and Verma ([13]-[17]).

2. Preliminaries

Throughout this paper, let H be a real Hilbert space with the inner product $\langle\cdot, \cdot\rangle$ and the norm $\|\cdot\|$ and $C B(H)$ be the family of all bounded closed convex subset of H. Let $U, V: H \rightarrow C B(H), F, G: H \times H \times H \rightarrow H, g_{1}, g_{2}: H \rightarrow H$ be mappings, $\phi_{1}, \phi_{2}: H \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper convex lower semicontinuous functions, and $H(\cdot, \cdot)$ be the Hausdorff metric on $C B(H)$ defined by

$$
H(A, B)=\max \left\{\sup _{x \in A} D(x, B), \sup _{y \in B} D(A, y)\right\}
$$

We consider the following new systems of generalized nonlinear mixed variational inequality problem:

Find elements $x, y \in H, u \in U(x)$ and $v \in V(y)$ such that $g_{1}(x), g_{2}(y) \in H$ and

$$
\left\{\begin{array}{l}
\left\langle\rho F(x, u, y), z-g_{1}(x)\right\rangle \geq \rho \phi_{1}\left(g_{1}(x)\right)-\rho \phi_{1}(z) \tag{2.1}\\
\left\langle\gamma G(x, v, y), z-g_{2}(y)\right\rangle \geq \gamma \phi_{2}\left(g_{2}(y)\right)-\gamma \phi_{2}(z)
\end{array}\right.
$$

for all $z \in H$ and $\rho>0, \gamma>0$ are two constants.

Special Cases

(I) If $\phi_{1}(x)=\delta_{K 0_{1}}(x), \phi_{2}(u)=\delta_{K_{2}}(u)$, where $\delta_{K_{i}}$ is the indicator function of a nonempty closed convex subset K_{i} for $i=1,2$, then the problem (2.1) reduce to finding $x, y \in H, u \in U(x)$ and $v \in V(y)$ such that $g_{i}(x) \in K_{i}$ for $i=1,2$ and

$$
\left\{\begin{array}{l}
\left\langle\rho F(x, u, y), z-g_{1}(x)\right\rangle \geq 0, \quad \forall z \in K_{1} \tag{2.2}\\
\left\langle\gamma G(x, v, y), z-g_{2}(y)\right\rangle \geq 0, \quad \forall z \in K_{2}
\end{array}\right.
$$

where $\rho>0, \gamma>0$ are two constants, which is called the new systems of generalized nonlinear variational inequality problem which was considered by Ding et al. [3].
(II) If $F(x, u, y)=T(y, x)+\frac{1}{\rho} g_{1}(x)-\frac{1}{\rho} g_{2}(y), G(x, v, y)=S(x, y)+\frac{1}{\gamma} g_{2}(y)-$ $\frac{1}{\gamma} g_{1}(x)$, for all $x, y, u, v \in H$, then the problem (2.1) reduced to finding $x, y \in H$ such that $g_{1}(x), g_{2}(y) \in H$ and
$\left\{\begin{array}{l}\left\langle\rho T(y, x)+g_{1}(x)-g_{2}(y), z-g_{1}(x)\right\rangle \geq \rho\left(\phi_{1}\left(g_{1}(x)\right)-\phi_{1}(z)\right), \\ \left.\left\langle\gamma S(x, y)+g_{2}(y)-g_{1}(x), z-g_{2}(y)\right\rangle \geq \gamma \phi_{2}\left(g_{2}(y)\right)-\phi_{2}(z)\right),\end{array}\right.$
for all $z \in H$, which was considered in Kim-Kim [7].
(III) If $\phi_{1}(x)=\delta_{K_{1}}(x), \phi_{2}(u)=\delta_{K_{2}}(u), K_{1}=K_{2}=K, g_{1}=g_{2}=I$: identity mapping), $F(x, u, y)=T(y, x)+\frac{1}{\rho} x-\frac{1}{\rho} y, G(x, v, y)=T(x, y)+$ $\frac{1}{\gamma} y-\frac{1}{\gamma} x$ for all $x, y, u, v \in H$, then the problem (2.1) reduces to finding $x, y \in K$ such that

$$
\begin{cases}\langle\rho T(y, x)+x-y, z-x\rangle \geq 0, & \forall z \in K \tag{2.4}\\ \gamma T(x, y)+y-x, z-y\rangle \geq 0, & \forall z \in K\end{cases}
$$

where $\rho>0, \gamma>0$ are two constants, which is called the system of nonlinear variational inequality problem considered by Verma [17]. The special case of problem (2.4) was studied by Verma ([13], [16]).
(IV) If $\phi_{1}(x)=\delta_{K_{1}}(x), \phi_{2}(u)=\delta_{K_{2}}(u), g_{1}=g_{2}=I$ (: identity mapping), $F(x, u, y)=S(x, y), G(x, v, y)=T(x, y)$ for all $x, y, u, v \in H$, then the problem (2.1) reduce to finding $x \in K_{1}, y \in K_{2}$ such that

$$
\begin{cases}\langle\rho S(x, y), z-x\rangle \geq 0, & \forall z \in K_{1} \tag{2.5}\\ \langle\gamma T(x, y), z-y\rangle \geq 0, & \forall z \in K_{2}\end{cases}
$$

which is just the problem considered in [5] with S, T being single-valued mappings.

In the sequel, we give some definitions and lemmas.
Definition 2.1. Let $T: H \rightarrow H$ be mapping.
(1) The mapping T is said to be monotone if

$$
\langle T(x)-T(y), x-y\rangle \geq 0, \quad \forall x, y \in H
$$

(2) The mapping T is said to be r-strongly monotone if there exists $r>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq r\|x-y\|^{2}, \quad \forall x, y \in H
$$

This implies that

$$
\|T(x)-T(y)\| \geq r\|x-y\|
$$

that is, T is r-expansive and, when $r=1$, it is expansive.
(3) The mapping T is said to be s-Lipschitz continuous (or Lipschitzian) if there exists a constant $s \geq 0$ such that

$$
\|T(x)-T(y)\| \leq s\|x-y\|, \quad \forall x, y \in H
$$

(4) The mapping T is said to be μ-cocoercive ([4], [13], [16]) if there exists a constant $\mu>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq \mu\|T(x)-T(y)\|^{2}, \quad \forall x, y \in H
$$

Clearly, every μ-cocoercive mapping T is $\frac{1}{\mu}$-Lipschitz continuous.
(5) The mapping T is said to be relaxed γ-cocoercive if there exists a constant $\gamma>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq(-\gamma)\|T(x)-T(y)\|^{2}, \quad \forall x, y \in H
$$

(6) The mapping T is said to be relaxed (γ, r)-cocoercive if there exist constants $\gamma, r>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq(-\gamma)\|T(x)-T(y)\|^{2}+r\|x-y\|^{2}
$$

for all $x, y \in H$. For $\gamma=0, T$ is r-strongly monotone, and for $r=0, T$ is relaxed γ-cocoercive. This class of mappings is more general than the class of strongly monotone mappings.

Remark 2.1. We have the following implications:

$$
\begin{aligned}
& \text { the strong monotonicity } \quad \Longrightarrow \text { the monotonicity, } \\
& \text { the strong monotonicity } \quad \Longrightarrow \quad \text { the expansiveness }
\end{aligned}
$$

and
the r-strong monotonicity \Longrightarrow the relaxed (γ, r)-cocoercivity.
Definition 2.2. Let $F: X \times X \times X \rightarrow X$ be a nonlinear mapping. F is said to be
(i) α-strongly monotone with respect to the first argument if there exists some $\alpha>0$ such that

$$
\langle F(x, \cdot, \cdot)-F(y, \cdot, \cdot), x-y\rangle \geq \alpha\|x-y\|^{2}, \quad \forall x, y \in X
$$

(ii) ξ-Lipschitz continuous with respect to the first argument if exists a constant $\xi>0$ such that

$$
\|F(x, \cdot, \cdot)-F(y, \cdot, \cdot)\| \leq \xi\|x-y\|, \quad \forall x, y \in X
$$

Similarly, we can define the strong monotonocity and Lipschitzian continuity with respect to the second and the third argument of $F(\cdot, \cdot, \cdot)$.

Definition 2.3. ([9]) A mapping $U: H \rightarrow C B(H)$ is said to be ψ-Lipschitz continuous if there exists a constant $\psi>0$ such that

$$
H\left(U\left(v_{1}\right), U\left(v_{2}\right)\right) \leq \psi\left\|v_{1}-v_{2}\right\|, \quad \forall v_{i} \in H, \quad i=1,2
$$

where $H(\cdot, \cdot)$ is a Hausdorff metric on $C B(H)$.
Lemma 2.1. ([1], [18]) For a given $u \in H$, the point $z \in H$ satisfies the following inequality

$$
\langle u-z, v-u\rangle \geq \rho \phi(u)-\rho \phi(v) \quad \forall v \in H
$$

if and only if

$$
u=J_{\phi}^{\rho}(z),
$$

where $J_{\phi}^{\rho}=(I+\rho \partial \phi)^{-1}$ and $\partial \phi$ denotes the subdifferential of a proper convex lower semicontinuous function $\phi: H \rightarrow \mathbb{R} \cup\{+\infty\}$.

Remark 2.2. It is well known that J_{ϕ}^{ρ} is nonexpansive (see [1], [18]).
It is easy to prove that the following lemma is trivial from the Lemma 2.1.
Lemma 2.2. For given $x, y \in H, u \in U(x)$ and $v \in V(y),(x, y, u, v)$ is a solution of the problem (2.1) if and only if

$$
\begin{aligned}
& g_{1}(x)=J_{\phi_{1}}^{\rho}\left(g_{1}(x)-\rho F(x, u, y)\right) \\
& g_{2}(y)=J_{\phi_{2}}^{\gamma}\left(g_{2}(y)-\gamma G(x, v, y)\right)
\end{aligned}
$$

where $\rho, \gamma>0$ are constants.

3. Existence and Convergence

In this section, we construct some iterative algorithms for the problems (2.1). We also give the convergence analysis of the iterative sequences generated by the algorithm.

Now we give the algorithm for solving the problem (2.1) as follows.
Algorithm 3.1. For any given $x_{0}, y_{0} \in H$, we choose $u_{0} \in U\left(x_{0}\right), v_{0} \in V\left(y_{0}\right)$ and let

$$
\begin{aligned}
x_{1} & =x_{0}-g_{1}\left(x_{0}\right)+J_{\phi_{1}}^{\rho}\left(g_{1}\left(x_{0}\right)-\rho F\left(x_{0}, u_{0}, y_{0}\right)\right) \\
y_{1} & =y_{0}-g_{2}\left(y_{0}\right)+J_{\phi_{2}}^{\gamma}\left(g_{2}\left(y_{0}\right)-\gamma G\left(x_{0}, v_{0}, y_{0}\right)\right)
\end{aligned}
$$

By Nadler [9] there exists $u_{1} \in U\left(x_{1}\right)$ and $v_{1} \in V\left(y_{1}\right)$ such that

$$
\begin{aligned}
\left\|u_{0}-u_{1}\right\| & \leq(1+1) H\left(U\left(x_{0}\right), U\left(x_{1}\right)\right) \\
\left\|v_{0}-v_{1}\right\| & \leq(1+1) H\left(V\left(y_{0}\right), V\left(y_{1}\right)\right) .
\end{aligned}
$$

Jong Kyu Kim and Kyung Soo Kim

Let

$$
\begin{aligned}
& x_{2}=x_{1}-g_{1}\left(x_{1}\right)+J_{\phi_{1}}^{\rho}\left(g_{1}\left(x_{1}\right)-\rho F\left(x_{1}, u_{1}, y_{1}\right)\right) \\
& y_{2}=y_{1}-g_{2}\left(y_{1}\right)+J_{\phi_{2}}^{\gamma}\left(g_{2}\left(y_{1}\right)-\gamma G\left(x_{1}, v_{1}, y_{1}\right)\right)
\end{aligned}
$$

By induction, we obtain the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that

$$
\left\{\begin{array}{l}
u_{n} \in U\left(x_{n}\right), \quad\left\|u_{n}-u_{n+1}\right\| \leq\left(1+\frac{1}{1+n}\right) H\left(U\left(x_{n}\right), U\left(x_{n+1}\right)\right) \tag{3.1}\\
v_{n} \in V\left(y_{n}\right), \quad\left\|v_{n}-v_{n+1}\right\| \leq\left(1+\frac{1}{1+n}\right) H\left(V\left(y_{n}\right), V\left(y_{n+1}\right)\right) \\
x_{n+1}=x_{n}-g_{1}\left(x_{n}\right)+J_{\phi_{1}}^{\rho}\left(g_{1}\left(x_{n}\right)-\rho F\left(x_{n}, u_{n}, y_{n}\right)\right) \\
y_{n+1}=y_{n}-g_{2}\left(y_{n}\right)+J_{\phi_{2}}^{\gamma}\left(g_{2}\left(y_{n}\right)-\gamma G\left(x_{n}, v_{n}, y_{n}\right)\right)
\end{array}\right.
$$

for $i=0,1,2, \cdots$.
Theorem 3.1. Let $g_{i}: H \rightarrow H$ be relaxed $\left(\gamma_{i}, \eta_{i}\right)$-cocoercive and ξ_{i}-Lipschitz continuous, for $i=1,2$. Let $F: H \times H \times H \rightarrow H$ be l_{1}, l_{2}, l_{3}-Lipschitz continuous with respect to the first, second and third arguments, respectively, and relaxed (δ, p)-cocoercive with respect to the first argument. Let $G: H \times H \times H \rightarrow$ H be n_{1}, n_{2}, n_{3}-Lipschitz continuous with respect to the first, second and third arguments, respectively, and relaxed (ε, q)-cocoercive with respect to the third argument. Suppose U is φ-Lipschitz continuous and V is β-Lipschitz continuous. If

$$
\begin{align*}
& 2 \sqrt{1-2 \eta_{1}+\left(2 \gamma_{1}+1\right) \xi_{1}^{2}}+\sqrt{1-2 \rho p+\left(2 \rho \delta+\rho^{2}\right) l_{1}^{2}} \tag{3.2}\\
& +\rho l_{2} \varphi+\gamma n_{1}<1
\end{align*}
$$

and

$$
\begin{align*}
& 2 \sqrt{1-2 \eta_{2}+\left(2 \gamma_{2}+1\right) \xi_{2}^{2}}+\sqrt{1-2 \gamma q+\left(2 \gamma \varepsilon+\gamma^{2}\right) n_{3}^{2}} \tag{3.3}\\
& +\gamma n_{2} \beta+\rho l_{3}<1
\end{align*}
$$

then there exist $x, y \in H, u \in U(x)$ and $v \in V(y)$ which solve problem (2.1). Moreover, the iterative sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ generated by Algorithm 3.1 converges to x and y, respectively.

Proof. From (3.1), we have

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\| \\
= & \| x_{n}-g_{1}\left(x_{n}\right)+J_{\phi_{1}}^{\rho}\left(g_{1}\left(x_{n}\right)-\rho F\left(x_{n}, u_{n}, y_{n}\right)\right) \\
& -\left\{x_{n-1}-g_{1}\left(x_{n-1}\right)+J_{\phi_{1}}^{\rho}\left(g_{1}\left(x_{n-1}\right)-\rho F\left(x_{n-1}, u_{n-1}, y_{n-1}\right)\right)\right\} \| \tag{3.4}\\
\leq & \left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\| \\
& +\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)-\rho\left(F\left(x_{n}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n-1}, y_{n-1}\right)\right)\right\|
\end{align*}
$$

We can know that

$$
\begin{align*}
& \left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)-\rho\left(F\left(x_{n}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n-1}, y_{n-1}\right)\right)\right\| \\
\leq & \left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\| \\
& +\left\|x_{n}-x_{n-1}-\rho\left(F\left(x_{n}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n}, y_{n}\right)\right)\right\| \tag{3.5}\\
& +\rho\left\|F\left(x_{n-1}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n-1}, y_{n}\right)\right\| \\
& +\rho\left\|F\left(x_{n-1}, u_{n-1}, y_{n}\right)-F\left(x_{n-1}, u_{n-1}, y_{n-1}\right)\right\| .
\end{align*}
$$

Since g_{1} is ξ_{1}-Lipschitz continuous and relaxed $\left(\gamma_{1}, \eta_{1}\right)$-cocoercive, we have

$$
\begin{align*}
& \left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\|^{2} \\
= & \left\|x_{n}-x_{n-1}\right\|^{2}-2\left\langle x_{n}-x_{n-1}, g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right\rangle \\
& +\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right\|^{2} \tag{3.6}\\
\leq & \left\|x_{n}-x_{n-1}\right\|^{2}+2 \gamma_{1}\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right\|^{2} \\
& -2 \eta_{1}\left\|x_{n}-x_{n-1}\right\|^{2}+\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right\|^{2} \\
\leq & \left(1-2 \eta_{1}+\left(2 \gamma_{1}+1\right) \xi_{1}^{2}\right)\left\|x_{n}-x_{n-1}\right\|^{2} .
\end{align*}
$$

And also, F is relaxed (δ, p)-cocoercive and l_{1}-Lipschitz continuous with respect to the first argument, we have

$$
\begin{align*}
& \left\|x_{n}-x_{n-1}-\rho\left(F\left(x_{n}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n}, y_{n}\right)\right)\right\|^{2} \\
= & \left\|x_{n}-x_{n-1}\right\|^{2}-2 \rho\left\langle x_{n}-x_{n-1}, F\left(x_{n}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n}, y_{n}\right)\right\rangle \\
& +\rho^{2}\left\|F\left(x_{n}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n}, y_{n}\right)\right\|^{2} \tag{3.7}\\
\leq & \left\|x_{n}-x_{n-1}\right\|^{2}+2 \rho \delta\left\|F\left(x_{n}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n}, y_{n}\right)\right\|^{2} \\
& -2 \rho p\left\|x_{n}-x_{n-1}\right\|^{2}+\rho^{2}\left\|F\left(x_{n}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n}, y_{n}\right)\right\|^{2} \\
\leq & \left(1-2 \rho p+\left(2 \rho \delta+\rho^{2}\right) l_{1}^{2}\right)\left\|x_{n}-x_{n-1}\right\|^{2} .
\end{align*}
$$

Since F is l_{2}-Lipschitz continuous with respect to the second argument and U is φ-Lipschitz continuous, we obtain

$$
\begin{align*}
& \left\|F\left(x_{n-1}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n-1}, y_{n}\right)\right\| \\
& \leq l_{2}\left\|u_{n}-u_{n-1}\right\| \\
& \leq l_{2}\left(1+\frac{1}{n}\right) H\left(U\left(x_{n}\right), U\left(x_{n-1}\right)\right) \tag{3.8}\\
& \leq\left(1+\frac{1}{n}\right) l_{2} \varphi\left\|x_{n}-x_{n-1}\right\|
\end{align*}
$$

Since F is l_{3}-Lipschitz continuous with respect to the third argument, we obtain

$$
\begin{equation*}
\left\|F\left(x_{n-1}, u_{n-1}, y_{n}\right)-F\left(x_{n-1}, u_{n-1}, y_{n-1}\right)\right\| \leq l_{3}\left\|y_{n}-y_{n-1}\right\| \tag{3.9}
\end{equation*}
$$

Substituting (3.6)-(3.9) into (3.5), we have

$$
\begin{align*}
& \quad\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)-\rho\left(F\left(x_{n}, u_{n}, y_{n}\right)-F\left(x_{n-1}, u_{n-1}, y_{n-1}\right)\right)\right\| \\
& \leq \\
& \quad \sqrt{1-2 \eta_{1}+\left(2 \gamma_{1}+1\right) \xi_{1}^{2}}\left\|x_{n}-x_{n-1}\right\| \tag{3.10}\\
& \quad+\sqrt{1-2 \rho p+\left(2 \rho \delta+\rho^{2}\right) l_{1}^{2}}\left\|x_{n}-x_{n-1}\right\| \\
& \quad+\rho l_{2} \varphi\left(1+\frac{1}{n}\right)\left\|x_{n}-x_{n-1}\right\|+\rho l_{3}\left\|y_{n}-y_{n-1}\right\| .
\end{align*}
$$

Substituting (3.6) and (3.10) into (3.4), we have

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\| \\
\leq & \left(2 \sqrt{1-2 \eta_{1}+\left(2 \gamma_{1}+1\right) \xi_{1}^{2}}+\sqrt{1-2 \rho p+\left(2 \rho \delta+\rho^{2}\right) l_{1}^{2}}\right. \tag{3.11}\\
& \left.+\rho l_{2} \varphi\left(1+\frac{1}{n}\right)\right)\left\|x_{n}-x_{n-1}\right\|+\rho l_{3}\left\|y_{n}-y_{n-1}\right\|
\end{align*}
$$

New systems of generalized mixed variational inequalities

Similarly, we have

$$
\begin{align*}
& \left\|y_{n+1}-y_{n}\right\| \\
\leq & \left(2 \sqrt{1-2 \eta_{2}+\left(2 \gamma_{2}+1\right) \xi_{2}^{2}}+\sqrt{1-2 \gamma q+\left(2 \gamma \varepsilon+\gamma^{2}\right) n_{3}^{2}}\right. \tag{3.12}\\
& \left.+\gamma n_{2} \beta\left(1+\frac{1}{n}\right)\right)\left\|y_{n}-y_{n-1}\right\|+\gamma n_{1}\left\|x_{n}-x_{n-1}\right\| .
\end{align*}
$$

Now, (3.11) and (3.12) imply

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\|+\left\|y_{n+1}-y_{n}\right\| \\
\leq & \left(2 \sqrt{1-2 \eta_{1}+\left(2 \gamma_{1}+1\right) \xi_{1}^{2}}+\sqrt{1-2 \rho p+\left(2 \rho \delta+\rho^{2}\right) l_{1}^{2}}\right. \\
& \left.+\rho l_{2} \varphi\left(1+\frac{1}{n}\right)+\gamma n_{1}\right)\left\|x_{n}-x_{n-1}\right\| \\
& +\left(2 \sqrt{1-2 \eta_{2}+\left(2 \gamma_{2}+1\right) \xi_{2}^{2}}+\sqrt{1-2 \gamma q+\left(2 \gamma \varepsilon+\gamma^{2}\right) n_{3}^{2}}\right. \tag{3.13}\\
& \left.+\gamma n_{2} \beta\left(1+\frac{1}{n}\right)+\rho l_{3}\right)\left\|y_{n}-y_{n-1}\right\| \\
\leq & \theta_{n}\left(\left\|x_{n}-x_{n-1}\right\|+\left\|y_{n}-y_{n-1}\right\|\right)
\end{align*}
$$

where

$$
\begin{aligned}
\theta_{n}=\max \{ & 2 \sqrt{1-2 \eta_{1}+\left(2 \gamma_{1}+1\right) \xi_{1}^{2}}+\sqrt{1-2 \rho p+\left(2 \rho \delta+\rho^{2}\right) l_{1}^{2}} \\
& +\rho l_{2} \varphi\left(1+\frac{1}{n}\right)+\gamma n_{1}, \\
& 2 \sqrt{1-2 \eta_{2}+\left(2 \gamma_{2}+1\right) \xi_{2}^{2}}+\sqrt{1-2 \gamma q+\left(2 \gamma \varepsilon+\gamma^{2}\right) n_{3}^{2}} \\
& \left.+\gamma n_{2} \beta\left(1+\frac{1}{n}\right)+\rho l_{3}\right\} .
\end{aligned}
$$

We know that $\theta_{n} \rightarrow \theta$ as $n \rightarrow \infty$, where

$$
\begin{aligned}
\theta=\max \{ & 2 \sqrt{1-2 \eta_{1}+\left(2 \gamma_{1}+1\right) \xi_{1}^{2}}+\sqrt{1-2 \rho p+\left(2 \rho \delta+\rho^{2}\right) l_{1}^{2}} \\
& +\rho l_{2} \varphi+\gamma n_{1} \\
& 2 \sqrt{1-2 \eta_{2}+\left(2 \gamma_{2}+1\right) \xi_{2}^{2}}+\sqrt{1-2 \gamma q+\left(2 \gamma \varepsilon+\gamma^{2}\right) n_{3}^{2}} \\
& \left.+\gamma n_{2} \beta+\rho l_{3}\right\}
\end{aligned}
$$

It follows from (3.2) and (3.3) that $0 \leq \theta<1$. Hence $\theta_{n}<1$ for sufficiently large n. Thus (3.13) implies that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are both Cauchy sequences in H, and so $\left\{x_{n}\right\}$ converges to $x \in H,\left\{y_{n}\right\}$ converges to $y \in H$. From (3.1),
we have

$$
\begin{aligned}
\left\|u_{n+1}-u_{n}\right\| & \leq\left(1+\frac{1}{1+n}\right) H\left(U\left(x_{n+1}\right), U\left(x_{n}\right)\right) \\
& \leq\left(1+\frac{1}{1+n}\right) \varphi\left\|x_{n+1}-x_{n}\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|v_{n+1}-v_{n}\right\| & \leq\left(1+\frac{1}{1+n}\right) H\left(V\left(y_{n+1}\right), V\left(y_{n}\right)\right) \\
& \leq\left(1+\frac{1}{1+n}\right) \beta\left\|y_{n+1}-y_{n}\right\|
\end{aligned}
$$

Thus, $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are also Cauchy sequences in H. Let $\left\{u_{n}\right\}$ converges to u and $\left\{v_{n}\right\}$ converges to v. Now, we prove that $u \in U(x)$ and $v \in V(y)$. In fact,

$$
\begin{aligned}
D(u, U(x)) & =\inf _{z \in U(x)}\|u-z\| \\
& \leq\left\|u-u_{n}\right\|+D\left(u_{n}, U(x)\right) \\
& \leq\left\|u-u_{n}\right\|+H\left(U\left(x_{n}\right), U(x)\right) \\
& \leq\left\|u-u_{n}\right\|+\varphi\left\|x_{n}-x\right\|
\end{aligned}
$$

Letting $n \rightarrow \infty$, we know that $D(u, U(x))=0$ and so $u \in U(x)$. Similarly, we have $v \in V(y)$. Since $g_{1}, g_{2}, J_{\phi_{1}}^{\rho}, J_{\phi_{2}}^{\gamma}, F$ and G are all continuous, we have

$$
\begin{aligned}
& x=x-g_{1}(x)+J_{\phi_{1}}^{\rho}\left(g_{1}(x)-\rho F(x, u, y)\right) \\
& y=y-g_{2}(y)+J_{\phi_{2}}^{\gamma}\left(g_{2}(y)-\gamma G(x, v, y)\right)
\end{aligned}
$$

The result follows then from Lemma 2.2. This completes the proof.
Remark 3.1. Let $\rho>0, \gamma>0$ be numbers satisfying the conditions:

$$
\begin{gathered}
l_{2} \varphi<l_{1}, \quad \rho l_{2} \varphi<1-e_{1}-\gamma n_{1}, \\
\left|\rho+\frac{\delta l_{1}^{2}-p+l_{2} \varphi}{l_{1}^{2}-\left(l_{2} \varphi\right)^{2}}\right|<\sqrt{\frac{\left(e_{1}+\gamma n_{1}\right)^{2}+\frac{\left(\delta l_{1}^{2}-p+l_{2} \varphi\right)^{2}}{l_{1}^{2}-\left(l_{2} \varphi\right)^{2}}}{l_{1}^{2}-\left(l_{2} \varphi\right)^{2}}}
\end{gathered}
$$

and

$$
\begin{gathered}
n_{2} \beta<n_{3}, \quad \gamma n_{2} \beta<1-e_{2}-\rho l_{3} \\
\left|\gamma+\frac{\varepsilon n_{3}^{2}-q+n_{2} \beta}{n_{3}^{2}-\left(n_{2} \beta\right)^{2}}\right|<\sqrt{\frac{\left(e_{2}+\rho l_{3}\right)^{2}+\frac{\left(\varepsilon n_{3}^{2}-q+n_{2} \beta\right)^{2}}{n_{3}^{2}-\left(n_{2} \beta\right)^{2}}}{n_{3}^{2}-\left(n_{2} \beta\right)^{2}}}
\end{gathered}
$$

where

$$
e_{1}=2 \sqrt{1-2 \eta_{1}+\left(2 \gamma_{1}+1\right) \xi_{1}^{2}}, \quad e_{2}=2 \sqrt{1-2 \eta_{2}+\left(2 \gamma_{2}+1\right) \xi_{2}^{2}}
$$

Then (3.2) and (3.3) holds.

Taking $\gamma_{i}=0(i=1,2), \delta=0$ and $\varepsilon=0$, by Definition 2.1-(6), in Theorem 3.1, we can obtain the following theorem.

Theorem 3.2. Let $g_{i}: H \rightarrow H$ be η_{i}-strongly monotone and ξ_{i}-Lipschitz continuous, for $i=1,2$ Let $F: H \times H \times H \rightarrow H$ be l_{1}, l_{2}, l_{3}-Lipschitz continuous with respect to the first, second and third arguments, respectively, and p strongly monotone with respect to the first argument. Let $G: H \times H \times H \rightarrow H$ be n_{1}, n_{2}, n_{3}-Lipschitz continuous with respect to the first, second and third arguments, respectively, and q-strongly monotone with respect to the third argument. Suppose U is φ-Lipschitz continuous and V is β-Lipschitz continuous. If

$$
2 \sqrt{1-2 \eta_{1}+\xi_{1}^{2}}+\sqrt{1-2 \rho p+\rho^{2} l_{1}^{2}}+\rho l_{2} \varphi+\gamma n_{1}<1
$$

and

$$
2 \sqrt{1-2 \eta_{2}+\xi_{2}^{2}}+\sqrt{1-2 \gamma q+\gamma^{2} n_{3}^{2}}+\gamma n_{2} \beta+\rho l_{3}<1,
$$

then there exist $x, y \in H, u \in U(x)$ and $v \in V(y)$ which solve problem (2.1). Moreover, the iterative sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ generated by Algorithm 3.1 converges to x and y, respectively.

Remark 3.2.

(i) Theorem 3.1 and Theorem 3.2 are generalization of the results in Chang et al. [2], Ding et al. [3], Kim-Kim [6], Kim-Kim ([7], [8]), Noor ([10], [11]) and Verma ([15], [16]).
(ii) If $\phi_{i}=\delta_{K_{i}}$, where $\delta_{K_{i}}$ is the indicator function of a nonempty closed convex subset K_{i} for $i=1,2$, in Theorem 3.2, then we can obtain the result of Ding et al. [3].

References

[1] H. Brezis, Operateurs maximaux monotone et semigroups de contractions dans les espaces de Hilbert, North-Holland, Amsterdam (1973).
[2] S. S. Chang, H. W. Joseph Lee, C. K. Chan and J. K. Kim, On a new system of nonlinear variational inequalities and algorithms, submitted.
[3] K. Ding, N. J. Huang and J. K. Kim, A new system of generalized nonlinear cocomplementarity problems, J. Appl. Math. \& Computing 21 (2006), 379-391.
[4] J. C. Dunn, Convexity, monotonocity and gradient process in Hilbert spaces, Jour. Math. Anal. Appl. 53 (1976), 145-158.
[5] G. Kassay and J. Kolumbán, Systems of multi-valued variational inequalities, Publ. Math. Debrecen 56 (2000), 185-195.
[6] J. K. Kim and D. S. Kim, A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal. 11(1) (2004), 235-243.
[7] J. K. Kim and K. S. Kim, On new systems of generalized nonlinear mixed quasivariational inequalities with two-variable operators, Taiwanese J. Math. 11(3) (2007), 867881.
[8] J. K. Kim and K. S. Kim, A new system of a generalized nonlinear mixed quasivariational inequalities and converegence in Hilbert spaces, J. Korean Math. Soc. 44(4) (2007), 823834.
[9] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[10] M. A. Noor, General variational inequalities, Appl. Math. Lett. 1 (1988), 119-121.
[11] M. A. Noor, An implicit method for mixed variational inequalities, Appl. Math. Lett. 11(4) (1998), 109-113.
[12] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci., Paris 258 (1964), 4413-4416.
[13] R. U. Verma, Projection methods, algorithms and a new system of nonlinear variational inequalities, Compu. Math. Appl. 41 (2001), 1025-1031.
[14] R. U. Verma, Iterative algorithms and a new system of nonlinear quasivariational inequalities, Adv. Nonlinear Var. Inequa. 4(1) (2001), 117-124.
[15] R. U. Verma, Projection methods and a new system of cocoercive variational inequality problems, International J. Diff. Equa. and Appl. 6 (2002), 359-367.
[16] R. U. Verma, A system of $\gamma-r-$ relaxed-cocoercive nonlinear variational inequalities and projection methods, Advan. Nonlinear Varia. Ineq. 6(2) (2003), 45-54.
[17] R. U. Verma, Generalized system for relaxed coercive variational inequalities and projection methods, J. Optim. Theory Appl. 121 (2004), 203-210.
[18] G. X. Z. Yuan, KKM theory and applications, Marcel Dekker, New York (1999).

STRONG CONVERGENCE OF ITERATIVE SCHEMES FOR NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

Jong Soo Jung
Department of Mathematics, Dong-A University, Busan, 604-714, Korea
E-mail: jungjs@mail.donga.ac.kr

Abstract

Strong convergences of the implicit iterative scheme and the explicit iterative scheme for nonexpansive semigroup are established in a reflexive and strictly convex Banach space having a uniformly Gâteuax differentiable norm. Certain different control conditions of the explicit iterative scheme are given.

AMS Mathematics Subject Classification: 47H20, 47H09, 47H10, 47J20, 41A65.
Key words and phrases: Viscosity approximation methods; Nonexpansive semigroups; Common fixed points; implicit iterative scheme; explicit iterative scheme; Contraction; strictly convex; Uniformly Gâteaux differentiable norm; Variational inequality.

1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset of E. Recall that a mapping $f: C \rightarrow C$ is a contraction on C if there exists a constant $k \in(0,1)$ such that $\|f(x)-f(y)\| \leq k\|x-y\|, x, y \in C$. We use Σ_{C} to denote the collection of mappings f verifying the above inequality. That is, $\Sigma_{C}=\{f: C \rightarrow C \mid f$ is a contraction with constant $k\}$. Note that each $f \in \Sigma_{C}$ has a unique fixed point in C.

Now let $T: C \rightarrow C$ be a nonexpansive mapping (recall that a mapping $T: C \rightarrow C$ is nonexpansive if $\|T x-T y\| \leq\|x-y\| x, y \in C)$ and $F(T)$ denote the set of fixed points of T; that is, $F(T)=\{x \in C: x=T x\}$.

Recall that a family $\{T(t): t \geq 0\}$ of mappings from C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:
(1) $T\left(t_{1}+t_{2}\right) x=T\left(t_{1}\right) T\left(t_{2}\right) x$ for any $t_{1}, t_{2} \in \mathbb{R}^{+}$and $x \in C$;
(2) $T(0) x=x$ for each $x \in C$;
(3) for each $x \in C, t \mapsto T(t) x$ is continuous;
(4) $\|T(t) x-T(t) y\| \leq\|x-y\|$ for each $t \in \mathbb{R}^{+}$and $x, y \in C$.

[^28]Given a real number $t \in(0,1)$, a contraction $f \in \Sigma_{C}$ and a nonexpasive mapping T, let a contraction $T_{t}:=T_{t}^{f}: C \rightarrow C$ be defined by

$$
T_{t} z=t f(z)+(1-t) T z, \quad z \in C
$$

and let $z_{t}:=z_{t}^{f} \in C$ be the unique fixed point of T_{t}. Then z_{t} is the unique solution of the fixed point equation

$$
\begin{equation*}
z_{t}=t f\left(z_{t}\right)+(1-t) T z_{t} . \tag{1.1}
\end{equation*}
$$

A special case of (1.1) has been considered by Browder [3] in a Hilbert space as follows. Fix $u \in C$ and define a contraction G_{t} on C by

$$
G_{t} x=t u+(1-t) T x, \quad x \in C .
$$

Let $x_{t} \in C$ be the unique fixed point of G_{t}. Thus

$$
x_{t}=t u+(1-t) T x_{t} .
$$

(Such a sequence $\left\{x_{t}\right\}$ is said to be an approximating fixed point of T since it possesses the property that if $\left\{x_{t}\right\}$ is bounded, then $\lim _{t \rightarrow 0}\left\|T x_{t}-x_{t}\right\|=0$.) In 1967, the strong convergence of $\left\{x_{t}\right\}$ as $t \rightarrow 0$ for a self-mapping T of a bounded C was proved in a Hilbert space independently by Browder [3] and Halpern [9]. In 1980, Reich [14] extended the result of Browder [3] to a uniformly smooth Banach space and showed that the limit defines the (unique) sunny nonexpansive retraction from C onto $F(T)$. Takahashi and Ueda [18] improved results of Reich [14] to a reflexive Banach space with a uniformly Gâteaux differentiable norm (see also Ha and Jung [8]).

On the other hand, to order to extend Browder's and Reich's results to the nonexpansive semigroup $\{T(t): t \geq 0\}$ case, Shioji-Takahashi [15] introduced in a Hilbert space the implicit iterative scheme

$$
\begin{equation*}
x_{n}=\alpha_{n} u+\left(1-\alpha_{n}\right) \sigma_{t_{n}}\left(x_{n}\right), \quad n \geq 1, \tag{1.2}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1),\left\{t_{n}\right\}$ is a sequence of positive real number divergent to ∞ and for each $t>0$ and $x \in C, \sigma_{t}(x)$ is the average given by

$$
\sigma_{t}(x)=\frac{1}{t} \int_{0}^{t} T(s) x d s
$$

Under suitable conditions on the sequence $\left\{\alpha_{n}\right\}$, they proved the strong convergence of $\left\{x_{n}\right\}$ defined by (1.2) to a point in $F:=\bigcap_{t \geq 0} F(T(t))$. In 2003, Suzuki [16] introduced firstly in Hilbert space the following implicit iterative scheme:

$$
\begin{equation*}
x_{n}=\alpha_{n} u+\left(1-\alpha_{n}\right) T\left(t_{n}\right) x_{n}, \quad n \geq 1 \tag{1.3}
\end{equation*}
$$

for the nonexpansive semigroup case and proved strong convergence of the iterative scheme (1.3) with appropriate conditions imposed upon sequences $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$. In 2005 , Xu [20] proved that Suzuki's result holds in a uniformly convex Banach space with a weakly continuous duality mapping.

In 2005, Aleyner and Reich [1] first introduced the following explicit iterative scheme

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T\left(t_{n}\right) x_{n}, \quad n \geq 0 \tag{1.4}
\end{equation*}
$$

in a reflexive Banach space having a uniformly Gâteaux differentiable norm such that each nonempty, bounded, closed and convex subset of E has the fixed point property for nonexpansive mappings (Note that all these assumptions are fulfilled whenever E is uniformly smooth). Under the following conditions on $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$;
(i) $\alpha_{n} \rightarrow 0(n \rightarrow \infty) ; \sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
(iii) $t_{0}<t_{1}<t_{2}<\cdots<t_{n}<\cdots, \quad \lim _{n \rightarrow \infty} t_{n}=\infty$,
and the uniformly asymptotic regularity on $\{T(t): t \geq 0\}$, they showed that the sequence $\left\{x_{n}\right\}$ defined by (1.4) converges strongly to $Q u$, where Q is the unique sunny nonexpansive retraction from C onto $F:=\bigcap_{t \geq 0} F(T(t)), Q u=s-\lim _{t \rightarrow \infty} x_{t}$ and x_{t} is the unique solution of the following equation:

$$
x_{t}=\alpha_{t} u+\left(1-\alpha_{t}\right) T(t) x_{t}, \quad t \in(0, \infty)
$$

where $\left\{\alpha_{t}\right\}_{t \in(0, \infty)}$ is a net in $(0,1)$ such that $\lim _{t \rightarrow \infty} \alpha_{t}=0$.
Recently, Chang and Yang [4] considered the the following composite iterative scheme

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T\left(t_{n}\right) x_{n} \\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}, \quad n \geq 0
\end{array}\right.
$$

in either a reflexive Banach space having a uniformly Gâteaux differentiable norm or a uniformly convex Banach space having a weakly sequentially continuous duality mapping, where $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\} \subset \mathbb{R}^{+}$satisfy the conditions (i)-(iii) and $\left\{\beta_{n}\right\} \subset$ $[0, a)$, for some constant $a \in(0,1)$, satisfies the following condition
(iv) $\sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$.

On the another hand, the viscosity approximation method of selecting a particular fixed point of a given nonexpansive mapping was proposed by Moudafi [12]. In 2004, in order to extend Theorem 2.2 of Moudafi [12] to a Banach space setting, Xu [19] consider the the following explicit iterative scheme: for $T: C \rightarrow C$ nonexpansive mapping, $f \in \Sigma_{C}$ and $\alpha_{n} \in(0,1)$,

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0
$$

Moreover, in [19], he also studied the strong convergence of x_{t} defined by (1.1) as $t \rightarrow 0$ in either a Hilbert space or a uniformly smooth Banach space and showed

Jong Soo Jung

that the strong $\lim _{t \rightarrow 0} z_{t}$ is the unique solution of certain variational inequality. This result of Xu [19] also improved Theorem 2.1 of Moudafi [12] as the continuous version.

In this paper, motivated by above-mentioned results, we consider two iterative schemes as the viscosity approximation method for nonexpansive semigroup $\{T(t)$: $t \geq 0\}$ on C; for $f \in \Sigma_{C}$,

$$
\begin{equation*}
z_{t}=\lambda_{t} f\left(z_{t}\right)+\left(1-\lambda_{t}\right) T(t) z_{t}, \quad t \in(0, \infty) \tag{1.5}
\end{equation*}
$$

where $\left\{\lambda_{t}\right\}_{t \in(0, \infty)}$ is a net in $(0,1)$ such that $\lim _{t \rightarrow \infty} \lambda_{t}=0$, and

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T\left(t_{n}\right) x_{n} \tag{1.6}\\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n}, \quad n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset(0,1)$ and $\left\{t_{n}\right\} \subset \mathbb{R}^{+}$. First, by using the uniform asymptotic regularity on $\{T(t): t \geq 0\}$, we establish a strong convergence theorem for the sequence $\left\{z_{t}\right\}$ defined by (1.5) in a reflexive and strictly convex Banach space having a uniformly Gâteaux differentiable norm. Then, under certain different control conditions on $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ and the uniform asymptotic regularity on $\{T(t)$: $t \geq 0\}$, we prove in the same Banach space that the sequence $\left\{x_{n}\right\}$ generated by (1.6) converges strongly to a common fixed point of $\{T(t): t \geq 0\}$ which is a solution of a certain variational inequality. The main results improve and develop the corresponding results of Aleyner and Reich [1], Chang and Yang [4], ShiojiTakahashi [15], Suzuki [16] and Xu [21].

2. Preliminaries and Lemmas

Let E be a real Banach space with norm $\|\cdot\|$ and let E^{*} be its dual. The value of $f \in E^{*}$ at $x \in E$ will be denoted by $\langle x, f\rangle$. When $\left\{x_{n}\right\}$ is a sequence in E, then $x_{n} \rightarrow x$ will denote strong convergence of the sequence $\left\{x_{n}\right\}$

A Banach space E is called strictly convex if its unit sphere $U=\{x \in E:\|x\|=$ $1\}$ does not contain any linear segment $([6,7])$. This condition is equivalent to the following:

$$
\|x\|=\|y\|=1, x \neq y \Rightarrow\left\|\frac{x+y}{2}\right\|<1
$$

The (normalized) duality mapping J from E into the family of nonempty (by Hahn-Banach theorem) weak-star compact subsets of its dual E^{*} is defined by

$$
J(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}
$$

for each $x \in E$.

The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.1}
\end{equation*}
$$

exists for each x, y in its unit sphere $U=\{x \in E:\|x\|=1\}$. It is said to be uniformly Gâteaux differentiable if for $y \in U$, the limit is attained uniformly for $x \in U$. The space E is said to have a uniformly Fréchet differentiable norm (and E is said to be uniformly smooth) if the limit in (2.1) is attained uniformly for $(x, y) \in U \times U$. It is known that E is smooth if and only if each duality mapping J is single-valued. It is also well-known that if E has a uniformly Gâteaux differentiable norm, J is uniformly norm to weak* continuous on each bounded subsets of E ([5]).

Let C be a nonempty closed convex subset of $E . C$ is said to have the fixed point property for nonexpansive mappings if every nonexpansive mapping of a bounded closed convex subset D of C has a fixed point in $D([6])$. Let D be a subset of C. Then a mapping $Q: C \rightarrow D$ is said to be a retraction from C onto D if $Q x=x$ for all $x \in D$. A retraction $Q: C \rightarrow D$ is said to be sunny if $Q(Q x+t(x-Q x))=Q x$ for all $x \in C$ and $t \geq 0$ with $Q x+t(x-Q x) \in C$. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of C onto D. In a smooth Banach space E, it is well-known ([7, p. 48]) that Q is a sunny nonexpansive retraction from C onto D if and only if the following condition holds:

$$
\begin{equation*}
\langle x-Q x, J(z-Q x)\rangle \leq 0, \quad x \in C, \quad z \in D \tag{2.2}
\end{equation*}
$$

Let LIM be a continuous linear functional on l^{∞}. According to time and circumstances, we $\operatorname{LIM}\left(a_{n}\right)$ instead of $\operatorname{LIM}(a)$ for $a=\left\{a_{n}\right\} \in l^{\infty}$. LIM is said to be Banach limit if

$$
\operatorname{LIM}\left(a_{n}\right)=\operatorname{LIM}\left(a_{n+1}\right)
$$

for every $a=\left\{a_{n}\right\} \in l^{\infty}$. Using the Hahn-Banach theorem, or the Tychonoff fixed point theorem, we can prove the existence of a Banach limit. We know that if LIM is a Banach limit, then

$$
\liminf _{n \rightarrow \infty} a_{n} \leq \operatorname{LIM}\left(a_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}
$$

for all $a=\left\{a_{n}\right\} \in l^{\infty}$.
We need the following lemmas for the proof of our main results. (Lemma 2.1 was also given in [13]. Lemma 2.2 is Lemma 2 of [17] and Lemma 2.3 is essentially Lemma 2 in [11] (also see [19]). Lemma 2.4 was given in [8, 18], which is essentially a variant of Lemma 1.2 in [13]). We refer also [5, 6, 7] for Lemmas 2.5 and 2.6.
Lemma 2.1. Let E be a real Banach space and J be the duality mapping. Then, for any given $x, y \in E$, one has

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle
$$

for all $j(x+y) \in J(x+y)$.

Jong Soo Jung

Lemma 2.2. Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be bounded sequences in a Banach space E and let $\left\{\gamma_{n}\right\}$ be a sequence in $[0,1]$ which satisfies the following condition:

$$
0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup _{n \rightarrow \infty} \gamma_{n}<1
$$

Suppose that

$$
x_{n+1}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) z_{n}, \quad n \geq 0
$$

and

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then $\left\|z_{n}-x_{n}\right\|=0$.
Lemma 2.3. Let $\left\{s_{n}\right\}$ be a sequence of non-negative real numbers satisfying

$$
s_{n+1} \leq\left(1-\lambda_{n}\right) s_{n}+\lambda_{n} \beta_{n}+\gamma_{n}, \quad n \geq 0
$$

where $\left\{\lambda_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ satisfy the following conditions:
(i) $\left\{\lambda_{n}\right\} \subset[0,1]$ and $\sum_{n=0}^{\infty} \lambda_{n}=\infty$ or, equivalently, $\prod_{n=0}^{\infty}\left(1-\lambda_{n}\right)=0$;
(ii) $\lim \sup _{n \rightarrow \infty} \beta_{n} \leq 0$ or $\sum_{n=1}^{\infty} \lambda_{n} \beta_{n}<\infty$;
(iii) $\gamma_{n} \geq 0(n \geq 0), \sum_{n=0}^{\infty} \gamma_{n}<\infty$.

Then $\lim _{n \rightarrow \infty} s_{n}=0$.
Lemma 2.4. Let C be a nonempty closed convex subset of a Banach space E having a uniformly Gâteaux differentiable norm and $\left\{x_{n}\right\}$ be a bounded sequence in E. Let LIM be a Banach limit on l^{∞} and $q \in C$. Then

$$
\mathrm{LIM}\left\|x_{n}-q\right\|^{2}=\min _{y \in C} \mathrm{LIM}\left\|x_{n}-y\right\|^{2}
$$

if and only if

$$
\operatorname{LIM}\left\langle x-q, J\left(x_{n}-q\right)\right\rangle \leq 0
$$

for all $x \in C$, where J is the duality mapping of E.
Lemma 2.5. Let C be a closed convex of a reflexive and strictly convex Banach space E. Then $C^{o}=\{x \in E:\|x\|=\inf \{\|y\|: y \in C\}\}$ is a singleton.
Lemma 2.6. Let E be a smooth Banach space, C a nonempty closed convex subset of E and $T: C \rightarrow C$ a nonexpansive mapping. If J is the duality mapping on E, then

$$
\langle(I-T)(x)-(I-T)(y), J(x-y)\rangle \geq 0, \quad \text { for all } \quad x, y \in C
$$

Finally, recall that a nonexpansive semigroup $\{T(t): t \geq 0\}$ on C is said to be uniformly asymptotically regular (shortly, u.a.r) on bounded subsets of C if

$$
T(s+t) x=T(s) T(t) x
$$

for all $s, t \geq 0$ and $x \in C$ and for all bounded subset K of C there holds

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{x \in K}\|T(s) T(t) x-T(t) x\|=0 \tag{2.3}
\end{equation*}
$$

uniformly for all $s \geq 0$. Note that both these assumptions hold when the trajectories of the nonexpansive semigroup $\{T(t): \geq 0\}$ converge uniformly on bounded subsets of E.

3. Main results

First, we study the existence of solutions of certain variational inequality.
For any $t \geq 0, T(t): C \rightarrow C$ is nonexpansive and so, for any $\lambda_{t} \in(0,1)$ and $f \in \Sigma_{C}, \lambda_{t} f+\left(1-\lambda_{t}\right) T(t): C \rightarrow C$ defines a strict contraction mapping. Thus, by the Banach contraction mapping principle, there exists a unique fixed point x_{t}^{f} satisfying

$$
\begin{equation*}
z_{t}^{f}=\lambda_{t} f\left(z_{t}^{f}\right)+\left(1-\lambda_{t}\right) T(t) z_{t}^{f} \tag{A}
\end{equation*}
$$

For simplicity we will write z_{t} for z_{t}^{f} provided no confusion occurs.
Now we show that the sequence $\left\{z_{t}\right\}$ defined by (A) converges strongly some common fixed point of $\{T(t): t \geq 0\}$.

Theorem 3.1. Let E be a reflexive and strictly convex Banach space having a uniformly Gâteaux differentiable norm. Let C be a nonempty closed convex subset of E and $\{T(t): t \geq 0\}$ a u.a.r. nonexpansive semigroup from C into itself with $F:=\bigcap_{t \geq 0} F(T(t)) \neq \emptyset$. Let $\left\{z_{t}\right\}$ be defined by (A) and $\lambda_{t} \in(0,1)$ such that $\lim _{t \rightarrow \infty} \lambda_{t}=0$. Then as $t \rightarrow \infty,\left\{z_{t}\right\}$ converges strongly to a point in F. If we define $Q: \Sigma_{C} \rightarrow F$ by

$$
\begin{equation*}
Q(f):=\lim _{t \rightarrow \infty} z_{t}, \quad f \in \Sigma_{C}, \tag{3.1}
\end{equation*}
$$

then $Q(f)$ is the unique solution in F of the variational inequality

$$
\langle(I-f)(Q(f)), J(Q(f)-p)\rangle \leq 0, \quad f \in \Sigma_{C}, \quad p \in F
$$

Proof. Let $\left\{z_{t_{n}}\right\}$ be a subsequence of $\left\{z_{t}\right\}$ such that $\lim _{n \rightarrow \infty} t_{n}=\infty$. Let $p \in F$. Then

$$
\begin{aligned}
\left\|z_{t_{n}}-p\right\| & \leq \lambda_{t_{n}}\left\|f\left(z_{t_{n}}\right)-p\right\|+\left(1-\lambda_{t_{n}}\right)\left\|T\left(t_{n}\right) z_{t_{n}}-T\left(t_{n}\right) p\right\| \\
& \leq \lambda_{t_{n}}\left\|f\left(z_{t_{n}}\right)-p\right\|+\left(1-\lambda_{t_{n}}\right)\left\|z_{t_{n}}-p\right\| .
\end{aligned}
$$

This gives that

$$
\begin{aligned}
\left\|z_{t_{n}}-p\right\| \leq & \left\|f\left(z_{t_{n}}\right)-p\right\| \leq\left\|f\left(z_{t_{n}}\right)-f(p)\right\|+\|f(p)-p\| \\
& \leq k\left\|z_{t_{n}}-p\right\|+\|f(p)-p\|,
\end{aligned}
$$

and so $\left\|z_{t_{n}}-p\right\| \leq \frac{1}{1-k}\|f(p)-p\|$. In particular, $\left\{z_{t_{n}}\right\}$ is bounded, so are $\left\{f\left(z_{t_{n}}\right)\right\}$ and $\left\{T\left(t_{n}\right) z_{t_{n}}\right\}$.

Jong Soo Jung

Now define a functional ϕ on C by

$$
\phi(x)=\operatorname{LIM}\left\|z_{t_{n}}-z\right\|^{2},
$$

where LIM is a Banach limit on l^{∞}. Since ϕ is continuous and convex, $\phi(z) \rightarrow \infty$ as $\|z\| \rightarrow \infty$, and E is reflexive, ϕ attains its infimum over C [2, p. 79]. Let

$$
K=\left\{x \in C: \phi(x)=\min _{y \in C} \phi(y)\right\} .
$$

It is easily seen that K is a nonempty closed convex bounded subset of E. Moreover, K is invariant under $T(r)$ for any $r \geq 0$. In fact, since

$$
\left\|z_{t_{n}}-T\left(t_{n}\right) z_{t_{n}}\right\|=\lambda_{t_{n}}\left\|f\left(z_{t_{n}}\right)-T\left(t_{n}\right) z_{t_{n}}\right\| \rightarrow 0 \quad(\text { as } n \rightarrow \infty)
$$

and for ant $r>0$,

$$
\begin{aligned}
& \left\|z_{t_{n}}-T(r) x\right\| \\
\leq & \left\|z_{t_{n}}-T\left(t_{n}\right) z_{t_{n}}\right\|+\left\|T\left(t_{n}\right) z_{t_{n}}-T(r) T\left(t_{n}\right) z_{t_{n}}\right\|+\left\|T(r) T\left(t_{n}\right) z_{t_{n}}-T(r) x\right\| \\
\leq & \left\|z_{t_{n}}-T\left(t_{n}\right) z_{t_{n}}\right\|+\sup _{y \in B}\left\|T\left(t_{n}\right) y-T(r) T\left(t_{n}\right) y\right\|+\left\|T(r) T\left(t_{n}\right) z_{t_{n}}-T(r) x\right\|,
\end{aligned}
$$

where B is a bounded subset of E containing $\left\{z_{t_{n}}\right\}$, it follows from (2.3) that for each $x \in K$

$$
\begin{aligned}
\phi(T(r) x) & =\operatorname{LIM}\left\|z_{t_{n}}-T(r) x\right\|^{2} \\
& \leq \operatorname{LIM}\left\|T(r) T\left(t_{n}\right) z_{t_{n}}-T(r) x\right\|^{2} \\
& \leq \operatorname{LIM}\left\|T\left(t_{n}\right) z_{t_{n}}-x\right\|^{2}=\operatorname{LIM}\left\|z_{t_{n}}-x\right\|^{2}=\phi(x) .
\end{aligned}
$$

So, K contains a fixed point of $\{T(r)\}$ for any $r>0$. Indeed, define

$$
K^{o}=\left\{v \in K:\|v-p\|=\min _{y \in K}\|y-p\|\right\} .
$$

Then, by Lemma 2.5, K^{o} is a singleton. Denote such a singleton by z. Then we have

$$
\|T(r) z-p\|=\|T(r) z-T(r) p\| \leq\|z-p\|
$$

and hence $T(r) z=z$ for any $r>0$. That is, K contains a common fixed point of $\{T(t): t \geq 0\}$. Let $q \in K \cap F$ be a such a common fixed point. Since q is a minimizer of ϕ over C, it follows from Lemma 2.4 that for any $x \in C$,

$$
\begin{equation*}
\operatorname{LIM}\left\langle x-q, J\left(z_{t_{n}}-q\right)\right\rangle \leq 0 . \tag{3.2}
\end{equation*}
$$

On the other hand, for any $p \in F$,

$$
z_{t_{n}}-p=\left(1-\lambda_{t_{n}}\right)\left(T\left(t_{n}\right) z_{t_{n}}-p\right)+\lambda_{t_{n}}\left(f\left(z_{t_{n}}\right)-p\right) .
$$

Iterative schemes for nonexpansive semigroups

It follows that

$$
\begin{aligned}
\left\|z_{t_{n}}-p\right\|^{2} & =\left(1-\lambda_{t_{n}}\right)\left\langle T\left(t_{n}\right) z_{t_{n}}-p, J\left(z_{t_{n}}-p\right)\right\rangle+\lambda_{t_{n}}\left\langle f\left(z_{t_{n}}\right)-p, J\left(z_{t_{n}}-p\right)\right\rangle \\
& \leq\left(1-\lambda_{t_{n}}\right)\left\|z_{t_{n}}-p\right\|^{2}+\lambda_{t_{n}}\left(k\left\|z_{t_{n}}-p\right\|^{2}+\left\langle f(p)-p, J\left(z_{t_{n}}-p\right)\right\rangle\right),
\end{aligned}
$$

and so

$$
\begin{equation*}
\left\|z_{t_{n}}-p\right\|^{2} \leq \frac{1}{1-k}\left\langle f(p)-p, J\left(z_{t_{n}}-p\right)\right\rangle \tag{3.3}
\end{equation*}
$$

Combining (3.2) and (3.3), we obtain

$$
\operatorname{LIM}\left\|z_{t_{n}}-q\right\|^{2} \leq 0
$$

Hence there is a subsequence $\left\{z_{t_{n_{j}}}\right\}$ of $\left\{z_{t_{n}}\right\}$ such that $\lim _{j \rightarrow \infty}\left\|z_{t_{n_{j}}}-q\right\|=0$. Assume that there exists another subsequence $\left\{z_{t_{n_{k}}}\right\}$ of $\left\{z_{t_{n}}\right\}$ such that $\lim _{k \rightarrow \infty} \| z_{t_{n_{k}}}-$ $\widetilde{q} \|=0$, where $\widetilde{q} \in K \cap F$. Then (3.3) implies that

$$
\begin{equation*}
\|q-\widetilde{q}\|^{2} \leq \frac{1}{1-k}\langle f(q)-\widetilde{q}, J(q-\widetilde{q})\rangle \tag{3.4}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\|\widetilde{q}-q\|^{2} \leq \frac{1}{1-k}\langle f(\widetilde{q})-q, J(\widetilde{q})-q\rangle \tag{3.5}
\end{equation*}
$$

Adding (3.4) and (3.5), we get $\|q-\widetilde{q}\|^{2} \leq 0$, that is, $q=\widetilde{q}$.
The same argument shows that if $t_{l} \rightarrow \infty$, then the subsequence $\left\{z_{t_{l}}\right\}$ of $\left\{z_{t}\right\}$ converges strongly to the same limit. Thus, as $t \rightarrow \infty,\left\{z_{t}\right\}$ converges strongly to a point in F.

If we define $Q: \sum_{C} \rightarrow F$ by $Q(f)=\lim _{t \rightarrow \infty} z_{t}, f \in \sum_{C}$, then $Q(f)$ solves the variational inequality

$$
\langle(I-f)(Q(f)), J(Q(f)-p)\rangle \leq 0, \quad f \in \Sigma_{C}, \quad p \in F
$$

In fact, since

$$
(I-f)\left(z_{t}\right)=-\frac{1-\lambda_{t}}{\lambda_{t}}(I-T(t))\left(z_{t}\right)
$$

by Lemma 2.6 , we have for $p \in F$,

$$
\left\langle(I-f)\left(z_{t}\right), J\left(z_{t}-p\right)\right\rangle=-\frac{1-\lambda_{t}}{\lambda_{t}}\left\langle(I-T(t))\left(z_{t}\right)-(I-T(t))(p), J\left(z_{t}-p\right)\right\rangle \leq 0
$$

Noting the fact that J is uniformly continuous on bounded subsets of E from the strong topology of E to the weak* topology of E^{*} and taking the limit as $t \rightarrow \infty$, we obtain

$$
\langle(I-f)(Q(f)), J(Q(f)-p)\rangle \leq 0, \quad f \in \Sigma_{C}, \quad p \in F .
$$

Remark 3.1. If $f(x)=u, x \in C$, is a constant in Theorem 3.1, then

$$
\langle Q u-u, J(Q u-p)\rangle \leq 0, \quad u \in C, \quad p \in F .
$$

Hence by (2.2), Q reduces to the sunny nonexpansive retraction from C to F.
Remark 3.2. (1) Theorem 3.1 improves the corresponding result in Aleyner and Reich [1] to the viscosity method in the different Banach space.
(2) Theorem 3.1 appears to be independent of the result in Aleyner and Reich [1]. On the one hand, it is easy to find examples of spaces which satisfy the fixed point property for nonexpansive mapping, which are not strictly convex. However, it appears to be unknown whether a reflexive and strictly convex space satisfy the fixed point property for nonexpansive mappings.
(3) Theorem 3.1 also develops the corresponding result of Shioji and Takahashi [15], Suzuki [16] and $\mathrm{Xu}[21]$ to the viscosity method in more general Banach space.

By using Theorem 3.1, we have the following result.
Theorem 3.2. Let E be a reflexive and strictly convex Banach space having a uniformly Gâteaux differentiable norm. Let C be a nonempty closed convex subset of E and $\{T(t): t \geq 0\}$ a u.a.r. nonexpansive semigroup from C into itself with $F:=\bigcap_{t \geq 0} F(T(t)) \neq \emptyset$. Let $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{t_{n}\right\} \subset \mathbb{R}^{+}$be sequences satisfying the following conditions:
(C1) $\alpha_{n} \rightarrow 0(n \rightarrow \infty) ; \sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(C2) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta \leq a<1$ for all $n \geq 0$ and for some constant $a \in(0,1)$;
(C3) $0 \leq t_{0}<t_{1}<t_{2}<\cdots<t_{n}<\cdots, \lim _{n \rightarrow \infty} t_{n}=\infty$.
Let $f \in \sum_{C}$ and $x_{0} \in C$ be chosen arbitrarily. Let $\left\{x_{n}\right\}$ be defined by

$$
\left\{\begin{array}{l}
x_{0}=x \in C \tag{IS}\\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T\left(t_{n}\right) x_{n} \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n}
\end{array}\right.
$$

Then $\left\{x_{n}\right\}$ converges strongly to $Q(f) \in F$, where $Q(f)$ solves a variational inequality

$$
\langle(I-f)(Q(f)), J(Q(f)-p)\rangle \leq 0, \quad f \in \Sigma_{C}, \quad p \in F
$$

Proof. First we note that by Theorem 3.1, there exists a solution $Q(f) \in F$ of a variational inequality

$$
\langle(I-f)(Q(f)), J(Q(f)-p)\rangle \leq 0, \quad f \in \Sigma_{C}, \quad p \in F
$$

where $Q(f)=\lim _{t \rightarrow \infty} z_{t}$ and z_{t} is defined by (A).

We proceed with following steps:
Step 1. We show that $\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|, \frac{1}{1-k}\|f(p)-p\|\right\}$ for $p \in F$. Indeed, let $p \in F$ and $d=\max \left\{\left\|x_{0}-p\right\|, \frac{1}{1-k}\|f(p)-p\|\right\}$. Noting that

$$
\left\|y_{n}-p\right\| \leq \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|T\left(t_{n}\right) x_{n}-p\right\| \leq\left\|x_{n}-p\right\|,
$$

we have

$$
\begin{aligned}
\left\|x_{1}-p\right\| & \leq\left(1-\alpha_{0}\right)\left\|y_{0}-p\right\|+\alpha_{0}\left\|f\left(x_{0}\right)-p\right\| \\
& \leq\left(1-\alpha_{0}\right)\left\|x_{0}-p\right\|+\alpha_{0}\left(\left\|f\left(x_{0}\right)-f(p)\right\|+\|f(p)-p\|\right) \\
& \leq\left(1-\alpha_{0}\right)\left\|x_{0}-p\right\|+\alpha_{0}\left(k\left\|x_{0}-p\right\|+\|f(p)-p\|\right) \\
& \leq\left(1-(1-k) \alpha_{0}\right)\left\|x_{0}-p\right\|+\alpha_{0}\|f(p)-p\| \\
& \leq\left(1-(1-k) \alpha_{0}\right) d+\alpha_{0}(1-k) d=d .
\end{aligned}
$$

Using an induction, we obtain $\left\|x_{n+1}-p\right\| \leq d$. Hence $\left\{x_{n}\right\}$ is bounded, and so are $\left\{T\left(t_{n}\right) x_{n}\right\},\left\{f\left(x_{n}\right)\right\}$ and $\left\{y_{n}\right\}$.

Step 2. We show that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|$. To this end, set $\gamma_{n}=(1-$ $\left.\alpha_{n}\right) \beta_{n}, \quad n \geq 0$. Then it follow from (C1) and (C2) that

$$
\begin{equation*}
0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup _{n \rightarrow \infty} \gamma_{n}<1 \tag{3.1}
\end{equation*}
$$

Define

$$
\begin{equation*}
x_{n+1}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) z_{n} . \tag{3.2}
\end{equation*}
$$

Observe that

$$
\begin{align*}
& z_{n+1}-z_{n}=\frac{x_{n+2}-\gamma_{n+1} x_{n+1}}{1-\gamma_{n+1}}-\frac{x_{n+1}-\gamma_{n} x_{n}}{1-\gamma_{n}} \\
= & \frac{\alpha_{n+1} f\left(x_{n+1}\right)+\left(1-\alpha_{n+1}\right) y_{n+1}-\gamma_{n+1} x_{n+1}}{1-\gamma_{n+1}} \\
& -\frac{\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n}-\gamma_{n} x_{n}}{1-\gamma_{n}} \\
= & \left(\frac{\alpha_{n+1} f\left(x_{n+1}\right)}{1-\gamma_{n+1}}-\frac{\alpha_{n} f\left(x_{n}\right)}{1-\gamma_{n}}\right) \\
& -\frac{\left(1-\alpha_{n}\right)\left[\beta_{n} x_{n}+\left(1-\beta_{n}\right) T\left(t_{n}\right) x_{n}\right]-\gamma_{n} x_{n}}{1-\gamma_{n}} \tag{3.3}\\
& +\frac{\left(1-\alpha_{n+1}\right)\left[\beta_{n+1} x_{n+1}+\left(1-\beta_{n+1}\right) T\left(t_{n+1}\right) x_{n+1}\right]-\gamma_{n+1} x_{n+1}}{1-\gamma_{n+1}} \\
= & \left(\frac{\alpha_{n+1} f\left(x_{n+1}\right)}{1-\gamma_{n+1}}-\frac{\alpha_{n} f\left(x_{n}\right)}{1-\gamma_{n}}\right)+\frac{\left(1-\alpha_{n+1}\right)\left(1-\beta_{n+1}\right) T\left(t_{n+1}\right) x_{n+1}}{1-\gamma_{n+1}} \\
& -\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right) T\left(t_{n}\right) x_{n}}{1-\gamma_{n}}
\end{align*}
$$

Jong Soo Jung

$$
\begin{aligned}
= & \left(\frac{\alpha_{n+1} f\left(x_{n+1}\right)}{1-\gamma_{n+1}}-\frac{\alpha_{n} f\left(x_{n}\right)}{1-\gamma_{n}}\right)+\left(T\left(t_{n+1}\right) x_{n+1}-T\left(t_{n}\right) x_{n}\right) \\
& -\frac{\alpha_{n+1}}{1-\gamma_{n+1}} T\left(t_{n+1}\right) x_{n+1}+\frac{\alpha_{n}}{1-\gamma_{n}} T\left(t_{n}\right) x_{n} \\
= & \left(\frac{\alpha_{n+1} f\left(x_{n+1}\right)}{1-\gamma_{n+1}}-\frac{\alpha_{n} f\left(x_{n}\right)}{1-\gamma_{n}}\right)+\left(T\left(t_{n+1}\right) x_{n+1}-T\left(t_{n+1}\right) x_{n}\right) \\
& +\left(T\left(t_{n+1}-t_{n}\right) T\left(t_{n}\right) x_{n}-T\left(t_{n}\right) x_{n}\right) \\
& -\frac{\alpha_{n+1}}{1-\gamma_{n+1}} T\left(t_{n+1}\right) x_{n+1}+\frac{\alpha_{n}}{1-\gamma_{n}} T\left(t_{n}\right) x_{n}
\end{aligned}
$$

It follows from (3.3) and (C3) that

$$
\begin{align*}
& \quad\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
& \leq \frac{\alpha_{n+1}}{1-\gamma_{n+1}}\left(\left\|f\left(x_{n+1}\right)\right\|+\left\|T\left(t_{n+1}\right) x_{n+1}\right\|\right)+\frac{\alpha_{n}}{1-\gamma_{n}}\left(\left\|f\left(x_{n}\right)\right\|+\left\|T\left(t_{n}\right) x_{n}\right\|\right) \tag{3.4}\\
& \quad+\sup _{x \in D}\left\|T\left(t_{n+1}-t_{n}\right) T\left(t_{n}\right) x-T\left(t_{n}\right) x\right\|
\end{align*}
$$

where $D=\left\{x \in C:\|x-p\| \leq \max \left\{\left\|x_{0}-p\right\|, \frac{1}{1-k}\|f(p)-p\|\right\}\right\}$. Since $\left\{f\left(x_{n}\right)\right\}$ and $\left\{T\left(t_{n}\right) x_{n}\right\}$ are bounded, by (2.3), (C1), (3.1) and (3.4) we obtain that

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Hence by Lemma 2.2, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{3.5}
\end{equation*}
$$

It then follows from (3.1) and (3.2) that

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

Step 3. We show that $\lim _{n \rightarrow \infty}\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\|=0$. Indeed, as a consequence with control condition (C1), we know

$$
\begin{equation*}
\left\|x_{n+1}-y_{n}\right\| \leq \alpha_{n}\left\|f\left(x_{n}\right)-y_{n}\right\| \leq \alpha_{n}\left(\left\|f\left(x_{n}\right)\right\|+\left\|y_{n}\right\|\right) \rightarrow 0(\text { as } n \rightarrow \infty) \tag{3.6}
\end{equation*}
$$

By (IS) we have $\left\|y_{n}-T\left(t_{n}\right) x_{n}\right\|=\beta_{n}\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\|$ and so

$$
\begin{aligned}
\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|+\left\|y_{n}-T\left(t_{n}\right) x_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|+\beta_{n}\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\|
\end{aligned}
$$

Simplifying it and using Step 2 and (3.6), we obtain

$$
\begin{aligned}
(1-a)\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\| & \leq\left(1-\beta_{n}\right)\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\| \rightarrow 0(\text { as } n \rightarrow \infty)
\end{aligned}
$$

This implies that

$$
\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\| \rightarrow 0(\text { as } n \rightarrow \infty) .
$$

Step 4. We show that $\lim _{n \rightarrow \infty}\left\|T(r) x_{n}-x_{n}\right\|=0$ uniformly in $r \in \mathbb{R}^{+}$. In fact, it follows from Step 3 and (2.3) that

$$
\begin{aligned}
&\left\|T(r) x_{n}-x_{n}\right\| \leq\left\|T(r) x_{n}-T(r) T\left(t_{n}\right) x_{n}\right\|+\left\|T(r) T\left(t_{n}\right) x_{n}-T\left(t_{n}\right) x_{n}\right\| \\
& \quad+\left\|T\left(t_{n}\right) x_{n}-x_{n}\right\| \\
& \leq 2\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\|+\sup _{x \in D}\left\|T(r) T\left(t_{n}\right) x-T\left(t_{n}\right) x\right\| \\
& \rightarrow 0(\text { as } n \rightarrow \infty)
\end{aligned}
$$

uniformly $r \in \mathbb{R}^{+}$, where $D=\left\{x \in C:\|x-p\| \leq \max \left\{\left\|x_{0}-p\right\|, \frac{1}{1-k}\|f(p)-p\|\right\}\right\}$.
Step 5. We show that $\limsup _{n \rightarrow \infty}\left\langle(I-f)(Q(f)), J\left(Q(f)-x_{n}\right)\right\rangle \leq 0$. To prove this, let a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ be such that

$$
\limsup _{n \rightarrow \infty}\left\langle(I-f)(Q(f)), J\left(Q(f)-x_{n}\right)\right\rangle=\lim _{j \rightarrow \infty}\left\langle(I-f)(Q(f)), J\left(Q(f)-x_{n_{j}}\right)\right\rangle
$$

and $x_{n_{j}} \rightharpoonup p$ for some $p \in C$. Now let z_{t} be defined by $z_{t}=\lambda_{t} f\left(z_{t}\right)+\left(1-\lambda_{t}\right) T(t) z_{t}$ for each $t \in \mathbb{R}^{+}$and $0<\lambda_{t}<1$ with $\lim _{t \rightarrow \infty} \lambda_{t}=0$. Then we can write

$$
z_{t}-x_{n}=\left(1-\lambda_{t}\right)\left(T(t) z_{t}-x_{n}\right)+\lambda_{t}\left(f\left(z_{t}\right)-x_{n}\right) .
$$

Applying Lemma 2.1, we have

$$
\left\|z_{t}-x_{n}\right\|^{2} \leq\left(1-\lambda_{t}\right)^{2}\left\|T(t) z_{t}-x_{n}\right\|^{2}+2 \lambda_{t}\left\langle f\left(z_{t}\right)-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle
$$

Putting

$$
\begin{aligned}
a_{j}(t)= & \left(1-\lambda_{t}\right)^{2}\left\|T(t) x_{n_{j}}-x_{n_{j}}\right\| \\
& \times\left(2\left\|z_{t}-x_{n_{j}}\right\|+\left\|T(t) x_{n_{j}}-x_{n_{j}}\right\|\right) \rightarrow 0(\text { as } j \rightarrow \infty)
\end{aligned}
$$

by Step 4 and using Lemma 2.1, we obtain

$$
\begin{aligned}
\left\|z_{t}-x_{n_{j}}\right\|^{2} \leq & \left(1-\lambda_{t}\right)^{2}\left\|T(t) z_{t}-x_{n_{j}}\right\|^{2}+2 \lambda_{t}\left\langle f\left(z_{t}\right)-x_{n_{j}}, J\left(z_{t}-x_{n_{j}}\right)\right\rangle \\
\leq & \left(1-\lambda_{t}\right)^{2}\left(\left\|T(t) z_{t}-T(t) x_{n_{j}}\right\|+\left\|T(t) x_{n_{j}}-x_{n_{j}}\right\|\right)^{2} \\
& \quad+2 \lambda_{t}\left\langle f\left(z_{t}\right)-z_{t}, J\left(z_{t}-x_{n_{j}}\right)\right\rangle+2 \lambda_{t}\left\|z_{t}-x_{n_{j}}\right\|^{2} \\
\leq & \left(1-\lambda_{t}\right)^{2}\left\|z_{t}-x_{n_{j}}\right\|^{2}+a_{j}(t) \\
& \quad+2 \lambda_{t}\left\langle f\left(z_{t}\right)-z_{t}, J\left(z_{t}-x_{n_{j}}\right)\right\rangle+2 \lambda_{t}\left\|z_{t}-x_{n_{j}}\right\|^{2} .
\end{aligned}
$$

The last inequality implies

$$
\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n_{j}}\right)\right\rangle \leq \frac{\lambda_{t}}{2}\left\|z_{t}-x_{n_{j}}\right\|^{2}+\frac{1}{2 \lambda_{t}} a_{j}(t)
$$

It follows that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n_{j}}\right)\right\rangle \leq \frac{\lambda_{t}}{2} M \tag{3.7}
\end{equation*}
$$

where $M>0$ is a constant such that $M \geq\left\|z_{t}-x_{n}\right\|^{2}$ for all $n \geq 0$ and $\lambda_{t} \in(0,1)$. Taking the limsup as $t \rightarrow \infty$ in (3.7) and noticing the fact that the two limits are interchangeable due to the fact that J is uniformly continuous on bounded subsets of E from the strong topology of E to the weak ${ }^{*}$ topology of E^{*}, we have

$$
\limsup _{j \rightarrow \infty}\left\langle Q(f)-f(Q(f)), J\left(Q(f)-x_{n_{j}}\right)\right\rangle \leq 0
$$

Indeed, letting $t \rightarrow \infty$, from (3.7) we have

$$
\limsup _{t \rightarrow \infty} \limsup _{j \rightarrow \infty}\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n_{j}}\right)\right\rangle \leq 0
$$

So, for any $\varepsilon>0$, there exists a positive number δ_{1} such that for any $t>\delta_{1}$,

$$
\limsup _{j \rightarrow \infty}\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n_{j}}\right)\right\rangle \leq \frac{\varepsilon}{2}
$$

Moreover, since $z_{t} \rightarrow Q(f)$ as $t \rightarrow \infty$, the set $\left\{z_{t}-x_{n_{j}}\right\}$ is bounded and the duality mapping J is norm-to-weak* uniformly continuous on bounded subset of E, there exists $\delta_{2}>0$ such that, for any $t>\delta_{2}$,

$$
\begin{aligned}
&\left|\left\langle Q(f)-f(Q(f)), J\left(Q(f)-x_{n_{j}}\right)\right\rangle-\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n_{j}}\right)\right\rangle\right| \\
&= \mid\left\langle Q(f)-f(Q(f)), J\left(Q(f)-x_{n_{j}}\right)-J\left(z_{t}-x_{n_{j}}\right)\right\rangle \\
& \quad+\left\langle Q(f)-f(Q(f))-\left(z_{t}-f\left(z_{t}\right)\right), J\left(z_{t}-x_{n_{j}}\right)\right\rangle \mid \\
& \leq\left|\left\langle Q(f)-f(Q(f)), J\left(z_{t}-x_{n_{j}}\right)-J\left(Q(f)-x_{n_{j}}\right)\right\rangle\right| \\
&+\left\|Q(f)-f(Q(f))-\left(z_{t}-f\left(z_{t}\right)\right)\right\|\left\|z_{t}-x_{n_{j}}\right\|<\frac{\varepsilon}{2} .
\end{aligned}
$$

Choose $\delta=\max \left\{\delta_{1}, \delta_{2}\right\}$, we have for all $t>\delta$ and $j \in \mathbb{N}$,

$$
\left\langle Q(f)-f(Q(f)), J\left(Q(f)-x_{n_{j}}\right)\right\rangle<\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n_{j}}\right)\right\rangle+\frac{\varepsilon}{2}
$$

which implies that

$$
\limsup _{j \rightarrow \infty}\left\langle Q(f)-f(Q(f)), J\left(Q(f)-x_{n_{j}}\right)\right\rangle \leq \limsup _{j \rightarrow \infty}\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n_{j}}\right)\right\rangle+\frac{\varepsilon}{2} .
$$

Since $\lim \sup _{j \rightarrow \infty}\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n_{j}}\right)\right\rangle \leq \frac{\varepsilon}{2}$, we have

$$
\limsup _{j \rightarrow \infty}\left\langle Q(f)-f(Q(f)), J\left(Q(f)-x_{n_{j}}\right)\right\rangle \leq \varepsilon .
$$

Since ε is arbitrary, we obtain that

$$
\limsup _{j \rightarrow \infty}\left\langle(I-f)(Q(f)), J\left(Q(f)-x_{n_{j}}\right)\right\rangle \leq 0
$$

Step 6. We show that $\lim _{n \rightarrow \infty}\left\|x_{n}-Q(f)\right\|=0$. By using (IS), we have

$$
x_{n+1}-Q(f)=\alpha_{n}\left(f\left(x_{n}\right)-Q(f)\right)+\left(1-\alpha_{n}\right)\left(y_{n}-Q(f)\right) .
$$

Applying Lemma 2.1, we obtain

$$
\begin{aligned}
& \left\|x_{n+1}-Q(f)\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|y_{n}-Q(f)\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-Q(f), J\left(x_{n+1}-Q(f)\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-Q(f)\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-f(Q(f)), J\left(x_{n+1}-Q(f)\right)\right\rangle \\
& +2 \alpha_{n}\left\langle f(Q(f))-Q(f), J\left(x_{n+1}-Q(f)\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-Q(f)\right\|^{2}+2 k \alpha_{n}\left\|x_{n}-Q(f)\right\|\left\|x_{n+1}-Q(f)\right\| \\
& +2 \alpha_{n}\left\langle f(Q(f))-Q(f), J\left(x_{n+1}-Q(f)\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-Q(f)\right\|^{2}+k \alpha_{n}\left(\left\|x_{n}-Q(f)\right\|^{2}+\left\|x_{n+1}-Q(f)\right\|^{2}\right) \\
& +2 \alpha_{n}\left\langle f(Q(f))-Q(f), J\left(x_{n+1}-Q(f)\right)\right\rangle .
\end{aligned}
$$

It then follows that

$$
\begin{align*}
\left\|x_{n+1}-Q(f)\right\|^{2} \leq & \frac{1-(2-k) \alpha_{n}+\alpha_{n}^{2}}{1-k \alpha_{n}}\left\|x_{n}-Q(f)\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-k \alpha_{n}}\left\langle f(Q(f))-Q(f), J\left(x_{n+1}-Q(f)\right)\right\rangle \tag{3.7}\\
\leq & \frac{1-(2-k) \alpha_{n}}{1-k \alpha_{n}}\left\|x_{n}-Q(f)\right\|^{2}+\frac{\alpha_{n}^{2}}{1-k \alpha_{n}} M \\
& +\frac{2 \alpha_{n}}{1-k \alpha_{n}}\left\langle(I-f)(Q(f)), J\left(Q(f)-x_{n+1}\right)\right\rangle
\end{align*}
$$

where $M=\sup _{n \geq 0}\left\|x_{n}-Q(f)\right\|^{2}$. Put

$$
\begin{aligned}
& \lambda_{n}=\frac{2(1-k) \alpha_{n}}{1-k \alpha_{n}} \text { and } \\
& \delta_{n}=\frac{M \alpha_{n}}{2(1-k)}+\frac{1}{1-k}\left\langle(I-f)(Q(f)), J\left(Q(f)-x_{n+1}\right)\right\rangle .
\end{aligned}
$$

From (C1) and Step 5, it follows that $\lambda_{n} \rightarrow 0, \sum_{n=0}^{\infty} \lambda_{n}=\infty$ and $\limsup { }_{n \rightarrow \infty} \delta_{n} \leq$ 0 . Since (3.7) reduces to

$$
\left\|x_{n+1}-Q(f)\right\|^{2} \leq\left(1-\lambda_{n}\right)\left\|x_{n}-Q(f)\right\|^{2}+\lambda_{n} \delta_{n},
$$

from Lemma 2.3, we conclude that $\lim _{n \rightarrow \infty}\left\|x_{n}-Q(f)\right\|=0$. This completes the proof.

Corollary 3.1. Let E be a uniformly convex and uniformly smooth Banach space and C a nonempty closed convex subset of $E . \operatorname{Let}\{T(t): t \geq 0\}$ be a u.a.r. nonexpansive semigroup from C into itself with $F:=\bigcap_{t \geq 0} F(T(t)) \neq \emptyset$. Let $\left\{\alpha_{n}\right\} \subset$ $(0,1),\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{t_{n}\right\} \subset \mathbb{R}^{+}$be sequences satisfying the conditions $(\mathrm{C} 1)-(\mathrm{C} 3)$ in Theorem 3.2. Let $f \in \sum_{C}$ and $x_{0} \in C$ be chosen arbitrarily. Let $\left\{x_{n}\right\}$ be defined by

$$
\left\{\begin{array}{l}
x_{0}=x \in C \\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T\left(t_{n}\right) x_{n} \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n}
\end{array}\right.
$$

Then $\left\{x_{n}\right\}$ converges strongly to $Q(f) \in F$, where $Q(f)$ solves a variational inequality

$$
\langle(I-f)(Q(f)), J(Q(f)-p)\rangle \leq 0, \quad f \in \Sigma_{C}, \quad p \in F
$$

Remark 3.3. (1) Theorem 3.2 improves Theorem 2.1 and Theorem 3.1 of Chang and Yang [4] to the viscosity method under certain different control conditions in the different Banach space. In particular, Theorem 3.2 removes the conditions $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ and $\sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$ imposed on control sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ in Theorem 2.1 and Theorem 3.1 of [4].
(2) Theorem 3.2 also appears to be independent of Theorem 3.1 in Chang and Yang [4].
(3) In general, the condition (C2) in Theorem 3.2 and the condition $\sum_{n=0}^{\infty} \mid \beta_{n+1}$ $-\beta_{n} \mid<\infty$ are not comparable; neither of them implies other.
(4) Theorem 3.2 also develops Theorem 3.1 of Aleyner and Reich [1] to the viscosity method. Moreover, by using iterative scheme (IS), the condition $\sum_{n=0}^{\infty} \mid \alpha_{n+1}-$ $\alpha_{n} \mid<\infty$ imposed on control sequence $\left\{\alpha_{n}\right\}$ was removed.
(5) We point out that our results are applicable to, in particular, in all L^{p} spaces, $1<p<\infty$.

References

1. A. Aleyner and S. Reich,, An explicit construction of sunny nonexpansive retractions in Banach spaces, Fixed Point Theory and Appl. 2005:3 (2005), 295-305.
2. V. Barbu and Th. Precupanu, Convexity and Optimization in Banach spaces, Editura Academiei R. S. R., Bucharest, 1978.
3. F. E. Browder, Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Archs Ration. Mech. Anal. 24 (1967), 82-90.
4. S. S. Chang and L. Yang, On the strong convergence theorems for nonexpansive semi-groups in Banach spaces, preprint.
5. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
6. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, in "Cambridge Studies in Advanced Mathematics," Vol. 28,, Cambridge Univ. Press, Cambridge, UK,, 1990..
7. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker,, New York and Basel, 1984.

Iterative schemes for nonexpansive semigroups
8. K. S. Ha and J. S. Jung, Strong convergence theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 147 (1990), 330-339.
9. B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
10. J. S. Jung and C. Morales, The Mann process for perturbed m-accretive operators in Banach spaces, Nonlinear Anal. 46 (2001), 231-243.
11. L. S. Liu, Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114-125.
12. A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), 46-55.
13. S. Reich, Product formulas, nonlinear semigroup and accretive operators, J. Funct. Anal. 36 (1980), 147-168.
14. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292.
15. N. Shioji and Takahashi, Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 34 (1998), 87-99.
16. T. Suzuki, On strong convergence to a common fixed point of nonexpansive semigroup in Hilbert spaces, Proc. Amer. Math. Soc. 131 (7) (2003), 2133-2136.
17. T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integral, J. Math. Anal. Appl. 305 (2005), 227-239.
18. W. Takahashi and Y. Ueda, On Reich's strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984), 546-553.
19. H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66(2) (2002), 240-256.
20. H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279-291.
21. H. K. Xu, A strong convergence for contraction semigroups in Banach spaces, Bull. Austral. Math. Soc. 72 (2005), 371-379.

A note on the generalized q-Euler numbers (2)

By
Kyoung-Ho Park, Young-Hee Kim, and Taekyun Kim

Abstract

Recently, the new q-Euler numbers and polynomials related to Frobenius-Euler numbers and polynomials are constructed by Kim (see[3]). In this paper, we study the generalized q-Euler numbers and polynomials attached to Dirichlet's character χ related to the new q-Euler numbers and polynomials which is constructed in [3]. Finally, we will derive some interesting congruence on the generalized q-Euler numbers and polynomials attached to χ.

2000 Mathematics Subject Classification: 11S80, 11B68.
Key Words and Phrases: q-Euler numbers, q-Euler polynomials.

§1. Introduction

Let \mathbb{Z}, \mathbb{R} and \mathbb{C} denote the ring of integers, the field of real numbers and the complex number field. and let p be a fixed an odd prime number.Assume that q is an indeterminate in \mathbb{C} with $q \in \mathbb{C}$ with $|q|<1$. As the q-symbol $[x]_{q}$, we denote $[x]_{q}=\frac{1-q^{x}}{1-q}$. Recently, q-Euler polynomials are defined as

$$
\frac{[2]_{q}}{q e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!}, \text { for }|t+\log q|<\pi, \quad \text { (see [3]). }
$$

In the special case $x=0, E_{n, q}=E_{n, q}(0)$ are call the n-th q-Euler numbers (see [3]). These q-Euler numbers and polynomials are closely related to Frobenius-Euler numbers and polynomials and these numbers are studied by Simsek-Cangul-Ozden, Cenkci-Kurt and Can and several authors (see [1-2, 18-26]). In this paper, we study the generalized q-Euler numbers and polynomials attached to χ related to the q-Euler numbers and polynomials, $E_{n, q}(x)$, which is constructed in [3]. Finally, we will derive some interesting congruence on the generalized q-Euler numbers and polynomials attached to χ.

§2. Congruence for q-Euler numbers and polynomials

A note on the generalized q-Euler numbers (2)

The ordinary Euler polynomials are defined as

$$
e^{x t} \frac{2}{e^{t}+1}=e^{E(x) t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[1-5]),
$$

where we use the technical method notation by replacing $E^{n}(x)$ by $E_{n}(x)(n \geq 0)$, symbolically (see [1-2]). Let us consider the generating function of q-Euler polynomials $E_{n, q}(x)$ as follows:

$$
\begin{equation*}
F_{q}(x, t)=\frac{[2]_{q}}{q e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!}, \tag{1}
\end{equation*}
$$

and we also note that

$$
\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!}=\frac{[2]_{q}}{q e^{t}+1} e^{x t}=\frac{1-\left(-q^{-1}\right)}{e^{t}-\left(-q^{-1}\right)} e^{x t}=\sum_{n=0}^{\infty} H_{n}\left(-q^{-1}, x\right) \frac{t^{n}}{n!},
$$

where $H_{n}\left(-q^{-1}, x\right)$ are called the n-th Frobenius-Euler polynomials (see [3]). From (1), we note that

$$
\begin{equation*}
\lim _{q \rightarrow 1} F_{q}(x, t)=\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

By (1) and (2), we see that

$$
\lim _{q \rightarrow 1} E_{n, q}(x)=E_{n}(x) .
$$

In (1), it is easy to show that

$$
\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!}=F_{q}(x, t)=\frac{[2]_{q}}{q e^{t}+1} e^{x t}=\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} E_{l, q} x^{n-l}\right) \frac{t^{n}}{n!} .
$$

By comparing the coefficients on the both sides, we have

$$
\begin{equation*}
E_{n, q}(x)=\sum_{l=0}^{n}\binom{n}{l} E_{l, q} x^{n-l}, \quad \text { where } E_{l, q} \text { are the } l \text {-th } q \text {-Euler numbers. } \tag{3}
\end{equation*}
$$

Let χ be the Dirichlet's character with conductor $d \equiv 1(\bmod 2)$. Then we define generating function of the generalized q-Euler numbers attached to $\chi, E_{n, \chi, q}$ as follows:

$$
\begin{equation*}
F_{q, \chi}(t)=\frac{[2]_{q} \sum_{l=0}^{d-1} \chi(l) q^{l}(-1)^{l} e^{l t}}{q^{d} e^{d t}+1}=\sum_{n=0}^{\infty} E_{n, \chi, q} \frac{t^{n}}{n!} . \tag{4}
\end{equation*}
$$

From (4), we note that

$$
\begin{equation*}
\lim _{q \rightarrow 1} F_{q, \chi}(t)=\frac{2 \sum_{a=0}^{d-1} \chi(a)(-1)^{a} e^{a t}}{e^{d t}+1}=\sum_{n=0}^{\infty} E_{n, \chi} \frac{t^{n}}{n!}, \tag{5}
\end{equation*}
$$

Kyoung-Ho Park, Young-Hee Kim, and Taekyun Kim

where $E_{n, \chi}$ are the n-th ordinary Euler numbers attached to χ. By (4) and (5), we see that

$$
\lim _{q \rightarrow 1} E_{n, \chi, q}=E_{n, \chi} .
$$

From (4), we can also derive

$$
\begin{align*}
\sum_{n=0}^{\infty} E_{n, \chi, q} \frac{t^{n}}{n!} & =F_{q, \chi}(t)=[2]_{q} \sum_{k=0}^{\infty} \chi(k)(-q)^{k} e^{k t} \\
& =\sum_{n=0}^{\infty}\left([2]_{q} \sum_{k=0}^{\infty} \chi(k)(-q)^{k} k^{n}\right) \frac{t^{n}}{n!} \tag{6}\\
& =\sum_{n=0}^{\infty}\left(d^{n} \sum_{a=0}^{d-1}(-q)^{a} \chi(a) E_{n, q^{d}}\left(\frac{a}{d}\right)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

By comparing the coefficients on the both sides of (6), we have

$$
\begin{equation*}
E_{n, \chi, q}=[2]_{q} \sum_{k=0}^{\infty} \chi(k)(-q)^{k} k^{n}=d^{n} \sum_{a=0}^{d-1}(-q)^{a} \chi(a) E_{n, q^{d}}\left(\frac{a}{d}\right) . \tag{7}
\end{equation*}
$$

Finally, we define the generating function of the generalized q-Euler polynomials attached to $\chi, E_{n, \chi, q}(x)$ as follows:

$$
\begin{equation*}
F_{q, \chi}(x, t)=\sum_{n=0}^{\infty} E_{n, \chi, q}(x) \frac{t^{n}}{n!}=[2]_{q} \sum_{k=0}^{\infty} \chi(k)(-q)^{k} e^{(x+k) t} . \tag{8}
\end{equation*}
$$

By (8), we easily see that

$$
\begin{align*}
\sum_{n=0}^{\infty} E_{n, \chi, q}(x) \frac{t^{n}}{n!} & =F_{q, \chi}(x, t)=[2]_{q} \sum_{k=0}^{\infty} \chi(k)(-q)^{k} e^{(x+k) t} \\
& =\sum_{n=0}^{\infty}\left([2]_{q} \sum_{k=0}^{\infty} \chi(k)(-q)^{k}(x+k)^{n}\right) \frac{t^{n}}{n!} \tag{9}\\
& =\sum_{n=0}^{\infty}\left(d^{n} \sum_{a=0}^{d-1}(-q)^{a} \chi(a) E_{n, q^{d}}\left(\frac{a+x}{d}\right)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
E_{n, \chi, q}(x)=d^{n} \sum_{a=0}^{d-1}(-q)^{a} \chi(a) E_{n, q^{d}}\left(\frac{a+x}{d}\right)=\sum_{\ell=0}^{n}\binom{n}{\ell} x^{n-\ell} E_{\ell, \chi, q}=[2]_{q} \sum_{k=0}^{\infty} \chi(k)(-q)^{k}(x+k)^{n} . \tag{10}
\end{equation*}
$$

Let $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. Then, we see that

$$
\begin{align*}
q^{d} F_{q, \chi}(d, t)+F_{q, \chi}(t) & =[2]_{q} \sum_{k=0}^{\infty} \chi(k)(-q)^{k} e^{(d+k) t}+[2]_{q} \sum_{k=0}^{\infty} \chi(k)(-q)^{k} e^{k t} \\
& =[2]_{q} \sum_{k=0}^{d-1} \chi(k)(-q)^{k} e^{k t} . \tag{11}
\end{align*}
$$

A note on the generalized q-Euler numbers (2)

From (11), we have

$$
\sum_{n=0}^{\infty}\left(q^{d} E_{n, \chi, q}(d)+E_{n, \chi, q}\right) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}\left\{[2]_{q} \sum_{k=0}^{d-1} \chi(k)(-q)^{k} k^{n}\right\} \frac{t^{n}}{n!} .
$$

Therefore, we obtain the following theorem.

Theorem 1. For $q \in \mathbb{C}$ with $|q|<1, n \in \mathbb{Z}_{+}$and $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we have

$$
q^{d} E_{n, \chi, q}(d)+E_{n, \chi, q}=[2]_{q} \sum_{k=0}^{d-1} \chi(k)(-q)^{k} k^{n} .
$$

Let p be a positive odd integer and let $N \in \mathbb{N}$. Then we have

$$
\begin{aligned}
{[2]_{q} \sum_{a=0}^{d p^{N}-1} \chi(a)(-q)^{a} a^{n} } & =q^{d p^{N}} E_{n, \chi, q}\left(d p^{N}\right)+E_{n, \chi, q} \\
& =q^{d p^{N}} \sum_{j=0}^{n}\binom{n}{j}\left(d p^{N}\right)^{j} E_{n-j, \chi, q}+E_{n, \chi, q} \\
& =q^{d p^{N}} \sum_{j=1}^{n}\binom{n}{j}\left(d p^{N}\right)^{j} E_{n-j, \chi, q}+\left(q^{d p^{N}}+1\right) E_{n, \chi, q} \\
& \equiv 2 E_{n, \chi, q}\left(\bmod d p^{N}\right),
\end{aligned}
$$

because $q^{n d p^{N}} \equiv 1\left(\bmod d p^{N}\right)$. Therefore, we obtain the following theorem.
Theorem 2. Let p be a positive odd integer and $q \in \mathbb{C}$ with $|q|<1$ and $(q-1, d p)=1$. For $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we have

$$
[2]_{q} \sum_{a=0}^{d p^{N}-1} \chi(a)(-q)^{a} a^{n} \equiv 2 E_{n, \chi, q}\left(\bmod d p^{N}\right)
$$

Remark. Define

$$
L_{E, q}(s, \chi \mid x)=[2]_{q} \sum_{n=0}^{\infty} \frac{(-q)^{n} \chi(n)}{(n+x)^{s}}
$$

where $s \in \mathbb{C}$, and $x \neq 0,-1,-2, \cdots$. For $k \in \mathbb{Z}_{+}$, we have $L_{E, q}(-k, \chi \mid x)=E_{k, \chi, q}(x)$.

ACKNOWLEDGEMENTS. The present research has been conducted by the research grant of the Kwangwoon University in 2009.

Kyoung-Ho Park, Young-Hee Kim, and Taekyun Kim

References

[1] R. P. Agarwal, C. S. Ryoo, Numerical Computations of the roots of the generalized twisted q-Bernoulli polynomials, Neural parallel Sci. Comput, 15 (2007), 193-206.
[2] I. N. Cangul, H. Odzen and Y. Simsek, Generating Functions of the (h,q)-extension of Euler polynomials and numbers, Acta Math. Hungar. 120 (2008), 281-299.
[3] T. Kim, An invariant p-adic q-integral on \mathbb{Z}_{p}, Appl. Math. Letters 21 (2008), 105-108.
[4] T. Kim, q-extension of the Euler formula and trigonometric functions, Russ. J. Math. Phys. 14 (3) (2007),275-278.
[5] T. Kim, Symmetry p-adic invariant integral on \mathbb{Z}_{p} for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), 1267-1277.
[6] H. M. Srivastava, T. Kim, and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math. Phys. 12(2) (2005), 241-268.
[7] T. Kim, Note on q-Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 17 (2008), 9-15.
[8] T. Kim, The modified q-Euler numbers and polynomials, Adv. Stud. Contemp. Math. 16 (2008), 161-170.
[9] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory, 76 (1999), 320-329.
[10] T. Kim, q-Volkenborn Integration, Russ. J. Math. Phys. 9 (2002), 288-299.
[11] T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15 (2008), 51-57.
[12] T. Kim, J. Y. Choi, and J. Y. Sug, Extended q-Euler numbers and polynomials associated with fermionic p-adic q-integral on \mathbb{Z}_{p}, Russ. J. Math. Phys. 14 (2007), 160-163.
[13] T. Kim, On the von Staudt-Clausen's Theorem for the q-Euler numbers, Russ. J. Math. Phys. 16 (3) (2009).
[14] T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math. Phys.13(3)(2006), 293-298.

A note on the generalized q-Euler numbers (2)
[15] T. Kim, Multiple p-adic L-function Russ. J. Math. Phys. 13(2) (2006), 151-157.
[16] T. Kim, Power series and asymptotic series associated with the q-analog of the twovariable p-adic L-function, Russ. J. Math. Phys. 12(2) (2005), 186-196.
[17] T. Kim, Analytic continuation of multiple q-zeta functions and their values at negative integers, Russ. J. Math. Phys. 11(1) (2004), 71-76.
[18] T. Kim On Euler-Barnes multiple zeta functions, Russ.J. Math. Phys. 10(3) (2003), 261-267.
[19] B. A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), 412-422.
[20] H. Ozden, Y. Simsek, Interpolation functions of the (h, q)-extension of twisted Euler numbers, Comput. Math. Appl. 56 (2008), 898-908.
[21] H. Ozden, Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008), 934-939.
[22] M. Schork, Ward's calculus sequence; q-calculus and their limit $q \rightarrow-1$, Adv. Stud. Contemp. Math. 13 (2006), 131-141.
[23] Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions, Adv. Stud. Contemp. Math. 16 (2008), 251-278.
[24] Y. Simsek, p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers, Russ. J. Math. Phys. 13(3) (2006), 340-348.
[25] Y. Simsek, O. Yurekli, and V. Kurt, On interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math. 15(2) (2007),187194.
[26] S. H. Rim, K. H. Park, and E.J. Moon, On Genocchi numbers and polynomials, Abstract and Applied Analysis, Article ID 898471, (2008) 7 pages, dio:10.1155/2008/898471.
[27] T. Kim, Y.H. Kim, and K. W. Hwang On the q-extensions of the Bernoulli and Euler numbers, related identities and lerch zeta function, Proc. Jangjeon Math. Soc. 12 (2009), no. 1, 1798-1804.

Department of Mathematics, Sogang University, Seoul 121-741, S. Korea

E-mail: sagamath@yahoo.co.kr

Young-Hee Kim
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, S. Korea

E-mail: yhkim@kw.ac.kr

Taekyun Kim
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, S. Korea

E-mail: tkkim@kw.ac.kr

AN ESTIMATION TO THE SOLUTION OF AN INITIAL VALUE PROBLEM VIA q-BERNSTEIN POLYNOMIALS

SONUC ZORLU, HUSEYIN AKTUGLU AND MEHMET ALİ ÖZARSLAN

Abstract

In the present paper, we give an estimation to the differerence $\left|B_{n-1}(f ; q ; x)-B_{n}(f ; q ; x)\right|$, where $B_{n}(f ; q ; x)$ is the q-Bernstein Polynomials (see [15]) and then we construct an approximating sequence for the solution of the initial value problem.

1. Introduction

Let $C[0,1]$ denotes the set of continuous functions on $[0,1]$. In [2], S . Bernstein introduced the following well-known linear, positive operators

$$
\begin{equation*}
B_{n}(f ; x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k} \tag{1.1}
\end{equation*}
$$

and he showed that if $f \in C[0,1]$, then $B_{n}(f ; x) \rightrightarrows f(x)$ where " $\rightrightarrows "$ represents the uniform convergence. One can find a detailed monograph about the Bernstein Polynomials in [5].

The q-generalization of the Bernstein Polynomials was introduced by G. M. Phillips, in [14], by the following way:

$$
B_{n}(f ; q ; x)=\sum_{r=0}^{n} f_{r}\left[\begin{array}{l}
n \tag{1.2}\\
r
\end{array}\right] x^{r} \prod_{s=0}^{n-r-1}\left(1-q^{s} x\right)
$$

where an empty product is 1 and $f_{r}=f([r] /[n])$. In (1.2), the value $[r]$ denotes the q-integer of r, which is given by

$$
[r]=\left\{\begin{array}{cc}
\frac{1-q^{r}}{1-q}, & q \in \mathbb{R}^{+}-\{1\} \\
r, & q=1
\end{array}\right.
$$

Key words and phrases. q-Bernstein Polynomials, Initial Value Problems, . 2000 Mathematics Subject Classification. 41A25, 41A36.

Also the q-factorial of the number r has the definition

$$
[r]!=\left\{\begin{array}{cc}
1[2] \ldots[r], & r=1,2, \ldots \\
1, & r=0
\end{array}\right.
$$

and the q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]=\frac{[n]!}{[r]![n-r]!}
$$

It is clear that the operators $B_{n}(f ; q ; x)$ defined by (1.2) are the generalization of the Bernstein polynomials defined by (1.1), since

$$
\lim _{q \rightarrow 1} B_{n}(f ; q ; x)=B_{n}(f ; x) .
$$

For the q-Bernstein polynomials $B_{n}(f ; q ; x)$ defined by (1.2), Phillips [14] obtained the moments as

$$
B_{n}(1 ; q ; x)=1, B_{n}(t ; q ; x)=x, B_{n}\left(t^{2} ; q ; x\right)=x^{2}+\frac{x(1-x)}{[n]}
$$

On the other hand, since the operators $B_{n}(f ; q ; x)$ are monotone, using the well known Bohman-Korovkin theorem, Phillips gave the following convergence theorem:

Theorem 1.1. (Phillips [14]) Let $0<q=q_{n}<1$ and $q_{n} \rightarrow 1$ as $n \rightarrow \infty$. Then for any $f \in C[0,1]$, the operators $B_{n}(f ; q ; x)$ converges uniformly to $f(x)$ on $[0,1]$.

In order to give the properties of the derivative, it is convenient to rewrite the operators $B_{n}(f ; q ; x)$ in the following form (see [14] and [15])

$$
B_{n}(f ; q ; x)=\sum_{r=0}^{n}\left[\begin{array}{c}
n \\
r
\end{array}\right] \Delta^{r} f_{0} x^{r}
$$

where the q-differences are defined through the following reccurence formula:

$$
\Delta^{0} f_{i}=f_{i}
$$

for $i=0,1, \ldots, n$ and

$$
\Delta^{r+1} f_{i}=\Delta^{r} f_{i+1}-q^{r} \Delta^{r} f_{i}
$$

for $k=0,1, \ldots, n-i-1$. One can easily show by indution on r that q-differences satisfy the relation

$$
\Delta^{r} f_{i}=\sum_{j=0}^{r}(-1)^{j} q^{j(j-1) / 2}\left[\begin{array}{l}
r \\
j
\end{array}\right] f_{i+r-j} .
$$

AN ESTIMATION TO AN INITIAL VALUE PROBLEM

In [15], in the examination of the properties of the derivative, Phillips introduced the following linear positive operators:

$$
\begin{align*}
B_{n-1}^{*}(f ; q ; x) & =\sum_{r=0}^{n-1} f\left(\frac{[r]}{[n]}\right)\left[\begin{array}{c}
n-1 \\
r
\end{array}\right] x^{r} \prod_{s=0}^{n-r-2}\left(1-q^{s} x\right) \\
& =\sum_{r=0}^{n-1}\left[\begin{array}{c}
n-1 \\
r
\end{array}\right] \Delta^{r} f_{0} x^{r} . \tag{1.3}
\end{align*}
$$

Also it was shown in [15] that, $B_{n-1}^{*}(f ; q ; x)$ converges uniformly to f on $[0,1]$ as $q_{n} \rightarrow 1$, since

$$
\begin{align*}
B_{n-1}^{*}(1 ; q ; x)= & 1(n \geq 1), \quad B_{n-1}^{*}(t ; q ; x)=x-\frac{q^{n-1}}{[n]} x(n \geq 2) \\
B_{n-1}^{*}\left(t^{2} ; q ; x\right)= & x^{2}+\frac{1}{q[n]}\left(1-\frac{1}{[n]}\right) \\
& +\frac{1}{q^{2}}\left(1-q^{2}-\frac{2+q}{[n]}+\frac{1+q}{[n]^{2}}\right) x^{2}(n \geq 3) \tag{1.4}
\end{align*}
$$

Investigation the properties of q-based operators has been an active research field during the last decade (see [4], [20], [7], [8], [9], [10], [16], [17], [18], [12], [19], [13]). Detailed review of the results obtained until 2007 and a number of open problems can be found in [11].

In this paper, we obtain an estimation to the difference

$$
\left|B_{n-1}(f ; q ; x)-B_{n}(f ; q ; x)\right|,
$$

which is needed in the approximation to a solution of the initial value problem. Finally, using the q-Bernstein polynomials, we introduce a sequence which converges to a solution of the initial value problem.

2. An estimation to the difference $\left|B_{n-1}(f ; q ; x)-B_{n}(f ; q ; x)\right|$

The aim of this section is to find an estimation to the difference $\left|B_{n-1}(f ; q ; x)-B_{n}(f ; q ; x)\right|$ where $B_{n}(f ; q ; x)$ is the Generalized Bernstein polynomials.

In [[6], p. 10, eq. (3.2) and (3.3)], we have the following equality

$$
B_{n-1}(f ; q ; x)-B_{n}(f ; q ; x)=\sum_{r=1}^{n-1}\left[\begin{array}{l}
n \\
r
\end{array}\right] a_{r} x^{r} \prod_{s=0}^{n-r-1}\left(1-q^{s} x\right)
$$

where

$$
a_{r}=\frac{[n-r]}{[n]} f\left(\frac{[r]}{[n-1]}\right)+q^{n-r} \frac{[r]}{[n]} f\left(\frac{[r-1]}{[n-1]}\right)-f\left(\frac{[r]}{[n]}\right) .
$$

SONUC ZORLU, HUSEYIN AKTUGLU AND MEHMET ALİ ÖZARSLAN

The following lemma is needed for obtaining an estimation to the difference $\left|B_{n-1}(f ; q ; x)-B_{n}(f ; q ; x)\right|$.

Lemma 2.1. (Cheney and Sharma [3]) Let $\left|f^{\prime \prime}\right| \leq k, 0 \leq \alpha, \beta$ and $\alpha+\beta=1$, then

$$
|\alpha f(x)+\beta f(y)-f(\alpha x+\beta y)| \leq \frac{k}{4}(x-y)^{2}
$$

Theorem 2.2. Let $f:[0,1] \rightarrow \mathbb{R}$ is a function such that $\left|f^{\prime \prime}\right| \leq k$, then we have

$$
\left|B_{n-1}(f ; q ; x)-B_{n}(f ; q ; x)\right| \leq \frac{k}{4 q^{2}[n-1]^{2}}
$$

Proof. Choosing

$$
\alpha=\frac{[n-r]}{[n]}, \beta=q^{n-r} \frac{[r]}{[n]}, x=\frac{[r]}{[n-1]}, y=\frac{[r-1]}{[n-1]}
$$

one can easily see that $\alpha+\beta=1$ and $\alpha x+\beta y=\frac{[r]}{[n]}$. Therefore using Lemma 2.1, we obtain that

$$
\begin{gathered}
\left|B_{n-1}(f ; q ; x)-B_{n}(f ; q ; x)\right|=\sum_{r=1}^{n-1}\left[\begin{array}{c}
n \\
r
\end{array}\right] a_{r} x^{r} \prod_{s=0}^{n-r-1}\left(1-q^{s} x\right) \\
\leq \frac{k}{4} \sum_{r=1}^{n-1}\left(\frac{q^{2 r-2}}{[n-1]^{2}}\right)\left[\begin{array}{c}
n \\
r
\end{array}\right] x^{r} \prod_{s=0}^{n-r-1}\left(1-q^{s} x\right) \\
\leq \frac{k}{4 q^{2}[n-1]^{2}} .
\end{gathered}
$$

Whence the result.
Theorem 2.3. Let $y_{n}(x)$ be defined through the following reccurence relation:

$$
\begin{equation*}
y_{0}(x)=y_{0}, y_{n}(x)=y_{0}+\int_{0}^{x} B_{n}\left[f\left(t, y_{n-1}(t)\right) ; q_{n} ; s\right] d s . \tag{3.1}
\end{equation*}
$$

where f has continuous partial derivatives of first order and $0<q_{n} \leq 1$ with $q_{n} \rightarrow 1$. Also assume that f and its first derivatives have the same common bound M in the strip $0 \leq x \leq 1,-\infty<y<\infty$. Then we have

$$
\left|y_{n}^{\prime}(x)\right| \leq M, \quad\left|y_{n}^{\prime \prime}(x)\right|<2(M+\epsilon)
$$

where ϵ is a positive real number.

Proof. Since $B_{n}\left[1 ; q_{n} ; x\right]=1$, it is obvious that

$$
\left|y_{n}^{\prime}(x)\right|=B_{n}\left[f\left(t, y_{n-1}(t)\right) ; q_{n} ; x\right] \leq \sup _{0 \leq x \leq 1} f\left(x, y_{n-1}(x)\right) \leq M
$$

To prove the second inequality, let

$$
\begin{aligned}
B_{n-1}^{*}\left(f ; q_{n} ; x\right) & =\sum_{r=0}^{n-1} f_{r}\left[\begin{array}{c}
n-1 \\
r
\end{array}\right] x^{r} \prod_{s=0}^{n-r-2}\left(1-q_{n}^{s} x\right) \\
& =\sum_{r=0}^{n-1}\left[\begin{array}{c}
n-1 \\
r
\end{array}\right] \Delta^{r} f_{0} x^{r} .
\end{aligned}
$$

Now, letting $F(x)=f\left(x, y_{n-1}(x)\right)$, it can be computed that

$$
\begin{gather*}
y_{n}^{\prime \prime}(x)=B_{n}^{\prime}\left(F ; q_{n} ; x\right)=B_{n-1}^{*}\left([n] \Delta F_{r} ; q_{n} ; x\right) \\
+\sum_{r=0}^{n-1}\left(\frac{r+1}{[r+1]}-1\right)\left[\begin{array}{c}
n-1 \\
r
\end{array}\right] \Delta^{r}\left([n] \Delta F_{r}\right) x^{r} \tag{3.2}
\end{gather*}
$$

Recalling the inequality

$$
\left|\frac{r+1}{[r+1]}-1\right| \leq \frac{1}{3^{n}}
$$

given in [15], we get, using (3.2)

$$
\begin{aligned}
y_{n}^{\prime \prime}(x) \leq & \left(1+\frac{1}{3^{n}}\right) B_{n-1}^{*}\left([n] \Delta F_{r} ; q_{n} ; x\right) \\
\leq & 2 B_{n-1}^{*}\left([n] \Delta F ; q_{n} ; x\right) \\
= & 2\left[\sum_{r=0}^{n-1} F_{r}^{\prime}\left[\begin{array}{c}
n-1 \\
r
\end{array}\right] x^{r} \prod_{s=0}^{n-r-2}\left(1-q_{n}^{s} x\right)\right. \\
& \left.+\sum_{r=0}^{n-1}\left([n] \Delta F_{r}-F_{r}^{\prime}\right)\left[\begin{array}{c}
n-1 \\
r
\end{array}\right] x^{r} \prod_{s=0}^{n-r-2}\left(1-q_{n}^{s} x\right)\right] .
\end{aligned}
$$

Since f has continuous partial derivatives of first order, by the mean value theorem, there exists a real number $\theta(0<\theta<1)$ such that

$$
F_{r}^{\prime}-[n] \Delta F_{r}=F^{\prime}\left(\frac{[r]}{[n]}\right)-q_{n}^{r} F^{\prime}\left(\frac{[r]+\theta q_{n}^{r}}{[n]}\right) .
$$

Since f has continuous partial derivatives and $q_{n} \rightarrow 1$, given any $\epsilon>0$, there exists a positive integer $N=N(\epsilon)$ such that $\left|[n] \Delta F-F_{r}^{\prime}\right|<\epsilon$ for $0 \leq r \leq n-1$.

Therefore we get

$$
\left|y_{n}^{\prime \prime}(x)\right|<2(M+\epsilon)
$$

since

$$
B_{n-1}^{*}\left(F_{r}^{\prime} ; q ; x\right) \leq \sup _{0 \leq x \leq 1}\left|F_{r}^{\prime}\right| \leq M
$$

3. Approximation to a Solution of the Initial Value Problem

In this section, inspiring from Arama's theorem [1], it is aimed to show that the sequence $y_{n}(x)$ given by (3.1) approximates to a solution of the initial value problem.

Theorem 3.1. The sequence $y_{n}(x)$ defined by (3.1) converges uniformly to a solution of the initial value problem

$$
y^{\prime}=f(x, y), \quad y(0)=y_{0}
$$

for $x \in[0,1]$, provided that f and its first two derivatives are bounded in the strip $0 \leq x \leq 1,-\infty<y<\infty$, that f has continuous partial derivatives of first order and that f satisfies

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq \xi\left|y_{1}-y_{2}\right|
$$

where $\xi<1$.
Proof. First of all, it will be shown that the series

$$
y_{0}+\sum_{n=1}^{\infty}\left[y_{n}(x)-y_{n-1}(x)\right]
$$

converges uniformly in $[0,1]$. Let $\epsilon_{n}(x)=y_{n}(x)-y_{n-1}(x)$. Then

$$
\begin{aligned}
\left|\epsilon_{n}(x)\right| \leq & \int_{0}^{x}\left|B_{n}\left[f\left(t, y_{n-1}(t)\right) ; q ; s\right]-B_{n-1}\left[f\left(t, y_{n-2}(t)\right) ; q ; s\right]\right| d s \\
\leq & \int_{0}^{x}\left|B_{n}\left[f\left(t, y_{n-1}(t)\right) ; q ; s\right]-B_{n-1}\left[f\left(t, y_{n-1}(t)\right) ; q ; s\right]\right| d s \\
& +\int_{0}^{x}\left|B_{n-1}\left[f\left(t, y_{n-1}(t)\right) ; q ; s\right]-B_{n-1}\left[f\left(t, y_{n-2}(t)\right) ; q ; s\right]\right| d s \\
= & I_{1}+I_{2} .
\end{aligned}
$$

Using Theorem 3.2, we can write that

$$
\begin{equation*}
I_{1} \leq \int_{0}^{x} \frac{k}{4 q^{2}[n-1]^{2}} d s \leq \frac{k}{4 q^{2}[n-1]^{2}} \tag{4.1}
\end{equation*}
$$

since $x \in[0,1]$.
Now, let us verify that

$$
k=\sup _{0 \leq x \leq 1}\left|\frac{d^{2}}{d x^{2}} f\left(x, y_{n}(x)\right)\right|
$$

is finite. Since

$$
\frac{d^{2}}{d x^{2}} f\left(x, y_{n}(x)\right)=f_{11}+\left(2 f_{12}+f_{22} y_{n}^{\prime}\right) y_{n}^{\prime}+f_{2} y_{n}^{\prime \prime}
$$

then using Theorem 3.3 and the hypothesses of the theorem, we obtain

$$
\left|\frac{d^{2}}{d x^{2}} f\left(x, y_{n}(x)\right)\right|<M+\left(2 M+M^{2}\right) M+2 M(M+\epsilon) .
$$

On the other hand, using monotonicity, we can write

$$
I_{2} \leq \int_{0}^{x} B_{n-1}\left(\left|f\left(t, y_{n-1}(t)\right)-f\left(t, y_{n-2}(t)\right)\right| ; q ; s\right) d s
$$

We get, from the hypothessis of the theorem that,

$$
\left|f\left(t, y_{n-1}(t)\right)-f\left(t, y_{n-2}(t)\right)\right| \leq \xi\left|y_{n-1}(t)-y_{n-2}(t)\right|=\xi\left|\epsilon_{n-1}(t)\right|
$$

Thus we have

$$
\begin{equation*}
I_{2} \leq \xi \sup _{0 \leq t \leq 1}\left|\epsilon_{n-1}(t)\right| \tag{4.2}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left|y_{n}(x)\right| & \leq\left|y_{0}\right|+\int_{0}^{x}\left|B_{n}\left[f\left(t, y_{n-1}(t)\right) ; q ; s\right]\right| d s \\
& \leq\left|y_{0}\right|+M
\end{aligned}
$$

then

$$
\sup _{0 \leq x \leq 1}\left|\epsilon_{n}(x)\right| \leq 2\left(\left|y_{0}\right|+M\right)
$$

From (4.1) and (4.2), it is obtained that

$$
\left|\epsilon_{n}(x)\right| \leq \xi \sup _{0 \leq t \leq 1}\left|\epsilon_{n-1}(t)\right|+O\left(q_{n}^{-2}[n-1]^{-2}\right)
$$

This shows that $y_{n}(x)$ converges to a function $y(x)$ uniformly in $[0,1]$.
Now, let us show that $y(x)$ is a solution of the initial value problem.
Differentiating term by term, we get

$$
\begin{aligned}
\left|\epsilon_{n}^{\prime}(x)\right| \leq & \left|B_{n}\left[f\left(t, y_{n-1}(t)\right) ; q ; x\right]-B_{n-1}\left[f\left(t, y_{n-1}(t)\right) ; q ; x\right]\right| \\
& +\left|B_{n-1}\left[f\left(t, y_{n-1}(t)\right) ; q ; x\right]-B_{n-1}\left[f\left(t, y_{n-2}(t)\right) ; q ; x\right]\right| \\
\leq & \frac{k}{4 q^{2}[n-1]^{2}}+\xi \sup _{0 \leq t \leq 1}\left|\epsilon_{n-1}(t)\right|
\end{aligned}
$$

Considering that $y_{n}(x) \rightarrow y(x)$, we conclude that

$$
y^{\prime}(x)=\lim _{n \rightarrow \infty} y_{n}^{\prime}(x)=\lim _{n \rightarrow \infty} B_{n}\left[f\left(t, y_{n-1}(t)\right) ; q ; x\right] .
$$

Finally, taking

$$
A_{n}(x)=B_{n}\left[f\left(t, y_{n-1}(t)\right) ; q ; x\right]-f(x, y(x))
$$

and considering the following inequality

$$
\begin{aligned}
\left|A_{n}(x)\right| \leq & \left|B_{n}\left[f\left(t, y_{n-1}(t)\right) ; q ; x\right]-B_{n}[f(t, y(t)) ; q ; x]\right| \\
& +\left|B_{n}[f(t, y(t)) ; q ; x]-f(x, y(x))\right|
\end{aligned}
$$

completes the proof since, the first term at the right hand side does not exceed

$$
\sup _{0 \leq t \leq 1}\left|f\left(t, y_{n-1}(t)\right)-f(t, y(t))\right| \leq \xi \sup _{0 \leq t \leq 1}\left|y_{n-1}(t)-y(t)\right|
$$

and the second term converges to zero.

References

[1] O. Arama, Properties Concerning the Monotonicity of the Sequence of Polynomials of Interpolation of S. N. Bernstein and their Application to the Study of Approximation of Functions, Studii si Cercetări de Matematică A. R. P. R., 8(1957), 195-210.
[2] S. Bernstein, Dėmonstration du thėorème de Weierstrass, fondeè sur le calcul des probabilitès, Commun. soc. Math. Kharkow (2), 13(1912-13), 1-2.
[3] E. W. Cheney and A. Sharma, Bernstein Power Series, Canad. J. Math., 16(1964), 241-253.
[4] S. Lewanowicz and P. Wo'zny, Generalized Bernstein polynomials, BIT, 44 , No. 1, 2004, 63-78.
[5] G. G. Lorentz, Bernstein Polynomials, University of Toronto Press Toronto, 1953.
[6] H. Oruc and G. M. Phillips, A Generalization of the Bernstein Polynomials, Proc. Edinburgh Math. Soc.(2), 42(1999), 403-413.
[7] S. Ostrovska, q-Bernstein polynomials and their iterates, Journal of Approximation Theory, 123, 2003, 232-255.
[8] S. Ostrovska, On the improvement of analytic properties under the limit qBernstein operator, J. Approx. Theory, 138, 2006, 37-53.
[9] S. Ostrovska, The approximation by q-Bernstein polynomials in the case $q \downarrow 1$, Archiv der Mathematik, 86, No. 3, 2006, 282-288.
[10] S. Ostrovska, The approximation of logarithmic function by q-Bernstein polynomials in the case q > 1, Numerical Algorithms, 44, 2007, 69-82.
[11] S. Ostrovska, The first decade of the q-Bernstein polynomials: Results and perspectives, Journal of Math. Anal. and Approx. Theory, 2, No. 1, 2007, 3551.
[12] S. Ostrovska, The approximation of all continuous functions on $[0,1]$ by $\mathrm{q}-$ Bernstein polynomials in the case $q \rightarrow 1^{+}$, Result Math., 52, 2008, 179-186.
[13] M. A. Özarslan, H. Aktuğlu, Local Approximation Properties of Certain Class of Linear Positive Operators via I-Convergence, Central European Journal of Mathematics, 6 (2) (2008), 281-286.
[14] G. M. Phillips, Bernstein Polynomials Based on the q-Integers, Annals of Numerical Nathematics, 4(1997), 511-518.
[15] G. M. Phillips, On Generalized Bernstein Polynomials, G A Watson (Eds.), Numerical Analysis, A. R. Mitchell 75th Birthday Volume, B.F. Grifithf and Edt., World Scientific, Singapure, (1996), 263-269.
[16] V. S. Videnskii, On some classes of q-parametric positive operators, Operator Theory, Advances and Applications, 158, 2005, 213-222.
[17] H. Wang, Korovkin-type theorem and application, J. Approx. Theory, 132, No. 2, 2005, 258-264.
[18] H. Wang, Voronovskaya type formulas and saturation of convergence for qBernstein polynomials for $0<\mathrm{q}<1$, J. Approx. Theory, 145, No. 2, 2007, 182-195.
[19] H. Wang and X. Z. Wu, Saturation of convergence for q-Bernstein polynomials in the case $q \geq 1$, J. Math. Anal. Appl., 337, No. 1, 2008, 744-750.
[20] H. Wang, Properties of convergence for ω, q-Bernstein polynomials, J. Math. Anal. Appl., 340, No. 2, 2008, 1096-1108.

SONUC ZORLU

Eastern Mediterranean University
Faculty of Arts and Sciences
Department of Mathematics
Gazimagosa, Mersin 10, Turkey
email:sonuc.zorlu@emu.edu.tr
HUSEYIN AKTUGLU
Eastern Mediterranean University
Faculty of Arts and Sciences
Department of Mathematics
Gazimagosa, Mersin 10, Turkey
email:huseyin.aktuglu@emu.edu.tr
MEHMET ALİ ÖZARSLAN
Eastern Mediterranean University
Faculty of Arts and Sciences
Department of Mathematics
Gazimagosa, Mersin 10, Turkey
email:mehmetali.ozarslan@emu.edu.tr

Direct Integration Preconditioning For Solving Optimal Control Problems

M. El-Kady ${ }^{1}$
Department of Mathematics, Faculty of Science, Helwan University, Cairo, EGYPT
B. S. El-desouky, M. Biomy ${ }^{2}$
Department of Mathematics, Faculty of Science, SUEZ CANAL University, PORT-SAID, EGYPT

Abstract

In this paper, direct integration preconditioning is proposed to solve optimal control problems governed by ordinary differential equations. Legendre approximations are used to reduce the problem to a constrained optimization problem. Error estimation for the Legendre approximations is derived and a technique that gives an optimal approximation of the problems is introduced. Numerical results are included to confirm the efficiency and accuracy of the method.

Keywords: Spectral methods; approximation by Legendre polynomials; optimal control problems.

1. Introduction

Spectral methods using expansion in orthogonal polynomials such as Chebyshev or Ultraspherical polynomials have proven successful in the numerical approximation of various boundary value problems; see for instance, Canuto et al [1], Gottlib and Orszag [10] and Szegö [12]. If these polynomials are used as basis functions, then the rate of decay of the expansion coefficients is determined by the smoothness properties of the function being expanded. This choice of trial functions is responsible for the superior approximation properties of spectral methods when compared with finite difference and finite element methods. For spectral and pseudospectral methods, explicit expressions for the expansion coefficients of the derivatives in terms of the expansion coefficients of the solution are needed. Doha [2] obtained a general formula when the basis functions are the Ultraspherical polynomials. In [6], the author introduced a Chebyshev spectral procedure for solving ordinary and partial differential equations by transforming them into integral formulae. He used El-gendi [3] to obtain an approximation for the finite integrals.

Optimal control problems governed by ordinary differential equations are discussed by many authors, among them Martin [5], [8], [11] and [13]. A variety of numerical methods for solving this optimal control problem exists. The most common approach is to replace the unknowns of the problem by some approximation function and to determine the unknowns by minimizing the resulting constrained optimization problem. Martin [11] consider the problem of time-optimal boundary control of a one-dimensional vibrating system subject to a control constraint that prescribes an upper bound for the L^{2}-norm of the image of the control function under a Volterra operator. He uses Newton's method to compute the zero of the optimal value function of certain parametric auxiliary problems, where the steering time is the parameter.

[^29]The proposed algorithm describes an alternative technique. The system dynamics, the state variables can be obtained by transforming the boundary value problem for ordinary differential equations into integral formulas. Start with a Legendre spectral approximation for the highest-order derivative and generate approximations to the lowest-order derivatives through successive integrations. Therefore, the differential and integral expressions that arise in the system dynamics, the performance index, the initial (or boundary) conditions (and even for general multipoint boundary conditions) are converted into algebraic equations with unknown coefficients. This algorithm is of the finite element type and results in static optimization problems with a relatively small number of variables. This approach yields a static optimization problem. This means that the optimal control problem is reduced to a parameter static optimization problem, which consists of the minimization of an objective function, subject to a system of algebraic constraints that are linear in the state variables, irrespective of whether the dynamic system itself is linear or nonlinear. In such cases, the static optimization problem can be efficiently performed using the penalty partial quadratic interpolation technique [4]. They derived error estimation for this approximation, and introduced an algorithm that gives an optimal approximation of the integrals.

The paper is organized as follows: In section 2, optimal control problem formula and some useful notations are presented. In section 3, the Legendre pseudospectral integration is presented to define an optimal preconditioner. The direct integration preconditioning technique is presented in section 4 . In section 5, error estimation of the preconditioning Legendre approximations is presented. Two numerical examples of optimal control problems are solved in section 6.

2. Optimal control problems with linear terminal constraints

We consider the problem of finding the control $u(t)$ which minimizes the cost functional.

$$
\begin{equation*}
J=h\left(x, x^{(1)}, \ldots, x^{(n-1)}, T\right)+\int_{0}^{T} g\left(x, x^{(1)}, \ldots, x^{(n-1)}, u, \tau\right) d \tau \tag{2.1}
\end{equation*}
$$

Subject to

$$
\begin{equation*}
F\left(x, x^{(1)}, \ldots, x^{(n)}, u, \tau\right)=0,0 \leq \tau \leq T, \tag{2.2}
\end{equation*}
$$

where $x^{(r)}=\frac{d^{r} x}{d x^{r}}, r=1,2, \ldots, n$.
and linear initial constraints,

$$
\begin{equation*}
L\left(x(0), x^{(1)}(0), x^{(2)}(0), \ldots, x^{(n-1)}(0)\right)=0, \tag{2.3}
\end{equation*}
$$

and terminal constraints,

$$
\begin{equation*}
M\left(x(T), x^{(1)}(T), x^{(2)}(T), \ldots, x^{(n-1)}(T)\right)=0 \tag{2.4}
\end{equation*}
$$

Where, the time T is assumed to be fixed, L and M are vector functions of dimension l and m, respectively, with $n \leq l+m \leq 2 n$. The state variable $x(\tau) \in R^{N}$, the control variable $u(\tau) \in R^{M}, g(\tau) \in R^{N}$ are real valued continuous functions on [$\left.0, T\right]$.

Before starting to reformulate the optimal control problem, we need to change the time interval $\tau \in[0, T]$ into $t \in[-1,1]$ by substituting

$$
t=\frac{2 \tau}{T}-1
$$

in order to use Legendre polynomials, defined on the interval $[-1,1]$. Hence the optimal control problem becomes: Minimize

$$
\begin{equation*}
J=h\left(x, x^{(1)}, \ldots, x^{(n-1)}, 1\right)+\frac{T}{2} \int_{-1}^{1} g\left(x, x^{(1)}, \ldots, x^{(n-1)}, u, t\right) d t \tag{2.5}
\end{equation*}
$$

Subject to

$$
\begin{equation*}
F\left(x,\left(\frac{2}{T}\right) x^{(1)}, \ldots,\left(\frac{2}{T}\right)^{n} x^{(n)}, u, t\right)=0,-1 \leq t \leq 1 \tag{2.6}
\end{equation*}
$$

and linear initial and terminal constraints,

$$
\begin{align*}
& L\left(x(-1),\left(\frac{2}{T}\right) x^{(1)}(-1), \ldots,\left(\frac{2}{T}\right)^{n} x^{(n)}(-1)\right)=0, \tag{2.7}\\
& M\left(x(1),\left(\frac{2}{T}\right) x^{(1)}(1), \ldots,\left(\frac{2}{T}\right)^{n} x^{(n)}(1)\right)=0 . \tag{2.8}
\end{align*}
$$

3. Pseudospectral Legendre integration approximations [7]

We present here the Legendre approximations of any function $f(t) \in C^{\infty}[-1,1]$, using $(N+1)$ Legendre-Gauss-Lobatto (LGL) points as: $\left\{t_{i}:\left(1-t_{i}^{2}\right) P_{N}^{\prime}\left(t_{i}\right)=0, i=0,1, \ldots, N\right\}$.

$$
\begin{equation*}
f(x)=\sum_{\mathrm{j}=0}^{N} a_{j} P_{j}(t), \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{j} \cong \frac{2 j+1}{N(N-1)} \sum_{k=0}^{N} \frac{P_{j}\left(t_{k}\right) f\left(t_{k}\right)}{\left[P_{N-1}\left(t_{k}\right)\right]^{2}}, \quad j=0,1, \ldots, N . \tag{3.2}
\end{equation*}
$$

Approximate the integrals of a function $f(x)$ by interpolating the function with a polynomial $\mathrm{P}_{N} f$ at Legendre-Gauss-Lobatto (LGL) points.
The values of the integrals $\int_{-1}^{t} \int_{-1}^{t} \ldots . \int_{-1}^{t}\left(\mathrm{P}_{\mathrm{N}} \mathrm{f}\right)(t) d t d t \ldots d t$ at the same $(N+1)$ points, in fact, be expressed as a fixed linear combination of the given function values and the whole relationship may be written in matrix form

$$
\left[\int_{-1}^{t} \int_{-1}^{t} \ldots . \int_{-1}^{t}\left(\mathrm{P}_{\mathrm{N}} \mathrm{f}\right)(t) d t d t \ldots d t\right]=B^{(n)}\left[\mathrm{P}_{N} f\right]
$$

Setting $\left[\mathrm{P}_{\mathrm{N}} \mathrm{f}\right]=\left[f\left(t_{0}\right), f\left(t_{1}\right), \ldots, f\left(t_{N}\right)\right]^{T}$ as the vector consisting of values of $f(x)$ at $(N+1)$ collocation points, $\left[\int_{-1}^{t}\left(\mathrm{P}_{\mathrm{N}} \mathrm{f}\right)(t) d t\right]=\left[\int_{-1}^{t_{0}}\left(\mathrm{P}_{\mathrm{N}} \mathrm{f}\right)(t) d t, \ldots, \int_{-1}^{t_{\mathrm{N}}}\left(\mathrm{P}_{\mathrm{N}} \mathrm{f}\right)(t) d t\right]^{T}$ as the values of the integrals at the collocation points and $B^{(n)}=b_{i j}^{(n)}, i, j=0,1, \ldots, N$ as the collocation integral matrix;

$$
b_{i k}^{(n)}=\sum_{j=0}^{N} \sum_{m=0}^{[j / 2]} \frac{2 j+1}{N(N-1)\left[P_{N-1}\left(t_{k}\right)\right]^{2}} c_{m}^{j} P_{j}\left(t_{k}\right)\left\{\frac{(j-2 m)!}{(j-2 m+n)!}\left[t_{i}^{j-2 m+n}-(-1)^{j-2 m+n}\right]\right.
$$

$$
\begin{equation*}
\left.-\sum_{r=1}^{n-1} \sum_{s=0}^{r} \frac{(-1)^{j-2 m+n-r}(j-2 n)!t_{i}^{s}}{(r-s)!s!(j-2 m+n-r)!}\right\}, \quad 0 \leq i, k \leq N . \tag{3.3}
\end{equation*}
$$

and

$$
c_{k}^{n}=\frac{(-1)^{k}(2 n-2 k)!}{2^{n}(n-k)!(n-2 k)!k!} .
$$

4. Direct integration preconditioning technique

Legendre spectral approximation is adopted here to approximate the solution of the problem. We start with Legendre approximation for the highest-order derivative, $x^{(n)}$, and generate approximations to the lowest-order derivatives $x^{(n-1)} ; x^{(n-2)} ; \ldots$ and $x^{(0)}$, through successive integrations of the approximation of the highest-order derivative, as follows:
Suppose that

$$
\begin{equation*}
x^{(n)}(t)=\Psi(t) \tag{4.1}
\end{equation*}
$$

where $\Psi\left(t_{i}\right), i=0,1, \ldots, N$ are some unknowns. By integration, and making use of the given conditions, we get

$$
\begin{align*}
& x^{(n-1)}(t)=\int_{-1}^{t} \Psi(t) d t+c_{0} \\
& x^{(n-2)}(t)=\int_{-1}^{t} \int_{-1}^{t} \Psi(t) d t d t+c_{0} t+c_{1} \\
& x(t)=\int_{-1}^{t} \int_{-1}^{t} \ldots \int_{-\frac{1}{2}-1}^{t} \int_{\text {ntimes }}^{t} \Psi(t) d t d t \ldots d t+\sum_{r=0}^{n-1} c_{n-1} t^{r} . \tag{4.2}
\end{align*}
$$

Now we apply present Legendre integral approximation, then we have

$$
\begin{gather*}
x^{(n-1)}\left(t_{i}\right)=\sum_{j=0}^{N} b_{i j} \Psi\left(t_{j}\right)+c_{0}, \quad i=0,1, \ldots, N \\
x^{(n-2)}\left(t_{i}\right)=\sum_{j=0}^{N} b_{i j}^{(2)} \Psi\left(t_{j}\right)+c_{0} t_{i}+c_{1} \\
\vdots \tag{4.3}\\
x\left(t_{i}\right)=\sum_{j=0}^{N} b_{i j}^{(n)} \Psi\left(t_{j}\right)+\sum_{r=0}^{n-1} c_{r} t_{i}^{r} .
\end{gather*}
$$

where the constants $c_{r}, r=0,1, \ldots, n-1$ may be defined from the given conditions. Making use of the approximation for the control variable as $u\left(t_{i}\right)=u\left(t_{i}\right)$, the optimal control problem (2.5)-(2.8) are replaced by the constrained optimization problems

Minimize
$J=h\left(x, x^{(1)}, \ldots, x^{(n-1)}, 1\right)+\frac{T}{2} \sum_{i=0}^{N} b_{N i} g\left(\sum_{j=0}^{N} b_{i j}^{(n)} \Psi\left(t_{j}\right)+\sum_{r=0}^{n-1} C_{r} r_{i}^{r}, \ldots, \sum_{j=0}^{N} b_{i j} \Psi\left(t_{j}\right)+C_{0}, u\left(t_{i}\right)\right)($
Subject to

$$
\begin{equation*}
F\left(\left\{\sum_{j=0}^{N} b_{i j}^{(n)} \Psi\left(t_{j}\right)+\sum_{r=0}^{n-1} C_{r} t_{i}^{r}\right\}, \ldots,\left(\frac{2}{T}\right)^{n-1}\left\{\sum_{j=0}^{N} b_{i j} \Psi\left(t_{j}\right)+C_{0}\right\},\left(\frac{2}{T}\right)^{n} \Psi\left(t_{i}\right), u\left(t_{i}\right)\right)=0 . \tag{4.5}
\end{equation*}
$$

The constrained optimization problem is then takes the form:
Minimize $\quad J=J\left[\alpha_{i}\right], i=0, \ldots, N$,
Subject to $\quad F\left[\alpha_{i}\right]=0, i=0,1, \ldots, N$,
where $\alpha_{i}=\left[\Psi\left(t_{0}\right), \Psi\left(t_{1}\right), \ldots, \Psi\left(t_{N}\right)\right]$.
Equations (4.6) and (4.7) are solved by using penalty partial quadratic interpolation technique [4]. We therefore use either

$$
\left|J\left(\gamma_{N+1}, \lambda_{N+1}\right)-J\left(\gamma_{N}, \lambda_{N}\right)\right|<\varepsilon_{1} \quad \text { Or } \quad\left(\sum_{i=0}^{N} F_{i}^{2}\right)^{1 / 2}<\varepsilon_{2}
$$

or both to decide whether the computed solution in close enough to the optimal solution.

5. Error Estimation of the Preconditioning Legendre Approximations

Theorem 5.1:

Let $f(t)$ be approximated by Legendre polynomials, then there exists a number $\xi=\xi(t) \in[-1,1]$ such that:

$$
\begin{align*}
& f(t)=\sum_{k=0}^{N} a_{k} P_{k}(t), \\
& \int_{\substack{-1 \\
t}}^{t_{i}^{t}} \ldots \int_{-1}^{t} \mathrm{f}(t) \mathrm{d} t \mathrm{~d} \text { - } \mathrm{d} t \ldots \mathrm{~d} t=\sum_{k=0}^{N} b_{i k}^{(n)} f\left(t_{k}\right)+E_{n}\left(t_{i}, \xi\right), \tag{5.1}
\end{align*}
$$

where
and

$$
K_{N+1}=\frac{(2 N+1)!}{2^{N}(N+1)!N!} .
$$

Proof: See Ref. [7].

Theorem 5.2

Assume that the optimal control problem (2.5)-(2.8) is approximated by Legendre integral method and assuming that $x^{(n+N+1)}(t)$ is bounded i.e.

$$
\begin{equation*}
\left\|x^{(n+N+1)}(t)\right\| \leq D, \tag{5.3}
\end{equation*}
$$

then there exists a number $\xi(t) \in[-1,1]$ such that

$$
\begin{align*}
& E\left(t_{i}, \xi\right) \leq \frac{D}{(N+1): K_{N+1}} \int_{-1}^{t_{i}} \int_{-1}^{t} \ldots . \int_{-1}^{t} \mathrm{P}_{N+1}(t) d t d t \ldots d t, \tag{5.4}\\
& E_{F}\left(t_{i}\right)= \\
& F\left(\sum_{j=0}^{N} b_{i j}^{(n)} \Psi\left(t_{j}\right)+E_{n}\left(t_{i}, \xi\right)+\sum_{r=0}^{n-1} C_{r} t_{i}^{r}, \sum_{j=0}^{N} b_{i j}^{(n-1)} \Psi\left(t_{j}\right)+E_{n-1}\left(t_{i}, \xi\right)+\sum_{r=0}^{n-2} C_{r} t_{i}^{r},\right. \\
& \left.\ldots, \sum_{j=0}^{N} b_{i j} \Psi\left(t_{j}\right)+C_{0}+E_{1}\left(t_{i}, \xi\right), u\left(t_{i}\right)\right)
\end{align*}
$$

$$
\begin{equation*}
-F\left(\sum_{j=0}^{N} b_{i j}^{(n)} \Psi\left(t_{j}\right)+\sum_{r=0}^{n-1} C_{r} t_{i}^{r}, \sum_{j=0}^{N} b_{i j}^{(n-1)} \Psi\left(t_{j}\right)+\sum_{r=0}^{n-2} C_{r} t_{i}^{r}, \ldots, \sum_{j=0}^{N} b_{i j} \Psi\left(t_{j}\right)+C_{0}, u\left(t_{i}\right)\right) .(5 \tag{5.5}
\end{equation*}
$$

Proof:

Firstly, let $E\left(t_{i}, \xi\right)$ denote the error in approximation $x\left(t_{i}\right)$ with (4.3), namely

$$
\begin{equation*}
E\left(t_{i}\right)=\int_{-1}^{t_{i}} \int_{-1}^{t} \ldots . \int_{n-1}^{t} \Psi(t) d t d t \ldots d t-\sum_{j=0}^{N} b_{i j}^{(n)} \Psi\left(t_{j}\right) \tag{5.6}
\end{equation*}
$$

then, making use of (5.1) and (5.2), the error in the approximation (4.3) can be written as:

$$
\begin{gathered}
E\left(t_{i}, \xi\right)=\frac{\Psi^{(N+1)}(\xi)}{(N+1)!K_{N+1}} \int_{-1}^{t_{i}} \int_{-1}^{t} \ldots . \int_{-1}^{t} \mathrm{P}_{N+1}(t) d t d t \ldots d t \\
=\frac{x^{(n+t i m e s}}{(N+1)!K_{N+1}} \int_{-1}^{t_{i}} \int_{-1}^{t} \ldots . \int_{-1}^{t} \mathrm{P}_{N+1}(t) d t d t \ldots d t
\end{gathered}
$$

Thus, making use of (5.3),

$$
E\left(t_{i}, \xi\right) \leq \frac{D}{(N+1)!K_{N+1}} \int_{0}^{t_{i}} \int_{0}^{t} \ldots . \int_{0}^{t} \mathrm{P}_{N+1}(t) d t d t \ldots d t
$$

Secondly, the original constraint (2.6) in view of (4.2) becomes

$$
F\left(\left\{\int_{\int_{0}}^{t_{i}} \int_{\substack{t \\ n-\text { times }}}^{t} \ldots \int_{0}^{t} \Psi(t) d t+\sum_{r=0}^{n-1} C_{r} t_{i}^{r}\right\},\left(\frac{2}{T}\right)\left\{\int_{\substack{0 \\ t_{i}}}^{\substack{t \\(n-1)-\text { times }}} \ldots . \int_{0}^{t} \Psi(t) d t+\sum_{r=0}^{n-2} C_{r} t_{i}^{r}\right\}, \ldots,\left(\frac{2}{T}\right)^{n} \Psi\left(t_{i}\right), u\left(t_{i}\right)\right)=0
$$

Making use of (5.1) then,

$$
\begin{align*}
& F\left(\sum_{j=0}^{N} b_{i j}^{(n)} \Psi\left(t_{j}\right)+E_{n}\left(t_{i}, \xi\right)+\sum_{r=0}^{n-1} C_{r} t_{i}^{r},\right. \\
& \left.\ldots,\left(\frac{2}{T}\right)^{n-1} \sum_{j=0}^{N} b_{i j} \Psi\left(t_{j}\right)+E_{1}\left(t_{i}, \xi\right)+C_{0},\left(\frac{2}{T}\right)^{n} \Psi\left(t_{j}\right), u\left(t_{i}\right)\right)=0 . \tag{5.7}
\end{align*}
$$

Subtracting (4.5) from (5.7), we obtain

$$
\begin{aligned}
E_{F}\left(t_{i}\right) & =F\left(\sum_{j=0}^{N} b_{i j}^{(n)} \Psi\left(t_{j}\right)+E_{n}\left(t_{i}, \xi\right)+\sum_{r=0}^{n-1} C_{r} t_{i}^{r},\right. \\
& \left.\ldots,\left(\frac{2}{T}\right)^{n-1} \sum_{j=0}^{N} b_{i j} \Psi\left(t_{j}\right)+E_{1}\left(t_{i}, \xi\right)+C_{0},\left(\frac{2}{T}\right)^{n} \Psi\left(t_{j}\right), u\left(t_{i}\right)\right)- \\
& F\left(\left\{\sum_{j=0}^{N} b_{i j}^{(n)} \Psi\left(t_{j}\right)+\sum_{r=0}^{n-1} C_{r} t_{i}^{r}\right\}, \ldots,\left(\frac{2}{T}\right)^{n-1}\left\{\sum_{j=0}^{N} b_{i j} \Psi\left(t_{j}\right)+C_{0}\right\},\left(\frac{2}{T}\right)^{n} \Psi\left(t_{i}\right), u\left(t_{i}\right)\right) .
\end{aligned}
$$

with $E_{n}\left(t_{i}, \xi\right)$ is defined in (5.2).

6. Numerical Examples

Now, we consider the following problems to show the effectiveness of our technique.

Example 1:

Among all piecewise differentiable control variables, find the optimal control $u(t)$ which minimizes

$$
\begin{equation*}
J=\int_{0}^{1}\left[x^{2}(\tau)+x^{\prime 2}(\tau)+0.005 u^{2}(\tau)\right] d \tau \tag{6.1}
\end{equation*}
$$

subject to $\quad x^{\prime \prime}(\tau)+x^{\prime}(\tau)-u(\tau)=0$,

$$
\begin{equation*}
x(\tau)-8(\tau-0.5)^{2}+0.5 \leq 0 . \tag{6.2}
\end{equation*}
$$

And

$$
\begin{equation*}
x(0)=0, \quad x^{\prime}(0)=-1 . \tag{6.4}
\end{equation*}
$$

The first step in solving this problem by the proposed method is to transform the time interval into $t \in[-1,1]$. This will lead to the following problem.
Minimizes

$$
\begin{align*}
& J=\frac{1}{2} \int_{-1}^{1}\left[x^{2}(t)+4 x^{\prime 2}(t)+0.005 u^{2}(t)\right] d t, \tag{6.5}\\
& 4 x^{\prime \prime}(t)+2 x^{\prime}(t)-u(t)=0, \tag{6.6}\\
& x(t)-2 t^{2}+0.5 \leq 0 . \tag{6.7}
\end{align*}
$$

And

$$
\begin{equation*}
x(0)=0, \quad x^{\prime}(0)=-1 . \tag{6.8}
\end{equation*}
$$

We give the approximation (4.1)-(4.3) for the state variable $x(t)$ so
Let $x^{\prime \prime}\left(t_{i}\right)=\Psi\left(t_{i}\right)=\Psi_{i}$

$$
\begin{aligned}
& x^{\prime}(t)=\int_{-1}^{t} \Psi(s) d s+c_{1} \\
& x(t)=\int_{-1}^{t} \int_{-1}^{t} \Psi(s) d s d s+c_{1} t+c_{2} .
\end{aligned}
$$

By using Legendre method and condition (6.8), we have $c_{1}=c_{2}=-1$ then

$$
\begin{aligned}
& x^{\prime}\left(t_{i}\right)=\sum_{k=0}^{N} b_{i k} \Psi\left(t_{k}\right)-1, \\
& x\left(t_{i}\right)=\sum_{k=0}^{N} b_{i k}^{(2)} \Psi\left(t_{k}\right)-t_{i}-1 .
\end{aligned}
$$

We also use one of the approximations, $u\left(t_{i}\right), i=0,1, \ldots, N$ for the control variable, and then the problem can be converted to the following constrained optimization problem:
Minimize
subject to

$$
\begin{align*}
& J=\frac{1}{2} \sum_{i=0}^{N} b_{N i}\left(\left[\sum_{k=0}^{N} b_{i k}^{(2)} \Psi_{k}-t_{i}-1\right]^{2}+4\left[\sum_{k=0}^{N} b_{i k} \Psi_{k}-1\right]^{2}+0.005 u^{2}\left(t_{i}\right)\right) \tag{6.9}\\
& 4 \Psi\left(t_{i}\right)-\left[\sum_{k=0}^{N} b_{i k} \Psi_{k}-1\right]-u\left(t_{i}\right)=0 \tag{6.10}
\end{align*}
$$

We approximate the inequality constraint by adding a slack variable as we show previously,

$$
\begin{equation*}
\left(\sum_{k=0}^{N} b_{i k}^{(2)} \Psi_{k}-t_{i}-1\right)-2 t_{i}^{2}+0.5+A_{N+i}^{2}=0 . \tag{6.11}
\end{equation*}
$$

Solving this problem (6.9)-(6.11) using the proposed method by $9^{\text {th }}$ order Legendre, we find the optimal value to be $J^{*}=0.71426412$. The optimal state and the optimal control are shown in Figures (1) and (2), respectively. Elnagar [8] used of Cell Averaging Chebyshev method by $9^{\text {th }}$ order Chebyshev for solve this example and have $J^{*}=0.74096103$.

Fig. (1) state variable $x(t)$ of example (1)

Fig. (2) control varaible $u(t)$ of example (1)

Example 2: The Controlled Linear Oscillator

Consider the optimal control problem of a liner oscillator the performance index

$$
\begin{equation*}
J=\frac{1}{2} \int_{-T}^{0} u^{2}(\tau) d \tau \tag{6.12}
\end{equation*}
$$

is minimized over all admissible control functions $u(\tau)$.
Subject to the differential equation

$$
\begin{equation*}
\ddot{x}(\tau)+\omega^{2} x(\tau)=u(\tau),-T \leq \tau \leq 0 \tag{6.13}
\end{equation*}
$$

with the boundary conditions

$$
x(-T)=x_{0}, x(0)=0
$$

The first step in solving this problem by the proposed method is to transform the time interval into $t \in[-1,1]$ by $\tau=\frac{T}{2}(t-1)$. This will lead to the following problem:

Minimize

$$
\begin{equation*}
J=\frac{T}{4} \int_{-1}^{1} u^{2}(t) d t \tag{6.14}
\end{equation*}
$$

Subject to

$$
\begin{equation*}
x^{\prime \prime}(t)=\frac{T^{2}}{4}\left(-\omega^{2} x+u(t)\right), \tag{6.15}
\end{equation*}
$$

With the boundary conditions

$$
\begin{equation*}
x(-1)=x_{0} \text { and } x(1)=0 . \tag{6.16}
\end{equation*}
$$

For solve the problem let

$$
x^{\prime \prime}\left(t_{i}\right)=\Psi\left(t_{i}\right)=\Psi_{i}
$$

and use the approximation Eqs. (4.1)-(4.3) for the state variable as:

$$
\begin{aligned}
& x^{\prime}(t)=\int_{-1}^{t} \Psi(s) d s+c_{1} \\
& x(t)=\int_{-1}^{t} \int_{-1}^{t} \Psi(s) d s d s+c_{1} t+c_{2} .
\end{aligned}
$$

using Legendre method, we get

$$
\begin{aligned}
& x^{\prime}\left(t_{i}\right)=\sum_{k=0}^{N} b_{i k} \Psi\left(t_{k}\right)+c_{1}, \\
& x\left(t_{i}\right)=\sum_{k=0}^{N} b_{i k}^{(2)} \Psi\left(t_{k}\right)+c_{1} t_{i}+c_{2}
\end{aligned}
$$

From the boundary condition Eq. (6.16),

$$
\begin{aligned}
& x(-1)=-c_{1}+c_{2}=x_{0}, \\
& x(1)=\sum_{k=0}^{N} b_{N k}^{(2)} \Psi\left(t_{k}\right)+c_{1}+c_{2}=0
\end{aligned}
$$

then,

$$
c_{2}=\frac{1}{2}\left(x_{0}-\sum_{k=0}^{N} b_{N k}^{(2)} \Psi\left(t_{k}\right)\right) \text { and } c_{1}=\frac{-1}{2}\left(x_{0}+\sum_{k=0}^{N} b_{N k}^{(2)} \Psi\left(t_{k}\right)\right),
$$

hence

$$
x\left(t_{i}\right)=\sum_{k=0}^{N} b_{i k}^{(2)} \Psi\left(t_{k}\right)+\frac{1}{2} x_{0}\left(1-t_{i}\right)-\frac{1}{2} x_{0}\left(1+t_{i}\right) \sum_{k=0}^{N} b_{N k}^{(2)} \Psi\left(t_{k}\right)
$$

then the problem can be converted to the following constrained optimization problem:
Minimize

$$
\begin{equation*}
J=\frac{T}{4} \sum_{i=0}^{N} b_{N i} u^{2}\left(t_{i}\right) \tag{6.17}
\end{equation*}
$$

Subject to

$$
\begin{equation*}
\Psi\left(t_{i}\right)-\frac{T^{2}}{4}\left(-\omega^{2}\left\{\sum_{k=0}^{N} b_{i k}^{(2)} \Psi\left(t_{k}\right)+\frac{1}{2} x_{0}\left(1-t_{i}\right)-\frac{1}{2} x_{0}\left(1+t_{i}\right) \sum_{k=0}^{N} b_{N k}^{(2)} \Psi\left(t_{k}\right)\right\}+u\left(t_{i}\right)\right)=0 . \tag{6.18}
\end{equation*}
$$

At $\omega=1, T=2$ and $x_{0}=0.5$, we get the optimal results of the cost functional $J^{*}=0.18485854$ with $N=18$. Table (1) has optimal value of the cost functional J^{*} for
different values of N. The optimal state and the optimal control are shown in Figs. (3) and (4), respectively.

Table (1): J^{*} of present method with other methods

Methods	N, M	J^{*}
Van Dooren [13]	$\mathrm{M}=4$	0.18491700
	$\mathrm{M}=7$	0.18485854
	$\mathrm{M}=10$	0.18485854
Elnagar [8]	$\mathrm{M}=5$	0.18485790
	$\mathrm{M}=6$	0.18485854
		0.18485851
Present method	$\mathrm{N}=8,10,12$	0.18485851
		0.18485851

7. Conclusion

The basic idea of our present method is to transform the optimal control problems governed by ordinary differential equations to a constrained optimization problem, by using Legendre approximations. We solve the resulting constrained optimization problem since it is easier than solving the original problem. Here we use (PQI) method, which may be more suitable in such case, where the number of constraints is increases.

The major advantages of this method is that, we can deal directly with the highestorder derivatives in the differential equation without transforming it to a system of first order, and that will reduce the number of the unknowns. In this way, the optimal control problem is replaced by a parameter optimization problem which consists of the minimization of the performance index subject to algebraic constraints. Finally, the method has been extended to the linear and nonlinear optimal control problems.

The tables given previously show that the suggested technique is quite reliable. It can be successfully applied to both linear and nonlinear ordinary differential problems and related optimal control problems. The methods produce an accurate solution at small number of nodes. The comparison of the maximum absolute error resulting from the proposed method and those obtained by Elnagar [8] and Van Dooren [13] show favorable agreement and always it is more accurate than these treatments.

References

1. C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, "Spectral Methods in Fluid Dynamic" Springer-Verlag, New York Inc., (1988).
2. E. H. Doha , " The Ultraspherical Coefficients of Moments of a General Order Derivatives of an Infinitely Differentiable Function "J. Comput. and Appl. Math.,89, 53-72, (1998).
3. EL- Gendi, S.E. "Chebyshev Solutions of Differential, Integral, and Integro Differential Equations " Computer J., 12, 282-287, (1969).
4. T. M. E1-Gindy \& M.S. Salim, "Penalty function with partial quadratic interpolation technique in the constrained optimization problems", Journal of Institute of Math. Computer Sci. 3 (1), 85-90 (1990).
5. T. M. El-Gindy, H. M. El-Hawary, M. S. Salim, and M. El-Kady, "A Chebyshev Approximation for Solving Optimal Control Problems", Computers Math. Applic. 29(6), 35-45 (1995).
6. H. M. El-Hawary, M. S. Salim, and H. S. Hussien, "An Optimal Ultraspherical Approximation of Integrals", to appear, Intern. J. of Computer Math., 77(1/2), (2000).
7. M. El-Kady and M. Biomy "Efficient Legendre Pseudospectral Method for Solving Integral and Integro-Differential Equations" Communications in Nonlinear Science and Numerical Simulations, accepted (2009).
8. G. M. Elnagar, "State-control Spectral Chebyshev Parameterization for Linearly Constrained Quadratic Optimal Control Problems", J. Comput. And Applied Mathes. ,97, pp 19-40 (1997).
9. P. L. Falb and J. L. De Jong, "Some successive Approximation Methods in Control and Oscillation Theory", New York: Academic, (1969).
10. D. Gottlieb and S.A. Orszag, "Numerical Analysis of Spectral Methods: Theory and Application" CBMS-NSF Regional Conference Series in Applied Mathematics , 26, Philadelphia: SIAM, (1977).
11. G. Martin "A Newton Method for the Computation of Time-Optimal Boundary Controls of One-Dimensional Vibrating Systems" Journal of Comput. and Applied Math. 114, 103-119 (2000).
12. Szegö, "Orthogonal Polynomials", Am. Math. Soc. Colloq. Pub. ,23, (1985).
13. R. Van Dooren and J. Vlassenbroeck, "A Chebyshev Technique for Solving Nonlinear Optimal Control Problems", IEEE Trans. Automat. Contr., 33 (4), 333-339 (1988).

B-spline solution of the Black-Scholes partial differential equation

Nazan Caglar ${ }^{(1)}$, Muge Iseri ${ }^{(1)}$, Hikmet Caglar ${ }^{(2)}$, Mehmet Ozer ${ }^{(3)}$
${ }^{(1)}$ Istanbul Kultur University, Faculty of Economic and Administrative Science, 34156 Atakoy-Istanbul, Turkey.
${ }^{(2)}$ Istanbul Kultur University, Department of Mathematics-Computer, 34156 Atakoy-Istanbul, Turkey.
${ }^{(3)}$ Istanbul Kultur University, Department of Physics, 34156 Atakoy-Istanbul, Turkey.

> e-mail: ncaglar@iku.edu.tr

Abstract

The numerical solutions of several mathematical models in the financial economics are arising. Most of the models are based on the Black-Scholes partial differential equations. In this paper, the Black-Scholes option pricing model which has been used frequently is solved by using the B-spline functions. The numerical experiments showed that the present method is an applicable technique and gives an exciting results for European option pricing.

Keywords: Black-Scholes equation; B-spline method.

1. Introduction

Mathematical modeling and simulation have become essential tools in the financial industry. Related people spend a lot of time to simulate and predict the price movements for financial assets like stocks, options and bonds. Much of the mathematics employed in this area especially in academic research, is highly sophisticated and spans the fields of analysis, probability, statistics, differential equations and numerical analysis. During the past years financial securities have become necessary tools for corporations and investors. The
movement in stock prices creates a risk, and options can be used to hedge assets and portfolios to control this risk. In finance and economics in general, option pricing theory is one of the major theories. A call (put) option gives the holder the right to buy (sell) the underlying asset by a certain date T (expiration date or maturity date) at a certain price (strike price). Options that can be exercised only on the expiration date known as European options whereas American options can be exercised at any time up to the expiration date [1]. Related parties could plan for the financial future with some certainty regardless of the price of the commodity on the open market at the time the option expired. However, the seller of the option incurs the risk of having to buy or sell an asset at a loss and must be compensated for this risk through the sales price of the option. Determination of the option value is a major concern of financial engineering. The numerical solutions of several mathematical models are arising in financial eonomics for the valuation of both European and American call options on different types assets are considered in several researches. All the models are based on the Black- Scholes partial differential equation. The newly developed LeastSquares Monte Carlo method offers a simple and well-organized technique for valuing American-type options. Compared to the other valuation techniques, the Least-squares Monte Carlo method does not necessitate advanced mathematical techniques and has the supplementary advantage of being able to easily handle multiple and complex stochastic processes concurrently [2]. The methods for valuing options can be divided into analytical and numerical techniques. The first analytic model for valuing simple financial options was created by Black and Scholes [3]. After Black and Scholes, the research has aimed at developing numerical methods capable of dealing with valuing complex options, such as the American-type options with multiple uncertain state variables. The most popular numerical techniques for valuing options are: finite difference method [4], binomial lattice method [5], and Monte Carlo Simulation by Boyle [6].Finite difference method for option valuation has been utilized by Courtadon [7] as well. The most significant drawback of both finite difference and lattice method is that they are impractical for valuing complex options with multiple uncertain state variables. On the contrary to both the finite difference and lattice methods, Monte Carlo Simulation can handle competently with the situations where there are multiple and complex stochastic variables. Tilley [8] was the primary researcher to suggest a modification to Monte Carlo Simulation in order to make it applicable for valuing American options. Another research establishes a dual way
to price American options, formed on simulating the paths of the option payoff [9]. The method introduced, leads to candidate hedging policies for the option, and estimates of the risk involved in using them. Monte Carlo Simulation can be applied to asset pricing problems with multiple state variables and possible path dependencies because convergence of Monte Carlo method is independent of the number of state variables. Another study relates to Monte Carlo Simulation to the problem of shaping free exercise boundaries for pricing American type options [10]. Along with numerical methods for valuing derivatives, lattice based models like binomial are useful for pricing American options, but have difficulty with path dependent contracts. Monte Carlo Simulation is a good way for path dependent problems but computation time increases harshly when there is more than one stochastic variable. This problem is handled by a technique introduced by Raymar and Zwecher [11]. Their method is fast and accurate in basic cases, can be used easily on much more complex options as well. The biggest problem in assessing its performance on the most difficult cases is that there are no benchmarks available for accuracy. Their techniques solve valuation problems that no other approach can touch and the technique is also applicable to many complex equity and fixed-income derivatives. In another work a mathematical model is presented which give the value of the call option in any moment prior to the expiry date. The main interest of options on assets comes from limiting the risk due to unexpected fallings of the asset price [12]. There are also many other methods for American option pricing problem like the method of lines by Meyer and Van der Hoek [13]. Most of the latest literature dealing with the modeling of financial assets assumes that the essential dynamics of equity prices follow a jump procedure. Some financial models, capture a number of main characteristics of the dynamics of stock prices [14]. In this specific research, the article named Compact Finite Difference Method for American Option Pricing is the starting point. In that research, three ways of combining compact finite difference methods for American option price on a single asset has been developed. All the three methods work for both short term and long term options [15].

In this paper, we deal with the European put options on shares which may pay continuous dividends. Consider European put option pricing problem in the following simple form:

$$
\begin{equation*}
u_{\tau}=u_{x x}+g(x, \tau), \tag{1}
\end{equation*}
$$

where $x \in(-\infty,+\infty), \tau \in\left(0,\left(\sigma^{2} / 2\right) T\right)$,
$k_{1}=2 r / \sigma^{2}$,
$k_{2}=2(r-D) / \sigma^{2}$ and
$g(x, \tau)=e^{k_{1} \tau}\left(\left(k_{1}-k_{2}\right) e^{x-\left(k_{2}-1\right) \tau}-k_{1}\right)$.
This problem has the following the initial and the boundary conditions:

$$
\begin{align*}
& u(x, 0)=\max \left(e^{x}-1,0\right), x \in(-\infty,+\infty) \tag{2}\\
& \lim _{x \rightarrow \infty} u(x, \tau)=e^{k_{1} \tau}\left(e^{x-\left(k_{2}-1\right) \tau}-1\right) \tag{3}\\
& \lim _{x \rightarrow-\infty} u(x, \tau)=1+e^{k_{1} \tau}\left(e^{x-\left(k_{2}-1\right) \tau}-1\right) \tag{4}
\end{align*}
$$

where T is the duration (in years) of the option contract, σ is the stands for the volatility in return, D is the dividend yield of the asset, and r is the risk free interest rate.

2. The third-degree B-splines

A detailed description of B-spline functions generated by subdivision can be found in [16]. Consider equally-spaced knots of a partition $\pi: a=$ $x_{0}<x_{1}<\ldots<x_{n}=b$ on $[\mathrm{a}, \mathrm{b}]$. Let $\mathrm{S}_{3}[\pi]$ be the space of continuouslydifferentiable, piecewise, third-degree polynomials on π. That is, $S_{3}[\pi]$ is the space of third-degree splines on π. Consider the B-splines basis in $\mathrm{S}_{3}[\pi]$. The third-degree B-splines are defined as

$$
\begin{align*}
& B_{0}(x)=\frac{1}{6 h^{3}} \begin{cases}x^{3} & 0 \leq x<h \\
-3 x^{3}+12 h x^{2}-12 h^{2} x+4 h^{3} & h \leq x<2 h \\
3 x^{3}-24 h x^{2}+60 h^{2} x-44 h^{3} & 2 h \leq x<3 h \\
-x^{3}+12 h x^{2}-48 h^{2} x+64 h^{3} & 3 h \leq x<4 h\end{cases} \tag{5}\\
& \mathrm{B}_{i-1}(x)=B_{0}(x-(i-1) h), i=2,3, \ldots
\end{align*}
$$

Table 1: Values of B_{i}, B_{i}^{\prime} and $B_{i}^{\prime \prime}$

	\mathbf{x}_{i}	\mathbf{x}_{i+1}	\mathbf{x}_{i+2}	\mathbf{x}_{i+3}	\mathbf{x}_{i+4}
B_{i}	0	1	4	1	0
B_{i}^{\prime}	0	$-3 / \mathrm{h}$	$0 / \mathrm{h}$	$3 / \mathrm{h}$	0
$B_{i}^{\prime \prime}$	0	$6 / \mathrm{h}^{2}$	$-12 / \mathrm{h}^{2}$	$6 / \mathrm{h}^{2}$	0

To solve Eq.(1), B_{i}, B_{i}^{\prime} and $B_{i}^{\prime \prime}$ evaluated at the nodal points are needed. Their coefficients are summarized in Table 1.

3. B-spline solution for the Black-Scholes option pricing model

In this section a spline method for solving option pricing model is outlined, which is based on the collocation approach [17]. Let

$$
\begin{equation*}
S(x)=\sum_{j=-3}^{n-1} C_{j} B_{j}(x) \tag{6}
\end{equation*}
$$

be an approximate solution of Eq.(1), where C_{i} are unknown real coefficients and $B_{j}(x)$ are third-degree B-spline functions. Let $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ be $\mathrm{n}+1$ grid points in the interval $[\mathrm{a}, \mathrm{b}]$, so that
$\mathrm{x}_{i}=\mathrm{a}+\mathrm{ih}, \mathrm{i}=0,1, \ldots, \mathrm{n} ; \mathrm{x}_{0=} \mathrm{a}, \mathrm{x}_{n}=\mathrm{b}, \mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{n}$.
Difference schemes for this problem considered as following:

$$
\begin{align*}
& \frac{u_{i+1}-u_{i}}{\Delta \tau}=u_{x x}+g(x, \tau) \tag{7}\\
& -(\Delta \tau) u_{i+1}^{\prime \prime}+u_{i+1}=u_{i}+(\Delta \tau) g(x, \tau) \tag{8}
\end{align*}
$$

and the initial conditions are given in (2):

$$
\begin{align*}
& u(x, 0)=\max \left(e^{x}-1,0\right), x \in(-\infty,+\infty) \tag{9}\\
& u(x, 0)=u_{0} \tag{10}
\end{align*}
$$

Subsituting (9-10) in (8) then is obtained as follows

$$
\begin{array}{ccc}
t=0+\Delta \tau & -(\Delta \tau) u_{1}^{\prime \prime}+u_{1}=u_{0}+(\Delta \tau) g(x, \Delta \tau) \\
t=0+2 \Delta \tau & -(\Delta \tau) u_{2}^{\prime \prime}+u_{2}=u_{1}+(\Delta \tau) g(x, 2 \Delta \tau) \\
& \cdot & \cdot \tag{13}\\
& \cdot & \cdot \\
t=0+n \Delta \tau & & -(\Delta \tau) u_{n}^{\prime \prime}+u_{n}=u_{n-1}+(\Delta \tau) g(x, n \Delta \tau)
\end{array}
$$

The approximate solution of the equation (11)-(13) are sought in the form of the B-spline functions $S(x)$, it follows that

$$
\begin{array}{ll}
t=0+\Delta \tau & -(\Delta \tau) S_{1}^{\prime \prime}+S_{1}=u_{0}+(\Delta \tau) g(x, \Delta \tau) \\
t=0+2 \Delta \tau & -(\Delta \tau) S_{2}^{\prime \prime}+S_{2}=u_{1}+(\Delta \tau) g(x, 2 \Delta \tau) \\
& \cdot \tag{16}\\
& \cdot \\
t=0+n \Delta \tau & -(\Delta \tau) S_{n}^{\prime \prime}+S_{n}=u_{n-1}+(\Delta \tau) g(x, n \Delta \tau)
\end{array}
$$

and boundary conditions (3)-(4) can be rewritten as follows

$$
\begin{align*}
& \sum_{j=-3}^{n-1} C_{j} B_{j}(x)=1+e^{k_{1} \tau}\left(e^{x-\left(k_{2}-1\right) \tau}-1\right) \text { for } \lim _{x \rightarrow-\infty}, \tag{17}\\
& \sum_{j=-3}^{n-1} C_{j} B_{j}(x)=e^{k_{1} \tau}\left(e^{x-\left(k_{2}-1\right) \tau}-1\right) \text { for } \lim _{x \rightarrow \infty} \tag{18}
\end{align*}
$$

Figure 1: Numerical results for the data set: $\sigma^{2}=0.3, D=0.02, r=0.04$ and $n=111, k=0.001$.

Solving the spline Eq.(14) and using boundary conditions (17)-(18), we have obtained approximate solution. It is easy to see that, the same approximation is applied the other equations (15)-(16). As an illustration of the good performance of the above algorithms. We shall present the numerical results obtained for data set:
$x \in(-2,2), \tau \in(0,1)$,
$\sigma^{2}=0.3$,
$D=0.02$,
$r=0.04$.

The time and share value steps have been taken to $\mathrm{k}=0.001, \mathrm{~h}=1 / 111$, in Fig. 1 the computed solutions are shown. All computations were carried out using MATLAB 6.5.

4. Conclusions

B-spline method has been considered for the numerical solution of European Black-Scholes option pricing model. As well-known that the BlackScholes partial differential equation can be transformed into the heat equation [18]. In a previous work, we have showed that the proposed method gives good results for the heat equation [19]. In this paper, we have shown that the present method is an alternative technique for the solution of the BlackScholes model too. The results of numerical testing show that the numerical method is very effcient and accurate for the Black-Scholes model.

References

[1] T.L.Lai, Samuel Po-Shing Wong Valuation of American Options via Basis Functions, IEEE Transactions on Automatic Control, 49, 374-385, 2004.
[2] A.S.Sabour, R. Poulin Valuing Real Capital Investments Using The LeastSquares Monte Carlo Method, The Engineering Economist, 51, 141-160, 2006.
[3] F. Black, M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81, 637-654, 1973.
[4] E.S. Shwartz, Brennan, M.J.,The Valuation of American Put Options. Journal of Finance, 32, 449-462, 1977.
[5] J.C.Cox, S.A. Ross, M. Rubinstein.,Option Pricing: A Simplified Approach., Journal of Financial Economics, 7, 229-263, 1979.
[6] P.Boyle,Options: A Monte Carlo Approach, Journal of FinancialEconomics, 4, 323-338,1977.
[7] G.Courtadon, A More Accurate Finite Difference Approximations for the

Valuation of Options, Journal of Financial Quantitative Analysis, 17, 697703, 1982.
[8] J.A.Tilley, Valuing American Options in a Path Simulation Model., Transaction of the Society of Actuaries, 45, 83-104, 1993.
[9] L.C.G.Rogers, Monte Carlo Valuation of American Options, Mathematical Finance, 12, 271-286, 2002.
[10] B.R.Cobb, J.M.Charnes Approximating Free Exercise Boundaries for American-Style Options Using Simulation and Optimization, Winter Simulation Conference, 1637-1644, 2004.
[11] S.B.Raymar, M.J. Zwecher Monte Carlo Estimation of American Call Options on the Maximum of Several Stocks, Journal of Derivatives, 5, 7-23, 1997.
[12] C.Vazquez, An Upwind Numerical Approach for an American and European Option Pricing Model, Applied Mathematics and Computation, 97, 273-286, 1998.
[13] G.H.Meyer, J. Van der Hoek,The Valuation of American Options with the Method of Lines, Advanced Futures Options Research, 9, 265-286, 1997.
[14] C. Alvaro, D. del-Castillo Negrete, Fractional Diffusion Models of Option Prices in Markets with Jumps, Physica A, 374, 749-763, 2007.
[15] J.Zhao, M. Davison, R.M.Corless, Compact Finite Difference Method for American Option Pricing, Journal of Computational and Applied Mathematics, 206, 306-321, 2007.
[16] C. de Boor, A Practical Guide to Splines, Springer Verlag, New York, 1978.
[17] G.H. Golub, J.M. Ortega, Scientific Computing and Differential Equations, Academic Press, New York and London, 1992.
[18] Bertram During, Black-Scholes Type Equations: Mathematical Analysis, Parameter Identiffcation Numerical Solution, Johannes GutenbergUniversitat Mainz, Ph.D. Thesis, 2005.
[19] H. Caglar, M. Ozer, N.Caglar, The numerical solution of the one-dimensional heat equation by using third degree B-spline functions, Chaos Solitons and Fractals, 38,1197-1201, 2008.

MULTILATERAL GENERATING FUNCTIONS FOR THE MULTIPLE LAGUERRE AND MULTIPLE HERMITE POLYNOMIALS

M. ALI ÖZARSLAN, EMINE ÖZERGIN AND CEM KAANOĞLU

Abstract

The main object of this paper is to derive several substantially more general families of bilinear, bilateral, and mixed multilateral finite-series relationships and generating functions for the multiple Laguerre and multiple Hermite polynomials. Some applications of the above statements are also given.

1. Introduction

Multiple orthogonal polynomials, which are the extension of orthogonal polynomials has been an active research field during the last few decades. Their roots come from Hermite Pade approximation of a system of r functions.

There are two subjects in the theory of multiple orthogonal polynomials: classical multiple orthogonal polynomials and general multiple orthogonal polynomials. The classical multiple orthogonal polynomials are those polynomials which have a Rodrigues formula and there exists a first order differential operator such that, when applied to these multiple orthogonal polynomials, gives another set of multiple orthogonal polynomials. For the classical multiple orthogonal polynomials, we refer $[3],[15],[10]$ and for the general multiple orthogonal polynomials, we refer [7],[8],[16]. Surveys of results on multiple orthogonal polynomials together with an extensive bibliography on the subject were given in [2].

In this paper we consider the multiple Laguerre polynomials of the first and second kind and multiple Hermite polynomials which are defined as follows:

The multiple Laguerre polynomials of the first kind are orthogonal on $[0, \infty)$ with respect to the r weights $w_{j}(x)=x^{\alpha_{j}} e^{\beta x}(j=1,2, \ldots, r)$, where $\beta<0 ; \alpha_{1}, \ldots, \alpha_{r}>$ -1 and $\alpha_{i}-\alpha_{j} \notin \mathbb{Z}$ whenever $i \neq j$. The multiple Laguerre I polynomials $L_{\vec{n}}^{(\vec{\alpha}, \beta)}(x)$, for the multi-index $\vec{n}=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$ and $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$, are of degree $|\vec{n}|=$ $n_{1}+\ldots+n_{r}$ and satisfy the orthogonality conditions

$$
\int_{0}^{\infty} L_{\vec{n}}^{(\vec{\alpha}, \beta)}(x) x^{k+\alpha_{i}} e^{\beta x} d x=0, k=0,1, \ldots, n_{i}-1 ; i=1,2, \ldots, r
$$

[^30]The Rodrigues formula for the multiple Laguerre polynomials of the first kind is given by (see [10])

$$
L_{\vec{n}}^{(\vec{\alpha}, \beta)}(x)=w_{r}^{-1}\left(w_{r} w_{r-1}^{-1} x^{n_{r}}\left(\ldots\left(w_{2} w_{1}^{-1} x^{n_{2}}\left(w_{1} x^{n_{1}}\right)^{\left(n_{1}\right)}\right)^{\left(n_{2}\right)} \ldots\right)^{\left(n_{r-1}\right)}\right)^{\left(n_{r}\right)}
$$

The multiple Laguerre $I I$ polynomials $L_{\vec{n}}^{(\alpha, \vec{\beta})}(x)$ are defined by (see [10])

$$
L_{\vec{n}}^{(\alpha, \vec{\beta})}(x)=w_{r}^{-1}\left(w_{r} w_{r-1}^{-1}\left(\ldots\left(w_{2} w_{1}^{-1}\left(w_{1} x^{|\vec{n}|}\right)^{\left(n_{1}\right)}\right)^{\left(n_{2}\right)} \ldots\right)^{\left(n_{r-1}\right)}\right)^{\left(n_{r}\right)}
$$

where $\alpha>-1$ and $\beta_{j}<0(j=1,2, \ldots, r)$. They are orthogonal on $(0, \infty)$ with respect to the r weights $w_{j}(x)=x^{\alpha} e^{\beta_{j} x}(j=1,2, \ldots, r), \beta_{i}-\beta_{j} \notin \mathbb{Z}$ whenever $i \neq j$.

The multiple Hermite polynomials $H_{\vec{n}}^{(\vec{\alpha}, \delta)}(x)$ are defined by

$$
H_{\vec{n}}^{(\delta ; \vec{\alpha})}(x)=w_{r}^{-1}\left(w_{r} w_{r-1}^{-1}\left(\ldots\left(w_{2} w_{1}^{-1}\left(w_{1}\right)^{\left(n_{1}\right)}\right)^{\left(n_{2}\right)} \ldots\right)^{\left(n_{r-1}\right)}\right)^{\left(n_{r}\right)}
$$

where $\delta<0$ and $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. They are orthogonal on $(-\infty, \infty)$ with respect to the r weights $w_{j}(x)=e^{\frac{\delta}{2} x^{2}+\alpha_{j} x}(j=1,2, \ldots, r), \alpha_{i}-\alpha_{j} \notin \mathbb{Z}$ whenever $i \neq j$.

The Rodrigues formula allows to obtain the differential equations and explicit expressions of the multiple orthogonal polynomials (see [3],[15]). Recently, using Rodrigues formulas [10], some generating functions have been obtained for the multiple Laguerre I polynomials:

$$
\begin{align*}
& G_{1}\left(x ; t_{1}, \ldots, t_{r}\right)=\sum_{n_{1}, \ldots, n_{r}=0}^{\infty} L_{n_{1}, \ldots, n_{r}}^{\left(\alpha_{1}, \ldots, \alpha_{r} ; \beta\right)}(x) \frac{t_{1}^{n_{1}}}{n_{1}!} \ldots \frac{t_{r}^{n_{r}}}{n_{r}!} \tag{1}\\
&= {\left[\prod_{i=1}^{r} \frac{1}{\left(1-t_{i}\right)^{\alpha_{i}+1}}\right] \exp \left(\beta x\left(\frac{1}{\left(1-t_{1}\right) \ldots\left(1-t_{r}\right)}-1\right)\right) } \\
&\left(\left|t_{i}\right|<1 ; i=1,2, \ldots, r\right),
\end{align*}
$$

for the multiple Laguerre $I I$ polynomials:

$$
\begin{gather*}
G_{2}\left(x ; t_{1}, \ldots, t_{r}\right)=\sum_{n_{1}, \ldots, n_{r}=0}^{\infty} L_{n_{1}, \ldots, n_{r}}^{\left(\alpha ; \beta_{1}, \ldots, \beta_{r}\right)}(x) \frac{t_{1}^{n_{1}}}{n_{1}!} \ldots \frac{t_{r}^{n_{r}}}{n_{r}!} \tag{2}\\
=\frac{1}{\left(1-t_{1}-\ldots-t_{r}\right)^{\alpha+1}} \exp \left(\frac{\beta_{1} t_{1}+\ldots+\beta_{r} t_{r}}{1-t_{1}-\ldots-t_{r}} x\right) \\
\left|t_{1}+t_{2}+\ldots+t_{r}\right|<1,
\end{gather*}
$$

and for the multiple Hermite polynomials:

$$
\begin{gather*}
G_{3}\left(x ; t_{1}, \ldots, t_{r}\right)=\sum_{n_{1}, \ldots, n_{r}=0}^{\infty} H_{n_{1}, \ldots, n_{r}}^{\left(\delta ; \alpha_{1}, \ldots, \alpha_{r}\right)}(x) \frac{t_{1}^{n_{1}}}{n_{1}!} \ldots \frac{t_{r}^{n_{r}}}{n_{r}!} \tag{3}\\
\quad=\exp \left(\delta x \sum_{i=1}^{r} t_{i}+\frac{\delta}{2}\left(\sum_{i=1}^{r} t_{i}\right)^{2}+\sum_{i=1}^{r} \alpha_{i} t_{i}\right) .
\end{gather*}
$$

The main object of this paper is to derive several substantially more general families of bilinear, bilateral, and mixed multilateral finite-series relationships and generating functions for the multiple Laguerre and multiple Hermite polynomials. Some applications of the above statements are also given.

MULTILATERAL GENERATING FUNCTIONS

2. Main Results

In recent years by making use of the familiar group-theoretic (Lie algebraic) method some certain mixed trilateral finite-series relationships have been proved for orthogonal polynomials (see, for instance, [13]). In this section, we obtain families of bilinear, bilateral, mixed multilateral finite-series relationship and generating functions for the multiple Laguerre and multiple Hermite polynomials, by applying the similar method as considered in [13],[6] (and recently in $[11],[1],[12],[14]$), instead of using group theoretic method.

In the first three theorem of this section, we consider the case $r=2$. In fact for $r=2$, generating relation (1) turns out to be

$$
\begin{gather*}
G_{1}^{*}\left(x ; t_{1}, t_{2}\right)=\sum_{n, k=0}^{\infty} L_{n, k}^{\left(\alpha_{1}, \alpha_{2} ; \beta\right)}(x) \frac{t_{1}^{n}}{n!} \frac{t_{2}^{k}}{k!} \tag{4}\\
=\frac{1}{\left(1-t_{1}\right)^{\alpha_{1}+1}\left(1-t_{2}\right)^{\alpha_{2}+1}} \exp \left(\frac{\beta\left(t_{1}+t_{2}-t_{1} t_{2}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)} x\right) \\
\left|t_{1}\right|<1,\left|t_{2}\right|<1 .
\end{gather*}
$$

Using (4), we obtain the following theorem at once.
Theorem 2.1. Corresponding to an identically nonvanishing function $\Phi_{\mu}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)$ of s (real or complex) variables $\xi_{1}, \xi_{2}, \ldots, \xi_{s}\left(s \in \mathbb{N}=\mathbb{N}_{0} \backslash\{0\}\right)$ and of (complex) order μ, let

$$
\begin{aligned}
\Delta^{(1)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \omega\right) & : \quad=\sum_{l=0}^{\infty} a_{l} \Phi_{\mu+\psi}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \omega^{l} \\
a_{l} & \neq 0 .
\end{aligned}
$$

Suppose also that

$$
\begin{aligned}
& \Theta_{n, N_{1}, N_{2}}^{(1)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \zeta, \rho\right):=\sum_{k=0}^{\left[\frac{n}{N_{1}}\right]\left[\frac{k}{N_{2}}\right]} \sum_{l=0} \frac{a_{l} \Phi_{\mu+\psi_{l}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)}{\left(n-N_{2} k\right)!\left(k-N_{1} l\right)!} \\
& \times L_{n-N_{2} k, k-N_{1} l}^{\left(\alpha_{1}+\lambda_{1} l, \alpha_{2}+\lambda_{2} l ; \beta+\lambda_{3} l\right)}(x) \zeta^{k} \rho^{l} \\
&(n \in \mathbb{N})
\end{aligned}
$$

then

$$
\sum_{n=0}^{\infty} \Theta_{n, N_{1}, N_{2}}^{(1)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{t_{2}}{t_{1}^{N_{2}}}, \frac{\gamma}{t_{2}^{N_{1}}}\right) t_{1}^{n}
$$

$$
\begin{gather*}
=\Delta^{(1)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{\gamma}{\left(1-t_{1}\right)^{\lambda_{1}}\left(1-t_{2}\right)^{\lambda_{2}}} \exp \left(\frac{\lambda_{3}\left(t_{1}+t_{2}-t_{1} t_{2}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)} x\right)\right) G_{1}^{*}\left(x ; t_{1}, t_{2}\right) \tag{5}\\
\left|t_{1}\right|<1,\left|t_{2}\right|<1
\end{gather*}
$$

provided that each member of (5) exists.
The notation $[n / q]$ means the greatest integer less than or equal to n / q.

Proof. Substituting $\Theta_{n, N_{1}, N_{2}}^{(1)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \zeta, \rho\right)$ into the left hand side of (5), we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \Theta_{n, N_{1}, N_{2}}^{(1)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{t_{2}}{t_{1}^{N_{2}}}, \frac{\gamma}{t_{2}^{N_{1}}}\right) t_{1}^{n} \\
= & \sum_{n=0}^{\infty} \sum_{k=0}^{\left[\frac{n}{N_{1}}\right]} \sum_{l=0}^{\left[\frac{k}{N_{2}}\right]} \frac{a_{l} \Phi_{\mu+\psi_{l}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)}{\left(n-N_{2} k\right)!\left(k-N_{1} l\right)!}\left(\frac{t_{2}}{t_{1}^{N_{2}}}\right)^{k}\left(\frac{\gamma}{t_{2}^{N_{1}}}\right)^{l} \\
& \times L_{n-N_{2} k, k-N_{1} l}^{\left(\alpha_{1}+\lambda_{1} l, \alpha_{2}+\lambda_{2} l ; \beta+\lambda_{3} l\right)}(x) t_{1}^{n} .
\end{aligned}
$$

Now taking $n \rightarrow n+N_{2} k$

$$
\begin{gathered}
\sum_{n=0}^{\infty} \Theta_{n, N_{1}, N_{2}}^{(1)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{t_{2}}{t_{1}^{N_{2}}}, \frac{\gamma}{t_{2}^{N_{1}}}\right) t_{1}^{n} \\
=\sum_{n, k=0}^{\infty} \sum_{l=0}^{\left[\frac{k}{N_{2}}\right]} \frac{a_{l} \Phi_{\mu+\psi_{l}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)}{n!\left(k-N_{1} l\right)!} \gamma^{l} t_{2}^{k-N_{1} l} L_{n, k-N_{1} l}^{\left(\alpha_{1}+\lambda_{1} l, \alpha_{2}+\lambda_{2} l ; \beta+\lambda_{3} l\right)}(x) t_{1}^{n} .
\end{gathered}
$$

Writing $k \rightarrow k+N_{1} l$ and then using (4), we obtain

$$
\begin{gathered}
\sum_{n=0}^{\infty} \Theta_{n, N_{1}, N_{2}}^{(1)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{t_{2}}{t_{1}^{N_{2}}}, \frac{\gamma}{t_{2}^{N_{1}}}\right) t_{1}^{n}=\sum_{n, k, l=0}^{\infty} a_{l} \Phi_{\mu+\psi_{l}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \gamma^{l} \\
\times L_{n, k}^{\left(\alpha_{1}+\lambda_{1} l, \alpha_{2}+\lambda_{2} l ; \beta+\lambda_{3} l\right)}(x) \frac{t_{1}^{n} t_{2}^{k}}{n!k!}=\sum_{l=0}^{\infty} a_{l} \Phi_{\mu+\psi_{l}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \gamma^{l} \\
\times \frac{1}{\left(1-t_{1}\right)^{\alpha_{1}+\lambda_{1} l+1}\left(1-t_{2}\right)^{\alpha_{2}+\lambda_{2} l+1}} \exp \left(\frac{\left(\beta+\lambda_{3} l\right)\left(t_{1}+t_{2}-t_{1} t_{2}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)} x\right) \\
=\sum_{l=0}^{\infty} a_{l} \Phi_{\mu+\psi_{l}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)\left(\frac{\gamma}{\left(1-t_{1}\right)^{\lambda_{1}}\left(1-t_{2}\right)^{\lambda_{2}}} \exp \left(\frac{\lambda_{3}\left(t_{1}+t_{2}-t_{1} t_{2}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)} x\right)\right)_{l}^{l} \\
\quad \cdot \frac{1}{\left(1-t_{1}\right)^{\alpha_{1}+1}\left(1-t_{2}\right)^{\alpha_{2}+1}} \exp \left(\frac{\beta\left(t_{1}+t_{2}-t_{1} t_{2}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)} x\right) \\
=\Delta^{(1)}\left(\xi_{1}, \ldots, \xi_{s} ; \frac{\gamma}{\left(1-t_{1}\right)^{\lambda_{1}}\left(1-t_{2}\right)^{\lambda_{2}}} \exp \left(\frac{\lambda_{3}\left(t_{1}+t_{2}-t_{1} t_{2}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)} x\right)\right) G_{1}^{*}\left(x ; t_{1}, t_{2}\right) .
\end{gathered}
$$

Whence the result.

Now we consider $r=2$ cases of the generating relations (2) and (3), which are

$$
\begin{gather*}
G_{2}^{*}\left(x ; t_{1}, t_{2}\right)=\sum_{n, k=0}^{\infty} L_{n, k}^{\left(\alpha ; \beta_{1}, \beta_{2}\right)}(x) \frac{t_{1}^{n}}{n!} \frac{t_{2}^{k}}{k!} \tag{6}\\
=\frac{1}{\left(1-t_{1}-t_{2}\right)^{\alpha+1}} \exp \left(\frac{\beta_{1} t_{1}+\beta_{2} t_{2}}{1-t_{1}-t_{2}} x\right) \\
\left|t_{1}+t_{2}\right|<1
\end{gather*}
$$

MULTILATERAL GENERATING FUNCTIONS

and

$$
\begin{gather*}
G_{3}^{*}\left(x ; t_{1}, t_{2}\right)=\sum_{n, k=0}^{\infty} H_{n, k}^{\left(\delta ; \alpha_{1}, \alpha_{2}\right)}(x) \frac{t_{1}^{n}}{n!} \frac{t_{2}^{k}}{k!} \tag{7}\\
=\exp \left(\left(\frac{\delta}{2}\right)\left(t_{1}^{2}+t_{2}^{2}\right)+\alpha_{1} t_{1}+\alpha_{2} t_{2}+\delta x\left(t_{1}+t_{2}\right)+\delta t_{1} t_{2}\right) .
\end{gather*}
$$

Applying the similar procedure used in the proof of Theorem 2.1, we get the following theorems for the multiple Laguerre $I I$ and multiple Hermite polynomials, respectively.

Theorem 2.2. Corresponding to an identically nonvanishing function $\Phi_{\mu}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)$ of s (real or complex) variables $\xi_{1}, \xi_{2}, \ldots, \xi_{s}\left(s \in \mathbb{N}=\mathbb{N}_{0} \backslash\{0\}\right)$ and of (complex) order μ, let

$$
\begin{aligned}
\Delta^{(2)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \omega\right) & :=\sum_{l=0}^{\infty} a_{l} \Phi_{\mu+\psi l}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \omega^{l} \\
a_{l} & \neq 0
\end{aligned}
$$

Suppose also that

$$
\begin{aligned}
& \Theta_{n, N_{1}, N_{2}}^{(2)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \zeta, \rho\right):=\sum_{k=0}^{\left[\frac{n}{N_{1}}\right]} \sum_{l=0}^{\left[\frac{k}{N_{2}}\right]} \frac{a_{l} \Phi_{\mu+\psi_{l}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)}{\left(n-N_{2} k\right)!\left(k-N_{1} l\right)!} \\
& \times L_{n-N_{2} k, k-N_{1} l}^{\left(\alpha+\lambda_{1} l \beta_{1}+\lambda_{2} l, \beta_{3}+\lambda_{3} l\right)}(x) \zeta^{k} \rho^{l} \\
&(n \in \mathbb{N})
\end{aligned}
$$

then

$$
\begin{gather*}
\sum_{n=0}^{\infty} \Theta_{n, N_{1}, N_{2}}^{(2)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{t_{2}}{t_{1}^{N_{2}}}, \frac{\gamma}{t_{2}^{N_{1}}}\right) t_{1}^{n} \tag{8}\\
=\Delta^{(2)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{\gamma}{\left(1-t_{1}-t_{2}\right)^{\lambda_{1}}} \exp \left(\frac{\lambda_{2} t_{1}+\lambda_{3} t_{2}}{1-t_{1}-t_{2}} x\right)\right) G_{2}^{*}\left(x ; t_{1}, t_{2}\right)
\end{gather*}
$$

provided that each member of (8) exists.
Theorem 2.3. Corresponding to an identically nonvanishing function $\Phi_{\mu}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)$ of s (real or complex) variables $\xi_{1}, \xi_{2}, \ldots, \xi_{s}\left(s \in \mathbb{N}=\mathbb{N}_{0} \backslash\{0\}\right)$ and of (complex) order μ, let

$$
\begin{aligned}
\Delta^{(3)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \omega\right) & :=\sum_{l=0}^{\infty} a_{l} \Phi_{\mu+\psi}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \omega^{l} \\
a_{l} & \neq 0
\end{aligned}
$$

Suppose also that

$$
\begin{aligned}
\Theta_{n, N_{1}, N_{2}}^{(3)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \zeta, \rho\right): & =\sum_{k=0}^{\left[\frac{n}{N_{1}}\right]\left[\frac{k}{N_{2}}\right]} \sum_{l=0} \frac{a_{l} \Phi_{\mu+\psi_{l}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)}{\left(n-N_{2} k\right)!\left(k-N_{1} l\right)!} \\
& \times H_{n-N_{2} k, k-N_{1} l}^{\left(\delta+\lambda_{1} l ; \alpha_{1}+\lambda_{2} l, \alpha_{2}+\lambda_{3} l\right)}(x) \zeta^{k} \rho^{l}
\end{aligned}
$$

$$
(n \in \mathbb{N})
$$

then

$$
\begin{align*}
& (9) \quad \sum_{n=0}^{\infty} \Theta_{n, N_{1}, N_{2}}^{(3)}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{t_{2}}{t_{1}^{N_{2}}}, \frac{\gamma}{t_{2}^{N_{1}}}\right) t_{1}^{n} \tag{9}\\
& =\Delta^{(3)}\left(\xi_{1}, \ldots, \xi_{s} ; \gamma \exp \left(\left(\frac{\lambda_{1}}{2}\right)\left(t_{1}^{2}+t_{2}^{2}\right)+\lambda_{2} t_{1}+\lambda_{3} t_{2}+\lambda_{1} x\left(t_{1}+t_{2}\right)+\lambda_{1} t_{1} t_{2}\right)\right) \\
& \times G_{3}^{*}\left(x ; t_{1}, t_{2}\right)
\end{align*}
$$

provided that each member of (9) exists.
In the following three theorem we let $r \in \mathbb{N}$ to be arbitrary. For the multiple Laguerre I polynomials, we have:

Theorem 2.4. Corresponding to an identically nonvanishing r-tuple function sequence $\Phi_{\mu_{1}, \ldots, \mu_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)$ of s (real or complex) variables $\xi_{1}, \xi_{2}, \ldots, \xi_{s}(s \in$ $\mathbb{N}=\mathbb{N}_{0} \backslash\{0\}$) and of (complex) orders, let

$$
\begin{gathered}
\Delta_{\psi_{1}, \ldots, \psi_{r}, \mu_{1}, \ldots, \mu_{r}}^{(1)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \tau_{1}, \ldots, \tau_{r}\right) \\
:=\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{r}=0}^{\infty} a_{k_{1}, \ldots, k_{r}} \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \tau_{1}^{k_{1}} \ldots \tau_{r}^{k_{r}} \\
a_{k_{1}, \ldots, k_{r}} \neq 0
\end{gathered}
$$

Suppose also that

$$
\begin{gathered}
\quad \begin{array}{c}
\Lambda_{n_{1}}^{\mu, \ldots, \lambda_{1}, \ldots, \lambda_{r}, q_{1}, \ldots, \psi_{1}, \ldots, \psi_{r}}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \zeta_{1}, \ldots, \zeta_{r}\right) \\
:= \\
\sum_{k_{1}=0}^{\left[\frac{n_{1}}{q_{1}}\right]} \ldots \sum_{k_{r}=0}^{\left[\frac{n_{r}}{q_{r}}\right]} \frac{1}{\left(n_{1}-q_{1} k_{1}\right)!\ldots\left(n_{r}-q_{r} k_{r}\right)!} a_{k_{1}, \ldots, k_{r}} \\
\times L_{n_{1}-q_{1} k_{1}, \ldots, n_{r}-q_{r} k_{r}}^{\left(\alpha_{1}+\lambda_{1} k_{1}, \ldots, \alpha_{r}+\lambda_{r} k_{r} ; \beta\right)}(x) \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \zeta_{1}^{k_{1}} \ldots \zeta_{r}^{k_{r}} \\
(n \in \mathbb{N})
\end{array}
\end{gathered}
$$

then

$$
\begin{align*}
& \text { 0) } \sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{r}=0}^{\infty} \Lambda_{n_{1}, \ldots, n_{r}, q_{1}, \ldots, q_{r}}^{\mu, \lambda_{1}, \ldots, \psi_{r}, \psi_{1}, \ldots, \psi_{r}}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{\nu_{1}}{\left.t_{1}^{q_{1}}, \ldots, \frac{\nu_{r}}{t_{r}^{q_{r}}}\right) t_{1}^{n_{1}} \ldots t_{r}^{n_{r}}}\right. \tag{10}\\
& =\Delta_{\psi_{1}, \ldots, \psi_{r}, \mu_{1}, \ldots, \mu_{r}}^{(1)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{\nu_{1}}{\left(1-t_{1}\right)^{\lambda_{1}}}, \ldots, \frac{\nu_{r}}{\left(1-t_{r}\right)^{\lambda_{r}}}\right) G_{1}\left(x ; t_{1}, \ldots, t_{r}\right) ; \\
& \left|t_{i}\right|<1 ; i=1,2, \ldots, r
\end{align*}
$$

provided that each member of (10) exists.

MULTILATERAL GENERATING FUNCTIONS

Proof. Substituting $\Lambda_{n_{1}, \ldots, n_{r}, q_{1}, \ldots, q_{r}}^{\mu, \lambda_{1}, \ldots, \lambda_{r}, \psi_{1}, \ldots, \psi_{r}}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \zeta_{1} \ldots \zeta_{r}\right)$ into the left hand side of (10), we get

$$
\begin{aligned}
& \sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{r}=0}^{\infty} \Lambda_{n_{1}, \ldots, n_{r}, q_{1}, \ldots, q_{r}}^{\mu, \lambda_{1}, \ldots, \lambda_{2}, \psi_{1}, \ldots, \psi_{r}}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{\nu_{1}}{t_{1}^{q_{1}}}, \ldots, \frac{\nu_{r}}{t_{r}^{q_{r}}}\right) t_{1}^{n_{1}} \ldots t_{r}^{n_{r}} \\
= & \sum_{n_{1}, \ldots n_{r}=0}^{\infty} \sum_{k_{1}=0}^{\left[\frac{n_{1}}{q_{1}}\right]} \ldots \sum_{k_{r}=0}^{\left[\frac{n_{r}}{q_{r}}\right]} \frac{1}{\left(n_{1}-q_{1} k_{1}\right)!\ldots\left(n_{r}-q_{r} k_{r}\right)!} a_{k_{1}, \ldots, k_{r}} L_{n_{1}-q_{1} k_{1}, \ldots, n_{r}-q_{r} k_{r}}^{\left(\alpha_{1}+\lambda_{1} k_{1}, \ldots, \alpha_{r}+\lambda_{r} k_{r} ; \beta\right)}(x) \\
& \times \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)\left(\frac{\nu_{1}}{t_{1}^{q_{1}}}\right)^{k_{1}} \ldots\left(\frac{\nu_{r}}{t_{r}^{q_{r}}}\right)^{k_{r}} t_{1}^{n_{1}} \ldots t_{r}^{n_{r}} .
\end{aligned}
$$

Taking $n_{1} \rightarrow n_{1}+q_{1} k_{1}, \ldots, n_{r} \rightarrow n_{r}+q_{r} k_{r}$, we obtain

$$
\begin{aligned}
& \sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{r}=0}^{\infty} \Lambda_{n_{1}, \ldots, n_{r}, q_{1}, \ldots, q_{r}}^{\mu, \lambda_{1}, \ldots, \lambda_{r}, \psi_{1}, \ldots, \psi_{r}}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{\nu_{1}}{t_{1}^{q_{1}}}, \ldots, \frac{\nu_{r}}{t_{r}^{q_{r}}}\right) \frac{t_{1}^{n_{1}}}{n_{1}!} \ldots \frac{t_{r}^{n_{r}}}{n_{r}!} \\
& =\sum_{n_{1}, \ldots, n_{r}=0}^{\infty} \sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{r}=0}^{\infty} a_{k_{1}, \ldots, k_{r}} L_{n_{1}, \ldots, n_{r}}^{\left(\alpha_{1}+\lambda_{1} k_{1}, \ldots, \alpha_{r}+\lambda_{r} k_{r} ; \beta\right)}(x) \\
& . \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \nu_{1}^{k_{1}} \ldots \nu_{r}^{k_{r}} \frac{t_{1}^{n_{1}}}{n_{1}!} \ldots \frac{t_{r}^{n_{r}}}{n_{r}!} \\
& =\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{r}=0}^{\infty}\left[\sum_{n_{1}, \ldots, n_{r}=0}^{\infty} L_{n_{1}, \ldots, n_{r}}^{\left(\alpha_{1}+\lambda_{1} k_{1}, \ldots, \alpha_{r}+\lambda_{r} k_{r} ; \beta\right)}(x) \frac{t_{1}^{n_{1}}}{n_{1}!} \ldots \frac{t_{r}^{n_{r}}}{n_{r}!}\right] \\
& . a_{k_{1}, \ldots, k_{r}} \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \nu_{1}^{k_{1}} \ldots \nu_{r}^{k_{r}} \\
& =\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{r}=0}^{\infty}\left[\prod_{i=1}^{r} \frac{1}{\left(1-t_{i}\right)^{\alpha_{i}+\lambda_{i} k_{i}+1}}\right] \exp \left(\beta x\left(\frac{1}{\left(1-t_{1}\right) \ldots\left(1-t_{r}\right)}-1\right)\right) \\
& . a_{k_{1}, \ldots, k_{r}} \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \nu_{1}^{k_{1}} \ldots \nu_{r}^{k_{r}} \\
& =\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{r}=0}^{\infty}\left[\prod_{i=1}^{r} \frac{1}{\left(1-t_{i}\right)^{\lambda_{i} k_{i}}}\right] a_{k_{1}, \ldots, k_{r}} \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \nu_{1}^{k_{1}} \ldots \nu_{r}^{k_{r}} \\
& \cdot\left[\prod_{i=1}^{r} \frac{1}{\left(1-t_{i}\right)^{\alpha_{i}+1}}\right] \exp \left(\beta x\left(\frac{1}{\left(1-t_{1}\right) \ldots\left(1-t_{r}\right)}-1\right)\right) \\
& =\Delta_{\psi_{1}, \ldots, \psi_{r}, \mu_{1}, \ldots, \mu_{r}}^{(1)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{\nu_{1}}{\left(1-t_{1}\right)^{\lambda_{1}}}, \ldots, \frac{\nu_{r}}{\left(1-t_{r}\right)^{\lambda_{r}}}\right) \\
& \cdot\left[\prod_{i=1}^{r} \frac{1}{\left(1-t_{i}\right)^{\alpha_{i}+1}}\right] \exp \left(\beta x\left(\frac{1}{\left(1-t_{1}\right) \ldots\left(1-t_{r}\right)}-1\right)\right) \text {. }
\end{aligned}
$$

Whence the result.

In a similar manner, using (2) and (3), we led fairly easily to:
Theorem 2.5. Corresponding to an identically nonvanising r-tuple function sequence $\Phi_{\mu_{1}, \ldots, \mu_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)$ of s (real or complex) variables $\xi_{1}, \xi_{2}, \ldots, \xi_{s}(s \in$
$\mathbb{N}=\mathbb{N}_{0} \backslash\{0\}$) and of (complex) orders, let

$$
\begin{gathered}
\Delta_{\psi_{1}, \ldots, \psi_{r}, \mu_{1}, \ldots, \mu_{r}}^{(2)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \tau_{1}, \ldots, \tau_{r}\right) \\
:=\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{r}=0}^{\infty} a_{k_{1}, \ldots, k_{r}} \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \tau_{1}^{k_{1}} \ldots \tau_{r}^{k_{r}} \\
a_{k_{1}, \ldots, k_{r}} \neq 0
\end{gathered}
$$

Suppose also that

$$
\begin{gathered}
\quad \begin{array}{l}
\Omega_{n_{1}, \ldots, n_{r}, q_{1}, \ldots, q_{r}}^{\mu, \lambda_{1}, \ldots, \lambda_{r}, \psi_{1}, \ldots, \psi_{r}}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \zeta_{1} \ldots \zeta_{r}\right) \\
:= \\
\sum_{k_{1}=0}^{\left[\frac{n_{1}}{q_{1}}\right]} \ldots \sum_{k_{r}=0}^{\left[\frac{n_{r}}{q_{r}}\right]} \frac{1}{\left(n_{1}-q k_{1}\right)!\ldots\left(n_{r}-q k_{r}\right)!} a_{k_{1}, \ldots, k_{r}} \\
\times L_{n_{1}-q_{1} k_{1}, \ldots, n_{r}-q_{r} k_{r}}^{\left(\alpha ; \beta_{1}+\lambda_{1} k_{1}, \ldots, \beta_{r}+\lambda_{r} k_{r}\right)}(x) \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \zeta_{1}^{k_{1}} \ldots \zeta_{r}^{k_{r}} \\
(n \in \mathbb{N})
\end{array}
\end{gathered}
$$

then

$$
\begin{equation*}
\sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{r}=0}^{\infty} \Omega_{n_{1}, \ldots, n_{r}, q_{1}, \ldots, q_{r}}^{\mu, \lambda_{1}, \ldots, \lambda_{r}, \psi_{1}, \ldots, \psi_{r}}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{\nu_{1}}{t_{1}^{q_{1}}}, \ldots, \frac{\nu_{r}}{t_{r}^{q_{r}}}\right) t_{1}^{n_{1}} \ldots t_{r}^{n_{r}} \tag{11}
\end{equation*}
$$

$$
=\Delta_{\psi_{1}, \ldots, \psi_{r}, \mu_{1}, \ldots, \mu_{r}}^{(2)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \nu_{1} \exp \left(\frac{\lambda_{1} t_{1}}{1-t_{1}-\ldots-t_{r}}\right), \ldots, \nu_{r} \exp \left(\frac{\lambda_{r} t_{r}}{1-t_{1}-\ldots-t_{r}}\right)\right)
$$

$$
\times G_{2}\left(x ; t_{1}, \ldots, t_{r}\right)
$$

$$
\left|t_{1}+t_{2}+\ldots+t_{r}\right|<1
$$

provided that each member of (11) exists.
Theorem 2.6. Corresponding to an identically nonvanishing r-tuple function sequence $\Phi_{\mu_{1}, \ldots, \mu_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)$ of s (real or complex) variables $\xi_{1}, \xi_{2}, \ldots, \xi_{s}(s \in$ $\mathbb{N}=\mathbb{N}_{0} \backslash\{0\}$) and of (complex) orders, let

$$
\begin{gathered}
\Delta_{\psi_{1}, \ldots, \psi_{r}, \mu_{1}, \ldots, \mu_{r}}^{(3)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \tau_{1}, \ldots, \tau_{r}\right) \\
:=\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{r}=0}^{\infty} a_{k_{1}, \ldots, k_{r}} \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \tau_{1}^{k_{1}} \ldots \tau_{r}^{k_{r}} \\
a_{k_{1}, \ldots, k_{r}} \neq 0
\end{gathered}
$$

Suppose also that

$$
\begin{aligned}
& \Psi_{\begin{array}{l}
\mu, \lambda_{1}, \ldots, \lambda_{r}, \psi_{1}, \ldots, \psi_{r} \\
n_{1}, \ldots, n_{r}, q_{1}, \ldots, q_{r}
\end{array}}^{\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \zeta_{1}^{k_{1}} \ldots \zeta_{r}^{k_{r}}\right)=\sum_{k_{1}=0}^{\left[\frac{n_{1}}{q_{1}}\right]} \ldots \sum_{k_{r}=0}^{\left[\frac{n_{r}}{q_{r}}\right]} \frac{1}{\left(n_{1}-q_{1} k_{1}\right)!\ldots\left(n_{r}-q_{r} k_{r}\right)!}} \begin{array}{l}
\times a_{k_{1}, \ldots, k_{r}} H_{n_{1}-q_{1} k_{1}, \ldots, n_{r}-q_{r} k_{r}}^{\left(\delta ; \alpha_{1}+\lambda_{1} k_{1}, \ldots, \alpha_{r}+\lambda_{r} k_{r}\right)}(x) \Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \zeta_{1}^{k_{1}} \ldots \zeta_{r}^{k_{r}} \\
\quad(n \in \mathbb{N})
\end{array}
\end{aligned}
$$

MULTILATERAL GENERATING FUNCTIONS

then

$$
\begin{align*}
& \sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{r}=0}^{\infty} \Psi_{n_{1}, \ldots, n_{r}, q_{1}, \ldots, q_{r}}^{\mu, \lambda_{1}, \ldots, \lambda_{r}, \psi_{1}, \ldots, \psi_{r}}\left(x ; \xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \frac{\nu_{1}}{t_{1}^{q_{1}}}, \ldots, \frac{\nu_{r}}{t_{r}^{q_{r}}}\right) t_{1}^{n_{1}} \ldots t_{r}^{n_{r}} \tag{12}\\
= & \Delta_{\psi_{1}, \ldots, \psi_{r}, \mu_{1}, \ldots, \mu_{r}}^{(3)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s} ; \nu_{1} e^{\lambda_{1} t_{1}}, \ldots, \nu_{r} e^{\lambda_{r} t_{r}}\right) G_{3}\left(x ; t_{1}, \ldots, t_{r}\right) .
\end{align*}
$$

provided that each member of (12) exists.

3. Applications of the main Results

When the multivariable function $\Phi \mu+\psi k\left(\xi_{1}, \ldots, \xi_{s}\right)\left(k \in \mathbb{N}_{0}, s \in \mathbb{N}\right.$) (or $\left.\Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)\right)$ can be expressed by means of several simpler functions of one and more variables then one can give further applications of Theorems 2.1, 2.2 and 2.3 (of Theorems 2.4, 2.5 and 2.6). We start with the following illustrative example.
Example 3.1. Taking $s=2, \xi_{1}=y, \xi_{2}=z, \mu=0, \psi=1, \Phi_{l}(y, z)=g_{l}^{(\beta ; \gamma)}(y, z), a_{l}=$ 1 and $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$ in Theorem 2.2, we have

$$
\Delta^{(2)}(y, z ; \tau)=\frac{1}{(1-y \tau)^{\beta}(1-z \tau)^{\gamma}}
$$

where $g_{l}^{(\beta ; \gamma)}(y, z)$ are the Lagrange polynomials (see [9], [5]). Hence, we obtain the following generating function between the multiple Laguerre II polynomials and the Lagrange polynomials

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{k=0}^{\left[\frac{n}{N_{1}}\right]} \sum_{l=0}^{\left[\frac{k}{N_{2}}\right]} \frac{g_{l}^{(\beta ; \gamma)}(y, z) L_{n-N_{2} k, k-N_{1} l}^{\left(\alpha ; \beta_{1}, \beta_{2}\right)}(x)}{\left(n-N_{2} k\right)!\left(k-N_{1} l\right)!} \tau^{l} t_{1}^{n-N_{2} k} t_{2}^{k-N_{1} l} \\
= & \frac{1}{(1-y \tau)^{\beta}(1-z \tau)^{\gamma}} \frac{1}{\left(1-t_{1}-t_{2}\right)^{\alpha+1}} \exp \left(\frac{\beta_{1} t_{1}+\beta_{2} t_{2}}{1-t_{1}-t_{2}} x\right) \\
|\tau|< & \min \left\{|x|^{-1},|y|^{-1}\right\},\left|t_{1}+t_{2}\right|<1
\end{aligned}
$$

It should be noted here that, one should use Theorem 2.2 in order to give bilinear, bilateral, mixed multilateral finite-series relationship and generating functions between the polynomials of which contain one summation symbol in its generating relation and the multiple Laguerre $I I$ polynomials.

On the other hand, one can not give any bilinear, bilateral, mixed multilateral finite-series relationship and generating functions between the polynomials of which contain more than one summation symbol in its generating relation and the multiple Laguerre II polynomials by using Theorem 2.2. But one can use Theorem 2.5 to achieve this problem.

Example 3.2. Choosing $s=1, \xi_{1}=x, \mu_{1}=\ldots=\mu_{r}=0, \psi_{1}=\ldots=\psi_{r}=$ $1, \Phi_{k_{1}, \ldots, k_{r}}(x)=L_{n_{1}, \ldots, n_{r}}^{\left(\alpha_{1}, \ldots, \alpha_{r} ; \beta\right)}(x)$ and

$$
a_{k_{1}, \ldots, k_{r}}=\frac{1}{k_{1}!\ldots k_{r}!},
$$

we get from (1) that
$\Delta_{1, \ldots, 1 ; 0, \ldots, 0}^{(1)}\left(x ; \tau_{1}, \ldots, \tau_{r}\right)=\left[\prod_{i=1}^{r} \frac{1}{\left(1-t_{i}\right)^{\alpha_{i}+1}}\right] \exp \left(\beta x\left(\frac{1}{\left(1-t_{1}\right) \ldots\left(1-t_{r}\right)}-1\right)\right)$,
where $\left|t_{i}\right|<1 ; i=1,2, \ldots, r$. Therefore, as a consequence of Theorem 2.5, we get following bilateral generating relation between multiple Laguerre I and II polynomials:

$$
\begin{gathered}
\sum_{n_{1}, \ldots, n_{r}=0}^{\infty} \sum_{k_{1}=0}^{\left[\frac{n_{1}}{q_{1}}\right]} \ldots \sum_{k_{r}=0}^{\left[\frac{n_{r}}{q_{r}}\right]} \frac{L_{n_{1}-q_{1} k_{1}, \ldots, n_{r}-q_{r} k_{r}}^{\left(\alpha ; \beta_{1}+\lambda_{1} k_{1}, \ldots, \beta_{r}+\lambda_{r} k_{r}\right)}(x) L_{k_{1}, \ldots, k_{r}}^{\left(\alpha_{1}, \ldots, \alpha_{r} ; \beta\right)}(x)}{\left(n_{1}-q_{1} k_{1}\right)!\ldots\left(n_{r}-q_{r} k_{r}\right)!k_{1}!\ldots k_{r}!} \prod_{i=1}^{r} v_{i}^{k_{i}} t_{i}^{n_{i}-q_{i} k_{i}} \\
= \\
\frac{1}{\left(1-t_{1}-\ldots-t_{r}\right)^{\alpha+1}} \exp \left(\frac{\beta_{1} t_{1}+\ldots+\beta_{r} t_{r}}{1-t_{1}-\ldots-t_{r}} x\right)\left[\prod_{i=1}^{r} \frac{1}{\left(1-\nu_{i} \exp \left(\frac{\lambda_{i} t_{i}}{1-t_{1}-\ldots-t_{r}}\right)\right)^{\alpha_{i}+1}}\right] \\
\quad \times \exp \left(\beta x\left(\frac{1}{\left(1-\nu_{1} \exp \left(\frac{\lambda_{1} t_{1}}{1-t_{1}-\ldots-t_{r}}\right)\right) \ldots\left(1-\nu_{r} \exp \left(\frac{\lambda_{r} t_{r}}{1-t_{1}-\ldots-t_{r}}\right)\right)}-1\right)\right) \\
\quad\left|t_{1}+t_{2}+\ldots+t_{r}\right|<1,\left(\left|\nu_{i} \exp \left(\frac{\lambda_{i} t_{i}}{1-t_{1}-\ldots-t_{r}}\right)\right|<1 ; i=1,2, \ldots, r\right) .
\end{gathered}
$$

Moreover, for each suitable choice of the coefficients a_{k} (or $a_{k_{1}, \ldots, k_{r}}$), if the multivariable function $\Phi \mu+\psi k\left(\xi_{1}, \ldots, \xi_{s}\right)\left(k \in \mathbb{N}_{0}, s \in \mathbb{N}\right)\left(\right.$ or $\left.\Phi_{\mu_{1}+\psi_{1} k_{1}, \ldots, \mu_{r}+\psi_{r} k_{r}}\left(\xi_{1}, \ldots, \xi_{s}\right)\right)$ is expressed as an appropriate product of several simpler functions, Theorems 2.1, 2.2 and 2.3 (or Theorems 2.4, 2.5 and 2.6) can be shown to yield various classes of mixed multilateral generating functions for the multiple Laguerre and multiple Hermite polynomials.

References

[1] A. Altın, E. Erkuş and M.A. Özarslan, Families of Linear Generating Functions for Polynomials in Two Variables, Integral Transforms and Special Functions, Vol. 17, No. 5, May 2006, 315-320.
[2] A.I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998) 423447.
[3] A.I. Aptekarev, A. Branquinho and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc., Vol. 355, No. 10 (2003) 3887-3914.
[4] G.E. Andrews, R.A. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
[5] Chan,W.-C.C., Chyan, C.-J. and Srivastava, H.M., 2001, The Lagrange polynomials in several variables. Integral Transforms and Special Functions, 12, 139-148.
[6] M.-P. Chen, H.M. Srivastava, A note on certain generating functions for the generalized Bessel polynomials, J. Math. Anal. Appl. 180 (1993) 151-159.
[7] E. Coussement and W. Van Assche, Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind, Constructive Approximation (2003) 19: 237-263.
[8] E. Coussement and W. Van Assche, Some properties of multiple orthogonal polynomials associated with Macdonald functions, J. Comput. Appl. Math. 133 (2001) 253-261.
[9] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricorni, Higher Transcendental Functions, Vol. 111, McGraw-Hill Book Company, New York! Toronto and London, 1955.
[10] D.W. Lee, Properties of multiple Hermite and multiple Laguerre polynomials by generating functions, Integral Transforms and Special Functions, Vol. 18, No. 12 (2007) 855-864.
[11] M.A. Özarslan and A. Altın, Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions, J. Math. Anal. Appl. 297 (2004) 186-193.
[12] E. Özergin, Mehmet A. Özarslan, H.M. Srivastava, Some families of generating functions for a class of bivariate polynomials, Math. Comput. Modelling, in press.
[13] H.M. Srivastava and H.L. Manocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.

MULTILATERAL GENERATING FUNCTIONS

[14] H.M. Srivastava, F. Taşdelen, B. Şekeroğlu, Some families of generating functions for the \$q\$-Konhauser polynomials. Taiwanese J. Math. 12 (2008), no. 3, 841-850.
[15] W. Van Assche, E. Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001) 317-347.
[16] W. Van Assche and S.B. Yakubovich, Multiple orthogonal polynomials associated with Macdonald functions, Integral Transforms and Special Functions, Vol. 9, No. 3 (2000) 229-244.

M. Ali Özarslan

Eastern Mediterranean University, Faculty of Arts and Sciences,
Department of Mathematics,
Gazimagusa, Mersin 10, Turkey
E-Mail Address: mehmetali.ozarslan@emu.edu.tr

Emine Özergin

Eastern Mediterranean University,
Faculty of Arts and Sciences,
Department of Mathematics,
Gazimagusa, Mersin 10, Turkey
E-Mail Address: emine.ozergin@emu.edu.tr

Cem Kaanoğlu

Cyprus International University, Faculty of Engineering,
Lefkoşa, Mersin 10, Turkey
E-Mail Address: kaanoglu@ciu.edu.tr

A viscosity iterative scheme for inverse-strongly accretive operators in Banach spaces*

Phayap Katchang ${ }^{1,2}$, Yaowalux Khamlae ${ }^{2}$ and Poom Kumam ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, KMUTT
Bangmod, Bangkok 10140, Thailand
E-mail addresses: phayapk@hotmail.com (P. Katchang) and
poom.kum@kmutt.ac.th (P. Kumam)
${ }^{2}$ Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Tak, Tak 63000, Thailand
E-mail: phayapk@hotmail.com (P. Katchang)

Abstract

In this paper is to introduce a new iterative scheme for finding solutions of a variational inequality for inverse-strongly accretive mappings with a viscosity approximation method in Banach spaces. We obtain a strong convergence theorem in Banach spaces under some parameters controlling conditions. Our results extend and improve the recent results of Yan Hao [Iterative algorithms for inverse-strongly accretive mappings with applications, J. Appl. Math. Comput., 31, 193-202, 2009.], Yeol Je Cho et al., [Strong convergence of an iterative algorithm for accretive operators in Banach spaces, J. Comput. Anal. and Appl., vol. 10, no. 1, 113-125, 2008.] and many others.

Keywords: Inverse-strongly accretive mapping; Fixed point; Iteration; Banach space; Variational inequality; Viscosity approximation method 2000 Mathematics Subject Classification: Primary 47H10; Secondary 47H05; 47H10; 47J25.

1 Introduction

Let E be a real Banach space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle, C$ be a nonempty closed convex subset of E and A be a monotone operator of C into H. The variational inequality problem, denote by $V I(C, A)$, is to find $x^{*} \in C$ such that

$$
\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0
$$

[^31]
P. Katchang, Y. Khamlae and P. Kumam

for all $x \in C$. In the case when $C=H, V I(H, A)=A^{-1} 0$ holds, where

$$
A^{-1} 0=\left\{x^{*} \in H: A x^{*}=0\right\}
$$

An element of $A^{-1} 0$ is called a zero point of A . Recall that a mapping A is said to be β-inverse-strongly monotone, if there exists a positive real number $\beta>0$ such that

$$
\langle A x-A y, x-y\rangle \geq \beta\|A x-A y\|^{2}, \quad \forall x, y \in C
$$

Let C be a nonempty closed and convex subset of a Banach space E. An operator A of C into E is said to be accretive if there exists $j(x-y) \in J(x-y)$ such that

$$
\langle A x-A y, j(x-y)\rangle \geq 0
$$

for all $x, y \in C$. An operator A of C into E is said to be β-inverse strongly accretive if, for any $\beta>0$,

$$
\langle A x-A y, J(x-y)\rangle \geq \beta\|A x-A y\|^{2}
$$

for all $x, y \in C$. Evidently, the definition of the inverse strongly accretive operator is based on that of the inverse strongly monotone operator. Recall also that self mapping $f: C \rightarrow C$ is a contraction on C if there exists a constant $\alpha \in(0,1)$ and $x, y \in C$ such that

$$
\|f(x)-f(y)\| \leq \alpha\|x-y\|
$$

An interesting problem to extend the above results to find a solution of the variational inequality for an inverse-strongly accretive mappings in Banach spaces. Aoyama et al. 1] introduced the following iteration scheme for an inverse-strongly accretive operator in Banach spaces E:

$$
\left\{\begin{array}{l}
x_{1}=x \in C \tag{1.1}\\
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) Q_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)
\end{array}\right.
$$

for all $n \geq 1$ where $C \subset E$ and Q_{C} is a sunny nonexpansive retraction from E onto C. They proved a weak convergence theorem in Banach spaces. Hao [4] introduced the following iteration scheme for an inverse-strongly accretive operator in Banach spaces E:

$$
\left\{\begin{array}{l}
x_{1}=x \in C \tag{1.2}\\
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) Q_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)
\end{array}\right.
$$

for all $n \geq 1$ where $C \subset E$ and Q_{C} is a sunny nonexpansive retraction from E onto C. They proved a strong convergence theorem in Banach spaces. Cho et al. 3] introduced the following iteration scheme for an inverse-strongly accretive operator in Banach spaces E for any fixed $u \in C$:

$$
\left\{\begin{array}{l}
x_{0}=u \in C \tag{1.3}\\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} Q_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)
\end{array}\right.
$$

for all $n \geq 1$ where $C \subset E$ and Q_{C} is a sunny nonexpansive retraction from E onto C. They proved a strong convergence theorem in Banach spaces.

In this paper, motivated and inspired by the idea of Yan Hao [4] and Yeol Je Cho et al. [3], we will introduce a viscosity iterative scheme for an inverse-strongly accretive operator in Banach spaces as follows:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} Q_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \tag{1.4}
\end{equation*}
$$

we shall prove a strong convergent theorem under some parameters controlling conditions.

2 Preliminaries

Let D be a subset of C and $Q: C \rightarrow D$. Then Q is said to sunny if

$$
Q(Q x+t(x-Q x))=Q x
$$

whenever $Q x+t(x-Q x) \in C$ for $x \in C$ and $t \geq 0$. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction Q of C onto D. A mapping $Q: C \rightarrow C$ is called a retraction if $Q^{2}=Q$. If a mapping $Q: C \rightarrow C$ is a retraction, then $Q z=z$ for all z is in the range of Q.

The following result describes a characterization of sunny nonexpansive retractions on a smooth Banach space.
Proposition 1([6]) Let E be a smooth Banach space and let C be a nonempty subset of E. Let $Q: E \rightarrow C$ be a retraction and let J be the normalized duality mapping on E. Then the following are equivalent:
(i) Q is sunny and nonexpansive;
(ii) $\|Q x-Q y\|^{2} \leq\langle x-y, J(Q x-Q y)\rangle, \forall x, y \in E$;
(iii) $\langle x-Q x, J(y-Q x)\rangle \leq 0, \forall x \in E, y \in C$.

Proposition 2([5]) Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space E and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Then the set $F(T)$ is a sunny nonexpansive retract of C.

Let E be a Banach space and let E^{*} be the dual space of E and $\langle\cdot, \cdot\rangle$ denote the pairing between E and E^{*}. For $q>1$, the generalized duality mapping $J_{q}: E \rightarrow 2^{E^{*}}$ is defined by

$$
J_{q}(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{q},\|f\|=\|x\|^{q-1}\right\}
$$

for all $x \in E$. In particular, if $q=2$, the mapping J_{2} is called the normalized duality mapping and, usually, write $J_{2}=J$. Further, we have the following properties of the generalized duality mapping J_{q} :
(i) $J_{q}(x)=\|x\|^{q-2} J_{2}(x)$ for all $x \in E$ with $x \neq 0$;
(ii) $J_{q}(t x)=t^{q-1} J_{q}(x)$ for all $x \in E$ and $t \in[0, \infty)$;
(iii) $J_{q}(-x)=-J_{q}(x)$ for all $x \in E$.

Let $U=\{x \in E:\|x\|=1\}$. A Banach space E is said to uniformly convex if, for any $\epsilon \in(0,2]$, there exists $\delta>0$ such that, for any $x, y \in U,\|x-y\| \geq \epsilon$ implies $\left\|\frac{x+y}{2}\right\| \leq 1-\delta$.

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach space E is said to be smooth if the $\operatorname{limit} \lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists for all $x, y \in U$. It is also said to be uniformly smooth if the limit is attained uniformly for $x, y \in U$. The modulus of smoothness of E is defined by

$$
\rho(\tau)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1: x, y \in E,\|x\|=1,\|y\|=\tau\right\}
$$

where $\rho:[0, \infty) \rightarrow[0, \infty)$ is a function. It is known that E is uniformly smooth if and only if $\lim _{\tau \rightarrow 0} \frac{\rho(\tau)}{\tau}=0$. Let q be a fixed real number with $1<q \leq 2$. A Banach space E is said to be q-uniformly smooth if there exists a constant $c>0$ such that $\rho(\tau) \leq c \tau^{q}$ for all $\tau>0$.

Note that typical examples of both uniformly convex and uniformly smooth Banach spaces are L^{p}, where $p>1$. More precisely, L^{p} is $\min \{p, 2\}$-uniformly smooth for every $p>1$. Note also that no Banach space is q-uniformly smooth for $q>2$; see [8] for more details.

P. Katchang, Y. Khamlae and P. Kumam

We need the following lemmas for proving our main results.
Lemma 2.1. ([8]) Let E be a real 2-uniformly smooth Banach space with the best smooth constant K. Then the following inequality holds:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, J x\rangle+2\|K y\|^{2}, \quad \forall x, y \in E .
$$

Lemma 2.2. ([7]) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space X and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Suppose $x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for all integers $n \geq 0$ and $\lim \sup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$. Then, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

Lemma 2.3. ([9]) Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\delta_{n}, n \geq 0
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence in \mathbb{R} such that
(1) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$
(2) $\lim \sup _{n \longrightarrow \infty} \frac{\delta_{n}}{\alpha_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \longrightarrow \infty} a_{n}=0$.

The following Lemma is characterized by the set of solutions of variational inequality by using sunny nonexpansive retractions.

Lemma 2.4. ([1]) Let C be a nonempty closed convex subset of a smooth Banach space E. Let Q_{C} be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C into E. Then, for all $\lambda>0$,

$$
V I(C, A)=F(Q(I-\lambda A)) .
$$

Lemma 2.5. ([2]) Let E be a uniformly convex Banach space, C a nonempty closed convex subset of E and $T: K \rightarrow K$ a nonexpansive mapping. Then $I-T$ is demi-closed at zero.

3 Main results

In this section, we prove a strong convergence theorem.
Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant K and C a nonempty closed convex subset of E. Let Q_{C} be a sunny nonexpansive retraction from E onto C and $A: C \rightarrow E$ be an β-inverse-strongly accretive operator with $V I(C, A) \neq \emptyset$. Let f be a contraction of C into itself with coefficient $\alpha \in(0,1)$. Suppose the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ in $(0,1)$ satisfy $\alpha_{n}+\beta_{n}+\gamma_{n}=1$, $n \geq 1$ and $\left\{\lambda_{n}\right\}$ is a sequence in [a,b] for some a, b with $0<a<b<\frac{\beta}{K^{2}}$. The following conditions are satisfied:
(i). $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii). $\lim _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0$;
(iii). $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.

For arbitrary given $x_{1} \in C$, the sequences $\left\{x_{n}\right\}$ generated by (1.4). Then $\left\{x_{n}\right\}$ converges strongly to $Q_{V I(C, A)} x$.

A viscosity iterative scheme for inverse-strongly accretive operators in Banach spaces

Proof. First, we observe that $I-\lambda_{n} A$ is nonexpansive. Let $x, y \in C$, from the assumption $\lambda_{n} \in[a, b]$ and Lemma 2.1, we have

$$
\begin{aligned}
\left\|\left(I-\lambda_{n} A\right) x-\left(I-\lambda_{n} A\right) y\right\|^{2} & =\left\|(x-y)-\lambda_{n}(A x-A y)\right\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda_{n}\langle A x-A y, J(x-y)\rangle+2 K^{2} \lambda_{n}^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda_{n} \beta\|A x-A y\|^{2}+2 K^{2} \lambda_{n}^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+2 \lambda_{n}\left(\lambda_{n} K^{2}-\beta\right)\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2} .
\end{aligned}
$$

Next, we prove that $\left\{x_{n}\right\}$ bounded. Let $p \in V I(C, A)$, from Lemma 2.4, we see that $p=Q_{C}\left(p-\lambda_{n} A p\right)$, for each $n \geq 1$. Put $y_{n}=Q_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)$, we have

$$
\begin{aligned}
\left\|y_{n}-p\right\| & =\left\|Q_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)-Q_{C}\left(p-\lambda_{n} A p\right)\right\| \\
& \leq\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)\right\| \\
& =\left\|\left(I-\lambda_{n} A\right) x_{n}-\left(I-\lambda_{n} A\right) p\right\| \\
& \leq\left\|x_{n}-p\right\| .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} y_{n}-p\right\| \\
& \leq \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|y_{n}-p\right\| \\
& \leq \alpha \alpha_{n}\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\|+\beta_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|x_{n}-p\right\| \\
& \leq\left(1-\alpha_{n}+\alpha \alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\| \\
& =\left(1-\alpha_{n}(1-\alpha)\right)\left\|x_{n}-p\right\|+\alpha_{n}(1-\alpha) \frac{\|f(p)-p\|}{1-\alpha} \\
& \leq \max \left\{\left\|x_{1}-p\right\|, \frac{\|f(p)-p\|}{1-\alpha}\right\} .
\end{aligned}
$$

This implies that $\left\{x_{n}\right\}$ bounded, so are $\left\{f\left(x_{n}\right)\right\}$ and $\left\{y_{n}\right\}$.
Next, we show that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. Notice that

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\| & =\left\|Q_{C}\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right)-Q_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)\right\| \\
& \leq\left\|\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right)-\left(x_{n}-\lambda_{n} A x_{n}\right)\right\| \\
& =\left\|\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right)-\left(x_{n}-\lambda_{n+1} A x_{n}\right)+\left(\lambda_{n}-\lambda_{n+1}\right) A x_{n}\right\| \\
& \leq\left\|\left(I-\lambda_{n+1} A\right) x_{n+1}-\left(I-\lambda_{n+1} A\right) x_{n}\right\|+\mid \lambda_{n}-\lambda_{n+1}\left\|A x_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A x_{n}\right\|,
\end{aligned}
$$

P. Katchang, Y. Khamlae and P. Kumam

Setting $x_{n+1}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} x_{n}$, we see that $z_{n}=\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}$, then we have

$$
\begin{aligned}
\left\|z_{n+1}-z_{n}\right\|= & \left\|\frac{x_{n+2}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}\right\| \\
= & \left\|\frac{\alpha_{n+1} f\left(x_{n+1}\right)+\beta_{n+1} x_{n+1}+\gamma_{n+1} y_{n+1}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} y_{n}-\beta_{n} x_{n}}{1-\beta_{n}}\right\| \\
= & \| \frac{\alpha_{n+1} f\left(x_{n+1}\right)+\gamma_{n+1} y_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n+1} f\left(x_{n}\right)}{1-\beta_{n+1}}+\frac{\alpha_{n+1} f\left(x_{n}\right)}{1-\beta_{n+1}}-\frac{\gamma_{n+1} y_{n}}{1-\beta_{n+1}}+\frac{\gamma_{n+1} y_{n}}{1-\beta_{n+1}} \\
& -\frac{\alpha_{n} f\left(x_{n}\right)+\gamma_{n} y_{n}}{1-\beta_{n}} \| \\
= & \| \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(f\left(x_{n+1}\right)-f\left(x_{n}\right)\right)+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left(y_{n+1}-y_{n}\right)+\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right) f\left(x_{n}\right) \\
& +\left(\frac{\gamma_{n+1}}{1-\beta_{n+1}}-\frac{\gamma_{n}}{1-\beta_{n}}\right) y_{n} \| \\
\leq & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left\|f\left(x_{n+1}\right)-f\left(x_{n}\right)\right\|+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|y_{n+1}-y_{n}\right\|+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left\|f\left(x_{n}\right)\right\| \\
& +\left|\frac{1-\beta_{n+1}-\alpha_{n+1}}{1-\beta_{n+1}}-\frac{1-\beta_{n}-\alpha_{n}}{1-\beta_{n}}\right|\left\|y_{n}\right\| \\
= & \frac{\alpha \alpha_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\|+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|y_{n+1}-y_{n}\right\|+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\left\|f\left(x_{n}\right)\right\|+\left\|y_{n}\right\|\right) \\
\leq & \frac{\alpha \alpha_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\|+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\left\|f\left(x_{n}\right)\right\|+\left\|y_{n}\right\|\right)+\left\|y_{n+1}-y_{n}\right\| \\
\leq & \frac{\alpha \alpha_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\|+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\left\|f\left(x_{n}\right)\right\|+\left\|y_{n}\right\|\right) \\
& +\left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A x_{n}\right\| .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & \frac{\alpha \alpha_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\|+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\left\|f\left(x_{n}\right)\right\|+\left\|y_{n}\right\|\right) \\
& +\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A x_{n}\right\| .
\end{aligned}
$$

It follow from the condition (i), (ii) and (iii), which implies that

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Applying Lemma 2.2, we obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$ and also

$$
\left\|x_{n+1}-x_{n}\right\|=\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. Therefore, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.1}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\left\|x_{n}-y_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\left\|\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} y_{n}-y_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\left\|\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\left(1-\alpha_{n}-\beta_{n}\right) y_{n}-y_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\left\|\alpha_{n}\left(f\left(x_{n}\right)-y_{n}\right)+\beta_{n}\left(x_{n}-y_{n}\right)\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-y_{n}\right\|+\beta_{n}\left\|x_{n}-y_{n}\right\| .
\end{aligned}
$$

A viscosity iterative scheme for inverse-strongly accretive operators in Banach spaces

It follows that

$$
\left(1-\beta_{n}\right)\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-y_{n}\right\|,
$$

and hence

$$
\left\|x_{n}-y_{n}\right\| \leq \frac{1}{\left(1-\beta_{n}\right)}\left\|x_{n}-x_{n+1}\right\|+\frac{\alpha_{n}}{\left(1-\beta_{n}\right)}\left\|f\left(x_{n}\right)-y_{n}\right\|
$$

From the condition (i), (iii) and (3.1), then we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 \tag{3.2}
\end{equation*}
$$

Next, we show that $\limsup _{n \rightarrow \infty}\left\langle(f-I) z, J\left(x_{n}-z\right)\right\rangle \leq 0$, where $z=Q_{V I(C, A)} x, V I(C, A)$ is a sunny nonexpansive retraction of C onto $V I(C, A)$. We can choose a sequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle(f-I) z, J\left(x_{n}-z\right)\right\rangle=\lim _{k \rightarrow \infty}\left\langle(f-I) z, J\left(x_{n_{k}}-z\right)\right\rangle . \tag{3.3}
\end{equation*}
$$

Since $\left\{x_{n_{k}}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{k_{j}}}\right\}$ of $\left\{x_{n_{k}}\right\}$ which converges weakly to p. Without loss of generality, we can assume that $x_{n_{k}} \rightharpoonup p$. Next, we show that $p \in V I(C, A)$. From the assumption, we see that control sequence $\left\{\lambda_{n_{k}}\right\}$ is bounded. So, there exists a subsequence $\left\{\lambda_{n_{k_{j}}}\right\}$ converges to λ_{0}. We may assume, without loss of generality, that $\lambda_{n_{k}} \rightharpoonup \lambda_{0}$. Observe that

$$
\begin{aligned}
\left\|Q_{C}\left(x_{n_{k}}-\lambda_{0} A x_{n_{k}}\right)-x_{n_{k}}\right\| & \leq\left\|Q_{C}\left(x_{n_{k}}-\lambda_{0} A x_{n_{k}}\right)-y_{n_{k}}\right\|+\left\|y_{n_{k}}-x_{n_{k}}\right\| \\
& \leq\left\|\left(x_{n_{k}}-\lambda_{0} A x_{n_{k}}\right)-\left(x_{n_{k}}-\lambda_{n_{k}} A x_{n_{k}}\right)\right\|+\left\|y_{n_{k}}-x_{n_{k}}\right\| \\
& \leq M\left\|\lambda_{n_{k}}-\lambda_{0}\right\|+\left\|y_{n_{k}}-x_{n_{k}}\right\|,
\end{aligned}
$$

where M is as appropriate constant such that $M \geq \sup _{n \geq 1}\left\{\left\|A x_{n}\right\|\right\}$. It follows from (3.2) that

$$
\lim _{k \rightarrow \infty}\left\|Q_{C}\left(x_{n_{k}}-\lambda_{0} A x_{n_{k}}\right)-x_{n_{k}}\right\|=0
$$

On the other hand, we know that $Q_{C}\left(I-\lambda_{0} A\right)$ is nonexpansive. Indeed, for $x, y \in C$, from Lemma 2.1, we see that

$$
\begin{aligned}
\left\|Q_{C}\left(I-\lambda_{0} A\right) x-Q_{C}\left(I-\lambda_{0} A\right) y\right\|^{2} & \leq\left\|\left(I-\lambda_{0} A\right) x-\left(I-\lambda_{0} A\right) y\right\|^{2} \\
& =\left\|(x-y)-\lambda_{0}(A x-A y)\right\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda_{0}\langle A x-A y, J(x-y)\rangle+2 K^{2} \lambda_{0}^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda_{0} \beta\|A x-A y\|^{2}+2 K^{2} \lambda_{0}^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+2 \lambda_{0}\left(\lambda_{0} K^{2}-\beta\right)\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2} .
\end{aligned}
$$

It follows from Lemma 2.5 that $p \in F\left(Q_{C}\left(I-\lambda_{0} A\right)\right)$. By using Lemma 2.4, we can obtain that $p \in F\left(Q_{C}\left(I-\lambda_{0} A\right)\right)=V I(C, A)$. From (3.3), we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle(f-I) z, J\left(x_{n}-z\right)\right\rangle & =\lim _{k \rightarrow \infty}\left\langle(f-I) z, J\left(x_{n_{k}}-z\right)\right\rangle \\
& =\lim _{k \rightarrow \infty}\langle(f-I) z, J(p-z)\rangle \leq 0 \tag{3.4}
\end{align*}
$$

P. Katchang, Y. Khamlae and P. Kumam

Finally, we show that $\left\{x_{n}\right\}$ converges strongly to $z=Q_{V I(C, A)} x$. Observe that

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2}= & \left\langle x_{n+1}-z, J\left(x_{n+1}-z\right)\right\rangle \\
= & \left\langle\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} y_{n}-z, J\left(x_{n+1}-z\right)\right\rangle \\
= & \left\langle\alpha_{n}\left(f\left(x_{n}\right)-z\right)+\beta_{n}\left(x_{n}-z\right)+\gamma_{n}\left(y_{n}-z\right), J\left(x_{n+1}-z\right)\right\rangle \\
= & \alpha_{n}\left\langle f\left(x_{n}\right)-f(z), J\left(x_{n+1}-z\right)\right\rangle+\alpha_{n}\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle+\beta_{n}\left\langle x_{n}-z, J\left(x_{n+1}-z\right)\right\rangle \\
& +\gamma_{n}\left\langle y_{n}-z, J\left(x_{n+1}-z\right)\right\rangle \\
\leq & \alpha \alpha_{n}\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\|+\alpha_{n}\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle+\beta_{n}\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\| \\
& +\gamma_{n}\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\| \\
= & \frac{\alpha \alpha_{n}+\beta_{n}+\gamma_{n}}{2}\left(\left\|x_{n}-z\right\|^{2}+\left\|x_{n+1}-z\right\|^{2}\right)+\alpha_{n}\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle \\
= & \frac{\alpha \alpha_{n}+1-\alpha_{n}}{2}\left(\left\|x_{n}-z\right\|^{2}+\left\|x_{n+1}-z\right\|^{2}\right)+\alpha_{n}\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle \\
= & \frac{1-\alpha_{n}(1-\alpha)}{2}\left(\left\|x_{n}-z\right\|^{2}+\left\|x_{n+1}-z\right\|^{2}\right)+\alpha_{n}\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle \\
\leq & \frac{1-\alpha_{n}(1-\alpha)}{2}\left\|x_{n}-z\right\|^{2}+\frac{1}{2}\left\|x_{n+1}-z\right\|^{2}+\alpha_{n}\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|x_{n+1}-z\right\|^{2} \leq\left(1-\alpha_{n}(1-\alpha)\right)\left\|x_{n}-z\right\|^{2}+2 \alpha_{n}\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle \tag{3.5}
\end{equation*}
$$

Now, from (i), (3.4) and applying Lemma 2.3 to (3.5), we get $\left\|x_{n}-z\right\| \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.

Corollary 3.2. [3, Theorem 3.1,] Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant K and C a nonempty closed convex subset of E. Let Q_{C} be a sunny nonexpansive retraction from E onto C and $A: C \rightarrow E$ be an β-inverse-strongly accretive mapping with $V I(C, A) \neq \emptyset$. Suppose the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ in $(0,1)$ satisfy $\alpha_{n}+\beta_{n}+\gamma_{n}=1, n \geq 1$ and $\left\{\lambda_{n}\right\}$ is a sequence in [a,b] for some a, b with $0<a<b<\frac{\beta}{K^{2}}$. The following conditions are satisfied:
(i). $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii). $\lim _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0$;
(iii). $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.

For arbitrary given $x_{1} \in C$, the sequences $\left\{x_{n}\right\}$ generated by (1.3). Then $\left\{x_{n}\right\}$ converges strongly to $Q_{V I(C, A)} x$.

Proof. Taking $f(x)=x_{1}:=u$ for all $x \in C$ in (1.4), we can conclude the desired conclusion easily. This completes the proof.

Corollary 3.3. [4, Theorem 3.1,] Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant K and C a nonempty closed convex subset of E. Let Q_{C} be a sunny nonexpansive retraction from E onto C and $A: C \rightarrow E$ be an β-inverse-strongly accretive mapping with $V I(C, A) \neq \emptyset$. Suppose the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ in $(0,1)$ satisfy $\alpha_{n}+\beta_{n}+\gamma_{n}=1, n \geq 1$ and $\left\{\lambda_{n}\right\}$ is a sequence in [a,b] for some a, b with $0<a<b<\frac{\beta}{K^{2}}$. The following conditions are satisfied:
(i). $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii). $\lim _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0$;
(iii). $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.

For arbitrary given $x_{1} \in C$, the sequences $\left\{x_{n}\right\}$ generated by (1.2). Then $\left\{x_{n}\right\}$ converges strongly to $Q_{V I(C, A)} x$.

A viscosity iterative scheme for inverse-strongly accretive operators in Banach spaces

Proof. Taking $f(x)=x_{1}$ for all $x \in C$ and $\beta_{n}=0$, for all $n \in \mathbb{N}$, in (1.4), we can conclude the desired conclusion easily. This completes the proof.

Acknowledgments I would like to thank Professor Somyot Plubtieng for drawing my attention to the subject and for many useful discussions.

References

[1] K. Aoyama, H. Iiduka and W. Takahashi, Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory and Appl., 1-13, 2006.
[2] F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Am. Math. Soc., 74, 660-665, 1968.
[3] Y. J. Cho, Y. Yao and H. Zhou, Strong convergence of an iterative algorithm for accretive operators in Banach spaces, J. Comput. Anal. and Appl., 10, no. 1, 113-125, 2008.
[4] Y. Hao, Iterative algorithms for inverse-strongly accretive mappings with applications, J. Appl. Math. Comput., 31, 193-202, 2009.
[5] S. Kitahara and W. Takahashi, Image recovery by convex combinations of sunny nonexpansive retractions, Method Nonlinear Anal., 2, 333-342, 1993.
[6] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl., 44 (1), 57-70, 1973.
[7] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305 (1), 227-239, 2005.
[8] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16, 1127-1138, 1991
[9] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298, 279-291, 2004.

On Boundedness of a Certain Non-linear Differential Equation of Third Order

Cemil Tunç* and Hilmi Ergören**
Department of Mathematics, Faculty of Arts and Sciences,
Yüzüncü Yıl University, 65080, Van-TURKEY.

Abstract

This paper presents sufficient conditions for all solutions as well as their derivatives up to second order to $x^{\prime \prime \prime}+a(t) f\left(x^{\prime}\right) x^{\prime \prime}+$ $b\left(t, x, x^{\prime}\right)+c(t) g(x)=e\left(t, x, x^{\prime}, x^{\prime \prime}\right)$ to be bounded. What is more, it shows that all the solutions are in $L^{p}[0, \infty)$ under somewhat more restrictive conditions.

1 Introduction

In this paper we consider the following non-linear third order differential equation of the form

$$
\begin{equation*}
x^{\prime \prime \prime}+a(t) f\left(x^{\prime}\right) x^{\prime \prime}+b\left(t, x, x^{\prime}\right)+c(t) g(x)=e\left(t, x, x^{\prime}, x^{\prime \prime}\right) \tag{1}
\end{equation*}
$$

where the functions a, f, b, c, g and e are continuous, besides, the functions a, f and c are differentiable related to the given arguments.

We discuss the boundedness of solutions of Eq.(1) and whether the solutions are also in $L^{p}[0, \infty)$ with sufficent conditions. Incidently, by L^{p}-solutions we mean that $\int_{0}^{\infty}|x(t)|^{p} d t<\infty$.

So far, the boundedness of solutions of various second and third order non-linear ordinary differential equations have been discussed by many authors in the literature. The readers can refer to the book of Reissig[20] as a survey, the papers and the books of [1-33] and the references therein. By the way, let us say that Liapunov's second method has been used for the investigation of the boundedness of solutions of non-linear differential equations effectively and it is still being used. But, some authors obtained their results about the boundedness of solutions of the mentioned various order differential equations via non-Liapunov sense, which is not
usual (see [6],[9],[13-16],[18],[31] and [32]). Specifically, Kroopnick [1316] put many valuable studies in second order in this sense. To the best of our knowledge, in 1972, Kroopnick began to investigate the properties of solutions of the second order differential equations in the cited [13] by standart method, integral test. Later, the author has got some results about the boundedness of solutions of different types of the second order differential equations (see [14],[15] and [16]) in the same manner which looks like simple and usefel but rarely has been encountered in third order, see Ogundare[19] including the equation of the form

$$
x^{\prime \prime \prime}+a(t) f\left(x^{\prime}\right) x^{\prime \prime}+b(t) g(x) x^{\prime}+c(t, x)=e(t)
$$

where $e(t)$ is square integrable.
Here, the mentioned studies of Kroopnick inspire us to be able to acquire effective results in our work for the third order without considering Liapunov method.

Therefore, throughout this paper presenting three theorems in sufficient conditions, first we will show the boundedness of all solutions of Eq.(1) as well as their derivatives up to $2^{\text {nd }}$ order and that the derivatives are elements of $L^{2}[0, \infty)$ in first theorem. Next, the same results will be obtained again in second theorem with small but radical changes in assumptions of the first theorem. Lastly, under more restrictive conditions, that all the solutions to Eq.(1) are in $L^{p}[0, \infty)$ will be shown.

2 Main Results

Theorem 1 Assume that

$$
\begin{aligned}
& \text { i) } b(t, x, y) y>0, b(t, x, y) z>0,|e(t, x, y, z)| \leq q(t) \text { for all } t \geqslant 0, x \text {, } \\
& y, z \text { where } \int_{0}^{t}|q(s)| d s<\infty \text { and } x=x(t), y=x^{\prime}(t), z=x^{\prime \prime}(t) \text {, } \\
& \text { ii) } G(x)=\int_{0}^{x} g(s) d s \longrightarrow \infty \text { as }|x| \longrightarrow \infty, \\
& \text { iii) } c(t) \geq c_{0}>0, c^{\prime}(t) \leq 0, a(t)>a_{0}>0, f(y)>f_{0}>0, \quad g(x)> \\
& g_{0}>0, \quad y(t) \geq \int y^{2}(s) d s, \text { where } c_{0}, a_{0}, f_{0} \text { and } g_{0} \text { are some } \\
& \text { constants. }
\end{aligned}
$$

Then all solutions of Eq.(1) are bounded as well as their derivatives up to $2^{\text {nd }}$ order and the derivatives are elements of L^{2}-solutions.
Proof. First, by standart existence theory, it is obvious that there exist at least one solution, which is local on $[0, t)$. But global existence of all solutions may be mentioned in the case we can show the solutions are bounded.

Upon multiplying Eq.(1) by $x^{\prime \prime}(t)$ and integrating from 0 to t, we have

$$
\begin{aligned}
\int_{0}^{t} x^{\prime \prime \prime}(s) x^{\prime \prime}(s) d s & +\int_{0}^{t} a(s) f\left(x^{\prime}(s)\right) x^{\prime \prime}(s)^{2} d s \\
& +\int_{0}^{t} b\left(s, x(s), x^{\prime}(s)\right) x^{\prime \prime}(s) d s+\int_{0}^{t} c(s) g(x(s)) x^{\prime \prime}(s) d s \\
= & \int_{0}^{t} e\left(s, x(s), x^{\prime}(s), x^{\prime \prime}(s)\right) x^{\prime \prime}(s) d s
\end{aligned}
$$

Using the assumptions in Theorem 1, it follows that

$$
\begin{align*}
\frac{x^{\prime \prime}(t)^{2}}{2}+ & a_{0} f_{0} \int_{0}^{t} x^{\prime \prime}(s)^{2} d s+\int_{0}^{t} b\left(s, x(s), x^{\prime}(s)\right) x^{\prime \prime}(s) d s+c_{0} g_{0} x^{\prime}(t) \\
& \leq \int_{0}^{t}|q(s)|\left|x^{\prime \prime}(s)\right| d s+\frac{x^{\prime \prime}(0)^{2}}{2} \tag{2}
\end{align*}
$$

Applying the mean value theorem for integral to the first term on the RHS of (2), we have

$$
\begin{aligned}
\frac{x^{\prime \prime}(t)^{2}}{2}+ & a_{0} f_{0} \int_{0}^{t} x^{\prime \prime}(s)^{2} d s+\int_{0}^{t} b\left(s, x(s), x^{\prime}(s)\right) x^{\prime \prime}(s) d s+c_{0} g_{0} x^{\prime}(t) \\
\leq & \left|x^{\prime \prime}\left(t^{*}\right)\right| \int_{0}^{t}|q(s)| d s+\frac{x^{\prime \prime}(0)^{2}}{2}
\end{aligned}
$$

where $0<t^{*}<t$.
If $\left|x^{\prime \prime}(t)\right|$ becomes unbounded, LHS approaches ∞ faster than RHS, which is impossible. So, $\left|x^{\prime \prime}(t)\right|$ must stay bounded. Evidently, $\left|x^{\prime}(t)\right|$ also must remain bounded. And again from the assumptions of Theorem 1, the term $c_{0} g_{0} x^{\prime}(t)$ on LHS becomes $c_{0} g_{0} \int x^{\prime}(s)^{2} d s$ since $c_{0} g_{0} \int x^{\prime}(s)^{2} d s \leq$ $c_{0} g_{0} x^{\prime}(t)$.

Since the terms $a_{0} f_{0} \int_{0}^{t} x^{\prime \prime}(s)^{2} d s$ and $c_{0} g_{0} \int x^{\prime}(s)^{2} d s$ are bounded by RHS, $x^{\prime}(t)$ and $x^{\prime \prime}(t)$ are obtained as square integrable.

Now, let us multiply Eq.(1) by $x^{\prime}(t)$ and integrate from 0 to t, then we have

$$
\begin{align*}
& \int_{0}^{t} x^{\prime \prime \prime}(s) x^{\prime}(s) d s+\int_{0}^{t} a(s) f\left(x^{\prime}(s)\right) x^{\prime \prime}(s) x^{\prime}(s) d s \\
& +\int_{0}^{t} b\left(s, x(s), x^{\prime}(s)\right) x^{\prime}(s) d s+\int_{0}^{t} c(s) g(x(s)) x^{\prime}(s) d s \\
= & \int_{0}^{t} e\left(s, x(s), x^{\prime}(s), x^{\prime \prime}(s)\right) x^{\prime}(s) d s . \tag{3}
\end{align*}
$$

And applying the integrating by parts to the first and fourth terms on the LHS of (3), we see that

$$
\begin{align*}
x^{\prime}(t) x^{\prime \prime}(t) & +\int_{0}^{t} a(s) f\left(x^{\prime}(s)\right) x^{\prime \prime}(s) x^{\prime}(s) d s+\int_{0}^{t} b\left(s, x(s), x^{\prime}(s)\right) x^{\prime}(s) d s \\
& +c(t) G(x(t))-\int_{0}^{t} c^{\prime}(s) G(x(s)) d s \\
\leq & \int_{0}^{t}|q(s)|\left|x^{\prime}(s)\right| d s+\int_{0}^{t} x^{\prime \prime}(s)^{2} d s \\
& +\left|x^{\prime}(0) x^{\prime \prime}(0)\right|+|c(0) G(x(0))| \tag{4}
\end{align*}
$$

Applying the mean value theorem for integral to the first term on the RHS of (4)

$$
\begin{align*}
& x^{\prime}(t) x^{\prime \prime}(t)+\int_{0}^{t} a(s) f\left(x^{\prime}(s)\right) x^{\prime \prime}(s) x^{\prime}(s) d s \\
& \quad+\int_{0}^{t} b\left(s, x(s), x^{\prime}(s)\right) x^{\prime}(s) d s+c(t) G(x(t))-\int_{0}^{t} c^{\prime}(s) G(x(s)) d s \\
& \leq\left|x^{\prime}\left(t^{*}\right)\right| \int_{0}^{t}|q(s)| d s+\int_{0}^{t} x^{\prime \prime}(s)^{2} d s \\
& \quad+\left|x^{\prime}(0) x^{\prime \prime}(0)\right|+|c(0) G(x(0))|, \tag{5}
\end{align*}
$$

where $0<t^{*}<t$.
Since $\left|x^{\prime}(t)\right|$ are also bounded and $x^{\prime \prime}(t)$ is square integrable, the RHS of (5) is finite. Therefore, $|x(t)|$ must also remain bounded. This completes the proof of Theorem 1.

Theorem 2 The hypotheses are the same as Theorem1 except that $c^{\prime}(t) \geq$ 0 . In addition, $a^{\prime}(t) \leq 0$. Then the same results in Theorem 1 are valid.

Proof. First of all, change of the conditions in Theorem 2 makes no difference for the boundedness and L^{2}-solutions of $x^{\prime}(t)$ and $x^{\prime \prime}(t)$. But, the boundedness of $x(t)$ may require some more analysis.

Letting $F(y)=\int_{0}^{y} u f(u) d u$, where $y=x^{\prime}(t)$, we have another integration for the second term on LHS of (5) and taking the RHS of (5) as K, we have

$$
\begin{align*}
& x^{\prime}(t) x^{\prime \prime}(t)+a(t) F(y(t))-\int_{0}^{t} a^{\prime}(s) F(y(s)) d s+\int_{0}^{t} b\left(s, x(s), x^{\prime}(s)\right) x^{\prime}(s) d s \\
& +c(t) G(x(t))-\int_{0}^{t} c^{\prime}(s) G(x(s)) d s \\
& \leq|K|+a(0) F\left(y_{0}\right) . \tag{6}
\end{align*}
$$

Specifically, the inequality (6) gives that

$$
c(t) G(x(t)) \leq \alpha+\int_{0}^{t} c^{\prime}(s) G(x(s)) d s
$$

where $\alpha=|K|+M^{2}+3 a(0) \sup _{-M \leq y \leq M} F(y)$ and M is the bound of $\left|x^{\prime}(t)\right|$ and $\left|x^{\prime \prime}(t)\right|$ on $[0, \infty)$. Then we can write

$$
\begin{equation*}
c(t) G(x(t)) \leq \alpha+\int_{0}^{t} \frac{c^{\prime}(s)}{c(s)} c(s) G(x(s)) d s \tag{7}
\end{equation*}
$$

By Gronwall-Reid-Bellman inequality, (7) leads

$$
\begin{aligned}
c(t) G(x(t)) & \leq \alpha\left(\exp \int_{0}^{t} \frac{c^{\prime}(s)}{c(s)} d s\right) \\
c(t) G(x(t)) & \leq \alpha \frac{c(t)}{c(0)} \\
G(x(t)) & \leq \frac{\alpha}{c(0)}
\end{aligned}
$$

Since $G(x) \rightarrow \infty$ as $|x| \rightarrow \infty, x(t)$ must stay finite on $[0, \infty)$.
Remark 1 Theorem 2 is still true under the assumptions $a_{1} \geq a(t) \geq$ $a_{0}>0$ and $a^{\prime}(t) \epsilon L^{1}[0, \infty)$ since $\left|\int_{0}^{t} a^{\prime}(s) F(y(s)) d s\right| \leq \sup _{-M \leq y \leq M} F(y) \int_{0}^{\infty}\left|a^{\prime}(s)\right| d s$. This implies all terms on the LHS of (6) are bounded. And so, the inequality (7) still holds even if α will be different.

Theorem 3 Under hypotheses of Theorem 1, we assume that $x g(x) \geq$ $N|x|^{p}$ where $N>0$, then $\int_{0}^{\infty}|x(s)|^{p} d s<\infty$.

Proof. Multiply Eq.(1) by $x(t)$ and integrate from 0 to t where we integrate by parts the first term on LHS, we have

$$
\begin{align*}
& x(t) x^{\prime \prime}(t)+\frac{x^{\prime}(0)^{2}}{2}+\int_{0}^{t} a(s) f\left(x^{\prime}(s)\right) x^{\prime \prime}(s) x(s) d s \\
& +\int_{0}^{t} b\left(s, x(s), x^{\prime}(s)\right) x(s) d s+\int_{0}^{t} c(s) g(x(s)) x(s) d s \\
\leq & \int_{0}^{t}|q(s)||x(s)| d s+\frac{x^{\prime}(t)^{2}}{2}+\left|x(0) x^{\prime \prime}(0)\right| . \tag{8}
\end{align*}
$$

Applying the mean value theorem for integral to the first term on the RHS of (8), we obtain

$$
\begin{align*}
& x(t) x^{\prime \prime}(t)+\frac{x^{\prime}(0)^{2}}{2}+\int_{0}^{t} a(s) f\left(x^{\prime}(s)\right) x^{\prime \prime}(s) x(s) d s \\
& +\int_{0}^{t} b\left(s, x(s), x^{\prime}(s)\right) x(s) d s+\int_{0}^{t} c(s) g(x(s)) x(s) d s \\
\leq & \left|x\left(t^{*}\right)\right| \int_{0}^{t}|q(s)| d s+\frac{x^{\prime}(t)^{2}}{2}+\left|x(0) x^{\prime \prime}(0)\right| \tag{9}
\end{align*}
$$

where $0<t^{*}<t$.
Since $|x(t)|$ and $\left|x^{\prime}(t)\right|$ are finite from Theorem 1, the LHS of (9) is also bounded, that is, so is the term $\int_{0}^{t} c(s) g(x(s)) x(s) d s$. From the above assumption, we have

$$
\int_{0}^{t} c(s) g(x(s)) x(s) d s \geq c_{0} N \int_{0}^{t}|x(s)|^{p} d s \leq \beta
$$

where β is the RHS of (9).
Consequently, $x(t)$ is an element of $L^{p}[0, \infty)$.

References

[1] Abou-El-Ela, A. M. A., Boundedness of the solutions of certain third-order vector differential equations. Ann. Differential Equations 1 (1985), no. 2, 127-139.
[2] Ahmad, Shair; Rama Mohana Rao, M., Theory of ordinary differential equations. With applications in biology and engineering. Affiliated East-West Press Pvt. Ltd., New Delhi, 1999.
[3] Andres, Ján Boundedness of solutions of the third order differential equation with oscillatory restoring and forcing terms. Czechoslovak Math. J. 36(111) (1986), no. 1, 1-6.
[4] Antosiewicz, H. A., On nonlinear differential equations of the second order with integrable forcing term, J. London Math. Soc. 30 (1955), 64-67.
[5] Athanassov, Z. S., Boundedness criteria for solutions of certain second order nonlinear differential equations, J. Math. Anal. Appl. 123 (1987), no. 2, 461-479.
[6] Bhatia, N.P., Some Oscillation Theorems for second order differential equations, Jour. Math. Anal. Appl., 63 (1966), 442-446.
[7] Brauer, F. and Nohel, J. A., Introduction to Ordinary Differential Equations withApplications, New York, Harper and Row, 1985.
[8] Cartwright, Mary L.; Swinnerton-Dyer, H. P. F. Boundedness theorems for some second order differential equations. I. Ann. Polon. Math. 29 (1974), 233-258.
[9] Constantin, A., A note on a second-order nonlinear differential system. Glasg. Math. J. 42 (2000), no. 2, 195-199
[10] El-Nahhas, A., Boundedness of solutions of third order system. Proc. Pakistan Acad. Sci. 33 (1996), no. 3-4, 171-173.
[11] Fonda, A. and Zanolin, F., Bounded solutions of second order ordinary differential equations, Discrete and Continuous Dynamical Systems, 4(1998), 91-98.
[12] Hale, J. K., Ordinary Differential Equations, Pure and Applied Mathematics, vol. XXI, Wiley-Interscience [John Wiley \& Sons], New York, London, Sydney, 1969.
[13] Kroopnick, A., Properties of solutions of differential equations of the form y" $+\mathrm{a}(\mathrm{t}) \mathrm{b}(\mathrm{y})=0$. Proc. Amer. Math. Soc. 34 (1972), 319-320.
[14] Kroopnick, A., Note on bounded Lp-solutions of a generalized Li'enard equation, Pacific J. Math, 94(1981), no. 1, 171-175.
[15] Kroopnick, A., Bounded and Lp-solutions to a second order nonlinear differential equation with integrable forcing term, Inter. Jour. Math. and Math Sci., 33(1999), 569-571.
[16] Kroopnick, Allan J., Properties of solutions to a generalized Liénard equation with forcing term. Appl. Math. E-Notes 8 (2008), 40-44.
[17] Lyapunopv, A. M., Stability of Motion, Academic Press, London, 1966, p. 203.
[18] Nápoles V.; Juan E., A note on the qualitative behaviour of some second order nonlinear differential equations. Divulg. Mat. 10 (2002), no. 2, 91-99.
[19] Ogundare, B. S.; Ayanjinmi, J. A.; Adesina, O. A., Bounded and L^{2}-solutions of certain third order non-linear differential equation with a square integrable forcing term. Kragujevac J. Math. 29 (2006), 151-156.
[20] Reissig, R., Sansone, G. and Conti, R., Nonlinear differential equations of higher order. Noordhoff International Publishing, Leyden, 1974.
[21] Strauss, A., Liapunov functions and Lp solutions of differential equations, Trans. Amer. Math. Soc. 119 (1965), 37-50.
[22] Saker, S. H., Boundedness of solutions of second-order forced nonlinear dynamic equations. Rocky Mountain J. Math. 36 (2006), no. 6, 2027-2039.
[23] Swick, K. E., Boundedness and stability for a nonlinear third order differential equation. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 56 (1974), no. 6, 859-865.
[24] Tunç, Cemil On the stability and boundedness of solutions of nonlinear vector differential equations of third order. Nonlinear Anal. 70 (2009), no. 6, 2232-2236.
[25] Tunç, Cemil, A new boundedness theorem for a class of second order differential equations. Arab. J. Sci. Eng. Sect. A Sci. 33 (2008), no. 1, 83-92.
[26] Tunç, Cemil; Şevli, Hamdullah Stability and boundedness properties of certain second-order differential equations. J. Franklin Inst. 344 (2007), no. 5, 399-405.
[27] Tunc, C. Some new stability and boundedness results on the solutions of the nonlinear vector differential equations of second order. Iran. J. Sci. Technol. Trans. A Sci. 30 (2006), no. 2, 213-221.
[28] Tunç, Cemil On the boundedness of solutions of certain nonlinear vector differential equations of third order. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 49(97) (2006), no. 3, 291-300.
[29] Tunç, Cemil Uniform ultimate boundedness of the solutions of third-order nonlinear differential equations. Kuwait J. Sci. Engrg. 32 (2005), no. 1, 39-48.
[30] Tunç, Cemil Boundedness of solutions of a third-order nonlinear differential equation. JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 1, Article 3, 6 pp. (electronic).
[31] UTZ, W.R., A Note on Second Order Nonlinear Differential Equations, Proc. Amer. Math. Soc. 7 (1956), 1047-1048.
[32] UTZ, W.R., Properties of solutions of $u^{\prime \prime}+g(t) u^{2 n-1}=0$, Monatsh. Math. 66 (1962), 55-60.
[33] Villari, G., On the qualitative behaviour of solutions of Lienard equations, J. Differential Equation 67(1987), 269-277.

[^32]
SOME IDENTITIES OF THE GENERALIZED TWISTED BERNOULLI NUMBERS AND POLYNOMIALS OF HIGHER ORDER

SEOG-HOON RIM, YOUNG-HEE KIM, BYUNGJE LEE, AND TAEKYUN KIM

Abstract

The purpose of this paper is to derive some identities of the higher order generalized twisted Bernoulli numbers and polynomials attached to χ from the properties of the p-adic invariant integral. We give some interesting identities for the power sums and the generalized twisted Bernoulli numbers and polynomials of higher order using the symmetric properties of the p-adic invariant integral.

2000 Mathematics Subject Classification : 11S80, 11B68, 05A30, 58J70

> T. Kim(tkkim@kw.ac.kr), Y. H. Kim(yhkim@kw.ac.kr)

Key words and phrases : Bernoulli numbers and polynomials, twisted Bernoulli numbers and polynomials, p-adic invariant integral, symmetry

1. Introduction and preliminaries

Let p be a fixed prime number. Throughout this paper, the symbol $\mathbb{Z}, \mathbb{Z}_{p}, \mathbb{Q}_{p}$, and \mathbb{C}_{p} denote the ring of rational integers, the ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic closure of \mathbb{Q}_{p}, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. Let ν_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-\nu_{p}(p)}=p^{-1}$.

Let $U D\left(\mathbb{Z}_{p}\right)$ be the space of uniformly differentiable function on \mathbb{Z}_{p}. For $f \in U D\left(\mathbb{Z}_{p}\right)$, the p-adic invariant integral on \mathbb{Z}_{p} is defined as

$$
\begin{equation*}
I(f)=\int_{\mathbb{Z}_{p}} f(x) d x=\lim _{N \rightarrow \infty} \frac{1}{p^{N}} \sum_{x=0}^{p^{N}-1} f(x) . \tag{1.1}
\end{equation*}
$$

(see [4-5]). From (1.1), we note that

$$
\begin{equation*}
I\left(f_{1}\right)=I(f)+f^{\prime}(0), \tag{1.2}
\end{equation*}
$$

where $f^{\prime}(0)=\left.\frac{d f(x)}{d x}\right|_{x=0}$ and $f_{1}(x)=f(x+1)$. For $n \in \mathbb{N}$, let $f_{n}(x)=f(x+n)$. Then we can derive the following equation from (1.2).

$$
\begin{equation*}
I\left(f_{n}\right)=I(f)+\sum_{i=0}^{n-1} f^{\prime}(i), \quad(\text { see }[4-5]) \tag{1.3}
\end{equation*}
$$

Let d be a fixed positive integer. For $n \in \mathbb{N}$, let

$$
\begin{aligned}
X & =X_{d}=\lim _{\bar{N}} \mathbb{Z} / d p^{N} \mathbb{Z}, X_{1}=\mathbb{Z}_{p} \\
X^{*} & =\underset{\substack{0<a \ll p \\
(a, p)=1}}{\cup}\left(a+d p \mathbb{Z}_{p}\right) \\
a+d p^{N} \mathbb{Z}_{p} & =\left\{x \in X \mid x \equiv a \quad\left(\bmod d p^{N}\right)\right\},
\end{aligned}
$$

where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{N}$. It is easy to see that

$$
\begin{equation*}
\int_{X} f(x) d x=\int_{\mathbb{Z}_{p}} f(x) d x, \quad \text { for } \quad f \in U D\left(\mathbb{Z}_{p}\right) . \tag{1.4}
\end{equation*}
$$

The ordinary Bernoulli polynomials $B_{n}(x)$ are defined as

$$
\frac{t}{e^{t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!},
$$

and the Bernoulli numbers B_{n} are defined as $B_{n}=B_{n}(0)$ (see [1-19]).
For $n \in \mathbb{N}$, let T_{p} be the p-adic locally constant space defined by

$$
T_{p}=\cup_{n \geq 1} \mathbb{C}_{p^{n}}=\lim _{n \rightarrow \infty} \mathbb{C}_{p^{n}},
$$

where $\mathbb{C}_{p^{n}}=\left\{\omega \mid \omega^{p^{n}}=1\right\}$ is the cyclic group of order p^{n}. It is well known that the twisted Bernoulli polynomials are defined as

$$
\frac{t}{\xi e^{t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n, \xi}(x) \frac{t^{n}}{n!}, \quad \xi \in T_{p}
$$

and the twisted Bernoulli numbers $B_{n, \xi}$ are defined as $B_{n, \xi}=B_{n, \xi}(0)$ (see [14-18]).
Let χ be the Dirichlet's character with conductor $d \in \mathbb{N}$. Then we have

$$
\begin{equation*}
\int_{X} \chi(x) \xi^{x} e^{x t} d x=\frac{t \sum_{a=0}^{d-1} \chi(a) \xi^{a} e^{a t}}{\xi^{d} e^{d t}-1} \tag{1.5}
\end{equation*}
$$

It is known that the generalized twisted Bernoulli numbers attached to $\chi, B_{n, \chi, \xi}$, are defined as

$$
\begin{equation*}
\frac{t \sum_{a=0}^{d-1} \chi(a) \xi^{a} e^{a t}}{\xi^{d} e^{d t}-1}=\sum_{n=0}^{\infty} B_{n, \chi, \xi} \frac{t^{n}}{n!}, \quad \xi \in T_{p} \tag{1.6}
\end{equation*}
$$

The generalized twisted Bernoulli polynomials attached to $\chi, B_{n, \chi, \xi}(x)$, are defined as

$$
\begin{equation*}
\frac{t \sum_{a=0}^{d-1} \chi(a) \xi^{a} e^{a t}}{\xi^{d} e^{d t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n, \chi, \xi}(x) \frac{t^{n}}{n!}, \quad \xi \in T_{p} \tag{1.7}
\end{equation*}
$$

(see [13], [16]). From (1.5), (1.6) and (1.7), we derive that

$$
\begin{equation*}
\int_{X} \chi(x) \xi^{x} x^{n} d x=B_{n, \chi, \xi} \quad \text { and } \quad \int_{X} \chi(y) \xi^{y}(x+y)^{n} d y=B_{n, \chi, \xi}(x) \tag{1.8}
\end{equation*}
$$

By (1.3) and (1.4), it is easy to see that for $n \in \mathbb{N}$,

$$
\begin{equation*}
\int_{X} f(x+n) d x=\int_{X} f(x) d x+\sum_{i=0}^{n-1} f^{\prime}(i) \tag{1.9}
\end{equation*}
$$

where $f^{\prime}(i)=\left.\frac{d f(x)}{d x}\right|_{x=i}$. From (1.9), it follows that

$$
\begin{align*}
& \frac{1}{t}\left(\int_{X} \chi(x) \xi^{n d+x} e^{(n d+x) t} d x-\int_{X} \chi(x) \xi^{x} e^{x t} d x\right) \tag{1.10}\\
& =\frac{n d \int_{X} \chi(x) \xi^{x} e^{x t} d x}{\int_{X} \xi^{n d x} e^{n d x t} d x}=\frac{\xi^{n d} e^{n d t}-1}{\xi^{d} e^{d t}-1}\left(\sum_{i=0}^{d-1} \chi(i) \xi^{i} e^{i t}\right)=\sum_{k=0}^{\infty}\left(\sum_{l=0}^{n d-1} \chi(l) \xi^{l} l^{k}\right) \frac{t^{k}}{k!}
\end{align*}
$$

For $k \in \mathbb{Z}_{+}$, let us define the p-adic functional $T_{k, \chi, \xi}(n)$ as follows:

$$
\begin{equation*}
T_{k, \chi, \xi}(n)=\sum_{l=0}^{n} \chi(l) \xi^{l} l^{k} \tag{1.11}
\end{equation*}
$$

Let $k, n, d \in \mathbb{N}$. By (1.10) and (1.11), we see that

$$
\begin{equation*}
\int_{X} \chi(x) \xi^{n d+x}(n d+x)^{k} d x-\int_{X} \chi(x) \xi^{x} x^{k} d x=k T_{k-1, \chi, \xi}(n d-1) . \tag{1.12}
\end{equation*}
$$

From (1.8) and (1.12), we have that

$$
\begin{equation*}
\frac{\xi^{n d} B_{k, \chi, \xi}(n d)-B_{k, \chi, \xi}}{k}=T_{k-1, \chi, \xi}(n d-1) \tag{1.13}
\end{equation*}
$$

For $w_{1}, w_{2}, d \in \mathbb{N}$, we note that

$$
\begin{align*}
& \frac{d \int_{X} \int_{X} \chi\left(x_{1}\right) \chi\left(x_{2}\right) \xi^{w_{1} x_{1}+w_{2} x_{2}} e^{\left(w_{1} x_{1}+w_{2} x_{2}\right) t} d x_{1} d x_{2}}{\int_{X} \xi^{d w_{1} w_{2} x} e^{d w_{1} w_{2} x t} x} \tag{1.14}\\
& \quad=\frac{t\left(\xi^{d w_{1} w_{2}} e^{d w_{1} w_{2} t}-1\right)}{\left(\xi^{w_{1} d} e^{w_{1} d t}-1\right)\left(\xi^{w_{2} d} e^{w_{2} d t}-1\right)}\left(\sum_{a=0}^{d-1} \chi(a) \xi^{w_{1} a} e^{w_{1} a t}\right)\left(\sum_{b=0}^{d-1} \chi(b) \xi^{w_{2} b} e^{w_{2} b t}\right)
\end{align*}
$$

In the next section, we will consider the extension of (1.14) related to the generalized twisted Bernoulli numbers and polynomials of higher order attached to χ.

The generalized twisted Bernoulli polynomials of order k attached to $\chi, B_{n, \chi, \xi}^{(k)}(x)$, are defined as

$$
\begin{equation*}
\left(\frac{t \sum_{a=0}^{d-1} \chi(a) \xi^{a} e^{a t}}{\xi^{d} e^{d t}-1}\right)^{k} e^{x t}=\sum_{n=0}^{\infty} B_{n, \chi, \xi}^{(k)}(x) \frac{t^{n}}{n!}, \quad \xi \in T_{p} \tag{1.15}
\end{equation*}
$$

and $B_{n, \chi, \xi}^{(k)}=B_{n, \chi, \xi}^{(k)}(0)$ are called the generalized twisted Bernoulli numbers of order k attached to χ. When $k=1$, the polynomials and numbers are called the generalized twisted Bernoulli polynomials and numbers attached to χ, respectively (see [12-22]).

The authors of this paper have studied various identities for the Bernoulli and the Euler polynomials by the symmetric properties of the p-adic invariant integrals (see [6-8], [10]). T. Kim [6] established interesting identities by the symmetric properties of the p-adic invariant integrals and some relationships between the power sums and the Bernoulli polynomials. In [8], Kim et al. gave some identities of symmetry for the generalized Bernoulli polynomials. The twisted Bernoulli polynomials and numbers are very important in several field of mathematics and physics, and so have been studied by many authors (cf. [9-22]). Recently, Kim-Hwang [10] obtained some relations between the power sum polynomials and twisted Bernoulli polynomials.

In this paper, we extend our results to the generalized twisted Bernoulli numbers and polynomials of higher order attached to χ. The purpose of this paper is to derive some identities of the higher order generalized twisted Bernoulli numbers and polynomials attached to
χ from the properties of the p-adic invariant integral. In Section 2, we give interesting identities for the power sums and the generalized twisted Bernoulli numbers and polynomials of higher order using the symmetric properties for the p-adic invariant integral.
2. Some identities of the generalized twisted Bernoulli numbers and POLYNOMIALS OF HIGHER ORDER

Let $w_{1}, w_{2}, d \in \mathbb{N}$. For $\xi \in T_{p}$, we set

$$
\begin{align*}
& Y\left(m, \chi, \xi \mid w_{1}, w_{2}\right) \\
& \quad=\left(\frac{d \int_{X^{m}}\left(\prod_{i=1}^{m} \chi\left(x_{i}\right)\right) \xi^{\left(\sum_{i=1}^{m} x_{i}\right) w_{1}} e^{\left(\sum_{i=1}^{m} x_{i}+w_{2} x\right) w_{1} t} d x_{1} \cdots d x_{m}}{\int_{X} \xi^{d w_{1} w_{2} x} e^{d w_{1} w_{2} x t} d x}\right) \tag{2.1}\\
& \quad \times\left(\int_{X^{m}}\left(\prod_{i=1}^{m} \chi\left(x_{i}\right)\right) \xi^{\left(\sum_{i=1}^{m} x_{i}\right) w_{2}} e^{\left(\sum_{i=1}^{m} x_{i}+w_{1} y\right) w_{2} t} d x_{1} \cdots d x_{m}\right),
\end{align*}
$$

where

$$
\int_{X^{m}} f\left(x_{1}, \cdots, x_{m}\right) d x_{1} \cdots d x_{m}=\underbrace{\int_{X} \cdots \int_{X}}_{m-\text { times }} f\left(x_{1}, \cdots, x_{m}\right) d x_{1} \cdots d x_{m}
$$

In (2.1), we note that $Y\left(m, \chi, \xi ; w_{1}, w_{2}\right)$ is symmetric in w_{1}, w_{2}. From (2.1), we derive that

$$
\begin{align*}
& Y\left(m, \chi, \xi \mid w_{1}, w_{2}\right) \\
& =\left(\int_{X^{m}}\left(\prod_{i=1}^{m} \chi\left(x_{i}\right)\right) \xi^{\left(\sum_{i=1}^{m} x_{i}\right) w_{1}} e^{\left(\sum_{i=1}^{m} x_{i}\right) w_{1} t} d x_{1} \cdots d x_{m}\right) e^{w_{1} w_{2} x t} \tag{2.2}\\
& \\
& \times\left(\frac{d \int_{X} \chi\left(x_{m}\right) \xi^{w_{2} x_{m}} e^{w_{2} x_{m} t} d x_{m}}{\int_{X} \xi^{d w_{1} w_{2} x} e^{d w_{1} w_{2} x t} d x}\right) \\
& \quad \times\left(\int_{X^{m-1}}\left(\prod_{i=1}^{m-1} \chi\left(x_{i}\right)\right) \xi^{\left(\sum_{i=1}^{m-1} x_{i}\right) w_{2}} e^{\left(\sum_{i=1}^{m-1} x_{i}\right) w_{2} t} d x_{1} \cdots d x_{m-1}\right) e^{w_{1} w_{2} y t} .
\end{align*}
$$

From (1.10) and (1.11), it follows that

$$
\begin{equation*}
\frac{d w_{1} \int_{X} \chi(x) \xi^{x} e^{x t} d x}{\int_{X} \xi^{d w_{1} x} e^{d w_{1} x t} d x}=\sum_{i=0}^{w_{1} d-1} \chi(i) \xi^{i} e^{i t}=\sum_{k=0}^{\infty} T_{k, \chi, \xi}\left(w_{1} d-1\right) \frac{t^{k}}{k!} \tag{2.3}
\end{equation*}
$$

By (1.15), we also see that

$$
\begin{align*}
& e^{w_{1} w_{2} x t}\left(\int_{X^{m}}\left(\prod_{i=1}^{m} \chi\left(x_{i}\right)\right) \xi^{\left(\sum_{i=1}^{m} x_{i}\right) w_{1}} e^{\left(\sum_{i=1}^{m} x_{i}\right) w_{1} t} d x_{1} \cdots d x_{m}\right) \tag{2.4}\\
& \quad=\left(\frac{w_{1} t}{\xi^{d w_{1}} e^{d w_{1} t}-1} \sum_{a=0}^{d-1} \chi(a) \xi^{w_{1} a} e^{a w_{1} t}\right)^{m} e^{w_{1} w_{2} x t}=\sum_{n=0}^{\infty} B_{n, \chi, \xi^{w_{1}}}^{(m)}\left(w_{2} x\right) \frac{w_{1}^{n} t^{n}}{n!} .
\end{align*}
$$

By (2.2), (2.3) and (2.4), we have that

$$
\begin{align*}
& Y\left(m, \chi, \xi \mid w_{1}, w_{2}\right) \tag{2.5}\\
& =\left(\sum_{l=0}^{\infty} B_{l, \chi, \xi^{w_{1}}}^{(m)}\left(w_{2} x\right) \frac{w_{1}^{l} t^{l}}{l!}\right)\left(\frac{1}{w_{1}} \sum_{k=0}^{\infty} T_{k, \chi, \xi^{w_{2}}}\left(w_{1} d-1\right) \frac{w_{2}^{k} t^{k}}{k!}\right)\left(\sum_{i=0}^{\infty} B_{i, \chi, \xi^{w_{2}}}^{(m-1)}\left(w_{1} y\right) \frac{w_{2}^{i} t^{i}}{i!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{j=0}^{n}\binom{n}{j} w_{2}^{j} w_{1}^{n-j-1} B_{n-j, \chi, \xi^{w_{1}}}^{(m)}\left(w_{2} x\right) \sum_{k=0}^{j}\binom{j}{k} T_{k, \chi, \xi^{w_{2}}}\left(w_{1} d-1\right) B_{j-k, \chi, \xi^{w_{2}}}^{(m-1)}\left(w_{1} y\right)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

From the symmetry of $Y\left(m, \chi, \xi \mid w_{1}, w_{2}\right)$ in w_{1} and w_{2}, we see that

$$
\begin{align*}
& Y\left(m, \chi, \xi \mid w_{1}, w_{2}\right) \tag{2.6}\\
& =\sum_{n=0}^{\infty}\left(\sum_{j=0}^{n}\binom{n}{j} w_{1}^{j} w_{2}^{n-j-1} B_{n-j, \chi, \xi^{w_{2}}}^{(m)}\left(w_{1} x\right) \sum_{k=0}^{j}\binom{j}{k} T_{k, \chi, \xi^{w_{1}}}\left(w_{2} d-1\right) B_{j-k, \chi, \xi^{w_{2}}}^{(m-1)}\left(w_{2} y\right)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Comparing the coefficients on the both sides of (2.5) and (2.6), we obtain an identity for the generalized twisted Bernoulli polynomials of higher order as follows.
Theorem 1. Let $d, w_{1}, w_{2} \in \mathbb{N}$. For $n \in \mathbb{Z}_{+}$and $m \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{j=0}^{n}\binom{n}{j} w_{2}^{j} w_{1}^{n-j-1} B_{n-j, \chi, \xi^{w_{1}}}^{(m)}\left(w_{2} x\right) \sum_{k=0}^{j}\binom{j}{k} T_{k, \chi, \xi^{w_{2}}}\left(w_{1} d-1\right) B_{j-k, \chi, \xi^{w_{2}}}^{(m-1)}\left(w_{1} y\right) \\
& =\sum_{j=0}^{n}\binom{n}{j} w_{1}^{j} w_{2}^{n-j-1} B_{n-j, \chi, \xi^{w_{2}}}^{(m)}\left(w_{1} x\right) \sum_{k=0}^{j}\binom{j}{k} T_{k, \chi, \xi^{w_{1}}}\left(w_{2} d-1\right) B_{j-k, \chi, \xi^{w_{1}}}^{(m-1)}\left(w_{2} y\right) .
\end{aligned}
$$

Remark 1. Taking $m=1$ and $y=0$ in (2.7) derives the following identity:

$$
\begin{align*}
& \sum_{j=0}^{n}\binom{n}{j} w_{2}^{j} w_{1}^{n-j-1} B_{n-j, \chi, \xi^{w_{1}}}\left(w_{2} x\right) T_{j, \chi, \xi^{w_{2}}}\left(w_{1} d-1\right) \tag{2.7}\\
& \quad=\sum_{j=0}^{n}\binom{n}{j} w_{1}^{j} w_{2}^{n-j-1} B_{n-j, \chi, \xi^{w_{2}}}\left(w_{1} x\right) T_{j, \chi, \xi^{w_{1}}}\left(w_{2} d-1\right) .
\end{align*}
$$

Moreover, if we take $x=0$ and $y=0$ in Theorem 1 , then we have the following identity for the generalized twisted Bernoulli numbers of higher order.
Corollary 2. Let $d, w_{1}, w_{2} \in \mathbb{N}$. For $n \in \mathbb{Z}_{+}$and $m \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{j=0}^{n}\binom{n}{j} w_{2}^{j} w_{1}^{n-j-1} B_{n-j, \chi, \xi^{w_{1}}}^{(m)} \sum_{k=0}^{j}\binom{j}{k} T_{k, \chi, \xi^{w_{2}}}\left(w_{1} d-1\right) B_{j-k, \chi, \xi^{w_{2}}}^{(m-1)} \\
& =\sum_{j=0}^{n}\binom{n}{j} w_{1}^{j} w_{2}^{n-j-1} B_{n-j, \chi, \xi^{w_{2}}}^{(m)} \sum_{k=0}^{j}\binom{j}{k} T_{k, \chi, \xi^{w_{1}}}\left(w_{2} d-1\right) B_{j-k, \chi, \xi^{w_{1}}}^{(m-1)}
\end{aligned}
$$

We also note that taking $m=1$ in Corollary 2 shows the following identity :

$$
\begin{align*}
& \sum_{j=0}^{n}\binom{n}{j} w_{2}^{j} w_{1}^{n-j-1} B_{n-j, \chi, \xi^{w_{1}}} T_{j, \chi, \xi^{w_{2}}}\left(w_{1} d-1\right) \tag{2.8}\\
& \quad=\sum_{j=0}^{n}\binom{n}{j} w_{1}^{j} w_{2}^{n-j-1} B_{n-j, \chi, \xi^{w_{2}}} T_{j, \chi, \xi^{w_{1}}}\left(w_{2} d-1\right) .
\end{align*}
$$

Now we will derive another interesting identities for the generalized twisted Bernoulli numbers and polynomials of higher order. From (1.15), (2.2) and (2.3), we can derive that

$$
\begin{align*}
& Y\left(m, \chi, \xi \mid w_{1}, w_{2}\right) \\
& =\frac{1}{w_{1}}\left(\sum_{i=0}^{w_{1} d-1} \chi(i) \xi^{w_{2} i} \int_{X^{m}}\left(\prod_{i=1}^{m} \chi\left(x_{i}\right)\right) \xi^{\left(\sum_{i=1}^{m} x_{i}\right) w_{1}} e^{\left(\sum_{i=1}^{m} x_{i}+\frac{w_{2}}{w_{1}} i+w_{2} x\right) w_{1} t} d x_{1} \cdots d x_{m}\right) \tag{2.9}\\
& \quad \times\left(\int_{X^{m-1}}\left(\prod_{i=1}^{m-1} \chi\left(x_{i}\right)\right) \xi^{\left(\sum_{i=1}^{m-1} x_{i}\right) w_{2}} e^{\left(\sum_{i=1}^{m-1} x_{i}+w_{1} y\right) w_{2} t} d x_{1} \cdots d x_{m-1}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} w_{1}^{k-1} w_{2}^{n-k} B_{n-k, \chi, \xi^{w_{2}}}^{(m-1)}\left(w_{1} y\right) \sum_{i=0}^{w_{1} d-1} \chi(i) \xi^{w_{2} i} B_{k, \chi, \xi^{w_{1}}(m)}^{\left.\left(w_{2} x+\frac{w_{2}}{w_{1}} i\right)\right) \frac{t^{n}}{n!} .}\right.
\end{align*}
$$

From the symmetry property of $Y\left(m, \chi, \xi \mid w_{1}, w_{2}\right)$ in w_{1} and w_{2}, we see that

$$
\begin{align*}
& Y\left(m, \chi, \xi \mid w_{1}, w_{2}\right) \tag{2.10}\\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} w_{2}^{k-1} w_{1}^{n-k} B_{n-k, \chi, \xi^{w_{1}}}^{(m-1)}\left(w_{2} y\right) \sum_{i=0}^{w_{2} d-1} \chi(i) \xi^{w_{1} i} B_{k, \chi, \xi^{w_{2}}}^{(m)}\left(w_{1} x+\frac{w_{1}}{w_{2}} i\right)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Comparing the coefficients on the both sides of (2.9) and (2.10), we obtain the following theorem which shows the relationship between the power sums and the generalized twisted Bernoulli polynomials.
Theorem 3. Let $d, w_{1}, w_{2} \in \mathbb{N}$. For $n \in \mathbb{Z}_{+}$and $m \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k} w_{1}^{k-1} w_{2}^{n-k} B_{n-k, \chi, \xi^{w_{2}}}^{(m-1)}\left(w_{1} y\right) \sum_{i=0}^{w_{1} d-1} \chi(i) \xi^{w_{2} i} B_{k, \chi, \xi^{w_{1}}}^{(m)}\left(w_{2} x+\frac{w_{2}}{w_{1}} i\right) \\
& =\sum_{k=0}^{n}\binom{n}{k} w_{2}^{k-1} w_{1}^{n-k} B_{n-k, \chi, \xi^{w_{1}}}^{(m-1)}\left(w_{2} y\right) \sum_{i=0}^{w_{2} d-1} \chi(i) \xi^{w_{1} i} B_{k, \chi, \xi^{w_{2}}}^{(m)}\left(w_{1} x+\frac{w_{1}}{w_{2}} i\right) .
\end{aligned}
$$

Remark 2. Let $m=1$ and $y=0$ in Theorem 3. Then it follows that

$$
\begin{equation*}
w_{1}^{n-1} \sum_{i=0}^{w_{1} d-1} \chi(i) B_{n, \chi, \xi^{w_{1}}}\left(w_{2} x+\frac{w_{2}}{w_{1}} i\right)=w_{2}^{n-1} \sum_{i=0}^{w_{2} d-1} \chi(i) B_{n, \chi, \xi^{w_{2}}}\left(w_{1} x+\frac{w_{1}}{w_{2}} i\right) \tag{2.11}
\end{equation*}
$$

Moreover, if we take $x=0$ and $y=0$ in Theorem 3, then we have the following identity for the generalized twisted Bernoulli numbers of higher order.
Corollary 4. Let $d, w_{1}, w_{2} \in \mathbb{N}$. For $n \in \mathbb{Z}_{+}$and $m \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k} w_{1}^{k-1} w_{2}^{n-k} B_{n-k, \chi, \xi^{w_{2}}}^{(m-1)} \sum_{i=0}^{d w_{1}-1} \chi(i) \xi^{w_{2} i} B_{k, \chi, \xi^{w_{1}}}^{(m)}\left(\frac{w_{2}}{w_{1}} i\right) \\
& =\sum_{k=0}^{n}\binom{n}{k} w_{2}^{k-1} w_{1}^{n-k} B_{n-k, \chi, \xi^{w_{1}}}^{(m-1)} \sum_{i=0}^{d w_{2}-1} \chi(i) \xi^{w_{1} i} B_{k, \chi, \xi^{w_{2}}}^{(m)}\left(\frac{w_{1}}{w_{2}} i\right) .
\end{aligned}
$$

If we take $m=1$ in Corollary 4, we derive the identity for the generalized twisted Bernoulli numbers : for $d, w_{1}, w_{2} \in \mathbb{N}$ and $n \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
w_{1}^{n-1} \sum_{i=0}^{d w_{1}-1} \chi(i) \xi^{w_{2} i} B_{n, \chi, \xi^{w_{1}}}\left(\frac{w_{2}}{w_{1}} i\right)=w_{2}^{n-1} \sum_{i=0}^{d w_{2}-1} \chi(i) \xi^{w_{1} i} B_{n, \chi, \xi^{w_{2}}}\left(\frac{w_{1}}{w_{2}} i\right) . \tag{2.12}
\end{equation*}
$$

Acknowledgement. This research was supported by Kyungpook National University research fund 2008.

References

[1] L.C. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[2] A.S. Hegazi, M. Mansour, A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 13 (2006), 9-18.
[3] W. Kim, L.-C. Jang, C.S. Ryoo, A note on the multiple twisted Carlitz's type qBernoulli polynomials, Abst. Appl. Anal. 2008 (2008), Article ID 371295, 9 pages.
[4] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
[5] T. Kim, A note on q-Volkenborn integration, Proc. Jangjeon Math. Soc. 8 (2005), 13-17.
[6] T. Kim, Symmetries p-adic invariant integral on \mathbb{Z}_{p} for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267-1277.
[7] T. Kim, Symmetry of power sum polynomials and multivariate femionic p-adic invariant integral on \mathbb{Z}_{p}, Russ. J. Math. Phys. 16 (2009), no. 1, 51-54.
[8] T. Kim, S.-H. Rim, B. Lee, Some identities of symmetry for the generalized Bernoulli numbers and polynomials, Abst. Appl. Anal. 2009 (2009), Article ID 848943, 9 pages.
[9] Y.-H. Kim, On the p-adic interpolation functions of the generalized twisted (h, q)-Euler numbers, Int. J. Math. Anal. 3 (2009), no. 18, 897-904.
[10] Y.-H. Kim, K.-W. Hwang, Symmetry of power sum and twisted Bernoulli polynomials, Adv. Stud. Contemp. Math. 18 (2009), no. 2, 127-133.
[11] H. Ozden, I. N. Cangul, Y. Simsek, Remark on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math. 18 (2009), 41-48.
[12] C.S. Ryoo, Twisted Bernoulli polynomials of higher order, Int. J. Math. Sci. 4 (2005), 237-245.
[13] C.S. Ryoo, The zeros of the generalized twisted Bernoulli polynomials, Adv. Theor. Appl. Math. 1 (2006), 143-148.
[14] Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), 205-218.
[15] Y. Simsek, On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers, Russ. J. Math. Phys. 13 (2006), no. 3, 340-348.
[16] Y. Simsek, On twisted q-Hurwitz zeta function and q-two variable L-function, Appl. Math. Comput. 187 (2007), 466-473.
[17] Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions, Adv. Stud. Contemp. Math. 16 (2008), no. 2, 251-278.
[18] T. Kim, Note on Dedekind type DC sums, Adv. Stud. Contemp. Math. 18 (2009), no. 2, 249-260.
[19] T. Kim, Note on the Euler q-zeta functions, J. Number Theory 129 (2009), no. 7, 1798-1804.
[20] T. Kim, Y.H. Kim, K. W. Hwang On the q-extensions of the Bernoulli and Euler numbers, related identities and lerch zeta function, Proc. Jangjeon Math. Soc. 12 (2009), no. 1, 1798-1804.
[21] T. Kim On a q-Analogue of the p-Adic Log Gamma Functions and Related Integrals, J. Number Theory 76 (1999), no. 2, 320-329.
[22] T. Kim q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15 (2008), no. 1, 51-57.

Seog-Hoon Rim. Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Republic of Korea,

E-mail address: shrim@knu.ac.kr
Young-Hee Kim. Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea,

E-mail address: yhkim@kw.ac.kr
Byungue Lee. Department of Wireless Communications Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea,

E-mail address: bjlee@kw.ac.kr
Taekyun Kim. Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea,

E-mail address: tkkim@kw.ac.kr

Closed images of certain locally compact spaces *

Zhaowen Li^{1} and Qingguo Li^{2}
${ }^{1}$ College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning, Guangxi 530006 E-mail: lizhaowen8846@163.com
${ }^{2}$ College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, P.R.China

Abstract

We show that (1) a space is a closed L-image of a paracompact locally compact space if and only if it has a point-countable $H P C k$-system; (2) a regular space is a closed L-image of a locally compact metric space if and only if it has a point-countable HPC mk-system if and only if it is a k^{\prime}-space with a point-countable compact k-network; (3) a regular space is a closed image of a locally compact metric space if and only if it is a Fréchet space with a point-countable weak-compact k-network.

Keywords and phrases: Closed maps; L-maps; k-systems; $m k$-systems; k^{\prime}-space; Fréchet spaces; Compact k-networks; Weak-compact k-networks.

2000 Mathematics Subject Classification: \quad 54C10; 54D20; 54E99.

1. Introduction and definitions

Some characterizations for certain quotient images (or closed images) of paracompact locally compact spaces are obtained by means of k-systems (see $[1,10,11,17,18]$). On the other hand, some characterizations for certain quotient images (or closed images) of locally compact metric spaces are also obtained by means of $m k$-systems or compact k-networks (see $[10,15,20,22,24])$. In this paper, we introduce the concept of weak-compact k-networks and give new characterizations for closed images of certain locally compact spaces.

[^33]Let \mathcal{P} be a cover of a space $X . \mathcal{P}$ is called a k-network [5] for X if whenever $K \subset U$ with K compact and U open in X, then $K \subset \cup \mathcal{P}^{\prime} \subset U$ for some finite $\mathcal{P}^{\prime} \subset \mathcal{P}$. If \mathcal{P} is composed of compact subsets of X, then \mathcal{P} is called a compact k-network [22] for X. If the closure of each element of \mathcal{P} is compact in X, then \mathcal{P} is called a weak-compact k-network for X. \mathcal{P} is called a k-cover [21] for X if every compact $K \subset X$ is covered by some finite $\mathcal{P}^{\prime} \subset \mathcal{P}$. Obviously, every k-network is a k-cover.
X is determined by \mathcal{P} if $A \subset X$ is closed in X if and only if $A \cap P$ is relatively closed in P for every $P \in \mathcal{P}$. If each element of \mathcal{P} is compact (resp. compact metric) in X, then \mathcal{P} is called a k-system [4] (resp. $m k$-system [22]) for X.
X is called a k-space (resp. a sequential space) if it is determined by the cover consisting of all compact (resp. all compact metric) subsets of $X . X$ is called a k_{ω}-space if X has a countable k-system.

Let \mathcal{P} be a family of subsets of a space $X . \mathcal{P}$ is called closure-preserving if $\overline{\cup \mathcal{P}^{\prime}}=\cup\{\bar{P}$: $P \in \mathcal{P}\}$ for each $\mathcal{P}^{\prime} \subset \mathcal{P}$. \mathcal{P} is called $H P C$ (ie. hereditarily closure-preserving) if a family $\{H(P): P \in \mathcal{P}\}$ is closure-preserving for each $\{H(P): H(P) \subset P \in \mathcal{P}\}$. \mathcal{P} is called σ - $H P C$ if $\mathcal{P}=\bigcup\left\{\mathcal{P}_{n}: n \in N\right\}$ and each \mathcal{P}_{n} is HPC. \mathcal{P} is called point-countable HPC (resp. point-countable $\sigma-H P C$) if \mathcal{P} is point-countable and HPC (resp. $\sigma-H P C$).
X is called a k^{\prime}-space [1] if $x \in \bar{A} \subset X$, then $x \in \overline{A \cap K}$ for some compact $K \subset X . X$ is called a countably bi- k-space [1] if whenever $\left(F_{n}\right)$ is a decreasing sequence of subsets of X with a common cluster point x, then there exists a decreasing sequence $\left(A_{n}\right)$ of subsets of X such that $x \in \overline{F_{n} \bigcap A_{n}}$ for any $n \in N, K=\bigcap\left\{A_{n}: n \in N\right\}$ is compact in X and each neighborhood of K contains some A_{n}. X is called a σ-space if X has a σ-locally finite network.

Let P be a topology property. X is called a locally P space if for each $x \in X$, there exists a open neighborhood V of x in X such that the subspace \bar{V} has property P.

Let $f: X \rightarrow Y$ be a map. f is called a L-map if for each $y \in Y, f^{-1}(y)$ is a Lindelöf subspace of $X . f$ is called an s-map if for each $y \in Y, f^{-1}(y)$ is separable in $X . f$ is called a countably bi-quotient map if whenever $y \in Y$ and \mathcal{U} is a countable family of open subsets of X such that $f^{-1}(y) \subset \cup \mathcal{U}$, then $y \in \operatorname{Int}\left(f\left(\cup \mathcal{U}^{*}\right)\right)$ for some finite $\mathcal{U}^{*} \subset \mathcal{U}$.

Every locally compact space and every Fréchet space are a k^{\prime}-space. Every k^{\prime}-space can be characterized as a pseudo-open image of a paracompact locally compact space, every k^{\prime}-space is a k-space. Every locally compact space and every first countable space are a countably
bi- k-space. Every countably bi- k-space can be characterized as a countably bi-quotient image of a paracompact M-space, every countably bi- k-space is a k-space. Every locally k_{ω}-space with the Lindelöf property is a k_{ω}-space.

Open maps and perfect maps are countably bi-quotient, countably bi-quotient maps and closed map are pseudo-open, and pseudo-open map is quotient.

In this paper, all spaces are assumed to be T_{2}, all maps are assumed to be continuous and onto. For two familys \mathcal{A} and \mathcal{B} of subsets of a space X, denote $\{A \cap B: A \in \mathcal{A}$ and $B \in \mathcal{B}\}$ by $\mathcal{A} \wedge \mathcal{B}$.

2. Closed L-images of paracompact locally compact spaces

Lemma 2.1 [11]. A space is a paracompact locally k_{ω}-space if and only if it has a σ-locally finite k-system.

Theorem 2.2. The following are equivalent for a space X :
(1) X is a closed L-image of a paracompact locally compact space.
(2) X has a point-countable $H P C k$-system.
(3) X has a point-countable k-system and a $H P C k$-system.
(4) X is a paracompact, locally $k_{\omega^{-}}, k^{\prime}$-space.
(5) X is a k^{\prime}-space with a point-countable σ-HPC k-system.

Proof. $\quad(1) \Longrightarrow(2)$. Suppose X is a closed L-image of a paracompact locally compact space. Let $f: Z \longrightarrow X$ is a closed L-map, where Z is a paracompact locally compact space. By Lemma 1 in [11], Z has a locally finite k-system \mathcal{F}. Put $\mathcal{P}=\{f(F): F \in \mathcal{F}\}$. Since quotient maps preserve k-systems, then \mathcal{P} is a k-system for X. Since f is closed, then \mathcal{P} is $H C P$. By f is a L-map, \mathcal{P} is point-countable in X. Thus X has a point-countable $H P C$ k-system.
$(2) \Longrightarrow(3)$ is obvious.
$(3) \Longrightarrow(4)$. Suppose X has a point-countable k-system and a $H P C k$-system. Since X has a HPC k-system, then X is a closed image of a paracompact locally compact space by Theorem 2 in [11]. Let $f: Z \longrightarrow X$ is a closed map, where Z is a paracompact locally compact space. Obviously X is a countable bi- k-space. Because X has a point-countable k-system, then X is a paracompact locally k_{ω}-space by Theorem 13 in [9]. Since pseudo-open images of paracompact locally compact spaces are k^{\prime}-spaces, then X is a k^{\prime}-space. Thus X is a paracompact, locally $k_{\omega^{-}}, k^{\prime}$-space.
(4) $\Longrightarrow(5)$ holds by Lemma 2.1.
(5) $\Longrightarrow(2)$. Suppose \mathcal{P} is a point-countable σ - $H C P$-system for a k^{\prime}-space X. Let $\mathcal{P}=\bigcup\left\{\mathcal{P}_{n}: n \in N\right\}$, where each \mathcal{P}_{n} is $H C P$ in X. We can assume that each $\mathcal{P}_{n} \subset \mathcal{P}_{n+1}$. For each $n \in N$, set $X_{n}=\cup \mathcal{P}_{n}$, then $\left\{X_{n}: n \in N\right\}$ is a rising closed cover of X. Put

$$
\begin{aligned}
& \mathcal{F}_{1}=\mathcal{P}_{1}, \\
& \mathcal{F}_{n}=\left\{\overline{P \backslash X_{n-1}}: P \in \mathcal{P}_{n}\right\} \quad(n>1), \\
& \mathcal{F}=\cup\left\{\mathcal{F}_{n}: n \in N\right\} .
\end{aligned}
$$

As in the proof of Theorem $2(1) \Longrightarrow(2)$ in [11], we can prove that \mathcal{F} is a $H C P k$-system for X. For $n>1$ and $P \in \mathcal{P}_{n}, \overline{P \backslash X_{n-1}} \subset \bar{P}=P$. Because \mathcal{P} is point-countable in X, then \mathcal{F} is point-countable in X. Thus X has a point-countable $H P C k$-system.
$(2) \Longrightarrow(1)$. Suppose X has a point-countable $H P C k$-system for X. Let \mathcal{P} is a pointcountable $H C P k$-system. Put $M=\oplus\{P: P \in \mathcal{P}\}$, the M is a paracompact locally compact space. Let $f: M \rightarrow X$ be the natural map. Since \mathcal{P} is $H C P$, then f is closed. Because \mathcal{P} is a point-countable in X, then f is a L-map. Hence X is a closed L-image of a paracompact locally compact space.

3. Closed L-images of locally compact metric spaces

From the proof of Proposition 2.1 in [19], the following holds.
Lemma 3.1. Suppose that \mathcal{P} is a point-countable cover of X. Then \mathcal{P} is a $m k$-system if and only if X is a k-space and \mathcal{P} is a k-cover consisting of compact metric subspaces.

Lemma 3.2 [24]. The following are equivalent for a k^{\prime}-space X :
(1) X has a σ-locally finite $m k$-system.
(2) X has a point-countable $m k$-system.

Lemma 3.3 [24]. The following are equivalent for a k^{\prime}-space X :
(1) X has a σ-locally finite compact k-network.
(2) X has a point-countable compact k-network.

Theorem 3.4. The following are equivalent for a regular space X :
(1) X is a closed L-image of a locally compact metric space.
(2) X is a pseudo-open L-image of a locally compact metric space.
(3) X is a k^{\prime}-space with a point-countable $m k$-system.
(4) X has a point-countable $H P C m k$-system.
(5) X is a k^{\prime}-space with a point-countable compact k-network.
(6) X is a k^{\prime}-space with a point-countable k-cover consisting of compact metric subspaces.

Proof. $\quad(1) \Longrightarrow(2)$ is clear.
$(2) \Longrightarrow(3)$. Suppose X is the image of a locally compact metric space M under a pseudo-open L-map f. Since M is locally compact, then there exists compact subset K_{m} of M such that $m \in \operatorname{int}\left(K_{m}\right)$ for each $m \in M$. By M is paracompact, $\left\{\operatorname{int}\left(K_{m}\right): m \in M\right\}$ has a locally finite closed refinement \mathcal{F}. Let $\mathcal{F}=\left\{F_{\alpha}: \alpha \in \Lambda\right\}$. For each $\alpha \in \Lambda, F_{\alpha} \subset \operatorname{int}\left(K_{m_{\alpha}}\right)$ for some $m_{\alpha} \in M$. By $F_{\alpha} \subset K_{m_{\alpha}}, F_{\alpha}$ is compact in M. Thus \mathcal{F} is a locally finite closed cover consisting of compact metric subspaces. Put $\mathcal{P}=\left\{P_{\alpha}: \alpha \in \Lambda\right\}$, here $P_{\alpha}=f\left(F_{\alpha}\right)$. We shall show that \mathcal{P} is a k-system for X. Suppose A is a subset of X such that $A \cap P_{\alpha}$ is closed in the subspace P_{α} for any $\alpha \in \Lambda$. If A is not closed in X. Since f is quotient, $f^{-1}(A)$ is not closed in M. By M is a k-space, $f^{-1}(A) \cap K$ is not closed in the subspace K for some compact $K \subset M$. So $f^{-1}(A) \cap K$ is not closed in M. Because \mathcal{F} is locally finite in M, then $K \subset \bigcup\left\{F_{\alpha}: \alpha \in \Lambda^{\prime}\right\}$ for some finite $\Lambda^{\prime} \subset \Lambda$. Thus $f^{-1}(A) \cap F_{\alpha}$ is not closed in M for some $\alpha \in \Lambda^{\prime}$. Since $f^{-1}\left(A \cap P_{\alpha}\right)=f^{-1}(A) \cap F_{\alpha}$, then $A \cap P_{\alpha}$ is not closed in X. So $A \cap P_{\alpha}$ is not closed in the subspace P_{α}, a contradiction. Hence \mathcal{P} is a k-system for X. Because continuous maps preserve compact metric spaces, then \mathcal{P} is a $m k$-system for X. By f is a L-map, \mathcal{P} is point-countable in X. Since pseudo-open maps preserve k^{\prime}-spaces, thus X is a k^{\prime}-space with point-countable $m k$-system.
$(3) \Longrightarrow(4) . \quad$ Suppose X is a k^{\prime}-space with a point-countable $m k$-system, then X has a σ-locally finite $m k$-system by Lemma 3.2 . Let \mathcal{P} is a σ-locally finite $m k$-system for X. Denote $\mathcal{P}=\bigcup\left\{\mathcal{P}_{n}: n \in N\right\}$, where each \mathcal{P}_{n} is locally finite in X. We can assume that each $\mathcal{P}_{n} \subset \mathcal{P}_{n+1}$. For each $n \in N$, set $X_{n}=\cup \mathcal{P}_{n}$, then $\left\{X_{n}: n \in N\right\}$ is a rising closed cover of X. Put

$$
\begin{aligned}
& \mathcal{F}_{1}=\mathcal{P}_{1} \\
& \mathcal{F}_{n}=\left\{\overline{P \backslash X_{n-1}}: P \in \mathcal{P}_{n}\right\} \quad(n>1) \\
& \mathcal{F}=\cup\left\{\mathcal{F}_{n}: n \in N\right\}
\end{aligned}
$$

As in the proof of Theorem $2(1) \Longrightarrow(2)$ in [11], we can prove that \mathcal{F} is a $H C P m k$-system for X. Because \mathcal{P} is point-countable in X, then \mathcal{F} is point-countable in X. Thus X has a point-countable $H P C m k$-system.
$(4) \Longrightarrow(1)$. Suppose \mathcal{P} is a point-countable $H P C m k$-system. Put $M=\bigoplus\{P: P \in \mathcal{P}\}$, the M is a locally compact metric space. Let $f: M \rightarrow X$ be the natural map, then f is a closed L-map. Hence X is a closed L-image of a locally compact metric space.
$(1) \Longrightarrow(5)$. Suppose X is the image of a locally compact metric space M under a closed L-map f. Let \mathcal{B} be a σ-locally finite base for M. Since M is locally compact, set $\mathcal{B}^{\prime}=\{B \in \mathcal{B}: \bar{B}$ is compact in $M\}$, then \mathcal{B}^{\prime} also is a σ-locally finite base for M. Because M is a locally separable metric space, then there is a family $\left\{M_{\alpha}: \alpha \in A\right\}$ of separable metric spaces such that $M=\bigoplus\left\{M_{\alpha}: \alpha \in A\right\}$ (see [6, 4.4F]). For each $\alpha \in A, M_{\alpha}$ is both open and closed in M, and M_{α} is a Lindelöf subspace of M. Put

$$
\mathcal{P}_{\alpha}=\left\{M_{\alpha} \cap \bar{B}: B \in \mathcal{B}^{\prime}\right\},
$$

then \mathcal{P}_{α} is a countable compact k-network for M_{α}. So $\mathcal{P}=\cup\left\{\mathcal{P}_{\alpha}: \alpha \in A\right\}$ is a locallycountable compact k-network for M. Put

$$
\mathcal{F}=\{f(P): P \in \mathcal{P}\} .
$$

Since f is compact-covering and compact-covering maps preserve compact k-networks, \mathcal{F} is a compact k-network for X. By f is a L-map, \mathcal{F} is a point-countable in X. Because pseudo-open maps preserve k^{\prime}-spaces, then X is a k^{\prime}-space. Hence X is a k^{\prime}-space with point-countable compact k-network.
$(3) \Longleftrightarrow(5)$ holds by Corollary 1 in [22].
(5) $\Longrightarrow(6)$. Suppose X is a k^{\prime}-space with a point-countable compact k-network, then X has a σ-locally finite compact k-network by Lemma 3.3. So X is a σ-space. Let \mathcal{P} is a σ-locally finite compact k-network for X. Obviously \mathcal{P} is a point-countable k-cover for X. Because a countably compact σ-space is metrizable, then any compact subspaces of X are metrizable. So every element of \mathcal{P} is metrizable. Thus X is a k^{\prime}-space with a point-countable k-cover consisting of compact metric subspaces.
$(6) \Longrightarrow(3)$ holds by Lemma 3.1.
Corollary 3.5 [20]. A regular space X is a closed s-image of a locally compact metric space if and only if it is a Fréchet space with a point-countable compact k-network.

4. Closed images of locally compact metric spaces

Lemma 4.1 [15]. A regular space is a closed image of a locally compact metric space
if and only if it is a Fréchet space with a point-countable k-network, and each of its closed first-countable subspace is locally compact.

Lemma 4.2. For a space X, the following hold.
(1) Let \mathcal{P} be a point-countable k-network for X. If a point x in X has a countable local base, then for each neighborhood U of x, there exists a finite subset \mathcal{F} of \mathcal{P} such that $x \in(\cup \mathcal{F})^{\circ} \subset \cup \mathcal{F} \subset U[15]$.
(2) A countable compact k-space with a point-countable space k-network is compact and metrizable [8].
(3) Let $f: X \rightarrow Y$ be a perfect map, let Y be a first-countable space, if each $f^{-1}(y)$ is a first-countable subset of X, then X is a first-countable space [16].

Lemma 4.3. Suppose X is a k-space with a point-countable k-network, then X has a point-countable weak-compact k-network if and only if each closed first-countable subspace of X is locally compact.

Proof. Necessity. Suppose E is a closed first-countable subspace of X. Pick $x \in E$. Let \mathcal{P} be a point-countable weak-compact k-network for X. Put $\mathcal{F}=\{P \cap E: P \in \mathcal{P}\}$, then \mathcal{F} is a point-countable k-network for E. By Lemma $4.2(1)$, there exists a finite subset \mathcal{R} of \mathcal{F} such that $x \in \operatorname{int}_{E}(\cup \mathcal{R})$. So $\mathcal{R}=\left\{P \cap E: P \in \mathcal{P}^{\prime}\right\}$ for some finite subset \mathcal{P}^{\prime} of \mathcal{P}. Since $\cup\left\{\bar{P} \cap E: P \in \mathcal{P}^{\prime}\right\}$ is compact subspace of E and $x \in \operatorname{int}_{E}\left(\cup\left\{\bar{P} \cap E: P \in \mathcal{P}^{\prime}\right\}\right)$. Hence E is locally compact.

Sufficiency. With loss of generality we can assume that \mathcal{P} is a a point-countable k-network for X which is closed under finite intersections. Put $\mathcal{F}=\{P \in \mathcal{P}: \bar{P}$ is compact in $X\}$. Then \mathcal{F} is a weak-compact k-network. In fact, let $K \subset U$ with K compact and U open in $X . \mathcal{P}$ is a a point-countable k-network for X, by Miščenko's Lemma ([14, Lemma 3.3.10]) there are at most ω minimal (i.e. not containing proper subcover) finite covers of K by members of \mathcal{P}, say $\left\{\mathcal{B}_{i}\right\}$. Put $\mathcal{L}_{n}=\bigwedge_{i \leq n} \mathcal{B}_{i}$, and $L_{n}=\cup \mathcal{L}_{n}$ for each $n \in N$. Then $\left\{L_{n}\right\}_{n \in N}$ is a decreasing set of K in X. For each $n \in N$, if no $\overline{L_{n}}$ is compact in X, thus no $\overline{L_{n}}$ is countable compact in X by Lemma 4.2(2). Thus $\overline{L_{n}}$ contains an infinite closed discrete subset D_{n}. Define $C=K \cup\left(\cup_{n \in N} D_{n}\right)$, and endow C with the subspace topology of X. Then no neighborhood of K in C is countable compact. By the compactness of K, C is not locally countable compact, so C is not locally compact. Let $f: C \rightarrow C / K$ be a natural quotient map. Then f is a perfect map and C / K is first-countable (In fact, C / K is a metric space). By
the Lemma $4.2(3), C$ is first-countable, so C is a non-locally compact, closed first-countable subset of X, a contradiction. Thus, $\overline{L_{m}}$ is compact in X for some $m \in N$. Choose $n \geq m$ with $K \subset L_{n} \subset U$. This shows that \mathcal{L}_{n} is a finite subset of \mathcal{F} and $K \subset \cup \mathcal{L}_{n} \subset U$. Thus \mathcal{F} is a weak-compact k-network for X.

By Lemma 4.1 and Lemma 4.3, the following holds.
Theorem 4.4. A regular space X is a closed image of a locally compact metric space if and only if X is a Fréchet space with a point-countable weak-compact k-network.

5. Examples

Example 5.1. Open finite-to-one images of paracompact locally compact spaces need not be closed L-images of paracompact locally compact spaces.

There are a paracompact locally compact space Z and open finite-to-one map f from Z onto a space X which is not paracompact (see [3, Example 5.11]). Because closed maps preserve paracompact spaces, then X is not a closed L-image of a paracompact locally compact space.

This example also illustrates:
X is a pseudo-open L-image of a paracompact locally compact space $\nRightarrow X$ is a closed L-image of a paracompact locally compact space.

Example 5.2. Quotient finite-to-one images of locally compact metric spaces need not be closed L-images of metric spaces.

Let

$$
S=\left\{\frac{1}{n}: n \in N\right\} \cup\{0\}, \quad X=[0,1] \times S
$$

And let

$$
Y=[0,1] \times\left\{\frac{1}{n}: n \in N\right\}
$$

have the usual Euclidean topology as a subspace of $[0,1] \times S$. Define a typical neighborhood of $(t, 0)$ in X to be of the form

$$
\{(t, 0)\} \cup\left(\bigcup_{k \geq n} V(t, 1 / k)\right), \quad n \in N
$$

where $V(t, 1 / k)$ is a neighborhood of $(t, 1 / k)$ in $[0,1] \times\{1 / k\}$. Put

$$
M=\left(\oplus_{n \in N}[0,1] \times\{1 / n\}\right) \oplus\left(\oplus_{t \in[0,1]}\{t\} \times S\right)
$$

and define f from M onto X such that f is an obvious map.
Then f is a compact-covering, quotient, two-to-one map from the locally compact metric space M onto a separable, regular, non-Lindelöf, k-space X (see [12, Example 2.8.16] or [8, Example 9.3]).
X has no compact-countable k-network. In fact. Suppose \mathcal{P} is a compact-countable k-network for X. Put

$$
\mathcal{F}=\{\{(t, 0)\}: t \in[0,1]\} \cup\{P \cap Y: P \in \mathcal{P}\} .
$$

Since $[0,1] \times\{0\}$ is a closed discrete subspace of X, then \mathcal{F} is a k-network for X. But Y is a σ-compact subspace of X. Thus $\{P \cap Y: P \in \mathcal{P}\}$ is countable, and so \mathcal{F} is star-countable. Since a regular, k-space with a star-countable k-network is an \aleph_{0}-space(see [7]), then X is a Lindelöf space, a contradiction. Thus X has no compact-countable k-network. So X is not an \aleph-space. By Theorem 2.7.23 in [12], X is not a closed s-image of a metric space. Hence X is not a closed L-image of a metric space.

This example also illustrates:
X is a quotient L-image of a locally compact metric space $\nRightarrow X$ is a closed L-image of a locally compact metric space.

Example 5.3. Closed L-images of locally compact metric spaces need not be countably bi-quotient images of paracompact locally compact spaces. See Example 10.1 in [1].

Example 5.4. Countably bi-quotient images of paracompact locally compact spaces need not be closed L-images of paracompact locally compact spaces.

Let Q be the rational number set, and endow Q with the usual subspace topology. Since Q is first-countable and paracompact, then Q is a countably bi-quotient image of a paracompact locally compact space (see [1]). But Q is a non- k_{ω}-space with the Lindelöf property (see [2, Proposition 20]), then Q is not a locally k_{ω}-space. So Q is not a closed L-image of a paracompact locally compact space by Theorem 2.1.

Two examples above illustrate:
A countably bi-quotient image of a paracompact locally compact space is each other independent of a closed L-image of a paracompact locally compact space.

References

[1] E.Michael, A quintuple quotient quest, Gen. Top. Appl., 2(1972), 91-138.
[2] S.Franklin, B.Thomas, A survey of k_{ω}-spaces, Topology Proc., 2(1977), 111-124.
[3] D.Burke, Covering properties, Handbook of set-theoretic topology, Elsevier science publishers, 1984, 347-422.
[4] A.V.Arhangel'skii, Factor maps of metric space, Dokl. Akad. Nauk. SSSR., 155(1964), 247-250 (Russian).
[5] P.O'Meara, On paracompactness in function space with open topology, Proc.Amer. Math. Soc., 29(1971), 183-189.
[6] R.Engelking, General topology, Polish scientific publishers, warszawa, 1977.
[7] M.Sakai, On spaces with a star-countable k-network, Houston J. Math., 23(1997), 45-56.
[8] G.Gruenhage, E.Michael, Y.Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113(1984), 303-332.
[9] Y.Tanaka, Point-countable k-systems and products of k-spaces, Pacific J. Math., 101(1982), 199-208.
[10] Y.Tanaka, Closed images of locally compact metric spaces and Fréchet spaces, Topology Proc., 7(1982), 279-292.
[11] Shou Lin, On images of paracompact locally compact spaces, J. Math., 12(1992), 281286.
[12] Shou Lin, Generalized metric spaces and maps, Chinese scientific publishers, Beijing, 1995.
[13] Shou Lin, Y.Tanaka, Point-countable k-networks, closed maps, and related results, Topology Appl., 59(1994), 79-86.
[14] Shou Lin, Topology of metric spaces and function spaces, Chinese science publishers, Beijing, 2004.
[15] Shou Lin, A note on closed images of locally compact metric spaces, Acta Math. Hungar., 109(2005), 157-162.
[16] Shou Lin, Chuan Liu, k-spaces property of $S_{\omega} \times X$ and related results, Acta Math. Sinica , 49(2006), 29-38.
[17] Jinjin Li, Certain quotient images of paracompact locally compact spaces, Acta Math. Hungar., 104(2004), 301-305.
[18] Jinjin Li, k-cover and certain quotient images of paracompact locally compact spaces, Acta Math. Hungar., 95(2002), 281-286.
[19] Jinjin Li, Shou Lin, Spaces with compact-countable k-systems, Acta Math. Hungar., 93(2001), 1-6.
[20] Jinjin Li, Shou Lin, k-systems, k-networks and k-covers, Czech. Math. J., 56(2006), 239-245.
[21] R.A.McCoy, I.Ntantu, Countability properties of function spaces with set-open topologies, Topology Proc., 10(1985), 329-345.
[22] Zhaowen Li, Jinjin Li, On Michael-Nagami's problem, Q \& A in Gen. Top., 12(1994), 85-91.
[23] Y.Tanaka, Zhaowen Li, Certain covering maps and k-networks, and related matters, Topology Proc., 27(2003), 317-334.
[24] Zhaowen Li, Images of locally compact metric spaces, Acta Math. Hungar., 99(2003), 81-88.

Instructions to Contributors Journal of Computational Analysis and Applications.

A quartely international publication of Eudoxus Press, LLC.

Editor in Chief: George Anastassiou
Department of Mathematical Sciences, University of Memphis Memphis, TN 38152-3240, U.S.A.

AUTHORS MUST COMPLY EXACTLY WITH THE FOLLOWING RULES OR THEIR ARTICLE CANNOT BE CONSIDERED.

1. Manuscripts,hard copies in triplicate and in English,should be submitted to the Editor-in-Chief, mailed un-registered, to:

Prof.George A. Anastassiou
Department of Mathematical Sciences
The University of Memphis
Memphis,TN 38152-3240, USA.

Authors must e-mail a PDF copy of the submission to ganastss@memphis.edu.

Authors may want to recommend an associate editor the most related to the submission to possibly handle it.

Also authors may want to submit a list of six possible referees, to be used in case we cannot find related referees by ourselves.
2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX,or AMS-LaTEX and according to EUDOXUS PRESS, LLC. LATEX STYLE FILE. (Click HERE to save a copy of the style file.)They should be carefully prepared in all respects. Submitted copies should be brightly printed (not dot-matrix), double spaced, in ten point type size, on one side high quality paper $8(1 / 2) \times 11$ inch. Manuscripts should have generous margins on all sides and should not exceed 24 pages.
3. Submission is a representation that the manuscript has not been published previously in this or any other similar form and is not currently under consideration for publication elsewhere. A statement
transferring from the authors(or their employers,if they hold the copyright) to Eudoxus Press, LLC, will be required before the manuscript can be accepted for publication.The Editor-in-Chief will supply the necessary forms for this transfer.Such a written transfer of copyright, which previously was assumed to be implicit in the act of submitting a manuscript,is necessary under the U.S.Copyright Law in order for the publisher to carry through the dissemination of research results and reviews as widely and effective as possible.
4. The paper starts with the title of the article, author's name(s) (no titles or degrees), author's affiliation(s) and e-mail addresses. The affiliation should comprise the department, institution (usually university or company), city, state (and/or nation) and mail code.

The following items, 5 and 6, should be on page no. 1 of the paper.
5. An abstract is to be provided, preferably no longer than 150 words.
6. A list of 5 key words is to be provided directly below the abstract. Key words should express the precise content of the manuscript, as they are used for indexing purposes.

The main body of the paper should begin on page no. 1, if possible.
7. All sections should be numbered with Arabic numerals (such as: 1. INTRODUCTION) .
Subsections should be identified with section and subsection numbers (such as 6.1. Second-Value Subheading).
If applicable, an independent single-number system (one for each category) should be used to label all theorems, lemmas, propositions, corrolaries, definitions, remarks, examples, etc. The label (such as Lemma 7) should be typed with paragraph indentation, followed by a period and the lemma itself.
8. Mathematical notation must be typeset. Equations should be numbered consecutively with Arabic numerals in parentheses placed flush right,and should be thusly referred to in the text [such as Eqs.(2) and (5)]. The running title must be placed at the top of even numbered pages and the first author's name, et al., must be placed at the top of the odd numbed pages.
9. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in one consecutive series of Arabic numerals. The captions for illustrations should be typed double space. All illustrations, charts, tables, etc., must be embedded in the body of the manuscript in proper, final, print position. In particular, manuscript, source, and PDF file
version must be at camera ready stage for publication or they cannot be considered.

Tables are to be numbered (with Roman numerals) and referred to by number in the text. Center the title above the table, and type explanatory footnotes (indicated by superscript lowercase letters) below the table.
10. List references alphabetically at the end of the paper and number them consecutively. Each must be cited in the text by the appropriate Arabic numeral in square brackets on the baseline.

References should include (in the following order): initials of first and middle name, last name of author(s)
title of article,
name of publication, volume number, inclusive pages, and year of publication.

Authors should follow these examples:

Journal Article

1. H.H.Gonska,Degree of simultaneous approximation of bivariate functions by Gordon operators, (journal name in italics) J. Approx. Theory, 62,170-191(1990).

Book

2. G.G.Lorentz, (title of book in italics) Bernstein Polynomials (2nd ed.), Chelsea,New York, 1986.

Contribution to a Book

3. M.K.Khan, Approximation properties of beta operators, in(title of book in italics) Progress in Approximation Theory (P.Nevai and A.Pinkus,eds.), Academic Press, New York,1991,pp.483-495.
4. All acknowledgements (including those for a grant and financial support) should occur in one paragraph that directly precedes the References section.
5. Footnotes should be avoided. When their use is absolutely necessary, footnotes should be numbered consecutively using Arabic numerals and should be typed at the bottom of the page to which they refer. Place a line above the footnote, so that it is set off from the text. Use the appropriate superscript numeral for citation in the text.
6. After each revision is made please again submit three hard copies of the revised manuscript, including in the final one. And after a
manuscript has been accepted for publication and with all revisions incorporated, manuscripts, including the TEX/LaTex source file and the PDF file, are to be submitted to the Editor's Office on a personalcomputer disk, 3.5 inch size. Label the disk with clearly written identifying information and properly ship, such as:

Your name, title of article, kind of computer used, kind of software and version number, disk format and files names of article, as well as abbreviated journal name.

Package the disk in a disk mailer or protective cardboard. Make sure contents of disks are identical with the ones of final hard copies submitted!

Note: The Editor's Office cannot accept the disk without the accompanying matching hard copies of manuscript. No e-mail final submissions are allowed! The disk submission must be used.
14. Effective 1 Nov. 2009 for current journal page charges, contact the Editor in Chief. Upon acceptance of the paper an invoice will be sent to the contact author. The fee payment will be due one month from the invoice date. The article will proceed to publication only after the fee is paid. The charges are to be sent, by money order or certified check, in US dollars, payable to Eudoxus Press, LLC, to the address shown on the homepage of this site.

No galleys will be sent and the contact author will receive one(1) complementary electronic copy of the journal issue in which the article appears.
15. This journal will consider for publication only papers that contain proofs for their listed results.

TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.3, 2010

Generalized Hyers-Ulam stability of multi-dimensional quadratic equations, Hark-Mahn Kim, Eunyoung Son, Jiae Son, 571
On A note on generalized absolute Cesaro summability, Hikmet Seyhan Ozarslan, 581
Some extensions of optimal Hardy's inequality using estimates of p-Laplacian, Aurelia Florea, Ionel Roventa, 586
Generalized derivations and its stability, Sheon-Young Kang, Ick-Soon Chang, 593
New systems of generalized mixed variational inequalities with nonlinear mappings in Hilbert spaces, Jong Kyu Kim, Kyung Soo Kim, 601
Strong convergence of iterative schemes for nonexpansive semigroups in Banach spaces, Jong Soo Jung, 613
A note on the generalized q-Euler numbers (2), Kyoung-Ho Park, Young-Hee Kim, Taekyun Kim, 630
An estimation to the solution of an initial value problem via q-Bernstein polynomials, Sonuc Zorlu, Huseyin Aktuglu, Mehmet Ali Özarslan, 637
Direct integration preconditioning for solving optimal control problems, M. El-Kady, B. S. El- desouky, M. Biomy, 646
B-spline solution of the Black-Scholes partial differential equation, Nazan Caglar, Muge Iseri, Hikmet Caglar, Mehmet Ozer, 657
Multilateral generating functions for the multiple Laguerre and multiple Hermite polynomials, M. Ali Özarslan, Emine Özergin, Cem Kaanoglu, 667
A viscosity iterative scheme for inverse-strongly accretive operators in Banach spaces, Phayap Katchang, Yaowalux Khamlae, Poom Kumam, 678
On boundedness of a certain non-linear differential equation of third order, Cemil Tunç, Hilmi Ergören, 687
Some identities of the generalized twisted Bernoulli numbers and polynomials of higher order, Seog-Hoon Rim, Young-Hee Kim, Byungje Lee, Taekyun Kim, 695
Closed images of certain locally compact spaces, Zhaowen Li, Qingguo Li, 703

Journal of

Computational

Analysis and

Applications

Journal of Computational Analysis and Applications ISSNno.'s:1521-1398 PRINT,1572-9206 ONLINE SCOPE OF THE JOURNAL A quarterly international publication of Eudoxus Press, LLC Editor in Chief: George Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240, U.S.A ganastss@memphis.edu http://www.msci.memphis.edu/~ganastss/jocaaa
The main purpose of "J.Computational Analysis and Applications" is to publish high quality research articles from all subareas of Computational Mathematical Analysis and its many potential applications and connections to other areas of Mathematical Sciences. Any paper whose approach and proofs are computational,using methods from Mathematical Analysis in the broadest sense is suitable and welcome for consideration in our journal, except from Applied Numerical Analysis articles.Also plain word articles without formulas and proofs are excluded. The list of possibly connected mathematical areas with this publication includes, but is not restricted to: Applied Analysis, Applied Functional Analysis, Approximation Theory, Asymptotic Analysis, Difference Equations, Differential Equations, Partial Differential Equations, Fourier Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities, Integral Equations, Measure Theory, Moment Theory, Neural Networks, Numerical Functional Analysis, Potential Theory, Probability Theory, Real and Complex Analysis, Signal Analysis, Special Functions, Splines, Stochastic Analysis, Stochastic Processes, Summability, Tomography, Wavelets, any combination of the above, e.t.c.
"J.Computational Analysis and Applications" is a peer-reviewed Journal. See at the end instructions for preparation and submission of articles to JoCAAA.

Webmaster:Ray Clapsadle

Journal of Computational Analysis and Applications(JoCAAA) is published by EUDOXUS PRESS,LLC,1424 Beaver Trail
Drive,Cordova,TN38016,USA,anastassioug@yahoo.com
http//:www.eudoxuspress.com.Annual Subscription Prices:For USA and Canada,Institutional:Print \$470,Electronic \$300,Print and Electronic \$500.Individual:Print \$150,Electronic \$100,Print \&Electronic \$200.For any other part of the world add $\$ 50$ more to the above prices for Print.No credit card payments.
Copyright©2010 by Eudoxus Press,LLCAll rights reserved.JoCAAA is printed in USA.
JoCAAA is reviewed and abstracted by AMS Mathematical Reviews,MATHSCI, and Zentralblaat MATH.
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in any form and by any means without the written permission of the publisher.It is only allowed to educators to Xerox articles for educational purposes. The publisher assumes no responsibility for the content of published papers

Editorial Board
 Associate Editors

1) George A. Anastassiou	20) Hrushikesh N.Mhaskar
Department of Mathematical Sciences	Department Of Mathematics
The University of Memphis	California State University
Memphis, TN 38152,U.S.A	Los Angeles, CA 90032
Tel.901-678-3144	626-914-7002
e-mail: ganastss@memphis.edu	e-mail: hmhaska@calstatela.edu
Approximation Theory, Real Analysis,	Orthogonal Polynomials,
Wavelets, Neural	Approximation Theory, Splines,
Networks, Probability,	Wavelets, Neural Networks
Inequalities.	
	21) M.Zuhair Nashed
2) J. Marshall Ash	Department Of Mathematics
Department of Mathematics	University of Central Florida
De Paul University	PO Box 161364
2219 North Kenmore Ave.	Orlando, FL 32816-1364
Chicago, IL 60614-3504	e-mail: znashed@mail.ucf.edu
773-325-4216	Inverse and Ill-Posed problems,
e-mail: mash@math.depaul.edu	Numerical Functional Analysis,
Real and Harmonic Analysis	Integral Equations,Optimization,
3) Mark J.Balas	
Department Head and Professor 22) Mubenga N.Nkashama	
Electrical and Computer Engineering	Department OF Mathematics
Dept.	University of Alabama at
College of Engineering	Birmingham
University of Wyoming	Birmingham, AL 35294-1170
1000 E. University Ave.	205-934-2154
Laramie, WY 82071	e-mail: nkashama@math.uab.edu
307-766-5599	Ordinary Differential Equations,
e-mail: mbalas@uwyo.edu	Partial Differential Equations
Control Theory, Nonlinear Systems,	
Neural Networks, Ordinary and	23) Charles E.M.Pearce
Partial Differential Equations,	Applied Mathematics Department
Functional Analysis and Operator	University of Adelaide
Theory	Adelaide 5005, Australia
	e-mail:
4) Drumi D.Bainov	cpearce@maths.adelaide.edu. au
Department of Mathematics	Stochastic Processes, Probability
Medical University of Sofia	Theory, Harmonic Analysis,
P.O.Box 45,1504 Sofia, Bulgaria	Measure Theory,
e-mail:	Special Functions, Inequalities
dbainov@mbox.pharmfac.acad.bg	
e-mail:drumibainov@yahoo.com	24) Josip E. Pecaric
Differential Equations/Inequalities	Faculty of Textile Technology University of Zagreb
5) Carlo Bardaro	Pierottijeva 6,10000
Dipartimento di Matematica e	Zagreb, Croatia
Informatica	e-mail: pecaric@hazu.hr
Universita di Perugia	Inequalities, Convexity
Via Vanvitelli 1	

```
06123 Perugia, ITALY
TEL+390755853822
+390755855034
FAX+390755855024
E-mail bardaro@unipg.it
Web site:
http://www.unipg.it/~bardaro/
Functional Analysis and
Approximation
Theory,Signal Analysis, Measure
Theory,
Real Analysis.
6) Jerry L.Bona
Department of Mathematics
The University of Illinois at
Chicago
851 S. Morgan St. CS 249
Chicago, IL 60601
e-mail:bona@math.uic.edu
Partial Differential Equations,
Fluid Dynamics
7) Luis A.Caffarelli
    Department of Mathematics
    The University of Texas at Austin
    Austin,Texas 78712-1082
    512-471-3160
    e-mail: caffarel@math.utexas.edu
    Partial Differential Equations
8) George Cybenko
    Thayer School of Engineering
    Dartmouth College
    8000 Cummings Hall,
    Hanover,NH 03755-8000
    603-646-3843 (x 3546
    Secr.)
    e-mail:
    george.cybenko@dartmouth.edu
    Approximation Theory and Neural
    Networks
9) Ding-Xuan Zhou
    Department Of Mathematics
    City University of Hong Kong
    83 Tat Chee Avenue
    Kowloon,Hong Kong
    852-2788 9708,Fax:852-2788 8561
    e-mail: mazhou@math.cityu.edu.hk
    Approximation Theory,
    Spline functions, Wavelets
10) Sever S.Dragomir
    School of Computer Science and
    Mathematics, Victoria University,
```

25) Svetlozar T.Rachev Department of Statistics and Applied Probability University of California at Santa Barbara,
Santa Barbara, CA 93106-3110
805-893-4869
e-mail: rachev@pstat.ucsb.edu
and Chair of Econometrics,
Statistics and Mathematical
Finance
School of Economics and
Business Engineering
University of Karlsruhe
Kollegium am Schloss, Bau
II, 20.12, R210
Postfach 6980, D-76128,
Karlsruhe, GERMANY .
Tel +49-721-608-7535,
+49-721-608-2042(s)

Fax +49-721-608-3811
Zari. Rachev@wiwi.uni-karlsruhe.de Probability,Stochastic Processes and
Statistics,Financial Mathematics, Mathematical Economics.
26) Alexander G. Ramm Mathematics Department
Kansas State University Manhattan, KS 66506-2602 e-mail: ramm@math.ksu.edu Inverse and Ill-posed Problems, Scattering
Theory, Operator Theory, Theoretical Numerical Analysis, Wave Propagation, Signal Processing and Tomography

27) Ervin Y.Rodin

Department of Systems Science and Applied Mathematics Washington University, Campus Box 1040
One Brookings Dr., St.Louis, MO
63130-4899
314-935-6007
e-mail: rodin@rodin.wustl.edu
Systems Theory, Semantic
Control,
Partial Differential Equations, Calculus of
Variations, Optimization and

```
PO Box 14428,
Melbourne City,
MC 8001,AUSTRALIA
Tel. +61 3 9688 4437
Fax +61 3 9688 4050
sever@csm.vu.edu.au
Inequalities,Functional Analysis,
Numerical Analysis, Approximations,
Information Theory, Stochastics.
11) Saber N.Elaydi
    Department Of Mathematics
    Trinity University
    715 Stadium Dr.
    San Antonio,TX 78212-7200
    210-736-8246
    e-mail: selaydi@trinity.edu
    Ordinary Differential Equations,
    Difference Equations
12) Augustine O.Esogbue
    School of Industrial and Systems
    Engineering
    Georgia Institute of Technology
    Atlanta,GA 30332
    404-894-2323
    e-mail:
    augustine.esogbue@isye.gatech.edu
    Control Theory,Fuzzy sets,
    Mathematical Programming,
    Dynamic Programming,Optimization
```

13) Christodoulos A.Floudas
Department of Chemical Engineering
Princeton University
Princeton, NJ 08544-5263
609-258-4595 (x4619
assistant)
e-mail: floudas@titan.princeton.edu
OptimizationTheory\&Applications,
Global Optimization
14) J.A.Goldstein
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152
901-678-3130
e-mail: jgoldste@memphis.edu
Partial Differential Equations,
Semigroups of Operators
15) H.H.Gonska
Department of Mathematics
University of Duisburg
Duisburg, D-47048

Artificial Intelligence, Operations Research, Math. Programming
28) T. E. Simos

Department of Computer
Science and Technology
Faculty of Sciences and Technology
University of Peloponnese
GR-221 00 Tripolis, Greece
Postal Address:
26 Menelaou St.
Anfithea - Paleon Faliron
GR-175 64 Athens, Greece
tsimos@mail.ariadne-t.gr
Numerical Analysis
29) I. P. Stavroulakis

Department of Mathematics
University of Ioannina 451-10 Ioannina, Greece ipstav@uoi.gr
Differential Equations
Phone +3 0651098283
30) Manfred Tasche

Department of Mathematics
University of Rostock
D-18051 Rostock, Germany
manfred.tasche@mathematik.uni-
rostock. de
Numerical Fourier
Analysis, Fourier Analysis,
Harmonic Analysis,Signal
Analysis,
Spectral
Methods, Wavelets, Splines,
Approximation Theory
31) Gilbert G.Walter

Department Of Mathematical
Sciences
University of Wisconsin-
Milwaukee, Box 413,
Milwaukee, WI 53201-0413
414-229-5077
e-mail: ggw@csd.uwm.edu
Distribution
Functions, Generalised Functions, Wavelets

32) Halbert White

Department of Economics
University of California at San
Diego

Germany

011-49-203-379-3542
e-mail:
gonska@mathematik.uni-duisburg.de Approximation Theory,
Computer Aided Geometric Design
16) Weimin Han

Department of Mathematics
University of Iowa
Iowa City, IA 52242-1419
319-335-0770
e-mail: whan@math.uiowa.edu
Numerical analysis, Finite element method,
Numerical PDE, Variational
inequalities,
Computational mechanics
17) Christian Houdre

School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332
404-894-4398
e-mail: houdre@math.gatech.edu
Probability, Mathematical
Statistics, Wavelets
18) V. Lakshmikantham

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901
e-mail: lakshmik@fit.edu
Ordinary and Partial Differential
Equations,
Hybrid Systems, Nonlinear Analysis

```
19) Burkhard Lenze
    Fachbereich Informatik
    Fachhochschule Dortmund
    University of Applied Sciences
    Postfach 105018
    D-44047 Dortmund, Germany
    e-mail: lenze@fh-dortmund.de
    Real Networks,
    Fourier Analysis,Approximation
    Theory
```

36) Ahmed I. Zayed

Department Of Mathematical Sciences
DePaul University
2320 N. Kenmore Ave.
Chicago, IL 60614-3250
773-325-7808
e-mail: azayed@condor.depaul.edu

La Jolla, CA 92093-0508
619-534-3502
e-mail: hwhite@econ.ucsd.edu
Econometric Theory,Approximation
Theory,
Neural Networks
33) Xin-long Zhou

Fachbereich
Mathematik, Fachgebiet Informatik
Gerhard-Mercator-Universitat
Duisburg
Lotharstr.65,D-47048
Duisburg, Germany
e-mail:
Xzhou@mathematik.uni-duisburg.de
Fourier Analysis, Computer-Aided Geometric Design,
Computational Complexity,
Multivariate Approximation Theory, Approximation and Interpolation Theory
34) Xiang Ming Yu

Department of Mathematical Sciences
Southwest Missouri State University
Springfield, MO 65804-0094
417-836-5931
e-mail: xmy944f@missouristate.edu
Classical Approximation
Theory, Wavelets
35) Lotfi A. Zadeh

Professor in the Graduate School and Director, Computer Initiative, Soft Computing (BISC)
Computer Science Division
University of California at Berkeley
Berkeley, CA 94720
Office: 510-642-4959
Sec: 510-642-8271
Home: 510-526-2569
FAX: 510-642-1712
e-mail: zadeh@cs.berkeley.edu
Fuzzyness, Artificial Intelligence, Natural language processing, Fuzzy logic

Shannon sampling theory, Harmonic analysis
and wavelets, Special functions and orthogonal
polynomials, Integral transforms.

Recurrent points and periodic points of graph maps*

Geng-Rong Zhang ${ }^{1,2}$, Xin-He Liu ${ }^{2}$ and Bin Qin ${ }^{3}$
1. Institute of Mathematics, Shantou University, Shantou, Guangdong, 515063, P.R.China
2. Department of Mathematics, Guangxi University, Nanning, Guangxi, 530004, P.R.China
3. Department of Mathematics and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi, 530003, P.R.China

Abstract

Let G be a graph and $f \in C^{0}(G)$. It is proved that $\overline{P(f)}=G$ if $\overline{R(f)}=G$ and $P(f) \neq \emptyset$. This result generalizes several corresponding results given in [3] and [10].

1 Introduction

In this paper, let \mathbb{N} denote the set of all positive integers. Write $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$, $\mathbb{N}_{n}=\{1,2, \cdots, n\}$ and $\mathbb{Z}_{n}=\{0\} \cup \mathbb{N}_{n}$ for any $n \in \mathbb{N}$. Let X be a topological space and $C^{0}(X)$ the set of all continuous maps from X to X. For any $x \in X$ and $f \in C^{0}(X)$, $\mathrm{O}(x, f)=\left\{f^{k}(x): k \in \mathbb{Z}_{+}\right\}$is called the orbit of x. The set of periodic points of f, the set of recurrent points of f, the set of ω-limit points for some $x \in X$ and the set of non-wandering points of f (for the definitions see [2]) are denoted by $P(f), R(f), \omega(x, f)$ and $\Omega(f)$ respectively. Write $\omega(f)=\cup_{x \in X} \omega(x, f)$ and $E P(f)=\left\{x: f^{k}(x) \in P(f)\right.$ for some $k \in \mathbb{N}\}$, which are called ω-limit set and the set of eventually periodic points of f respectively. It is well known that $P(f) \subset R(f) \subset \omega(f) \subset \Omega(f)$. For any $A \subset X$, let $\operatorname{Int}(A), \partial A$ and \bar{A} be the interior, the boundary and the closure of A respectively. For any finite subset $A \subset X$, denote by $|A|$ the number of elements of A.

[^34]A space A is called an arc if there is a homeomorphism $h:[0,1] \rightarrow A$. A connected metric space G is called a graph if there exist finitely many arcs $A_{1}, A_{2}, \cdots, A_{n}$ in G such that $G=\bigcup_{i=1}^{\infty} A_{i}$ and $A_{i} \cap A_{j}=\partial A_{i} \cap \partial A_{j}$ for $1 \leq i<j \leq n$. Let S^{1} be the unit circle in the complex plane \mathbb{C}. A graph C is called a circle if it is homeomorphic to S^{1}. A graph T is called a tree if it contains no circle.

Let G be a graph, $x \in G$, and U be a neighborhood of x in G such that the closure \bar{U} is a tree. The number of connected components of $\bar{U}-\{x\}$, denoted by $\operatorname{val}_{G}(x)$ or $\operatorname{val}(x)$, is called the valence of x in $G . x$ is called an endpoint of G if $\operatorname{Val}_{G}(x)=1 ; x$ is called a branch point of G if $\operatorname{Val}_{G}(x)>2$. Let $\operatorname{End}(G)$ and $\operatorname{Br}(G)$ be the set of endpoints and the set of branch points of G respectively. Let $V(G)=\operatorname{End}(G) \cup \operatorname{Br}(G)$. Denote by $E(G)$ the set of all connected components of $G-V(G)$. A finite set $D(G) \supset V(G)$ is a set of vertices of G if for each simple closed curve S of $G, S \cap D(G)=S \cap V(G)$ when $|S \cap V(G)| \geq 3$, and $|S \cap D(G)| \geq 3$ when $|S \cap V(G)|<3$, that is, we add some artificial points with valence 2 as vertices. In this way, each edge (the closure of some connected component of $G-D(G))$ is homeomorphic to $[0,1]$ and if I and J are two edges of G, then $|I \cap J| \leq 1$. For some edge I of G and any $a, b \in I$, we use $[a, b]_{I}$ (or simply $[a, b]$ if there is no confusion) to denote the smallest connected closed subset of I containing $\{a, b\}$. Define $(x, y]=[x, y]-\{x\}$ and $(x, y)=(x, y]-\{y\}$. For any $x \in G$ and any $\epsilon>0$, write $B(x, \epsilon)=\{y \in G: d(x, y)<\epsilon\}$.

Let G be a graph. $f: G \rightarrow G$ is said to be a graph map if $f \in C^{0}(G)$. Let f be a graph map, L be a connected component of $G-D(G)$ and h be a homeomorphism from L to the open interval $(0,1) \subset R$. For any $x, y \in L$, we write $x<_{h} y$ (resp. $x \leq_{h} y$, $\left.x>_{h} y, x \geq_{h} y\right)$ if $h(x)<h(y)($ resp. $h(x) \leq h(y), h(x)>h(y), h(x) \geq h(y))$. Let $K=(a, b) \subset L . K$ is said to be free (with respect to f) if no iterate of a point of K belongs $K . K$ is said to be positive (with respect to f) in the sense of h if K is not free and whenever $x \in K$ and $f^{n}(x) \in K$ for some $n \geq 1$ then $x<_{h} f^{n}(x)$.

Let (X, d) be a metric space and $f \in C^{0}(X) . f$ is said to be transitive if for any non-empty open subsets U and V of X there exists $k \in \mathbb{N}$ such that $f^{k}(U) \cap V$ is nonempty. f is said to be Chaotic in the sense of Deavney if it satisfies the following three conditions: (i) f is transitive; (ii) $\overline{P(f)}=X$; (iii) f is sensitive dependence on initial conditions. It is interesting to remark that sensitivity dependence on initial conditions is widely understood as being the central idea in chaos. However, it has been proved that (i) and (ii) implies (iii)(see [1]). Also, for interval maps, M. Vellekoop and R. Berglund([10]) proved that f is transitive if and only if f is chaotic in the sense of Devaney. For continuous maps f of the circle, it was shown by E.M. Coven and I. Mulvey that

Theorem A.([3]) For continuous maps of the circle with periodic points, the centre is closure of the periodic points and the depth of the centre is at most two.

In this paper, we will have a further discussion about on relationship between transitivity and periodic points of graph maps. Our results generalize several corresponding results given in [3] and [10].

Theorem 2.8. Let G be a graph and $f \in C^{0}(G)$. If $\overline{R(f)}=G$ and $P(f) \neq \emptyset$, then $\overline{P(f)}=G$.

Theorem 2.9. Let G be a graph and $f \in C^{0}(G)$. If f is transitive and $P(f) \neq \emptyset$, then the centre is $\overline{P(f)}$ and $\overline{P(f)}=G$.

2 Transitive graph maps with $\overline{P(f)} \neq \emptyset$

Lemma 2.1. Let G be a graph, $f \in C^{0}(G), L$ be a connected component of $G-D(G)$ and h be a homeomorphism from L to the open interval $(0,1) \subset R$. If $K=(a, b) \subset L$ is positive in the sense of h, then for every $x \in K$, there exists $y \in K$ and $n \geq 1$ such that $f^{n}(y) \in K$ and $f^{n}(y)>_{h} x$.

Proof. Without loss of generality, we suppose that $a<_{h} b$. Choose any $x_{0} \in K$ such that $f^{n}\left(x_{0}\right) \in K$ for some $n \geq 1$ and $x_{0}<_{h} f^{n}\left(x_{0}\right)$. We have $f^{n}(b) \notin K$ and $\left(a, x_{0}\right) \cap f^{n}\left(\left[x_{0}, b\right]\right)=\emptyset$ since K is positive in the sense of h. Since $f^{n}\left(\left[x_{0}, b\right]\right)$ is connected, we have $\left(f^{n}\left(x_{0}\right), b\right) \subset f^{n}\left(\left[x_{0}, b\right]\right)$. Thus for every $x \in K$, there exists $y \in K$ and $n \geq 1$ such that $f^{n}(y) \in K$ and $f^{n}(y)>_{h} x$. This completes Lemma 2.1.

Lemma 2.2. Let G be a graph, $f \in C^{0}(G)$, L be a connected component of $G-D(G)$ and h be a homeomorphism from L to the open interval $(0,1) \subset R$. If $K=(a, b) \subset L$ is positive in the sense of $h, a<_{h} x<_{h} y<_{h} b$ and $n \in \mathbb{N}$, then there is $j \in \mathbb{N}$ such that $f^{i n}(x) \notin(a, y]$.

The proof of Lemma 2.2 is easy, so we omitted it.
Lemma 2.3. Let Y be a connected subset of G. Then $|\partial Y| \leq 3|D(G)|$.
Proof. It is obvious $|\partial Y \cap D(G)| \leq|D(G)|$. Set $\mathfrak{L}=\{L: L$ be a connected component of $G-D(G)\}$. Then $|\partial Y \cap L| \leq 2$ for each $L \in \mathfrak{L}$. Since $|\mathfrak{L}| \leq|D(G)|$. Thus $|\partial Y| \leq 3|D(G)|$.

Proposition 2.4. Let G be a graph, $f \in C^{0}(G)$, L be a connected component of $G-D(G)$ and h be a homeomorphism from L to the open interval $(0,1) \subset R$. If $K=$
$(a, b) \subset L$ is positive in the sense of $h, a<_{h} c<_{h} b$, and for each $x \in(c, b)$, there is $n \geq 1$ such that $f^{n}([c, x]) \cap[c, x] \neq \emptyset$, then c is an eventually periodic point.

Proof. Since K is positive in the sense of h, there is an $x_{0} \in(c, b)$ such that no iterate of c lies in $\left(a, x_{0}\right]$.

Claim. For all $j, k \in \mathbb{N}, f^{j}(c) \notin \operatorname{int}\left(f^{k}\left(\left[c, x_{0}\right]\right)\right)$ if $f^{j}(c) \notin V(G)$.
Proof of Claim. Assume that there are $j, k \in \mathbb{N}$ such that $f^{j}(c) \in \operatorname{int}\left(f^{k}\left(\left[c, x_{0}\right]\right)\right)$ and $f^{j}(c) \notin V(G)$. Then, there exist z and z^{\prime} in K such that $c<_{h} z<_{h} z^{\prime}<_{h} x_{0}$ and $f^{j}(c) \in \operatorname{int}\left(f^{k}\left(\left[z, z^{\prime}\right]\right)\right)$. It follows from the continuity of f that there exists $y \in(c, z)$ such that $f^{i}([c, y]) \cap\left[c, x_{0}\right]=\emptyset$ for all $1 \leq i \leq j$ and $f^{j}([c, y]) \subset \operatorname{int}\left(f^{k}\left(\left[z, z^{\prime}\right]\right)\right)$. On the other hand, by the hypothesis, there is $n \in \mathbb{N}$ and w such that $c<_{h} w<_{h} f^{n}(w)<_{h} y$. Then $n>j$. Since $f^{j}(w) \in \operatorname{int}\left(f^{k}\left(\left[z, z^{\prime}\right]\right)\right)$, there is a $u \in\left[z, z^{\prime}\right]$ such that $f^{k}(u)=f^{n}(w)$. Therefore, $f^{n-j+k}(u)=f^{n-j}\left(f^{k}(u)\right)=f^{n}(w) \in[c, y]$, which contradicts the fact that K is positive in the sense of h. This establishes the claim.

It follows by the claim that, for all $j, k \in \mathbb{N}, f^{j}(c) \notin \operatorname{int}\left(f^{k}\left(\left[c, x_{0}\right]\right)\right)$ if $f^{j}(c) \notin V(G)$. Let $n_{0}=4|D(G)|+2$ and $Y=f^{n_{0}}\left(\left[c, x_{0}\right]\right)$. Then, by Lemma 2.3, we have that $\mid \partial Y \cup$ $D(G)|\leq 4| D(G) \mid<n_{0}$. Since, for all $j, k \in \mathbb{N}, f^{j}(c) \notin \operatorname{int}\left(f^{k}\left(\left[c, x_{0}\right]\right)\right)$ if $f^{j}(c) \notin V(G)$, there is $1 \leq j<k \leq n_{0}$ such that $f^{j}(c)=f^{k}(c)$. Thus c is an an eventually periodic point of f.

Lemma 2.5. ([5, Theorem 3.1]) Let G be a graph and $f \in C^{0}(G)$. Then $\Omega(f \mid \Omega(f))=$ $\overline{R(f)}$ and the depth of f is at most 2.

Lemma 2.6.([7, Theorem 2.1]) Let G be a graph and $f \in C^{0}(G)$. Then $\overline{R(f)}=$ $R(f) \cup \overline{P(f)}$.

Lemma 2.7.([7, Lemma 2.2]) Let G be a graph, $A \subset G$ be an arc with $\partial A=\left\{w, w^{\prime}\right\}$, and $f \in C^{0}(G)$. Suppose that $\operatorname{Int}(A) \cap V(G)=\emptyset, A \cap P(f)=\emptyset$, and there exists $\{x, y\} \subset \operatorname{Int}(A)$ with $x \in(w, y)$ and $j, k \in \mathbb{N}$ such that $\left\{f^{j}(x), f^{k}(y)\right\} \subset[x, y]$.
(1) If $f^{j}(x) \in\left(x, f^{k}(y)\right]$, then $f^{j}(w) \in \operatorname{Int}(A)$.
(2) If $f^{k}(y) \in\left[x, f^{j}(x)\right)$, then $\left\{f^{j}(w), f^{j+k}(w)\right\} \cap \operatorname{Int}(A) \neq \emptyset$.

Theorem 2.8. Let G be a graph and $f \in C^{0}(G)$. If $\overline{R(f)}=G$ and $P(f) \neq \emptyset$, then $\overline{P(f)}=G$.

Proof. Suppose that $\overline{P(f)} \neq G$. Then $G-\overline{P(f)}$ is a nonempty open set. Let U be a connected component of $G-\overline{P(f)}$. Write $U_{0}=\bar{U}-U$. Then $U_{0}=\bar{U} \cap \overline{P(f)} \neq \emptyset$. It follows from Lemma 2.6 that $U \subset R(f)$. Thus there exists $n \in \mathbb{N}$ such that $f^{n}(U) \cap U \neq \emptyset$. Let $n_{0}=\min \left\{n \in \mathbb{N}: f^{n}(U) \cap U \neq \emptyset\right\}$. Obviously, $f^{n_{0}}(U) \cap U$ is connected, and
$f^{n_{0}}(U) \cap \overline{P(f)}=\emptyset$ (if a point of U gets mapped into $\overline{P(f)}$ then it is not recurrent). Thus, $f^{n_{0}}(U) \subset U$, and hence $f^{n_{0}}(\bar{U}) \subset \bar{U}$. This with $f^{n_{0}}(\overline{P(f)})=\overline{P(f)}$ implies $f^{n_{0}}\left(U_{0}\right) \subset U_{0}$. Noting that U_{0} is finite, we have $U_{0} \cap P(f) \neq \emptyset$. Let $v \in U_{0} \cap P(f)$ and m be the period of v. Write $g=f^{m n_{0}}$. Then

$$
v \in \operatorname{Fix}(g), g(\bar{U}) \subset \bar{U}, g(U) \subset U, g\left(U_{0}\right) \subset U_{0} \text { and } U \subset R(g) .
$$

Choose an arc K in G and a connected component of $G-D(G)$ such that $v \in \partial K$, $K \subset \bar{L} \cap \bar{U}$ and $K \cap U_{0}=\{v\}$. Let h be a homeomorphism from L to open interval (0,1) such that $v>_{h} x$ for any $x \in \operatorname{Int}(K)$. Let $w \in \operatorname{Int}(K)$, write $\varepsilon_{0}=\frac{1}{2} d(v, w)$.

Case 1. There exists $0<\varepsilon_{1}<\varepsilon_{0}$ such that whenever $x \in \operatorname{Int}(K) \cap B\left(v, \varepsilon_{1}\right)$ and $f^{n}(x) \in \operatorname{Int}(K) \cap B\left(v, \varepsilon_{1}\right)$ for some $i \geq 1$ then $x<_{h} f^{i}(x)$. Write $K_{1}=\operatorname{Int}(K) \cap B\left(v, \varepsilon_{1}\right)$. Obviously, there exists $i \in \mathbb{N}$ such that $g^{i}\left(K_{1}\right) \cap K_{1} \neq \emptyset$ since $K_{1} \subset U \subset R(g)$. Thus, K_{1} is positive in the sense of h. Let $c \in K_{1}$. Since $c \in R(g)$ and K_{1} is positive in the sense of h, for any $x \in(c, v)$, there is $j \geq 1$ such that $g^{j}([c, x]) \cap[c, x] \neq \emptyset$. It follows from Proposition 2.4 that c is an eventually periodic point, which contradicts $c \in R(g)-\overline{P(g)}$.

Case 2. There exists $0<\varepsilon_{2}<\varepsilon_{0}$ such that whenever $x \in \operatorname{Int}(K) \cap B\left(v, \varepsilon_{2}\right)$ and $f^{n}(x) \in \operatorname{Int}(K) \cap B\left(v, \varepsilon_{2}\right)$ for some $i \geq 1$ then $x>_{h} f^{i}(x)$. Write $K_{2}=\operatorname{Int}(K) \cap B\left(v, \varepsilon_{2}\right)$. Obviously, there exists $i \in \mathbb{N}$ such that $g^{i}\left(K_{2}\right) \cap K_{2} \neq \emptyset$ since $K_{2} \subset U \subset R(g)$. Let $s(y)=1-y$ for any $y \in(0,1)$ and $h_{1}=h \circ s$. Then h_{1} is a homeomorphism from L to the open interval $(0,1)$ and K_{2} is positive in the sense of h_{1}. Given any $c \in K_{2}$. Since $c \in R(g)$ and K_{2} is positive in the sense of h_{1}, for any $x \in K_{2}$ with $x>_{h_{1}} c$, there is an $j \geq 1$ such that $g^{j}([c, x]) \cap[c, x] \neq \emptyset$. It follows from Proposition 2.4 that c is an eventually periodic point, which contradicts $c \in R(g)-\overline{P(g)}$.

Case 3. There exist $x, y \in \operatorname{Int}(K)$ and $j, k \in \mathbb{N}$ such that $x>_{h} g^{i}(x)>_{h} g^{k}(y)>_{h} y$. It follows by Lemma 2.7 that $g^{j}(c) \in(c, y]$ for any $c \in(x, v)$. By the continuity of g^{j}, we have $g^{j}[v, x] \supset[v, x]$. Thus there exist $x_{0}=x, x_{1}, x_{2}, \cdots \in(v, x]$ such that $x_{i} \in\left(x_{i+1}, x_{i-1}\right)$ and $g^{j}\left(x_{i}\right)=x_{i-1}$ for each $i \in \mathbb{N}$. Since $x \in R(g)=R\left(g^{j}\right)$, there exists $l \in \mathbb{N}$ with $l>3$ such that $g^{l j}(x) \in\left(x_{1}, g^{j}(x)\right)$. Let $a=x_{l-2}, b=g^{j}(x)$ and $d=g^{l j}(x)$. Then $g^{(l-1) j}(a)=b$ and $g^{(l-1) j}(b)=d$. It follows by $v \notin g^{(l-1) j}([a, b])$ that $g^{(l-1) j}([a, b]) \supset[b, d]$. Therefore, $[b, d] \cap \operatorname{Fix}\left(g^{(l-1) j}\right) \neq \emptyset$, which contradicts $U \subset G-\overline{P(f)}=G-\overline{P(g)}$.

Thus, by Case 1-3, we have $\overline{P(f)}=G$. The proof of Theorem 2.8 is complete.
By Theorem 2.8, we have the following Theorem 2.9, which generalizes several corresponding results given in [3] and [10].

Theorem 2.9. Let G be a graph and $f \in C^{0}(G)$. If f is transitive and $P(f) \neq \emptyset$, then $\overline{P(f)}=G$.

Proof. Since f is transitive, we have $\Omega(f)=G$. Thus $\Omega(f \mid \Omega(f))=G$. It follows by Lemma 2.5 that $\overline{R(f)}=G$. Since $P(f) \neq \emptyset$, by Theorem 2.8, we have $\overline{P(f)}=G$.

Combine Theorem 2.9 and [6, Corollary 5.3], we have
Corollary 2.10. Let G be a graph and $f \in C^{0}(G)$ be transitive.
(1) If $P(f) \neq \emptyset$ then f is chaotic in the sense of Devaney.
(2) If $P(f)=\emptyset$ then f is minimal and f is conjugate to an irrational rotation on the unit circle.

Corollary 2.11. Let G be a graph with $\operatorname{Br}(G) \neq \emptyset$ and $f \in C^{0}(G)$. Then $\overline{R(f)}=G$ if and only if $\overline{P(f)}=G$.

References

[1] J. Banks, J. Brooks, G. Cairns and P. Stacey. On the Devaney,s definition of chaos. Am Math Monthly 99(1992) 332C4
[2] L. Block and W. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer-Verlag, New York, 1992.
[3] E. Coven and I. Mulvey, Transitivity and the centre for maps of the circle. Ergod. Th. Dynam. Sys. 6(1986) 1-8.
[4] J. Mai, Pointwise recurrent graph maps, Ergod. Th. Dynam. Sys. 25(2005) 629-637.
[5] J. Mai and T. Sun, Non-wandering points and the depth for graph maps, Science in China Series A: Mathematics, 50(2007), No. 12, 1808-1814.
[6] J. Mai and S. Shao, The structure of graph maps without periodic points, Topology and its Applications, 154(2007), No. 14, 2714-2728.
[7] J. Mai and S. Shao, $\bar{R}=R \cup \bar{P}$ for graph maps, J. Math. Anal. Appl. 350 (2009) 9-11.
[8] J. Mai and X. Ye, The structure of pointwise recurrent maps having the pseudo orbit tracing property, Nagoya. Math. J. 166(2002) 83-92.
[9] J. Munkres, Topology, Prentice-Hall, Englewood Cliffs, New Jersey, 1975.
[10] M. Vellekoop and R. Berglund, On intervals, transitivity=chaos. Amer. Math. Monthly, 101 (1994) 353-355.

DIFFERENTIATION FOLLOWED BY COMPOSITION FROM BLOCH SPACES TO Q_{p} SPACES

Xiangling Zhu

Abstract

Suppose that φ is an analytic self-map of the unit disk \mathbb{D}. The boundedness, compactness and the weak compactness of the operator $C_{\varphi} D f=f^{\prime}(\varphi)$ from Bloch spaces to Q_{p} spaces on \mathbb{D} are studied.

1. Introduction

Let \mathbb{D} be the unit disk of complex plane \mathbb{C}, and $H(\mathbb{D})$ the class of functions analytic in \mathbb{D}. Recall that an $f \in H(\mathbb{D})$ is said to belong to the Bloch space \mathcal{B} if

$$
\|f\|_{b}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

With the norm $\|f\|_{\mathcal{B}}=|f(0)|+\|f\|_{b}, \mathcal{B}$ is a Banach space. Let \mathcal{B}_{0} be the space which consists of all $f \in \mathcal{B}$ satisfying $\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \rightarrow 0$ as $|z| \rightarrow 1$. This space is called the little Bloch space.

For $a \in \mathbb{D}$, let $g(z, a)=\log \frac{1}{\left|\sigma_{a}(z)\right|}$ be the Green function in \mathbb{D}, where $\sigma_{a}(z)=$ $(a-z) /(1-\bar{a} z)$. For $p \geq 0, f \in H(\mathbb{D})$, we say that f belongs to the space Q_{p} if

$$
\begin{equation*}
\|f\|_{Q_{p}}^{2}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)<\infty \tag{1}
\end{equation*}
$$

where $d A$ is the normalized Lebesgue area measure on \mathbb{D}. The space $Q_{p, 0}$ $(0<p<\infty)$ consists of analytic functions f on \mathbb{D} for which

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)=0 \tag{2}
\end{equation*}
$$

$Q_{p, 0}$ is a closed subspace of Q_{p} and $Q_{p} \subset \mathcal{B} . Q_{p}$ is a Banach space under the norm $\|f\|_{p}=|f(0)|+\|f\|_{Q_{p}}$. If $p=1, Q_{p}=B M O A$. When $p=0$, then Q_{p} is the Dirichlet space \mathcal{D}. If $p>1, Q_{p}=\mathcal{B}$. For more on Q_{p} spaces, see [26].

Let φ be an analytic self-map of \mathbb{D}. The composition operator C_{φ} with the symbol φ is defined by $C_{\varphi} f=f \circ \varphi$ for $f \in H(\mathbb{D})$ (see [3]).

2000 Mathematics Subject Classification. Primary 47B38, Secondary 46E15.
Key words. Composition operator, differentiation operator, Bloch space, Q_{p} space.

Let D be the differentiation operator. The operator $C_{\varphi} D$ is defined by

$$
\begin{equation*}
C_{\varphi} D f=f^{\prime}(\varphi), \quad f \in H(\mathbb{D}) . \tag{3}
\end{equation*}
$$

The operator $C_{\varphi} D$, and other products of compositions and differentiation operators have been studied in $[4,8,9,12,14,22,23,30]$. For some other recently introduced products see $[10,11,18,21]$. Composition and weighted composition operators between Bloch, Q_{p} and some other spaces of analytic functions, have been studied, e.g., in $[2,5,7,13,16,19,20,24,25,27]$.

Let $L: X \rightarrow Y$ be a linear operator, where X and Y are Banach spaces. Then L is said to be weakly compact if for every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $X,\left(L\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ has a weakly convergent subsequence, i.e., there is a subsequence $\left(x_{n_{m}}\right)_{m \in \mathbb{N}}$ such that for every $\Lambda \in Y^{*}, \Lambda\left(L\left(x_{n_{m}}\right)\right)_{m \in \mathbb{N}}$ converges.

Here we study the boundedness, compactness and weak compactness of the operator $C_{\varphi} D$ from Bloch spaces \mathcal{B} or \mathcal{B}_{0} to the space Q_{p}.

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation $A \asymp B$ means that there is a positive constant C such that $B / C \leq A \leq C B$.

2. Main results and proofs

Theorem 1. Let $p \in[0, \infty)$ and φ be an analytic self-map of \mathbb{D}. Then the following statements are equivalent:
(i) $C_{\varphi} D: \mathcal{B} \rightarrow Q_{p}$ is bounded;
(ii) $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p}$ is bounded;
(iii)

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{4}} g^{p}(z, a) d A(z)<\infty \tag{4}
\end{equation*}
$$

Proof. $(i) \Rightarrow(i i)$. This implication is obvious.
$(i i) \Rightarrow(i i i)$. Let $f \in \mathcal{B}$. Set $f_{s}(z)=f(s z)$ for $0<s<1$, then we see that $f_{s} \in \mathcal{B}_{0}$ and $\left\|f_{s}\right\|_{b} \leq\|f\|_{b}$. Thus, by the assumption for all $f \in \mathcal{B}$ we have

$$
\begin{equation*}
\left\|C_{\varphi} D f_{s}\right\|_{Q_{p}} \leq\left\|C_{\varphi} D\right\|\left\|f_{s}\right\|_{b} \leq\left\|C_{\varphi} D\right\|\|f\|_{b} \tag{5}
\end{equation*}
$$

By [15] we know that there exist two Bloch functions f_{1} and f_{2} satisfying

$$
\begin{equation*}
\frac{1}{1-|z|^{2}} \leq\left|f_{1}^{\prime}(z)\right|+\left|f_{2}^{\prime}(z)\right|, \quad z \in \mathbb{D} \tag{6}
\end{equation*}
$$

We choose $h_{1}(z)=f_{1}(z)-z f_{1}^{\prime}(0), \quad h_{2}(z)=f_{2}(z)-z f_{2}^{\prime}(0)$. Since (see [29])

$$
\begin{equation*}
\left(1-|z|^{2}\right)^{2}\left|f^{\prime \prime}(z)\right|+\left|f^{\prime}(0)\right| \asymp\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \tag{7}
\end{equation*}
$$

it follows that $h_{1}, h_{2} \in \mathcal{B}$ and

$$
\begin{equation*}
\left(1-|z|^{2}\right)^{-2} \leq\left|h_{1}^{\prime \prime}(z)\right|+\left|h_{2}^{\prime \prime}(z)\right|, \quad z \in \mathbb{D} \tag{8}
\end{equation*}
$$

Replacing f in (5) by h_{1} and h_{2} respectively, then

$$
\begin{align*}
& \int_{\mathbb{D}} \frac{\left|s \varphi^{\prime}(z)\right|^{2}}{\left(1-|s \varphi(z)|^{2}\right)^{4}} g^{p}(z, a) d A(z) \\
\leq & 2 \int_{\mathbb{D}}\left(\left|h_{1}^{\prime \prime}(s \varphi(z))\right|^{2}+\left|h_{2}^{\prime \prime}(s \varphi(z))\right|^{2}\right)\left|s \varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) \\
= & 2 \int_{\mathbb{D}}\left(\left|\left(h_{1 s}^{\prime} \circ \varphi\right)^{\prime}(z)\right|^{2}+\left|\left(h_{2 s}^{\prime} \circ \varphi\right)^{\prime}(z)\right|^{2}\right) g^{p}(z, a) d A(z) \\
= & 2\left\|C_{\varphi} D h_{1 s}\right\|_{Q_{p}}^{2}+2\left\|C_{\varphi} D h_{2 s}\right\|_{Q_{p}}^{2} \leq\left\|C_{\varphi} D\right\|^{2}\left(\left\|h_{1}\right\|_{\mathcal{B}}^{2}+\left\|h_{2}\right\|_{\mathcal{B}}^{2}\right)<\infty \tag{9}
\end{align*}
$$

for all $a \in \mathbb{D}$ and $s \in(0,1)$. This estimate and Fatou's Lemma give (4).
(iii) $\Rightarrow($ i). For any $f \in \mathcal{B}$, by the following well-known estimate ($1-$ $\left.|z|^{2}\right)^{2}\left|f^{\prime \prime}(z)\right| \leq C\|f\|_{\mathcal{B}}$, (see, e.g., [29]) the implication follows.

The following lemma is proved as Proposition 3.11 in [3] or Lemma 3 in [17]. Lemma 1. Let $p \in[0, \infty)$ and φ be an analytic self-map of \mathbb{D}. Then $C_{\varphi} D: \mathcal{B} \rightarrow$ Q_{p} is compact if and only if for every bounded sequence $\left\{f_{n}\right\}$ in \mathcal{B} converging to 0 uniformly on compacts of \mathbb{D} as $n \rightarrow \infty, \lim _{n \rightarrow \infty}\left\|C_{\varphi} D f_{n}\right\|_{p}=0$.
Lemma 2. Let $p \geq 0$ and φ be an analytic self-map of \mathbb{D}. If $C_{\varphi} D: \mathcal{B}\left(\mathcal{B}_{0}\right) \rightarrow Q_{p}$ is compact, then for any $\epsilon>0$ there exists a $\delta \in(0,1)$, such that for all f in $\mathbb{B}_{\mathcal{B}}\left(\right.$ or $\left.\mathbb{B}_{\mathcal{B}_{0}}\right)$, the unit ball of $\mathcal{B}\left(\right.$ or $\left.\mathcal{B}_{0}\right)$, and $\delta<r<1$ holds

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}\left|f^{\prime \prime}(\varphi(z))\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)<\epsilon . \tag{10}
\end{equation*}
$$

Proof. We only give the proof for \mathcal{B}_{0}, since the proof for \mathcal{B} is similar. For $f \in \mathbb{B}_{\mathcal{B}_{0}}$, let $f_{s}(z)=f(s z), 0<s<1$. Then $f_{s} \in \mathbb{B}_{\mathcal{B}_{0}}$ and $f_{s} \rightarrow f$ uniformly on compact subsets of \mathbb{D} as $s \rightarrow 1$. Since $C_{\varphi} D$ is compact,

$$
\left\|C_{\varphi} D f_{s}-C_{\varphi} D f\right\|_{Q_{p}} \rightarrow 0 \quad \text { as } \quad s \rightarrow 1
$$

That is, for given $\epsilon>0$ there exists $s \in(0,1)$ such that

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f_{s}^{\prime \prime}(\varphi(z))-f^{\prime \prime}(\varphi(z))\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)<\epsilon . \tag{11}
\end{equation*}
$$

For $0<r<1$, using the triangle inequality and (11),
$\sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}\left|f^{\prime \prime}(\varphi(z))\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) \leq \epsilon+\left\|f_{s}^{\prime \prime}\right\|_{\infty}^{2} \sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)$.
Set $f_{n}(z)=z^{n} \in \mathcal{B}_{0}$. Since $C_{\varphi} D$ is compact, $\lim _{n \rightarrow \infty} n^{2}\left\|\varphi^{n-1}\right\|_{p}=0$. Thus, for given $\epsilon>0$ and $\left\|f_{s}^{\prime \prime}\right\|_{\infty}^{2}>0$ there exists an $N \in \mathbb{N}$ such that for $n \geq N$,

$$
\left\|f_{s}^{\prime \prime}\right\|_{\infty}^{2} \cdot \sup _{a \in \mathbb{D}} \int_{\mathbb{D}} n^{2}(n-1)^{2}\left|\varphi^{n-2}(z)\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)<\epsilon
$$

Hence, for $0<r<1$,

$$
\begin{align*}
& N^{2}(N-1)^{2} \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|\varphi^{N-2}(z)\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) \\
\geq & N^{2}(N-1)^{2} r^{2(N-2)} \sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) . \tag{12}
\end{align*}
$$

Therefore, for $r \geq[N(N-1)]^{-\frac{1}{N-2}}$ we have

$$
\left\|f_{s}^{\prime \prime}\right\|_{\infty}^{2} \cdot \sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)<\epsilon
$$

Hence for any $\epsilon>0$ and $f \in \mathbb{B}_{\mathcal{B}_{0}}$ there is a $\delta=\delta(\epsilon, f)$ such that for $\delta<r<1$

$$
\sup _{a \in \mathbb{\mathbb { D }}} \int_{|\varphi(z)|>r}\left|f^{\prime \prime}(\varphi(z))\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)<\epsilon
$$

The rest of the proof can be completed by using the finite covering property of the set $C_{\varphi} D\left(\mathbb{B}_{\mathcal{B}_{0}}\right)$ which is relatively compact in Q_{p} (see, e.g., $[2,25]$).

The proof of the next lemma is similar to Lemma 4 in [10], so is omitted.
Lemma 3. Assume $X=Q_{p}$ or $Q_{p, 0}$ and φ is an analytic self-map of \mathbb{D}. Then $C_{\varphi} D: \mathcal{B}_{0} \rightarrow X$ is weakly compact if and only if $C_{\varphi} D: \mathcal{B}_{0} \rightarrow X$ is compact.
Theorem 2. Let $p \in[0, \infty)$ and φ be an analytic self-map of \mathbb{D}. Then the following statements are equivalent:
(i) $C_{\varphi} D: \mathcal{B} \rightarrow Q_{p}$ is compact;
(ii) $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p}$ is compact;
(iii) $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p}$ is weakly compact;
(iv) $\varphi \in Q_{p}$ and

$$
\begin{equation*}
\lim _{r \rightarrow 1} \sup _{a \in \mathbb{D}} \int_{|\varphi|>r} \frac{\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{4}} g^{p}(z, a) d A(z)=0 \tag{13}
\end{equation*}
$$

Proof. $(i) \Rightarrow(i i)$. It is obvious.
$(i i) \Leftrightarrow(i i i)$. It follows from Lemma 3 .
$(i i) \Rightarrow(i v)$. Assume $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p}$ is compact. Choosing $f=\frac{1}{2} z^{2} \in \mathcal{B}_{0}$, we obtain $\varphi \in Q_{p}$. Let $f(z)=\frac{1}{4} \sum_{k=1}^{\infty} z^{2^{k}}$. From [28], we see that $f \in \mathbb{B}_{\mathcal{B}}$. Choose a sequence $\left\{\lambda_{n}\right\}$ in \mathbb{D} which converges to 1 as $n \rightarrow \infty$, and let $f_{n}(z)=$ $f\left(\lambda_{n} z\right)$ for $n \in \mathbb{N}$. Then, $f_{n} \in \mathbb{B}_{\mathcal{B}_{0}}$ for all $n \in \mathbb{N}$ and $\left\|f_{n}\right\|_{\mathcal{B}} \leq C$. Let $f_{n, \theta}(z)=f_{n}\left(e^{i \theta} z\right)$. Then $f_{n, \theta} \in \mathbb{B}_{\mathcal{B}_{0}}$. Replace f by $f_{n, \theta}$ in (10) and then integrate both sides with respect to θ. By Fubini's Theorem, Parseval's identity and the inequality $2^{k}\left(2^{k}-1\right) \geq\left(2^{k}-2\right)^{2}(k>2)$, we obtain

$$
\begin{align*}
\epsilon & \geq \frac{1}{2 \pi} \int_{|\varphi(z)|>r}\left(\int_{0}^{2 \pi}\left|f_{n}^{\prime \prime}\left(e^{i \theta} \varphi(z)\right)\right|^{2} d \theta\right)\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) \\
& \left.=\frac{1}{32 \pi} \int_{|\varphi(z)|>r} \int_{0}^{2 \pi} \right\rvert\, \sum_{k=1}^{\infty} 2^{k}\left(2^{k}-1\right)\left(\lambda_{n} \varphi(z)\right)^{2^{k}-2} e^{\left.\left.i \theta\left(2^{k}-2\right)\right|^{2} d \theta\left|\lambda_{n}\right|^{4} \varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)} \\
& =\frac{1}{16} \int_{|\varphi(z)|>r}\left(\sum_{k=1}^{\infty}\left[2^{k}\left(2^{k}-1\right)\right]^{2}\left|\lambda_{n} \varphi(z)\right|^{2\left(2^{k}-2\right)}\right)\left|\lambda_{n}\right|^{4}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) \\
& \geq \frac{1}{16} \int_{|\varphi(z)|>r}\left(\sum_{k=1}^{\infty}\left(2^{k}-2\right)^{4}\left|\lambda_{n} \varphi(z)\right|^{2\left(2^{k}-2\right)}\right)\left|\lambda_{n}\right|^{4}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) .(14) \tag{14}
\end{align*}
$$

Let $F(r)=\sum_{k=1}^{\infty}\left(2^{k}-2\right)^{4} r^{2^{k+1}-4}$. Since $\log r \geq 2(r-1), r \in\left[\frac{1}{2}, 1\right)$, we have $r^{2^{k+1}-4} \geq \exp \left\{\left(2^{k+2}-8\right)(r-1)\right\}, r \in[1 / 2,1)$, so that

$$
\begin{align*}
F(r) & \geq \sum_{k=1}^{\infty}\left(2^{k}-2\right)^{4} \exp \left\{\left(2^{k+2}-8\right)(r-1)\right\} \\
& =(1-r)^{-4} \sum_{k=1}^{\infty}\left[\left(2^{k}-2\right)(1-r)\right]^{4} \exp \left\{-4\left(2^{k}-2\right)(1-r)\right\} \tag{15}
\end{align*}
$$

Let $t=\left(2^{k}-2\right)(1-r)$. Then the general term in series (15) is $s(t)=t^{4} e^{-4 t}$. It is easy to see that $\sup _{t>0} t^{4} e^{-4 t}=e^{-4}$ is assumed for $t=1$ and $s(t)=\frac{1}{8} e^{-2}$. For $r \in[3 / 4,1)$, we find k so that $\frac{1}{2} \leq\left(2^{k}-2\right)(1-r) \leq 1$. For this k, we have

$$
\left[\left(2^{k}-2\right)(1-r)\right]^{4} \exp \left\{-4\left(\left(2^{k}-2\right)(1-r)\right)\right\} \geq \frac{e^{-2}}{8}
$$

Hence

$$
F(r) \geq \frac{e^{-2}}{8}(1-r)^{-4}, \quad r \in\left[\frac{3}{4}, 1\right)
$$

Therefore, for $\delta<r<1$ and for sufficient large n, (15) gives

$$
\sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r} \frac{\left|\lambda_{n}\right|^{4}\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-\left|\lambda_{n} \varphi(z)\right|^{2}\right)^{4}} g^{p}(z, a) d A(z)<C \epsilon
$$

By Fatou's Lemma we get (13).
$(i v) \Rightarrow(i)$. Assume that $\varphi \in Q_{p}$ and (13) holds. Let $\left\{f_{n}\right\}$ be a sequence in $\mathbb{B}_{\mathcal{B}}$ which converges to 0 uniformly on compact subsets of \mathbb{D}. We need to show that $\left\{C_{\varphi} f_{n}\right\} \rightarrow 0$ in Q_{p} space. From (13) for given $\epsilon>0$ there is an $r \in(0,1)$, such that

$$
\sup _{a \in \mathbb{D}} \int_{|\varphi(z)|>r} \frac{\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{4}} g^{p}(z, a) d A(z)<\epsilon .
$$

Therefore

$$
\begin{align*}
\int_{\mathbb{D}}\left|\left(C_{\varphi} D f_{n}\right)^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) & =\left\{\int_{|\varphi(z)| \leq r}+\int_{|\varphi(z)|>r}\right\}\left|f_{n}^{\prime \prime}(\varphi(z))\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) \\
& \leq \sup _{|w| \leq r}\left|f_{n}^{\prime \prime}(w)\right|^{2}\|\varphi\|_{Q_{p}}^{2}+\left\|f_{n}\right\|_{\mathcal{B}}^{2} \epsilon . \tag{16}
\end{align*}
$$

Since $\left\{f_{n}\right\}$ converges to 0 uniformly on compacts of \mathbb{D}, we see that $\left\{f_{n}^{\prime}\right\}$ and $\left\{f_{n}^{\prime \prime}\right\}$ also converges to 0 uniformly on compacts of \mathbb{D} by Cauchy's estimates. Thus $\left\|C_{\varphi} D f_{n}\right\|_{Q_{p}} \rightarrow 0$ as $n \rightarrow \infty$, and consequently $\left\|C_{\varphi} D f_{n}\right\|_{p}=\left\|C_{\varphi} D f_{n}\right\|_{Q_{p}}+$ $\left|f_{n}^{\prime}(\varphi(0))\right| \rightarrow 0$, as $n \rightarrow \infty$. Hence $C_{\varphi} D: \mathcal{B} \rightarrow Q_{p}$ is compact by Lemma 1 .
Theorem 3. Let $p \in(0, \infty)$ and φ be an analytic self-map of \mathbb{D}. Then the following statements are equivalent:
(i) $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p, 0}$ is bounded;
(ii) $\varphi \in Q_{p, 0}$ and

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{4}} g^{p}(z, a) d A(z)<\infty \tag{17}
\end{equation*}
$$

Proof. (i) $\Rightarrow\left(\right.$ ii). If $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p, 0}$ is bounded, then $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p}$ is bounded. By Theorem 1, (17) holds. Let $f(z)=\frac{1}{2} z^{2}$. Then it is easy to see that $\varphi \in Q_{p, 0}$.
(ii) $\Rightarrow(i)$. Assume that $\varphi \in Q_{p, 0}$ and (17) holds. By Theorem 1, we see that $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p}$ is bounded. To prove that $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p, 0}$ is bounded, it suffices to prove that $C_{\varphi} D f \in Q_{p, 0}$ for any $f \in \mathcal{B}_{0}$. Let $f \in \mathcal{B}_{0}$. For every $\epsilon>0$, we can choose $\rho \in(0,1)$ such that $\left|f^{\prime \prime}(w)\right|\left(1-|w|^{2}\right)<\epsilon$ for all $w \in \mathbb{D} \backslash \rho \overline{\mathbb{D}}$. Then,

$$
\begin{aligned}
& \lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left|\left(C_{\varphi} D f\right)^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) \\
= & \lim _{|a| \rightarrow 1}\left(\int_{|\varphi(z)|>\rho}+\int_{|\varphi(z)| \leq \rho}\right)\left|f^{\prime \prime}(\varphi(z))\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) \\
\leq & \epsilon \lim _{|a| \rightarrow 1} \int_{|\varphi(z)|>\rho} \frac{\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{4}} g^{p}(z, a) d A(z)+\frac{\|f\|_{\mathcal{B}}^{2}}{\left(1-\rho^{2}\right)^{4}} \lim _{|a| \rightarrow 1} \int_{|\varphi(z)| \leq \rho}\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) .
\end{aligned}
$$

From the above inequality and by conditions (ii), we get the desired result.
By modifying the proof of Theorem 4.2 of [13], we can prove the following result. We omit the details.
Lemma 4. Let $p \in(0, \infty)$ and φ be an analytic self-map of \mathbb{D}. Then $C_{\varphi} D$: $\mathcal{B} \rightarrow Q_{p, 0}$ is compact if and only if $C_{\varphi} D: \mathcal{B} \rightarrow Q_{p, 0}$ is bounded and

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} \sup _{\|f\|_{\mathcal{B}}<1} \int_{\mathbb{D}}\left|\left(C_{\varphi} D f\right)^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)=0 \tag{18}
\end{equation*}
$$

Theorem 4. Let $p \in(0, \infty)$ and φ be an analytic self-map of \mathbb{D}. Then the following statements are equivalent:
(i) $C_{\varphi} D: \mathcal{B} \rightarrow Q_{p, 0}$ is bounded;
(ii) $C_{\varphi} D: \mathcal{B} \rightarrow Q_{p, 0}$ is compact;
(iii) $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p, 0}$ is compact;
(iv) $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p, 0}$ is weakly compact;
(v) $C_{\varphi} D(\mathcal{B}) \subset Q_{p, 0}$;
(vi)

$$
\begin{equation*}
I=\lim _{|a| \rightarrow 1} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{4}} g^{p}(z, a) d A(z)=0 \tag{19}
\end{equation*}
$$

Proof. (iii) $\Leftrightarrow(i i) ;(i i) \Rightarrow(i) \Rightarrow(v)$ are obvious. Lemma 3 gives $(i i i) \Leftrightarrow(i v)$. $(v) \Rightarrow(v i)$. Assume that $C_{\varphi} D(\mathcal{B}) \subset Q_{p, 0}$. From the proof of Theorem 1, we can choose functions $g_{1}, g_{2} \in \mathcal{B}$ such that

$$
\left(1-|z|^{2}\right)^{-2} \leq\left|g_{1}^{\prime \prime}(z)\right|+\left|g_{2}^{\prime \prime}(z)\right|, \quad z \in \mathbb{D}
$$

Then we get $C_{\varphi} D g_{1}, C_{\varphi} D g_{2} \in Q_{p, 0}$. Therefore,

$$
I \leq 2 \lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left(\left|g_{1}^{\prime \prime}(\varphi(z))\right|^{2}+\left|g_{2}^{\prime \prime}(\varphi(z))\right|^{2}\right)\left|\varphi^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z)=0
$$

$(v i) \Rightarrow(i i)$. Assume that (19) holds. By Theorem 1 we see that $C_{\varphi} D: \mathcal{B} \rightarrow$ Q_{p} is bounded. We first prove that $C_{\varphi} D: \mathcal{B} \rightarrow Q_{p, 0}$ is bounded. It suffices to prove that $C_{\varphi} D f \in Q_{p, 0}$. For any $f \in \mathcal{B}$, we have

$$
\begin{equation*}
\int_{\mathbb{D}}\left|\left(C_{\varphi} D f\right)^{\prime}(z)\right|^{2} g^{p}(z, a) d A(z) \leq\|f\|_{\mathcal{B}}^{2} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{4}} g^{p}(z, a) d A(z) \tag{20}
\end{equation*}
$$

Therefore (19) together with (20) imply that $C_{\varphi} D: \mathcal{B} \rightarrow Q_{p, 0}$ is bounded. Fix $f \in \mathbb{B}_{\mathcal{B}}$, the righthand side of (20) tends to 0 , as $|a| \rightarrow 1$ by (19). From Lemma 4, we see that $C_{\varphi} D: \mathcal{B} \rightarrow Q_{p, 0}$ is compact.
$(i v) \Rightarrow(v)$. From Gantmacher's theorem we know that $C_{\varphi} D: \mathcal{B}_{0} \rightarrow Q_{p, 0}$ is weakly compact if and only if $\left(C_{\varphi} D\right)^{* *}\left(\left(\mathcal{B}_{0}\right)^{* *}\right) \subset Q_{p, 0}$. By adopting the proof of Theorem 2 in [6], and using the facts $\left(\left(Q_{p, 0}\right)^{*}\right)^{*}=Q_{p}(0<p<2$, see [1]), $\left(\left(\mathcal{B}_{0}\right)^{*}\right)^{*}=\mathcal{B}$ and $\left(A^{1}\right)^{*}=\mathcal{B}$ we get $\left(C_{\varphi} D\right)^{* *}(f)=C_{\varphi} D(f)$ for every $f \in \mathcal{B}$. Hence $\left(C_{\varphi} D\right)^{* *}\left(\left(\mathcal{B}_{0}\right)^{* *}\right)=C_{\varphi} D(\mathcal{B}) \subset Q_{p, 0}$, as desired.

References

[^35][5] S. Li, Composition operators on Q_{p} spaces, Georgian Math. J. 12 (3) (2005), 505-514.
[6] S. Li and S. Stević, Reimann-Stieltjies type integral operators on the unit ball in \mathbb{C}^{n}, Complex Variables Elliptic Functions, 52 (6) (2007), 495-517.
[7] S. Li and S. Stević, Weighted composition operators from Bergman-type spaces into Bloch spaces, Proc. Indian Acad. Sci. (Math. Sci.) 117 (3) (2007), 371-385.
[8] S. Li and S. Stević, Composition followed by differentiation between Bloch type spaces, J. Comput. Anal. Appl. 9 (2) (2007), 195-205.
[9] S. Li and S. Stević, Composition followed by differentiation from mixed norm spaces to α-Bloch spaces, Mat. Sb. 199 (12) (2008), 117-128.
[10] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), 1282-1295.
[11] S. Li and S. Stević, Products of Volterra type operator and composition operator from H^{∞} and Bloch spaces to the Zygmund space, J. Math. Anal. Appl. 345 (2008), 40-52.
[12] S. Li and S. Stević, Composition followed by differentiation between H^{∞} and α-Bloch spaces, Houston J. Math. 35 (1) (2009), 327-340.
[13] S. Makhmutov and M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, Bull. Austral. Math. Soc. 62 (2000), 1-19.
[14] S. Ohno, Products of composition and differentiation between Hardy spaces, Bull. Austra. Math. Soc. 73 (2) (2006), 235-243.
[15] W. Ramey and D. Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann. 291 (1991), 591-606.
[16] W. Smith and R. Zhao, Composition operators mapping into the Q_{p} spaces, Analysis, 17 (2-3) (1997), 239-263.
[17] S. Stević, Composition operators between H^{∞} and the α-Bloch spaces on the polydisc, Z. Anal. Anwendungen 25 (4) (2006), 457-466.
[18] S. Stević, Generalized composition operators from logarithmic Bloch spaces to mixednorm spaces, Util. Math. 77 (2008), 167-172.
[19] S. Stević, Norm of weighted composition operators from Bloch space to H_{μ}^{∞} on the unit ball, Ars. Combin. 88 (2008), 125-127.
[20] S. Stević, Norms of some operators from Bergman spaces to weighted and Bloch-type space, Util. Math. 76 (2008), 59-64.
[21] S. Stević, On a new operator from H^{∞} to the Bloch-type space on the unit ball, Util. Math. 77 (2008), 257-263.
[22] S. Stević, Norm and essential norm of composition followed by differentiation from α Bloch spaces to H_{μ}^{∞}, Appl. Math. Comput. 207 (2009), 225-229.
[23] S. Stević, Weighted differentiation composition operators from mixed-norm spaces to weighted type spaces, Appl. Math. Comput. (2009) doi:10.1016/j.amc.2009.01.061.
[24] K. J. Wirths and J. Xiao, Global integral criterla for composition operators, J. Math. Anal. Appl. 269 (2002), 702-715.
[25] H. Wulan, Compactness of the composition operators from the Bloch space \mathcal{B} to Q_{K} spaces, Acta. Math. Sinica, 21 (6) (2005), 1415-1424.
[26] J. Xiao, Holomorphic Q Classes, Springer LNM 1767, Berlin, 2001.
[27] J. Xiao, Composition operators associated with Bloch-type spaces, Complex Variables Theory Appl. 46 (2001), 109-121.
[28] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28 (1980), 31-36.
[29] K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (3) (1993), 1143-1177.
[30] X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers spaces, Integral Transform. Spec. Funct. 18 (3) (2007), 223-231.

Xiangling Zhu: Department of Mathematics, JiaYing University, 514015, Meizhou, GuangDong, China, E-mail address: jyuzxl@163.com

Some Theorems and Examples of Cone Banach Spaces

Thabet Abdeljawad, Duran Turkoglu, Muhib Abuloha
Department of Mathematics and Computer Science, Çankaya University, 06530 Ankara-Turkey. thabet@cankaya.edu.tr.
Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500, Ankara-Turkey.dturkoglu@gazi.edu.tr.
Department of Mathematics, Institute of Science and Technology, Gazi University, 06500, Ankara-Turkey. muhib2000@yahoo.com.

Abstract

In this paper, by defining a cone norm $\|\cdot\|_{A}$ on E over itself which behaves like the absolute value norm on R, we construct examples of cone Banach spaces. Namely, we define the m-Euclidian cone normed space E^{m}, E^{∞} and the space $C_{E}(S)$ of continuous functions in cones, to generalize the Banach spaces R^{m}, l^{∞} and $C[a, b]$, respectively. Some basic lemmas and theorems are also proved to help in the construction and in the proof of completeness of the above mentioned examples of cone normed spaces.

Key words: Cone metric space, cone normed space, cone Banach space, strongly minihedral cone, limit point in the sense of cone, A-property, generalized absolute value property, space E^{m}, space E^{∞}.

1 Introduction

In [1], cone metric spaces where introduced by means of a partial ordering $" \leq "$ on a Banach space $(E,\|\cdot\|)$ via a cone P, where some fixed point theorems were proved to generalize the corresponding ones in metric spaces. Then the authors of this article and in [4], introduced the notion of cone normed space, where continuous linear operators and bounded linear operators between cone normed spaces were studied too. Recently, in [2], the authors proved that cone metric spaces are topological spaces and accordingly cone normed spaces are also topological spaces. Moreover, compactness, boundedness, closedness, first countability were discussed there.

In this paper we enrich the theory of cone normed spaces by constructing new examples of cone Banach spaces via a cone norm on E which behaves like the absolute value in R.

2 Preliminaries on Cone Metric Spaces and Cone Normed Spaces

In this section we review some basic definitions and theorems in cone metric spaces and cone normed spaces. For more details, we may refer the reader to the articles [1],[2],[4].

Definition 1 [1] Let E be a real Banach space with norm $\|$.$\| and P$ a subset of E. Then, P is called a cone if and only if

P1) P is closed, nonempty and $P \neq\{0\}$
P2) $a, b \in R \quad a, b \geq 0 ; x, y \in P \Rightarrow a x+b y \in P$
P3) $x \in P$ and $-x \in P \Rightarrow x=0$
Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in \operatorname{IntP}$. (IntP \cong interior of P). The cone P is called normal if there is a number $K>0$, such that for all $x, y \in E$, $0 \leq x \leq y$ implies $\|x\| \leq K\|y\|$, where K is called the normal constant of P. The cone P is called regular if every increasing sequence which is bounded from above is convergent. Equivalently the cone P is called regular if every decreasing sequence which is bounded from below is convergent [1].
P is called minihedral cone if $\sup \{x, y\}$ exists for all $x, y \in E$, and strongly minihedral if every subset of E which is bounded from above has a supremum. A norm $\|$.$\| on E$ is called monotonic if $0 \leq x \leq y$ implies $\|x\| \leq\|y\|$, and semi-monotonic if $\|x\| \leq K\|y\|$ for some $K>0$ and all x and y such that $0 \leq x \leq y$ [3]. It is known in [3] that P is normal if and only if $\|$.$\| is semi-$ monotonic.

Throughout, we will assume that our cone P is strongly minihedral and hence every subset of E which is bounded below has infimum. Hence, In particular, every subset of P has infimum.

Example 2 Let $E=R^{2}$ and $P=\{(x, y): x \geq 0, y \geq 0\}$. It is easy to see that P is strongly minihedral in which clearly each bounded below subset of E has infimum.

Definition 3 [1] A cone metric space is an ordered pair (X, d), where X any
set and $d: X \times X \rightarrow E$ is a mapping satisfying:
d1) $0<d(x, y)$ for all $x, y \in X$, and $d(x, y)=0$ if and only if $x=y$.
d2) $d(x, y)=d(y, x)$ for all $x, y \in X$.
d3) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Definition 4 [1] Let (X, d) be a cone metric space, let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$. If for any $c \in E$ with $c \gg 0$, there is N such that for all $n>N, d\left(x_{n}, x\right) \ll c$ then $\left\{x_{n}\right\}$ is said to be convergent with limit x. [i.e. $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $\left.n \rightarrow \infty\right]$.

Definition 5 [1] Let (X, d) be a cone metric space, $\left\{x_{n}\right\}$ be a sequence in X, if for any $c \in E$ with $c \gg 0$, there is N such that for all $n, m>N$, $d\left(x_{m}, x_{n}\right) \ll c$ then $\left\{x_{n}\right\}$ is called a Cauchy sequence in X.

Definition 6 [4] A cone normed space is an ordered pair ($X,\|.\| \|_{c}$) where X is a vector space over R and $\|\cdot\|_{c}: X \rightarrow(E, P,\|\cdot\|)$ is a function satisfying:

C1) $0<\|x\|_{c}$, for all $x \in X$.
C2) $\|x\|_{c}=0$ if and only if $x=0$.
C3) $\|\alpha . x\|_{c}=|\alpha|\|x\|_{c}$, for each $x \in X$ and $\alpha \in R$.
C4) $\|x+y\|_{c} \leq\|x\|_{c}+\|y\|_{c}, x, y \in X$.
It is easy to see that each cone normed space is cone metric space. Namely, the cone metric is defined by $d(x, y)=\|x-y\|_{c}$.

According to what we mentioned above, we say that a sequence $\left\{x_{n}\right\}$ of a cone normed space $\left(X,\|\cdot\|_{c}\right)$ over $(E, P,\|\cdot\|)$ is said to be convergent, if there exists $x \in X$ such that for all $c \gg 0, c \in E$, there exists n_{0} such that $\left\|x_{n}-x\right\|_{c} \ll c$ for all $n \geq n_{0}$. Also, we say that $\left\{x_{n}\right\}$ is Cauchy if for each $c \gg 0$, there exists n_{0} such that $\left\|x_{m}-x_{n}\right\|_{c} \ll c$ for all $m, n \geq n_{0}$.

Definition 7 [4] A cone normed space $\left(X,\|\cdot\|_{c}\right)$ is called cone Banach space if every Cauchy sequence in X is convergent in X.

Lemma 8 Let $\left\{x_{n}\right\}$ be a Cauchy sequence in a cone metric space (X, d), such that $\lim _{n \rightarrow \infty} x_{k_{n}}=x$. Then $\lim _{n \rightarrow \infty} x_{n}=x$.

PROOF. Let $c \gg 0, c \in E$ be given. Then by assumption find n_{0} such that $d\left(x_{n}, x_{m}\right) \ll \frac{c}{2}, \forall m, n \geqslant n_{0}$ and $d\left(x_{k_{n}}, x\right) \ll \frac{c}{2}, \forall n \geqslant n_{0}$. Then for $n \geqslant n_{0}$,

$$
d\left(x_{n}, x\right) \leq d\left(x_{n}, x_{k_{n_{0}}}\right)+d\left(x_{k_{n_{0}}}, x\right) \ll \frac{c}{2}+\frac{c}{2}=c .
$$

Definition 9 [2] Let (X, d) be a cone metric space. Then $A \subset X$ is called bounded above if there exists $c \in E, c \gg 0$ such that $d(x, y) \leq c$, for all $x, y \in A$, and is called bounded if $\delta(A)=\sup \{d(x, y): x, y \in A\}$ exists in E. If the supremum does not exist we say that A is unbounded.

Lemma 10 Every Cauchy sequence of a cone metric space (X, d) over a strongly minihedral cone, is bounded.

PROOF. For some $c \gg 0$, find n_{0} such that $d\left(x_{n}, x_{m}\right) \leq c, \forall m, n \geqslant n_{0}$. Let $c^{\prime}=\sup \left\{c, d\left(x_{n}, x_{m}\right): m, n<n_{0}\right\}$ which exists, since P is strongly minihedral. That is, $d\left(x_{n}, x_{m}\right) \leq c^{\prime} \forall m, n$ and P is strongly minihedral implies that

$$
\begin{equation*}
\sup \left\{d\left(x_{n}, x_{m}\right): m, n \in \mathbb{N}\right\} \tag{1}
\end{equation*}
$$

exists, and hence, $\left\{x_{n}\right\}$ is bounded.

3 Main Results

Definition 11 [4] A cone norm $\|\cdot\|_{A}: E \rightarrow E$ is said to satisfy the A-property (absolute value property) if $:-c \leq a \leq c$ if and only if $\|a\|_{A} \leq c$, for all $a \in E$ and $c \gg 0$.

Example 12 [4] Let $E=R^{2}$ and $P=\left\{(x, y) \in R^{2}: x \geq 0, y \geq 0\right\}$. Then the norm $\|\cdot\|_{A}: E \rightarrow P$ defined by $\|(x, y)\|_{A}=(|x|,|y|)$, satisfies the $A-$ property. Indeed $a=(x, y)$, satisfies $\|a\|_{A} \leq c=\left(c_{1}, c_{2}\right), c_{1}, c_{2}>0$ if and only if $(|x|,|y|) \leq\left(c_{1}, c_{2}\right)$ if and only if $-c=\left(-c_{1},-c_{2}\right) \leq a=(x, y) \leq$ $\left(c_{1}, c_{2}\right)=c$.

Definition 13 A cone norm $\|.\|_{A}$ on E is said to have the generalized absolute value property if it satisfies:

A1) if there exists $k_{1}>0$ such that $0 \leq\|x\|_{A} \leq c, c \gg 0$ implies $-k_{1} c \leq x \leq k_{1} c \quad($ for all $x \in X)$.

A2) if there exists $-k_{1}>0$ such that $c \leq x \leq c, c \gg 0$ implies $0 \leq\|x\|_{A} \leq k_{2} c($ for all $x \in X)$.

Example 14 Let $E=R^{2}$ and $P=\left\{(x, y) \in R^{2}: x \geq 0, y \geq 0\right\}$. Define the cone norm $\|(x, y)\|_{A}=(\alpha|x|, \beta|y|)$, where $\alpha, \beta>0$. Then, one can easily show that the cone norm $\|\cdot\|_{A}$ has the generalized absolute value property.

It is clear that if the $\|\cdot\|_{A}$ on E satisfies the absolute value property, then it satisfies the generalized absolute value with $k_{1}=k_{2}=1$.

Definition 15 Let S be a subset of E. Then,
a) S is called " $\|\cdot\|^{\prime \prime}$ bounded if $\exists M>0$ such that $\|x\| \leq M$, for all $x \in S$.
b) S is called " \leq " bounded if $\exists c_{1}, c_{2} \in E$ such that $c_{1} \leq x \leq c_{2}$, for all $x \in S$.
c) S is called " $\|\cdot\|_{A}^{\prime \prime}$ bounded if $\sup _{x \in S}\|x\|_{A}$ exists in E.

Remark 16 Let S be a subset of E. Then
(1) If P is normal and $S \subset P$ then " $\leq^{\prime \prime}$ boundedness implies " $\|\cdot\| \|^{\prime \prime}$ boundedness.
(2) Assume $\|\cdot\|_{A}$ has the generalized absolute value property and P is strongly minihedral. If S is ${ }^{\prime \prime} \leq{ }^{\prime \prime}$ bounded then it is " $\|\cdot\|_{A}^{\prime \prime}$ bounded.
(3) If P is strongly minihedral then $S \subset E$ is " $\|\cdot\|_{A}^{\prime \prime}$ bounded if and only if $\exists c \gg 0$ such that $\|x\|_{A} \leq c$, for all $x \in S$.

Corollary 17 Every Cauchy sequence of a cone normed space ($X,\|.\|_{c}$) over a strongly minihedral cone is bounded. In particular every Cauchy sequence in $\left(E,\|\cdot\|_{A}\right)$ is ${ }^{\prime \prime}\|\cdot\|_{A}^{\prime \prime}$ bounded.

The proof follows by the Lemma 10 and that every cone normed space is cone metric space.

Definition 18 Let $\left\{x_{n}\right\}$ be an " \leq " bounded sequence of E. The assumptions on our cone make it possible to define the limit superior of $\left\{x_{n}\right\}$ by lim $\sup x_{n}=\inf _{n \geq 1}\left(\sup _{k \geq n} x_{k}\right)$ and the limit inferior of $\left\{x_{n}\right\}$ by $\lim \inf x_{n}=\sup _{n \geq 1}\left(\inf _{k \geq n} x_{k}\right)$.

From the above definition, it follows that $\left(\sup _{k \geq n} x_{k}\right) \downarrow_{n} \lim \sup x_{n}$ and $\left(\inf _{k \geq n} x_{k}\right) \uparrow^{n}$ $\lim \inf x_{n}$. Of course, the monotonicity is given by means of the partial ordering $" \leq$ "

Definition 19 An element $a \in E$ is said to be a limit point in the sense of cone (or cluster point) for a sequence $\left\{a_{n}\right\}$ in E, if for every $n \in \mathbb{N}$ and $c \gg 0$, there exists $k>n$ (depending on c and n) such that $\left\|x_{k}-x\right\|_{A} \ll c$.
P is called normal with constant α for the cone norm $\|\cdot\|_{A}$, if $0 \leq x \leq y$ implies $\|x\|_{A} \leq \alpha y$, for all $x, y \in E$.

Theorem 20 Every monotone increasing " \leq " bounded sequence $\left\{x_{n}\right\}$ of $\left(E, P,\|\cdot\|_{A}\right)$ where P is strongly minihedral and normal in the cone norm $\|\cdot\|_{A}$ with normal constant α is " $\|.\|_{A}^{\prime \prime}$ convergent (i.e. there exists $x \in E$ such that for each $c \gg 0$ there exists n_{0} such that $\left\|x_{k}-x\right\|_{A} \ll c$ for all $\left.k \geq n_{0}\right)$. Moreover, if every sequence in E which is bounded below has an infimum then every monotone decreasing " \leq "bounded sequence is also " $\|.\|_{A}^{\prime \prime}$ convergent.

PROOF. Assume $\left\{x_{i}\right\}$ is increasing and bounded. Hence, there exists $x \in E$ such that $x=\sup \left\{x_{i}: i \in \mathbb{N}\right\}$. We claim that $\lim _{i \rightarrow \infty} x_{i}=x$. To prove our claim let $c \gg 0$, then by the definition of supremum, there exists i_{0} such that $x-\frac{c}{\alpha}<x_{i_{0}} \leq x$. Thus, for $i>i_{0}$ we have $0 \leq x-x_{i} \leq x-x_{i_{0}}<\frac{c}{\alpha}$, so that by the normality of P in the cone norm $\|\cdot\|_{A}$ we have $\left\|x_{i}-x\right\|_{A} \leq \alpha \frac{c}{\alpha}=c$. Hence $\lim _{i \rightarrow \infty} x_{i}=x$. The proof of the other part can be done similarly, but by using the infimum definition.

Remark 21 One has to note that when P is " $\|$.$\| " normal with constant K$, then $x_{n} \longrightarrow x$ in $\left(E,\|\cdot\|_{A}\right)$ if and only if $\left\|\left\|x_{n}-x\right\|_{A}\right\| \longrightarrow 0$ as $n \longrightarrow \infty$. This is clear by Lemma 1 in [1] and that each cone normed space is cone metric space.

Theorem 22 Let $\left\{x_{n}\right\}$ be a sequence in $\left(E,\|\cdot\|_{A}\right)$. Then an element $x \in E$ is a limit point in the sense of cone metric space for $\left\{x_{n}\right\}$ if and only if there exists a subsequence $\left\{x_{k_{n}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{k_{n}}=x$.

PROOF. Assume x is a limit point of $\left\{x_{n}\right\}$. For some fixed $c_{0} \gg 0$, find k_{1} such that $\left\|x_{k_{1}}-x\right\|_{A} \ll c_{0}$. Now inductively, if $k_{1}, k_{2}, \ldots, k_{n}$ have been selected, then choose $k_{n+1}>k_{n}$ such that $\left\|x_{k_{n+1}}-x\right\|_{A} \ll \frac{c_{0}}{n+1}$. Thus, we construct a sequence of natural numbers $\left\{k_{n}\right\}$ such that $k_{1}<k_{2}<\ldots$ and $0 \ll\left\|x_{k_{n}}-x\right\|_{A} \ll \frac{c_{0}}{n} \in P$. Now, if $c \gg 0$ is arbitrary given (by Lemma 2 in [2] and see also the proof of Lemma 3 in [2]) find n_{0} such that $\frac{c_{0}}{n_{0}} \ll c$ and hence, for $n>n_{0}$, we have $\left\|x_{k_{n}}-x\right\|_{A} \ll \frac{c_{0}}{n} \ll \frac{c_{0}}{n_{0}} \ll c$. Therefore, $\lim _{m \rightarrow \infty} x_{k_{n}}=x$.

To prove the reverse implication consider a subsequence $\left\{x_{k_{n}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{k_{n}}=x$. Let m and $c \gg 0$ be given. It must be shown that there exists $p>m$ such that $\left\|x_{p}-x\right\|_{A} \ll c$. To this end, choose n_{0} such that $\left\|x_{k_{n}}-x\right\|_{A} \ll c$ if $n>n_{0}$. Pick $i_{0}>\max \left\{n_{0}, m\right\}$, and set $p=k_{i_{0}}$. But, then $p>m$ (since $\left.k_{i} \geq i\right)$, and $\left\|x_{p}-x\right\|_{A} \ll c$. The proof is finished.

Definition 23 Let X be a vector space. A function $\|\cdot\|_{k}: X \rightarrow R$ is called a k - norm if

$$
\begin{aligned}
& k 1) 0 \leq\|x\|_{k}<\infty \text { for all } x \in X . \\
& k 2)\|x\|_{k}=0 \text { if and only if } x=0 . \\
& k 3)\|\lambda x\|_{k}=|\lambda|\|x\|_{k} \text { for all } x \in X . \\
& k 4)\|x+y\|_{k} \leq k\left(\|x\|_{k}+\|y\|_{k}\right) \text { for all } x, y \in X .
\end{aligned}
$$

Example 24 If P is $\|\cdot\|_{k}$ normal with constant k and $\|\cdot\|_{c}$ is a cone norm on X over $(E, P,\|\cdot\|)$, then it can be shown easily that $\|\cdot\|_{k} \triangleq\| \| \cdot\left\|_{c}\right\|$ is a $k-$ norm with constant k.

It is well known that regular cones are normal, for the proof see for example [5]. Theorem 20 states conditions under which $\|\cdot\|_{A}$ - normality implies $\|\cdot\|_{A}$ - regularity. Namely, under the above mentioned conditions we proved that every monotone ${ }^{\prime \prime} \leq$ "bounded sequence is ${ }^{\prime \prime}\|\cdot\|_{A}^{\prime \prime}$ convergent and hence, convergent in the scalar k-norm $\left\|\left\|\|\cdot\|_{A}\right\|\right.$ when our cone is normal.

Theorem 25 If $\left\{x_{n}\right\}$ is " \leq "bounded sequence in $\left(E, P,\|\cdot\|_{A}\right)$, where we assume that P is strongly minihedral and $\|.\|_{A}$ has $A-$ property. Then, $\lim \inf x_{n}$ and $\limsup x_{n}$ are the smallest and largest limit points of $\left\{x_{n}\right\}$ in the sense of cone. In particular, $\lim \inf x_{n} \leq \lim \sup x_{n}$.

PROOF. Let x_{n} be a ${ }^{\prime \prime} \leq "$ bounded sequence of E. (since P is strongly minihedral cone) then $s=\lim \sup x_{n}$ exists. We shall show that s is the largest limit point in the sense of cone for $\left\{x_{n}\right\}$. The other case can be shown in a similar manner. We show that s is a limit point in the sense of cone firstly. To this end, let $m \in \mathbb{N}$ and $c \gg 0, c \in E$. Since $\left\{\sup _{k \geq n} x_{k}\right\} \downarrow_{n} s$, there exists $n>m$ such that $s \leq \sup _{k \geq n} x_{k}<s+c$. This implies the existence of some $k \geq n>m$ such that $s-c<x_{k}<s+c$. Hence, s is a limit point in the sense of cone for $\left\{x_{n}\right\}$.

To finish the proof, we show that s is the largest limit point in the sense of cone. Let x be a limit point of $\left\{x_{n}\right\}$, and let $c \gg 0$. Then for each $n \in \mathbb{N}$, there exists $m>n$ such that $\left\|x_{m}-x\right\|_{A} \ll c$. Since $\|.\|_{A}$ has the A - property then $x-c \ll x_{m} \ll x+c$. It follows that $x-c \ll x_{m} \ll \sup _{k \geq n} x_{k}$ for each n, and so, $x-c \leq\left(\inf _{n \geq 1} \sup _{k \geq n} x_{k}\right)=s$ for each $c \gg 0$. Thus $x \leq s$, and the proof is complete.

Theorem 26 Assume $\|\cdot\|_{A}$ has the A-property then a " \leq " bounded sequence $\left\{x_{n}\right\}$ in E is " $\|\cdot\|_{A}^{\prime \prime}$ convergent if and only if $\lim \sup x_{n}=\lim \inf x_{n}=x$. In this case, $\lim _{n \rightarrow \infty} x_{n}=x$.

PROOF. We assume $\lim \sup x_{n}=\lim \inf x_{n}=x$ and show that $\lim _{n \rightarrow \infty} x_{n}=x$. Noting that $\|\cdot\|_{A}$ has the $A-$ property, the inequalities $x_{n}-x \leq \sup _{k \geq n} x_{k}-\inf _{k \geq n} x_{k}$ and $x-x_{n} \leq \sup _{k \geq n} x_{k}-\inf _{k \geq n} x_{k} \quad$ imply that

$$
\begin{equation*}
\left\|x_{n}-x\right\|_{A} \leq \sup _{k \geq n} x_{k}-\inf _{k \geq n} x_{k} . \tag{2}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} x_{k}-\inf _{k \geq n} x_{k}\right)=x-x=0$, it follows that $\lim _{n \rightarrow \infty} x_{n}=x$ in the sense of cone, and the proof is complete.

It is to be noted that Theorem 26 is still valid, even when $\|.\|_{A}$ has the generalized absolute value property. It is just a matter of multiplying the right hand side of inequality (2) by k_{2}.

Lemma 27 Let $\|\cdot\|_{A}$ be a cone norm on E with the A - property and assume that P is strongly minihedral. Then, every $\|\cdot\|_{A}$ Cauchy sequence is " $\leq "$ bounded.

PROOF. Let $c \gg 0$ be fixed and find n_{0} such that

$$
\begin{equation*}
\left\|x_{n}-x_{m}\right\|_{A} \ll c \text { for all } n, m>n_{0} \tag{3}
\end{equation*}
$$

Since $\|\cdot\|_{A}$ has the A - property then (3) is equivalent to

$$
\begin{equation*}
-c \leq x_{n}-x_{m} \leq c \text { for all } n, m \geq n_{0} \tag{4}
\end{equation*}
$$

From which it follows that

$$
\begin{equation*}
x_{n} \leq x_{n_{0}}+c \quad \text { for all } \quad n \geq n_{0} \tag{5}
\end{equation*}
$$

and hence $x_{n} \leq b$ where $b=\sup \left\{x_{n_{0}}+c, x_{1}, x_{2}, \ldots, x_{n_{0}-1}\right\}$ which exists by minihedrality of P. The proof is finished.

Now, as a generalization to the result obtained in [4] in Example 24, we obtain the following theorem.

Theorem 28 Let $\|\cdot\|_{A}$ be a cone norm on E over E with the A - property and assume that P is strongly minihedral. Then, a sequence $\left\{x_{n}\right\}$ in E is " $\|\cdot\|_{A}^{\prime \prime}$ convergent if and only if it is " $\|\cdot\|_{A}^{\prime \prime}$ Cauchy. That is, $\left(E,\|\cdot\|_{A}\right)$ is a cone Banach space.

PROOF. Clearly if x_{n} is ${ }^{\prime \prime}\|\cdot\|_{A}^{\prime \prime}$ convergent then it is " $\|\cdot\|_{A}^{\prime \prime}$ Cauchy. Assume x_{n} is " $\|\cdot\|_{A}^{\prime \prime}$ Cauchy. Then by Lemma 27 and that P is strongly minihedral we conclude that $x=\lim \sup x_{n}$ exists and by Theorem 25 is a limit point in the sense of cone. Now, let $c \gg 0$ be given and find n_{1} such that $\left\|x_{n}-x_{m}\right\|_{A} \ll$ $\frac{c}{2}$ for all $m, n \geq n_{1}$. By Theorem 22, there exists a subsequence $\left\{x_{k_{n}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{k_{n}}=x$. Hence, by Lemma $8, \lim _{n \rightarrow \infty} x_{n}=x$.

Remark 29 One can easily infer that Theorem 25, and Lemma 27, are still valid when the cone norm $\|.\|_{A}$ has the generalized absolute value property and hence, Theorem 28, is still valid under the generalized absolute value property assumption.

Definition $30 \operatorname{Let}\left(E,\|\cdot\|_{A}\right)$ be a cone normed space over $(E, P,\|\cdot\|)$ and m a positive integer. We define the m-Euclidean cone normed space (or finite dimensional cone normed space) by

$$
\begin{equation*}
E^{m}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{m}\right): x_{i} \in E, \sup _{1 \leq i \leq m}\left\|x_{i}\right\|_{A} \text { exists }\right\} \tag{6}
\end{equation*}
$$

where always it is assume that $\|\cdot\|_{A}$ has A-property (or more generally, the generalized absolute value property). On E^{m} define the following m-Euclidean cone norm $\|x\|_{e}=\sup _{1 \leq i \leq m}\left\|x_{i}\right\|_{A}, x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in E^{m}$.

The following essential lemma is helpful in proving that $\left(E^{m},\|\cdot\|_{e}\right)$ is a cone Banach space.

Lemma 31 If $\left(X,\|\cdot\|_{c}\right)$ is a cone normed space over $\left(E,\|\cdot\|,\|\cdot\|_{A}, P\right)$, where $\|\cdot\|_{A}$ has A-property. Then $\|\cdot\|_{c}$ satisfies the ${ }^{\prime \prime} \leq^{\prime \prime}$ inequality $\left\|\|x\|_{c}-\right\| y\left\|_{c}\right\|_{A} \leq$ $\|x-y\|_{c}$ and hence, $\|\cdot\|_{c}$ is a uniformly continuous function from $\left(X,\|\cdot\|_{c}\right)$ to $\left(E,\|\cdot\|_{A}\right)$.

PROOF. For $x, y \in X$ we have by the triangle inequality $\|x\|_{c}=\|x-y+y\|_{c} \leq$ $\|x-y\|_{c}+\|y\|_{c}$ or

$$
\begin{equation*}
\|x\|_{c}-\|y\|_{c} \leq\|x-y\|_{c} \tag{7}
\end{equation*}
$$

also,

$$
\begin{gather*}
\|y\|_{c}=\|y-x+x\|_{c} \leq\|y-x\|_{c}+\|x\|_{c}=\|x-y\|_{c}+\|x\|_{c} \text { or } \\
\|y\|_{c}-\|x\|_{c} \leq\|x-y\|_{c} \tag{8}
\end{gather*}
$$

Since $\|.\|_{A}$ has the $A-$ property then (7) and (8) implies that $\left\|\|x\|_{c}-\right\| y\left\|_{c}\right\|_{A} \leq$ $\|x-y\|_{c}$.

Remark 32 If in Lemma 31, more generally, the cone norm $\|\cdot\|_{A}$ has the generalized absolute value property, then the cone norm $\|.\|_{c}$ satisfies the inequality $\left\|\|x\|_{c}-\right\| y\left\|_{c}\right\|_{A} \leq k_{2}\|x-y\|_{c}$. Hence, $\|.\|_{c}$ is a uniformly continuous function from $\left(X,\|\cdot\|_{c}\right)$ to $\left(E,\|\cdot\|_{A}\right)$.

Theorem $33\left(E^{m},\|.\|_{e}\right)$ is a cone Banach space.

PROOF. Using that $\|\cdot\|_{A}$ is a cone norm on E, it can be easily seen that $\|\cdot\|_{e}$ verifies the cone norm axioms. To show that $\left(E^{m},\|\cdot\|_{e}\right)$ is complete, let $x_{n}=\left(x_{1}^{n}, x_{2}^{n}, \ldots, x_{m}^{n}\right)$ be an " $\|\cdot\|_{e}^{\prime \prime}$ Cauchy sequence. Hence for $c \gg 0, c \in E$, find n_{0} such that $\left\|x_{n}-x_{k}\right\|_{e}=\sup _{1 \leq i \leq m}\left\|x_{i}^{n}-x_{i}^{k}\right\|_{A} \ll \frac{c}{2}$, (For all $k, n \geq n_{0}$). Hence, for each $1 \leq i \leq m$, we have

$$
\begin{equation*}
\left\|x_{i}^{n}-x_{i}^{k}\right\|_{A} \ll \frac{c}{2} \quad\left(\text { For all } k, n \geq n_{0}\right) \tag{9}
\end{equation*}
$$

This shows that $\left\{x_{i}^{n}\right\}$ is a Cauchy sequence in $\left(E,\|\cdot\|_{A}\right)$ for each $i=1,2, \ldots, m$. By Theorem 28, for each $i=1,2, \ldots, m$, find $z_{i} \in E$ such that x_{i}^{n} converges to z_{i} in $\left(E,\|\cdot\|_{A}\right)$. Let $z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$. We show that $z \in E^{m}$ and $x_{n} \rightarrow z$ in $\left(E,\|\cdot\|_{A}\right)$. Lemma 31 and that P is closed lead to $\left\|x_{i}^{n}-z_{i}\right\|_{A} \leq \frac{c}{2}$ for all $k \geq$ n_{0}. Since $x_{k}=\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{m}^{k}\right) \in E^{m}$, there is $c_{k} \gg 0$ such that $\left\|x_{j}^{k}\right\|_{A} \leq c_{k}$ for all $j=1,2,3, \ldots, m$ (i.e. $\left\|x_{k}\right\|_{A}$ exists). Hence, by the triangle inequality for each $j=1,2,3, \ldots, m$, we have $\left\|z_{j}\right\|_{A} \leq\left\|z_{j}-x_{j}^{k}\right\|_{A}+\left\|x_{j}^{k}\right\|_{A} \leq c+c_{k}$ for all $k \geq n_{0}$. The last inequality holds for every j, and the right-hand side does not involve j and hence, $z=\left(z_{1}, z_{2}, \ldots, z_{m}\right) \in E^{m}$. Also, from (9) we obtain $\left\|x_{k}-z\right\|_{e}=\sup _{1 \leq j \leq m}\left\|x_{j}^{k}-z_{j}\right\|_{A} \leq \frac{c}{2} \ll c$ for all $k \geq n_{0}$. This shows that $x_{n} \rightarrow z$ in $\left(E^{m},\|\cdot\|_{e}\right)$.

Definition 34 Let $\left(E,\|\cdot\|_{A}\right)$ be a cone Banach space over ($\left.E, P,\|\cdot\|\right)$. Then the cone normed sequence space E^{∞} is defined by

$$
\begin{equation*}
E^{\infty}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): \sup _{i}\left\|x_{i}\right\|_{A} \text { exists in } E\right\} \tag{10}
\end{equation*}
$$

with the norm $\|x\|_{\infty}=\sup \left\|x_{i}\right\|_{A}$. More generally the cone normed space E^{Δ} where Δ is any index set is defined by

$$
\begin{equation*}
E^{\Delta}=\left\{x=\left(x_{\alpha}\right)_{\alpha \in \Delta}: x_{\alpha} \in E, \sup _{\alpha \in \Delta}\left\|x_{\alpha}\right\|_{A} \text { exists in } E\right\} \tag{11}
\end{equation*}
$$

Theorem $35\left(E^{\infty},\|\cdot\|_{\infty}\right)$ is a cone Banach space.

PROOF. To show that $\|\cdot\|_{\infty}$ is a cone norm is straightforward. Let $x_{n}=$ $\left(x_{1}^{n}, x_{2}^{n}, \ldots, x_{p}^{n}, \ldots\right)$ be an " $\|\cdot\|_{\infty}^{\prime \prime}$ Cauchy sequence in E^{∞}. Then for each $c \gg 0$ there exists n_{0} such that $\left\|x_{n}-x_{k}\right\|_{\infty}=\sup _{j}\left\|x_{j}^{n}-x_{j}^{k}\right\|_{A} \leq c$ for all $n, k \geq n_{0}$. Hence, for every fixed j, we have

$$
\begin{equation*}
\left\|x_{j}^{n}-x_{j}^{k}\right\|_{A} \leq c \text { for all } n, k \geq n_{0} \tag{12}
\end{equation*}
$$

From which it follows that, the sequence $\left(x_{j}^{1}, x_{j}^{2}, \ldots\right)$ is a Cauchy sequence in $\left(E,\|\cdot\|_{A}\right)$ for all $j=1,2.3, \ldots$. It converges by Theorem 28 , say, $x_{j}^{n} \rightarrow z_{j} \in E$. Define $z=\left(z_{1}, z_{2}, \ldots\right)$ and show that $x_{n} \rightarrow z$ in $\left(E^{\infty},\|\cdot\|_{\infty}\right)$. From (12) and Lemma 31, with $k \rightarrow \infty$ we have

$$
\begin{equation*}
\left\|x_{j}^{n}-z_{j}\right\|_{A} \leq c \text { for all } n \geq n_{0} \tag{13}
\end{equation*}
$$

Since $x_{n} \in E^{\infty}$, for each n find $c_{n} \gg 0$ such that $\left\|x_{j}^{n}\right\|_{A} \leq c_{n}$ for all j. Hence, by the triangle inequality $\left\|z_{j}\right\|_{A} \leq\left\|z_{j}-x_{j}^{n}\right\|_{A}+\left\|x_{j}^{n}\right\|_{A} \leq c+c_{n}$ for all $n \geq n_{0}$. This inequality holds for every j, and the right hand-side does not involve j. Hence, by using that E is strongly minihedral, $z=\left(z_{1}, z_{2}, \ldots\right) \in E^{\infty}$. Also, from (13) we obtain $\left\|x_{n}-z\right\|_{\infty}=\sup _{j}\left\|x_{j}^{n}-z_{j}\right\|_{A} \leq c$ for all $n \geq n_{0}$. This shows that $x_{n} \rightarrow z$ in $\left(E^{\infty},\|\cdot\|_{\infty}\right)$.

Remark 36 As we proved that $\left(E^{\infty},\|\cdot\|_{\infty}\right)$ is a cone Banach, we can also easily prove that $\left(E^{\Delta},\|\cdot\|_{\Delta}\right)$ is cone Banach with the norm $\|x\|_{\triangle}=\sup _{\alpha \in \triangle}\left\|x_{\alpha}\right\|_{A}$, $x=\left(x_{\alpha}\right) \in E^{\triangle}$.

Theorem 37 Let S be a subset of a complete cone metric space (X, d). Then S is closed if and only if S is complete.

PROOF. It is not difficult to prove that S is closed if and only if whenever $x_{n} \in S, x_{n} \rightarrow x$ then $x \in S$. Now, assume S is closed and let $x_{n} \in S$ be a Cauchy sequence. Since (X, d) is complete, find $x \in X$ such that $x_{n} \rightarrow x$. Since $x_{n} \in S$ and S is closed then $x \in S$. Conversely, assume S is complete and let $x_{n} \in S$ with $x_{n} \rightarrow x$. We have to show that $x \in S$. Since $x_{n} \rightarrow x$, then
x_{n} is Cauchy sequence in S complete. Hence, find $y \in S$ such that $x_{n} \rightarrow y$. Since limits are unique in cone metric spaces [4] then $x=y \in S$.

Example 38 Let C_{E} be the space of all " $\|\cdot\|_{A}^{\prime \prime}$ convergent sequences $x=$ $\left(x_{1}, x_{2}, \ldots\right)$ in $\left(E,\|\cdot\|_{A}\right)$. This is a subspace of E^{∞}, since each ${ }^{\prime \prime}\|\cdot\|_{A}^{\prime \prime}$ convergent sequence in E is " $\|\cdot\|_{A}^{\prime \prime}$ bounded by Lemma 10. To show that $\left(C_{E},\|\cdot\|_{\infty}\right)$ is a cone Banach space, by Theorem 37, it would be enough to prove that C_{E} is a (sequentially) closed subspace of E^{∞}. Let $x_{n}=\left(x_{1}^{n}, x_{2}^{n}, \ldots\right)$ be a sequence in C_{E} such that $x_{n} \rightarrow x=\left(x_{1}, x_{2}, \ldots\right)$. To show that $x=\left(x_{1}, x_{2}, \ldots\right)$ is a convergent sequence (i.e. $x \in C_{E}$), by noting that $\left(E,\|\cdot\|_{A}\right)$ is complete, it would be enough to prove that $x=\left(x_{1}, x_{2}, \ldots\right)$ is Cauchy sequence in $\left(E,\|\cdot\|_{A}\right)$. Let $c \gg$ $0, c \in E$ be given. Find $n_{0} \in \mathbb{N}$ such that $\left\|x_{n}-x\right\|_{\infty}=\sup _{j}\left\|x_{j}^{n}-x_{j}\right\|_{A} \ll \frac{c}{3}$ for all $n \geq n_{0}$. In particular, $\left\|x_{j}^{n_{0}}-x_{j}\right\|_{A} \ll \frac{c}{3}$ for all j. Since $x_{n_{0}}=$ $\left(x_{1}^{n_{0}}, x_{2}^{n_{0}}, \ldots\right) \in C_{E}$ then it is Cauchy in $\left(E,\|\cdot\|_{A}\right)$. Hence, find $n_{1} \in \mathbb{N}$ such that $\left\|x_{j}^{n_{0}}-x_{k}^{n_{0}}\right\|_{A} \ll \frac{c}{3}$ for all $j, k \geq n_{1}$. Then the triangle inequality implies $\left\|x_{j}-x_{k}\right\|_{A} \leq\left\|x_{j}-x_{j}^{n_{0}}\right\|_{A}+\left\|x_{j}^{n_{0}}-x_{k}^{n_{0}}\right\|_{A}+\left\|x_{k}^{n_{0}}-x_{k}\right\|_{A} \ll \frac{c}{3}+\frac{c}{3}+\frac{c}{3}=c$. The proof is finished.

Theorem 39 If $f:(X, d) \rightarrow(Y, \rho)$ is a continuous function between cone metric spaces over E and S is a compact subset of X. Then $f(S)$ is compact in (Y, ρ).

The proof is the same as in topological spaces, since cone metric spaces are topological spaces or can be done directly by using the concept of sequential compactness in cone metric spaces and that f is sequentially continuous [2].

Remark 40 Note that a subset S of a cone metric space (X, d) over E is bounded if and only if there exists $y_{0} \in X$ and $c \gg 0, c \in E$ such that $\sup _{x \in S} d\left(x, y_{0}\right)$ exists in E.

Theorem 41 Let S be a compact subset of a cone metric space (X, d). Then S is closed and bounded.

PROOF. From [2], we know that compactness is equivalent to sequential compactness in cone metric spaces and closedness is equivalent to sequential closedness. Hence, compactness implies closedness easily. Namely, if $x_{n} \in S$, $x_{n} \rightarrow x$, then by compactness of S there exists a subsequence $x_{n_{k}} \rightarrow y \in S$. But also $x_{n_{k}} \rightarrow y$. But then by uniqueness of limit in cone metric spaces, we must have $x=y \in S$. Also, this can be proved by using that cone metric spaces are Hausdorff topological spaces. For the other part, assume S is unbounded. Hence, there exists $y_{0} \in S$ and $c \gg 0, c \in E$ such that for each $n \in \mathbb{N}$ there exists $x_{n} \in S$ such that $d\left(x_{n}, y_{0}\right) \geq n c$ for all $n \in \mathbb{N}$ or $d\left(x_{n}, y_{0}\right)$
is not comparable with $n c$. This sequence $\left\{x_{n}\right\}$ can not have a convergent subsequence since convergent sequences are bounded.

Recall that in [4] a function $f:\left(X,\|\cdot\|_{c_{1}}\right) \rightarrow\left(Y,\|\cdot\|_{c_{2}}\right)$ between two cone normed spaces is continuous at $x_{0} \in X$ if for all $c \gg 0$, there exists $b \gg 0$ such that $\left\|f(x)-f\left(x_{0}\right)\right\|_{c_{2}} \leq c$ whenever $x \in X,\left\|x-x_{0}\right\|_{c_{1}} \leq b$.

Given that cone normed spaces are cone metric spaces and cone metric spaces are topological spaces, it is easy to show that f is continuous at x_{0} if and only if $f^{-1}(V)$ is open in $\left(X,\|\cdot\|_{c_{1}}\right)$ for any open V in $\left(Y,\|\cdot\|_{c_{2}}\right)$ containing $f\left(x_{0}\right)$.

The next example is given to generalize the Banach space $C[a, b]$ of real- valued continuous functions on $[a, b]$ with the norm $\|f\|=\max _{x \in[a, b]}|f(x)|, f \in C[a, b]$.

Definition 42 Let S be a compact subset of $\left(E,\|\cdot\|_{A}\right)$ and $f_{n}: S \rightarrow E$ be a sequence of continuous functions between cone normed spaces over E. We say that f_{n} converges uniformly to $f: S \rightarrow E$ if for all $c \gg 0, c \in E$ there exists n_{0} such that

$$
\begin{equation*}
\left\|f_{n}(x)-f(x)\right\|_{A} \leq c \quad \text { for all } n \geq n_{0} \tag{14}
\end{equation*}
$$

Theorem 43 Let S be a compact subset of $\left(E,\|\cdot\|_{A}\right)$. If $f_{n}:\left(S,\|\cdot\|_{A}\right) \rightarrow$ $\left(E,\|\cdot\|_{A}\right)$ is a sequence of continuous functions such that f_{n} converges uniformly to $f: S \rightarrow E$. Then f is continuous.

PROOF. Assume f_{n} converges uniformly to f and let $x_{0} \in S$ and $c \gg$ $0, c \in E$ be given. Find n_{0} such that

$$
\begin{equation*}
\left\|f_{n}(x)-f(x)\right\|_{A} \leq \frac{c}{3} \text { for all } n \geq n_{0}, x \in S \tag{15}
\end{equation*}
$$

By assumption, the function $f_{n_{0}}$ is continuous at x_{0}, hence, find $b \gg 0, b \in E$ such that

$$
\begin{equation*}
x \in S, \quad\left\|x-x_{0}\right\|_{A} \leq b \text { implies } \quad\left\|f_{n_{0}}(x)-f_{n_{0}}\left(x_{0}\right)\right\|_{A} \leq \frac{c}{3} \tag{16}
\end{equation*}
$$

Now, for $x \in S$ and $\left\|x-x_{0}\right\|_{A} \leq b$ we obtain

$$
\begin{equation*}
\left\|f(x)-f\left(x_{0}\right)\right\|_{A} \leq\left\|f(x)-f_{n_{0}}(x)\right\|_{A}+\left\|f_{n_{0}}(x)-f_{n_{0}}\left(x_{0}\right)\right\|_{A}+\left\|f_{n_{0}}\left(x_{0}\right)-f\left(x_{0}\right)\right\|_{A} \tag{17}
\end{equation*}
$$

Then (15) and (16) give

$$
\begin{equation*}
\left\|f(x)-f\left(x_{0}\right)\right\|_{A} \leq \frac{c}{3}+\frac{c}{3}+\frac{c}{3}=c \tag{18}
\end{equation*}
$$

Hence, f is continuous at x_{0} and the proof is finished.
Example $44 \operatorname{Let}_{E}(S)=\left\{f:\left(S,\|\cdot\|_{A}\right) \rightarrow\left(E,\|\cdot\|_{A}\right): f\right.$ is continuous $\}$, where S is a compact subset of $\left(E,\|\cdot\|_{A}\right)$. Provide $C_{E}(S)$ with the cone norm $\|f\|_{c}=$ $\sup _{x, y \in S}\|f(x)-f(y)\|_{A}$. By the above theorems $\|f\|_{c}=\sup _{x, y \in S}\|f(x)-f(y)\|_{A}$ exists.

To prove that $\left(C_{E}(S),\|\cdot\|_{c}\right)$ is complete, by means of Theorem 37 , it would be enough to show that $C_{E}(S)$ is a (sequential) closed subspace of the cone Banach space ($E^{s},\|\cdot\|_{s}$). But (sequential) closedness directly follows by Theorem 43.

4 Conclusion

When $E=R$, then $\|\cdot\|_{A}=\|\cdot\|=|\cdot|, P=[0, \infty)$ and $" \leq$ " is the usual ordering "less than or equal". Hence, E^{m}, E^{∞}, generalize the normed spaces R^{m} and l^{∞} and $C_{E}(S)$ generalizes the space of continuous functions $C[S]$ where $S=[a, b]$. Moreover, in this case, the three boundedness definitions given in Definition 15 coincide and both of the $\|.\|_{A^{-}}$-convergence and the $\|$.$\| -$ convergence gives the usual convergence in R.

Problem 45 As it is known that compact subsets of finite dimensional normed spaces are exactly closed and bounded subsets, it is of sense to ask whether it is the case in the m-Euclidean cone normed space E^{m}.

Acknowledgements

The research has been supported by The Scientific and Technological Research Council of Turkey (TUBITAK-Turkey).

References

[1] L.G. Huang, X. Zhang. Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings. J. Math. Anal. Appl., 332, 1468-1476, 2007.
[2] D. Turkoglu, M. Abuloha. Cone Metric Spaces and Fixed Point Theorems in Diametrically Contractive Mappings. Acta Math.Sinica English Series (to appear).
[3] K. Deimling. Nonlinear Functional Analysis. Springer-Verlage, 1985.
[4] D. Turkoglu, M. Abuloha, T. Abdeljawad. Some Theorems in Cone Metric Spaces. Submitted.
[5] Sh. Rezapour, R. Hamlbarani. Some Note on Paper " Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings". J. Math. Anal. Appl., (2008), doi: 10.1016/ j.jmaa.2008.04.049.

STABILITY ANALYSIS OF A CLASS OF GENERALIZED NEUTRAL EQUATIONS

Cemil Tunc ${ }^{1}$ and Ali Sirma ${ }^{2}$
${ }^{1}$ Department of Mathematics, Yuzuncu Yil University, 65080, Van, Turkey cemtunc@yahoo.com
${ }^{2}$ Nigerian Turkish Nile University, Abuja, Nigeria
alisirma01@yahoo.com

Abstract

In this paper, some sufficient conditions for all solutions of a class of generalized neutral equations to approach zero as $t \rightarrow \infty$ are presented. Based on Lyapunov's functional approach, some new stability criteria are derived. Our results improve and include some related results existing in the literature.

1 Introduction.

In this work, we study two types of neutral differential equations. First, we consider the generalized neutral differential equations of the form

$$
\begin{equation*}
\frac{d}{d t}(x(t)+c(t) x(t-\tau))=-p(t) x(t)-q(t) h(x(t)) x(t-\sigma), \quad t \geq t_{0} \tag{1.1}
\end{equation*}
$$

where τ and σ are positive real numbers, $c(t), p(t), q(t), h(x(t)):\left[t_{0}, \infty\right) \rightarrow[0, \infty)$ are continuous functions and $c(t)$ is differentiable with locally bounded derivative. In the investigating of the stability of the solution of the generalized neutral differential equation (1.1), we follow the way used in the paper of Agarwal and Grace [6]. It should be noted that, in 2000, Agarwal and Grace [6] proved an asymptotic stability result for solutions of the following neutral differential equation:

$$
\frac{d}{d t}(x(t)+c(t) x(t-\tau))=-p(t) x(t)-q(t) x(t-\sigma), \quad t \geq t_{0}
$$

Hence, it is clear that Equation (1.1) includes the equation investigated by Agarwal and Grace [6]. Namely, when $h(x(t))=1$, Equation (1.1) reduces to the equation discussed by Agarwal and Grace [6]. They employed Lyapunov's functional approach to verify the results established there. We also utilize the same method.
Second, we investigate the asymptotic behaviors of solutions of the generalized neutral delay equation

$$
\begin{equation*}
\frac{d}{d t}(x(t)+p x(t-\tau))=-h(x(t)) x(t)+b \tanh x(t-\sigma), \quad t \geq t_{0} \tag{1.2}
\end{equation*}
$$

where b, τ and σ are positive real numbers, $|p|<1$ and $h(x(t)):\left[t_{0}, \infty\right) \rightarrow[0, \infty)$ is a continuous function.
It is worth mentioning that, in 2000, 2004 and 2008, El-Morshedy and Gopalsamy [1] and Park [2, 3] discussed the convergence and stability of the solutions of the following neutral differential equation:

$$
\frac{d}{d t}(x(t)+p x(t-\tau))=-a x(t)+b \tanh x(t-\sigma), \quad t \geq t_{0}
$$

Obviously, Equation (1.2) includes the equation investigated El-Morshedy and Gopalsamy [1] and Park $[2,3]$, since they investigated the case $h(x(t))=a$ in Equation (1.2). In the analyzing the stability of the solution of this equation, we follow the procedure introduced in El-Morshedy and Gopalsamy [1] and Park [2,3].
At the same time, for some papers published on the qualitative behaviors of solutions of various neutral differential equations, we refer the reader to the papers of $[1-6]$ and the references thereof. These types of equations are used for the study of dynamic characteristics of neural networks of Hopfield type (see [4] and references cited therein).
Throughout this article, $\mathbf{C}\left(\left[t_{0}-H, t_{0}\right], \mathbb{R}\right)$ denotes the complete space of continuous functions from $\left[t_{0}-H, t_{0}\right]$ to \mathbb{R}. With each solution $x(t)$ of Equations (1.1) and (1.2), we assume the initial condition:

$$
x(s)=\phi(s), s \in\left[t_{0}-H, t_{0}\right], \text { where } H=\max \{\tau, \sigma\}, \quad \phi \in \mathbf{C}\left(\left[t_{0}-H, t_{0}\right], \mathbb{R}\right)
$$

2 Main Results

First, we will study the stability of the neural networks of the generalized neutral type differential equation (1.1). We assume that there exist nonnegative constants $c_{1}, c_{2}, p_{1}, p_{2}, q_{1}, q_{2}, h_{1}$ and h_{2} such that for $t \geq t_{0}$,

$$
\begin{equation*}
p_{1} \leq p(t) \leq p_{2}, \quad q_{1} \leq q(t) \leq q_{2}, \quad c(t) \leq c_{1}<1, \quad\left|c^{\prime}(t)\right|<c_{2}, \quad \text { and } h_{1} \leq h(x(t)) \leq h_{2} \tag{2.1}
\end{equation*}
$$

Theorem 2.1 Assume that condition (2.1) holds. Beside this, if

$$
\begin{equation*}
p_{1}+q_{1} h_{1}>\left(p_{2}+q_{2} h_{2}\right)\left(c_{1}+q_{2} h_{2} \sigma\right) \tag{2.2}
\end{equation*}
$$

then every solution $x(t)$ of Equation (1.1) is asymptotically stable.
Proof. Equation (1.1) can be written in the following form

$$
\begin{equation*}
\frac{d}{d t}\left(x(t)+c(t) x(t-\tau)-\int_{t-\sigma}^{t} q(s+\sigma) h(x(s+\sigma)) x(s) d s\right)=-p(t) x(t)-q(t+\sigma) h(x(t+\sigma)) x(t) \tag{2.3}
\end{equation*}
$$

Define the operator $D: \mathbf{C}\left(\left[t_{0}-H, t_{0}\right], \mathbb{R}\right) \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
D\left(x_{t}\right)=x(t)+c(t) x(t-\tau)-\int_{t-\sigma}^{t} q(s+\sigma) h(x(s+\sigma)) x(s) d s \tag{2.4}
\end{equation*}
$$

Consider the Lyapunov functional defined by

$$
\begin{aligned}
V(t)=D^{2}\left(x_{t}\right) & +\int_{t-\sigma}^{t}[p(s+\sigma)+q(s+2 \sigma) h(s+2 \sigma)]\left(\int_{s}^{t} q(u+\sigma) h(u+\sigma) x^{2}(u) d u\right) d s \\
& +\int_{t-\tau}^{t}[p(s+\tau)+q(s+\sigma+\tau) h(s+\sigma+\tau)] c(s+\tau) x^{2}(s) d s
\end{aligned}
$$

The time derivative of V along solutions of Equation (1.1) is given by

$$
\begin{gathered}
\frac{d V(t)}{d t}=2 D\left(x_{t}\right) D^{\prime}\left(x_{t}\right) \\
-[p(t)+q(t+\sigma) h(x(t+\sigma))] \int_{t-\sigma}^{t} q(u+\sigma) h(x(u+\sigma)) x^{2}(u) d u \\
+q(t+\sigma) h(x(t+\sigma)) x^{2}(t) \int_{t-\sigma}^{t}[p(s+\sigma)+q(s+2 \sigma) h(x(s+2 \sigma))] d s \\
+[p(t+\tau)+q(t+\sigma+\tau) h(x(t+\sigma+\tau))] c(t+\tau) x^{2}(t)-[p(t)+q(t+\sigma) h(x(t+\sigma))] c(t) x^{2}(t-\tau) .
\end{gathered}
$$

Using the result

$$
\begin{aligned}
2 D\left(x_{t}\right) D^{\prime}\left(x_{t}\right)=- & -2[p(t)+q(t+\sigma) h(x(t+\sigma))] x^{2}(t)-2 x(t) x(t-\tau)[p(t) c(t)+c(t) q(t+\sigma) h(x(t+\sigma))] \\
& +2[p(t)+q(t+\sigma) h(x(t+\sigma))] x(t) \int_{t-\sigma}^{t} q(s+\sigma) h(x(s+\sigma)) x(s) d s
\end{aligned}
$$

and the inequalities $-2 x(t) x(t-\tau) \leq x^{2}(t)+x^{2}(t-\tau)$ and $2 x(t) x(s) \leq x^{2}(t)+x^{2}(s)$, we have

$$
\begin{aligned}
2 D\left(x_{t}\right) D^{\prime}\left(x_{t}\right) & \leq[-2(p(t)+q(t+\sigma) h(x(t+\sigma)))+p(t) c(t)+c(t) q(t+\sigma) h(x(t+\sigma))] x^{2}(t) \\
& +[p(t)+q(t+\sigma) h(x(t+\sigma))] x^{2}(t) \int_{t-\sigma}^{t} q(s+\sigma) h(x(s+\sigma)) d s \\
& +[p(t)+q(t+\sigma) h(x(t+\sigma))] \int_{t-\sigma}^{t} q(s+\sigma) h(x(s+\sigma)) x^{2}(s) d s \\
& \quad+[p(t) c(t)+c(t) q(t+\sigma) h(x(t+\sigma))] x^{2}(t-\tau)
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
& \frac{d V(t)}{d t} \leq[-2(p(t)+q(t+\sigma) h(x(t+\sigma)))+p(t) c(t)+c(t) q(t+\sigma) h(x(t+\sigma))] x^{2}(t) \\
&+[p(t)+q(t+\sigma) h(x(t+\sigma))] x^{2}(t) \int_{t-\sigma}^{t} q(s+\sigma) h(x(s+\sigma)) d s \\
&+ q(t+\sigma) h(x(t+\sigma)) x^{2}(t) \int_{t-\sigma}^{t}[p(s+\sigma)+q(s+2 \sigma) h(x(s+2 \sigma))] d s \\
&+[p(t+\tau)+q(t+\sigma+\tau) h(x(t+\sigma+\tau))] c(t+\tau) x^{2}(t)
\end{aligned}
$$

Thereafter, using the inequalities (2.1) and (2.2) we find

$$
\begin{equation*}
\frac{d V(t)}{d t} \leq-2\left[\left(p_{1}+q_{1} h_{1}\right)-\left(p_{2}+q_{2} h_{2}\right)\left(c_{1}+q_{2} h_{2} \sigma\right)\right] x^{2}(t) \leq 0, \quad \text { for } t \geq T \geq t_{0} \tag{2.5}
\end{equation*}
$$

Integrating inequality (2.5) from T to t, we have

$$
V(t)+2\left[\left(p_{1}+q_{1} h_{1}\right)-\left(p_{2}+q_{2} h_{2}\right)\left(c_{1}+q_{2} h_{2} \sigma\right)\right] \int_{T}^{t} x^{2}(s) d s \leq V(T)<\infty
$$

Hence, we see that $V(t)$ is bounded on $[T, \infty)$ and $x(t) \in L^{2}[T, \infty)$. Since $V(t)$ is bounded on $[T, \infty)$, one can easily see that there exists a constant $\gamma_{1} \geq 0$,

$$
\begin{gathered}
|x(t)| \leq \gamma_{1}+c_{1}|x(t-\tau)|+\int_{t-\sigma}^{t} q(s+\sigma) h(x(s+\sigma)) x(s) d s \\
\leq \gamma_{1}+c_{1}|x(t-\tau)|+q_{2} h_{2} \sigma \max _{t-H \leq s \leq t}|x(s)| \\
\leq \gamma_{1}+\left(c_{1}+q_{2} h_{2} \sigma\right) \max _{t-H \leq s \leq t}|x(s)|
\end{gathered}
$$

But the inequality (2.2) yields that $c_{1}+q_{2} h_{2} \sigma<\frac{p_{1}+q_{1} h_{1}}{p_{2}+q_{2} h_{2}}<1$. The rest of the proof is similar to that of Theorem 1 in [6].
In order to illustrate to Theorem 1 proved above, we modified Example 1 in [6] as follows.
Example 1. The neutral equation

$$
\frac{d}{d t}\left(x(t)+\frac{1}{t} x(t-\sigma)\right)=-x(t)-\left(1+e^{2 t}\right)\left(\frac{1}{t}+\frac{1}{t^{2}}\right) \frac{x^{2}(t)}{1+x^{2}(t)} x(t-\sigma) t \geq 2
$$

has a solution $x(t)=e^{-t} \rightarrow 0$ as $t \rightarrow \infty$. All conditions of Theorem 1 are satisfied if we take $c_{1}=\frac{1}{2}, \quad c_{2}=\frac{1}{4}, p_{1}=p_{2}=1, q_{1}=0, q_{2}=\frac{3}{4}, \quad h_{1}=0, h_{2}=1$, and $\tau=\sigma<\frac{2}{21}$.
Now, we present the following theorem.
Theorem 2.2 Assume that in Theorem 2.1, instead of condition (2.2) if we replace

$$
\begin{equation*}
p_{1}>\left(p_{2}+q_{2} h_{2}\right) c_{1}+q_{2} h_{2} \tag{2.6}
\end{equation*}
$$

then the conclusion of Theorem 2.1 still holds.
Proof. We use the Lyapunov functional defined by

$$
\begin{aligned}
V(t)=(x(t) & +c(t) x(t-\tau))^{2}+\int_{t-\sigma}^{t} q(s+\sigma) h(x(s+\sigma))(1+c(s+\sigma)) x^{2} d s \\
& +\int_{t-\tau}^{t}[p(s+\tau)+q(s+\tau) h(s+\tau)] c(s+\tau) x^{2}(s) d s
\end{aligned}
$$

Define the operator $D: \mathbf{C}\left(\left[t_{0}-H, t_{0}\right], \mathbb{R}\right) \rightarrow \mathbb{R}$ as

$$
D\left(x_{t}\right)=x(t)+c(t) x(t-\tau) .
$$

The time derivative of V along the solution of Equation (1.1) is given by

$$
\begin{aligned}
\frac{d V(t)}{d t}= & 2 D\left(x_{t}\right) D^{\prime}\left(x_{t}\right)+q(t+\sigma) h(x(t+\sigma))(1+c(t+\sigma)) x^{2}(t)-q(t) h(x(t))(1+c(t)) x^{2}(t-\sigma) \\
& +[p(t+\tau)+q(t+\tau) h(t+\tau)] c(t+\tau) x^{2}(t)-[p(t)+q(t) h(t)] c(t) x^{2}(t-\tau)
\end{aligned}
$$

Since,

$$
\begin{gathered}
2 D\left(x_{t}\right) D^{\prime}\left(x_{t}\right)=-2(x(t)+c(t) x(t-\tau))(p(t) x(t)+q(t) h(x(t)) x(t-\sigma)) \\
=-2 p(t) x^{2}(t)-2 p(t) c(t) x(t-\tau) x(t)-2 q(t) h(x(t)) x(t-\sigma) x(t)-2 c(t) q(t) h(x(t)) x(t-\sigma) x(t-\tau),
\end{gathered}
$$

then using the inequality $-2 x(t) y(t) \leq x^{2}(t)+y^{2}(t)$, we obtain

$$
\begin{aligned}
& 2 D\left(x_{t}\right) D^{\prime}\left(x_{t}\right) \leq-2 p(t) x^{2}(t)+p(t) c(t) x^{2}(t-\tau)+p(t) c(t) x^{2}(t)+q(t) h(x(t)) x^{2}(t-\sigma) \\
& +q(t) h(x(t)) x^{2}(t)+c(t) q(t) h(x(t)) x^{2}(t-\sigma)+c(t) q(t) h(x(t)) x^{2}(t-\tau)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{d V(t)}{d t}= & \{-2 p(t)+p(t) c(t)+q(t) h(x(t))+q(t+\sigma) h(x(t+\sigma))(1+c(t+\sigma)) \\
& +[p(t+\tau)+q(t+\tau) h(t+\tau)] c(t+\tau)\} x^{2}(t) \\
& \leq\left\{-2 p_{1}+p_{2} c_{1}+q_{2} h_{2}+q_{2} h_{2}\left(1+c_{1}\right)+\left[p_{2}+q_{2} h_{2}\right] c_{1}\right\} x^{2}(t)
\end{aligned}
$$

So that, we have

$$
\begin{equation*}
\frac{d V(t)}{d t} \leq-2\left[p_{1}-\left(p_{2}+q_{2} h_{2}\right) c_{1}-q_{2} h_{2}\right] x^{2}(t) \leq 0, \quad \text { for } t \geq T \geq t_{0} \tag{2.7}
\end{equation*}
$$

Integrating inequality (2.7) from T to t, we get

$$
V(t)+2\left[p_{1}-\left(p_{2}+q_{2} h_{2}\right) c_{1}-q_{2} h_{2}\right] \int_{T}^{t} x^{2}(s) d s \leq V(T)<\infty
$$

The rest of the proof is similar to that of Theorem 1.
Now, we are going to investigate the asymptotic stability of generalized neutral differential equation (1.2). In this investigation we will follow the articles $[2,3]$. The results we obtained here generalize and include the results in the mentioned articles. $*$ represents the elements below the main diagonal of a symmetric matrix. The notation $X>Y$, where X and Y are matrices of same dimensions, means that the matrix $X-Y$ is positive definite.
Equation (1.2) can be written in the form

$$
\begin{equation*}
\frac{d}{d t}\left[x(t)+p x(t-\tau)+b \int_{t-\sigma}^{t} \tanh x(s)\right]=-h(x(t)) x(t)-b \tanh x(t), \quad t \geq t_{0} \tag{2.8}
\end{equation*}
$$

Define the operator $D: \mathbf{C}\left(\left[t_{0}-H, t_{0}\right], \mathbb{R}\right) \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
D\left(x_{t}\right)=x(t)+p x(t-\sigma)+b \int_{t-\sigma}^{t} \tanh x(s) d s \tag{2.9}
\end{equation*}
$$

Now, we have the following theorem
Theorem 2.3 Assume that

$$
h(x(t)) \geq a>0 .
$$

For given $\sigma>0$, every solution $x(t)$ of Equation (1.2) satisfies $x(t) \rightarrow 0$ as $t \rightarrow \infty$, if there exists the positive scalars α, β and γ such that two linear inequalities hold

$$
\begin{gather*}
\Omega_{1}=\left[\begin{array}{cccc}
-\gamma a+\alpha & -\gamma p h(x(t)) & \gamma b & -\gamma b h(x(t)) \\
* & -\alpha & \gamma b p & 0 \\
* & * & -\gamma a+\beta \sigma & b^{2} \gamma \\
* & * & * & -\frac{\beta}{\sigma}
\end{array}\right]<0, \tag{2.10}\\
\Omega_{1}=|p|-1+\sigma b<0 . \tag{2.11}
\end{gather*}
$$

Proof. Consider the Lyapunov functional defined by

$$
\begin{equation*}
V(t)=\gamma D^{2}\left(x_{t}\right)+\alpha \int_{t-\tau}^{t} x^{2}(s) d s+\beta \int_{t-\sigma}^{t}(\sigma-t+s) \tanh ^{2} x(s) d s \tag{2.12}
\end{equation*}
$$

where α, β, and γ are positive scalars to be chosen later.
The derivative of $V(t)$ along the solution of Equation (2.8) is given by

$$
\begin{aligned}
& \begin{array}{r}
\frac{d V}{d t}=2 \gamma\left(x(t)+p x(t-\tau)+b \int_{t-\sigma}^{t} \tanh x(s) d s\right)(-h(x(t)) x(t)+b \tanh x(t))+\alpha x^{2}(t)-\alpha x^{2}(t-\tau) \\
\\
+\beta \sigma \tanh ^{2} x(t)-\beta \int_{t-\sigma}^{t} \tanh ^{2} x(s) d s \\
=-2 \gamma x(t) h(x(t)) x(t)-2 p \gamma h(x(t)) x(t) x(t-\tau)-2 b \gamma h(x(t)) x(t) \int_{t-\sigma}^{t} \tanh x(s) d s+2 b \gamma x(t) \tanh x(t) \\
\\
+2 b p \gamma x(t-\tau) \tanh x(t)+2 b^{2} \gamma \tanh x(t) \int_{t-\sigma}^{t} \tanh x(s) d s+\alpha x^{2}(t)-\alpha x^{2}(t-\tau) \\
\\
+\beta \sigma \tanh ^{2} x(t)-\beta \int_{t-\sigma}^{t} \tanh ^{2} x(s) d s \\
\leq-2 a \gamma x^{2}(t)-2 p \gamma h(x(t)) x(t) x(t-\tau)-2 b h(x(t)) \gamma x(t) \int_{t-\sigma}^{t} \tanh x(s) d s+2 b \gamma x(t) \tanh x(t) \\
\\
+2 b p \gamma x(t-\tau) \tanh x(t)+2 b^{2} \gamma \tanh x(t) \int_{t-\sigma}^{t} \tanh x(s) d s+\alpha x^{2}(t)-\alpha x^{2}(t-\tau) \\
\\
+\beta \sigma \tanh ^{2} x(t)-\beta \int_{t-\sigma}^{t} \tanh 2 x(s) d s
\end{array}
\end{aligned}
$$

Here, for vector function y, using the well-known inequality

$$
\left[\int_{t-\sigma}^{t} y(s) d s\right]^{T}\left[\int_{t-\sigma}^{t} y(s) d s\right] \leq \sigma \int_{t-\sigma}^{t} y^{T}(s) y(s) d s
$$

we have

$$
\begin{equation*}
-\beta \int_{t-\sigma}^{t} \tanh ^{2} x(s) d s \leq-\frac{\beta}{\sigma}\left[\int_{t-\sigma}^{t} \tanh x(s) d s\right]^{2} \tag{2.13}
\end{equation*}
$$

Also, by utilizing the relation $\tanh ^{2} x(t) \leq x^{2}(t)$, we have

$$
\begin{equation*}
-a \gamma x^{2}(t) \leq-a \gamma \tanh ^{2} x(t) \tag{2.14}
\end{equation*}
$$

Substituting the relations (2.13) and (2.14) into the preceding inequality gives that

$$
\begin{equation*}
\frac{d V}{d t} \leq \chi^{T}(t) \Omega_{1} \chi(t) \tag{2.15}
\end{equation*}
$$

where

$$
\chi=\left[\begin{array}{c}
x(t) \tag{2.16}\\
x(t-\tau) \\
\tanh x(t) \\
\int_{t-\sigma}^{t} \tanh x(s) d s
\end{array}\right]
$$

Then, the rest of the proof is similar to that of Theorem 1 in [2].
Remark 1. In Theorem 2.1 and Theorem 2.2, if we take $h(x(t))=1$, these theorems reduce to Theorem 1 and 2 in [6], respectively.
Remark 2. In Theorem 2.3, if we take $h(x(t))=a>0$, this theorem reduce to Theorem 1 in [2].

References

[1] H. A. El-Morshedy and K. Gopalsamy, Nonoscillation, Oscillation and Convergence of a Class of Neutral Differential Equations, Nonlinear Analysis 40, 173-183 (2000).
[2] J.H.Park, Delay-Dependent Criterion for Asymptotic Stability of Neutral Equations, Appl Math Lett 17, 1203-1206 (2004).
[3] J. H. Park and O.M. Kwon, Stability Analysis of Certain Nonlinear Differential Equation, Chaos, Solitons Fractals 37, 450-453 (2008).
[4] K. Gopalsamy, I. Leung, and P. Liu, Global Hopf-Bifurcation im a Neural Netlet, Appl Math and Comput 94, 171-192 (1998).
[5] O.M. Kwon and J. H. Park, On Improved Delay-Dependent Stability Criterion of Certain Nonlinear Differential Equations, Appl Math and Comput 199, 385-391 (2008).
[6] R. P. Agarwal and S.R. Grace, Asymptotic Stability of Certain Neutral Differential Equations, Mathl. Comput. Modelling 31, 9-15 (2000).

An improvement to a C^{2} quintic spline interpolation scheme on triangulations

Sun-Kang Chen ${ }^{a}$, Huan-Wen Liu ${ }^{b}$
${ }^{a}$ Department of Mathematics, Honghe University, Mengzi, Yunnan 661100, P. R. China
${ }^{b}$ Faculty of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning, Guangxi 530006, P. R. China

Abstract

Wang in [1] solved an open problem described by Farin in [2], he constructed a C^{2} quintic spline interpolation scheme on a refined triangulation. In this paper, we would like to improve Wang's study by enforcing some additional smoothness conditions across the interior edges of Wang's refinement of triangulation \triangle. The results imply that our improvement interpolation scheme is more effective than other counterparts.

Keywords: Quintic spline; Improvement; B-coefficients; Spline space; Interpolation scheme.
MCS: 65D07; 41A15; 41A63

1 Introduction

Given a regular triangulation \triangle of a connected polygonal domain Ω, we denote the set of vertices in \triangle by \mathcal{V}, the set of edges by \mathcal{E} and the set of triangles by \mathcal{N} in \triangle. Let

$$
\begin{equation*}
S_{d}^{r}(\triangle)=\left\{s \in C^{r}(\Omega):\left.s\right|_{T} \in \mathcal{P}_{d}, \forall T \in \mathcal{N}\right\} \tag{1}
\end{equation*}
$$

be the spline function space of smoothness order r and degree d, where \mathcal{P}_{d} denotes the space of bivariate polynomials of total degree being at most d.

Bivariate splines are very flexible for approximating known or unknown functions or any given data sets, they have been playing an important role in surface fitting and computer aided geometric design (CAGD). Many bivariate C^{1} and C^{2} spline interpolation schemes have

[^36]been constructed and used in applications. It is well-known that the dimensions of space $S_{d}^{r}(\triangle)$ with $d<3 r+2$ on an arbitrary triangulation are still open. Since the bivariate spline with lower degrees versus smoothness orders are very important and favorable because of the simplicity and efficiency in calculation, many bivariate spline interpolation schemes with lower degrees were constructed on some kinds of special and refined triangulations. For example, related to C^{2} quintic spline interpolation scheme, Alfeld in [3] used Clough-Tocher's refinement twice to construct a C^{2} quintic spline interpolation scheme on \triangle_{A}, where \triangle_{A} denotes Alfeld's refinement of \triangle by using double Clough-Tocher's refinement. Sablonniére in [4], Lai in [5, 6] and Alfeld in [7] used Powell-Sabin's refinement to construct a bivariate C^{2} quintic interpolating spline function in $S_{5}^{2}\left(\triangle_{P S}\right)$ or subspace of $S_{5}^{2}\left(\triangle_{P S}\right)$, where $\triangle_{P S}$ denotes Powell-Sabin's refinement of \triangle. Wang in [1] subdivided each triangle of \triangle into 7 subtriangles and constructed a bivariate C^{2} quintic interpolating spline function in $S_{5}^{2}\left(\triangle_{W}\right)$, where \triangle_{W} denotes Wang's refinement of \triangle.

Among these C^{2} quintic spline interpolation schemes, Alfeld's and Wang's schemes leads to more basis functions, this may be a disadvantage for certain applications from the point of view of efficiency. In this paper, we would like to improve Wang's study [1] by enforcing some additional smoothness conditions across the interior edges of Wang's refinement. The results imply that our improvement scheme is more advantageous.

2 Notations and Preliminaries

Throughout the paper, let T be a triangle, we denote the three vertices of T in counter clockwise direction by v_{0}, v_{1} and v_{2}, then every polynomial $s \in \mathcal{P}_{d}$ associated with T can be written uniquely in the Bernstein-Beźier form

$$
\begin{equation*}
s=\sum_{i+j+k=d} c_{i j k}^{T} \mathcal{B}_{i j k}^{d}, \tag{2}
\end{equation*}
$$

where $\left\{\mathcal{B}_{i j k}^{d}\right\}_{i+j+k=d}$ is the Bernstein basis polynomials of degree d on the triangle T, and $c_{i j k}^{T}$ are called the B-coefficients of s associated with the domain points $\xi_{i j k}^{T}=\left(i v_{0}+j v_{1}+k v_{2}\right) / d$, $i+j+k=d$.

For each vertex $v \in \mathcal{V}$, we define the usual rings and disks of domain points

$$
\begin{aligned}
R_{n}(v) & :=\left\{\xi_{i j k}^{T}: i=d-n\right\}, \\
D_{n}(v) & :=\left\{\xi_{i j k}^{T}: i \geq d-n\right\} .
\end{aligned}
$$

Let $S_{d}^{0}(\triangle)$ be the space of continuous splines of d on the triangulation \triangle, and let $\mathcal{D}_{d, \Delta}$ be the union of the sets of domain points associated with each triangle of \triangle. Then each spline in $S_{d}^{0}(\triangle)$ is uniquely determined by its set of B-coefficients $\left\{c_{\xi}\right\}_{\xi \in \mathcal{D}_{d, \Delta}}$, and the B-coefficients
of the polynomial $\left.s\right|_{T}$ are precisely $\left\{c_{\xi}\right\}_{\xi \in \mathcal{D}_{d, \Delta} \cup T}$. We recall (cf.[8]) that a determining set for a spline space $S \subseteq S_{d}^{0}(\triangle)$ is a subset \mathcal{M} of domain points $\mathcal{D}_{d, \Delta}$ such that if $s \in S$ and $c_{\xi}=0$ for all $\xi \in \mathcal{M}$, then $c_{\eta}=0$ for all $\eta \in \mathcal{D}_{d, \Delta}$, i.e., $s \equiv 0 . \mathcal{M}$ is called a minimal determining set (MDS) for S if there is no smaller determining set. It is known that \mathcal{M} is a MDS for S if and only if every spline $s \in S$ is uniquely determined by its set of B-coefficients $\left\{c_{\xi}\right\}_{\xi \in \mathcal{M}}$, and $\operatorname{dim} S=M$, where M denotes the cardinality of \mathcal{M}. Moreover, for each $\xi \in \mathcal{M}$, let B_{ξ} be the unique spline in S satisfying

$$
\begin{equation*}
\lambda_{\eta} B_{\xi}=\delta_{\xi, \eta}, \quad \text { for all } \eta \in \mathcal{M}, \tag{3}
\end{equation*}
$$

where λ_{η} is the linear functional which picks off the B-coefficient c_{η}. Then the set $\left\{B_{\xi}\right\}_{\xi \in \mathcal{M}}$ is a basis for S, we call it the dual basis corresponding to \mathcal{M}.

Let $T:=<v_{0}, v_{1}, v_{2}>$ and $\tilde{T}:=<v_{3}, v_{2}, v_{1}>$ be two adjacent triangles, they share the common edge $e:=<v_{1}, v_{2}>$, and let $c_{i j k}$ and $\tilde{c}_{i j k}$ be the B-coefficients of the B-form of s_{T} and $s_{\tilde{T}}$, respectively. Following [9], for any $0 \leq n \leq m \leq d$, let $\tau_{e, m}^{n}$ be the linear functional defined on $S_{d}^{0}(\triangle)$ by

$$
\begin{equation*}
\tau_{e, m}^{n} s:=\tilde{c}_{n, m-n, d-m}-\sum_{i+j+k=n} c_{i, j+d-m, k+m-n} \mathcal{B}_{i j k}^{n}\left(v_{3}\right), \tag{4}
\end{equation*}
$$

then the condition that s is C^{r} smooth across the edge e is equivalent to

$$
\begin{equation*}
\tau_{e, m}^{n} s=0, \quad n \leq m \leq d, \quad 0 \leq n \leq r . \tag{5}
\end{equation*}
$$

The following lemma [8] shows how this works for computing coefficients on the ring $R_{m}^{T}\left(v_{2}\right) \cup R_{m}^{\tilde{T}}\left(v_{2}\right)$.

Lemma Suppose T and \tilde{T} are two triangles defined as above, and that all B-coefficients $c_{i j k}$ and $\tilde{c}_{i j k}$ of the B-form s_{T} and $s_{\tilde{T}}$ are known except for

$$
\begin{array}{ll}
c_{\nu}:=c_{\nu, d-m, m-\nu}, & \nu=l+1, \ldots, q, \\
\tilde{c}_{\nu}:=c_{\nu, m-\nu, d-m}, & \nu=l+1, \ldots, \tilde{q}, \tag{6}
\end{array}
$$

for some l, m, q, \tilde{q} with $0 \leq q, \tilde{q},-1 \leq l \leq q, \tilde{q}$, and $q+\tilde{q}-l \leq m \leq d$. Then these B-coefficients are uniquely determined by the smoothness conditions (5).

To be more precise about what we are going to study in this paper, following [1], we introduce some notations and definitions about Wang's refinement of triangle T.
(1) Take three interior points w_{1}, w_{2} and w_{3} in triangle T, where $w_{j}=\frac{1}{7} v_{j}+\frac{4}{7} v_{j+1}+\frac{2}{7} v_{j+2}$ and $v_{j+3}=v_{j}, j=1,2,3$;
(2) Join v_{j} to w_{j} and v_{j} to w_{j+1}, where $w_{j+3}=w_{j}, j=1,2,3$.

By means of the above process, we can get Wang's refinement T_{W} (Fig.1) of triangle T. Now we define subtriangles $t_{k}(k=0,1, \cdots, 6)$ in T_{W}, suppose

$$
t_{o}:=<w_{1}, w_{2}, w_{3}>, \quad t_{2 i-1}:=<v_{i+1}, v_{i+2}, w_{i}>, \quad t_{2 i}:=<v_{i+2}, w_{i+1}, w_{i}>,
$$

where $i=1,2,3$ and $v_{i+3}=v_{i}, w_{i+3}=w_{i}$.

Figure 1: Wang's refinement T_{W}.

3 The spline space $\hat{S}_{5}^{2}\left(T_{W}\right)$

Given Wang's refinement T_{W} of triangle T, we denote the edge $<w_{i}, w_{i+1}>$ by e_{i} for $i=1,2,3$, where $w_{4}=w_{1}$.

Theorem 1. Let $\hat{S}_{5}^{2}\left(T_{W}\right)$ be the subspace of $S_{5}^{2}\left(T_{W}\right)$ satisfying the following set of additional smoothness conditions:

$$
\begin{equation*}
\tau_{e_{i}, 3}^{3} s=0, \quad i=1,2,3, \tag{7}
\end{equation*}
$$

then $\operatorname{dim} \hat{S}_{5}^{2}\left(T_{W}\right)=30$, and the set \mathcal{M}_{T} of the following domain points is a MDS for $\hat{S}_{5}^{2}\left(T_{W}\right)$.

1) $\xi_{i j k}^{t_{2 l}}, i=3,4,5 ; i+j+k=5 ; l=1,2,3$,
2) $\xi_{122}^{t_{2 l-1}}, \xi_{221}^{t_{2 l-1}}, \xi_{212}^{t_{2 l-1}}, l=1,2,3$.
3) $\xi_{221}^{t_{0}}, \xi_{122}^{t_{0}}, \xi_{212}^{t_{0}}$.

These domain points are marked by • in Fig.2.
Proof: Firstly, we show that \mathcal{M}_{T} is a determining set for $\hat{S}_{5}^{2}\left(T_{W}\right)$. Suppose s is a spline in $\hat{S}_{5}^{2}\left(T_{W}\right)$ whose B-coefficients corresponding to points in \mathcal{M}_{T} are set to prescribed values, then we show that all of its remaining B-coefficients associated with domain points T_{w} are uniquely determined.
(1) The B-coefficients corresponding to points which marked by \circ in $D_{2}\left(v_{i}\right)(i=1,2,3)$ can be uniquely computed from those corresponding to domain points in item 1) in Theorem 1 by Lemma.
(2) Item 2) in Theorem 1 and C^{2} smoothness condition across edge $<v_{i}, w_{i+1}>$ and $<$

Figure 2: The MDS for spline space $\hat{S}_{5}^{2}\left(T_{W}\right)$ in Theorem 1.
$v_{i}, w_{i+2}>$ make the remain B-coefficients associated with 4 domain points which marked by in $R_{3}\left(v_{i}\right)$ to be uniquely computed, where $i=1,2,3$ and $w_{4}=w_{1}, w_{5}=w_{2}$. This computation involves solving a non-singular linear system equation.
(3) We now compute the B-coefficients associated with 3 domain points which marked by in t_{6} and t_{0}, by using C^{2} smoothness condition across the common edge $e_{3}:=<w_{3}, w_{1}>$ and the condition $\tau_{e_{3}, 3}^{3} s=0$, we can get

$$
\left\{\begin{array}{l}
c_{023}^{t_{0}}=-\frac{1}{4} c_{221}^{t_{0}}+c_{122}^{t_{0}}+\frac{1}{4} c_{221}^{t_{6}} \tag{8}\\
c_{122}^{t_{6}}=-\frac{1}{2} c_{211}^{t_{0}}+c_{122}^{t_{0}}+\frac{1}{2} c_{221}^{t_{6}} \\
c_{320}^{t_{0}}=-c_{302}^{t_{6}}-8 c_{221}^{t_{0}}-4 c_{122}^{t_{0}}+2 c_{212}^{t_{6}}
\end{array}\right.
$$

then these 3 B-coefficients $c_{023}^{t_{0}}, c_{122}^{t_{6}}$ and $c_{320}^{t_{0}}$ can be uniquely computed. Similarly, we can compute the remain B-coefficients associated with domain points which marked by $\mathbf{\Delta}$ in t_{0}, t_{2} and t_{4}.
(4)Next we use Lemma to compute the B-coefficients associated with 2 domain points which marked within t_{0} and $t_{2 i}$ for $i=1,2,3$.
(5) Then use Lemma to compute the B-coefficients associated with 2 domain points which marked by \oplus in $t_{2 i}$ for $i=1,2,3$.
(6) Use Lemma to compute the B-coefficients associated with 2 domain points which marked by \ominus in t_{1}, t_{3} and t_{5}.
(7) Use Lemma to compute the B-coefficients associated with a domain points which marked
by on e_{i} for $i=1,2,3$.
(8) Finally, use Lemma to compute the B-coefficients associated with 6 domain points which marked by \diamond on edge $\left\langle v_{1}, w_{3}\right\rangle,\left\langle v_{2}, w_{1}\right\rangle$ and $\left\langle v_{3}, w_{2}\right\rangle$.

Following above computation, we conclude that \mathcal{M} is a determining set for $\hat{S}_{5}^{2}\left(T_{W}\right)$. Since spline space $\hat{S}_{5}^{2}\left(T_{W}\right)$ is the subspace of $S_{5}^{2}\left(T_{W}\right)$ which requires additional 3 conditions, thus

$$
\operatorname{dim} S_{5}^{2}\left(T_{W}\right)-3 \leq \operatorname{dim} \hat{S}_{5}^{2}\left(T_{W}\right) \leq 30
$$

Noticing that $\operatorname{dim} S_{5}^{2}\left(T_{W}\right)=33$ [1], we conclude that \mathcal{M}_{T} is a MDS for $\hat{S}_{5}^{2}\left(T_{W}\right)$ and $\operatorname{dim} \hat{S}_{5}^{2}\left(T_{W}\right)=$ 30.

4 The spline space $\hat{S}_{5}^{2}\left(\triangle_{W}\right)$

Let \triangle_{W} be a Wang's refinement of triangulation \triangle and $\hat{S}_{5}^{2}\left(\triangle_{W}\right)$ be the subspace of all splines in $S_{5}^{2}\left(\triangle_{W}\right)$ satisfying the additional smoothness condition (7) in each T_{W}. In addition, we denote the perpendicular cross-derivative across the edge $e:=<v_{i}, v_{j}>$ by D_{e}, for any $1 \leq k$, let

$$
\eta_{k l}^{e}:=\frac{(k-l+1) v_{i}+l v_{j}}{k+1}, \quad l=1, \cdots, k .
$$

Based on above results, we have the following
Theorem 2. $\operatorname{dim} \hat{S}_{5}^{2}\left(\triangle_{W}\right)=6 V+3 E+3 N$, and any element in $\hat{S}_{5}^{2}\left(\triangle_{W}\right)$ is uniquely determined by the following conditions:

1) the derivatives $D_{x}^{\alpha} D_{y}^{\beta} s(v)$ for $0 \leq \alpha+\beta \leq 2$ and all $v \in \mathcal{V}$,
2) the derivatives $D_{e}^{k} s\left(\eta_{k 1}^{e}\right), \cdots, D_{e}^{k} s\left(\eta_{k k}^{e}\right)$ for $k=1,2$ and all $e \in \mathcal{E}$,
3) the derivatives $D_{e} s\left(\eta_{11}^{e}\right)$ for all $e \in \mathcal{E}_{0}$,
where \mathcal{E}_{0} denotes the set of edges of each triangle t_{0} in \triangle_{W} and V, E, N denote the number of vertices, edges, triangles of \triangle.

Proof: Let \mathcal{M}_{W} be the set consisting of the following domain points:
(1) For each vertex v of \triangle, choose a triangle t of \triangle_{W} attached to v and include $D_{2}^{t}(v)$;
(2) For each edge $e=<v_{1}, v_{2}>$ of \triangle, let $t=<v_{1}, v_{2}, v_{3}>$ be a triangle of \triangle_{W} containing the edge e. Then include the points $\xi_{221}^{t}, \xi_{122}^{t}, \xi_{212}^{t}$;
(3) For each triangle t_{0} in \triangle_{W}, include the points $\xi_{221}^{t_{0}}, \xi_{122}^{t_{0}}, \xi_{212}^{t_{0}}$.

Clearly, the cardinality of \mathcal{M}_{W} is $6 V+3 E+3 N$. Similar to the proof of Theorem 1 and C^{2} smoothness on two arbitrary adjacent triangle of the triangulation \triangle_{W}, this theorem can be easily proved.

In view of Eq. (3) and Theorem 2, we can form a dual basis for $\hat{S}_{5}^{2}\left(\triangle_{W}\right)$. For each $\xi \in \mathcal{M}_{W}$, it is easy to see that the basis function B_{ξ} has local support.

1) If ξ is point as in item (1) of the proof of Theorem 2 , then $\operatorname{supp}\left(B_{\xi}\right)$ is contained in the union of all triangles of \triangle sharing the vertex v.
2) If ξ is point as in item (2) of the proof of Theorem 2, then $\operatorname{supp}\left(B_{\xi}\right)$ is contained in $T \bigcup \tilde{T}$, where T and \tilde{T} are the triangles of \triangle sharing the edge e. (If e is a boundary edge of \triangle, then there is only one such triangle, and it is the support set).
3) If ξ is point as in item (3) of the proof of Theorem 2 , then $\operatorname{supp}\left(B_{\xi}\right)$ is is only one triangle T, where T contains ξ in \triangle.

We end this paper with the following remarks.
Remark 1. The computation detail of item (1) and (2) in the proof of Theorem 1 are described in [1].

Remark 2. In comparison with Wang's interpolation scheme in [1], our improvement method is more efficient. Firstly, the dimension of $S_{5}^{2}\left(\triangle_{W}\right)$ is bigger than that of $\hat{S}_{5}^{2}\left(\triangle_{W}\right)$, so our improvement method needs fewer locally supported basis functions. Then, in this paper, no large linear system needs to be solved as in [1].

Remark 3. For the purpose of comparison, we also list the dimensions of spline spaces mentioned in $\S 1$:
(1) $\operatorname{dim} S_{5}^{2}\left(T_{A}\right)=37$, see [3];
(2) $\operatorname{dim} S_{5}^{2}\left(T_{P S}\right)=31$, see $[4,6]$;
(3) $\operatorname{dim} S_{5}^{2}\left(T_{P S}\right)=37$, see [5];
(4) $\operatorname{dim} S_{5}^{2}\left(T_{P S}\right)=30$, see $[7]$;
(5) $\operatorname{dim} S_{5}^{2}\left(T_{W}\right)=33$, see [1].

Remark 4. In [4, 5, 6, 7], they all produce an interpolant spline function which is in C^{3} at all vertices of \triangle, this may be a disadvantage for certain applications.

5 Acknowledgement

The first author is supported by the Natural Science Foundation of Honghe University (XSS07004). The second author is supported by Guagxi Natural Science Foundation (0575029) and Hunan Key Laboratory for Computation and Simulation in Science and Engineering.

References

[1] Wang, T., A C^{2}-quintic spline interpolation scheme on triangulation, Comput. Aided Geom. Des., 9 (1992) 379-386.
[2] Farin, G., Bernstein-Bézier polynomials over triangles and the construction of piecewise C^{r} polynomials, Technical Report TR/91. Brunel University, Uxbridge, England.
[3] Alfeld, P., A bivariate C^{2} Clough-Tocher scheme, Comput. Aided Geom. Des., 1 (1984) 257-267.
[4] Sablonniére, P., Composite finite elements of class C^{2}, in Topics in Multivariate Approximation, C.K. Chui, L.L. Schumaker, F.I. Utreras (eds.), Academic Press, New York, 1987, 207-217.
[5] Lai, M.J., On C^{2} quintic spline functions over triangulation of Powell-Sabin triangulations, J. Comput. Appl. Math., 73 (1996) 135-155.
[6] Lai, M.J. and Schumaker, L.L., Macro-elements and stable local bases for splines on Powell-Sabin triangulations, Math. Comp., 72 (2003) 335-354.
[7] Alfeld, P. and Schumaker, L.L., Smooth Macro-elements based on Powell-Sabin triangle splits, Adv. Comp. Math., 16 (2002) 29-46.
[8] Alfeld, P. and Schumaker, L.L., Smooth macro-elements based on Clough-Tocher triangle splits, Numer. Math., 90 (2002) 597-616.
[9] Alfeld, P. and Schumaker, L.L., Upper and lower bounds on the dimension of superspline spaces, Constr. Approx., 19 (2003) 145-161.

SOME GEOMETRIC AND TOPOLOGICAL PROPERTIES OF A NEW SEQUENCE SPACE DEFINED BY DE LA VALLÉE-POUSSIN MEAN

NECİP ŞİMŞEK , EKREM SAVAŞ, AND VATAN KARAKAYA

Abstract

The main purpose of this paper is to introduce a new sequence space by using de la Vallée-Poussin mean and investigate both the modular structure with some geometric properties and some topological properties with respect to the Luxemburg norm.

1. Introduction

In summability theory, de la Vallée-Poussin's mean is first used to define the (V, λ)-summability by Leindler [9]. Malkowsky and Savaş [14] introduced and studied some sequence spaces which arise from the notion of generalized de la ValléePoussin mean. Also the (V, λ)-summable sequence spaces have been studied by many authors including [6] and [21].

Recently, there has been a lot of interest in investigating geometric properties of several sequence spaces. Some of the recent work on sequence spaces and their geometrical properties is given in the sequel: Shue [22] first defined the Cesáro sequence spaces with a norm. In [11], it is shown that the Cesáro sequence spaces $\operatorname{ces}_{p}(1 \leq p<\infty)$ have Kadec-Klee and Local Uniform Rotundity(LUR) properties. Cui-Hudzik-Pluciennik [4] showed that Banach-Saks of type p property holds in these spaces. In [15], Mursaleen et al. studied some geometric properties of normed Euler sequence space. Karakaya [7] defined a new sequence space involving lacunary sequence space equipped with the Luxemburg norm and studied KadecKlee (H), rotund (R) properties of this space. Quite recently, Sanhan and Suantai [19] generalized normed Cesáro sequence spaces to paranormed sequence spaces by making use of Köthe sequence spaces. They also defined and investigated modular structure and some geometrical properties of these generalized sequence spaces. In addition, some related papers on this topic can be found in $[1],[2],[5],[16],[17],[20]$ and [24].

[^37]In this paper, our purpose is to introduce a new sequence space defined by de la Vallée-Poussin's mean and investigate some topological and geometric properties of this space.

The organization of our paper is as follows: In the first section, we introduce some definition and concepts that are used throughout the paper. In the second section, we construct a new paranormed sequence space and investigate some geometrical properties of this space. Finally, in the third section, we construct the modular space $V_{\rho}(\lambda ; p)$ which is obtained by paranormed space $V(\lambda ; p)$ and we investigate the Kadec-Klee property of this space. We also show that the modular space $V_{\rho}(\lambda ; p)$ is a Banach space under the Luxemburg norm. Also in this section, we investigate the Banach-Saks of type p property of the space $V_{p}(\lambda)$.

2. Preliminaries, Background and Notation

The space of all real sequences $x=(x(i))_{i=1}^{\infty}$ is denoted by ℓ^{0}. Let $(X,\|\cdot\|)$ (for the brevity $X=(X,\|\cdot\|)$) be a normed linear space and let $S(X)$ and $B(X)$ be the unit sphere and unit ball of X, respectively.

A Banach space X which is a subspace of ℓ^{0} is said to be a Köthe sequence space, if (see [10]) ;
(i) for any $x \in \ell^{0}$ and $y \in X$ such that $|x(i)| \leq|y(i)|$ for all $i \in \mathbb{N}$, we have $x \in X$ and $\|x\| \leq\|y\|$,
(ii) there is $x \in X$ with $x(i)>0$ for all $i \in \mathbb{N}$.

We say that $x \in X$ is order continuous if for any sequence $\left(x_{n}\right)$ in X such that $x_{n}(i) \leq|x(i)|$ for each $i \in \mathbb{N}$ and $x_{n}(i) \rightarrow 0(n \rightarrow \infty),\left\|x_{n}\right\| \rightarrow 0$ holds. A Köthe sequence space X is said to be order continuous if all sequences in X are order continuous. It is easy to see that $x \in X$ is order continuous if and only if $\|(0,0, \ldots, 0, x(n+1), x(n+2), \ldots)\| \rightarrow 0$ as $n \rightarrow \infty$.

A Banach space X is said to have the Kadec-Klee property (or property (H)) if every weakly convergent sequence on the unit sphere with the weak limit in the sphere is convergent in norm.

Let $1<p<\infty$. A Banach space is said to have the Banach - Saks type p or property $\left(B S_{p}\right)$, if every weakly null sequence $\left(x_{k}\right)$ has a subsequence $\left(x_{k_{l}}\right)$ such that for some $C>0$,

$$
\left\|\sum_{l=0}^{n} x_{k_{l}}\right\|<C(n+1)^{\frac{1}{p}}
$$

for all $n \in \mathbb{N}$ (see [8]).
For a real vector space X, a functional $\rho: X \rightarrow[0, \infty]$ is called a modular if it satisfies the following conditions:
i) $\rho(x)=0 \Leftrightarrow x=0$,
ii) $\rho(\alpha x)=\rho(x)$ for all $\alpha \in \mathbb{F}$ with $|\alpha|=1$,
iii) $\rho(\alpha x+\beta y) \leq \rho(x)+\rho(y)$ for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.

ON SOME GEOMETRIC AND TOPOLOGICAL PROPERTIES OF SEQUENCE SPACES
Further, the modular ρ is called convex if
iv) $\rho(\alpha x+\beta y) \leq \alpha \rho(x)+\beta \rho(y)$ holds for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.

If ρ is a modular in X, we define

$$
\begin{gathered}
X_{\rho}=\left\{x \in X: \rho(\lambda x) \rightarrow 0 \quad \text { as } \quad \lambda \rightarrow 0^{+}\right\} \\
X_{\rho}^{*}=\{x \in X: \rho(\lambda x)<\infty \text { for some } \quad \lambda>0\}
\end{gathered}
$$

It is clear that $X_{\rho} \subseteq X_{\rho}^{*}$. If ρ is a convex modular for $x \in X_{\rho}$, we define

$$
\|x\|_{L}=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right) \leq 1\right\}
$$

and

$$
\|x\|_{A}=\inf _{\lambda>0} \frac{1}{\lambda}(1+\rho(\lambda x))
$$

If ρ is a convex modular on X, then $X_{\rho}=X_{\rho}^{*}$ and both $\|\cdot\|_{L}$ and $\|\cdot\|_{A}$ is a norm on X_{ρ} for which X_{ρ} is a Banach space.

The norms $\|\cdot\|_{L}$ and $\|\cdot\|_{A}$ are called the Luxemburg norm and the Amemiya norm(Orlicz norm), respectively.

In addition

$$
\|x\|_{L} \leq\|x\|_{A} \leq 2\|x\|_{L}
$$

for all $x \in X_{\rho}$ holds (see [18]).
A sequence $\left(x_{n}\right)$ of elements of X_{ρ} is called modular convergent to $x \in X_{\rho}$ if there exists a $\lambda>0$ such that $\rho\left(\lambda\left(x_{n}-x\right)\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proposition 2.1. Let $\left(x_{n}\right) \subset X_{\rho}$. Then $\left\|x_{n}\right\|_{L} \rightarrow 0$ (or equivalently $\|x\|_{A} \rightarrow 0$) if and only if $\rho\left(\lambda\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, for every $\lambda>0$.

Proof. See [18, p.15, Th.1].
Throughout the paper, the sequence $p=\left(p_{k}\right)$ is a bounded sequence of positive real numbers with $p_{k}>1$, also $H=\sup _{k} p_{k}$ and $M=\max \{1, H\}$.

Besides, we will need the following inequalities in the sequel;

$$
\begin{gather*}
\left|a_{k}+b_{k}\right|^{p_{k}} \leq K\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right) \tag{2.1}\\
\left|a_{k}+b_{k}\right|^{t_{k}} \leq\left|a_{k}\right|^{t_{k}}+\left|b_{k}\right|^{t_{k}} \tag{2.2}
\end{gather*}
$$

where $t_{k}=\frac{p_{k}}{M} \leq 1$ and $K=\max \left\{1,2^{H-1}\right\}$ with $H=\sup _{k} p_{k}$.
Now we begin the construction of a new sequence space.
Let $\Lambda=\left(\lambda_{k}\right)$ be a nondecreasing sequence of positive real numbers tending to infinity and let $\lambda_{1}=1$ and $\lambda_{k+1} \leq \lambda_{k}+1$.

The generalized de la Vallée-Poussin means of a sequence $x=\left(x_{k}\right)$ are defined as follows:

$$
t_{k}(x)=\frac{1}{\lambda_{k}} \sum_{j \in I_{k}} x_{j} \text { where } I_{k}=\left[k-\lambda_{k}+1, k\right] \quad \text { for } \quad k=1,2, \ldots
$$

We write

$$
\begin{gathered}
{[V, \lambda]_{0}=\left\{x \in \ell^{0}: \lim _{k \rightarrow \infty} \frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|=0\right\}} \\
{[V, \lambda]=\left\{x \in \ell^{0}: x-l e \in[V, \lambda]_{0}, \text { for some } l \in \mathbb{C}\right\}}
\end{gathered}
$$

and

$$
[V, \lambda]_{\infty}=\left\{x \in \ell^{0}: \sup _{k} \frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|<\infty\right\}
$$

for the sequence spaces that are strongly summable to zero, strongly summable and strongly bounded by the de la Vallée-Poussin method (see [9]). In the special case, if we take $\lambda_{k}=k$ for $k=1,2, \ldots$ the spaces $[V, \lambda]_{0},[V, \lambda]$ and $[V, \lambda]_{\infty}$ reduce to the spaces w_{0}, w and w_{∞} introduced by Maddox [12].

We now define the following new paranormed sequence space:

$$
V(\lambda ; p):=\left\{x=\left(x_{j}\right) \in \ell^{0}: \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p_{k}}<\infty\right\} .
$$

The space $V(\lambda ; p)$ is reduced to some special sequence spaces corresponding to special cases of sequence $\left(\lambda_{k}\right)$ and $\left(p_{k}\right)$. For example: If we take $\lambda_{k}=k$, we obtain the space $\operatorname{ces}(p)$ defined by [23]. If we take $\lambda_{k}=k$ and $p_{k}=p$ for all $k \in \mathbb{N}$, the space $V(\lambda ; p)$ reduces to the space $c e s_{p}$ defined by [22].

3. Some Topological Properties Of The Sequence Space $V(\lambda ; p)$

In this section, we will give the topological properties of the space $V(\lambda ; p)$. We begin by obtaining the first main result.

Theorem 3.1. a) The space $V(\lambda ; p)$ is a complete paranormed space with respect to paranorm defined by

$$
\begin{equation*}
h(x):=\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p_{k}}\right)^{\frac{1}{M}} . \tag{3.1}
\end{equation*}
$$

b) if $p_{k}=p$; the space $V(\lambda ; p)$ reduced to $V_{p}(\lambda)$ defined by

$$
V_{p}(\lambda):=\left\{x=\left(x_{j}\right) \in \ell^{0}: \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p}<\infty\right\} .
$$

And the space $V_{p}(\lambda)$ is a complete normed space defined by

$$
\|x\|_{V_{p}(\lambda)}:=\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p}\right)^{\frac{1}{p}} \quad(1<p<\infty)
$$

Proof. a) The linearity of $V(\lambda ; p)$ with respect to coordinatewise addition and scalar multiplication follows from the inequality (2.1). Because, for any $x, y \in V(\lambda ; p)$ the following inequalities are satisfied:

$$
\begin{gather*}
\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}+y_{j}\right|\right)^{p_{k}}\right)^{\frac{1}{M}} \leq\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p_{k}}\right)^{\frac{1}{M}} \\
+\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|y_{j}\right|\right)^{p_{k}}\right)^{\frac{1}{M}} \tag{3.2}
\end{gather*}
$$

and for any $\alpha \in \mathbb{R}$ (see [13]) we have

$$
\begin{equation*}
|\alpha|^{p_{k}} \leq \max \left\{1,|\alpha|^{M}\right\} . \tag{3.3}
\end{equation*}
$$

It is clear that $h(\theta)=0$ and $h(x)=h(-x)$ for all $x \in V(\lambda ; p)$. Again the inequalities (3.2) and (3.3) yield the subadditivity of h and

$$
h(\alpha x) \leq \max \{1,|\alpha|\} h(x) .
$$

Let $\left(x^{m}\right)$ be any sequence of points of the space $V(\lambda ; p)$ such that $h\left(x^{m}-x\right) \rightarrow 0$ and $\left(\alpha_{n}\right)$ also be any sequence of scalars such that $\alpha_{n} \rightarrow \alpha$. Then, since the inequality

$$
h\left(x^{m}\right) \leq h(x)+h\left(x^{m}-x\right)
$$

holds by subadditivity of h, the sequence $\left(h\left(x^{m}\right)\right)_{m \in \mathbb{N}}$ is bounded and we thus have

$$
\begin{aligned}
h\left(\alpha_{m} x^{m}-\alpha x\right) & =\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\alpha_{m} x_{j}^{m}-\alpha x_{j}\right|\right)^{p_{k}}\right)^{\frac{1}{M}} \\
& \leq\left|\alpha_{m}-\alpha\right| h\left(x^{m}\right)+|\alpha| h\left(x^{m}-x\right) .
\end{aligned}
$$

The last expression tends to zero as $m \rightarrow \infty$, that is, the scalar multiplication is continuous. Hence h is paranorm on the space $V(\lambda ; p)$.

It remains to prove the completeness of the space $V(\lambda ; p)$.
Let $\left(x^{n}\right)$ be any Cauchy sequence in the space $V(\lambda ; p)$, where $x=\left(x_{j}^{n}\right)=$ $\left(x_{1}^{n}, x_{2}^{n}, x_{3}^{n}, \ldots\right)$. Then, for a given $\varepsilon>0$, there exists a positive integer $n_{0}(\varepsilon)$ such that

$$
h\left(x^{n}-x^{m}\right)<\frac{\varepsilon}{2}
$$

for every $m, n \geq n_{0}(\varepsilon)$. By using the definition of h, we obtain that

$$
\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}^{n}-x_{j}^{m}\right|\right)^{p_{k}}\right)<\varepsilon^{M}
$$

for every $m, n \geq n_{0}(\varepsilon)$. Also we get, for fixed $j \in \mathbb{N},\left|x_{j}^{n}-x_{j}^{m}\right|<\varepsilon$ for every $m, n \geq n_{0}(\varepsilon)$. Hence it is clear that the sequences $\left(x_{j}^{n}\right)$ is a Cauchy sequence in \mathbb{R}.

Since the real numbers set is complete, so we have $x_{j}^{m} \rightarrow x_{j}$ for every $n \geq n_{0}(\varepsilon)$ and as $m \rightarrow \infty$. Now we get

$$
\left(\sum_{k=1}^{r}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}^{n}-x_{j}\right|\right)^{p_{k}}\right)<\varepsilon^{M}
$$

If we pass to the limit over the r to infinity and $n \geq n_{0}(\varepsilon)$ we obtained $h\left(x^{n}-x\right)<\varepsilon$. So, the sequence $\left(x^{n}\right)$ is a Cauchy sequence in the space $V(\lambda ; p)$.

It remains to show that the space $V(\lambda ; p)$ is complete. Since we have $x=$ $x^{n}-x^{n}+x$, we get

$$
\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p_{k}} \leq \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}^{n}-x_{j}\right|\right)^{p_{k}}+\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}^{n}\right|\right)^{p_{k}}
$$

Consequently, we obtain $x \in V(\lambda ; p)$. This completes the proof.
$b)$ By taking $p_{k}=p$ in (a), it can be easily shown the proof of (b).

4. Some Geometric Properties Of The $\operatorname{Spaces} V_{\rho}(\lambda ; p)$ And $V_{p}(\lambda)$.

In this section we construct the modular structure of the space $V(\lambda ; p)$ and since the Luxemburg norm is equivalent to usual norm of the space $V_{p}(\lambda)$, we show that the space $V_{p}(\lambda)$ has the Banach-Saks type p.

Firstly, we will introduce a generalized modular sequence space $V_{\rho}(\lambda ; p)$ by

$$
V_{\rho}(\lambda ; p):=\left\{x \in \ell^{0}: \rho(\lambda x)<\infty, \text { for some } \lambda>0\right\},
$$

where

$$
\rho(x)=\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p_{k}}\right) .
$$

It can be seen that $\rho: V_{\rho}(\lambda ; p) \rightarrow[0, \infty]$ is a modular on $V_{\rho}(\lambda ; p)$.
Note that the Luxemburg norm on the sequence space $V_{\rho}(\lambda ; p)$ is defined as follows:

$$
\|x\|_{L}=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right) \leq 1\right\}, \quad \text { for all } x \in V_{\rho}(\lambda ; p)
$$

or equally

$$
\|x\|_{L}=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right)=\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p_{k}}\right) \leq 1\right\}
$$

In the same way we can introduce the Amemiya norm (Orlicz norm) on the sequence space $V_{\rho}(\lambda ; p)$ as follows:

$$
\|x\|_{A}=\inf _{\lambda>0} \frac{1}{\lambda}(1+\rho(\lambda x)) \quad \text { for all } x \in V_{\rho}(\lambda ; p)
$$

We now give some basic properties of the modular ρ on the space $V_{\rho}(\lambda ; p)$. Also we will investigate some relationships between the modular ρ and the Luxemburg norm on $V_{\rho}(\lambda ; p)$.

ON SOME GEOMETRIC AND TOPOLOGICAL PROPERTIES OF SEQUENCE SPACES
Proposition 4.1. The functional ρ is a convex modular on $V_{\rho}(\lambda ; p)$.
Proposition 4.2. For any $x \in V_{\rho}(\lambda ; p)$
i) if $\|x\|_{L} \leq 1$, then $\rho(x) \leq\|x\|_{L}$;
ii) $\|x\|_{L}=1$ if and only if $\rho(x)=1$.

Proposition 4.3. For any $x \in V_{\rho}(\lambda ; p)$, we have
i) If $0<a<1$ and $\|x\|_{L}>a$, then $\rho(x)>a^{H}$;
ii) if $a \geq 1$ and $\|x\|_{L}<a$, then $\rho(x)<a^{H}$.

The proofs of the three propositions given above are proved with standard techniques in a similar way as in [19] and [3].

Proposition 4.4. Let $\left(x_{n}\right)$ be a sequence in $V_{\rho}(\lambda ; p)$. Then:
i) if $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{L}=1$, then $\lim _{n \rightarrow \infty} \rho\left(x_{n}\right)=1$;
ii) if $\lim _{n \rightarrow \infty} \rho\left(x_{n}\right)=0$, then $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{L}=0$.

Proof. (i) Suppose that $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{L}=1$. Let $\varepsilon \in(0,1)$. Then there exists n_{0} such that $1-\varepsilon<\left\|x_{n}\right\|_{L}<1+\varepsilon$ for all $n \geq n_{0}$. Since $(1-\varepsilon)^{H}<\left\|x_{n}\right\|_{L}<(1+\varepsilon)^{H}$ for all $n \geq n_{0}$ by the Proposition 4.3 (i) and (ii), we have $\rho\left(x_{n}\right) \geq(1-\varepsilon)^{H}$ and $\rho\left(x_{n}\right) \leq(1-\varepsilon)^{H}$. Therefore $\lim _{n \rightarrow \infty} \rho\left(x_{n}\right)=1$.
(ii) Suppose that $\left\|x_{n}\right\|_{L} \nrightarrow 0$. Then there is an $\varepsilon \in(0,1)$ and a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\left\|x_{n_{k}}\right\|_{L}>\varepsilon$ for all $k \in \mathbb{N}$. By the Proposition 4.3 (i), we obtain that $\rho\left(x_{n_{k}}\right)>\varepsilon^{H}$ for all $k \in \mathbb{N}$. This implies that $\rho\left(x_{n_{k}}\right) \nrightarrow 0$ as $n \rightarrow \infty$. Hence $\rho\left(x_{n}\right) \nrightarrow 0$.

Theorem 4.5. The space $V_{\rho}(\lambda ; p)$ is a Banach space with respect to Luxemburg norm defined by

$$
\|x\|_{L}=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right) \leq 1\right\}
$$

Proof. We show that every Cauchy sequence in $V_{\rho}(\lambda ; p)$ is convergent according to the Luxemburg norm.

Let $\left(x^{n}(j)\right)$ be any Cauchy sequence in $V_{\rho}(\lambda ; p)$ and $\varepsilon \in(0,1)$. Thus, there exists n_{0} such that $\left\|x_{n}-x_{m}\right\|_{L}<\varepsilon^{M}$ for all $m, n \geq n_{0}$. By the Proposition 3.2 (i), we obtain

$$
\begin{equation*}
\rho\left(x^{n}-x^{m}\right)<\left\|x^{n}-x^{m}\right\|_{L}<\varepsilon^{M} \tag{4.1}
\end{equation*}
$$

for all $n, m \geq n_{0}$, that is;

$$
\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x^{n}(j)-x^{m}(j)\right|\right)^{p_{k}}<\varepsilon
$$

for all $m, n \geq n_{0}$. For fixed $j \in \mathbb{N}$, the last inequality gives that

$$
\left|x^{n}(j)-x^{m}(j)\right|<\varepsilon
$$

for all $m, n \geq n_{0}$. Hence we obtain that the sequence $\left(x^{n}(j)\right)$ is a Cauchy sequence in \mathbb{R}. Since \mathbb{R} is complete, $x^{m}(j) \rightarrow x(j)$ as $m \rightarrow \infty$. Therefore, we have

$$
\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x^{n}(j)-x(j)\right|\right)^{p_{k}}<\varepsilon
$$

for all $n \geq n_{0}$.
It remains to show that the sequence $(x(j))$ is an element of $V_{\rho}(\lambda ; p)$. From the inequality (4.1), we can write

$$
\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x^{n}(j)-x^{m}(j)\right|\right)^{p_{k}}<\varepsilon
$$

for all $m, n \geq n_{0}$. For every $j \in \mathbb{N}$, we have $x^{m}(j) \rightarrow x(j)$, so we obtain that

$$
\rho\left(x^{n}-x^{m}\right) \rightarrow \rho\left(x^{n}-x\right)
$$

as $m \rightarrow \infty$. Since for all $n \geq n_{0}$,

$$
\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x^{n}(j)-x^{m}(j)\right|\right)^{p_{k}} \rightarrow \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x^{n}(j)-x(j)\right|\right)^{p_{k}}
$$

as $m \rightarrow \infty$, then by (4.1) we have $\rho\left(x^{n}-x\right)<\left\|x^{n}-x\right\|_{L}<\varepsilon$ for all $n \geq n_{0}$. This means that $x_{n} \rightarrow x$ as $n \rightarrow \infty$. So, we have $\left(x_{n_{0}}-x\right) \in V_{\rho}(\lambda ; p)$. Since $V_{\rho}(\lambda ; p)$ is a linear space, we have $x=x_{n_{0}}-\left(x_{n_{0}}-x\right) \in V_{\rho}(\lambda ; p)$. Therefore the sequence space $V_{\rho}(\lambda ; p)$ is a Banach space with respect to Luxemburg norm. This completes the proof.

Next, we will show that the space $V_{\rho}(\lambda ; p)$ has Kadec-Klee property. To do this, we need the following Proposition.

Proposition 4.6. Let $x \in V_{\rho}(\lambda ; p)$ and $\left(x_{n}\right) \subseteq V_{\rho}(\lambda ; p)$. If $\rho\left(x_{n}\right) \rightarrow \rho(x)$ as $n \rightarrow \infty$ and $x_{n}(j) \rightarrow x(j)$ as $n \rightarrow \infty$ for all $j \in \mathbb{N}$, then $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

Proof. Let $\varepsilon>0$. Since $\rho(x)=\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(i)|\right)^{p_{k}}<\infty$, there exists $j \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{k=n_{0}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{p_{k}}<\frac{\varepsilon}{6 K} \tag{4.2}
\end{equation*}
$$

where $K=\max \left\{1,2^{H-1}\right\}$.

ON SOME GEOMETRIC AND TOPOLOGICAL PROPERTIES OF SEQUENCE SPACES
Since $\rho\left(x_{n}\right)-\sum_{k=1}^{n_{0}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n}(j)\right|\right)^{p_{k}} \rightarrow \rho(x)-\sum_{k=1}^{n_{0}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{p_{k}}$ as $n \rightarrow \infty$ and $x_{n}(j) \rightarrow x(j)$ as $n \rightarrow \infty$ for all $j \in \mathbb{N}$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\sum_{k=n_{0}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n}(j)\right|\right)^{p_{k}}-\sum_{k=n_{0}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{p_{k}}\right|<\frac{\varepsilon}{3 K} \tag{4.3}
\end{equation*}
$$

for all $n \geq n_{0}$. Also, since $x_{n}(j) \rightarrow x(j)$ for all $j \in \mathbb{N}$, we have $\rho\left(x_{n}\right) \rightarrow \rho(x)$ as $n \rightarrow \infty$. Hence for all $n \geq n_{0}$, we have $\left|x_{n}(j)-x(j)\right|<\varepsilon$. As a result, for all $n \geq n_{0}$, we have

$$
\begin{equation*}
\sum_{k=1}^{n_{0}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n}(j)-x(j)\right|\right)^{p_{k}}<\frac{\varepsilon}{3} \tag{4.4}
\end{equation*}
$$

Then from (4.2), (4.3) and (4.4) it follows that for $n \geq n_{0}$,

$$
\begin{aligned}
\rho\left(x_{n}-x\right) & =\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n}(j)-x(j)\right|\right)^{p_{k}} \\
& =\sum_{k=1}^{n_{0}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n}(j)-x(j)\right|\right)^{p_{k}}+\sum_{k=n_{0}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n}(j)-x(j)\right|\right)^{p_{k}} \\
& <\frac{\varepsilon}{3}+K\left[\sum_{k=n_{0}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n}(j)\right|\right)^{p_{k}}+\sum_{k=n_{0}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{p_{k}}\right] \\
& =\frac{\varepsilon}{3}+K\left[\rho\left(x_{n}\right)-\sum_{k=1}^{n_{0}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n}(j)\right|\right)^{p_{k}}+\sum_{k=n_{0}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{p_{k}}\right] \\
& <\frac{\varepsilon}{3}+K\left[\rho(x)-\sum_{k=1}^{p_{0}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n}(j)\right|\right)^{p_{k}}+\frac{\varepsilon}{3 K}+\sum_{k=n_{0}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{p_{k}}\right] \\
& =\frac{\varepsilon}{3}+K\left[\sum_{k=n_{0}+1}^{p_{k}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{p_{k}}+\frac{\varepsilon}{3 K}+\sum_{k=n_{0}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{\infty}\right] \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

This shows that $\rho\left(x_{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence by Proposition 4.4 (ii), we have $\left\|x_{n}-x\right\|_{L} \rightarrow 0$ as $n \rightarrow \infty$.

Now, we give one of the main result of this paper involving geometric properties of the space $V_{\rho}(\lambda ; p)$.

Theorem 4.7. The space $V_{\rho}(\lambda ; p)$ has the Kadec-Klee property.
Proof. Let $x \in S\left(V_{\rho}(\lambda ; p)\right)$ and $\left(x_{n}\right) \subseteq B\left(V_{\rho}(\lambda ; p)\right)$ such that $\left\|x_{n}\right\|_{L} \rightarrow 1$ and $x_{n} \xrightarrow{w} x$ as $n \rightarrow \infty$. From Proposition 4.2 (ii), we have $\rho(x)=1$, so it follows

NECİP ŞIMŞEK, EKREM SAVAŞ, AND VATAN KARAKAYA

from Proposition 4.4 (i) that $\rho\left(x_{n}\right) \rightarrow \rho(x)$ as $n \rightarrow \infty$. Since $x_{n} \xrightarrow{w} x$ and the $i^{\text {th }}$-coordinate mapping $\pi_{j}: V_{\rho}(\lambda ; p) \rightarrow \mathbb{R}$ defined by $\pi_{j}(x)=x(j)$ is continuous linear function on $V_{\rho}(\lambda ; p)$, it follows that $x_{n}(j) \rightarrow x(j)$ as $n \rightarrow \infty$ for all $j \in \mathbb{N}$. Thus, by Proposition 4.6 that $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

We prove the following theorem regarding the Banach-Saks of type p property.
Theorem 4.8. The space $V_{p}(\lambda)$ has the Banach-Saks of type p.
Proof. From the Theorem 3.1 b), it is known that the space $V_{p}(\lambda)$ is a Banach space with respect to the norm $\|x\|_{V_{p}(\lambda)}$.

Let $\left(\varepsilon_{n}\right)$ be a sequence of positive numbers for which $\sum_{n=1}^{\infty} \varepsilon_{n} \leq \frac{1}{2}$. Let $\left(x_{n}\right)$ be a weakly null sequence in $B\left(V_{p}(\lambda)\right)$. Set $b_{0}=x_{0}=0$ and $b_{1}=x_{n_{1}}=x_{1}$. Then there exists $m_{1} \in \mathbb{N}$ such that

$$
\left\|\sum_{i=m_{1}+1}^{\infty} b_{1}(i) e^{(i)}\right\|_{V_{p}(\lambda)}<\varepsilon_{1} .
$$

Since $\left(x_{n}\right)$ is a weakly null sequence implies $x_{n} \rightarrow 0$ (coordinatewise), there is an $n_{2} \in \mathbb{N}$ such that

$$
\left\|\sum_{i=0}^{m_{1}} x_{n}(i) e^{(i)}\right\|_{V_{p}(\lambda)}<\varepsilon_{1},
$$

where $n \geq n_{2}$. Set $b_{2}=x_{n_{2}}$. Then there exists an $m_{2}>m_{1}$ such that

$$
\left\|\sum_{i=m_{2}+1}^{\infty} b_{2}(i) e^{(i)}\right\|_{V_{p}(\lambda)}<\varepsilon_{2} .
$$

By using the fact that $x_{n} \rightarrow 0$ (coordinatewise), there exists an $n_{3}>n_{2}$ such that

$$
\left\|\sum_{i=0}^{m_{2}} x_{n}(i) e^{(i)}\right\|_{V_{p}(\lambda)}<\varepsilon_{2},
$$

where $n \geq n_{3}$.
If we continue this process, we can find two increasing subsequences $\left(m_{i}\right)$ and $\left(n_{i}\right)$ such that

$$
\left\|\sum_{i=0}^{m_{j}} x_{n}(i) e^{(i)}\right\|_{V_{p}(\lambda)}<\varepsilon_{j},
$$

for each $n \geq n_{j+1}$ and

$$
\left\|\sum_{i=m_{j}+1}^{\infty} b_{j}(i) e^{(i)}\right\|_{V_{p}(\lambda)}<\varepsilon_{j},
$$

where $b_{j}=x_{n_{j}}$. Hence,

$$
\left\|\sum_{j=0}^{n} b_{j}\right\|_{V_{p}(\lambda)}=\left\|\sum_{j=0}^{n}\left(\sum_{i=0}^{m_{j-1}} b_{j}(i) e^{(i)}+\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}+\sum_{i=m_{j}+1}^{\infty} b_{j}(i) e^{(i)}\right)\right\|_{V_{p}(\lambda)}
$$

ON SOME GEOMETRIC AND TOPOLOGICAL PROPERTIES OF SEQUENCE SPACES

$$
\begin{gathered}
\leq \sum_{j=0}^{n}\left(\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}\right)\left\|_{V_{p}(\lambda)}+\right\| \sum_{j=0}^{n}\left(\sum_{i=0}^{m_{j-1}} b_{j}(i) e^{(i)}\right)\left\|_{V_{p}(\lambda)}+\right\| \sum_{j=0}^{n}\left(\sum_{i=m_{j}+1}^{\infty} b_{j}(i) e^{(i)}\right) \|_{V_{p}(\lambda)} \\
\leq\left\|\sum_{j=0}^{n}\left(\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}\right)\right\|_{V_{p}(\lambda)}+2 \sum_{j=0}^{n} \varepsilon_{j} .
\end{gathered}
$$

On the other hand, since

$$
\left\|x_{n}\right\|_{V_{p}(\lambda)}=\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{n_{k}}(j)\right|\right)^{p}\right)^{\frac{1}{p}}, \text { it can be seen that }\left\|x_{n}\right\|_{V_{p}(\lambda)}<1 .
$$

Therefore $\left\|x_{n}\right\|_{V_{p}(\lambda)}^{p}<1$. We have

$$
\begin{aligned}
\left\|\sum_{j=0}^{n}\left(\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}\right)\right\|_{V_{p}(\lambda)}^{p} & =\sum_{j=0}^{n} \sum_{i=m_{j-1}+1}^{m_{j}}\left(\frac{1}{\lambda_{i}} \sum_{v \in I_{i}}\left|b_{j}(v)\right|\right)^{p} \\
& \leq \sum_{j=0}^{n} \sum_{i=0}^{\infty}\left(\frac{1}{\lambda_{i}} \sum_{v \in I_{i}}\left|b_{j}(v)\right|\right)^{p} \\
& \leq(n+1) .
\end{aligned}
$$

Hence we obtain,

$$
\left\|\sum_{j=0}^{n}\left(\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}\right)\right\|_{V_{p}(\lambda)} \leq(n+1)^{\frac{1}{p}} .
$$

By using the fact $1 \leq(n+1)^{\frac{1}{p}}$ for all $n \in \mathbb{N}$ and $1 \leq p<\infty$, we have

$$
\left\|\sum_{j=0}^{n} b_{j}\right\|_{V_{p}(\lambda)} \leq(n+1)^{\frac{1}{p}}+1 \leq 2(n+1)^{\frac{1}{p}}
$$

Hence $V_{p}(\lambda)$ has the Banach-Saks type p. This completes the proof of the theorem.

References

[1] F. Basar, B. Altay and M. Mursaleen, Some generalizations of the space $b v_{p}$ of p-bounded variation sequences, Nonlinear Analysis : Theory, Methods\&Applications, Volume 68, (2), (2008) 273-287.
[2] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math., 356 (1996).
[3] Y.A. Cui, H.Hudzik, On the uniform Opial property in some modular sequence spaces, Funct. Approx.Comment. 26 (1998) 93-102.
[4] Y. A. Cui, H. Hudzik and R. Pluciennik, Banach-Saks property in some Banach sequence spaces, Annales Math. Polinici, 65 (1997) 193-202.
[5] J. Diestel, Geometry of Banach spaces- Selected Topics, Springer-Verlag, (1984).
[6] M. Et, Spaces of Cesáro difference sequences of order r defined by a modulus function in a locally convex space, Taiwanese J. Math., 10 (2006) no. 4, 865-879.

NECİP ŞİMŞEK, EKREM SAVAŞ, AND VATAN KARAKAYA

[7] V. Karakaya, Some geometric properties of sequence spaces involving Lacunary Sequence, Journal of Inequalities and Applications, Volume (2007), Article ID 81028, 8 pages doi:10.1155/2007/81028.
[8] H. Knaust, Orlicz sequence spaces of Banach-Saks type, Arch. Math. 59 (1992) 562-565.
[9] L. Leindler, Über die verallgemeinerte de la Vallée-Poussinsche summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar. 16, no.3-4 (1965) 375-387.
[10] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces - I, Springer-Verlag, Berlin, 1977.
[11] Y. Q. Liu, B. E. Wu and Y. P. Lee, Method of sequence spaces, Guangdong of Science and Technology Press, (1996) (in Chinese).
[12] I. J. Maddox, On Kuttners theorem, J. London Math. Soc. 43 (1968), 285-290.
[13] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64 (1968) 335-340.
[14] E. Malkowsky, E. Savaş, Some λ-sequence space defined by a modulus, Archivum Mathematicum (BRNO), Tomus 36 (2000), 219-228.
[15] M. Mursaleen, F. Başar, B. Altay, On the Euler sequence spaces which include the spaces l_{p} and l_{∞} II, Nonlinear Analysis 65 (2006) 707-717.
[16] M. Mursaleen, Rifat Colak and Mikail Et, Some Geometric Inequalities in a New Banach Sequence Space, Journal of Inequalities and Applications, Volume 2007 (2007), Article ID 86757, 6 pages, doi:10.1155/2007/86757.
[17] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Vol.1034, Springer-Berlin, 1983.
[18] W. Orlicz, Linear Functional Analysis, World Sci. Publ. Co. Ltd. Springer, 1990.
[19] W. Sanhan and S. Suantai, Some geometric properties of Cesáro sequence space, Kyungpook Math. J. 43 (2003) 191-197.
[20] E. Savaş, V. Karakaya and N. Şimşek, Some $\ell(p)$-Type New Sequence Spaces and Their Geometric Properties, Abstract and Applied Analysis, Volume 2009 (2009), Article ID 696971, 12 pages, doi:10.1155/2009/696971.
[21] E. Savaş, R. Savaş, Some λ-sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 34 (2003), no. 12, 1673-1680.
[22] J. S. Shue, Cesáro sequence spaces, Tamkang J. Math. 1 (1970) 143-150.
[23] S. Suantai, On the H-property of some Banach sequence spaces, Arch. Math. (BRNO) 39 (2003) 309-316.
[24] N. Şimşek and V. Karakaya, On some geometrial properties of generalized modular spaces of Cesáro type defined by weighted means, Journal of Inequalities and Applications, Volume 2009 (2009), Article ID 932734, 13 pages, doi:10.1155/2009/932734.

İSTANBUL COMMERCE UNIVERSITY, Department of Mathematics, Uskudar, İstanbul, TURKEY

E-mail address: necsimsek@yahoo.com
İStanBul COMMERCE UNIVERSITY, Department of Mathematics, Uskudar, İstanbul, TURKEY

E-mail address: ekremsavas@yahoo.com
YILDIZ TECHNICAL UNIVERSITY, Department of Mathematical Engineering, Davutpasa Campus, Esenler, İSTANBUL-TURKEY

E-mail address: vkkaya@yildiz.edu.tr

Composition operators on logarithmic α-Bloch spaces
 SHANLI YE*
 Department of Mathematics, Fujian Normal University, Fuzhou 350007, China

Abstract

In this paper we discuss the composition operator on the logarithmic α-Bloch space $L B_{\alpha}$ on the unit disk. The main results are as follows: (i) the sufficient and necessary conditions of C_{φ} being bounded on the $L B_{\alpha}$ and $L B_{\alpha, 0}$; (ii) the sufficient and necessary conditions of C_{φ} being compacted on the $L B_{\alpha}$ and $L B_{\alpha, 0}$.

Keywords: Composition operator; Bloch space; Boundedness; Compactness
MSC 2000: Primary 47B38, secondary 30D05, 30H05

1 Introduction

Let $D=\{z:|z|<1\}$ be the open unit disk in the complex plane \mathbf{C}, and $H(D)$ denote the set of all analytic functions on D. For $\alpha>0$, a function $f \in H(D)$ is said to belong to the logarithmic α-Bloch space $L B_{\alpha}$ if

$$
\|f\|_{L B_{\alpha}}=\sup \left\{\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|f^{\prime}(z)\right|: z \in D\right\}<+\infty
$$

and to the little logarithmic α-Bloch space $L B_{\alpha, 0}$ if

$$
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|f^{\prime}(z)\right|=0
$$

It is easily proved that $L B_{\alpha}$ is a Banach space under the norm $\|f\|_{\alpha}=|f(0)|+\|f\|_{L B_{\alpha}}$ and that $L B_{\alpha, 0}$ is a closed subspace of $L B_{\alpha}$. when $\alpha=1$, the $L B_{\alpha}$ space is called the logarithmic Bloch space $L B_{1}$. Some sources for results and references about the logarithmic Bloch functions are the papers of Yoneda [10], Stević $[4,5]$, and the author $[6,7,8,9]$.

Let φ be a holomorphic self-map of D. The composition operator C_{φ} is defined by

$$
C_{\varphi}(f)=f \circ \varphi, \quad f \in H(D) .
$$

It is easy to see that an operator defined in this manner is linear. It is interesting to provide a function theoretic characterization when φ induces a bounded or compact operator on various spaces (see $[1,2$, $3,11]$ for more information). In the logarithmic Bloch space $L B_{1}$, the author [8] has characterized the pointwise multiplier operator and R. Yoneda [10] studied the composition operator respectively. We shall study the conditions for which C_{φ} is a bounded operator or a compact operator on the logarithmic α-Bloch $L B_{\alpha}$ and the little logarithmic $L B_{\alpha, 0}$ spaces. In this paper, C denotes the constant depending only on the index α; the C may differ at different places.

2 The boundedness of C_{φ}

Lemma 2.1 Let $\alpha>0$ and $f(z)=\frac{(1-|z|)^{\alpha} \ln \frac{2}{1-|z|}}{|1-z|^{\alpha} \ln \frac{4}{|1-z|}}, z \in D$. Then $|f(z)| \leq \max \left(1, \frac{1}{\alpha \ln 2}\right)$.

[^38]Proof Since $r(x)=x^{\alpha} \ln \frac{2}{x}$ is increasing on $\left(0,2 e^{-\frac{1}{\alpha}}\right]$, decreasing on $\left[2 e^{-\frac{1}{\alpha}}, 2\right]$ and $r\left(2 e^{-\frac{1}{\alpha}}\right)=\frac{2^{\alpha}}{\alpha e}$, we have $|f(z)| \leq 1$ where $z \in D_{1}=\left\{z \in D:|1-z|<2 e^{-\frac{1}{\alpha}}\right\}$.

On the other hand, for $z \in D \backslash D_{1}$,

$$
|f(z)| \leq \frac{(1-|z|)^{\alpha} \ln \frac{2}{1-|z|}}{\left(2 e^{-\frac{1}{\alpha}}\right)^{\alpha} \ln 2} \leq \frac{\frac{2^{\alpha}}{\alpha e}}{\left(2 e^{-\frac{1}{\alpha}}\right)^{\alpha} \ln 2}=\frac{1}{\alpha \ln 2}
$$

hence $|f(z)| \leq \max \left(1, \frac{1}{\alpha \ln 2}\right)$.
Lemma 2.2 Let $\alpha>0$ and $g(x)=(1-x)^{\alpha} \ln \frac{2}{1-x}, x \in[0,1)$. Then $\frac{g(x)}{g(t x)} \leq 1+\frac{1}{\alpha e \ln 2}$ for each $t \in[0,1]$.

Proof Since $x^{\alpha} \ln \frac{1}{x} \leq \frac{1}{\alpha e}$ for each $x \in(0,1]$, we have

$$
\begin{aligned}
\frac{g(x)}{g(t x)} & =\left(\frac{1-x}{1-t x}\right)^{\alpha}\left(\frac{\ln \frac{2}{1-x}}{\ln \frac{2}{1-t x}}-1\right)+\left(\frac{1-x}{1-t x}\right)^{\alpha} \\
& \leq\left(\frac{1-x}{1-t x}\right)^{\alpha} \ln \frac{1-t x}{1-x} \frac{1}{\ln \frac{2}{1-t x}}+1 \leq \frac{1}{\alpha e \ln 2}+1
\end{aligned}
$$

Lemma 2.3 Let $\alpha>0$ and $f \in L B_{\alpha}$, then exists constant C such that $\left\|f_{t}\right\|_{\alpha} \leq C\|f\|_{\alpha}, 0<t<1$, where $f_{t}(z)=f(t z)$.

The result can be easily proved by lemma 2.2 .
Theorem 2.1 Let $\alpha>0$, then C_{φ} is a bounded operator on $L B_{\alpha}$ if and only if

$$
\begin{equation*}
\sup \left\{\frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \ln }\left|\varphi^{\prime}(z)\right|: z \in D\right\}<+\infty . \tag{1}
\end{equation*}
$$

Proof Suppose that (1) holds. For $\forall f \in L B_{\alpha}$, we have

$$
\begin{aligned}
& \sup _{z \in D}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}(f)\right)^{\prime}(z)\right| \\
& =\sup _{z \in D}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|f^{\prime}(\varphi(z))\right|\left|\varphi^{\prime}(z)\right| \\
& \leq \sup _{z \in D}\left|f^{\prime}(\varphi(z))\right|\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|\varphi(z)|^{2}}\right) \times \sup _{z \in D} \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right| \\
& \leq C\|f\|_{L B_{\alpha}} .
\end{aligned}
$$

This shows that C_{φ} is bounded.
Conversely, suppose that C_{φ} is a bounded operator on $L B_{\alpha}$. Then $\left\|C_{\varphi}(f)\right\|_{\alpha} \leq\left\|C_{\varphi}\right\|\|f\|_{\alpha}$ for all $f \in L B_{\alpha}$. On the other hand, we take the test function $f(z)=z$, which shows $\varphi \in L B_{\alpha}$. For $\forall 0 \neq w \in D$, let

$$
f_{w}(z)=\int_{0}^{z}\left(1-\frac{\bar{w}^{2}}{|w|^{2}} z^{2}\right)^{-\alpha}\left(\ln \frac{4}{1-\frac{\bar{w}^{2}}{|w|^{2}} z^{2}}\right)^{-1} d z
$$

By Lemma 2.1, we have

$$
\sup _{z_{1} \in D}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha}\left(\ln \frac{2}{1-\left|z_{1}\right|^{2}}\right)\left|1-z_{1}^{2}\right|^{-\alpha}\left|\ln \frac{4}{1-z_{1}^{2}}\right|^{-1} \leq C<+\infty .
$$

Applying to $z_{1}=\frac{\bar{w}}{|w|} z$, we have

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\alpha}\left(\ln \frac{2}{1-|z|^{2}}\right)\left|1-\frac{\bar{w}^{2}}{|w|^{2}} z^{2}\right|^{-\alpha}\left|\ln \frac{4}{1-\frac{\bar{w}^{2}}{|w|^{2}} z^{2}}\right|^{-1} \leq C<+\infty
$$

Hence we have $f_{w} \in L B_{\alpha}$ for $w \neq 0$. Then for $w \neq 0$ we get

$$
\left\|C_{\varphi}\left(f_{w}\right)\right\|_{L B_{\alpha}} \leq\left\|C_{\varphi}\left(f_{w}\right)\right\|_{\alpha} \leq\left\|C_{\varphi}\right\|\left\|f_{w}\right\|_{\alpha}=\left\|C_{\varphi}\right\|\left\|f_{w}\right\|_{L B_{\alpha}}=C<+\infty
$$

So

$$
\begin{equation*}
\sup _{z \in D}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|f_{w}^{\prime}(\varphi(z)) \| \varphi^{\prime}(z)\right| \leq C<+\infty . \tag{2}
\end{equation*}
$$

For $\forall z \in D$ with $\varphi(z) \neq 0$, applying $w=\varphi(z)$ in (2), we have

$$
\frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right| \leq C<+\infty .
$$

For $\forall z \in D$ with $\varphi(z)=0$, since $\varphi \in L B_{\alpha}$, we have

$$
\frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right| \leq \frac{1}{\ln 2}\|\varphi\|_{L B_{\alpha}}<+\infty .
$$

Hence (1) holds. This completes the proof of this theorem.
Remark 1 There is a problem in the proof of the Theorem 1 of R. Yonda's 2002 Arch. Math. paper [10]. The reason is that the test function

$$
f_{w}(z)=\int_{0}^{z}\left(1-\frac{\bar{w}^{2}}{|w|^{2}} z^{2}\right)^{-1}\left(\ln \frac{2}{1-\frac{\bar{w}^{2}}{|w|^{2}} z^{2}}\right)^{-1} d z
$$

in R. Yonda's paper does not belong to $L B_{1}$. In fact, let $w=\frac{1}{2}$ and $z=i r$, then

$$
\left(1-|z|^{2}\right) \ln \frac{2}{1-|z|^{2}}\left|f_{w}^{\prime}(z)\right|=\frac{\left(1-r^{2}\right) \ln \frac{2}{1-r^{2}}}{\left(1+r^{2}\right) \ln \frac{2}{1+r^{2}}} \longrightarrow \infty
$$

as $r \longrightarrow 1$.
Theorem 2.2 Let $\alpha>0$, then C_{φ} is a bounded operator on $L B_{\alpha, 0}$ if and only if $\varphi \in L B_{\alpha, 0}$ and

$$
\begin{equation*}
\sup \left\{\frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right|: z \in D\right\}<+\infty \tag{3}
\end{equation*}
$$

Proof Suppose $\varphi \in L B_{\alpha, 0}$ and (3) holds. Let

$$
M=\sup \left\{\frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right|: z \in D\right\} .
$$

Assume that $f \in L B_{\alpha, 0}$. Then given $\epsilon>0$ there exists $0<r<1$ such that

$$
\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}\left|f^{\prime}(z)\right|<\frac{\epsilon}{M}
$$

whenever $|z|>r$.

On the other hand, since $\varphi \in L B_{\alpha, 0}$, there exists $0<R<1$ such that

$$
\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}\left|\varphi^{\prime}(z)\right|<\frac{\left(1-r^{2}\right)^{\alpha} \ln \frac{2}{1-r^{2}}}{\|f\|_{L B_{\alpha}}} \epsilon
$$

whenever $|z|>R$.
Then, for $|z|>R$ such that $|\varphi(z)|>r$, we have

$$
\begin{aligned}
& \left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}(f)\right)^{\prime}(z)\right| \\
& =\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|\varphi(z)|^{2}}\right)\left|f^{\prime}(\varphi(z))\right| \times \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right| \\
& \leq \frac{\epsilon}{M} M=\epsilon .
\end{aligned}
$$

For $|z|>R$ such that $|\varphi(z)| \leq r$, we have

$$
\begin{aligned}
& \left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}(f)\right)^{\prime}(z)\right| \\
& =\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|\varphi(z)|^{2}}\right)\left|f^{\prime}(\varphi(z))\right| \times \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-\mid \varphi(z)^{2}}}\left|\varphi^{\prime}(z)\right| \\
& \leq\|f\|_{L B_{\alpha}} \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-r^{2}\right)^{\alpha} \ln \frac{2}{1-r^{2}}}\left|\varphi^{\prime}(z)\right|<\epsilon .
\end{aligned}
$$

Hence we have $\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}(f)\right)^{\prime}(z)\right|<\epsilon$, which show $C_{\varphi}(f) \in L B_{\alpha, 0}$.
Conversely, suppose that C_{φ} is bounded in $L B_{\alpha, 0}$. First we take test function $f(z)=z$, then $\varphi \in L B_{\alpha, 0}$.

Next we have $\left\|C_{\varphi}(g)\right\|_{\alpha} \leq\left\|C_{\varphi}\right\|\|g\|_{\alpha}$ for all $g \in L B_{\alpha, 0}$. For any $f \in L B_{\alpha}$ and every $0<t<1$, we have $f_{t}=f(t z) \in L B_{\alpha, 0}$. Then by Lemma 2.3, we get

$$
\left\|C_{\varphi}\left(f_{t}\right)\right\|_{\alpha} \leq\left\|C_{\varphi}\right\|\left\|f_{t}\right\|_{\alpha} \leq C\left\|C_{\varphi}\right\|\|f\|_{\alpha}
$$

Let $t \rightarrow 1$, we have $\left\|C_{\varphi}(f)\right\|_{\alpha} \leq C\left\|C_{\varphi}\right\|\|f\|_{\alpha}$. So C_{φ} is bounded in $L B_{\alpha}$. By Theorem 2.1, (3) holds. This proof is completed.

3 The compactness of C_{φ}

Lemma 3.1 Suppose $\alpha>0$ and $f \in L B_{\alpha}$, then
(1) $|f(z)| \leq C\|f\|_{\alpha}$, where $\alpha<1$;
(2) $|f(z)| \leq\left(1+C \ln \left(\ln \frac{2}{1-|z|}\right)\right)\|f\|_{\alpha}$, where $\alpha=1$;
(3) $|f(z)| \leq\left(1+\frac{C}{(1-|z|)^{\alpha-1}}\right)\|f\|_{\alpha}$, where $\alpha>1$.

The proof follows from the same method as the one for Lemma 2.1 in [4]. We omit the details.
Lemma 3.2 Let C_{φ} be a bounded operator on $L B_{\alpha}$, then C_{φ} is compact if and only if for any bounded sequence $\left\{f_{n}\right\}$ in $L B_{\alpha}$ which converges to 0 uniformly on compact subsets of D, we have $\left\|C_{\varphi}\left(f_{n}\right)\right\|_{\alpha} \rightarrow 0$ as $n \rightarrow \infty$.

The result can be proved by using Montel theorem, Lemma 2.3 and 3.1; the details are omitted here.
Lemma 3.3 Suppose $\alpha>0$, then a closed set U in $L B_{\alpha, 0}$ is compact if and only if it is bounded and satisfies

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \sup _{f \in U}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|f^{\prime}(z)\right|=0 . \tag{4}
\end{equation*}
$$

The proof is similar to that of [1, Lemma 1].
Theorem 3.1 Let $\alpha>0$, then C_{φ} is compact on $L B_{\alpha, 0}$ if and only if

$$
\lim _{|z| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right|=0
$$

Proof By Lemma 3.3, C_{φ} is compact if and only if

$$
\lim _{|z| \rightarrow 1} \sup _{\|f\|_{\alpha} \leq 1}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}(f)\right)^{\prime}(z)\right|=0
$$

On the other hand, we have

$$
\begin{aligned}
& \left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}(f)\right)^{\prime}(z)\right| \\
& =\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|\varphi(z)|^{2}}\right)\left|f^{\prime}(\varphi(z))\right| \times \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right|,
\end{aligned}
$$

and

$$
\sup _{\|f\|_{\alpha} \leq 1}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|f^{\prime}(z)\right|=1
$$

Hence C_{φ} is compact on $L B_{\alpha, 0}$ if and only if

$$
\lim _{|z| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right|=0 .
$$

Theorem 3.2 Let $\alpha>0$, then C_{φ} is a compact operator on $L B_{\alpha}$ if and only if for every $\epsilon>0$, there exists $0<r<1$, such that

$$
\begin{equation*}
\frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right|<\epsilon . \tag{5}
\end{equation*}
$$

whenever $|\varphi(z)|>r$.
Proof Assume that (5) holds. Then it clearly shows that $\varphi \in L B_{\alpha}$ and C_{φ} is bounded by Theorem 2.1. Let $\left\{f_{n}\right\}$ be a bounded sequence in $L B_{\alpha}$ which converges to 0 uniformly on compact subsets of D. We only need to prove $\lim _{n \rightarrow \infty}\left\|C_{\varphi}\left(f_{n}\right)\right\|_{\alpha}=0$ by Lemma 3.2. Let $M=\sup _{n}\left\|f_{n}\right\|_{L B_{\alpha}}<+\infty$. Given $\epsilon>0$, there exists $0<r<1$ such that

$$
\frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right|<\frac{\epsilon}{M},
$$

whenever $|\varphi(z)|>r$.
Then, for $|\varphi(z)|>r$, we have

$$
\begin{aligned}
& \left\|C_{\varphi}\left(f_{n}\right)\right\|_{L B_{\alpha}}=\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}\left(f_{n}\right)\right)^{\prime}(z)\right| \\
& =\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|\varphi(z)|^{2}}\right)\left|f_{n}^{\prime}(\varphi(z))\right| \times \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right| \\
& \leq M \frac{\epsilon}{M}=\epsilon .
\end{aligned}
$$

Let

$$
M_{1}=\sup _{|\varphi(z)| \leq r} \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right| \leq \frac{\|\varphi\|_{L B_{\alpha}}}{\left(1-r^{2}\right) \ln 2}<+\infty
$$

On the other hand, because $C_{\varphi}\left(f_{n}\right)(0)$ and $\left(1-|w|^{2}\right)^{\alpha} \ln \frac{2}{1-|w|^{2}}\left|f_{n}^{\prime}(w)\right|$ converge to 0 uniformly on $|w| \leq r$ as $n \rightarrow \infty$, we have, for large enough $n, C_{\varphi}\left(f_{n}\right)(0)<\epsilon$ and $\left(1-|w|^{2}\right)^{\alpha} \ln \frac{2}{1-|w|^{2}}\left|f_{n}^{\prime}(w)\right|<\frac{\epsilon}{M_{1}}$ whenever $|w| \leq r$. Then for large enough n we have

$$
\begin{aligned}
& \left\|C_{\varphi}\left(f_{n}\right)\right\|_{\alpha}=C_{\varphi}\left(f_{n}\right)(0)+\sup _{z}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}\left(f_{n}\right)\right)^{\prime}(z)\right| \\
& \leq \epsilon+\sup _{|\varphi(z)|>r}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}\left(f_{n}\right)\right)^{\prime}(z)\right| \\
& +\sup _{|\varphi(z)| \leq r}\left(1-|z|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|z|^{2}}\right)\left|\left(C_{\varphi}\left(f_{n}\right)\right)^{\prime}(z)\right| \\
& \leq 2 \epsilon+\sup _{|\varphi(z)| \leq r}\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \left(\frac{2}{1-|\varphi(z)|^{2}}\right)\left|f_{n}^{\prime}(\varphi(z))\right| \frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right| \\
& \leq 2 \epsilon+\frac{\epsilon}{M_{1}} M_{1}=3 \epsilon .
\end{aligned}
$$

This shows $\lim _{n \rightarrow \infty}\left\|C_{\varphi}\left(f_{n}\right)\right\|_{\alpha}=0$.
Conversely, suppose C_{φ} is compact on $L B_{\alpha}$. Assume that (5) fails. Then there exists a sequence $\left\{z_{n}\right\} \subset D$ and an $\epsilon_{0}>0$ such that $\left|z_{n}\right| \rightarrow 1(n \rightarrow \infty)$ and

$$
\frac{\left(1-|z|^{2}\right)^{\alpha} \ln \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \ln \frac{2}{1-|\varphi(z)|^{2}}}\left|\varphi^{\prime}(z)\right| \geq \epsilon_{0} .
$$

Let $\varphi\left(z_{n}\right)=r_{n} e^{i \theta_{n}}$, we take

$$
f_{n}(z)=\int_{0}^{z}\left(\frac{r_{n}}{1-e^{-i \theta_{n}} w r_{n}}-\frac{r_{n}^{2}}{1-r_{n}^{2} e^{-i \theta_{n}} w}\right)^{\alpha}\left(\ln \frac{4}{1-r_{n}^{2} e^{-i \theta_{n}} w}\right)^{-1} d w
$$

We get $\sup _{n}\left\|f_{n}\right\|_{\alpha}<\infty$ and $\left|f_{n}(z)\right| \leq\left(\frac{1-r_{n}}{(1-|z|)^{2}}\right)^{\alpha}(\ln 2)^{-1}$ by Lemma 2.1 and 2.2. Then $\left\{f_{n}\right\}$ is a bounded sequence on $L B_{\alpha}$ which converges to 0 uniformly on compact subsets of D. On the other hand, for enough large n, it follows that

$$
\begin{aligned}
\left\|C_{\varphi}\left(f_{n}\right)\right\|_{\alpha} & \geq\left(1-\left|z_{n}\right|^{2}\right)^{\alpha} \ln \frac{2}{1-\left|z_{n}\right|^{2}}\left|f_{n}^{\prime}\left(\varphi\left(z_{n}\right)\right)\right|\left|\varphi^{\prime}\left(z_{n}\right)\right| \\
& =\left(1-\left|z_{n}\right|^{2}\right)^{\alpha} \ln \frac{2}{1-\left|z_{n}\right|^{2}}\left(\frac{1}{1-r_{n}}-\frac{r_{n}}{1-r_{n}^{2}}\right)^{\alpha}\left(\ln \frac{4}{1-r_{n}^{2}}\right)^{-1}\left|\varphi^{\prime}\left(z_{n}\right)\right| \\
& =\left(\frac{r_{n}}{1+r_{n}+r_{n}^{2}}\right)^{\alpha} \frac{\left(1-\left|z_{n}\right|^{2}\right)^{\alpha} \ln \frac{2}{1-\left|z_{n}\right|^{2}}}{\left(1-\left|\varphi\left(z_{n}\right)\right|^{2}\right)^{\alpha} \ln \frac{4}{1-\left|\varphi\left(z_{n}\right)\right|^{2}}}\left|\varphi^{\prime}\left(z_{n}\right)\right| \\
& \geq \frac{1}{3^{\alpha}} \frac{\epsilon_{0}}{2} .
\end{aligned}
$$

This contradicts the compactness of C_{φ} by Lemma 3.2. The proof is completed.

Acknowledgment

The author is partially supported by Natural Science Foundation of Fujian Province (No: 2009J01004), China.

References

[1] K. Madigan, A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347(7), 2679-2687(1995).
[2] J. H. Shi, L. Luo, Composition operators on the Bloch space of several complex variables, Acta Math. Sinica, English series, 16(1), 85-98(2000).
[3] W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348(6), 2331-2348(1996).
[4] S. Stević, On a new operator from the logarithmic Bloch space to the Bloch-type space on unit ball, Appl. Math. Comput. 206(2), 313-320(2008).
[5] -, Generalized composition operators from logarithmic spaces to mixed-norm spaces, Util. Math. $77(1), 167-172(2008)$.
[6] S. L. Ye, Weighted Composition Operators From $F(p, q, s)$ into Logarithmic Bloch Space, J. Korean Math. Soc. 45(4), 977-991(2008).
[7] ——, A weighted composition operator between different weighted Bloch-type spaces, Acta Math. Sinica (Chin. Ser.) 50 (4), 927-942(2007).
[8] -, Multipliers and cyclic vectors on weighted Bloch space, Math. J. Okayama Univ. 48 (1), 135143(2006).
[9] -, Weighted composition operator between the little α-Bloch spaces and the logarithmic Bloch, J. Comput. Anal. Appl. 10 (2), 243-252(2008).
[10] R. Yoneda, The composition operators on weight Bloch space, Arch. Math. 78(2), 310-317(2002).
[11] R. Zhao, Composition operators from Bloch type spaces to Hardy and Besov spaces, J. Math. Anal. Appl. 233, 749-766(1999).

Statistical convergence in fuzzy 2-normed space

S.A. Mohiuddine*, H. Şevli and M. Cancan
*Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
Department of Mathematics, Yüzüncü Yil University, 65080 Van, Turkey
Email: mohiuddine@gmail.com; hsevli@yahoo.com; mcancan@yyu.edu.tr

Abstract

Motivated by the notion of 2-norm due to Gähler [S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963) 115-148], in this paper we define and study the concept of statistical convergence and statistically Cauchy sequence in fuzzy 2 -normed space which provide better tool to study a more general class of sequences. We also introduce here statistical limit point and statistical cluster point in fuzzy 2 -normed space. Keywords and phrases: Fuzzy 2-normed space; statistical convergence; statistically Cauchy sequence; statistical limit point; statistical cluster point; 2-normed space.

1. Introduction and preliminaries

By modifying own studies on fuzzy topological vector spaces, Katsaras [13] first introduced the notion of fuzzy seminorm and norm on a vector space and later on Felbin [6] gave the concept of a fuzzy normed space (for short, FNS) by applying the notion fuzzy distance of Kaleva and Seikala [12] on vector spaces. Further, Xiao and Zhu [23] improved a bit the Felbin's definition of fuzzy norm of a linear operator between FNSs. Recently, Bag and Samanta [2] has given another notion of boundedness in FNS and introduced another type of boundedness of operators. With the novelty of their approach they can introduce the fuzzy dual spaces and some important analogues of fundamental theorems in classical functional analysis [3]. Certainly there are some situations where the ordinary norm does not work and the concept of fuzzy norm seems to be more suitable in such cases, that is, we can deal with such situations by modelling the inexactness of the norm in some situations.

The idea of statistical convergence was introduced by Fast [5] and Steinhaus [22] independently in the same year 1951 and later on studied by various authors. Active researches on this topic were started after the papers of Salát [19] and Fridy [8]. Recently, fuzzy version of this concept were discussed in [15,16,20,21].

The concept of 2-normed spaces was initially introduced by Gähler [10] in the 1960s. Since then, this concept has been studied by many authors, see for instance [11,17,18].

[^39]Our aim for this paper is to generalize the definition of Felbin's FNS into fuzzy 2-normed space using the idea of Gähler. We define and study the concept of statistical convergence and statistical Cauchy in fuzzy 2-normed space. Further, we introduce the concept of statistical limit point and statistical cluster point in fuzzy 2-normed spaces.

Firstly, we recall some notations and basic definitions which we will used throughout the paper.

According to Mizumoto and Tanaka [14], a fuzzy number is a mapping x : $\mathbb{R} \rightarrow[0,1]$ over the set \mathbb{R} of all real numbers. A fuzzy number x is convex if $x(t) \geq \min \{x(s), x(r)\}$ where $s \leq t \leq r$. If there exists a $t_{0} \in \mathbb{R}$ such that $x\left(t_{0}\right)=1$, then x is called normal. For $0<\alpha \leq 1, \alpha$-level set of an upper semi continuous convex normal fuzzy number η (denoted by $[\eta]_{\alpha}$) is a closed interval $\left[a_{\alpha}, b_{\alpha}\right]$, where $a_{\alpha}=-\infty$ and $b_{\alpha}=+\infty$ admissible. When $a_{\alpha}=-\infty$, for instance, then $\left[a_{\alpha}, b_{\alpha}\right]$ means the interval $\left(-\infty, b_{\alpha}\right]$. Similar is the case when $b_{\alpha}=+\infty$. A fuzzy number x is called non-negative if $x(t)=0$, for all $t<0$. We denoted the set of all convex, normal, upper semicontinuous fuzzy real numbers by $L(\mathbb{R})$ and the set of all non-negative, convex, normal, upper semicontinuous fuzzy real numbers by $L\left(\mathbb{R}^{*}\right)$. Given a number $r \in \mathbb{R}$, we define a corresponding fuzzy number \tilde{r} by

$$
\tilde{r}(t)= \begin{cases}1 & \text { if } t=r \\ 0 & \text { otherwise }\end{cases}
$$

As α-level sets of a convex fuzzy number is an interval, there is a debate in the nomenclature of fuzzy numbers/fuzzy real numbers. In [4], Dubois and Prade suggested to call this as fuzzy interval.

A partial ordering \preceq on $L(\mathbb{R})$ is defined by $u \preceq v$ if and only if $u_{\alpha}^{-} \leq v_{\alpha}^{-}$and $u_{\alpha}^{+} \leq v_{\alpha}^{+}$for all $\alpha \in[0,1]$, where $[u]_{\alpha}=\left[u_{\alpha}^{-}, u_{\alpha}^{+}\right]$and $[v]_{\alpha}=\left[v_{\alpha}^{-}, v_{\alpha}^{-}\right]$. The strict inequality in $L(\mathbb{R})$ is defined by $u \prec v$ if and only if $u_{\alpha}^{-}<v_{\alpha}^{-}$and $u_{\alpha}^{+}<v_{\alpha}^{+}$for all $\alpha \in[0,1]$. For $k>0, k u$ is defined as $k u(t)=u(t / k)$ and $(0 u)(t)$ is defined to be $\tilde{0}(t)$.

According to Mizumoto and Tanaka [14], the arithmetic operations \oplus, \ominus, \otimes on $L(\mathbb{R}) \times L(\mathbb{R})$ are defined by

$$
\begin{gathered}
(x \oplus y)(t)=\sup _{s \in \mathbb{R}} \min \{x(s), y(t-s)\},(x \ominus y)(t)=\sup _{s \in \mathbb{R}} \min \{x(s), y(s-t)\} \text { and } \\
(x \otimes y)(t)=\sup _{s \in \mathbb{R}, s \neq 0} \min \{x(s), y(t / s)\},
\end{gathered}
$$

for all $t \in \mathbb{R}$.
Let $u, v \in L(\mathbb{R})$. Define

$$
D(u, v)=\sup _{\alpha \in[0,1]} \max \left\{\left|u_{\alpha}^{-}-v_{\alpha}^{-}\right|,\left|u_{\alpha}^{+}-v_{\alpha}^{+}\right|\right\},
$$

then D is called the supremum metric on $L(\mathbb{R})$. Let $\left(u_{n}\right) \subset L(\mathbb{R})$ and $u \in L(\mathbb{R})$. We say that a sequence $\left(u_{n}\right)$ converges to u in the metric D (for short, D-converges to u), written as $u_{n} \xrightarrow{D} u$ or $(D)-\lim _{n \rightarrow \infty} u_{n}=u$ if $\lim _{n \rightarrow \infty} D\left(u_{n}, u\right)=0$.

2. Fuzzy 2-normed spaces

In this section, we generalize the definition of Felbin's FNS into fuzzy 2-normed space using the idea of Gähler [10]. Here, we also define the convergence of a sequence in fuzzy 2-normed space.

Let X be a real vector space of dimension d, where $2 \leq d \leq \infty$. A 2 -norm on X is a function $\|.,\|:. X \times X \rightarrow \mathbb{R}$ which satisfies $(i)\|x, y\|=0$ if and only if x and y are linearly dependent, $(i i)\|x, y\|=\|y, x\|$ for all $x, y \in X,(i i i)\|\alpha x, y\|=|\alpha|\|x, y\|$, whenever $x, y \in X$ and $\alpha \in \mathbb{R},(i v)\|x+y, z\|=\|x, z\|+\|y, z\|$ for all $x, y, z \in X$.

The pair $(X,\|.,\|$.$) is then called a 2$-normed space.
As an example of a 2 -normed space take $X=\mathbb{R}^{2}$ being equipped with the 2-norm $\|x, y\|:=$ the area of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula

$$
\|x, y\|=\left|x_{1} y_{2}-x_{2} y_{1}\right|, \quad \text { where } x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) .
$$

We define the following:
Definition 2.1. The quadruple $\left(X,\|., .\|^{\sim}, L, R\right)$ is said to be fuzzy 2-normed space (for short FTNS) if X is a vector space over $\mathbb{R},\|., .\|^{\sim}: X \times X \rightarrow L^{*}(\mathbb{R}), L, R:[0,1] \times$ $[0,1] \rightarrow[0,1]$ be symmetric, non-decreasing in both arguments such that $L(0,0)=0$ and $R(1,1)=1$ satisfying the following conditions for every $x, y, z \in X$ and $s, t \in \mathbb{R}$:
(i) $\|x, y\|^{\sim}=\tilde{0}$ if and only if x and y are linearly dependent,
(ii) $\|x, y\|^{\sim}=\|y, x\|^{\sim}$,
(iii) $\|\alpha x, y\|^{\sim}=|\alpha|\|x, y\|^{\sim}, \alpha \in \mathbb{R}$,
(iv) $\|x+y, z\|^{\sim}(s+t) \geq L\left(\|x, z\|^{\sim}(s),\|y, z\|^{\sim}(t)\right)$ whenever $s \leq\|x, z\|_{1}^{-}, t \leq\|y, z\|_{1}^{-}$ and $s+t \leq\|x+y, z\|_{1}^{-}$,
(v) $\|x+y, z\|^{\sim}(s+t) \leq R\left(\|x, z\|^{\sim}(s),\|y, z\|^{\sim}(t)\right)$ whenever $s \geq\|x, z\|_{1}^{-}, t \geq\|y, z\|_{1}^{-}$ and $s+t \geq\|x+y, z\|_{1}^{-}$,
where $\left[\|x, z\|^{\sim}\right]_{\alpha}=\left[\|x, z\|_{\alpha}^{-},\|x, z\|_{\alpha}^{+}\right]$for $x, z \in X, 0 \leq \alpha \leq 1$ and $\inf _{\alpha \in[0,1]}\|x, z\|_{\alpha}^{-}>0$.
In this case $\|., .\|^{\sim}$ is called a fuzzy 2 -norm.
let us consider the topological structure of a FTNS $\left(X,\|., .\|^{\sim}, L, R\right)$. For any $\epsilon>0, \alpha \in[0,1]$ and $x \in X$, the (ϵ, α)-neighborhood of x is the set

$$
\mathcal{N}_{x}(\epsilon, \alpha):=\left\{y \in X:\|x-y, z\|_{\alpha}^{+}<\epsilon\right\}
$$

for each nonzero $z \in X$.

Definition 2.2. Let ($X,\|., .\|^{\sim}, L, R$) be a FTNS. Then a sequence $\left(x_{n}\right)$ is said to be convergent to $x \in X$ with respect to the fuzzy 2-norm on X if for every $\epsilon>0$ and every nonzero $z \in X$ there exists a number $N=N(\epsilon, z)$ such that

$$
D\left(\left\|x_{n}-x, z\right\|^{\sim}, \tilde{0}\right)<\epsilon \text { for all } n \geq N
$$

or equivalently

$$
(D)-\lim _{n \rightarrow \infty}\left\|x_{n}-x, z\right\|^{\sim}=\tilde{0}
$$

In this case we write $\left(x_{n}, z\right) \xrightarrow{F T N}(x, z)$ for every nonzero $z \in X$. This means that for every $\epsilon>0$ there exists a number $N=N(\epsilon, z)$ such that

$$
\sup _{\alpha \in[0,1]}\left\|x_{n}-x, z\right\|_{\alpha}^{+}=\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon
$$

for all $n \geq N$. In terms of neighborhoods, we have $\left(x_{n}, z\right) \xrightarrow{F T N}(x, z)$ provided that for any $\epsilon>0$ there exists a number $N=N(\epsilon, z)$ such that $x_{n} \in \mathcal{N}_{x}(\epsilon, 0)$ whenever $n \geq N$.

3. Statistical convergence and statistically Cauchy in FTNS

In this section, we define the notion of statistical convergence and statistically Cauchy sequences in fuzzy 2-normed space. Before proceeding further, we should recall some of the basic concepts on statistical convergence.

Let K be a subset of \mathbb{N}, the set of natural numbers. Then the asymptotic density of K denoted by $\delta(K)$, is defined as

$$
\delta(K)=\lim _{n} \frac{1}{n}|\{k \leq n: k \in K\}|,
$$

where the vertical bars denote the cardinality of the enclosed set.
A number sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to the number L if for each $\epsilon>0$, the set $K(\epsilon)=\left\{k \leq n:\left|x_{k}-L\right|>\epsilon\right\}$ has asymptotic density zero, i.e.

$$
\lim _{n} \frac{1}{n}\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \epsilon\right\}\right|=0 .
$$

In this case we write $s t-\lim x=L$ (see $[8,22]$).
Note that every convergent sequence is statistically convergent to the same limit, but converse need not be true.

Statistical convergence in 2-normed space has been studied by Gürdal and Pehlivan [11].

Let $\left(x_{n}\right)$ be a sequence in 2 -norm space $(X,\|.,\|$.$) . Then, a sequence \left(x_{n}\right)$ is said to be statistically convergent to x if for every $\epsilon>0$, the set

$$
\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\| \geq \epsilon\right\}
$$

has natural density zero for each nonzero $z \in X$, in other words $\left(x_{n}\right)$ is statistically convergent to x in 2 -norm space $(X,\|.,\|$.$) if$

$$
\lim _{m \rightarrow \infty} \frac{1}{m}\left|\left\{n \leq m:\left\|x_{n}-x, z\right\| \geq \epsilon\right\}\right|=0
$$

for each nonzero $z \in X$. It means that for every $z \in X$,

$$
\left\|x_{n}-x, z\right\|<\epsilon \text { a.a.n. }
$$

for almost all n (for short, a.a.n). In this case we write $s t-\lim \left\|x_{n}-x, z\right\|=\|x, z\|$.
Now, we define the statistical convergence in fuzzy 2 -normed space.
Definition 3.1. Let $\left(X,\|., .\|^{\sim}, L, R\right)$ be a FTNS. We say that a sequence $\left(x_{n}\right)$ is said to be statistically convergent to $x \in X$ with respect to the fuzzy 2-norm on X if for every $\epsilon>0$ and every nonzero z in X, we have

$$
\begin{equation*}
\delta\left(\left\{n \in \mathbb{N}: D\left(\left\|x_{n}-x, z\right\|^{\sim}, \tilde{0}\right) \geq \epsilon\right\}\right)=0 \tag{1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\delta\left(\left\{n \in \mathbb{N}: D\left(\left\|x_{n}-x, z\right\|^{\sim}, \tilde{0}\right)<\epsilon\right\}\right)=1 . \tag{1}
\end{equation*}
$$

This implies that for each $\epsilon>0$ and z in X, the set

$$
K(\epsilon):=\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\}
$$

has natural density zero; namely, for each $\epsilon>0,\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon$ for a.a.n. In this case we write $\operatorname{st}(F T N)-\lim \left\|x_{n}-x, z\right\|^{\sim}=\tilde{0}$ either $s t-\lim \left\|x_{n}-x, z\right\|^{\sim}=\tilde{0}$ or $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$.

In terms of neighborhoods, we have $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$ if for every $\epsilon>0$,

$$
\delta\left(\left\{n \in \mathbb{N}: x_{n} \notin \mathcal{N}_{x}(\epsilon, 0)\right\}\right)=0,
$$

i.e., for each $\epsilon>0,\left(x_{n}\right) \in \mathcal{N}_{x}(\epsilon, 0)$ for a.a.n.

A useful interpretation of the above definition is the following:

$$
\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z) \text { iff } \text { st- } \lim \left\|x_{n}-x, z\right\|_{0}^{+}=0
$$

Note that $s t-\lim \left\|x_{n}-x, z\right\|_{0}^{+}=0$ implies that

$$
s t-\lim \left\|x_{n}-x, z\right\|_{\alpha}^{-}=s t-\lim \left\|x_{n}-x, z\right\|_{\alpha}^{+}=0
$$

for each $\alpha \in[0,1]$ since

$$
0 \leq\left\|x_{n}-x, z\right\|_{\alpha}^{-} \leq\left\|x_{n}-x, z\right\|_{\alpha}^{+} \leq\left\|x_{n}-x, z\right\|_{0}^{+}
$$

holds for every $n \in \mathbb{N}$ and for each $\alpha \in[0,1]$. Hence the result.

Remark 3.1. If a sequence $\left(x_{n}\right)$ in a fuzzy 2 -normed space $\left(X,\|., .\|^{\sim}, L, R\right)$ is convergent then it is also statistically convergent but converse need not be true, which can be seen by the following example.

Example 3.1. Define a sequence $\left(x_{n}\right)$ in fuzzy 2 -normed space $\left(X,\|., .\|^{\sim}, L, R\right)$ by

$$
x_{n}=\left\{\begin{array}{l}
(1, n) ; \text { if } n=m^{2}, m \in \mathbb{N} \\
\left(1, \frac{n-1}{n}\right) ; \text { otherwise }
\end{array}\right.
$$

Let $L=(1,1)$ and $z=\left(z_{1}, z_{2}\right)$. If $z_{1}=0$. Then for every $\epsilon>0$ and $z \in X$, the set

$$
K(\epsilon):=\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\}
$$

has natural density zero. Therefore we have $z_{1} \neq 0$. For each $\epsilon>0$ and $z \in X$, the set

$$
\left\{n \in \mathbb{N}: n \neq m^{2}, m \leq \frac{\left|z_{1}\right|}{\epsilon}\right\}
$$

is finite. Thus

$$
\begin{aligned}
&\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\} \\
&=\left\{n \in \mathbb{N}: n=m^{2}, m \geq \sqrt{\frac{\epsilon}{\left|Z_{1}\right|}+1}\right\} \cup\left\{n \in \mathbb{N}: n \neq m^{2}, m \leq \frac{\left|z_{1}\right|}{\epsilon}\right\} .
\end{aligned}
$$

Therefore,

$$
\frac{1}{m}\left|\left\{n \leq m:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\}\right|=\frac{1}{m}\left|\left\{n \leq m: n=m^{2}, m \geq \sqrt{\frac{\epsilon}{\left|Z_{1}\right|}+1}\right\}\right| \cup \frac{1}{m} 0(1)
$$

for each $z \in X$. Hence

$$
\delta\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\}\right)=0
$$

implies that $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$, while it is obvious that $\left(x_{n}, z\right) \xrightarrow{F T N}(x, z)$.
Definition 3.2. Let ($\left.X,\|., .\|^{\sim}, L, R\right)$ be a FTNS. Then a sequence $\left(x_{n}\right)$ is said to be statistically Cauchy with respect to the fuzzy 2-norm on X if for every $\epsilon>0$, there exists a number $N=N(\epsilon, z)$ such that

$$
\delta\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x_{N(\epsilon, z)}, z\right\|_{0}^{+} \geq \epsilon\right\}\right)=0 .
$$

Theorem 3.1. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be a sequences in a FTNS $(X,\|.,.\| \sim, L, R)$ such that $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$ and $\left(y_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$, for all $x, y \in X$ and nonzero $z \in X$. Then we have the following:
(i) $\left(x_{n}+y_{n}, z\right) \xrightarrow{s t(F T N)}(x+y, z)$,
(ii) $\left(\alpha x_{n}, z\right) \xrightarrow{s t(F T N)}(\alpha x, z), \alpha \in \mathbb{R}$,
(iii) $\operatorname{st}(F T N)-\|x, z\|^{\sim}=\|x, z\|^{\sim}$.

Proof. (i) Suppose that $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$ and $\left(y_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$. Since $\|., \cdot\|_{0}^{+}$is a 2 -norm in the usual sense, we get

$$
\begin{equation*}
\left\|\left(x_{n}+y_{n}\right)-(x+y), z\right\|_{0}^{+} \leq\left\|x_{n}-x, z\right\|_{0}^{+}+\left\|y_{n}-y, z\right\|_{0}^{+} \tag{3.1.1}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and every nonzero $z \in X$. Write

$$
\begin{aligned}
K(\epsilon):=\{n & \left.\in \mathbb{N}:\left\|\left(x_{n}+y_{n}\right)-(x+y), z\right\|_{0}^{+} \geq \epsilon\right\}, \\
K_{1}(\epsilon) & :=\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon / 2\right\}, \\
K_{2}(\epsilon) & =\left\{n \in \mathbb{N}:\left\|y_{n}-y, z\right\|_{0}^{+} \geq \epsilon / 2\right\} .
\end{aligned}
$$

From (3.1.1), we have $K(\epsilon) \subseteq K_{1}(\epsilon) \cup K_{2}(\epsilon)$. Now by assumption we have $\delta\left(K_{1}(\epsilon)\right)=$ $\delta\left(K_{2}(\epsilon)\right)=0$. This yields $\delta(K(\epsilon))=0$, i.e., (i) holds.
(ii) Easy to proof.
(iii) Since $\|., .\|_{\alpha}^{-}$and $\|., .\|_{\alpha}^{+}$are 2-norms in the usual sense, we have

$$
0 \leq\left|\left\|x_{n}, z\right\|_{\alpha}^{-}-\|x, z\|_{\alpha}^{-}\right| \leq\left\|x_{n}-x, z\right\|_{\alpha}^{-}
$$

and

$$
0 \leq\left|\left\|x_{n}, z\right\|_{\alpha}^{+}-\|x, z\|_{\alpha}^{+}\right| \leq\left\|x_{n}-x, z\right\|_{\alpha}^{+}
$$

for all $\alpha \in[0,1]$. Therefore

$$
0 \leq \max \left\{\left|\left\|x_{n}, z\right\|_{\alpha}^{-}-\|x, z\|_{\alpha}^{-}\right|,\left|\left\|x_{n}, z\right\|_{\alpha}^{+}-\|x, z\|_{\alpha}^{+}\right|\right\} \leq\left\|x_{n}-x, z\right\|_{\alpha}^{+}
$$

for all $\alpha \in[0,1]$. Taking supremum over $\alpha \in[0,1]$, we get

$$
0 \leq D\left(\left\|x_{n}, z\right\|^{\sim},\|x, z\|^{\sim}\right) \leq\left\|x_{n}-x, z\right\|_{0}^{+} .
$$

Hence $\operatorname{st}(F T N)-\left\|x_{n}, z\right\|^{\sim}=\|x, z\|^{\sim}$ by Definition 5 in [20].
Lemma 3.1 [7]. Let $\left\{A_{i}: i \in I\right\}$ be a countable collection of subset of \mathbb{N} such that $\delta\left(A_{i}\right)=1$ for each $i \in I$. Then there is a set $A \subset \mathbb{N}$ such that $\delta(A)=1$ and $\left|A \backslash A_{i}\right|<\infty$ for all $i \in I$.

Theorem 3.2. Let $\left(X,\|., .\|^{\sim}, L, R\right)$ be a FTNS. Then a sequence $\left(x_{n}\right)$ is a statistically convergent to x with respect to the fuzzy 2 -norm on X if and only if $\left(x_{n}\right)$ is a sequence for which there is a sequence $\left(y_{n}\right)$ that is convergent such that $x_{n}=y_{n}$ for a.a.n.

Proof. Suppose that $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$. For each $i \in \mathbb{N}$, let

$$
A_{i}=\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \leq 1 / i\right\}
$$

and $\delta\left(A_{i}\right)=1$ for each i, since $\left(x_{n}\right)$ is statistically convergent. Let A be as given in Lemma 3.1. For every $\epsilon>0$ there exists a number $N=N(\epsilon, z)$ such that $n \geq N$ and $n \in A$ imply $\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon$. Define a sequence (y_{n}) as:

$$
y_{n}=\left\{\begin{array}{l}
x_{n} ; \text { for each } n \in A \\
x ; \text { for } n \notin A .
\end{array}\right.
$$

This shows that the sequence $\left(y_{n}\right)$ is convergent to x with respect to the fuzzy 2-norm on X such that $y_{n}=x_{n}$ for a.a.n.

Conversely, suppose that $x_{n}=y_{n}$ for a.a.n. and $\left(y_{n}, z\right) \xrightarrow{F T N}(x, z)$. Let $\epsilon>0$ be given. Then, for each m, define the following set as:

$$
\begin{equation*}
\left\{n \leq m:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\} \subseteq\left\{n \leq m: x_{n} \neq y_{n}\right\} \cup\left\{n \leq m:\left\|y_{n}-y, z\right\|_{0}^{+}>\epsilon\right\} . \tag{3.2.1}
\end{equation*}
$$

Since $\left(y_{n}, z\right) \xrightarrow{F T N}(x, z)$, the second set on the right hand side of (3.2.1) contains a finite number of elements, say $p=p(\epsilon, z)$. Therefore

$$
\lim _{m \rightarrow \infty} \frac{1}{m}\left|\left\{n \leq m:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\}\right| \leq \lim _{m \rightarrow \infty} \frac{1}{m}\left|\left\{n \leq m: x_{n} \neq y_{n}\right\}\right|+\lim _{m \rightarrow \infty} \frac{p}{m}=0
$$

since $x_{n}=y_{n}$ for a.a.n. Hence $\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon$ for a.a.n. Hence $\left(x_{n}\right)$ is statistically convergent with respect to the fuzzy 2-norm on X.

Theorem 3.3. Let $\left(X,\|., .\|^{\sim}, L, R\right)$ be a FTNS. Then every statistically convergent sequence $\left(x_{n}\right)$ is statistically Cauchy sequence with respect to the fuzzy 2-norm on X.

Proof. Assume that $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$. Then, for given $\epsilon>0$ we have $\left\|x_{n}-x, z\right\|_{0}^{+}<$ $\epsilon / 2$ for a.a.n. Choose $N=N(\epsilon, z) \in \mathbb{N}$ such that $\left\|x_{N(\epsilon, z)}-x, z\right\|_{0}^{+}<\epsilon / 2$. Now $\|., .\|_{0}^{+}$ being a 2-norm in the usual sense, we get

$$
\begin{aligned}
& \left\|x_{n}-x_{N(\epsilon, z)}, z\right\|_{0}^{+}=\left\|\left(x_{n}-x\right)+\left(x-x_{N(\epsilon, z)}\right), z\right\|_{0}^{+} \\
& \quad \leq\left\|x_{n}-x, z\right\|_{0}^{+}+\left\|x_{N(\epsilon, z)}-x, z\right\|_{0}^{+}<\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

for a.a.n. Hence $\left(x_{n}\right)$ is statistically Cauchy sequence with respect to the fuzzy 2-norm on X.

Theorem 3.4. Let $\left(x_{n}\right)$ be a sequence in FTNS ($X,\|., .\|^{\sim}, L, R$) and denote $E_{N(\epsilon, z)}:=\left\{n \in \mathbb{N}:\left\|x_{n}-x_{N(\epsilon, z)}, z\right\|_{0}^{+} \geq \epsilon\right\}$. If $\left(x_{n}\right)$ is statistically Cauchy, then for every $\epsilon>0$ there exists $A \subset \mathbb{N}$ with $\delta(A)=0$ such that $\left\|x_{m}-x_{n}, z\right\|_{0}^{+}<\epsilon$ for all $m, n \notin A$.

Proof. For a given $\epsilon>0$, write $A=E_{N(\epsilon / 2, z)}$. Since $\left(x_{n}\right)$ is statistically Cauchy, we can write $\delta(A)=0$. Then, for any $m, n \notin A$, we have $\left\|x_{n}-x_{N(\epsilon, z)}, z\right\|_{0}^{+}<\epsilon / 2$ and $\left\|x_{m}-x_{N(\epsilon, z)}, z\right\|_{0}^{+}<\epsilon / 2$. Hence $\left\|x_{m}-x_{n}, z\right\|_{0}^{+}<\epsilon$ for all $m, n \notin A$.

Definition 3.3. A fuzzy 2-norm $\||\cdot, .| | \sim$ on a vector X is called fuzzy equivalent to a fuzzy 2 -norm $\|$. ., $\|^{\sim}$, written as $\|\|$. , $\|\left\|^{\sim} \sim\right\| ., . \|^{\sim}$, on X if there exist $\mu, \nu \in L(\mathbb{R})$ and $\mu, \nu \succ \tilde{0}$ such that for all $x \in X$, and every nonzero $z \in X$

$$
\mu \otimes\|x, z\|^{\sim} \preceq\|\mid x, z\|^{\sim} \preceq \nu \otimes\|x, z\|^{\sim} .
$$

Theorem 3.5. Let X be a vector space over \mathbb{R} and let $\|.,.\| \sim$ and $\||.,|.\| \sim$ be fuzzy equivalent fuzzy 2-norms on X. Let $\left(x_{n}\right)$ be a sequence in X. Then
(i) $\left(x_{n}\right)$ is statistically convergent to x in $\left(X,\|., .\|^{\sim}, L, R\right)$ iff $\left(x_{n}\right)$ is statistically convergent to x in $\left(X,\| \| ., . \mid \|^{\sim}, L, R\right)$.
(ii) $\left(x_{n}\right)$ is statistically Cauchy in $\left(X,\|., .\|^{\sim}, L, R\right)$ iff $\left(x_{n}\right)$ is statistically Cauchy in $\left(X,\left\|\left|., .| | \|^{\sim}, L, R\right)\right.\right.$.

Proof. (i) Let $\left(x_{n}\right)$ be statistically convergent to x in $\left(X,\|., .\|^{\sim}, L, R\right)$. Since $\left(X,\|., .\|^{\sim}, L, R\right)$ and $\left(X,\|\mid ., .\|^{\sim}, L, R\right)$ are fuzzy equivalent, there exist $\mu, \nu \in L(\mathbb{R})$ and $\mu, \nu \succ \tilde{0}$ such that

$$
\mu \otimes\left\|x_{n}-x, z\right\|^{\sim} \preceq\left\|\left|x_{n}-x, z\right|\right\|^{\sim} \preceq \nu \otimes\left\|x_{n}-x, z\right\|^{\sim}
$$

for all $x_{n}, x \in X$ and $z \in X$. Thus

$$
\mu_{0}^{+}\left\|x_{n}-x, z\right\|_{0}^{+} \leq\left\|\left|x_{n}-x, z\right|\right\|_{0}^{+} \leq \nu_{0}^{+}\left\|x_{n}-x, z\right\|_{0}^{+}
$$

for all $n \in \mathbb{N}$. By assumption, we have $\operatorname{st}(F T N)-\lim \left\|x_{n}-x, z\right\|_{0}^{+}=0$. Hence $s t(F T N)-\lim \left\|\left|x_{n}-x, z\right|\right\|_{0}^{+}=0$, i.e., $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$ in $\left(X,\| \| .,\| \|^{\sim}, L, R\right)$. Similarly, if $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$ then $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$ in $\left(X,\|., .\|^{\sim}, L, R\right)$.
(ii) Let $\left(x_{n}\right)$ be statistically Cauchy in $\left(X,\|., .\|^{\sim}, L, R\right)$. Since $\left(X,\|., .\|^{\sim}, L, R\right)$ and $(X,\||\cdot,|.\| \sim, L, R)$ are fuzzy equivalent, there exist $\mu, \nu \in L(\mathbb{R})$ and $\mu, \nu \succ \tilde{0}$ such that

$$
\mu_{0}^{+}\|x, z\|_{0}^{+} \leq\|\mid x, z\|_{0}^{+} \leq \nu_{0}^{+}\|x, z\|_{0}^{+}
$$

for all $x \in X$ and $z \in X$. For any $\epsilon>0$, there exists $N(\epsilon, z) \in \mathbb{N}$ such that $\| x_{n}-$ $x_{N(\epsilon, z)} \|_{0}^{+}<\epsilon / \nu_{0}^{+}$for a.a.n. Hence

$$
\left\|\left|x_{n}-x_{N(\epsilon, z)}, z\right|\right\|_{0}^{+} \leq \nu_{0}^{+}\left\|x_{n}-x_{N(\epsilon, z)}, z\right\|_{0}^{+}<\epsilon
$$

for a.a.n. Hence $\left(x_{n}\right)$ is statistically Cauchy in $\left(X,\||\cdot, .|\|^{\sim}, L, R\right)$. Similarly, if $\left(x_{n}\right)$ is statistically Cauchy in $\left(X,\||\cdot, .|\|^{\sim}, L, R\right)$ then it is statistically Cauchy in $\left(X,\|.,\|^{\sim}, L, R\right)$.

4. Statistical limit point and statistical cluster point in FTNS

Statistical limit point of sequence $\left(x_{n}\right)$ has been define and studied by Fridy [9]; and for fuzzy number by Aytar [1]. In this section, we define the notions of thin
subsequence, non-thin subsequence, statistical limit point and statistical cluster point in fuzzy 2-normed space.

Definition 4.1. Let $\left(x_{n}\right)$ be a sequence in FTNS $\left(X,\|., .\|^{\sim}, L, R\right)$. An element $x \in X$ is said to be a limit point of the sequence $\left(x_{n}\right)$ provided that there is a subsequence of $\left(x_{n}\right)$ that converges to x with respect to the fuzzy 2 -norm on X. We denote by $L_{F T N}\left(x_{n}\right)$, the set of all limit points of the sequence $\left(x_{n}\right)$.

Definition 4.2. Let $\left(x_{n}\right)$ be a sequence in FTNS $\left(X,\|., .\|^{\sim}, L, R\right)$ and $\left(x_{n_{j}}\right)$ be a subsequence of $\left(x_{n}\right)$. Write $K=\left\{n_{j}: j \in \mathbb{N}\right\}$. If $\delta(K)=0$ then we say that $\left(x_{n_{j}}\right)$ is a thin subsequence on $\left(x_{n}\right)$. A subsequence $\left(x_{n_{j}}\right)$ is said to be a non-thin subsequence provided that $\delta(k)>0$ or $\delta(k)$ does not exist, namely, $\bar{\delta}(k)>0$.

Definition 4.3. Let $\left(x_{n}\right)$ be a sequence in FTNS $\left(X,\|., .\|^{\sim}, L, R\right)$. An element $x \in X$ is said to be a statistical limit point of the sequence $\left(x_{n}\right)$ provided that there exists a non-thin subsequence of $\left(x_{n}\right)$ that converges to x with respect to the fuzzy 2-norm on X. By $\Lambda_{F T N}\left(x_{n}\right)$, we denote the set of all statistical limit points of the sequence $\left(x_{n}\right)$.

Definition 4.4. Let $\left(x_{n}\right)$ be a sequence in FTNS $\left(X,\|., .\|^{\sim}, L, R\right)$. We say that an element $x \in X$ is said to be a statistical cluster point of the sequence $\left(x_{n}\right)$ with respect to the fuzzy 2-norm on X provided that for every $\epsilon>0$ and $z \in X$

$$
\bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon\right\}\right)>0 .
$$

By $\Gamma_{F T N}\left(x_{n}\right)$, we denote the set of all statistical limit points of the sequence $\left(x_{n}\right)$.
Remark 4.1. An element $x \in \Gamma_{F T N}\left(x_{n}\right)$ implies that

$$
\bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{\alpha}^{+}<\epsilon\right\}\right)>0 .
$$

and

$$
\bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{\alpha}^{-}<\epsilon\right\}\right)>0 .
$$

for all $\epsilon>0, \alpha \in[0,1]$ and $z \in X$.
Theorem 4.1. Let $\left(X,\|., .\|^{\sim}, L, R\right)$ be a FTNS. Then for every sequence $\left(x_{n}\right)$ in X, we have

$$
\Lambda_{F T N}\left(x_{n}\right) \subseteq \Gamma_{F T N}\left(x_{n}\right) \subseteq L_{F T N}\left(x_{n}\right)
$$

Proof. Let $x \in \Lambda_{F T N}\left(x_{n}\right)$. Then there exists a non-thin subsequence $\left(x_{n_{j}}\right)$ of the sequence $\left(x_{n}\right)$ that converges to x, namely, $\bar{\delta}\left(\left\{n_{j}: j \in \mathbb{N}\right\}\right)=d>0$. Since

$$
\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon\right\} \supseteq\left\{n \in \mathbb{N}:\left\|x_{n_{j}}-x, z\right\|_{0}^{+}<\epsilon\right\}
$$

for every $\epsilon>0$ and so

$$
\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon\right\} \supseteq\left\{n_{j}: j \in \mathbb{N}\right\} \backslash\left\{n \in \mathbb{N}:\left\|x_{n_{j}}-x, z\right\|_{0}^{+} \geq \epsilon\right\}
$$

Since $\left(x_{n_{j}}, z\right) \xrightarrow{F T N}(x, z)$, the set $\left\{n_{j} \in \mathbb{N}:\left\|x_{n_{j}}-x, z\right\|_{0}^{+} \geq \epsilon\right\}$ is finite for any $\epsilon>0$. Hence we have
$\bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon\right\}\right) \geq \bar{\delta}\left(\left\{n_{j}: j \in \mathbb{N}\right\}\right)-\bar{\delta}\left(\left\{n_{j} \in \mathbb{N}:\left\|x_{n_{j}}-x, z\right\|_{0}^{+} \geq \epsilon\right\}\right)=d>0$.
Thus, for every $\epsilon>0$ and $z \in X$

$$
\bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon\right\}\right)>0,
$$

i.e., $x \in \Gamma_{F T N}\left(x_{n}\right)$.

Let $x \in \Gamma_{F T N}\left(x_{n}\right)$. For every $\epsilon>0$ and $z \in X$, write

$$
\bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+}<\epsilon\right\}\right)>0 .
$$

This means that there are infinitely many terms of the sequence $\left(x_{n}\right)$ in every $(\epsilon, 0)$-neighborhood of x, i.e., $x \in L_{F T N}\left(x_{n}\right)$. Hence the result.

Theorem 4.2. Let $\left(x_{n}\right)$ be a sequence in a FTNS $\left(X,\|., .\|^{\sim}, L, R\right)$. Then $\Lambda_{F T N}\left(x_{n}\right)=\Gamma_{F T N}\left(x_{n}\right)=\{x\}$, provided $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$.

Proof. Let $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$. Therefore $x \in \Gamma_{F T N}\left(x_{n}\right)$. Now suppose that there exists atleast one $y \in \Gamma_{F T N}\left(x_{n}\right)$ such that $y \neq x$. For every $\epsilon>0$ and every nonzero $z \in X$ such that

$$
\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\} \supseteq\left\{n \in \mathbb{N}:\left\|x_{n}-y, z\right\|_{0}^{+}<\epsilon\right\}
$$

holds. Hence

$$
\bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\}\right) \geq \bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-y, z\right\|_{0}^{+}<\epsilon\right\}\right)
$$

Since $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$, we have $\delta\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\}\right)=0$, which implies that

$$
\bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-x, z\right\|_{0}^{+} \geq \epsilon\right\}\right)=0 .
$$

Thus

$$
\bar{\delta}\left(\left\{n \in \mathbb{N}:\left\|x_{n}-y, z\right\|_{0}^{+}<\epsilon\right\}\right)=0
$$

which is a contradiction to $y \in \Gamma_{F T N}\left(x_{n}\right)$. Therefore, we have $\Gamma_{F T N}\left(x_{n}\right)=\{x\}$.
On the other hand, since $\left(x_{n}, z\right) \xrightarrow{s t(F T N)}(x, z)$. By Theorem 3.2 and Definition 4.3, we get $x \in \Lambda_{F T N}\left(x_{n}\right)$. Now, Theorem 4.1 yields $\Lambda_{F T N}\left(x_{n}\right)=\Gamma_{F T N}\left(x_{n}\right)=\{x\}$.

5. Conclusion

The concept of fuzzy 2-normed space, which has been introduced here, is not merely a generalization of fuzzy normed space, but it also provides a bigger setting to deal with the uncertainity and vagueness in natural problems arising in many branches of engineering and science. Some basic results of normed linear spaces have been established here which could be very useful functional tools in the development of fuzzy set theory.

References

[1] S. Aytar, Statistical limit points of sequences of fuzzy numbers, Inform. Sci. 165 (2004) 129138.
[2] T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(3)(2003) 687-705.
[3] T. Bag, S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst. 151 (2005) 513-547.
[4] D. Dubois, H. Prade, Fuzzy elements in a fuzzy set, in: Proceedings of the 10th International Fuzzy Systems Association (IFSA) Congress, Beijing, Springer, 2005, pp. 5560.
[5] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
[6] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst. 48 (1992) 239-248.
[7] A.R. Freedman, J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981) 293-305.
[8] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
[9] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993) 1187-1192.
[10] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963) 115-148.
[11] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2 (2004) 107-113.
[12] O. Kaleva, S. Seikala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984) 215-229.
[13] A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst. 12 (1984) 143-154.
[14] M. Mizumoto, J. Tanaka, Some properties of fuzzy numbers, in: M.M. Gupta et al. (Eds.), Advances in Fuzzy Set Theory and Applications, North-Holland, New York, 1979, pp. 153164.
[15] S.A. Mohiuddine, Q.M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos, Solitons Fract. 42 (2009) 1731-1737.
[16] M. Mursaleen, S.A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons Fract. 41 (2009) 2414-2421.
[17] M. Mursaleen, Q.M. Danish Lohani, S.A. Mohiuddine, Intuitionistic fuzzy 2-metric space and its completion, Chaos, Solitons Fract. 42 (2009) 1258-1265.
[18] A. Şahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. ll (5)(2007) 1477-1484
[19] T. S̆alát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139-150.
[20] E. Savaş, M. Mursaleen, On statistically convergent double sequences of fuzzy numbers, Inform. Sci. 162 (2004) 183-192.
[21] C. Şençimen, S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy Sets Syst. 159 (2008) 361-370.
[22] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-34.
[23] J.Z. Xiao, X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst. 133 (2003) 135-146.

A Generalization of the EMML and ISRA

Algorithms for Solving Linear Systems

Anca Ciurte ${ }^{1}$, Sergiu Nedevschi ${ }^{1}$, Ioan Rasa ${ }^{2}$
${ }^{1}$ Department of Computer Science, ${ }^{2}$ Department of Mathematics
Technical University of Cluj Napoca, 15 C. Daicoviciu Street, 400020 Cluj-Napoca, Romania
\{Anca.Ciurte, Sergiu.Nedevschi\}@cs.utcluj.ro, Ioan.Rasa@math.utcluj.ro

Abstract

From an algebraic point of view, the EMML and ISRA algorithms for Positron Emission Tomography can be considered as iterative procedures for solving a class of linear system of equations. We introduce an algorithm $A(p), p \in \mathbb{R}$, such that $A(1)$ coincides with EMML and $A(-1)$ with a version of ISRA. Some examples illustrate the speed of convergence. Applications are indicated to: (i) the Bernstein-Bézier representation; (ii) the B-spline interpolation; (iii) the inverse problem for Markov chains; (iv) the problem of finding the stationary distribution of a regular Markov chain.

Keywords: Expectation-Maximization Algorithm, Kullback-Leibler distances, log-likelihood functions, least-squares, linear systems.

1 Introduction and notation

Using the Expectation-Maximization (EM) algorithm, L. A. Shepp and Y. Vardi in 1982 and independently K Lange and R. Carson in 1984 pioneered an algorithm in order to compute Maximum Likelihood (ML) estimates for the problem of tomography reconstruction; see [9].
W. H. Richardson in 1972 and independently L. B. Lucy in 1974 obtained the same algorithm in the setting of restoration of astronomical images; see [9].

With the terminology of [11] we shall call this algorithm the EMML algorithm. It can be considered as a numerical procedure for calculating maximum likelihood estimates, or alternatively as an iterative procedure for solving a class of linear systems of equations; see [1], [3], [4], [9], [10], [11].

In the context of the Positron Emission Tomography problem, M. E. DaubeWitherspoon and G. Muehllehner introduced in 1986 the Image Space Reconstruction Algorithm (ISRA) in order to obtain Least-Squares (LS) estimates of the emission densities; see [9]. Alternatively, ISRA can be viewed as a procedure for solving linear systems; see [1], [3], [4], [9], [10], [11]. Both the ML and LS estimates can be considered as minimum distance estimates, but based on different measures of distance: Kullback-Leibler distance for EMML and leastsquares distance for ISRA; see [1], [3], [4], [9], [10], [11], where the relationship between the two algorithms is discussed.

In this paper we introduce an algorithm $A(p)$, depending on a real parameter p, such that:
(a) $A(1)$ coincides with EMML, and $A(-1)$ with a version of ISRA;
(b) $A(p)$ minimizes a suitable generalized Kullback-Leibler distance and solves a specific problem of convex optimization involving generalized log-likelihood functions and least-squares functions;
(c) $A(p)$ solves iteratively linear systems from a certain class and assigns gen-

Ciurte et al.
eralized solutions to inconsistent systems.

Let $N(p)$ be the number of iterations when one uses the algorithm $A(p)$. Numerical experiments show that, if the system has dominant diagonal, then $N(-p) \approx N(p)$ and $N(p)<N(q)$ for $0 \leq p<q$.

Systems for which $A(p)$ works and which have a (more or less) dominant diagonal appear quite naturally in practical applications involving the BernsteinBézier representation of polynomials, the B-spline interpolation, the inverse problem for Markov chains and the problem of finding the stationary distribution of a Markov chain. We describe such applications in the final sections.

Throughout the paper, we consider the integers $m \geq 1, n \geq 1$, the matrix $A=\left(a_{i j}\right)_{i=1, \ldots, n ; j=1, \ldots, m}$ with $a_{i j} \geq 0, \sum_{i=1}^{n} a_{i j}>0, \sum_{j=1}^{m} a_{i j}>0, i=1, \ldots, n$; $j=1, \ldots, m$, and the vector $b=\left(b_{1}, \ldots, b_{n}\right)^{t}$ with $b_{i}>0, i=1, \ldots, n$.

We shall be concerned with the (consistent or inconsistent) system of linear equations (S) :

$$
\begin{equation*}
A x=b, \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{m}\right)^{t} \in \mathbb{R}^{m}$.
We shall use the notation
$\Pi_{m}:=\left\{x \in \mathbb{R}^{m}: x_{j}>0, j=1, \ldots, m\right\}$,
$\Omega_{m, n}:=\left\{x \in \mathbb{R}^{m}:(A x)_{i}>0, i=1, \ldots, n\right\}$.
Obviously $\Pi_{m} \subset \Omega_{m, n}$.

2 Generalized Kullback-Leibler distances

Let $p \in \mathbb{R}$. For $u, t \in(0, \infty)$, define

$$
e_{p}(u, t):= \begin{cases}t \log t-t \log u+u-t, & p=0 ; \tag{2}\\ u \log u-u \log t+t-u, & p=1 ; \\ \frac{u^{p} t^{1-p}-(1-p) t-p u}{p(p-1)}, & p \neq 0,1 .\end{cases}
$$

It is easy to verify that for all $u, t>0$ one has: $\lim _{p \rightarrow 0} e_{p}(u, t)=e_{0}(u, t)$;
$\lim _{p \rightarrow 1} e_{p}(u, t)=e_{1}(u, t) ; e_{p}(u, u)=0 ; e_{p}(u, t)>$ for $u \neq t$.
For all $v, w \in \Pi_{n}$ we define:

$$
\begin{equation*}
d_{p}(v, w):=\sum_{i=1}^{n} e_{p}\left(v_{i}, w_{i}\right) . \tag{3}
\end{equation*}
$$

Then d_{1} is the well-known Kullback-Leibler distance; see, e.g., [11] and the references therein. For $p \in \mathbb{R}, d_{p}$ can be considered as a generalized KullbackLeibler distance.

3 Generalized log-likelihood functions and leastsquares functions

For $p \in \mathbb{R}$ consider the function $F_{p}:(0, \infty) \rightarrow \mathbb{R}$,

$$
F_{p}(t):= \begin{cases}t \log t-t, & p=0 \\ \log t, & p=1 \\ t^{1-p} /(1-p), & p \neq 0,1\end{cases}
$$

Let now $L_{p}: \Omega_{m, n} \rightarrow \mathbb{R}$,

$$
L_{p}(x):= \begin{cases}\sum_{i=1}^{n}\left(\left(b_{i}\right)^{p} F_{p}\left((A x)_{i}\right)-(A x)_{i}\right), & p \neq 0 ; \tag{4}\\ \sum_{i=1}^{n}\left(F_{0}\left((A x)_{i}\right)-(A x)_{i} \log b_{i}\right), & p=0 .\end{cases}
$$

Then L_{1} is basically the log-likelihood function appearing in the EMML

Ciurte et al.
algorithm; see [9], [4], [11]. On the other hand,

$$
L_{-1}=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{b_{i}}\left((A x)_{i}-b_{i}\right)^{2}-\frac{1}{2} \sum_{i=1}^{n} b_{i}
$$

is obviously a least-squares cost function.
Thus the family $\left(L_{p}\right)_{p \in \mathbb{R}}$ extends the notions of log-likelihood functions and least-squares functions.

It is easy to prove

Theorem 1. The families $\left(L_{p}\right)$ and $\left(d_{p}\right)$ are related by

$$
\begin{gather*}
L_{1}(x)=\sum_{i=1}^{n} b_{i}\left(\log b_{i}-1\right)-d_{1}(b, A x), \tag{5}\\
L_{0}(x)=-\sum_{i=1}^{n} b_{i}+d_{0}(b, A x) \tag{6}\\
L_{p}(x)=\frac{p}{1-p} \sum_{i=1}^{n} b_{i}-p d_{p}(b, A x), \quad p \neq 0,1 \tag{7}
\end{gather*}
$$

4 Minimizing $d_{p}(b, A x)$

We are interested in minimizing $d_{p}(b, A x)$ with respect to $x \in \Omega_{m, n}$.
I. Let $p \leq 0$. According to Eqs. (6) and (7), minimizing $d_{p}(b, A x)$ is equivalent to minimizing the function $L_{p}(x)$. Remark that in this case $F_{p}(t)$ is strictly convex on $(0, \infty)$, hence $L_{p}(x)$ is convex on $\Omega_{m, n}$. By examining the behavior of $L_{p}(x)$ when x approaches the infinity or the boundary of $\Omega_{m, n}$, we conclude that L_{p} has global minimum points in $\Omega_{m, n}$.
II. Let $p>0$. Now Eqs. (5) and (7) show that to minimize $d_{p}(b, A x)$, means to maximize $L_{p}(x)$. Since $F_{p}(t)$ is strictly concave, we infer that $L_{p}(x)$ is concave and has global maximum points in $\Omega_{m, n}$.

5 p-generalized solutions of the system (S)

Let $x \in \Omega_{m, n}$ be a global extremum point of the function L_{p}. Then

$$
\begin{equation*}
\frac{\partial L_{p}(x)}{\partial x_{r}}=0, \quad r=1, \ldots, m \tag{8}
\end{equation*}
$$

For $p \neq 0$, Eq. (8) is equivalent to $\left(S_{p}\right)$:

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i r} b_{i}^{p} /(A x)_{i}^{p}=\sum_{i=1}^{n} a_{i r}, \quad r=1, \ldots, m, \tag{9}
\end{equation*}
$$

while for $p=0$ it is equivalent to $\left(S_{0}\right)$:

$$
\begin{equation*}
\sum_{i=1}^{n}\left(b_{i} /(A x)_{i}\right)^{a_{i r}}=1, \quad r=1, \ldots, m \tag{10}
\end{equation*}
$$

Theorem 2. (i) For each $p \in \mathbb{R}$, the system $\left(S_{p}\right)$ is consistent, i.e., has solutions in $\Omega_{m, n}$.
(ii) If x_{p} is a solution of $\left(S_{p}\right)$, then x_{p} minimizes $d_{p}(b, A x)$. Moreover, x_{p} minimizes (if $p \leq 0$), respectively maximizes (if $p>0$) the function $L_{p}(x)$.
(iii) If (S) has a solution $x \in \Omega_{m, n}$, then x is a solution of $\left(S_{p}\right)$.
(iv) If $\operatorname{rank}(A)=n$, then each solution of $\left(S_{p}\right)$ is a solution of (S).

Proof. According to [6], pp. 14-15, the set

$$
\begin{gathered}
\left\{x \in \Omega_{m, n}: x \text { is a global extremum point of } L_{p}\right\}= \\
=\left\{x \in \Omega_{m, n}: x \text { is a solution of }\left(S_{p}\right)\right\}
\end{gathered}
$$

is a nonempty convex subset of $\Omega_{m, n}$. This proves statement (i) in the theorem. Statement (ii) is a consequence of the results presented in Section 4. (iii) is obvious, and (iv) is an easy exercise in algebra.

Ciurte et al.

Definition 1. Each solution of $\left(S_{p}\right)$ will be called a p-generalized solution of (S).

According to Theorem 2, each solution of (S) is also a p-generalized solution, $p \in \mathbb{R}$. If $\operatorname{rank}(A)=n$, the p-generalized solutions coincide with the solutions of (S). For each $p \in \mathbb{R},(S)$ has a p-generalized solution even if (S) itself is inconsistent.

6 The $A(p)$ algorithm

In order to find the p-generalized solutions of (S), i.e., the global extremum points of L_{p}, we shall apply the Maximization-Minimization (or MinimizationMaximization) Algorithm; see [7], [9].

For a given $k \in \mathbb{N}$ let $x^{(k)} \in \Pi_{m}$ be an arbitrary vector. If $p \neq 0$, define

$$
l_{p}\left(x \mid x^{(k)}\right):=\sum_{i=1}^{n} b_{i}^{p} \sum_{j=1}^{m} \frac{a_{i j} x_{j}^{(k)}}{\left(A x^{(k)}\right)_{i}} F_{p}\left(\frac{\left(A x^{(k)}\right)_{i}}{x_{j}^{(k)}} x_{j}\right)-\sum_{i=1}^{n}(A x)_{i} .
$$

If $p=0$, let

$$
l_{0}\left(x \mid x^{(k)}\right):=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{a_{i j} x_{j}^{(k)}}{\left(A x^{(k)}\right)_{i}} F_{0}\left(\frac{\left(A x^{(k)}\right)_{i}}{x_{j}^{(k)}} x_{j}\right)-\sum_{i=1}^{n}(A x)_{i} \log b_{i}
$$

It is easy to verify that

$$
\begin{equation*}
l_{p}\left(x^{(k)} \mid x^{(k)}\right)=L_{p}\left(x^{(k)}\right), \quad p \in \mathbb{R} \tag{11}
\end{equation*}
$$

As consequence of Jensen's inequality, we get

$$
\begin{equation*}
L_{p}(x) \leq l_{p}\left(x \mid x^{(k)}\right), \quad x \in \Pi_{m}, \quad p \leq 0 \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
L_{p}(x) \geq l_{p}\left(x \mid x^{(k)}\right), \quad x \in \Pi_{m}, \quad p>0 . \tag{13}
\end{equation*}
$$

With straightforward computation we find that for each $p \in \mathbb{R}$ the system

$$
\frac{\partial l_{p}}{\partial x_{r}}\left(x \mid x^{(k)}\right)=0, \quad r=1, \ldots, m
$$

has a unique solution in Π_{m}, denoted by $x^{(k+1)}$ and given by

$$
\begin{equation*}
A(p): \quad x_{r}^{(k+1)}=x_{r}^{(k)}\left(\frac{\sum_{i=1}^{n} a_{i r}\left(b_{i} /\left(A x^{(k)}\right)_{i}\right)^{p}}{\sum_{i=1}^{n} a_{i r}}\right)^{1 / p} \tag{14}
\end{equation*}
$$

for $p \neq 0$ and $r=1, \ldots, m$;

$$
\begin{equation*}
A(0): \quad x_{r}^{(k+1)}=x_{r}^{(k)} \prod_{i=1}^{n}\left(\frac{b_{i}}{\left(A x^{(k)}\right)_{i}}\right)^{a_{i r} / \sum_{s=1}^{n} a_{s r}} \tag{15}
\end{equation*}
$$

for $p=0$ and $r=1, \ldots, m$.
I. Let $p \leq 0$. Then $l_{p}\left(x \mid x^{(k)}\right)$ is convex and $x^{(k+1)}$ is a minimum point of it. According to Eqs. (12) and (11),

$$
L_{p}\left(x^{(k+1)}\right) \leq l_{p}\left(x^{(k+1)} \mid x^{(k)}\right) \leq l_{p}\left(x^{(k)} \mid x^{(k)}\right)=L_{p}\left(x^{(k)}\right)
$$

So, starting from an arbitrary $x^{(0)} \in \Pi_{m}$, the algorithm $A(p)$ generates a sequence $x^{(0)}, x^{(1)}, x^{(2)}, \ldots$ such that $L_{p}\left(x^{(0)} \geq L_{p}\left(x^{(1)} \geq L_{p}\left(x^{(2)} \geq \ldots\right.\right.\right.$. The sequence $\left(x^{(k)}\right)$ is bounded since $L_{p}(x) \longrightarrow \infty$ as x approaches the infinity.
II. Let $p>0$. It can be proved similarly that starting from an arbitrary $x^{(0)} \in \Pi_{m}$, the algorithm $A(p)$ generates a bounded sequence $\left(x^{(k)}\right)$ such that $L_{p}\left(x^{(0)}\right) \leq L_{p}\left(x^{(1)}\right) \leq L_{p}\left(x^{(2)}\right) \leq \ldots$.

These results, combined with Eqs. (9), (10), (14) and (15), lead to

Theorem 3. If for given $x^{(0)} \in \Pi_{m}$ and $p \in \mathbb{R}$ the sequence $\left(x^{(k)}\right)$ generated by $A(p)$ is convergent and

$$
\begin{equation*}
x^{*}:=\lim _{k \rightarrow \infty} x^{(k)} \in \Pi_{m} \tag{16}
\end{equation*}
$$

then x^{*} is a p-generalized solution of (S).

To conclude this section, let us remark that $A(1)$ is equivalent to the EMML Algorithm (see [9], [4], [11]) and, when $b_{1}=\ldots=b_{n}, A(-1)$, is equivalent to the ISRA Algorithm (see [9], [3], [11]). The convergence of the sequence $\left(x^{(k)}\right)$ is governed by the general rules of the Expectation-Maximization Algorithm; see [9].

7 Examples and applications

For the sake of brevity we shall present only some examples and applications involving systems with exactly one solution; underconstrained and overconstrained systems will be considered in subsequent papers, as well as comparisons with other methods.

7.1 Dominant diagonal

Example 1.

For illustrative purposes, consider the system for which

$$
A=\left(\begin{array}{cccccc}
100000 & 1000 & 1000 & 1000 & 1000 & 1000 \\
1 & 100 & 1 & 1 & 1 & 1 \\
1 & 1 & 100 & 1 & 1 & 1 \\
1 & 1 & 1 & 100 & 1 & 1 \\
1 & 1 & 1 & 1 & 100 & 1 \\
1000 & 1000 & 1000 & 1000 & 1000 & 100000
\end{array}\right)
$$

and $b=(105000010501050105010501050000)^{t}$.
The exact solution is $(101010101010)^{t}$. Taking as initial solution $x^{(0)}=$ $(110001100011000)^{t}$ we get as approximate solution (10 10101010 10) the number of iterations, corresponding to $p \in[-5,5]$, can be seen in Fig. 1.

Figure 1: The number of iterations (Example 1)

Remark that $N(0)<N(-1) \approx N(1)$; this happened in all our numerical experiments with systems having dominant diagonal. Moreover, in such cases the algorithm exhibits little sensitivity with respect to changing the initial solution.

7.2 Non-dominant diagonal

Example 2.

The dominant diagonal makes the computation easier. The opposite circumstance is illustrated here by the very simple system

$$
\left(\begin{array}{cc}
0.9 & 1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{190}{200}
$$

Indeed, we know that solving the system with $A(p)$ is equivalent to finding the extremum points of the function L_{p}. The surfaces representing L_{p} for $p \in$ $\{-1,0,1\}$ can be seen in Fig. 2.

Fig. 2: The surface representation of the function L_{p} for (a) $p=-1$, (b) $p=0$ and (c) $p=1$ (Example 2)

We remark that they are similar to the surface representing the Rosenbrock
function: "long, narrow, parabolic shaped flat valley" (see [12]).
The difficulties in finding the extremum points for such functions are notorious; they explain the difficulties in solving the corresponding system with $A(p)$.

In fact, taking $x^{(0)}=(50150)^{t}$ as initial solution of the above system, we get the approximate solution $(99.8100)^{t}$ after a number of iterations presented in Fig. 3.

Fig. 3: The number of iterations (Example 2)

Example 3.

By contrast, consider the system given by

$$
A=\left(\begin{array}{cc}
100 & 1 \\
1 & 100
\end{array}\right), \quad b=(1010010100)^{t},
$$

and take $x^{(0)}=(1199)^{t}$ as initial solution. We get as approximate solution $(100100)^{t}$ with a number of iterations illustrated in Fig. 4.

In this case the function $L_{p}, p \in\{-1,0,1\}$ looks like in Fig. 5 .

Fig. 4: The number of iterations (Example 3)

7.3 Bernstein-Bézier representation

Let P_{n} be the space of the real polynomial functions of degree at most n, defined on $[0,1]$. Let $b_{n j}(t):=\binom{n}{j} t^{j}(1-t)^{n-j}, t \in[0,1], j=0,1, \ldots, n$. Then $\left\{b_{n j}: j=0,1, \ldots, n\right\}$ is a basis of P_{n}, called the Bernstein-Bézier basis; see [5], [8];

Let $f \in P_{n}$; suppose that the numbers $f\left(\frac{i}{n}\right)>0, i=0,1, \ldots, n$, are known. We want to represent f with respect to the Bernstein-Bézier basis, i.e., to find the coefficients $c_{0}, c_{1}, \ldots, c_{n}$ such that $f=\sum_{j=0}^{n} c_{j} b_{n j}$. Then we have to solve the system $A x=b$, where $A=\left(b_{n j}\left(\frac{i}{n}\right)\right)_{i, j=0, \ldots, n}, x=\left(c_{0}, \ldots, c_{n}\right)^{t}, b=$ $\left(f(0), f\left(\frac{1}{n}\right), \ldots, f(1)\right)^{t}$.

The algorithm $A(p)$ works particularly well if one takes $x^{(0)}:=b$.

Fig. 5: The surface representation of the function L_{p} for (a) $p=-1$, (b) $p=0$ and (c) $p=1$ (Example 3)

7.4 B-spline interpolation

In solving the problem of B-spline interpolation (see [5], [8]), one has to consider systems with

$$
M=\left(\begin{array}{cccccc}
1 & 1 & & & & \tag{17}\\
a_{1} & b_{1} & c_{1} & & & \\
& & \cdots & & & \\
& & & a_{n-1} & b_{n-1} & c_{n-1} \\
& & & & 1 & 1
\end{array}\right)
$$

where $a_{i}>0, c_{i}>0, b_{i}=2\left(a_{i}+c_{i}\right), i=1, \ldots, n-1$.
Once again, the $A(p)$ algorithm can be used.

7.5 The inverse problem of Markov chains

Let $\left(X_{k}\right)_{k \geq 0}$ be a homogeneous Markov chain with state space $\{1, \ldots, n\}$ and transition matrix $T=\left(p_{i j}\right)_{i, j=1, \ldots, n}$. Let $b_{i}:=P\left(X_{k}=i\right), i=1, \ldots, n$, where $k \geq 1$ is a given integer. Then $\left(b_{1}, \ldots, b_{n}\right)$ describes the probability distribution at the moment k. Suppose that we know the vector b and want to find the probability distribution at the moment $k-1$. Then we have to solve the system

$$
\begin{equation*}
T^{t} x=b^{t} \tag{18}
\end{equation*}
$$

where $x_{j}=P\left(X_{k-1}=j\right), j=1, \ldots, n$, and we can use $A(p)$. So we can solve the inverse problem for the Markov chain $\left(X_{k}\right)$ (see [2], p. 304). In particular,

$$
P\left(X_{k-1}=j \mid X_{k}=i\right)=p_{i j} x_{j} / b_{i}, \quad i, j=1, \ldots, n
$$

7.6 Stationary distribution

Suppose that the above Markov chain is regular. Then it has a stationary distribution (see [2]) given by $w_{i}=\lim _{k \rightarrow \infty} P\left(X_{k}=i\right), i=1, \ldots, n$. The vector w is the unique eigenvector of the matrix T^{t}, associated with the eigenvalue 1 and having positive components with sum equal to 1 . It is easy to see that w is the solution of the system

$$
\left\{\begin{array}{l}
p_{11} w_{1}+\left(p_{21}+1\right) w_{2}+\ldots+\left(p_{n 1}+1\right) w_{n}=1 \\
\left(p_{12}+1\right) w_{1}+p_{22} w_{2}+\ldots+\left(p_{n 2}+1\right) w_{n}=1 \\
\ldots \\
\left(p_{1 n}+1\right) w_{1}+\left(p_{2 n}+1\right) w_{2}+\ldots+p_{n n} w_{n}=1
\end{array}\right.
$$

A Generalization of the EMML and ISRA Algorithms for Solving Linear Systems

So we can use the algorithm $A(p)$ in order to find the stationary distribution.

Example 4.

If the transition matrix is

$$
T=\left(\begin{array}{ccccc}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.4 & 0.1 & 0.1 & 0.1 & 0.3 \\
0.2 & 0.4 & 0.2 & 0.1 & 0.1 \\
0.1 & 0.3 & 0.4 & 0.1 & 0.1 \\
0.3 & 0.3 & 0.2 & 0.1 & 0.1
\end{array}\right)
$$

then we have to solve the system for which

$$
A=\left(\begin{array}{lllll}
0.2 & 1.4 & 1.2 & 1.1 & 1.3 \\
1.2 & 0.1 & 1.4 & 1.3 & 1.3 \\
1.2 & 1.1 & 0.2 & 1.4 & 1.2 \\
1.2 & 1.1 & 1.1 & 0.1 & 1.1 \\
1.2 & 1.3 & 1.1 & 1.1 & 0.1
\end{array}\right)
$$

and $b=(1,1,1,1,1)^{t}$.
Taking as initial solution $x^{(0)}=\left(\begin{array}{ll}0.050 .2 & 0.50 .050 .2\end{array}\right)^{t}$ we get the approximate solution (stationary distribution) (0.2540 0.2455 0.2005 0.1254 0.1745) ${ }^{t}$. The number of iterations is presented in Fig. 6.

Fig. 6: The number of iterations (Example 4)

8 Concluding remarks

In the frame of the EM Algorithm, the $A(p)$ algorithm generalizes the known algorithms EMML (i.e., $A(1))$ and ISRA (i.e., $A(-1)$). For systems with dominant diagonal $A(0)$ is better than $A(1)$ and $A(-1)$ with respect to the number of iterations. $A(p)$ can be applied to concrete problems, as shown by the above examples. Subsequent papers will be devoted to applications involving underconstrained and overconstrained systems, as well as to the problem of identifying classes of systems for which a certain $A(p)$ works better than other algorithms.

References

[1] G. E. B. Archer and D. M. Titterington, The Iterative Image Space Reconstruction Algorithm (ISRA) as an Alternative to the EM Algorithm for Solving Positive Linear Inverse Problems, Statistica Sinica, 5, 77-96 (1995).
[2] K. L. Chung, Elementary Probability Theory with Stochastic Process, Springer-Verlag, 1974.
[3] A. R. De Pierro, On the Convergence of the Iterative Image Space Reconstruction Algorithm for Volume ECT, IEEE Trans. Med. Imaging, 6, 174-175 (1987).
[4] A. R. De Pierro, On the Relation Between the ISRA and the EM Algorithm for Positron Emission Tomography, IEEE Trans. Med. Imaging, 12, 328-333 (1993).
[5] G. Farin, Curves and surfaces for CAGD: a practical guide (5th ed.), Morgan Kaufmann Publishers Inc. San Francisco, 2001.
[6] R. Horst, P. M. Pardalos and V. V. Thoai, Introduction to Global Optimization, Kluwer Academic Publishers, Dordrecht, 1995.
[7] D. R. Hunter and K. Lange, A Tutorial on MM Algorithms, The American Statistician, 58, 30-37 (2004).
[8] F. Locher, Numerische Matematik für Informatiker, Springer-Verlag, 1992.
[9] G. J. McLachlan and Th. Krishnan, The EM Algorithm and Extensions, Wiley, 2008.
[10] D. M. Titterington, On the Iterative Image Space Reconstruction Algorithm for ECT, IEEE Trans. Med. Imaging, 6, 52-56 (1987).
[11] M. Vélez-Reyes, A.Puetz, P. Hoke, R. B. Lockwood and S. Rosario, Iterative Algoritms for Unmixing of Hyperspectral Imagery, in Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral Imagery IX (S. S. Shen and P. E. Lewis, eds.), Proc. SPIE 5093, Bellingham, WA, 2003, pp. 418-429.
[12] Weisstein, Eric W. "Rosenbrock Function." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/RosenbrockFunction.html.

On Local Properties of Summability of Fourier Series

Mehmet Ali Sarıgöl
Department of Mathematics, Pamukkale University, 20017 Denizli, TURKEY
E-mail : msarigol@pau.edu.tr

Abstract

In this note we have improved the result of Sulaiman [2] on local property of absolute weighted mean summability with index δ and k , of factored Fourier series by proving under weaker conditions.

1 Introduction

Let $\sum a_{n}$ be a given series with partial $\operatorname{sums}\left(s_{n}\right)$, and let $\left(p_{n}\right)$ be a sequence of positive numbers such that $P_{n}=p_{0}+p_{1}+\cdots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The sequence- to- sequence transformation

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(T_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ means of the the sequence $\left(s_{n}\right)$, generated the sequence coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is summable the $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability, $k \geq 1, \delta \geq 0$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty . \tag{1}
\end{equation*}
$$

In the special case when $\delta=0,\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}$ summability. If we take $p_{n}=1 /(n+1), k=1, \delta=0,\left|\bar{N}, p_{n} ; \delta\right|_{k}$ is reduced to $|R, \log n, 1|$ summability.
Let f be a function with period 2π, integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of is zero, so that

$$
\int_{-\pi}^{\pi} f(t) d t=0
$$

and

[^40]\[

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=1}^{\infty} C_{n}(t) . \tag{2}
\end{equation*}
$$

\]

It is well known [3] that convergence of a Fourier series at any point $t=x$ is a local property f, i.e., for arbitrarily small $\delta>0$, the behaviour of $\left(s_{n}(t)\right)$, the n-th partial sum of the series (2), depends only the natura of f in the interval $(x-\delta, x+\delta)$ and is not affected by the values it takes outside the interval. The local property problem of the factored Fourier series has been by several authors (see [1] for detail).

Quite recently Sulaiman [2] proved the following theorem on local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series.

Theorem A. Let $k \geq 1$ and $\delta \geq 0$. If $\left(p_{n}\right)$ and $\left(\lambda_{n}\right)$ satisfy the conditions

$$
\begin{align*}
& \Delta X_{n}=O(1 / n), \quad X_{n}=\left(n p_{n}\right)^{-1} P_{n} \tag{3}\\
& \sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k-1}\left\{\left|\lambda_{n}\right|^{k}+\left|\lambda_{n+1}\right|^{k}\right\} X_{n}^{k}<\infty \tag{4}\\
& \sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k} X_{n+1}\left|\Delta \lambda_{n}\right|<\infty \tag{5}\\
& \sum_{n=v}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(1 / P_{n}\right)=O\left\{\left(P_{v} / p_{v}\right)^{\delta v}\left(1 / P_{v}\right)\right\}, \tag{6}
\end{align*}
$$

then the summability $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ of the series $\sum_{n=1}^{\infty} \lambda_{n} X_{n} C_{n}(t)$ at a point can be ensured by a local property.

The aim of this paper is to establish Theorem A under weaker conditions. Now, we shall prove the following theorem.

Theorem. Let $k \geq 1$ and $\delta \geq 0$. If $\left(p_{n}\right)$ and ($\left.\lambda_{n}\right)$ satisfy the conditions (3), (6),

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k-1} X_{n}^{k}\left|\lambda_{n}\right|^{k}<\infty, \quad X_{n}=\left(n p_{n}\right)^{-1} P_{n} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta} X_{n+1}\left|\Delta \lambda_{n}\right|<\infty, \tag{8}
\end{equation*}
$$

then the summability $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ of the series $\sum_{n=1}^{\infty} \lambda_{n} X_{n} C_{n}(t)$ at a point can be ensured by a local property.

Remark. It may be noticed that our result is an improvement of Theorem A in the sense that the conditions (7) and (8) are weaker than (4) and (5).
2. Proof of the Theorem. As mentioned in the beginning, the convergence of Fourier series at a point is a local property. Therefore in order to prove the theorem it is sufficient to prove that if $\left(s_{n}\right)$ is bounded, then under the conditions of our theorem, the series $\sum X_{n} \lambda_{n} a_{n}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}$. Now, let $\left(T_{n}\right)$ denote the $\left(\bar{N}, p_{n}\right)$ means of this series. Then we have

$$
T_{n}-T_{n-1}=\left(P_{n} P_{n-1}\right)^{-1} p_{n} \sum_{v=1}^{n} P_{v-1} X_{v} \lambda_{v} a_{v}
$$

Applying Abel's transformation to this sum we get

$$
\begin{aligned}
T_{n}-T_{n-1}= & \left(P_{n} P_{n-1}\right)^{-1} p_{n} \sum_{v=1}^{n} s_{n} \Delta\left(P_{v-1} X_{v} \lambda_{v}\right)+\left(P_{n} P_{n-1}\right)^{-1} p_{n} s_{n} P_{n-1} X_{n} \lambda_{n} \\
= & \left(P_{n} P_{n-1}\right)^{-1} p_{n} \sum_{v=1}^{n} s_{v} \lambda_{v} \Delta\left(P_{v-1} X_{v}\right)+\left(P_{n} P_{n-1}\right)^{-1} p_{n} \sum_{v=1}^{n} s_{v} P_{v} X_{v+1} \Delta \lambda_{v} \\
& +\left(P_{n}\right)^{-1} p_{n} s_{n} X_{n} \lambda_{n}=T_{1}+T_{2}+T_{3}, \text { say. }
\end{aligned}
$$

For the proof of the lemma, by Minkowski's inequality, it suffices to show that

$$
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|T_{r}\right|^{k}<\infty, \quad r=1,2,3 .
$$

Now, since $s_{n}=O(1)$, It follows that

$$
\sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|T_{1}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(P_{n-1}\right)^{-k}\left\{\sum_{v=1}^{n-1} \mid \lambda_{v} \| \Delta\left(P_{v-1} X_{v}\right)\right\}^{k} .
$$

In addition, in view of $\Delta\left(P_{v-1} X_{v}\right)=-p_{v} X_{v}+P_{v} \Delta X_{v}=-v^{-1} P_{v}+P_{v} \Delta X_{v}=P_{v}\left(-v^{-1}+\Delta X_{v}\right)$, it is clear that the condition $\Delta X_{v}=O(1 / v)$ is equivalent to $\Delta\left(P_{v-1} X_{v}\right)=O\left(v^{-1} P_{v}\right)$. Therefore, applying Hölder's inequality, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|T_{1}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(P_{n-1}\right)^{-k}\left\{\sum_{v=1}^{n-1}\left|\lambda_{v}\right| v^{-1} P_{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(P_{n-1}\right)^{-k}\left\{\sum_{v=1}^{n-1}\left|\lambda_{v}\right| X_{v} p_{v}\right\}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(P_{n-1}\right)^{-k}\left\{\sum_{v=1}^{n-1}\left|\lambda_{v}\right|^{k} X_{v}^{k} p_{v}\right\}\left\{\sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k} X_{v}^{k} p_{v} \sum_{n=v+1}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(P_{n-1}\right)^{-1} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{\delta k-1} X_{v}^{k}\left|\lambda_{v}\right|^{k}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

Again,

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|T_{2}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(P_{n-1}\right)^{-k}\left\{\sum_{v=1}^{n-1}\left(P_{v} / p_{v}\right)^{-\delta} P_{v}\left(P_{v} / p_{v}\right)^{\delta} X_{v+1}\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& \quad=O(1) \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(P_{n-1}\right)^{-k} \sum_{v=1}^{n-1}\left(P_{v} / p_{v}\right)^{\delta-\delta k} P_{v}^{k} X_{v+1}\left|\Delta \lambda_{v}\right|\left\{\sum_{v=1}^{n-1}\left(P_{v} / p_{v}\right)^{\delta} X_{v+1}\left|\Delta \lambda_{v}\right|\right\}^{k-1} \\
& \quad=O(1) \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(P_{n-1}\right)^{-k} \sum_{v=1}^{n-1}\left(P_{v} / p_{v}\right)^{\delta-\delta k} P_{v}^{k} X_{v+1}\left|\Delta \lambda_{v}\right| \\
& \quad=O(1) \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{\delta-\delta k} P_{v}^{k} X_{v+1}\left|\Delta \lambda_{v}\right|_{n=v+1}^{m+1}\left(P_{n} / p_{n}\right)^{\delta k-1}\left(P_{n-1}\right)^{-k} \\
& \quad=O(1) \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{\delta} X_{v+1}\left|\Delta \lambda_{v}\right|=O(1), \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of (8). Finally, it is clear that $\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|T_{3}\right|^{k}<\infty$ by virtue of (7). This completes the proof.

References

[1] H. Bor, A study on local properties of Fourier series, Nonlinear Analysis 57 (2004), 191197.
[2] W.T. Sulaiman, On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl. 292 (2004), 340-343.
[3] E. C. Tichmarsh, The Theory of Functions, Oxford Univ. Press, London 1961.

Higher Order Generalization of q-Bernstein Operators

Pembe Sabancıgil
Eastern Mediterranean University
Department of Mathematics Gazimagusa
Mersin 10 Turkey
Email: pembe.sabancigil@emu.edu.tr

Abstract

We introduce higher order generalization of the q-Bernstein operators. Then we study approximation properties and a Voronovskaja-type theorem for higher order q-Bernstein operators.

1 Introduction

Nowadays it is known that the theory of q-calculus plays an important role on analytic number theory and theoretical physics. For example, various applications of this theory have appeared in the study of hypergeometric series [1], in the approximation theory [2], [17], [18] while some other important applications have been related with the quantum theory. In this paper, using the moment estimates from [9] and with the techniques of the works [5], [6], we study the approximation properties of an r th order generalization of the q-Bernstein polynomials.

We first recall some basic definitions used in the paper. The q-Bernstein operators are given by

$$
\begin{aligned}
B_{n, q}(f ; x) & =\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) p_{n, k}(q ; x), \quad n \in \mathbb{N}, 0 \leq x \leq 1, \\
p_{n, k}(q ; x) & =\left[\begin{array}{c}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) .
\end{aligned}
$$

Recall that $[n]=[n]_{q}$ and $\left[\begin{array}{l}n \\ k\end{array}\right]$ denotes the q-integers and q-Gaussian binomial, which are defined, respectively by

$$
[n]=\left\{\begin{array}{c}
\left(1-q^{n}\right) /(1-q), \text { if } q \neq 1 \\
n, \quad \text { if } q=1
\end{array}, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!},\right.
$$

where $[n]$! denotes the q-factorial given by

$$
[n]!=\left\{\begin{array}{c}
{[n] \ldots[2][1], \text { if } n \geq 1} \\
1, \quad \text { if } n=0
\end{array}\right.
$$

After q-Bernstein polynomials were introduced by Phillips [15] they have been the object of several investigations in approximation theory (cf. [3]-[21]). Surveys of results on the q-Bernstein polynomials together with comprehensive lists of references on the subject are given in [12].

We introduce a new sequence of positive linear operators so-called higher (r th) order q-Bernstein operators.

Definition 1 Let $r \in N \cup\{0\}$ be a fixed number. For $f \in C^{r}[0,1]$ and $n \in N$ we define the r th order generalization of the q-Bernstein operators as follows

$$
B_{n, q}^{[r]}(f ; x):=\sum_{k=0}^{n} p_{n, k}(q ; x) \sum_{j=0}^{r} \frac{1}{j!} f^{(j)}\left(\frac{[k]}{[n]}\right)\left(x-\frac{[k]}{[n]}\right)^{j} .
$$

It is clear that for $r=0, B_{n, q}^{[0]}(f ; x)$ becomes the q-Bernstein operator, $B_{n, q}(f ; x)$, defined by Phillips. Also it can be easily shown that $B_{n, q}^{[r]}(f ; 1)=f(1)$. It should be stressed out that this kind of generalization was considered in [5], [10], [14], [6].

In the paper, we investigate the rate of convergence for the sequence $\left\{B_{n, q}^{[r]}(f ; x)\right\}$ by the modulus of continuity of the r th order derivative of f in the case $0<q<1$. Moreover we study a Voronovskajatype theorem for higher order q-Bernstein operators.

2 Auxilary results

Theorem 2 [9] For any $m \in N, 0<q<1$, there exists a constant $\widetilde{K}_{m}>0$ such that

$$
\left|B_{n, q}\left((t-x)^{m}, x\right)\right| \leq \widetilde{K}_{m} \frac{x(1-x)}{[n]^{\left\lfloor\frac{m+1}{2}\right\rfloor}},
$$

where $x \in[0,1]$ and $\lfloor a\rfloor$ is the integer part of $a \geq 0$.
Corollary 3 For any $m \in N, 0<q<1$, there exists a constant $K_{m}>0$ such that

$$
\begin{equation*}
B_{n, q}\left(|t-x|^{m}, x\right) \leq K_{m} \frac{x(1-x)}{[n]^{m / 2}} \tag{1}
\end{equation*}
$$

Proof. Indeed if m is even

$$
B_{n, q}\left(|t-x|^{m}, x\right)=B_{n, q}\left((t-x)^{m}, x\right) \leq \widetilde{K}_{m} \frac{x(1-x)}{[n]^{\lfloor(m+1) / 2\rfloor}}=K_{m} \frac{x(1-x)}{[n]^{m / 2}}
$$

On the other hand if m is odd, say $m=2 k+1$, we have

$$
\begin{aligned}
B_{n, q}\left(|t-x|^{2 k+1}, x\right) & \leq \sqrt{B_{n, q}\left(|t-x|^{4 k}, x\right)} \sqrt{B_{n, q}\left(|t-x|^{2}, x\right)} \\
& \leq \sqrt{\widetilde{K}_{4 k} \frac{x(1-x)}{[n]^{\lfloor(4 k+1) / 2\rfloor}}} \sqrt{\widetilde{K}_{2} \frac{x(1-x)}{[n]^{[3 / 2\rfloor}}} \\
& =\sqrt{\widetilde{K}_{4 k} \frac{x(1-x)}{[n]^{2 k}}} \sqrt{\widetilde{K}_{2} \frac{x(1-x)}{[n]}} \\
& =K_{2 k+1} \frac{x(1-x)}{[n]^{(2 k+1) / 2}} .
\end{aligned}
$$

Lemma 4 Let $0<q<1$. $B_{n, q}^{[r]}(f ; x)$ is an operator from $C^{r}[0,1]$ into $C[0,1]$. Furthermore there exists a constant $C(r)$ such that for every $f \in C^{r}[0,1]$ we have

$$
\begin{equation*}
\left\|B_{n, q}^{[r]}(f)\right\|_{C[0,1]} \leq C(r) \sum_{j=0}^{r}\left\|f^{(j)}\right\|=C(r)\|f\|_{C^{r}[0,1]} \tag{2}
\end{equation*}
$$

Proof. It is obvious that $B_{n, q}^{[r]}(f ; x)$ is continuous on $[0,1]$. To show (2) from the definition we deduce that

$$
B_{n, q}^{[r]}(f ; x)=\sum_{j=0}^{r} \frac{(-1)^{j}}{j!} B_{n, q}\left((t-x)^{j} f^{(j)}(t) ; x\right)
$$

Further, by the Corollary 3 we have

$$
\left|B_{n, q}\left((t-x)^{j} f^{(j)}(t) ; x\right)\right| \leq\left\|f^{(j)}\right\| B_{n, q}\left(|t-x|^{j} ; x\right) \leq K_{j}\left\|f^{(j)}\right\|[n]^{-j / 2}
$$

Consequently

$$
\left\|B_{n, q}^{[r]}(f)\right\| \leq \sum_{j=0}^{r} \frac{(-1)^{j}}{j!}\left\|B_{n, q}\left((t-x)^{j} f^{(j)}(t) ; x\right)\right\| \leq C(r) \sum_{j=0}^{r}\left\|f^{(j)}\right\| .
$$

Thus the proof is completed.

3 Convergence properties of $B_{n, q}^{[r]}$

We use the modulus of continuity of the derivative $f^{(r)}$:

$$
\omega\left(f^{(r)} ; t\right):=\sup \left\{\left|f^{(r)}(x)-f^{(r)}(y)\right|:|x-y| \leq t, \quad x, y \in[0,1]\right\}
$$

Theorem 5 Let $0<q<1$ and $r \in N \cup\{0\}$ be a fixed number. Then there exists $A_{r}>0$ such that for every $f \in C^{r}[0,1]$ and $n \in N$ the following inequality holds

$$
\begin{equation*}
\left\|B_{n, q}^{[r]}(f)-f\right\| \leq A_{r} \frac{1}{[n]^{\frac{r}{2}}} \omega\left(f^{(r)} ; \frac{1}{\sqrt{[n]}}\right) . \tag{3}
\end{equation*}
$$

Proof. The estimation (3) for $r=0$ follows from [19, Theorem 4.1].
Let $r \in N$. We apply the following Taylor formula for $f \in C^{r}[0,1]$ at a given point $t \in[0,1]$:

$$
f(x)=\sum_{j=0}^{r} \frac{f^{(j)}(t)}{j!}(x-t)^{j}+\frac{(x-t)^{r}}{(r-1)!} \int_{0}^{1}(1-u)^{r-1}\left[f^{(r)}(t+u(x-t))-f^{(r)}(t)\right] d u
$$

Applying $B_{n, q}$ we get

$$
\begin{align*}
f(x)-B_{n, q}^{[r]}(f ; x) & =\sum_{k=0}^{n} \frac{(x-[k] /[n])^{r}}{(r-1)!} \\
& \times \int_{0}^{1}(1-u)^{r-1}\left[f^{(r)}\left(\frac{[k]}{[n]}+u\left(x-\frac{[k]}{[n]}\right)\right)-f^{(r)}\left(\frac{[k]}{[n]}\right)\right] d u p_{n, k}(q ; x) . \tag{4}
\end{align*}
$$

The definition and properties of modulus of continuity of function imply that

$$
\begin{align*}
& \left|f^{(r)}\left(\frac{[k]}{[n]}+u\left(x-\frac{[k]}{[n]}\right)\right)-f^{(r)}\left(\frac{[k]}{[n]}\right)\right| \leq \omega\left(f^{(r)} ; u\left|x-\frac{[k]}{[n]}\right|\right) \\
& \leq \omega\left(f^{(r)} ;\left|x-\frac{[k]}{[n]}\right|\right) \leq\left(\sqrt{[n]}\left|x-\frac{[k]}{[n]}\right|+1\right) \omega\left(f^{(r)} ; \frac{1}{\sqrt{[n]}}\right) \tag{5}
\end{align*}
$$

for every $0 \leq u \leq 1,0 \leq x \leq 1, k \in N \cup\{0\}, n \in N$. From (4) and (5) we get

$$
\begin{align*}
& \left|B_{n, q}^{[r]}(f ; x)-f(x)\right| \\
& \leq \frac{1}{r!} \omega\left(f^{(r)} ; \frac{1}{\sqrt{[n]}}\right) \sum_{k=0}^{n}\left|x-\frac{[k]}{[n]}\right|^{r}\left(\sqrt{[n]}\left|x-\frac{[k]}{[n]}\right|+1\right) p_{n, k}(q ; x) \\
& =\frac{1}{r!} \omega\left(f^{(r)} ; \frac{1}{\sqrt{[n]}}\right)\left(\sqrt{[n]} B_{n, q}\left(|x-t|^{r+1} ; x\right)+B_{n, q}\left(|x-t|^{r} ; x\right)\right) \tag{6}
\end{align*}
$$

for $0 \leq x \leq 1, n \in N$. Using (1) in (6), we have

$$
\begin{aligned}
\left|B_{n, q}^{[r]}(f ; x)-f(x)\right| & \leq \frac{1}{r!}\left(K_{r+1}+K_{r}\right)\left(\frac{1}{\sqrt{[n]}}\right)^{r} \omega\left(f^{(r)} ; \frac{1}{\sqrt{[n]}}\right) \\
& =A_{r}\left(\frac{1}{\sqrt{[n]}}\right)^{r} \omega\left(f^{(r)} ; \frac{1}{\sqrt{[n]}}\right) .
\end{aligned}
$$

It is easy to see that if $q_{n} \rightarrow 1$ for $n \rightarrow \infty$ then $\lim _{n \rightarrow \infty}[n]_{q_{n}}=+\infty$. Therefore, the sequence $B_{n, q_{n}}^{[r]}(f ; x)$ converges uniformly to f for each continuous function f if $\lim _{n \rightarrow \infty} q_{n}=1$. From Theorem 5 we can derive the following two corollaries.

Corollary 6 Let $f \in C^{r}[0,1], 0<q_{n}<1, \lim _{n \rightarrow \infty} q_{n}=1$ and $r \in N \cup\{0\}$ be a fixed number. Then

$$
\lim _{n \rightarrow \infty}[n]_{q_{n}}^{r / 2}\left\|B_{n, q_{n}}^{[r]}(f)-f\right\|=0
$$

We note that a function $f \in C[0,1]$ belongs to $\operatorname{Lip}_{M}(\alpha), 0<\alpha \leq 1$, provided

$$
|f(x)-f(y)| \leq M|x-y|^{\alpha} \quad(x, y \in[0,1] \quad \text { and } \quad M>0) .
$$

Corollary 7 Let $0<q_{n}<1, \lim _{n \rightarrow \infty} q_{n}=1, r \in N \cup\{0\}, f \in C^{r}[0,1]$. If $f^{(r)} \in \operatorname{Lip}_{M}(\alpha)$ then

$$
\left\|B_{n, q_{n}}^{[r r}(f)-f\right\|=O\left([n]_{q_{n}}^{-\frac{r+\alpha}{2}}\right) .
$$

Proof. Since $f^{(r)} \in \operatorname{Lip}_{M}(\alpha)$ we have immediately

$$
\left\|B_{n, q_{n}}^{[r]}(f)-f\right\| \leq A_{r} \frac{1}{[n]_{q_{n}}^{\frac{r}{2}}} \omega\left(f^{(r)} ; \frac{1}{\sqrt{[n]_{q_{n}}}}\right) \leq A_{r} M \frac{1}{[n]_{q_{n}}^{\frac{r}{2}}} \frac{1}{[n]_{q_{n}}^{\frac{\alpha}{2}}}
$$

Consequently, according to (3) the sequence $\left\{B_{n, q_{n}}^{[r]}(f)\right\}$ converges uniformly to any $f \in C^{r}[0,1]$ if $q_{n} \rightarrow 1$ for $n \rightarrow \infty$.

Theorem 8 (Voronovskaja) Let $0<q<1$. Suppose that $f \in C^{r+2}[0,1]$ where $r \in N \cup\{0\}$ is fixed. Then

$$
\begin{aligned}
& \mid B_{n, q}^{[r]}(f ; x)-f(x) \\
& \left.-\frac{(-1)^{r} f^{(r+1)}(x) B_{n, q}\left((t-x)^{r+1} ; x\right)}{(r+1)!}-\frac{(-1)^{r}(r+1) f^{(r+2)}(x) B_{n, q}\left((t-x)^{r+2} ; x\right)}{(r+2)!} \right\rvert\, \\
& \leq\left(K_{r+2}+K_{r+4}\right) \frac{x(1-x)}{[n]^{\frac{r}{2}+1}} \sum_{j=0}^{r} \frac{1}{j!(r+2-j)!} \omega\left(f^{(r+2-j)},[n]^{-\frac{1}{2}}\right) .
\end{aligned}
$$

Proof. Fix $0 \leq x \leq 1$. For $f \in C^{r+2}[0,1]$ we have $f^{(j)} \in C^{r+2-j}[0,1], 0 \leq j \leq r$, and by the Taylor formula we can write

$$
\begin{align*}
f^{(j)}(t) & =\sum_{i=0}^{r+2-j} \frac{f^{(j+i)}(x)}{i!}(t-x)^{i}+R_{r+2-j}(f ; t, x), \tag{7}\\
R_{r+2-j}(f ; t, x) & =\frac{f^{(r+2-j)}\left(\xi_{t}\right)-f^{(r+2-j)}(x)}{(r+2-j)!}(t-x)^{r+2-j}
\end{align*}
$$

where ξ_{t} is situated between x and t, therefore, $\left|\xi_{t}-x\right|<|t-x|$. Taking $t=\tau_{n k}=\frac{[k]}{[n]}$ in (7) and applying this formula to $B_{n, q}^{[r]}(f)$ we have

$$
\begin{align*}
B_{n, q}^{[r]}(f ; x) & =\sum_{k=0}^{n} p_{n k}(q ; x) \sum_{j=0}^{r} \frac{\left(x-\tau_{n k}\right)^{j}}{j!} \sum_{i=0}^{r+2-j} \frac{f^{(j+i)}(x)}{i!}\left(\tau_{n k}-x\right)^{i} \\
& +\sum_{k=0}^{n} p_{n k}(q ; x) \sum_{j=0}^{r} \frac{\left(x-\tau_{n k}\right)^{j}}{j!} R_{r+2-j}\left(f ; \tau_{n k}, x\right) \\
& =I_{1}+I_{2} . \tag{8}
\end{align*}
$$

It follows that

$$
\begin{aligned}
\left|B_{n, q}^{[r]}(f ; x)-I_{1}\right| & =\left|I_{2}\right|=\left|\sum_{k=0}^{n} p_{n k}(q ; x) \sum_{j=0}^{r} \frac{(-1)^{j}}{j!} \frac{f^{(r+2-j)}\left(\xi_{\tau_{n k}}\right)-f^{(r+2-j)}(x)}{(r+2-j)!}\left(\tau_{n k}-x\right)^{r+2}\right| \\
& =\left|B_{n, q}\left(\sum_{j=0}^{r} \frac{(-1)^{j}}{j!} \frac{f^{(r+2-j)}\left(\xi_{t}\right)-f^{(r+2-j)}(x)}{(r+2-j)!}(t-x)^{r+2} ; x\right)\right|
\end{aligned}
$$

For the estimate of the remainder $\left|I_{2}\right|$ we shall use the well-known inequality

$$
\omega(f, \lambda \delta) \leq\left(1+\lambda^{2}\right) \omega(f, \delta)
$$

We have

$$
\begin{aligned}
\left|f^{(r+2-j)}\left(\xi_{t}\right)-f^{(r+2-j)}(x)\right| & \leq \omega\left(f^{(r+2-j)},\left|\xi_{t}-x\right|\right) \leq \omega\left(f^{(r+2-j)},|t-x|\right) \\
& \leq \omega\left(f^{(r+2-j)},[n]^{-\frac{1}{2}}\right)\left(1+[n](t-x)^{2}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|I_{2}\right| & \leq B_{n, q}\left(\sum_{j=0}^{r}\left|\frac{(-1)^{j}}{j!} \frac{f^{(r+2-j)}\left(\xi_{t}\right)-f^{(r+2-j)}(x)}{(r+2-j)!}\right||t-x|^{r+2} ; x\right) \\
& \leq B_{n, q}\left(\sum_{j=0}^{r} \frac{1}{j!(r+2-j)!} \omega\left(f^{(r+2-j)},[n]^{-\frac{1}{2}}\right)\left(1+[n](t-x)^{2}\right)|t-x|^{r+2} ; x\right) \\
& =\sum_{j=0}^{r} \frac{1}{j!(r+2-j)!} \omega\left(f^{(r+2-j)},[n]^{-\frac{1}{2}}\right)\left(B_{n, q}\left(|t-x|^{r+2} ; x\right)+[n] B_{n, q}\left(|t-x|^{r+4} ; x\right)\right) \\
& \leq \sum_{j=0}^{r} \frac{1}{j!(r+2-j)!} \omega\left(f^{(r+2-j)},[n]^{-\frac{1}{2}}\right)\left(K_{r+2} \frac{x(1-x)}{[n]^{\frac{r}{2}+1}}+K_{r+4} \frac{[n] x(1-x)}{[n]^{\frac{r}{2}+2}}\right) \\
& =\left(K_{r+2}+K_{r+4}\right) \frac{x(1-x)}{[n]^{\frac{r}{2}+1}} \sum_{j=0}^{r} \frac{1}{j!(r+2-j)!} \omega\left(f^{(r+2-j)},[n]^{-\frac{1}{2}}\right),
\end{aligned}
$$

and consequently

$$
\left|B_{n, q}^{[r]}(f ; x)-I_{1}\right| \leq\left(K_{r+2}+K_{r+4}\right) \frac{x(1-x)}{[n]^{\frac{r}{2}+1}} \sum_{j=0}^{r} \frac{1}{j!(r+2-j)!} \omega\left(f^{(r+2-j)},[n]^{-\frac{1}{2}}\right)
$$

In order to end the proof it remains to simplify I_{1}. Standard calculations give

$$
\begin{aligned}
I_{1} & =\sum_{k=0}^{n} p_{n k}(q ; x) \sum_{j=0}^{r} \frac{\left(x-\tau_{n k}\right)^{j}}{j!} \sum_{l=j}^{r+2} \frac{f^{(l)}(x)}{(l-j)!}\left(\tau_{n k}-x\right)^{l-j} \\
& =\sum_{k=0}^{n} p_{n k}(q ; x) \sum_{j=0}^{r} \frac{(-1)^{j}}{j!}\left\{\sum_{l=j}^{r} \frac{f^{(l)}(x)}{(l-j)!}\left(\tau_{n k}-x\right)^{l}\right. \\
& \left.+\frac{f^{(r+1)}(x)}{(r+1-j)!}\left(\tau_{n k}-x\right)^{r+1}+\frac{f^{(r+2)}(x)}{(r+2-j)!}\left(\tau_{n k}-x\right)^{r+2}\right\} \\
& =\sum_{k=0}^{n} p_{n k}(q ; x) \sum_{l=0}^{r} \frac{f^{(l)}(x)}{l!}\left(\tau_{n k}-x\right)^{l} \sum_{j=0}^{l}\binom{l}{j}(-1)^{j} \\
& +\frac{f^{(r+1)}(x)}{(r+1)!} \sum_{k=0}^{n} p_{n k}(q ; x)\left(\tau_{n k}-x\right)^{r+1} \sum_{j=0}^{r}\binom{r+1}{j}(-1)^{j} \\
& +\frac{f^{(r+2)}(x)}{(r+2)!} \sum_{k=0}^{n} p_{n k}(q ; x)\left(\tau_{n k}-x\right)^{r+2} \sum_{j=0}^{r}\binom{r+2}{j}(-1)^{j}
\end{aligned}
$$

for $n \in N$. Using the following inequalities

$$
\begin{gathered}
\sum_{j=0}^{r}\binom{r+1}{j}(-1)^{j}=(-1)^{r}, \\
\sum_{j=0}^{r}\binom{r+2}{j}(-1)^{j}=(r+1)(-1)^{r}, \quad r \in N \cup\{0\},
\end{gathered}
$$

we obtain

$$
\begin{aligned}
I_{1} & =f(x)+\frac{(-1)^{r} f^{(r+1)}(x) B_{n, q}\left((t-x)^{r+1} ; x\right)}{(r+1)!} \\
& +\frac{(-1)^{r}(r+1) f^{(r+2)}(x) B_{n, q}\left((t-x)^{r+2} ; x\right)}{(r+2)!}, \quad n \in N .
\end{aligned}
$$

Thus the proof is completed.
Theorem 8 implies the following Voronovskaja type theorem for operators $B_{n, q}(f)$ proved by Videnskii [19].

Corollary 9 If $f \in C^{2}[0,1]$ and $q_{n} \rightarrow 1$ as $n \rightarrow \infty$, then

$$
\left|B_{n, q_{n}}(f ; x)-f(x)-\frac{f^{\prime \prime}(x)}{2} \frac{x(1-x)}{[n]_{q_{n}}}\right| \leq K \frac{x(1-x)}{[n]_{q_{n}}} \omega\left(f^{\prime \prime},[n]_{q_{n}}^{-\frac{1}{2}}\right),
$$

for every $x \in[0,1]$, where $K=\left(K_{2}+K_{4}\right) / 2$. Moreover

$$
\lim _{n \rightarrow \infty}[n]_{q_{n}}\left(B_{n, q_{n}}(f ; x)-f(x)\right)=\frac{x(1-x)}{2} f^{\prime \prime}(x)
$$

uniformly on $[0,1]$.

References

[1] Andrews GE, Askey R, Roy R. Special functions. Cambridge: Cambridge University Press; 1999.
[2] Dogru O, Duman O. Statistical approximation of Meyer-König and Zeller operators based on q-integers. Publ Math Debrecen 2006;68:199-214.
[3] II’nskii, A., Ostrovska, S.: Convergence of generalized Bernstein polynomials, Journal of Approximation Theory, 116, 100-112 (2002).
[4] Kac V, Cheung P. Quantum calculus. Berlin: Springer; 2002.
[5] Kirov G, Popova L. A generalization of the linear positive operators. Math Balkanica 1993;7:149-62.
[6] L. Rempulska, K. Tomczak, On Certain Modified Meyer-König and Zeller Operators, Turk J Math 30 (2006), 117-127.
[7] Lewanowicz, S., Wozny, P.: Generalized Bernstein polynomials, BIT, 44, 63 - 78 (2004).
[8] Lupaş, A.: A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, 9, (1987).
[9] Mahmudov N.I., The moments for q-Bernstein operators in the case $0<q<1$, Numerical Algorithms, Doi: 10.1007/s11075-009-9312-1, (2009).
[10] M. A. Özarslan, O. Duman, Approximation theorems by Meyer-König and Zeller type operators, Chaos, Solitons and Fractals, (2008), doi:10.1016/j.chaos.2008.02.006
[11] Oruc, H., Phillips, G.M.: A generalization of the Bernstein polynomials, Proceedings of the Edinburgh Mathematical Society, 42, 403-413 (1999).
[12] Ostrovska, S.: The first decade of the q-Bernstein polynomials: results and perspectives, Journal of Mathematical Analysis and Approximation Theory 2, 35-51 (2007).
[13] Ostrovska, S.: On the Lupaş q-analogue of the Bernstein operator, Rocky Mountain Journal of Mathematics, 36, 1615-1629 (2006).
[14] O. Duman, Higher Order Generalization of Positive Linear Operators Defined by a Class of Borel Measures, Turk J Math, 31 (2007) , 333 - 339 .
[15] Phillips, G.M.: Bernstein polynomials based on the q-integers, Annals of Numerical Mathematics, 4, 511-518 (1997).
[16] Phillips, G.M.: On generalized Bernstein polynomials. Numerical analysis, 263-269, World Sci. Publ., River Edge, NJ, (1996).
[17] Phillips GM. On generalized Bernstein polynomials. Numerical analysis. River Edge, NJ: World Sci. Publ.; 1996. p. 263-9.
[18] Trif T. Meyer-König and Zeller operators based on the q-integers. Rev Anal Nume'r The'or Approx 2000;29:221-9.
[19] Videnskii, V.S.: On some classes of q-parametric positive linear operators, Selected topics in complex analysis, 213-222, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005.
[20] Wang, H.: Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for $0<q<1$, J. Approx. Theory 145, 182-195 (2007).
[21] Wang, H.: Meng, F.:The rate of convergence of q-Bernstein polynomials for $0<q<1$, J. Approx. Theory 136, 151-158 (2005).

Calculating zeros of the second kind Euler polynomials

C. S. Ryoo
Department of Mathematics, Hannam University, Daejeon 306-791, Korea

Abstract

Many mathematicians have studied the second kind Euler numbers and polynomials in the complex plane. One purpose of this paper is to investigate the zeros of the second kind Euler polynomials $E_{n}(x)$. We also display the shape of the second kind Euler polynomials $E_{n}(x)$.

Key words : Bernoulli numbers, Bernoulli polynomials, Euler numbers, Euler polynomials, the second kind Euler numbers and polynomials

1. Introduction

Several mathematicians have studied the second kind Euler numbers and polynomials (see [1,2,3,4]). The second kind Euler numbers and polynomials posses many interesting properties and arising in many areas of mathematics and physics. In this paper, we introduce the second kind Euler numbers E_{n} and polynomials $E_{n}(x)$. In order to study the second kind Euler numbers E_{n} and polynomials $E_{n}(x)$, we must understand the structure of the second kind Euler numbers E_{n} and polynomials $E_{n}(x)$. Therefore, using computer, a realistic study for the second kind Euler numbers E_{n} and polynomials $E_{n}(x)$ is very interesting. It is the aim of this paper to observe an interesting phenomenon of 'scattering' of the zeros of the second kind Euler polynomials $E_{n}(x)$ in complex plane. The outline of this paper is as follows. We introduce the second kind Euler numbers E_{n} and polynomials $E_{n}(x)$. In Section 2, we describe the beautiful zeros of the the second kind Euler polynomials $E_{n}(x)$ using a numerical investigation. Finally, we investigate the roots of the second kind Euler polynomials $E_{n}(x)$.

First, we introduce the second kind Euler numbers E_{n} and polynomials $E_{n}(x)$. The second kind Euler numbers E_{n} are defined by the generating function:

$$
\begin{equation*}
F(t)=\frac{2}{e^{t}+e^{-t}}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}, \quad\left(|t|<\frac{\pi}{2}\right), \text { cf. }[1,3] \tag{1}
\end{equation*}
$$

where we use the technique method notation by replacing E^{n} by $E_{n}(n \geq 0)$ symbolically. From (1), we have

$$
\frac{2}{e^{t}+e^{-t}}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}=e^{E t}
$$

which yields

$$
2=e^{(E+1) t}+e^{(E-1) t}
$$

Using Taylor expansion of exponential function, we obtain

$$
2=\sum_{n=0}^{\infty}\left((E+1)^{n}+(E-1)^{n}\right) \frac{t^{n}}{n!}
$$

By comparing the coefficients, we have

$$
(E+1)^{n}+(E-1)^{n}= \begin{cases}2, & \text { if } n=0 \\ 0, & \text { if } n>0\end{cases}
$$

We obtain the first value of the second kind Euler numbers E_{n} :

$$
\begin{aligned}
& E_{0}=1, \quad E_{1}=0, \quad E_{2}=-1, \quad E_{3}=0, \quad E_{4}=5, \quad E_{5}=0, \quad E_{6}=-61, \quad E_{7}=0 \\
& E_{8}=1385, \quad E_{9}=0, \quad E_{10}=-50521, \quad E_{11}=0, \quad E_{12}=2702765, \quad E_{14}=-199360981, \\
& E_{16}=19391512145, \quad E_{18}=-2404879675441 \quad E_{20}=370371188237525, \cdots
\end{aligned}
$$

In general, it satisfies $E_{3}=E_{5}=E_{7}=\cdots=0$. We consider the second kind Euler polynomials $E_{n}(x)$ as follows:

$$
\begin{equation*}
F(x, t)=\frac{2}{e^{t}+e^{-t}} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

By the above definition, we obtain

$$
\begin{aligned}
\sum_{l=0}^{\infty} E_{l}(x) \frac{t^{l}}{l!} & =\frac{2}{e^{t}+e^{-t}} e^{x t}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} \sum_{m=0}^{\infty} x^{m} \frac{t^{m}}{m!} \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l} E_{n} \frac{t^{n}}{n!} x^{l-n} \frac{t^{l-n}}{(l-n)!}\right)=\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l}\binom{l}{n} G_{n} x^{l-n}\right) \frac{t^{l}}{l!}
\end{aligned}
$$

By using comparing coefficients $\frac{t^{l}}{l!}$, we have

$$
E_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} E_{k} x^{n-k}
$$

In the special case $x=0$, we define $E_{n}(0)=E_{n}$. Let m be odd. It is easy to see that

$$
\begin{aligned}
\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} & =\frac{2}{e^{t}+e^{-t}} e^{x t}=\sum_{a=0}^{m-1}(-1)^{a} \frac{2 e^{m t}}{e^{2 m t}+1} e^{(2 a+x+1-m) t} \\
& =\sum_{a=0}^{m-1}(-1)^{a} \frac{2}{e^{m t}+e^{-m t}} e^{\left.\frac{2 a+x+1-m}{m}\right) m t} \\
& =\sum_{a=0}^{m-1}(-1)^{a} \sum_{n=0}^{\infty} E_{n}\left(\frac{2 a+x+1-m}{m}\right) \frac{(m t)^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(m^{n} \sum_{a=0}^{m-1}(-1)^{a} E_{n}\left(\frac{2 a+x+1-m}{m}\right)\right) \frac{t^{n}}{n!}
\end{aligned}
$$

Hence we have the below theorem.

Theorem 1. For any positive integer m (=odd), we obtain

$$
E_{n}(x)=m^{n} \sum_{i=0}^{m-1}(-1)^{i} E_{n}\left(\frac{2 i+x+1-m}{m}\right) \text { for } n \geq 0
$$

Since

$$
\begin{aligned}
\sum_{l=0}^{\infty} E_{l}(x+y) \frac{t^{l}}{l!} & =\frac{2}{e^{t}+e^{-t}} e^{(x+y) t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \sum_{m=0}^{\infty} y^{m} \frac{t^{m}}{m!} \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l} E_{n}(x) \frac{t^{n}}{n!} y^{l-n} \frac{t^{l-n}}{(l-n)!}\right) \\
& =\sum_{l=0}^{\infty}\left(\sum_{n=0}^{l}\binom{l}{n} E_{n}(x) y^{l-n}\right) \frac{t^{l}}{l!}
\end{aligned}
$$

we have the following theorem.

Theorem 2. The second kind Euler polynomials $E_{n}(x)$ satisfies the following relation:

$$
E_{l}(x+y)=\sum_{n=0}^{l}\binom{l}{n} E_{n}(x) y^{l-n}
$$

Because

$$
\frac{\partial}{\partial x} F(t, x)=t F(t, x)=\sum_{n=0}^{\infty} \frac{d}{d x} E_{n}(x) \frac{t^{n}}{n!}
$$

it follows the important relation

$$
\frac{d}{d x} E_{n}(x)=n E_{n-1}(x)
$$

We have the integral formula as follows:

$$
\int_{a}^{b} E_{n-1}(x) d x=\frac{1}{n}\left(E_{n}(b)-E_{n}(a)\right) .
$$

Since

$$
\begin{aligned}
\sum_{n=0}^{\infty} E_{n}(-x) \frac{(-t)^{n}}{n!}=F(-x,-t) & =\frac{2}{e^{-t}+e^{t}} e^{(-x)(-t)} \\
& =\frac{2}{e^{t}+e^{-t}} e^{x t}=F(x, t)=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}
\end{aligned}
$$

we obtain the following theorem.

Theorem 3. For $n \in \mathbb{N}$, we have

$$
E_{n}(x)=(-1)^{n} E_{n}(-x)
$$

By using computer, the second kind Euler polynomials $E_{n}(x)$ can be determined explicitly. A few of them are

$$
\begin{aligned}
& E_{0}(x)=1 \\
& E_{1}(x)=x \\
& E_{2}(x)=x^{2}-1 \\
& E_{3}(x)=x^{3}-3 x \\
& E_{4}(x)=x^{4}-6 x^{2}+5 \\
& E_{5}(x)=x^{5}-10 x^{3}+25 x \\
& E_{6}(x)=x^{6}-15 x^{4}+75 x^{2}-61 \\
& E_{7}(x)=x^{7}-21 x^{5}+175 x^{3}-427 x \\
& E_{8}(x)=x^{8}-28 x^{6}+350 x^{4}-1708 x^{2}+1385 \\
& E_{9}(x)=x^{9}-36 x^{7}+630 x^{5}-5124 x^{3}+12465 x \\
& E_{10}(x)=x^{10}-45 x^{8}+1050 x^{6}-12810 x^{4}+62325 x^{2}-50521 \\
& E_{11}(x)=x^{11}-55 x^{9}+1650 x^{7}-28182 x^{5}+228525 x^{3}-555731 x
\end{aligned}
$$

2. Zeros of the second kind Euler polynomials $E_{n}(x)$

In this section, we display the shapes of the second kind Euler polynomials $E_{n}(x)$ and we investigate the zeros of the second Euler polynomials $E_{n}(x)$. For $n=1, \cdots, 10$, we can draw a plot of the second kind Euler polynomials $E_{n}(x)$, respectively. This shows the ten plots combined into one. We display the shape of $E_{n}(x),-8 \leq x \leq 8$. (Figure 1).

Figure 1: Curve of $E_{n}(x)$

We investigate the beautiful zeros of the $E_{n}(x)$ by using a computer. We plot the zeros of the second kind Euler polynomials $E_{n}(x)$ for $n=20,30,40,50$ and $x \in \mathbb{C}$. (Figure 2). Stacks of zeros of $E_{n}(x)$ for $1 \leq n \leq 40$ from a 3 -D structure are presented. (Figure 3). Our numerical results for approximate solutions of real zeros of $E_{n}(x)$ are displayed. (Tables 1, 2).

Table 1. Numbers of real and complex zeros of $E_{n}(x)$

degree n	real zeros	complex zeros
2	2	0
3	3	0
4	4	0
5	5	0
6	2	4
7	3	4
8	3	4
9	5	4
10	5	4
11	3	8

We observe a remarkably regular structure of the complex roots of the Euler polynomials $E_{n}(x)$. We hope to verify a remarkably regular structure of the complex roots of the Euler polynomials $E_{n}(x)$. (Table 1). Next, we calculated an approximate solution satisfying $E_{n}(x), x \in \mathbb{R}$. The results are

Figure 2: Zeros of $E_{n}(x)$ for $n=20,30,40,50$
given in Table 2.
Table 2. Approximate solutions of $E_{n}(x)=0, x \in \mathbb{R}$

degree n	x
2	-1.0000, 1.0000
3	-1.7321, $0.0000, \quad 1.7321$
4	$-2.236, \quad-1.0000, \quad 1.0000, \quad 2.236$
5	$-2.236, \quad-2.236, \quad 0.0000, \quad 2.236, \quad 2.236$
6	-1.000, 1.000
7	$-1.995463, \quad 0.0000, \quad 1.995463$
8	$-2.86466, \quad-1.0000000,1.0000000, \quad 2.86466$
9	$-3.4395, \quad-2.00016, \quad 0.0000 \quad 2.00016, \quad 3.4395$
10	$-3.730, \quad-3.030-1.000, \quad 1.000, \quad 3.030, \quad 3.730$
11	$-2.0000, \quad 0.0000, \quad 2.0000$

Figure 3: Stacks of zeros of $E_{n}(x), 1 \leq n \leq 50$

3. Directions for Further Research

Finally, we shall consider the more general problems. Prove that $E_{n}(x)=0$ has n distinct solutions. Find the numbers of complex zeros $C_{E_{n}(x)}$ of $E_{n}(x), \operatorname{Im}(x) \neq 0$. Since n is the degree of the polynomial $E_{n}(x)$, the number of real zeros $R_{E_{n}(x)}$ lying on the real plane $\operatorname{Im}(x)=0$ is then $R_{E_{n}(x)}=n-C_{E_{n}(x)}$, where $C_{E_{n}(x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{E_{n}(x)}$ and $C_{E_{n}(x)}$. Find the equation of envelope curves bounding the real zeros lying on the plane. We prove that $E_{n}(x), x \in \mathbb{C}$, has $\operatorname{Re}(x)=0$ reflection symmetry in addition to the usual $\operatorname{Im}(x)=0$ reflection symmetry analytic complex functions. The author has no doubt that investigation along this line will lead to a new approach employing numerical method in the field of research of the second kind Euler polynomials $E_{n}(x)$ to appear in mathematics and physics. For related topics the interested reader is referred to $[1,4]$.

Acknowledgment

This paper has been supported by the 2009 Hannam University Research Fund.

REFERENCES

1. Kim, T.(2008). Euler numbers and polynomials associated with zeta function, Abstract and Applied Analysis, Art. ID 581582.
2. Kim, T., Jang, L. C., Pak, H. K. (2001). A note on q-Euler and Genocchi numbers , Proc. Japan Acad. , v. 77 A, pp. 139-141.
3. Liu, G.(2006). Congruences for higher-order Euler numbers, Proc. Japan Acad., v. 82 A, pp. 30-33.
4. Ryoo, C.S., Kim, T., Agarwal, R.P. (2006). A numerical investigation of the roots of q polynomials, Inter. J. Comput. Math., v.83, pp. 223-234.

Block incomplete LU factorization for block-tridiagonal M-matrices *

Zhi-Gang Ren, Ting-Zhu Huang, Liang Li ${ }^{\S}$
School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China

Suggested running head: Block ILU Factorization

Abstract

Here we propose a block ILU preconditioner for block-tridiagonal M-matrices, and some theoretical properties for the block ILU preconditioner are studied. Numerical results of the BICGSTAB using the block ILU and ILU(0) as the preconditioners are compared to see the effective of the block ILU preconditioners.

Key words: Block incomplete LU factorization; preconditioner; block-tridiagonal matrix

AMSC (2000): 65F10

1 INTRODUCTION

The discretization of partial differential equatinons in 2D or 3D, by finite difference or finite element approximation, leads often to large sparse block-tridiagonal linear systems. In this paper, we consider the matrix equations

$$
\begin{equation*}
A x=b, \quad x, b \in \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where A is a block-tridiagonal M-matrix and have the following form

$$
A=\left(\begin{array}{ccccc}
D_{1} & E_{1} & & & \tag{2}\\
C_{2} & D_{2} & E_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & E_{n-1} \\
& & & C_{n} & D_{n}
\end{array}\right) \in \mathbb{R}^{n \times n} .
$$

[^41]Since A is M-matrix the diagonal blocks D_{i} of A are square M-matrices too and C_{i} and E_{i} are nonpositive matrices. The matrix A is generally sparse and with a large dimension, thus the direct solvers become prohibitively expensive. Alternatively, the preconditioned conjugate gradient (CG) iterative method is widely used. For the nonsymmetric case, the other Krylov subspace methods are widely used, such as the GMRES and BICGSTAB methods. In general, the convergence rate of the above methods may be extremely slow, so the preconditioning matrix or preconditioner will always be needed and will be applied to the iterative solvers to accelerate the convergence rate. If K is a approximation of matrix A, then we can perform the left preconditioner $K^{-1} A x=K^{-1} b$ or the right preconditioned linear system $A K^{-1} y=b$, where $y=K x$. The preconditoner K should be chosen so that the eigenvalue of $K^{-1} A$ or $A K^{-1}$ is a more centralized.

The ultimate goal of the preconditioned iterative methods is to reduce the total execution time, one of the powerful preconditioning methods in terms of reducing the number of iterations and executing time is the ILU factorization method. However, the parallelization of the construction of the ILU preconditioner is one of the problems which will influence the time used to construct the preconditioner, while the efficient of the preconditioner to accelerate the convergence rate of the iterative method such as the Krylov subspace method is another which will reduce the time used to solve the whole linear system.

The purpose of this paper is to propose a kind of block ILU preconditioner which can be computed in parallel for block-tridiagonal M-matrices. In Section 2, we review some properties of the ILU factorizations for block-tridiagonal matrix. In Section 3, the new block ILU factorization preconditioners for block-tridiagonal M-matrices are proposed and some of theoretical properties. In Section 4 the construction of a effective block preconditoners for a special type of matrices which arises from five-point discretization of the second-order PDE is given, and the numerical results of the BICGSTAB with the block ILU preconditoners proposed in this paper and the standard $\operatorname{ILU}(0)$ preconditioners are compared.

2 ILU FACTORIZATION FOR M-MATRICES

J. H. Yun [2] proposed a new block incomplete factoriztion preconditioner for a symmetric block-tridiagonal M-matrix which can be computed in parallel. For the linear system of equations (2), where A is a symmetric block-tridiagonal M-matrix blocked in the form of

$$
A=\left(\begin{array}{ccccc}
B_{1} & -C_{1} & & & \tag{3}\\
-C_{1}^{T} & B_{2} & -C_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -C_{n-1} \\
& & & -C_{n-1}^{T} & B_{n}
\end{array}\right) \in \mathbb{R}^{n \times n},
$$

the following theorem is given.
Theorem 2.1. ([2]) Let A be a symmetric block-tridiagonal M-matrix of the form (3) and let $B_{i}=U_{i}^{T} D_{i} U_{i}-R_{i}$ be a regular splitting of B_{i} which can be obtained by the IC factorization process for each $i=1,2, \cdots, n$. Suppose that for each $i=1,2, \cdots, n-1$, E_{i} is a matrix which satisfies $U_{i}^{T} D_{i} E_{i} \leq C_{i} \leq E_{i}$. Let

$$
\begin{aligned}
& D=\left(\begin{array}{ccccc}
D_{1} & 0 & & & \\
0 & D_{2} & 0 & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & 0 \\
& & & 0 & D_{n}
\end{array}\right), \quad U=\left(\begin{array}{ccccc}
U_{1} & 0 & & & \\
0 & U_{2} & 0 & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & 0 \\
& & & 0 & U_{n}
\end{array}\right), \\
& \bar{U}=\left(\begin{array}{ccccc}
U_{1} & -C_{1} & & & \\
0 & U_{2} & -C_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -C_{n-1} \\
& & & 0 & U_{n}
\end{array}\right), \\
& \hat{U}=\left(\begin{array}{ccccc}
U_{1} & -E_{1} & & & \\
0 & U_{2} & -E_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -E_{n-1} \\
& & & 0 & U_{n}
\end{array}\right), \\
& \tilde{U}=\left(\begin{array}{ccccc}
U_{1} & -\left(U_{1}^{T} D_{1}\right)^{-1} C_{1} & & & \\
0 & U_{2} & -\left(U_{2}^{T} D_{2}\right)^{-1} C_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -\left(U_{n-1}^{T} D_{n-1}\right)^{-1} C_{n-1} \\
& & & 0 & U_{n}
\end{array}\right) \in \mathbb{R}^{n \times n},
\end{aligned}
$$

$M=U^{T} D U, \bar{M}=\bar{U}^{T} D \bar{U}, \hat{M}=\hat{U}^{T} D \hat{U}$ and $\tilde{M}=\tilde{U}^{T} D \tilde{U}$. Then the following holds:
(a) $R=M-A \geq 0, \bar{R}=\bar{M}-A \geq 0, \hat{R}=\hat{M}-A \geq 0, \tilde{R}=\tilde{M}-A \geq 0$;
(b) $0 \leq U^{-1} \leq \bar{U}^{-1} \leq \hat{U}^{-1} \leq \tilde{U}^{-1}$;
(c) $0 \leq M^{-1} \leq \bar{M}^{-1} \leq \hat{M}^{-1} \leq \tilde{M}^{-1}$;
(d) $A=M-R=\bar{M}-R=\hat{M}-R=\tilde{M}-R$ are regular splittings of A;
(e) $\rho\left(\tilde{M}^{-1} R\right) \leq \rho\left(\bar{M}^{-1} R\right) \leq \rho\left(\hat{M}^{-1} R\right) \leq \rho\left(M^{-1} R\right) \leq 1$.

The most favorite character of the four types of IC factorization preconditoners presented by [2] is that it can be computed in parallel. Block IC facttorization preconditioner of type \tilde{M} may not be used in practical situations since it requires a lot
of fill-in elements causing too much storage and arithmetic operations. Block preconditioner of type M has rich parallelism since both the computation of preconditioner and preconditioner solve step of the PCG can be done in parallel, but its effectiveness is much worse than the other types of block preconditioners. So the preconditoner of type \hat{M} is recommended. Yun [11] have already make it to more generalized case for nonsymmetric block-tridiagonal M-matrices.

Saad [3] and M. H. Koulaei [4] discussed the block ILU factorization method too, since the block-tridiagonal matrix A has the form

$$
\begin{equation*}
A=L+D+U \tag{4}
\end{equation*}
$$

where D is the diagonal block part of matrix A, L is the lower block part of the matrix A and U is the upper block part. Then a block factorization can be defined as

$$
\begin{equation*}
M=(L+S) S^{-1}(S+U) \tag{5}
\end{equation*}
$$

where L and U are the same as those above, and S is a bock-diagonal matrix whose blocks S_{i} are defined by the recurrence:

$$
S_{1}=D_{1}, \quad S_{i}=D_{i}-C_{i} a_{i-1} E_{i-1}
$$

in which a_{i} is the sparse approximate to S_{i}^{-1}. In this case for computing the blocks a_{i}, it is natural to keep the blocks a_{i} banded, particular keep it tridiagonal. Then the method proposed by [8-10] can be used to compute the approximate inverse of S_{i-1}^{-1}. Koulaei [4] proposed two algorithm for computing the inverse factors directly which is needed for computing a_{i}. Using the LU factorization of S_{i}

$$
S_{i}=L_{i} U_{i}
$$

the preconditioner M can be expressed in terms of lower and upper triangular factors

$$
M=\left(\begin{array}{ccccc}
L_{1} & & & & \tag{6}\\
V_{2} & L_{2} & & & \\
& \ddots & \ddots & & \\
& & V_{n-1} & L_{n-1} & \\
& & & V_{n} & L_{n}
\end{array}\right)\left(\begin{array}{ccccc}
U_{1} & W_{2} & & & \\
& U_{2} & W_{3} & & \\
& & \ddots & \ddots & \\
& & & U_{n-1} & W_{n} \\
& & & & U_{n}
\end{array}\right)
$$

where

$$
V_{i}=C_{i} U_{i-1}^{-1}, \quad W_{i}=L_{i-1}^{-1} E_{i-1}
$$

This form is generally more efficient. But since S_{i} is computed by the recurrence, the construction of the preconditoner M is less parallel than Yun's [2].

3 BLOCK ILU FACTORIZATION PRECONDITIONERS

We consider the matrix A which is a large sparse block-tridiagonal M-matrix blocked in the form (2) too, to compute the S_{i} we define the recurrence as:

$$
S_{1}=D_{1}, \quad S_{i}=D_{i}-C_{i} D_{i-1}^{-1} E_{i-1},
$$

using the ILU factorization $S_{i}=L_{i} U_{i}$, the preconditioner M can be expressed in a similar form as equation(6).

$$
M=L U=\left(\begin{array}{ccccc}
L_{1} & & & & \\
V_{2} & L_{2} & & & \\
& \ddots & \ddots & & \\
& & V_{n-1} & L_{n-1} & \\
& & & V_{n} & L_{n}
\end{array}\right)\left(\begin{array}{ccccc}
U_{1} & W_{2} & & & \\
& U_{2} & W_{3} & & \\
& & \ddots & \ddots & \\
& & & U_{n-1} & W_{n} \\
& & & & U_{n}
\end{array}\right),
$$

where $V_{i}=C_{i} U_{i-1}^{-1}$ and $W_{i}=L_{i-1}^{-1} E_{i-1}$ too.
The only different is the construction of the S_{i}, we define is as $S_{i}=D_{i}-C_{i} D_{i-1}^{-1} E_{i-1}$ instead of $S_{i}=D_{i}-C_{i} S_{i-1}^{-1} E_{i-1}$ used by Saad [3] and M. H. Koulaei [4] or $S_{i}=D_{i}$ used by J. H. Yun [2]. Then we have the following Theorems.

Lemma 3.1([2]). Let A and B be square M-matrices, and let $A=L_{1} U_{1}-R_{1}$ and $B=L_{2} U_{2}-R_{2}$ be ILU factorizations corresponding to the same zero pattern set $P \in P_{n}$. If $A \leq B$, then $L_{2}^{-1} \leq L_{1}^{-1}$ and $U_{2}^{-1} \leq U_{1}^{-1}$.

Theorem 3.2. Let A be a block-tridiagonal M-matrix of the form (2), and let $M=L U$ and the computation of S_{i} defined as above. Then

$$
S_{i}+C_{i} S_{i-1}^{-1} E_{i-1} \geq D_{i} .
$$

Proof. Since A is a block-tridiagonal M-matrix, from the definition of S_{i}, we can get $S_{i-1} \leq D_{i-1}$ and that they are both M-matrices. So

$$
S_{i-1}^{-1} \geq D_{i-1}^{-1}
$$

Then

$$
S_{i}+C_{i} S_{i-1}^{-1} E_{i-1}-D_{i}=C_{i} S_{i-1}^{-1} E_{i-1}-C_{i} D_{i-1}^{-1} E_{i-1} \geq 0 .
$$

Thus the proof complete.
Theorem 3.3. Let A be a block-tridiagonal M-matrix of the form (2), and let $M=L U$ defined as above. Then the following holds:
(a) $R=M-A \geq 0$;
(b) $U^{-1} \geq 0$ and $L^{-1} \geq 0$;
(c) $A=M-R$ is a regular splitting of A.

Proof. By simple calculation, we can obtain

$$
R=M-A=\left(\begin{array}{llll}
0 & & & \\
& S_{2}+C_{2} S_{1}^{-1} E_{1}-D_{2} & & \\
& & \ddots & \\
& & & S_{n}+C_{n} S_{n-1}^{-1} E_{n-1}-D_{n}
\end{array}\right)
$$

Then $R=M-A \geq 0$ can be easily obtained from Theorem 3.2 . Since L and U are both Z-matrices with positive diagonal, they are M-matrices, then we can get $U^{-1} \geq 0$ and $L^{-1} \geq 0$, and

$$
M^{-1}=U^{-1} L^{-1} \geq 0
$$

Therefore $A=M-R$ is a regular splitting of A.
Theorem 3.4. Let A be a block-tridiagonal M-matrix of the form (2), let $M=L U$ defined as above, and $\bar{M}=\bar{L} \bar{U}$, where \bar{L} and \bar{U} are constructed as follow:

$$
B_{i}=\bar{L}_{i} \bar{U}_{i}
$$

and

$$
\bar{M}=\bar{L} \bar{U}=\left(\begin{array}{ccccc}
\bar{L}_{1} & & & & \\
\bar{V}_{2} & \bar{L}_{2} & & & \\
& \ddots & \ddots & & \\
& & \bar{V}_{n-1} & \bar{L}_{n-1} & \\
& & & \bar{V}_{n} & \bar{L}_{n}
\end{array}\right)\left(\begin{array}{ccccc}
\bar{U}_{1} & \bar{W}_{2} & & & \\
& \bar{U}_{2} & \bar{W}_{3} & & \\
& & \ddots & \ddots & \\
& & & \bar{U}_{n-1} & \bar{W}_{n} \\
& & & & \bar{U}_{n}
\end{array}\right)
$$

where

$$
\bar{V}_{i}=C_{i} \bar{U}_{i-1}^{-1}, \quad \bar{W}_{i}=\bar{L}_{i-1}^{-1} E_{i-1} .
$$

Then

$$
M^{-1} \geq \bar{M}^{-1} \text { and } \rho\left(M^{-1} R\right) \leq \rho\left(\bar{M}^{-1} \bar{R}\right)
$$

Proof. From the definition of S_{i}, it is easy to obtain that $S_{i} \leq D_{i}$. From Lemma 1, we know that

$$
L_{i} \leq \bar{L}_{i} \text { and } U_{i} \leq \bar{U}_{i}
$$

So

$$
\begin{gathered}
V_{i}=C_{i} U_{i-1}^{-1} \leq \bar{V}_{i}=C_{i} \bar{U}_{i-1}^{-1} \\
W_{i}=L_{i-1}^{-1} E_{i-1} \leq \bar{W}_{i}=\bar{L}_{i-1}^{-1} E_{i-1}
\end{gathered}
$$

Then

$$
L \leq \bar{L} \text { and } U \leq \bar{U}
$$

so

$$
M^{-1}=U^{-1} L^{-1} \geq \bar{M}^{-1}=\bar{U}^{-1} \bar{L}^{-1} .
$$

Since $A=M-R$ and $A=\bar{M}-\bar{R}$ are both regular splittings, and $M^{-1} \geq \bar{M}^{-1}$. It is naturally $\rho\left(M^{-1} R\right) \leq \rho\left(\bar{M}^{-1} \bar{R}\right)$.

For the matrix A which is a large sparse block-tridiagonal M-matrix blocked in the form (2), when we perform the block ILU factorization we can also define the recurrence of the computation of S_{i} as:

$$
S_{1}=D_{1},
$$

for $i=3,5, \ldots, 2 i+1, \ldots$,

$$
S_{i}=D_{i}-C_{i} D_{i-1}^{-1} E_{i-1} ;
$$

For $i=2,4, \ldots, 2 i, \ldots$,

$$
S_{i}=D_{i}-C_{i} S_{i-1}^{-1} E_{i-1} .
$$

In other words, if we define the recurrence for the fist steps as $S_{1}=D_{1}$, and the following $k-1$ steps as $S_{i}=D_{i}-C_{i} S_{i-1}^{-1} E_{i-1}$. At the $k+1$ step we restart and define the recurrence as $S_{i}=D_{i}-C_{i} D_{i-1}^{-1} E_{i-1}$ and the following $k-1$ steps we also define it as $S_{i}=D_{i}-C_{i} S_{i-1}^{-1} E_{i-1}$, repeat such process until it have been exceed the matrix dimension. We call such process the k step restart method. To simplify the k step restart method we can choose the number k so that the matrix dimension n can be divide exactly by k .

Then for $k \geq 2$, the k step restart method can be expressed as

$$
S_{1}=D_{1},
$$

for $i=2,3, \ldots, n$, if $(i) \bmod (k)=1$,

$$
S_{i}=D_{i}-C_{i} D_{i-1}^{-1} E_{i-1},
$$

otherwise,

$$
S_{i}=D_{i}-C_{i} S_{i-1}^{-1} E_{i-1} .
$$

For $k<2$, when $k=0$ we just define the S_{i} by $S_{i}=D_{i}$ and when $k=1$ we define the S_{i} by $S_{1}=D_{1}$ and for $i=2,3, \ldots, n, S_{i}=D_{i}-C_{i} D_{i-1}^{-1} E_{i-1}$, for $k \geq 2$, it can be performed as we discussed above. It is easy to proof that when we perform the block ILU factorization combining with the k step restart method to compute the S_{i}, then for all $k=2, \ldots, n$, Theorem 3.2, Theorem3.3 and Theorem 3.4 are consistent. And when $k=n$, it is just the method Saad [3] and Koulaei [4] discussed.

4 NUMERICAL RESULTS

The construction of the block ILU factorization preconditiner presented in section 3 will be considered for a special type of matrices described below. The matrix arises from five-point discretization of the second-order self-adjoint elliptic partial differential equation:

$$
\begin{equation*}
-a u_{x x}-b u_{y y}+c u_{x}+d u_{y}+f u=g, \tag{7}
\end{equation*}
$$

with $a(x, y)>0, b(x, y)>0, c(x, y), d(x, y)$ and $f(x, y)$ defined on the unit square region Ω, and with suitable boundary conditions on $\partial \Omega$.

Therefore C_{i} and E_{i} are diagonal and D_{i} is tridiagonal. Since D_{i} is a tridiagonal matrix, the complete LU factorization of D_{i} is equal to $\operatorname{ILU}(0)$. Considering the recurrence $S_{i}=D_{i}-C_{i} D_{i-1}^{-1} E_{i-1}$, the approximate inverse of D_{i} should be simple for the calculation of the S_{i} and do better make the S_{i} have the same zero pattern as D_{i}, by other words we can make the approximation of inverse of D_{i} still tridiagonal. Thus we will use the $L_{D i}^{-1}$ and $U_{D i}^{-1}$ to compute the tridiagonal part of the D_{i}^{-1} where $D_{i}=L_{D i} U_{D i}$. Since the inverse of the matrix D_{i} can be calculated parallel, the calculation of the matrix S_{i} can be done respectively too. The inverse of L_{i} and $U_{i}, S_{i}=L_{i} U_{i}$, are also used to construct the block ILU factorization, so we denote the term $L_{i}^{-1 j}$, the lower banded matrices with j lower diagonal by drop some nonzero elements of L_{i}^{-1}, and $U_{i}^{-1 j}$ respectively. The nonzero structures of $L_{i}^{-1 j}$ are illustrated in Fig.1.

By L^{j} we means the block ILU preconditioner constructed by using $L_{i}^{-1 j}$ and $U_{i}^{-1 j}$ to compute the S_{i} and W_{i} and V_{i}. The nonzero structures of L^{j} are illustrated in Fig. 2. And the term M^{j} denotes $M^{j}=L^{j} U^{j}$.

Now we provide numerical results of the BICGSTAB method using different preconditioners M^{j} and $\operatorname{ILU}(0)$ for linear systems $A x=b$, where A is the block tridiagonal M-matrices.

Example 1. This example considers Eq. (7) with $a(x, y)=b(x, y)=1, c(x, y)=$ $-10(x+y), d(x, y)=-10(x-y)$, and $f(x, y)=1$.

Example 2. This example considers Eq. (7) with $a(x, y)=c(x, y)=1, b(x, y)=$ $-\left(1+y^{2}\right), d(x, y)=\left(1+y^{2}\right)$, and $f(x, y)=1$.

Example 3. This example considers Eq. (7) with $a(x, y)=b(x, y)=1, c(x, y)=$ $\cos (x / 6), d(x, y)=\sin (y / 6)$, and $f(x, y)=1$.

Example 4. This example considers Eq. (7) with $a(x, y)=b(x, y)=1, c(x, y)=$ $10 e^{x y}, d(x, y)=10 e^{-x y}$, and $f(x, y)=1$.

Figure 1: Nonzero structures of $L_{i}^{-1 j}$,s.

Figure 2: Nonzero structures of L^{j},s.

In the examples above, we all used a uniform mesh of $\triangle x=\Delta y=1 /(m+1)$, which leads to a matrix of order $n=m \times m$, where Δx and $\triangle y$ refer to the mesh sizes in the x-direction and y-direction respectively. The right-hand side b is created from $A e$, where $e=(1, \ldots, 1)^{T} \in R^{n}$. Therefore, the right-hand side function $g(x, y)$ in (7) is not relevant. We will show the results of the BICGSTAB with $\operatorname{ILU}(0)$ and with our Preconditioners when $m=32$ in Table 1, Table 2 and Table 3 and $m=48$ in Table 4, Table 5 and Table 6. The L^{j} and U^{j} are constructed as above.

Table 1: The number of iterations of BICGSTAB with $\operatorname{ILU}(0)$ and with our Preconditioners when $m=32$ with 1 step restart.

	example 1	example 2	example 3	example 4
$\mathrm{ILU}(0)$	16	20	17	17
M^{1}	15	18	16	16
M^{2}	12	13	12	11
M^{3}	11	11	10	9
M^{4}	9	11	10	9

Table 2: The number of iterations of BICGSTAB with ILU(0) and with our Preconditioners when $m=32$ with 2 step restart.

	example 1	example 2	example 3	example 4
ILU(0)	16	20	17	17
M^{1}	14	20	16	16
M^{2}	10	12	12	10
M^{3}	9	11	10	9
M^{4}	9	10	9	8

Table 3: The number of iterations of BICGSTAB with ILU(0) and with our Preconditioners when $m=32$ with 3 step restart.

	example 1	example 2	example 3	example 4
ILU(0)	16	20	17	17
M^{1}	15	18	16	16
M^{2}	10	12	12	10
M^{3}	9	10	10	9
M^{4}	9	10	9	8

Table 4: The number of iterations of BICGSTAB with $\operatorname{ILU}(0)$ and with our Preconditioners when $m=48$ with 1 step restart.

	example 1	example 2	example 3	example 4
$\mathrm{ILU}(0)$	25	29	23	23
M^{1}	25	27	23	21
M^{2}	17	21	16	16
M^{3}	15	19	14	13
M^{4}	14	19	14	12

Table 5: The number of iterations of BICGSTAB with $\operatorname{ILU}(0)$ and with our Preconditioners when $m=48$ with 2 step restart.

	example 1	example 2	example 3	example 4
$\mathrm{ILU}(0)$	25	29	23	23
M^{1}	21	28	22	22
M^{2}	15	18	16	14
M^{3}	13	16	14	13
M^{4}	14	16	13	12

Table 6: The number of iterations of BICGSTAB with $\operatorname{ILU}(0)$ and with our Preconditioners when $m=48$ with 3 step restart.

	example 1	example 2	example 3	example 4
ILU(0)	25	29	23	23
M^{1}	21	26	24	21
M^{2}	15	16	15	15
M^{3}	14	16	14	13
M^{4}	12	15	12	11

5 CONCLUSIONS

We presented in this paper a block ILU factorization method. Notice that the construction of M^{j} requires more storage and arithmetic operations when j becomes large, it is not recommended to use a large value of j and $j=2,3$ is better enough from our experiments. Theoretically speaking, the block ILU factorization method combining with the k step restart method will performance better when the number k is bigger, especially for the block ILU preconditioner to reduce the iteration counts of the iterative method. But from our experiments it is not always right, when k is large enough the iteration counts of the BICGSTAB will not reduce as it is expected. And with a small k it means the parallelization of the calculation of the block ILU preconditioner will be enhanced, thus a less time will be used to construct the block ILU preconditioner, of course a less efficient of the block ILU preconditioner will be encountered. A pity is that the parrel computation of the block ILU preconditioner is beyond our ability now, we can not do much more compare with the time used to construct the preconditoner, so only the iteration counts are compared to see the efficient of the proposed block ILU preconditioners.

References

[1] S. W. Kim, J. H. Yun, Block ILU factorization preconditioners for a blokc-tridiagonal H-matrix, Linear Algebra Appl., 317, 103-125(2000).
[2] J. H. Yun, Block incomplete factorization preconditioners for a symmetric block-tridiagonal M-matrix, J. Comput. Appl. Math., 94, 133-152(1998).
[3] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM., Philadelphia, PA, 2003.
[4] M. H. Koulaei, F. Toutounian, On computing of block ILU preconditioner for block tridiagonal systems, J. Comput. Appl. Math., In press.
[5] E. Chow, Y. Saad, Approximate inverse techniques for block-partioned matrices, SIAM. J. Sci. Stat. Comput., 18, 1657-1675 (1997).
[6] M. Grote, T. Huckle, Parallel preconditioning with sparse aproximate inverses, SIAM. J. Sci. Stat. Comput., 18, 838-853(1997).
[7] E. Chow, Y. Saad, Approximate inverse techniques for block-partioned matrices, SIAM. J. Sci. Stat. Comput., 18, 1657-1675(1997).
[8] R. Mattheij, M. Smooke, Estimates for the inverse of tridiagonal matrices arising in boundary-value problems, Linear Algebra Appl., 73, 33-57(1986).
[9] G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices, SIAM. J. Matrix Anal.Appl., 13, 707-728(1992).
[10] T. Yamomoto, Y. Ikebe, Inversion of band matrices, Linear Algebra Appl., 24, 105111(1979).
[11] Jae Heon Yun. Parallel Performance of Block ILU Preconditioners for a Block-tridiagonal Matrix, The journal of Supercomputing., 24, 69-89(2003).
[12] R. A. Horm, C. R. Johnson, Topics in Matrix Analysis, Cambrige Univ. Press, (1985).

A numerical investigation on the structure of the roots of (h, q)-extension of q-analogue of Genocchi polynomials

C. S. Ryoo *
Department of Mathematics, Hannam University, Daejeon 306-791, Korea

Abstract

In this paper, we construct a new (h, q)-extension of q-analogue of Genocchi polynomials $G_{n, q}^{(h)}(x)$. We consider the behavior of real roots of the (h, q)-extension of q-analogue of Genocchi polynomials $G_{n, q}^{(h)}(x)$, using numerical investigation. By numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the $G_{n, q}^{(h)}(x)$. Finally, we give a table for the solutions of the (h, q)-extension of q-analogue of Genocchi polynomials $G_{n, q}^{(h)}(x)$.

Key words : Euler numbers, Euler polynomials, Genocchi numbers, Genocchi polynomials, q analogue of Genocchi numbers, q-analogue of Genocchi polynomials, (h, q)-extension of q-analogue of Genocchi polynomials

2000 Mathematics Subject Classification : 11S80, 11B68

1. Introduction

The q-analogue of Genocchi numbers $G_{n, q}$ and polynomials $G_{n, q}(x)$ using generating functions was constructed by T. Kim [1]. The significance of the q-analogue of Genocchi numbers $G_{n, q}$ and polynomials $G_{n, q}(x)$ was already pointed out in [1,2]. In this paper, we construct a new (h, q) extension of q-analogue of Genocchi polynomials, $G_{n, q}^{(h)}(x)$. In order to study (h, q)-extension of q analogue of Genocchi polynomials, $G_{n, q}^{(h)}(x)$, we must understand the structure of the (h, q)-extension of q-analogue of Genocchi polynomials, $G_{n, q}^{(h)}(x)$. Therefore, using computer, a realistic study for the (h, q)-extension of q-analogue of Genocchi polynomials, $G_{n, q}^{(h)}(x)$ is very interesting. The main purpose of this paper is to describe the distribution and structure of the zeros of the (h, q)-extension of q-analogue of Genocchi polynomials, $G_{n, q}^{(h)}(x)$ for values of the index n by using computer. The outline of this paper is as follows. We introduce the (h, q)-extension of q-analogue of Genocchi polynomials, $G_{n, q}^{(h)}(x)$. In Section 2, we describe the beautiful zeros of the (h, q)-extension of q-analogue of Genocchi polynomials, $G_{n, q}^{(h)}(x)$ using a numerical investigation. Finally, we also investigate the roots of the (h, q)-extension of q-analogue of Genocchi polynomials, $G_{n, q}^{(h)}(x)$.

First, we introduce the Genocchi numbers and Genocchi polynomials. The Genocchi numbers G_{n} are defined by the generating function:

$$
\begin{equation*}
G(t)=\frac{2 t}{e^{t}+1}=\sum_{n=0}^{\infty} G_{n} \frac{t^{n}}{n!},(|t|<\pi), \text { cf. }[1,2,3] \tag{1}
\end{equation*}
$$

where we use the technique method notation by replacing G^{n} by $G_{n}(n \geq 0)$ symbolically. For $x \in \mathbb{R}$

[^42](= the field of real numbers), we consider the Genocchi polynomials $G_{n}(x)$ as follows:
\[

$$
\begin{equation*}
G(x, t)=\frac{2 t}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

\]

Note that $G_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} G_{k} x^{n-k}$. In the special case $x=0$, we define $G_{n}(0)=G_{n}$.
The Euler numbers are defined by the following generating function

$$
\begin{equation*}
F(t)=\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!},(|t|<\pi), \text { cf. }[2,3] \tag{3}
\end{equation*}
$$

where we use the technique method notation by replacing E^{n} by E_{n} symbolically. For $x \in \mathbb{R}(=$ the field of real numbers), we consider the Euler polynomials $E_{n}(x)$ as follows:

$$
\begin{equation*}
F(x, t)=\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{4}
\end{equation*}
$$

2. (h, q)-extension of q-analogue of Genocchi polynomials

Let q be a complex number with $|q|<1$. The q-analogue of n is denoted by

$$
[n]_{q}=\frac{1-q^{n}}{1-q}
$$

In [1], Kim introduced q-analogue of Euler numbers and polynomials. We consider the following generating functions:

$$
\begin{equation*}
F_{q}(t)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{[n]_{q} t}=\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{q}(x, t)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{[n+x]_{q} t}=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!} \tag{6}
\end{equation*}
$$

We see that

$$
\lim _{q \rightarrow 1} F_{q}(x, t)=\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}, \quad \lim _{q \rightarrow 1} F_{q}(t)=\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} .
$$

T. Kim constructed q-analogue of Genocchi numbers and polynomials(see [1]). We introduce the following generating functions:

$$
\begin{equation*}
G_{q}(t)=[2]_{q} t e^{\frac{t}{1-q}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{1+q^{n+1}}\left(\frac{1}{1-q}\right)^{n} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} G_{n, q} \frac{t^{n}}{n!} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{q}(x, t)=[2]_{q} q^{x} t e^{\frac{t}{1-q}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{1+q^{n+1}} q^{n x}\left(\frac{1}{1-q}\right)^{n} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} G_{n, q}(x) \frac{t^{n}}{n!}, \tag{8}
\end{equation*}
$$

Note that

$$
\lim _{q \rightarrow 1} G_{q}(x, t)=\frac{2 t}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!}, \quad \lim _{q \rightarrow 1} G_{q}(t)=\frac{2 t}{e^{t}+1}=\sum_{n=0}^{\infty} G_{n} \frac{t^{n}}{n!}
$$

We now construct a new (h, q)-extension of q-analogue of Genocchi polynomials $G_{n, q}^{(h)}(x)$. (h,q)extension of q-analogue of Genocchi polynomials $G_{n, q}^{(h)}(x)$ are defined by means of the generation function

$$
\begin{equation*}
G_{q}^{(h)}(t)=[2]_{q} t \sum_{n=0}^{\infty}(-1)^{n} q^{n h} e^{[n]_{q} t}=\sum_{n=0}^{\infty} G_{n, q}^{(h)} \frac{t^{n}}{n!}, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{q}^{(h)}(x, t)=[2]_{q} t \sum_{n=0}^{\infty}(-1)^{n} q^{(n+x) h} e^{[n+x]_{q} t}=\sum_{n=0}^{\infty} G_{n, q}^{(h)}(x) \frac{t^{n}}{n!} . \tag{10}
\end{equation*}
$$

Hence, we have the following remark.
Remark. For $n \geq 0$, we have
(1) $\lim _{q \rightarrow 1} G_{q}^{(h)}(x, t)=\frac{2 t}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!}$.
(2) $\lim _{q \rightarrow 1} G_{q}^{(h)}(t)=\frac{2 t}{e^{t}+1}=\sum_{n=0}^{\infty} G_{n} \frac{t^{n}}{n!}$.
(3) If $h=1$, then $G_{q}^{(h)}(x, t)=G_{q}(x, t)$ and $G_{q}^{(h)}(t)=G_{q}(t)$.
(4) $G_{n, q}^{(h)}(0)=G_{n, q}^{(h)}$.
(5) $\lim _{q \rightarrow 1} G_{n, q}^{(h)}(x)=G_{n}(x)$ and $\lim _{q \rightarrow 1} G_{n, q}^{(h)}=G_{n}$.
(6) If $h=1$, then $G_{n, q}^{(h)}(x)=G_{n, q}(x)$ and $G_{n, q}^{(h)}=G_{n, q}$.

By (10), we obtain

$$
\begin{aligned}
G_{q}^{(h)}(x, t) & =[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{(m+x) h} e^{[m+x]_{q} t} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{(m+x) h} \sum_{n=0}^{\infty} n[m+x]_{q}^{n-1} \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left([2]_{q} n\left(\frac{1}{1-q}\right)^{n-1} \sum_{l=0}^{n-1}\binom{n-1}{l} \frac{(-1)^{l}}{1+q^{l+h}} q^{(l+h) x}\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

Hence, we have the following theorem.

Theorem 1. For $n \geq 0$, we have

$$
G_{n, q}^{(h)}(x)=[2]_{q} n\left(\frac{1}{1-q}\right)^{n-1} \sum_{l=0}^{n-1}\binom{n-1}{l} \frac{(-1)^{l}}{1+q^{l+h}} q^{(l+h) x} .
$$

By definition of (h, q)-extension of q-analogue of Genocchi polynomials $G_{n, q}^{(h)}(x)$, we obtain the following corollary.

Corollary 2. For $n \geq 0$, we have

$$
G_{n, q}^{(h)}=[2]_{q} n\left(\frac{1}{1-q}\right)^{n-1} \sum_{l=0}^{n-1}\binom{n-1}{l} \frac{(-1)^{l}}{1+q^{l+h}}
$$

We obtain the first value of the (h, q)-extension of q-analogue of Genocchi numbers $G_{n, q}^{(h)}$:

$$
\begin{aligned}
G_{0, q}^{(h)} & =0, \quad G_{1, q}^{(h)}=\frac{1+q}{1+q^{h}} \\
G_{2, q}^{(h)} & =-\frac{2 q^{h}(1+q)}{\left(1+q^{h}\right)\left(1+q^{1+h}\right)}, \\
G_{3, q}^{(h)} & =\frac{3 q^{h}(1+q)\left(-1+q^{1+h}\right)}{\left(1+q^{h}\right)\left(1+q^{1+h}\right)\left(1+q^{2+h}\right)}, \\
G_{4, q}^{(h)} & =-\frac{4 q^{h}(1+q)\left(1-2 q^{1+h}-2 q^{2+h}+q^{3+2 h}\right)}{\left(1+q^{h}\right)\left(1+q^{1+h}\right)\left(1+q^{2+h}\right)\left(1+q^{3+h}\right)} \cdots
\end{aligned}
$$

In [5], the (h, q)-Euler polynomials $E_{n, q}^{(h)}(x)$ are defined by means of the generating function

$$
\begin{equation*}
F_{q}^{(h)}(x, t)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{h n} e^{[x+n]_{q} t} \tag{11}
\end{equation*}
$$

Since

$$
[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{h n} e^{q^{x}[n]_{q} t}=\sum_{n=0}^{\infty} q^{n x} \frac{G_{n+1, q}^{(h)}}{n+1} \frac{t^{n}}{n!}
$$

we obtain

$$
\begin{aligned}
F_{q}^{(h)}(x, t) & =[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{h n} e^{[n+x]_{q} t}=e^{[x]_{q} t}[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{h n} e^{q^{x}[n]_{q} t} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}[x]_{q}^{n-k} q^{n x} \frac{G_{n+1, q}^{(h)}}{n+1}\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

By using comparing coefficients $\frac{t^{n}}{n!}$, we have the following theorem.
Theorem 3. For any positive integer n, we have

$$
E_{n, q}^{(h)}(x)=\sum_{k=0}^{n}\binom{n}{k}[x]_{q}^{n-k} q^{n x} \frac{G_{n+1, q}^{(h)}}{n+1} .
$$

By (10), we obtain

$$
\sum_{n=0}^{\infty} G_{n, q}^{(h)}(x) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}\left(\frac{[2]_{q}}{[2]_{q^{m}}}[m]_{q}^{n-1} \sum_{a=0}^{m-1}(-1)^{a} G_{n, q^{m}}^{(h)}\left(\frac{x+a}{m}\right)\right) \frac{t^{n}}{n!} \text { for } m \text { odd. }
$$

Thus ue have the following theorem.

Theorem 4. Let $m \in \mathbb{N}$ and m odd. Then we have

$$
G_{n, q}^{(h)}(x)=\frac{[2]_{q}}{[2]_{q^{m}}}[m]_{q}^{n-1} \sum_{a=0}^{m-1}(-1)^{a} G_{n, q^{m}}^{(h)}\left(\frac{x+a}{m}\right)=\sum_{k=0}^{n}\binom{n}{k} q^{x k} q^{(h-1) x} G_{n, q}^{(h)}[x]_{q}^{n-k} .
$$

3. Distribution and Structure of the Zeros

In order to study $G_{n, q}^{(h)}(x)$, we must understand the structure of the (h, q)-extension of q-analogue of Genocchi polynomials $G_{n, q}^{(h)}(x)$. By numerical investigation, we examine properties of the figures, look for patterns, and make open problems. Here is the list of the first the (h, q)-Euler polynomials $G_{n, q}^{(h)}(x)$.

$$
\begin{aligned}
G_{1, q}^{(h)}(x) & =\frac{q^{h x}(1+q)}{1+q^{h}} \\
G_{2, q}^{(h)}(x) & =-\frac{2(1+q)\left(q^{h x}-q^{(1+h) x}+q^{1+h+h x}-q^{h+(1+h) x}\right)}{(-1+q)\left(1+q^{h}\right)\left(1+q^{1+h}\right)}, \cdots
\end{aligned}
$$

We investigate the beautiful zeros of the $G_{n, q}^{(h)}(x)$ by using a computer. We plot the zeros of the (h, q) extension of q-analogue of Genocchi polynomials $G_{n, q}^{(2)}(x)$ for $n=10,20,30,60, q=\frac{1}{5}$, and $x \in \mathbb{C}$. (Figure 1). We plot the zeros of the $G_{n, q}^{(h)}(x)$ for $n=40, q=\frac{1}{5}, h=2,3,4,5$, and $x \in \mathbb{C}$. (Figures $2,3,4$, and 5). We observe a remarkably regular structure of the complex roots of $G_{n, q}^{(h)}(x)$. We hope to verify a remarkably regular structure of the complex roots of the $G_{n, q}^{(h)}(x)$ (Table 1). Next, we calculate an approximate solution satisfying $G_{n, q}^{(h)}(x), x \in \mathbb{R}$. The results are given in Table 2 .

Figure 1: Zeros of $G_{n, q}^{(2)}(x)$ for $n=10,20,30,60, q=1 / 5$

Table 1. Numbers of real and complex zeros of $G_{n, q}^{(h)}(x)$

degree n	$h=2$		$h=3$	
	real zeros	complex zeros	real zeros	complex zeros
2	1	0	1	0
3	2	0	2	0
4	1	2	1	2
5	2	2	2	2
6	1	4	1	4
7	2	4	2	4
8	1	6	1	6
9	2	6	2	6
10	1	8	1	8
11	2	8	2	8

Figure 2: Zeros of $G_{40, q}^{(2)}(x)$

Figure 4: Zeros of $G_{40, q}^{(4)}(x)$
Figure 5: Zeros of $G_{40, q}^{(5)}(x)$

Table 2. Approximate solutions of $G_{n, 1 / 5}^{(h)}(x)=0, x \in \mathbb{R}$

n	$h=2$	$h=3$
2	0.0194183	0.00395756
3	$-0.0865271, \quad 0.109903$	$-0.0419744, \quad 0.0467265$
4	0.210809	0.112746
5	$-0.172576, \quad 0.303527$	$-0.125933, \quad 0.181708$
6	0.38639	0.247597
7	$-0.211514, \quad 0.46049$	$-0.175576, \quad 0.308997$
8	0.527205	0.365857
9	$-0.230443, \quad 0.587741$	$-0.205166, \quad 0.418522$
10	0.643079	0.467428
11	$-0.2358, \quad 0.694006$	$-0.223993, \quad 0.512998$

Figure 6 presents the distribution of real zeros of $G_{n, 1 / 5}^{(2)}(x)$ for $11 \leq n \leq 50$.

Figure 6: Plot of real zeros of $G_{n, 1 / 5}^{(2)}(x), 11 \leq n \leq 50$

4. Directions for Further Research

In general, how many roots does $G_{n, q}^{(h)}(x)$ have ? Prove or disprove: $G_{n, q}^{(h)}(x)$ has $n-1$ distinct solutions. Find the numbers of complex zeros $C_{G_{n, q}^{(h)}(x)}$ of $G_{n, q}^{(h)}(x), \operatorname{Im}(x) \neq 0$. Prove or give a counterexample: Conjecture: Since $n-1$ is the degree of the polynomial $G_{n, q}^{(h)}(x)$, the number of real zeros $R_{G_{n, q}^{(h)}(x)}$ lying on the real plane $\operatorname{Im}(x)=0$ is then $R_{G_{n, q}^{(h)}(x)}=n-1-C_{G_{n, q}^{(h)}(x)}$, where $C_{G_{n, q}^{(h)}(x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{G_{n, q}^{(h)}(x)}$ and $C_{G_{n, q}^{(h)}(x)}$. Find the equation of envelope curves bounding the real zeros lying on the plane, and the equation of a trajectory curve running through the complex zeros on any one of the arcs. In Figures 1, 2, 3, 4, and $5, G_{n, q}^{(h)}(x), x \in \mathbb{C}$, has $\operatorname{Im}(x)=0$ reflection symmetry. This translates to the following open problem. Prove or disprove: $G_{n, q}^{(h)}(x), x \in \mathbb{C}$, has $\operatorname{Im}(x)=0$ reflection symmetry. These figures give mathematicians an unbounded capacity to create visual mathematical investigations of the behavior of the roots of the $G_{n, q}^{(h)}(x)$. Moreover, it is possible to create a new mathematical ideas and analyze them in ways that generally are not possible by hand. The author has no doubt that investigation along this line will lead to a new approach employing numerical method in the field of research of $G_{n, q}^{(h)}(x)$ to appear in mathematics and physics. For related topics the interested reader is referred to [3], [4], [5].

References

[1] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl., 326 (2007), 1458-1465.
[2] T. Kim, L.-C. Jang, H. K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad., 77 A (2001), 139-141.
[3] T.Kim, C.S.Ryoo, L.C.Jang, S.H.Rim, Exploring the q-Riemann Zeta function and q Bernoulli polynomials, Discrete Dynamics in Nature and Society, 2005(2), 171-181.
[4] C. S. Ryoo, T. Kim, R. P. Agarwal, A numerical investigation of the roots of q-polynomials, Inter. J. Comput. Math., 83 (2006), 223-234.
[5] C. S. Ryoo, Calculating zeros of (h, q)-extension of the Euler numbers and polynomials, Journal of Concrete and Applicable Mathematics, 6 (2008), 357-364.

Lacunary strong almost A-convergence with respect to a sequence of Orlicz functions

*Ayhan ESI \& **Ayșegül GOKHAN

*Adiyaman University, Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey e-mail:aesi23@hotmail.com.
**Firat University, Education Faculty, Department of Mathematics, 23119, Elazıg, Turkey e-mail:agokhan1 @firat.edu.tr

Abstract

The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of a sequence of Orlicz functions, infinite matrix and lacunary convergence. We also examine some topological properties of these sequence spaces and establish some elemantary connections between them.

Mathematics subject classification(2000): Primary 46A45; 40H05; Secondary 40A05;40D25.
Key words and phrases: Lacunary sequence, Orlicz function, almost convergence.

1.Introduction

By a lacunary sequence $\theta=\left(k_{r}\right), r=0,1,2, \ldots$, where $k_{o}=0$, we shall mean an increasing sequence of non-negative integers $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ are denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and the ratio $\frac{k_{r}}{k_{r-1}}$ will be denoted by q_{r}. The space of lacunary strongly convergent sequence N_{θ} was defined by Freedman et al. [3] as follows:

$$
N_{\theta}=\left\{x=\left(x_{k}\right): \quad \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{i \in I_{r}}\left|x_{i}-L\right|=0, \text { for some } L\right\} .
$$

Recall [4,5] that an Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, non-decreasing an convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. If convexity of M is replaced by subadditivity, then this function is called a modulus function (see, Ruckle [11]).

An Orlicz function M is said to satisfy Δ_{2}-condition for all values of u, if there exists a constant $T>0$, such that $M(2 u) \leq T M(u)(u \geq 0)$. The Δ_{2}-condition is equivalent to $M(L u) \leq T L M(u)$, for all values of u and for $L>1$.

An Orlicz function M can be always be represented (see [5]) in the integral form $M(x)=\int_{0}^{x} q(t) d t$, where q known as the kernel of M, is right differentiable for $t \geq 0$, $q(t)>0$ for $t>0, q$ is non-decreasing and $q(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Remark. An Orlicz function satisfies the inequality $M(\lambda u) \leq \lambda M(u)$ for all λ with $0<\lambda<1$.

Lindenstrauss and Tzafriri [6] used the idea of Orlicz functions to consruct Orlicz sequence space,

$$
l_{M}=\left\{x=\left(x_{i}\right): \quad \sum_{i} M\left(\frac{\left|x_{i}\right|}{\rho}\right)<\infty, \quad \text { for some } \rho>0\right\} .
$$

The sequence space l_{M} with the norm

$$
\|x\|=\inf \left\{\rho>0: \quad \sum_{i} M\left(\frac{\left|x_{i}\right|}{\rho}\right) \leq 1\right\}
$$

becomes a Banach space which is called an Orlicz Sequence Space. The space l_{M} is closely related to the space l_{p}, which is an Orlicz sequence space with $M(x)=x^{p}$ for $1 \leq p<\infty$.

Recently, Esi [1] have introduced and examined some properties of three sequence spaces defined by using an Orlicz function, which generalized the well-known Orlicz sequence space l_{M} and strongly summable sequence spaces $[C, 1, p],[C, 1, p]_{o}$ and $[C, 1, p]_{\infty}$. It may be noted here that the space of strongly summable sequences were discussed by Maddox [7].

A generalization of Orlicz sequence space is due to Woo [13]. Let $M=\left(M_{i}\right)$ be a sequence of Orlicz functions. Define the sequence space $l\left(M_{i}\right)$ by

$$
l\left(M_{i}\right)=\left\{x=\left(x_{i}\right): \quad \sum_{i} M_{i}\left(\frac{\left|x_{i}\right|}{\rho}\right)<\infty, \quad \text { for some } \rho>0\right\}
$$

and equip this space with the norm

$$
\|x\|=\inf \left\{\rho>0: \sum_{i} M_{i}\left(\frac{\left|x_{i}\right|}{\rho}\right) \leq 1\right\} .
$$

The space $l\left(M_{i}\right)$ is a Banach space and is called a modular sequence space. The space $l\left(M_{i}\right)$ also generalizes the concept of modulared sequence space introduced earlier by Nakano [9], who considered the space $l\left(M_{i}\right)$ when $M_{i}(x)=x^{\alpha_{i}}$, where $1 \leq \alpha_{i}<\infty$ for $i \geq 1$.

Recently, Esi and Et [2] have introduced and examined some properties of three sequence spaces defined by using a sequence of Orlicz functions, which generalized the wellknown Orlicz sequence space l_{M} and strongly invariant A-summable sequence spaces
$\left[A_{\sigma}, p\right],\left[A_{\sigma}, p\right]_{o}$ and $\left[A_{\sigma}, p\right]_{\infty}$. It may be noted here that the space of strongly invariant A - summable sequences were discussed by Savaş [12].

A sequence space E is said to be solid (or normal) if $\left(\lambda_{i} x_{i}\right) \in E$, whenever $\left(x_{i}\right) \in E$ for all sequences $\left(\lambda_{i}\right)$ of scalars such that $\left|\lambda_{i}\right| \leq 1$ for all $i \in N$.

A sequence space E is said to be monotone if E contains the canonical preimages of all its step spaces.

Lemma. A sequence space E is solid implies E is monotone.
Let $A=\left(a_{i k}\right)_{i, k \geq 1}$ be an infinite matrix of complex numbers. We write $A x=\left(A_{i m}(x)\right)$ if $A_{i m}(x)=\sum_{k \geq 1} a_{i k} x_{k+m}$ converges for each i, m. (This assumption is made throughout the paper).

Let $M=\left(M_{i}\right)$ be a sequence of Orlicz functions and $p=\left(p_{i}\right)$ be any sequence of strictly positive real numbers. Now we define the following sequence spaces.

$$
\begin{aligned}
& w^{\theta}(M, A, p)=\left\{x=\left(x_{k}\right): \lim _{r} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}=0, \text { uniformly in } m, \text { for some } \rho>0, L\right\}, \\
& w_{o}^{\theta}(M, A, p)=\left\{x=\left(x_{k}\right): \lim _{r} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i n}(x)\right|}{\rho}\right)\right]^{p_{i}}=0, \text { uniformly in } m, \text { for some } \rho>0\right\}
\end{aligned}
$$

and

$$
w_{\infty}^{\theta}(M, A, p)=\left\{x=\left(x_{k}\right): \sup _{r, m} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{p_{i}}<\infty, \text { for some } \rho>0\right\} .
$$

If $x \in w^{\theta}(M, A, p)$, we said that the sequence x is lacunary strongly almost A - convergent to the number L with respect to the sequence of Orlicz functions $M=\left(M_{i}\right)$.

Some sequence spaces are obtained by specializing $\theta=\left(k_{r}\right), M=\left(M_{i}\right), A=\left(a_{i k}\right)_{i, k \geq 1}$ m and $p=\left(p_{i}\right)$. Some examples are below:

If we take $p_{i}=1$ for all $i \in N$, then we write the spaces $w^{\theta}(M, A), w_{o}^{\theta}(M, A)$ and $w_{\infty}^{\theta}(M, A)$ in place of the spaces $w^{\theta}(M, A, p), w_{o}^{\theta}(M, A, p)$ and $w_{\infty}^{\theta}(M, A, p)$.

When $A=I$ unit matrix, the spaces $w^{\theta}(M, A, p), w_{o}^{\theta}(M, A, p)$ and $w_{\infty}^{\theta}(M, A, p)$ reduce the spaces $w^{\theta}(M, p), w_{o}^{\theta}(M, p)$ and $w_{\infty}^{\theta}(M, p)$ respectively, which are defined as

$$
\begin{gathered}
w^{\theta}(M, p)=\left\{x=\left(x_{k}\right): \lim _{r} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|x_{i+m}-L\right|}{\rho}\right)\right]^{p_{i}}=0, \text { uniformly in } m, \text { for some } \rho>0, L\right\}, \\
w_{o}^{\theta}(M, p)=\left\{x=\left(x_{k}\right): \lim _{r} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|x_{i+m}\right|}{\rho}\right)\right]^{p_{i}}=0 \text {, uniformly in } m \text {, for some } \rho>0\right\}
\end{gathered}
$$

and

$$
w_{\infty}^{\theta}(M, p)=\left\{x=\left(x_{k}\right): \sup _{r, m} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|x_{i+m}\right|}{\rho}\right)\right]^{p_{i}}<\infty, \text { for some } \rho>0\right\} .
$$

If $x \in w^{\theta}(M, p)$, we said that the sequence x is lacunary strongly almost convergent to the number L with respect to the sequence of Orlicz functions $M=\left(M_{i}\right)$.

If $\theta=\left(2^{r}\right), M_{i}=M$ for all $i \in N, A=I$ unit matrix and $m=0$, the spaces the spaces $w^{\theta}(M, A, p), w_{o}^{\theta}(M, A, p)$ and $w_{\infty}^{\theta}(M, A, p)$ reduce to $w(M, p), w_{o}(M, p)$ and $w_{\infty}(M, p)$ which were defined and studied by Parashar and Choudhary [10].

If $\theta=\left(2^{r}\right), M_{i}(x)=x$ for all $i \in N, A=I$ unit matrix and $m=0$, the spaces the spaces $w^{\theta}(M, A, p), w_{o}^{\theta}(M, A, p)$ and $w_{\infty}^{\theta}(M, A, p)$ reduce to $[C, 1, p],[C, 1, p]_{o}$ and $[C, 1, p]_{\infty}$ which were defined and studied by Maddox [7].

2. Main Results

We have
Theorem 2.1. For any sequence of Orlicz functions $M=\left(M_{i}\right)$ and a bounded sequence $p=\left(p_{i}\right)$ strictly positive real numbers, $w^{\theta}(M, A, p), w_{o}^{\theta}(M, A, p)$ and $w_{\infty}^{\theta}(M, A, p)$ are linear spaces over the set of complex numbers \mathbf{C}.

Proof. We shall prove the result only for $w_{o}^{\theta}(M, A, p)$. The others can be treated similarly. Let $x, y \in w_{o}^{\theta}(M, A, p)$ and $\lambda, \mu \in \mathbf{C}$. In order to prove the result we need to find some ρ_{3} such that

$$
\lim _{r} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x+\mu y)\right|}{\rho_{3}}\right)\right]^{p_{i}}=0 \text {, uniformly in } m .
$$

Since $x, y \in w_{o}^{\theta}(M, A, p)$, there exist $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
\lim _{r} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho_{1}}\right)\right]^{p_{i}}=0 \text {, uniformly in } m
$$

and

$$
\lim _{r} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(y)\right|}{\rho_{2}}\right)\right]^{p_{i}}=0, \text { uniformly in } m .
$$

Define, $\rho_{3}=\max \left(2|\lambda| \rho_{1}, 2|\mu| \rho_{2}\right)$. Since M_{i} is non-decreasing and convex for all $i \in N$,

$$
\begin{aligned}
& h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x+\mu y)\right|}{\rho_{3}}\right)\right]^{p_{i}} \\
& \leq h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x)\right|}{\rho_{3}}+\frac{\left|A_{i m}(\mu y)\right|}{\rho_{3}}\right)\right]^{p_{i}} \leq h_{r}^{-1} \sum_{i \in I_{r}} 2^{-p_{i}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho_{1}}\right)+M_{i}\left(\frac{\left|A_{i m}(y)\right|}{\rho_{2}}\right)\right]^{p_{i}} \\
& \leq K h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho_{1}}\right)\right]^{p_{i}}+K h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i n}(y)\right|}{\rho_{2}}\right)\right]^{p_{i}} \rightarrow 0 \text { as } r \rightarrow \infty, \text { uniformly in }
\end{aligned}
$$

m, where $K=\max \left(1,2^{H-1}\right), H=\sup _{i} p_{i}<\infty$. Therefore $\lambda x+\mu y \in w_{o}^{\theta}(M, A, p)$.
Theorem 2.2. For any sequence of Orlicz functions $M=\left(M_{i}\right)$ and a bounded sequence $p=\left(p_{i}\right)$ strictly positive real numbers, $w_{o}^{\theta}(M, A, p)$ is a paranormed linear space, paranormed by

$$
f(x)=\inf \left\{\rho^{\frac{p_{r}}{H}}:\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1, \begin{array}{l}
r=1,2, \ldots \\
m=1,2, \ldots
\end{array}\right\}
$$

where $H=\max \left(1, \sup _{i} p_{i}\right)$.
Proof. It is easy to see that $f(x)=f(-x)$. Since $M_{i}(0)=0$ for all $i \in N$, we get $\inf \left\{\rho^{\frac{p_{r}}{H}}\right\}=0$ for $x=0$. Conversely, suppose that $f(x)=0$, then

$$
\inf \left\{\rho^{\frac{p_{r}}{H}}:\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1, \begin{array}{l}
r=1,2, \ldots \\
m=1,2, \ldots
\end{array}\right\}=0 .
$$

This implies that for a given $\varepsilon>0$, there exists some $\rho_{\varepsilon}\left(0<\rho_{\varepsilon}<\varepsilon\right)$ such that

$$
\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i n}(x)\right|}{\rho_{\varepsilon}}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1
$$

Thus

$$
\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\varepsilon}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho_{\varepsilon}}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1 \text { for each } r \text { and } m .
$$

Suppose that $x_{k_{j}} \neq 0$ for some j. This implies that $A_{i m}\left(x_{k_{j}}\right) \neq 0$ for some j. Let $\varepsilon \rightarrow 0$.
Then, $\frac{\mid A_{i m}\left(x_{k_{j}}\right)}{\varepsilon} \rightarrow \infty$. It follows that $\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\mid A_{i m}\left(x_{k_{j}}\right)}{\varepsilon}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \rightarrow \infty$, which is
contradiction. Therefore $x_{k_{j}}=0$ for some j.
Next let $\rho_{1} \succ 0$ and $\rho_{2} \succ 0$ be such that

$$
h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho_{1}}\right)\right]^{p_{k}} \leq 1
$$

and

$$
h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(y)\right|}{\rho_{2}}\right)\right]^{p_{k}} \leq 1 .
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then we have

$$
\begin{aligned}
h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x+y)\right|}{\rho}\right)\right]^{p_{k}} \leq & \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right)^{H} h_{r}^{-1} \sum_{i \in I_{r}}\left[M\left(\frac{\left|A_{i m}(x)\right|}{\rho_{1}}\right)\right]^{p_{k}} \\
& +\left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right)^{H} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(y)\right|}{\rho_{2}}\right)\right]^{p_{k}} \leq 1 .
\end{aligned}
$$

Since the $\rho^{\prime} s$ are non-negative, we have

$$
f(x+y)=\inf \left\{\rho^{\frac{p_{r}}{H}}:\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x+y)\right|}{\rho}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1, \begin{array}{l}
r=1,2, \ldots \\
m=1,2, \ldots
\end{array}\right\}
$$

$$
\begin{aligned}
& \leq \inf \left\{\rho_{1}^{\frac{p_{r}}{H}}:\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i n}(x)\right|}{\rho_{1}}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1, \begin{array}{c}
r=1,2, \ldots \\
m=1,2, \ldots
\end{array}\right\} \\
& +\inf \left\{\rho_{2}^{\frac{p_{r}}{H}}:\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(y)\right|}{\rho_{2}}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1, \begin{array}{c}
r=1,2, \ldots \\
m=1,2, \ldots
\end{array}\right\} \\
& =f(x)+f(y) .
\end{aligned}
$$

Finally, we prove scalar multiplication is continuous. Let λ be any complex number. By definition,

$$
f(\lambda x)=\inf \left\{\rho^{\frac{p_{r}}{H}}:\left(h_{r}^{-1} \sum_{i \in l_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x)\right|}{\rho}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1, \begin{array}{l}
r=1,2, \ldots \\
m=1,2, \ldots
\end{array}\right\}
$$

Then,

$$
f(\lambda x)=\inf \left\{(|\lambda| t)^{\frac{p_{r}}{H}}:\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x)\right|}{t}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1, \begin{array}{l}
r=1,2, \ldots \\
m=1,2, \ldots
\end{array}\right\} \text { where } t=\rho|\lambda|^{-1} .
$$

Since $|\lambda|^{p_{r}} \leq \max \left(1,|\lambda|^{H}\right)\left(H=\sup _{r} p_{r}\right)$, we have

$$
f(\lambda x) \leq \max \left(1,|\lambda|^{H}\right)^{\frac{1}{H}} \inf \left\{t^{\frac{p_{r}}{H}}:\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x)\right|}{t}\right)\right]^{p_{i}}\right)^{\frac{1}{H}} \leq 1, \begin{array}{r}
r=1,2, \ldots \\
m=1,2, \ldots
\end{array}\right\} \text { which }
$$

converges to zero as x converges to zero in $w_{o}^{\theta}(M, A, p)$. Now suppose that $\lambda_{n} \rightarrow 0$ and x is fixed in $w_{o}^{\theta}(M, A, p)$. For arbitrary $\varepsilon>0$, let R be a positive integer such that

$$
h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x)\right|}{\rho}\right)\right]^{p_{i}}<\left(\frac{\varepsilon}{2}\right)^{H}, \text { for some } \rho>0, r>R \text { and all } m \in N .
$$

This implies that

$$
\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x)\right|}{\rho}\right)\right]^{p_{i}}\right)^{\frac{1}{H}}<\frac{\varepsilon}{2}, \text { for some } \rho>0, r>R \text { and all } m \in N .
$$

Let $0<|\lambda|<1$. For all $i \in N$, using the convexity of M_{i}, for $r>R$ and all $m \in N$, we get

$$
h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x)\right|}{\rho}\right)\right]^{p_{i}}<h_{r}^{-1} \sum_{i \in I_{r}}\left[|\lambda| M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{p_{i}}<\left(\frac{\varepsilon}{2}\right)^{H} .
$$

Since M_{i} is continuous everywhere in $[0, \infty)$ for all $i \in N$, then for $r \leq R$,

$$
g(s)=h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i n}(s x)\right|}{\rho}\right)\right]^{p_{i}} \text { is continuous at zero. So there is } 0<\delta<1 \text { such that }
$$ $|g(s)|<\left(\frac{\varepsilon}{2}\right)^{H}$ for $0<s<\delta$. Let K be such that $\left|\lambda_{n}\right|<\delta$ for $n>K$. Then for $n>K, r \leq R$ and all $m \in N$,

$$
\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}\left(\lambda_{n} x_{k}\right)\right|}{\rho}\right)\right]^{p_{i}}\right)^{\frac{1}{H}}<\frac{\varepsilon}{2} .
$$

Thus

$$
\left(h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}\left(\lambda_{n} x_{k}\right)\right|}{\rho}\right)\right]^{p_{i}}\right)^{\frac{1}{H}}<\varepsilon, \text { for } n>K \text { and all } r \text { and } m, \text { so that } f(\lambda x) \rightarrow 0
$$

as $\lambda \rightarrow 0$. This completes the proof.

Theorem 2.3. For any sequences of Orlicz functions $M=\left(M_{i}\right)$ and $N=\left(N_{i}\right)$ which satisfies the Δ_{2}-condition for all $i \in N$ and a bounded sequence $p=\left(p_{i}\right)$ strictly positive real numbers, we have $w^{\theta}(M, A, p) \subset w^{\theta}(M o N, A, p)$.

Proof. Let $x \in w^{\theta}(M, A, p)$. Then there exists $\rho>0$ such that

$$
h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}} \rightarrow 0 \text {, as } r \rightarrow \infty \text {, uniformly in } m \text {, for some } L \text {. }
$$

Let $\varepsilon>0$ and choose δ with $0<\delta<1$ such that $M_{i}(u)<\varepsilon$ for $0 \leq u \leq \delta$ and all $i \in N$. Let

$$
B_{i m}=M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)
$$

and let

$$
h_{r}^{-1} \sum_{i \in I_{r}}\left[N_{i}\left(B_{i m}\right)\right]^{p_{i}}=h_{r}^{-1} \sum_{\substack{i \in I_{r} \\ B_{i m} \leq \delta}}\left[N_{i}\left(B_{i m}\right)\right]^{p_{i}}+h_{r}^{-1} \sum_{\substack{i \in \in_{r} \\ B_{i m}>\delta}}\left[N_{i}\left(B_{i m}\right)\right]^{p_{i}} .
$$

By the Remark, we have

$$
\begin{equation*}
h_{r}^{-1} \sum_{\substack{i \in I_{r} \\ B_{i m} \leq \delta}}\left[N_{i}\left(B_{i m}\right)\right]^{p_{i}} \leq\left(N_{i}(1)\right)^{H} h_{r}^{-1} \sum_{\substack{i \in I_{r} \\ B_{i m} \leq \delta}}\left(B_{i m}\right)^{p_{i}} \leq\left(N_{i}(2)\right)^{H} h_{r}^{-1} \sum_{\substack{i \in I_{r} \leq \delta \\ B_{i m} \leq \delta}}\left(B_{i m}\right)^{p_{i}} \tag{1}
\end{equation*}
$$

where $H=\sup _{i} p_{i}<\infty$. For $B_{i m}>\delta$

$$
B_{i m}<\frac{B_{i m}}{\delta} \leq 1+\frac{B_{i m}}{\delta}
$$

since N_{i} is non-decreasing and convex for all $i \in N$, so

$$
N_{i}\left(B_{i m}\right)<N_{i}\left(1+\frac{B_{i m}}{\delta}\right)<\frac{1}{2} N_{i}(2)+\frac{1}{2} N_{i}\left(2 \frac{B_{i m}}{\delta}\right) .
$$

Since N_{i} satisfies Δ_{2} - condition for all $i \in N$, so

$$
N_{i}\left(B_{i m}\right)<\frac{1}{2} T \frac{B_{i m}}{\delta} N_{i}(2)+\frac{1}{2} T \frac{B_{i m}}{\delta} N_{i}(2)=T \frac{B_{i m}}{\delta} N_{i}(2)
$$

Hence

$$
\begin{equation*}
h_{r}^{-1} \sum_{\substack{i \in I_{r} \\ B_{i m}>\delta}}\left[N_{i}\left(B_{i m}\right)\right]^{p_{i}} \leq \max \left(1, \frac{T}{\delta} N_{i}(2)\right)^{H} h_{r}^{-1} \sum_{\substack{i \in I_{r} \\ B_{i m}>\delta}}\left(B_{i m}\right)^{p_{i}} \tag{2}
\end{equation*}
$$

where $H=\sup _{i} p_{i}<\infty$. By (1) and (2), we have $x \in w^{\theta}(\operatorname{MoN}, A, p)$. Thus $w^{\theta}(M, A, p) \subset w^{\theta}(M o N, A, p)$.

By using the method of the proof of Theorem 2.3. it is not hard to see that $w_{o}^{\theta}(M, A, p) \subset w_{o}^{\theta}(M o N, A, p)$ and $w_{\infty}^{\theta}(M, A, p) \subset w_{\infty}^{\theta}(M o N, A, p)$.

Taking $M_{i}(x)=x$ for all $i \in N$ in Theorem 2.3. we have the following result.
Corollary 2.4. For any sequence of Orlicz functions $M=\left(M_{i}\right)$ which satisfies the Δ_{2}-condition for all $i \in N$ and a bounded sequence $p=\left(p_{i}\right)$ strictly positive real numbers, we have $w^{\theta}(A, p) \subset w^{\theta}(M, A, p), w_{o}^{\theta}(A, p) \subset w_{o}^{\theta}(M, A, p)$ and $w_{\infty}^{\theta}(A, p) \subset w_{\infty}^{\theta}(M, A, p)$.

In the following theorem, we prove the inclusions $w(M, A, p) \subset w^{\theta}(M, A, p)$ and $w^{\theta}(M, A, p) \subset w(M, A, p)$ for any sequence of Orlicz functions $M=\left(M_{i}\right)$ under certain restrictions on lacunary sequence $\theta=\left(k_{r}\right)$.

Theorem 2.5. Let $M=\left(M_{i}\right)$ be any sequence of Orlicz functions.
(a) Let $\theta=\left(k_{r}\right)$ be a lacunary sequence with $\liminf _{r} q_{r}>1$. Then

$$
w(M, A, p) \subset w^{\theta}(M, A, p),
$$

where
$w(M, A, p)=\left\{x=\left(x_{k}\right): \lim _{n} n^{-1} \sum_{i=1}^{n}\left[M_{i}\left(\frac{\left|A_{\text {in }}(x-L)\right|}{\rho}\right)\right]^{p_{i}}=0\right.$, uniformly in m, for some $\left.\rho>0, L\right\}$.
(b) Let $\theta=\left(k_{r}\right)$ be a lacunary sequence with $\limsup _{r} q_{r}<\infty$. Then $w^{\theta}(M, A, p) \subset w(M, A, p)$.

Proof. (a). Suppose that $\liminf _{r} q_{r}>1$. Then there exists $\delta>0$ such that $q_{r}=\frac{k_{r}}{k_{r-1}} \geq 1+\delta$ for all $r \geq 1$. Then, for $x \in w(M, A, p)$, we write

$$
\begin{aligned}
C_{r, m}= & h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{p_{i}} \\
& =h_{r}^{-1} \sum_{i=1}^{i_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}-h_{r}^{-1} \sum_{i=1}^{i_{r-1}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}} \\
& =k_{r} h_{r}^{-1}\left(k_{r}^{-1} \sum_{i=1}^{i_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}\right)-k_{r-1} h_{r}^{-1}\left(k_{r-1}^{-1} \sum_{i=1}^{i_{r-1}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}\right) .
\end{aligned}
$$

Since $h_{r}=k_{r}-k_{r-1}$, we have $\frac{k_{r}}{h_{r}} \leq \frac{1+\delta}{\delta}$ and $\frac{k_{r-1}}{h_{r}} \leq \frac{1}{\delta}$.
The terms $k_{r}^{-1} \sum_{i=1}^{i_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}$ and $k_{r-1}^{-1} \sum_{i=1}^{i_{r-1}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}$ both converge to zero uniformly in m and it follows that $C_{r, m} \rightarrow 0$ as $r \rightarrow \infty$, uniformly in m. That is, $x \in w^{\theta}(M, A, p)$. Thus $w(M, A, p) \subset w^{\theta}(M, A, p)$.
(b). Suppose that $\limsup _{r} q_{r}<\infty$. Then, there exists $B>0$ such that $q_{r}<B$ for all $r \geq 1$. Let $x \in w^{\theta}(M, A, p)$ and $\varepsilon>0$. Then there exists $R>0$ such that for every $j \geq R$ and all $m \in N$,

$$
C_{j, m}=h_{j}^{-1} \sum_{i \in I_{j}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{p_{i}}<\varepsilon .
$$

We can also find $C>0$ such that $C_{j, m}<C$ for all $j \in N$. Now let n be any integer with $k_{r-1}<n \leq k_{r}$, where $r>R$. Then, for all $m \in N$

$$
\begin{aligned}
& n^{-1} \sum_{i=1}^{n}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}} \leq k_{r-1}^{-1} \sum_{i=1}^{k_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}} \\
& =k_{r-1}^{-1}\left(\sum_{i \in I_{1}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}+\sum_{i \in I_{2}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}+\ldots+\sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}\right] \\
& =k_{1} k_{r-1}^{-1} k_{1}^{-1} \sum_{i \in I_{1}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}}+\left(k_{2}-k_{1}\right) k_{r-1}^{-1}\left(k_{2}-k_{1}\right)^{-1} \sum_{i \in I_{2}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}} \\
& +\ldots+\left(k_{R}-k_{R-1}\right) k_{r-1}^{-1}\left(k_{R}-k_{R-1}\right)^{-1} \sum_{i \in I_{R}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}} \\
& +\ldots+\left(k_{r}-k_{r-1}\right) k_{r-1}^{-1}\left(k_{r}-k_{r-1}\right)^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}} \\
& =k_{1} k_{r-1}^{-1} C_{1, m}+\left(k_{2}-k_{1}\right) k_{r-1}^{-1} C_{2, m}+\ldots+\left(k_{R}-k_{R-1}\right) k_{r-1}^{-1} C_{R, m}+\ldots+\left(k_{r}-k_{r-1}\right) k_{r-1}^{-1} C_{r, m} \\
& \leq k_{R} k_{r-1}^{-1}\left(\sup _{j \geq 1} C_{j, m}\right)+\left(k_{r}-k_{R}\right) k_{r-1}^{-1}\left(\sup _{j \geq R} C_{j, m}\right) \\
& <C k_{R} k_{r-1}^{-1}+\varepsilon B .
\end{aligned}
$$

Since $k_{r-1} \rightarrow \infty$ as $n \rightarrow \infty$, it follows that

$$
n^{-1} \sum_{i=1}^{n}\left[M_{i}\left(\frac{\left|A_{i m}(x-L)\right|}{\rho}\right)\right]^{p_{i}} \rightarrow 0 \text {, uniformly in } m \text {. Therefore } x \in w(M, A, p) \text {. This }
$$

completes the proof.
Theorem 2.6. Let $M=\left(M_{i}\right)$ be any sequence of Orlicz functions and let $\theta=\left(k_{r}\right)$ be a lacunary sequence with $1<\liminf _{r} q_{r} \leq \limsup _{r} q_{r}<\infty$. Then $w(M, A, p)=w^{\theta}(M, A, p)$.

Proof. It follows from Theorem 2.5.(a) and (b).
Theorem 2.7. Let $M=\left(M_{i}\right)$ be any sequence of Orlicz functions. The space $w_{\infty}^{\theta}(M, A, p)$ is solid.

Proof. Let $x \in w_{\infty}^{\theta}(M, A, p)$. Then, for some $\rho>0$

$$
\begin{equation*}
\sup _{r, m} h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{p_{i}}<\infty . \tag{3}
\end{equation*}
$$

Let $\left(\lambda_{i}\right)$ be a sequence of scalars with $\left|\lambda_{i}\right| \leq 1$ for all $i \in N$. Then the result follows from (3), Remark and the following inequality

$$
h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(\lambda x)\right|}{\rho}\right)\right]^{p_{i}} \leq h_{r}^{-1} \sum_{i \in I_{r}}\left[\left|\lambda_{i}\right| M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{p_{i}} \leq h_{r}^{-1} \sum_{i \in I_{r}}\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{p_{i}} .
$$

The following result follows from Theorem 2.7. and the Lemma .
Corollary 2.8. Let $M=\left(M_{i}\right)$ be any sequence of Orlicz functions. The space $w_{\infty}^{\theta}(M, A, p)$ is monotone.

Theorem 2.9. Let $M=\left(M_{i}\right)$ be any sequence of Orlicz functions and let $0<p_{i} \leq q_{i}$ and $\left(\frac{q_{i}}{p_{i}}\right)$ be bounded. Then $w^{\theta}(M, A, q) \subset w^{\theta}(M, A, p)$.

Proof. Let $x \in w^{\theta}(M, A, q)$. Write $w_{i, m}=\left[M_{i}\left(\frac{\left|A_{i m}(x)\right|}{\rho}\right)\right]^{q_{i}}$ and $\lambda_{i}=\frac{q_{i}}{p_{i}}$ so that $0<\lambda<\lambda_{i} \leq 1$ (λ constant) for each $i \in N$. We define the sequences $\left(u_{i, m}\right)$ and $\left(v_{i, m}\right)$ as follows:

Let $u_{i, m}=w_{i, m}$ and $v_{i, m}=0$ if $w_{i, m} \geq 1$ and let $u_{i, m}=0$ and $v_{i, m}=w_{i, m}$ if $w_{i, m}<1$. Then, it is clear that for all $i \in N$ we have $w_{i, m}=u_{i, m}+v_{i, m}$ and $w_{i, m}^{\lambda_{i}}=u_{i, m}^{\lambda_{i}}+v_{i, m}^{\lambda_{i}}$. Now it follows that $u_{i, m}^{\lambda_{i}} \leq u_{i, m} \leq w_{i, m}$ and $v_{i, m}^{\lambda_{i}} \leq v_{i, m}^{\lambda}$. Therefore

$$
h_{r}^{-1} \sum_{i \in I_{r}} w_{i, m}^{\lambda_{i}}=h_{r}^{-1} \sum_{i \in I_{r}}\left(u_{i, m}^{\lambda_{i}}+v_{i, m}^{\lambda_{i}}\right) \leq h_{r}^{-1} \sum_{i \in I_{r}} w_{i, m}+h_{r}^{-1} \sum_{i \in I_{r}} v_{i, m}^{\lambda} .
$$

Since $0<\lambda<1$, for each $r \geq 1$, by using Hölder's Inequality, we have

$$
\begin{aligned}
h_{r}^{-1} \sum_{i \in I_{r}} v_{i, m}^{\lambda} & \left.=\sum_{i \in I_{r}}\left(h_{r}^{-1} v_{i, m}\right)^{\lambda}\left(h_{r}^{-1}\right)^{1-\lambda} \leq\left(\sum_{i \in I_{r}}\left[\left(h_{r}^{-1} v_{i, m}\right)^{\lambda}\right]^{1}\right)^{1}\right)^{\lambda}\left(\sum_{i \in I_{r}}\left[\left(h_{r}^{-1}\right)^{1-\lambda}\right]^{1-\lambda}\right)^{1-\lambda} \\
& =\left(h_{r}^{-1} \sum_{i \in I_{r}}^{1-\lambda} v_{i, m}\right)^{\lambda}
\end{aligned}
$$

and thus

$$
h_{r}^{-1} \sum_{i \in I_{r}} w_{i, m}^{\lambda_{i}} \leq h_{r}^{-1} \sum_{i \in I_{r}} w_{i, m}+\left(h_{r}^{-1} \sum_{i \in I_{r}} v_{i, m}\right)^{\lambda}
$$

Therefore $x \in w^{\theta}(M, A, p)$.

We have the following result which follows from the above result.
Corollary 2.10. Let $M=\left(M_{i}\right)$ be any sequence of Orlicz functions.
(a). Let $0<\inf _{i} p_{i} \leq p_{i} \leq 1$, then $w^{\theta}(M, A, p) \subset w^{\theta}(M, A$.$) .$
(b). Let $1 \leq p_{i} \leq \sup _{i} p_{i}<\infty$, then $w^{\theta}(M, A) \subset w^{\theta}(M, A$.$) ,$
where
$w^{\theta}(M, A)=\left\{x=\left(x_{k}\right): \lim _{r} h_{r}^{-1} \sum_{i \in I_{r}} M_{i}\left(\frac{\left|A_{\text {im }}(x-L)\right|}{\rho}\right)=0\right.$, uniformly in m, for some $\left.\rho>0, L\right\}$.

References

[1] Esi, A.: Some new sequence spaces defined by Orlicz functions, Bulletin of the Institute of Mathematics, Academia Sinica, 27(1)(1999), 71-76.
[2] Esi, A.and Et,M.: Some new sequence spaces defined by a sequence of Orlicz functions, Indian J.Pure Appl.Math.,31(8)(2000), 967-972.
[3] Freedman, A.R.,Sember,J.J. and Raphael, M.: Some Cesaro-type summability spaces, Proc.London Math.Soc., 37(3) (1978), 508-520.
[4] Kampthan, P.K.and Gupta,M.: Sequence spaces and series, Marcel Dekker, New York, 1981.
[5] Krasnoselskii, M.A. and Rutitsky, Y.B.: Convex functions and Orlicz spaces, Groningen, Netherland, 1961.
[6] Lindenstrauss, J. and Tzafriri, L.: On Orlicz sequence spaces, Israel J.Math. 10 (1971), 345-355.
[7] Maddox, I.J.: Spaces of strongly summable sequences, Quart.J.Math., 18(1967), 345-355.
[8] Maddox, I.J.: On strong almost convergence, Math.Proc.Camb.Phil.Soc., 85(1979), 345350.
[9] Nakano, H. : Modulared sequence spaces, Proc.Japan Acad.,27(1951),508-512.
[10] Parashar, S.D.and Choudhary, B.: Sequence spaces defined by Orlicz functions, Indian J.Pure Appl.Math.,25(1994), 419-428.
[11] Ruckle, W.H.: FK spaces in which the sequence of coordinate vectors is bounded, Canad.J.Math.25(1973), 973-978.
[12] Savaş, E.: On strongly σ - convergent sequences, Bull.Calcutta Math.Soc.,81(1989), 295-300.
[13] Woo, Joseph,Y.T.: On modular sequence spaces, Studia Math.,48(1973), 271-289.

Instructions to Contributors Journal of Computational Analysis and Applications.

A quartely international publication of Eudoxus Press, LLC.

Editor in Chief: George Anastassiou
Department of Mathematical Sciences, University of Memphis Memphis, TN 38152-3240, U.S.A.

AUTHORS MUST COMPLY EXACTLY WITH THE FOLLOWING RULES OR THEIR ARTICLE CANNOT BE CONSIDERED.

1. Manuscripts,hard copies in triplicate and in English,should be submitted to the Editor-in-Chief, mailed un-registered, to:

Prof.George A. Anastassiou
Department of Mathematical Sciences
The University of Memphis
Memphis,TN 38152-3240, USA.

Authors must e-mail a PDF copy of the submission to ganastss@memphis.edu.

Authors may want to recommend an associate editor the most related to the submission to possibly handle it.

Also authors may want to submit a list of six possible referees, to be used in case we cannot find related referees by ourselves.
2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX,or AMS-LaTEX and according to EUDOXUS PRESS, LLC. LATEX STYLE FILE. (Click HERE to save a copy of the style file.)They should be carefully prepared in all respects. Submitted copies should be brightly printed (not dot-matrix), double spaced, in ten point type size, on one side high quality paper $8(1 / 2) \times 11$ inch. Manuscripts should have generous margins on all sides and should not exceed 24 pages.
3. Submission is a representation that the manuscript has not been published previously in this or any other similar form and is not currently under consideration for publication elsewhere. A statement
transferring from the authors(or their employers,if they hold the copyright) to Eudoxus Press, LLC, will be required before the manuscript can be accepted for publication.The Editor-in-Chief will supply the necessary forms for this transfer.Such a written transfer of copyright, which previously was assumed to be implicit in the act of submitting a manuscript,is necessary under the U.S.Copyright Law in order for the publisher to carry through the dissemination of research results and reviews as widely and effective as possible.
4. The paper starts with the title of the article, author's name(s) (no titles or degrees), author's affiliation(s) and e-mail addresses. The affiliation should comprise the department, institution (usually university or company), city, state (and/or nation) and mail code.

The following items, 5 and 6, should be on page no. 1 of the paper.
5. An abstract is to be provided, preferably no longer than 150 words.
6. A list of 5 key words is to be provided directly below the abstract. Key words should express the precise content of the manuscript, as they are used for indexing purposes.

The main body of the paper should begin on page no. 1, if possible.
7. All sections should be numbered with Arabic numerals (such as: 1. INTRODUCTION) .
Subsections should be identified with section and subsection numbers (such as 6.1. Second-Value Subheading).
If applicable, an independent single-number system (one for each category) should be used to label all theorems, lemmas, propositions, corrolaries, definitions, remarks, examples, etc. The label (such as Lemma 7) should be typed with paragraph indentation, followed by a period and the lemma itself.
8. Mathematical notation must be typeset. Equations should be numbered consecutively with Arabic numerals in parentheses placed flush right,and should be thusly referred to in the text [such as Eqs.(2) and (5)]. The running title must be placed at the top of even numbered pages and the first author's name, et al., must be placed at the top of the odd numbed pages.
9. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in one consecutive series of Arabic numerals. The captions for illustrations should be typed double space. All illustrations, charts, tables, etc., must be embedded in the body of the manuscript in proper, final, print position. In particular, manuscript, source, and PDF file
version must be at camera ready stage for publication or they cannot be considered.

Tables are to be numbered (with Roman numerals) and referred to by number in the text. Center the title above the table, and type explanatory footnotes (indicated by superscript lowercase letters) below the table.
10. List references alphabetically at the end of the paper and number them consecutively. Each must be cited in the text by the appropriate Arabic numeral in square brackets on the baseline.

References should include (in the following order): initials of first and middle name, last name of author(s)
title of article,
name of publication, volume number, inclusive pages, and year of publication.

Authors should follow these examples:

Journal Article

1. H.H.Gonska,Degree of simultaneous approximation of bivariate functions by Gordon operators, (journal name in italics) J. Approx. Theory, 62,170-191(1990).

Book

2. G.G.Lorentz, (title of book in italics) Bernstein Polynomials (2nd ed.), Chelsea,New York, 1986.

Contribution to a Book

3. M.K.Khan, Approximation properties of beta operators, in(title of book in italics) Progress in Approximation Theory (P.Nevai and A.Pinkus,eds.), Academic Press, New York,1991,pp.483-495.
4. All acknowledgements (including those for a grant and financial support) should occur in one paragraph that directly precedes the References section.
5. Footnotes should be avoided. When their use is absolutely necessary, footnotes should be numbered consecutively using Arabic numerals and should be typed at the bottom of the page to which they refer. Place a line above the footnote, so that it is set off from the text. Use the appropriate superscript numeral for citation in the text.
6. After each revision is made please again submit three hard copies of the revised manuscript, including in the final one. And after a
manuscript has been accepted for publication and with all revisions incorporated, manuscripts, including the TEX/LaTex source file and the PDF file, are to be submitted to the Editor's Office on a personalcomputer disk, 3.5 inch size. Label the disk with clearly written identifying information and properly ship, such as:

Your name, title of article, kind of computer used, kind of software and version number, disk format and files names of article, as well as abbreviated journal name.

Package the disk in a disk mailer or protective cardboard. Make sure contents of disks are identical with the ones of final hard copies submitted!

Note: The Editor's Office cannot accept the disk without the accompanying matching hard copies of manuscript. No e-mail final submissions are allowed! The disk submission must be used.
14. Effective 1 Nov. 2009 for current journal page charges, contact the Editor in Chief. Upon acceptance of the paper an invoice will be sent to the contact author. The fee payment will be due one month from the invoice date. The article will proceed to publication only after the fee is paid. The charges are to be sent, by money order or certified check, in US dollars, payable to Eudoxus Press, LLC, to the address shown on the homepage of this site.

No galleys will be sent and the contact author will receive one(1) complementary electronic copy of the journal issue in which the article appears.
15. This journal will consider for publication only papers that contain proofs for their listed results.

TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL.12, NO.4, 2010

Recurrent points and periodic points of graph maps, Geng-Rong Zhang, Xin-He Liu, Bin Qin, 725
Differentiation followed by composition from Bloch spaces to Qp spaces, Xiangling Zhu, 731
Some theorems and examples of cone Banach spaces, Thabet Abdeljawad, Duran Turkoglu, Muhib Abuloha 739
Stability analysis of a class of generalized neutral equations, Cemil Tunc, Ali Sirma, 754
An improvement to a C2 quintic spline interpolation scheme on triangulations, Sun-Kang Chen, Huan-Wen Liu, 760
Some geometric and topological properties of a new sequence space defined by de la Vallee- Poussin mean, Necip Simsek, Ekrem Savas, Vatan Karakaya, 768
Composition operators on logarithmic a-Bloch spaces, Shanli Ye, 780
Statistical convergence in fuzzy 2-normed space, S.A. Mohiuddine, H. Sevli, M. Cancan, 787
A Generalization of the EMML and ISRA Algorithms for Solving Linear Systems, Anca Ciurte, Sergiu Nedevschi, Ioan Rasa, 799
On Local Properties of Summability of Fourier Series, Mehmet Ali Sarıgöl, 817
Higher Order Generalization of q-Bernstein Operators, Pembe Sabancigil, 821
Calculating zeros of the second kind Euler polynomials, C. S. Ryoo, 828
Block incomplete LU factorization for block-tridiagonal M-matrices, Zhi-Gang Ren, Ting-ZhuHuang, Liang Li,... 834A numerical investigation on the structure of the roots of (h,q)-extension of q-analogue of
Genocchi polynomials, C. S. Ryoo, 846
Lacunary strong almost A - convergence with respect to a sequence of Orlicz functions, Ayhan Esi, Aysegül Gokhan, 853

[^0]: Date: April 12, 2007.
 2000 Mathematics Subject Classification. Primary 11E04, 46C05, Secondary 11D09.
 Key words and phrases. Quasi-quadratic functional, sesquilinear(bilinear) functional, *algebra, ${ }^{*}$-ring .

[^1]: Email addresses: huseyin.aktuglu@emu.edu.tr (Hüseyin Aktuğlu), mehmetali.ozarslan@emu.edu.tr (Mehmet Ali Ozarslan), halil.gezer@cc.emu.edu.tr (Halil Gezer).

[^2]: ${ }^{1}$ Supported by NTUST grant No RP07-04

[^3]: The corresponding author: rsaadati@eml.cc (R. Saadati)
 This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-C00050).

 This research is partially supported by Research Center in Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran

[^4]: 2000 Mathematics Subject Classification. Primary 33D15, Secondary 05A30.
 Key words and phrases. Basic hypergeometric series; Rogers-Ramanujan type identities; Jacobi's triple product identity, Weirstrass' classical three term relation on theta function.
 \dagger Corresponding address: Dipartimento di Matematica, Università del Salento, Lecce-Arnesano P. O. Box 193 Lecce 73100, Italy. Email: chu.wenchang@unile.it and wang.chenying@163.com.

[^5]: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (20090064444).

[^6]: *The first author is supported by the Natural Science Foundation of Honghe University (XSS07004). The second author is supported by Guagxi Natural Science Foundation (0575029)

[^7]: *Project supported by the National Natural Science Foundation of China(10461007 and 10761007) and supported partly by the Provincial Natural Science Foundation of Jiangxi, China (2008GZS0076 and 2007GZS2051).
 ${ }^{\dagger}$ xjhuangxwen@163.com

[^8]: 2000 Mathematics Subject Classification. Primary: 47B38; Secondary: 26A16, 32A16, 32A26, 32A30, 32A37, 32A38, 32H02, 47B33.

 Key words and phrases. Composition operator, Lipschitz space, Polydiscs, Several complex variables.
 *Ze-Hua Zhou, corresponding author. Supported in part by the National Natural Science Foundation of China (Grand Nos. 10671141, 10371091).

[^9]: *This research was supported by the Scientific and Technological Key Project of the Chinese Education Ministry (107098), the PhD. Programs Fund of Chinese Universities (20070614001) and the Project for Academic Leader and Group of UESTC.
 ${ }^{\dagger}$ E-mail: baiyuqin@uestc.edu.cn or yqbai2006@163.com.
 \ddagger Corresponding author: tzhuang@uestc.edu.cn

[^10]: 2000 Mathematics Subject Classification. 46A30, 46A70, 54A40.
 Key words and phrases. fuzzy n-norms, fuzzy compact operator.

[^11]: *This paper was written during the 2009 Spring Semester when the second author was a Visiting Professor at the Department of Mathematical Sciences, The University of Memphis, TN, U.S.A.

[^12]: Key words and phrases. Passivity, mixed-stable model, forex volatility, power-corelation measures.

[^13]: ${ }^{1}$ Null hypothesis: data are distributed by the normal (Gausian distribution) with the empirical mean and empirical variance.

[^14]: ${ }^{2}$ Actually the A-D criterion hypotheses of full series stability were rejected in all cases.

[^15]: 2000 Mathematics Subject Classification. Primary 32A35.
 Key words and phrases. Analytic functions, Hadamard gap, $F(p, q, s)$ space, Bloch space, unit ball.

[^16]: *Acknowledgment: Rachev gratefully acknowledges research support by grants from the Division of Mathematical, Life and Physical Sciences, College of Letters and Science, University of California, Santa Barbara, the Deutschen Forschungsgemeinschaft and the Deutscher Akademischer Austausch Dienst.

[^17]: Date: June 26, 2009.
 2000 Mathematics Subject Classification. 46S40, 47H10, 54E35, 54E40, 54H25.
 Key words and phrases. Dislocated fuzzy quasi-metric space, fixed point, bi-Cauchy sequence, coincidentally bi-commuting mappings.
 cihangiralaca@yahoo.com.tr (C. Alaca).

[^18]: Date: April 13, 2009.
 2000 Mathematics Subject Classification. Primary: 40J05; Secondary:22A05.
 Key words and phrases. Statistical convergence; Statistically Cauchy sequence; Double sequence; Double natural density .

[^19]: ${ }^{0} 2000$ Mathematics Subject Classification. Primary 39B52; Secondary 39B82; 46HXX.
 ${ }^{0}$ Keywords: Alternative fixed point; generalized Hyers-Ulam-Rassias stability; left derivation; Jordan left derivation

[^20]: 1991 Mathematics Subject Classification. 47H10, 03E75, 46S40, 46M15,
 Key words and phrases. Intuitionistic fuzzy metric spaces, category of intuitionistic fuzzy metric space, intuitionistic fuzzy metric adjoint pair, fixed point.

[^21]: ${ }^{0} 2000$ Mathematics Subject Classification: 39B52, 39B82, 46S40, 54E40.
 ${ }^{0}$ Keywords: Additive functional equation; Quadratic functional equation; NonArchimedean space, Stability.

[^22]: ${ }^{0} 2000$ Mathematics Subject Classification: Primary 39B52; Secondary 39B82; 46B99; 17A40
 ${ }^{0}$ Keywords: Generalized Hyers-Ulam stability; C^{*}-ternary algebra; ternary Jordan *-derivation

[^23]: 1991 Mathematics Subject Classification. Primary 39B72; Secondary 39B82.
 Key words and phrases. Hyers-Ulam stability; multi-dimensional quadratic equations; direct method.
 \# This work was supported by National Research Foundation of Korea Grant funded by the Korean Government(NO. 2009-0070940).
 H. Kim, hmkim@cnu.ac.kr.

[^24]: *, Department of Mathematics, Chungnam National University, Daejeon, 305764, Republic of Korea

 E-mail address: hmkim@cnu.ac.kr
 **, Department of Mathematics, Chungnam National University, Daejeon, 305-
 764, Republic of Korea
 E-mail address: sey8405@hanmail.net
 ***, Department of Mathematics, Chungnam National University, Daejeon, 305-
 764, Republic of Korea
 E-mail address: hand0627@hanmail.net

[^25]: 2000 Mathematics Subject Classification. Primary 26A51; Secondary 26D15.
 Key words and phrases. Landau's inequalities, Pólya-Knopp's inequality, Hardy's inequality, convex function, p-Laplacian .

[^26]: 2000 Mathematics Subject Classification : 39B52, 39B72, 39B82, 46H99.
 Keywords and phrases: Generalized derivation; Stability; Superstability; Spectrally bounded generalized derivation. *This work was supported by the Korean Research Foundation(KRF) grant funded by the Korea government(MEST) (No. 2009-0073310).

[^27]: ${ }^{0} 2000$ Mathematics Subject Classification: 49J40, 47J20, 90C33.
 ${ }^{0}$ Keywords: New system of generalized mixed variational inequality problem, relaxed (γ, r)-cocoercive, r-strongly monotone, algorithm, Hausdorff metric, fixed point.
 ${ }^{1}$ Corresponding author.
 ${ }^{2}$ This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)(KRF-2007-357-C00003).

[^28]: This study was supported by research funds from Dong-A University.

[^29]: ${ }^{1}$ E-mail: m el kady@hotmail.com
 ${ }^{2}$ E-mail: yousef_eldest@yahoo.com

[^30]: Key words and phrases. Rodrigues formula, Generating function, Multiple Laguerre polynomials, Multiple Hermite polynomials, Finite-series relationship.

 2000 Mathematics Subject Classification. 33C45, 42C05.

[^31]: *This research was supported by the Faculty of Science KMUTT Research Fund, King Mongkut's University of Technology Thonburi, KMUTT Thailand.
 poom.kum@kmutt.ac.th (P. Kumam)

[^32]: * E-mail:cemtunc@yahoo.com
 **E-mail:hergoren@yahoo.com

[^33]: ${ }^{*}$ The work is supported by the NSF of China (No. 10771056, 10671211), the NSF of Hunan Province in China (No. 09JJ6005).

[^34]: *Project supported by NNSF of China (10661001,10861002), NSF of Guangxi (0897012, 0832275),NSF of Guangdong(7301276) and NSF of Guangxi Education Department(200807MS001)

 2000 Mathematics Subject Classification. Primary 37E25, 37B20; Secondary 54H20, 54E40.
 Key words and phrases. recurrent point, periodic point, transitivity, graph map.

[^35]: [1] A. Aleman, L. Carlsson and A. Persson, Preduals of Q_{p}, Complex Variables Elliptic Equations, 52 (7) (2007), 605-628.
 [2] P. Bourdon, J. Cima and A. Matheson, Compact composition operators on the BMOA, Trans. Amer. Math. Soc. 351 (1999), 2183-2196.
 [3] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
 [4] R. A. Hibschweiler and N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain J. Math. 35 (3) (2005), 843-855.

[^36]: sunkang_chen@yahoo.com.cn

[^37]: 2000 Mathematics Subject Classification. 46A45, 46B20, 46B45.
 Key words and phrases. de la Vallée-Poussin, Cesáro sequence spaces, H-property, BanachSaks property, geometrical properties.
 necsimsek@yahoo.com.

[^38]: *E-mail: ye_shanli@yahoo.com.cn; shanliye@fjnu.edu.cn

[^39]: Research of the first author is supported by the Department of Atomic Energy, Government of India under the NBHM-Post Doctoral Fellowship programme number 40/10/2008-R\&D II/892.

 The present paper was started when the first author visited Yüzüncü Yil University, Van, Turkey during May 16-June 11, 2009.

[^40]: 1991 Mathematics Subject Classification: 40D15; 40G99; 42A24; 42B15
 Keywords and phrases : Absolute summability; Fourier series; Local property

[^41]: *This research was supported by 973 Programs (2008CB317110), NSFC (10771030), the Scientific and Technological Key Project of the Chinese Education Ministry (107098), the PhD. Programs Fund of Chinese Universities (20070614001).
 ${ }^{\dagger}$ eric667@163.com
 E-mail: tzhuang@uestc.edu.cn or tingzhuhuang@126.com (T. Z. Huang)
 ${ }^{\text {§ }}$ plum_liliang@uestc.edu.cn

[^42]: *This paper has been supported by the 2010 Hannam University Research Fund.

